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RATES FOR BRANCHING PARTICLE APPROXIMATIONS
OF CONTINUOUS-DISCRETE FILTERS1

BY MICHAEL A. KOURITZIN AND WEI SUN

University of Alberta and Concordia University

Herein, we analyze an efficient branching particle method for asymp-
totic solutions to a class of continuous-discrete filtering problems. Suppose
that t → Xt is a Markov process and we wish to calculate the measure-
valued process t → µt (·) .= P {Xt ∈ ·|σ {Ytk , tk ≤ t}}, where tk = kε and Ytk
is a distorted, corrupted, partial observation of Xtk . Then, one constructs a
particle system with observation-dependent branching and n initial particles
whose empirical measure at time t, µn

t , closely approximates µt . Each par-
ticle evolves independently of the other particles according to the law of the
signal between observation times tk , and branches with small probability at
an observation time. For filtering problems where ε is very small, using the
algorithm considered in this paper requires far fewer computations than other
algorithms that branch or interact all particles regardless of the value of ε. We
analyze the algorithm on Lévy-stable signals and give rates of convergence
for E1/2{‖µn

t − µt‖2
γ }, where ‖ · ‖γ is a Sobolev norm, as well as related

convergence results.

1. Introduction. The filtering problems in many key, contemporary fields
such as mathematical finance and communication networks initially appear to
be resolved by the celebrated mathematical solutions of the Duncan–Mortensen–
Zakai and Kushner–Stratonovich equations, which have been known for over three
decades. However, upon further reflection, one realizes that these equations are nei-
ther computer workable nor applicable at large. More theory is required keeping:
(a) the ultimate computer enduse, and (b) some real world applications in mind.
Many of the corresponding filtering problems are large enough that the mere stor-
age of the exact solutions is impractical. We require more implementable, practical
methods of filtering, where the solutions are almost optimal and can be stored. The
introduction of particle approximations is natural under these criteria.

The general problem of continuous-discrete filtering for Markov processes is
concerned with extracting information about a continuous-time Markov process
t → Xt called the signal based on the current record of discrete-time observations
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{Ytk , tk ≤ t} that are probabilistically linked to the signal. The goal of filtering is
to estimate past, present or future values of ϕ(Xt) based on our observation record
{Ytk , tk ≤ t}. Direct implementation of the mathematical solution to these filtering
problems usually requires the on-line solution of an infinite-dimensional (often
parabolic) equation (see, however, [11] for counter examples where such infinite-
dimensional equation solution is not required), which is impossible to either im-
plement precisely or store. For these reasons, one may be forced to approximate.
One exciting method of approximation for continuous-discrete filtering problems
was recently studied by Del Moral and collaborators (see [7] for one of the ear-
lier works), where, instead of solving a parabolic equation on-line, one simulates
particles so that the empirical measure of the particles is a good approximation to
the solution of the differential equation. Then, to account for the incoming obser-
vations, one allows the particles to redistribute themselves to locations favored by
the observations. This second branching or interacting step is devised to ensure
that new information obtained through the observations can be incorporated into
our conditional probability law of the signal given the observation record. A thor-
ough account of this interesting interacting particle method can be found in [9].

More recently, algorithms have been considered in [1] and [8] that do not disturb
most particles at each observation time and thereby introduce far less resampling
noise. Indeed, the huge performance gained by only resampling those particles that
need to be resampled was quantified experimentally in the former paper and theo-
retically in the latter. Herein, we further develop and study the cautious branching
particle approach in [1], which was motivated in part by the particle system ap-
proximation scheme suggested by Sherman and Peskin [17] for the deterministic
reaction-diffusion equations and by the earlier branching particle method of Crisan
and Lyons [6]. To make our presentation clear, we choose to introduce and analyze
our method on Lévy-stable signal processes, however, this particle approximation
method is extendable well beyond our current setting as experiments have demon-
strated.

Lévy-stable processes are one of the most basic and important classes of
Markov processes. They are widely used in various economic and physical sys-
tems. In particular, the use of Lévy-stable processes in mathematical finance and
communication networks has recently become more popular. For instance, Lévy-
stable models have been applied in the fields of portfolio theory, asset and option
pricing (cf. [3, 14] and the references therein); and Lévy-stable processes have
been used to model teletraffic and to approximate network traffic (cf. [10, 15]).
These vital applications are motivation for us to analyze our method on Lévy-
stable signals.

We let (�,F ,P 0) be a complete probability space and E0 be the expecta-
tion with respect to P 0. Suppose that X is a R

d1 -valued Lévy-stable process
on (�,F ,P 0) with index α ∈ (0,2] and spectral measure � (cf. [16]), that is,
X is a stochastic process on R

d1 such that X has independent increments, and
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there exists a finite measure � on the unit sphere Sd1 of R
d1 such that, for any

θ = (θ1, . . . , θd1)
′ ∈ R

d1 and 0 ≤ s < t < ∞,

lnE0{exp
(
iθ ′(Xt − Xs)

)}

=




−(t − s)

∫
Sd1

|θ ′z|α
(

1 − i sign(θ ′z) tan
(

απ

2

))
�(dz), for α �= 1,

−(t − s)

∫
Sd1

|θ ′z|
(

1 + 2i

π
sign(θ ′z) ln |θ ′z|

)
�(dz), for α = 1.

Hereafter, we use “ ′ ” to denote the transpose of a vector. We let 0 < ε ≤ 1, define
tk

.= kε for k = 1,2, . . . , and suppose that V is a standard R
d2 -valued

Brownian motion on (�,F ,P 0) independent of X. Then, we consider calcu-
lating the conditional probability law of signal Xt given the multi-dimensional
observations {Ytk , tk ≤ t}, defined by

Ytk = Ytk−1 + h
(
Xtk

)
(tk − tk−1) + (Vtk − Vtk−1

)
,

via change of measure and particle approximation.
Our particle approximation scheme can be summarized as follows: We con-

sider a branching particle system which starts off with n particles and each particle
has the “opportunity” to branch and die every ε seconds. A particle reaching x at
time tk− branches with small probability and in this unlikely event that the particle
does branch, it either just dies or is replaced by two or more independent particles
starting at (tk, x). Efficiencies are gained at observation times in two ways: The
vast majority of particles do not branch at branching times for small ε, which re-
duces computation related to duplicating or removing particles, and branching de-
cisions only depend on the very particle that may or may not branch so decisions
require little processing. On the other hand, the number of particles in our scheme
does not stay constant, but rather is a nontrivial martingale. Still, there are effec-
tive ways to control the number of particles in practice, by introducing additional
births and deaths that do not bias estimates, and thereby to keep the computations
essentially constant over the various observation times.

Suppose that δx denotes the Dirac delta measure at x and

µn
t

.= 1

n

‖µn
t ‖∑

i=1

δ
X

i,n
t

(1)

is the empirical measure of the particle system if there are ‖µn
t ‖ particles

{X1,n
t , . . . ,X

‖µn
t ‖,n

t } alive at time t . Then, among other things, our results will
imply that ∣∣∣∣ 1

µn
t (R

d1)

∫
R

d1
ϕ(x)µn

t (dx) − E0{ϕ(Xt)
∣∣{Ytk , tk ≤ t

}}∣∣∣∣→ 0(2)
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in probability, as ε → 0, n → ∞, with a rate of convergence for all continuous
bounded ϕ so long as infε,n{ε1/2n} > 0. Indeed, we establish much more in terms
of estimates on the error in (2) and types of convergence, including 2nd-mean and
almost sure.

2. Notation, results and algorithm. In the current section we set our main
notation, state our results and give our particle system algorithm to asymptotically
solve our filtering problem. The proofs of the stated results are given in a later
section. During the course of a proof we use the same symbol c for constants,
although the exact value of the constant may change. We show the dependence
of c on relevant parameters unless suppression causes no confusion. Throughout
this note, we take | · | to be both Euclidean distance, as well as absolute value
(depending on context). We fix a constant T > 0 and let 0 < ε ≤ 1. To conserve
space, we define

〈λ,ϕ〉 .=
∫

R
d1

ϕ(x)λ(dx)

for all signed Borel measures λ and |λ|-integrable functions ϕ. Next, we let
Bb(R

d1) denote the set of all measurable bounded functions on R
d1 . For

ϕ ∈ Bb(R
d1), we let ‖ϕ‖∞ denote its supremum norm. We denote by L the gen-

erator of the signal X, and define

T
.= {ϕ ∈ Bb(R

d1) :Lϕ ∈ Bb(R
d1)}.

Then, one can check that T contains all finite multivariate trigonometric series.
Further, we let S(Rd1) denote the set of all rapidly decreasing functions on R

d1

and assume that h = (h1, . . . , hd2)
′ with hi ∈ S(Rd1) for each 1 ≤ i ≤ d2. Finally,

we let 
u� denote the greatest integer not more than a real number u, let �u
 denote
the least integer not less than u, and adopt the convention that a product over zero
or a negative number of elements is one.

We define filtration

Yt .= σ
{
Ytk , tk ≤ t

}∨ N

for the observations Y , where N is the collection of P 0-null sets of (�,F ). Mo-
tivated by the reference probability measure method for filtering, we define a new
probability measure via

dP

dP 0
.= ηT ,

where

ηt
.=


t/ε�∏
k=1

exp
{
−h′(Xtk

)(
Vtk − Vtk−1

)− (h′h)(Xtk )(tk − tk−1)

2

}
(3)
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for 0 ≤ t ≤ T . We define Xt .= σ {Xs,0 ≤ s ≤ t} ∨ N and find that {ηt , t ∈ [0, T ]}
is an {XT ∨ Yt }0≤t≤T -martingale with respect to P 0. Under P, {Ytk − Ytk−1, k =
1,2, . . . , 
T/ε�} is a sequence of N(0, εId2) random vectors independent of X and
the law of X remains unchanged. Yet, by (3), it follows that

η−1
T =


T/ε�∏
k=1

exp
{
h′(Xtk

)(
Ytk − Ytk−1

)− (h′h)(Xtk )(tk − tk−1)

2

}
.

We let E be the expectation with respect to P and define

〈µt,ϕ〉 = E{ϕ(Xt)η
−1
t |Yt }

for 0 ≤ t ≤ T . Then, it follows from Bayes’ rule that, for any ϕ ∈ Bb(R
d1),

E0{ϕ(Xt)|Yt } = E{ϕ(Xt)η
−1
T |Yt }

E{η−1
T |Yt }

= E{ϕ(Xt)η
−1
t |Yt }

E{η−1
t |Yt }

= 〈µt,ϕ〉
〈µt,1〉

by the XT ∨ Yt -martingale property of η−1
t with respect to P . For the processes

that we will work with later, one may always assume that X is cádlág and, hence,
that µt is also (cf. [19]). We always work with this cádlág version.

First, considering the optimal solution to the filtering problem, we have the
following lemma whose proof is sketched in the Appendix.

LEMMA 1. Suppose that µ0 is the distribution of the initial signal state. Then,
{µt, t ≥ 0} is the unique measure-valued, {Yt }t≥0-progressive process satisfying

〈µt,ϕ〉 = 〈µ0, ϕ〉 +
∫ t

0
〈µs,Lϕ〉ds

+

t/ε�∑
k=1

〈
µtk−, ϕ

(
exp
{(

Ytk − Ytk−1

)′
h − (tk − tk−1)h

′h
2

}
− 1
)〉

(4)

for all ϕ ∈ T .

Moving to our particle approximation, we recall that ‖µn
t ‖ and µn

t denote, re-
spectively, the number of particles alive and the empirical measure for the particles

as in the Introduction. Once we have particles {Xi,n
t }‖µn

t ‖
i=1 , t ≥ 0, we can form our

approximation to µt via empirical measure (1). Therefore, our pressing need is to
find a good generation method for the particles. We suggest using the algorithm
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below to produce particles whose empirical measure is shown in the sequel to con-
verge nicely to {µt, t ≥ 0}.

To ease the notation in what follows, we define


ε
k(x)

.= exp
{(

Ytk − Ytk−1

)′
h(x) − (tk − tk−1)(h

′h)(x)

2

}
− 1(5)

and

DYε
t (x)

.=
∞∑

k=1

δkε(t)

ε
k(x)

ξε
k (x)

.=
{


ε
k(x), if 
ε

k(x) < 0,


ε
k(x) − 

ε

k(x)�, otherwise.

Moreover, due to the fact that we have both continuous and discrete components
to our systems, it will be convenient in the sequel to interpret δkε in two ways:∫ u

s
δkε(t) dt =

{
1, if kε ∈ (s, u],
0, otherwise,

and
l∑

j=i

δkε(jε) =
{

1, if k ∈ {i, i + 1, . . . , l},
0, otherwise.

Next, we let {ρi}ni=1 be n independent R
d1 -valued random variables with the dis-

tribution µ0, let {X̃i}∞i=1 be a sequence of independent R
d1 -valued Lévy-stable

processes with index α and spectral measure �, let {Ui,k}∞i,k=1 be a sequence
of independent uniform random variables on [0,1]. We suppose that {ρi}ni=1,
{X̃i}∞i=1 and {Ui,k}∞i,k=1 are defined on the same probability space (�∗,F ∗,P ∗)
and they are independent of one another. We define the product probability space
(�̂, F̂ , P̂ )

.= (� ⊗ �∗,F ⊗ F ∗,P 0 ⊗ P ∗) and let Ê be the expectation with re-
spect to P̂ . Then, to construct our particle system to approximate µt , we do the
following:

1. Let ‖µn
0‖ = n and X

i,n
0

.= ρi for i = 1, . . . ,‖µn
0‖ (*Assign initial particle loca-

tions*).
2. For k = 1,2, . . . , do the following:

(a) Set X
i,n
t = X

i,n
tk−1

+ (X̃i
t − X̃i

tk−1
) for t ∈ [tk−1, tk) and i ∈ {1, . . . ,‖µn

tk−1
‖}

(*Evolve particles as signal*).
(b) For i = 1, . . . ,‖µn

tk−1
‖, do

(i) If 
ε
k(X

(i,n)
tk− ) ≥ 0 (*Branch*),

(A) Replace particle X
i,n
tk− with m

.= 

ε
k(X

i,n
tk−)� + 1 particles X

(i,1),n
tk

,

. . . , X
(i,m),n
tk

at site X
i,n
tk−,
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(B) Add 1 more particle X
(i,m+1),n
tk

at site X
i,n
tk− if Ui,k ≤ 
ε

k(X
i,n
tk−) −



ε
k(X

i,n
tk−)�,

(ii) Otherwise,
(A) Make no change if Ui,k > |
ε

k(X
i,n
tk−)|,

(B) Kill X
i,n
tk− if Ui,k ≤ |
ε

k(X
i,n
tk−)| (*Particle will just be removed*).

3. Relabel the alive particles to be {Xi,n
tk

}‖µ
n
tk

‖
i=1 so that ‖µn

tk
‖ is the number of par-

ticles alive.

Our main contributions can be considered as the popularization of this algorithm
and its analysis. As we already mentioned, Ui,k ≤ |ξε

k (X
i,n
tk−)|, hence, branching or

killing will seldom occur at a particular observation for small ε > 0. In prepara-
tion to listing our main analytic results, we wish now to assert that our empirical
measures or particle density profiles

µn
t

.= 1

n

‖µn
t ‖∑

i=1

δ
X

i,n
t

do henceforth pertain only to the particles {Xi,n
t }‖µn

t ‖
i=1 , t ≥ 0, generated by this

algorithm. We define new filtrations {F t }t≥0, {Gt }t≥0 to keep track of current in-
formation in our empirical measures and our whole particle system construction
via

F t .= ⋂
δ>0

σ {Xi,n
s , i = 1, . . . ,‖µn

s ‖, s ≤ t + δ} ∨ Yt ,

Gt .= ⋂
δ>0

σ {Xi,n
s , i = 1, . . . ,‖µn

s ‖, s ≤ t + δ}

∨ YT ∨ σ {Ui,k, tk ≤ t, i = 1,2, . . . }.
Further, we interpret our particle system approximation as a (purely atomic)
measure-valued cádlág process through the stochastic equation (6) in Proposi-
tion 2. Hereafter, for a semimartingale Z, we use [Z] = {[Z,Z]t , t ≥ 0} to denote
its quadratic variation process.

PROPOSITION 2. Suppose that {µn
t , t ≥ 0} is the particle density profile con-

structed by the preceding algorithm. Then

〈µn
t , ϕ〉 = 〈µn

0, ϕ〉 +
∫ t

0
〈µn

s ,Lϕ〉ds

(6)

+

t/ε�∑
k=1

〈µn
kε−, 
ε

kϕ〉 + Mn
t (ϕ)

for all ϕ ∈ T , where {Mn
t (ϕ)}t≥0 is a cádlág {Gt }t≥0-martingale. We define ÊU to
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be the expectation taken only with respect to the {Ui,k}. Then

ÊU {[Mn(ϕ)]t } = 1

n2


t/ε�∑
k=0

‖µn
tk

‖∑
i=1

([ϕ(Xi,n)]tk+1∧t − [ϕ(Xi,n)]tk
)

(7)

+ 1

n


t/ε�∑
k=1

〈
µn

kε−,
(|ξε

k | − (ξε
k )2)ϕ2〉.

Moreover, we have that

Ê

{∣∣∣∣∣

t/ε�∑

k=
s/ε�+1

fk

([Mn(ϕ)]kε − ÊU {[Mn(ϕ)]kε})
∣∣∣∣∣
r}

≤ c(r)(‖h′h‖∞ ∨ 1)r/2

∣∣∣∣∣

t/ε�∑

k=
s/ε�+1

f 2
k

∣∣∣∣∣
r/2

(8)

× ε1/2

nr

(
sup

0≤τ≤T

Ê{〈µn
τ ,1〉r}

)
‖ϕ‖2r∞

for any {fk}∞k=1 ⊂ R, 0 ≤ s < t ≤ T , where r ≥ 2 and c(r) > 0 is a constant
independent of d1, d2, ε, n, t , s, ϕ.

This representation lemma differs from standard formulations because it con-
tains both continuous and discrete time components. It is possible to come up
with a more complete martingale problem description by considering more general
functionals F(〈µn

t ,ϕ〉) instead of just 〈µn
t , ϕ〉. However, our representation is suf-

ficient for our purposes. To prove Proposition 2, we need the following Lemma 3.
The proofs of Lemma 3 and Proposition 2 are given in the Appendix.

LEMMA 3. Suppose r ≥ 1. Then, there is a constant c(r) > 0 independent
of d1, d2, ε, x, k such that

Ê{|
ε
k(x)|r} ≤ c(r)‖h′h‖r/2∞ εr/2

for all x ∈ R
d1 and k = 1,2, . . . .

By Lemma 1, {µt, t ≥ 0} is the unique measure-valued, {Yt }t≥0-progressive
process such that

〈µt,ϕ〉 = 〈µ0, ϕ〉 +
∫ t

0
〈µs−,Bε

s ϕ〉ds(9)

for all ϕ ∈ T , where

Bε
s ϕ

.= Lϕ + DYε
s ϕ.(10)
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Note, here and in the sequel, integrals like
∫ t

0 〈µs−,Bε
s ϕ〉ds should be interpreted

in the Lebesgue–Stieltjes sense, including jumps at t but not at 0 (owing to the fact
that DYε

s is a purely atomic measure and not a function). We let γ < −d1/2 and
define

‖λ‖2
γ

.=
∫

R
d1

|λ̂(θ)|2γ (dθ), γ (dθ)
.= (1 + |θ |2)γ dθ,

λ̂(θ)
.= 〈λ, e−θ 〉, e−θ (x)

.= e−iθ ′x ∀ θ ∈ R
d1,

where λ̂ denotes the Fourier–Stieltjes transform for a signed measure λ. In the se-
quel, we use ‖ϕ‖L2(γ ), ‖ϕ‖L2 , respectively, to denote the L2-norm of a function ϕ

in L2(Rd1;γ (dθ)), L2(Rd1;dθ). We denote ‖�‖ = �(Sd1). For m ∈ N, we define

〈〈h〉〉m .= sup
1≤i≤d2,|τ |≤m

{∥∥∥∥∥
( ∏

1≤j≤d1

(|xj | + 1)

)
Dτhi

∥∥∥∥∥∞
}
,(11)

where τ = (τ1, . . . , τd1) with τj ∈ Z+ is a multi-index, |τ | =∑d1
j=1 τj and Dτ =

∂ |τ |/(∂x
τ1
1 · · · ∂x

τd1
d1

).
Now, we can state our main results.

THEOREM 4. Let {µn
t , t ≥ 0} be our particle density profile as described

above. Suppose γ < −(d1/2 + 2α).

(i) Let � > 0 be a constant. Then, there is a constant c(�,d1, α,‖�‖,
〈〈h〉〉[d1−2γ ]+2, T ) > 0 independent of ε, n, t , s such that

Ê1/2{‖(µn
t − µt) − (µn

s − µs)‖2
γ }

≤ c(�,d1, α,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )

ε1/8n1/2

×
{
(t − s)1/4 + (t − s)(12)

+ ε1/2
(⌊

t

ε

⌋
−
⌊

s

ε

⌋)1/2

+ ε1/4
(⌊

t

ε

⌋
−
⌊

s

ε

⌋)1/4}

∀0 ≤ s < t ≤ T

for any 0 < ε ≤ 1 and n ∈ N satisfying ε1/2n ≥ �.
(ii) (Rate of convergence.) Let 0 < ε ≤ 1 be a constant. Then, there is a con-

stant c(ε, d1, α, ‖�‖, 〈〈h〉〉[d1−2γ ]+2, T ) > 0 independent of n such that

sup
0≤t≤T

Ê1/2{‖µn
t − µt‖2

γ } ≤ c(ε, d1, α,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )

n1/2(13)

for all n ∈ N.
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COROLLARY 5. Let {µn
t , t ≥ 0} be our particle density profile as described

above. Suppose that α = 2 and γ < −(d1/2 + 4).

(i) Let � > 0 and β > 1/8 be two constants. Then, there is a constant
c(�,d1, β,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T ) > 0 independent of ε, n such that

Ê1/2
{

sup
0≤s<t≤T

‖(µn
t − µt) − (µn

s − µs)‖2
γ

}
(14)

≤ c(�,d1, β,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )

εβn1/2

for any 0 < ε ≤ 1 and n ∈ N satisfying ε1/2n ≥ �.
(ii) (Rate of convergence.) Let 0 < ε ≤ 1 be a constant. Then, there is a con-

stant c(ε, d1, ‖�‖, 〈〈h〉〉[d1−2γ ]+2, T ) > 0 independent of n such that

Ê1/2
{

sup
0≤t≤T

‖µn
t − µt‖2

γ

}
≤ c(ε, d1,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )

n1/2(15)

for all n ∈ N.

REMARK 6. For the interacting mechanism chosen in the work of Del
Moral [7], the number of particles remains constant and particles redistribute
themselves around existing particle sites according to a multinomial distribution
at observation times. Specifically, suppose {X1,n

tk−, . . . ,X
n,n
tk−} denotes the n parti-

cle locations used to approximate the filtering problem solution just prior to tk ,
{W 1,n

k , . . . ,W
n,n
k } are the normalized weights for the particles, and {X1,n

tk
, . . . ,

X
n,n
tk

} is the system immediately following the interaction. Then, the X
i,n
tk

’s are

obtained from the X
j,n
tk−’s by having each X

i,n
tk

choose starting location X
j,n
tk− with

probability W
j,n
k independent of all other particle decisions. Each weight W

j,n
k

is a function of all the previous generation particles {X1,n
tk−, . . . ,X

n,n
tk−}, the current

observation Ytk , the conditional distribution of the observation given the current
signal state Xtk , and the conditional distribution of signal Xtk given all the previ-

ous observations {Ytj , j < k}. Clearly,
∑n

j=1 W
j,n
k = 1 and the event {Xi,n

tk
�= X

i,n
tk−}

has probability 1 −W
i,n
k (ω), so the expected number of branches or jumps created

at an observation time is n − 1 even when the observation interval or the time be-
tween jumps is very small. Moreover, as mentioned in [5], the decision of where
each particle will jump to requires sampling all particles, and the overall result is
that a large amount of computational work must be done at observation times.

REMARK 7. In [4] rates of convergence for a branching particle approxima-
tion to the solution of the Zakai equation are deduced. For a class of test functions,
exact rates of convergence are established for the filtering model with diffusion
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signal and continuous observations. The analysis in [4] hinges on a powerful rep-
resentation formula of the variance of the branching mechanism in terms of the
local time of an exponential martingale, which is quite different from the analysis
in this paper. Throughout this paper Fourier analysis is used, which enables us to
obtain powerful rates of convergence in Sobolev norms. (We refer the interested
reader to [2] and references therein for some other works via Fourier analysis,
which are close in spirit to our approach.) The analysis of the existing interact-
ing and branching methods for continuous-discrete filters is rather complicated, as
is evidenced by the limited number of existing estimates especially involving the
time intervals between observations. As suggested in [4], the continuous observa-
tion time set-up makes the branching method converge slower. Our Theorem 4 and
Corollary 5 reveal the subtle relationship between the number of initial particles
and the length of the time intervals between observations. In particular, the con-
vergence of the algorithm is ensured if infε,n{ε1/2n} > 0. In a forthcoming work,
we look forward to further developing the spectral method in this paper to obtain
rates of convergence for more general (not necessary diffusion) Markov processes
and other recently developed particle filters.

3. Proofs of Theorem 4 and Corollary 5.

3.1. Auxiliary results used to establish Theorem 4 and Corollary 5.

LEMMA 8. Let Z be a R
d1 -valued Lévy-stable process on (�̂, F̂ , P̂ ) with

index α ∈ (0,2] and spectral measure �. We define Ẑt (θ)
.= e−θ (Zt ) and

‖[Ẑ(θ)]t‖ .= [Re Ẑ(θ)]t + [Im Ẑ(θ)]t , ∀ θ ∈ R
d1 , t ≥ 0. Then, for 0 ≤ s < t < ∞,

Ê{‖[Ẑ(θ)]t‖ − ‖[Ẑ(θ)]s‖} = 2(t − s)

∫
Sd1

|θ ′z|α�(dz).(16)

Suppose r > 1. Then, there is a constant c(r) > 0 such that, for any 0 ≤ s < t < ∞,

Ê
{(‖[Ẑ(θ)]t‖ − ‖[Ẑ(θ)]s‖)r}

(17)

≤ (r)(t − s)

{(∫
Sd1

|θ ′z|α�(dz)

)
∨
(∫

Sd1

|θ ′z|α�(dz)

)r}
.

Moreover, if α = 2, then

‖[Ẑ(θ)]t‖ − ‖[Ẑ(θ)]0‖ = 2t

∫
Sd1

|θ ′z|2�(dz).(18)

PROOF. For 0 ≤ s < t < ∞, we let {τm
j , j = 0,1, . . . , km}∞m=1 be a refining

sequence of partitions for [s, t] with s = τm
0 < τm

1 < · · · < τm
km

= t and define

πm
s,t

.=
km∑

j=1

∣∣Ẑτm
j
(θ) − Ẑτm

j−1
(θ)
∣∣2,

δ(πm
s,t )

.= max
1≤j≤km

{τm
j − τm

j−1}.
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Then, we find by direct calculation that

Ê{‖[Ẑ(θ)]t‖ − ‖[Ẑ(θ)]s‖}
= lim

δ(πm
s,t )→0

Ê{πm
s,t }

= lim
δ(πm

s,t )→0
Ê

{
km∑

j=1

(
2 − {e−θ

(
Zτm

j
− Zτm

j−1

)+ eθ

(
Zτm

j
− Zτm

j−1

)})}

= lim
δ(πm

s,t )→0




km∑
j=1

2
(

1 − exp
{
−(τm

j − τm
j−1)

∫
Sd1

|θ ′z|α�(dz)

}

× cos
(
(τm

j − τm
j−1)

∫
Sd1

|θ ′z|α sign(θ ′z)

× tan
(

απ

2

)
�(dz)

))
,

for α �= 1,
km∑

j=1

2
(

1 − exp
{
−(τm

j − τm
j−1)

∫
Sd1

|θ ′z|�(dz)

}

× cos
(
(τm

j − τm
j−1)

∫
Sd1

2

π
|θ ′z| sign(θ ′z)

× ln |θ ′z|�(dz)

))
,

for α = 1

= 2(t − s)

∫
Sd1

|θ ′z|α�(dz).

By (16), to prove (17), we may assume without loss of generality that r ∈ N. By
the independence of the increments of Z, we find that

Ê
{(‖[Ẑ(θ)]t‖ − ‖[Ẑ(θ)]s‖)r}

= lim
δ(πm

s,t )→0
Ê{(πm

s,t )
r}

= lim
δ(πm

s,t )→0
Ê

{(
km∑

j=1

(
2 − {e−θ

(
Zτm

j
− Zτm

j−1

)+ eθ

(
Zτm

j
− Zτm

j−1

)}))r}
(19)

= lim
δ(πm

s,t )→0

∑
α1+···+αkm=r
α1,...,αkm∈Z+

(
r

α1, . . . , αkm

)

×
km∏

j=1

Ê
{(

2 − {e−θ

(
Zτm

j
− Zτm

j−1

)+ eθ

(
Zτm

j
− Zτm

j−1

)})αj
}
.
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Note that, for αj ≥ 1, 1 ≤ j ≤ km,

Ê
{(

2 − {e−θ

(
Zτm

j
− Zτm

j−1

)+ eθ

(
Zτm

j
− Zτm

j−1

)})αj
}

=
αj∑
l=0

{(
αj

l

)
2l(−1)αj−l

×
αj−l∑
q=0

((
αj − l

q

)

× exp
{
−(τm

j − τm
j−1)

×




∫
Sd1

|(2q + l − αj )θ
′z|α

×
(

1 − i sign
(
(2q + l − αj )θ

′z
)

× tan
απ

2

)
�(dz)

})}
,

for α �= 1,∫
Sd1

|(2q + l − αj )θ
′z|

×
(

1 + 2i

π
sign

(
(2q + l − αj )θ

′z
)

× ln |θ ′z|
)
�(dz)

})}
,

for α = 1

(20)

= −
αj∑
l=0

{(
αj

l

)
2l(−1)αj−l

×
αj−l∑
q=0

((
αj − l

q

)
(τm

j − τm
j−1)

×
∫
Sd1

|(2q + l − αj )θ
′z|α�(dz)

)}
+ O

(
(τm

j − τm
j−1)

2)

≤ c(r)(τm
j − τm

j−1)

∫
Sd1

|θ ′z|α�(dz) + O
(
(τm

j − τm
j−1)

2).
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Thus, by(19) and (20), we find that

Ê
{(‖[Ẑ(θ)]t‖ − ‖[Ẑ(θ)]s‖)r}

≤ lim
δ(πm

s,t )→0

∑
α1+···+αkm=r
α1,...,αkm∈Z+

(
r

α1, . . . , αkm

)

× ∏
αj≥1

(
c(r)(τm

j − τm
j−1)

∫
Sd1

|θ ′z|α�(dz)

+ O
(
(τm

j − τm
j−1)

2))

≤ c(r)(t − s)

{(∫
Sd1

|θ ′z|α�(dz)

)
∨
(∫

Sd1

|θ ′z|α�(dz)

)r}
.

If α = 2, then we find by the independence of the increments of Z that

Ê

{(
‖[Ẑ(θ)]t‖ − ‖[Ẑ(θ)]0‖ − 2t

∫
Sd1

|θ ′z|2�(dz)

)2}

= lim
δ(πm

0,t )→0
Ê

{(
πm

0,t −
km∑

j=1

2
(

1 − exp
{
−(τm

j − τm
j−1)

×
∫
Sd1

|θ ′z|2�(dz)

}))2}

= lim
δ(πm

0,t )→0

km∑
j=1

Ê

{(
2 exp

{
−(τm

j − τm
j−1)

∫
Sd1

|θ ′z|2�(dz)

}

− {e−θ

(
Zτm

j
− Zτm

j−1

)+ eθ

(
Zτm

j
− Zτm

j−1

)})2}

= lim
δ(πm

0,t )→0

km∑
j=1

(
4 exp

{
−2(τm

j − τm
j−1)

∫
Sd1

|θ ′z|2�(dz)

}

− 8 exp
{
−2(τm

j − τm
j−1)

∫
Sd1

|θ ′z|2�(dz)

}

+ 2
(

1 + exp
{
−4(τm

j − τm
j−1)

∫
Sd1

|θ ′z|2�(dz)

}))

= 0.

Therefore, (18) follows. �
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LEMMA 9. Suppose that r ≥ 1 and � > 0 is a constant. Then, there is a con-
stant c(r,�,T ) > 0 independent of d1, d2, ε, n such that the empirical measure of
our particle system satisfies

sup
0≤t≤T

Ê1/r{〈µn
t ,1〉r} ≤ c(r,�,T )(‖h′h‖∞ ∨ 1)r

for any 0 < ε ≤ 1 and n ∈ N satisfying ε1/2n ≥ �.

PROOF. By (6), (59) in the Appendix, Lemma 3 and induction, one finds that
sup0≤t≤T Ê{〈µn

t ,1〉r} < ∞. We define

ζ ε
k

.= |ξε
k | − (ξε

k )2.(21)

From (6)–(8) with ϕ = 1, noting that {∑
t/ε�
k=1 〈µn

kε−, 
ε
k〉}t≥0 is an {Ft−}t≥0-martin-

gale and using Burkholder’s inequality, independence, Jensen’s inequality,
Lemma 3, Minkowski’s integral inequality and (21), we find that

Ê{〈µn
t ,1〉r}

≤ c(r)

{
Ê{〈µn

0,1〉r} + Ê

{(
t/ε�∑
k=1

〈µn
kε−, 
ε

k〉
)r}

+ (Ê{|ÊU {[Mn(1)]t }|r/2}+ Ê
{|[Mn(1)]t − ÊU {[Mn(1)]t }|r/2})}

= c(r)

{
1 + Ê

{(
t/ε�∑
k=1

〈µn
kε−, 
ε

k〉
)r}

+
(

1

nr/2 Ê

{(
t/ε�∑
k=1

〈µn
kε−, ζ ε

k 〉
)r/2}

+ Ê
{|[Mn(1)]t − ÊU {[Mn(1)]t }|r/2})}

≤ c(r)

{
1 +

⌊
t

ε

⌋(r/2)−1

‖h′h‖r/2∞ εr/2

t/ε�∑
k=1

Ê
{〈
µn

(k−1)ε,1
〉r}

+
⌊

t

ε

⌋(r/2)−1 εr/4

nr/2 sup
0≤s≤T

Ê{〈µn
s ,1〉r/2}

+ (‖h′h‖∞ ∨ 1)r/2
⌊

t

ε

⌋r/4 ε1/2

nr/2 sup
0≤s≤T

Ê{〈µn
s ,1〉r/2}

}
,
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where we have assumed without loss of generality that r ≥ 4 above. Applying the
discrete version of Gronwall’s inequality, one thus discovers that

sup
0≤t≤T

Ê{〈µn
t ,1〉r}

≤ c(r, T )(‖h′h‖∞ ∨ 1)r/2
(

1 + ε1/2

εr/4nr/2 sup
0≤t≤T

Ê{〈µn
t ,1〉r/2}

)

≤ c(r, T )(‖h′h‖∞ ∨ 1)r/2
(

1 + ε1/2

εr/4nr/2

(
sup

0≤t≤T

Ê{〈µn
t ,1〉r}

)1/2)
.

Therefore,

sup
0≤t≤T

Ê{〈µn
t ,1〉r}

≤
((

c(r, T )(‖h′h‖∞ ∨ 1)r/2ε1/2

εr/4nr/2

+
√

c2(r, T )(‖h′h‖∞ ∨ 1)rε

εr/2nr
+ 4c(r, T )(‖h′h‖∞ ∨ 1)r/2

)/
2

)2

≤ c(r,�,T )(‖h′h‖∞ ∨ 1)r

for any 0 < ε ≤ 1 and n ∈ N satisfying ε1/2n ≥ �. �

The following maximal inequality is a consequence of a theorem of Longnecker
and Serfling [13] (cf. also [12]) and is used in (14) above.

LEMMA 10. Let 0 ≤ U1 < U2 < ∞ and suppose that {Qt,U1 ≤ t ≤ U2}
is a process assuming values in some normed vector space (Z,‖ · ‖) with the
following conditions: (i) t → Qt(ω) is right continuous on [U1,U2] for almost
all ω, (ii) There exist constants µ > 1 and ν > 0 such that E{‖Qt − Qs‖ν} ≤
(h(s, t))µ for all U1 ≤ s < t ≤ U2, where h(t, s) is a nonnegative function satis-
fying h(s, t) + h(t, u) ≤ h(s, u) for all U1 ≤ s < t < u ≤ U2. Then, there exists a
constant Aµ,ν depending only upon µ, ν such that

E

{
sup

U1≤s<t≤U2

‖Qt − Qs‖ν

}
≤ Aµ,ν

(
h(U1,U2)

)µ
.

PROOF. Let {t li , i = 0,1, . . . , nl}∞l=1 be a refining sequence of partitions for
[U1,U2] with U1 = t l0 < tl1 < · · · < tlnl

= U2 and define

τ l
k

.= Qtlk
− Qtlk−1

, gl(i, j)
.= h(t lj , t

l
i−1) ∀ i, j, k ∈ {1, . . . , nl}, i < j.
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Then, we can apply Theorem 1 of [13] to find that there is a constant Aµ,ν depend-
ing only upon µ, ν such that

E

{
sup

U1≤t li <tlj≤U2

∥∥Qtlj
− Qtli

∥∥ν}= E

{
sup

1≤i<j≤nl

∥∥∥∥∥
j∑

k=i+1

τ l
k

∥∥∥∥∥
ν}

≤ 2ν

(
sup

1≤j≤nl

∥∥∥∥∥
j∑

k=1

τk

∥∥∥∥∥
ν)

≤ Aµ,ν

(
gl(1, nl)

)µ
= Aµ,ν

(
h(U1,U2)

)µ
.

The lemma therefore follows from monotone convergence and the observation that
right continuity guarantees that

sup
U1≤t li <tlj≤U2

∥∥Qtlj
− Qtli

∥∥ l→∞↗ sup
U1≤s<t≤U2

‖Qt − Qs‖ν.
�

3.2. Proof of Theorem 4. Recalling (5), (6), (9) and (10), we find that µn − µ

satisfies

〈µn
t − µt,ϕ〉 = 〈µn

0 − µ0, ϕ〉 +
∫ t

0
〈µn

s− − µs−,Bε
s ϕ〉ds + Mn

t (ϕ)

for all ϕ ∈ T , where Mn
t (ϕ) is the martingale of Proposition 2. We define

�(θ)
.=




−
∫
Sd1

|θ ′z|α
(

1 + i sign(θ ′z) tan
(

απ

2

))
�(dz), for α �= 1,

−
∫
Sd1

|θ ′z|
(

1 − 2i

π
sign(θ ′z) ln |θ ′z|

)
�(dz), for α = 1.

Then, using ϕ = e−θ , we find that

〈µn
t − µt, e−θ 〉

= 〈µn
0 − µ0, e−θ 〉

(22)

+
∫ t

0
〈µn

s− − µs−, �(θ)e−θ + DYε
s e−θ 〉ds + M̂n

t (θ)

∀ θ ∈ R
d1 .

Hereafter, to ease the notation, we let M̂n
t (θ) = Mn

t (e−θ ). We define

‖[M̂n(θ)]t‖ .= [ReM̂n(θ)]t + [ImM̂n(θ)]t ,
‖[X̂i,n(θ)]t‖ .= [Re X̂i,n(θ)]t + [Im X̂i,n(θ)]t , X̂

i,n
t (θ)

.= e−θ (X
i,n
t ).
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Then, from Proposition 2 and (21), we find that {M̂n
t (θ)}t≥0 is a complex martin-

gale with

ÊU {‖[M̂n(θ)]t‖} = 1

n2


t/ε�∑
k=0

‖µn
tk

‖∑
i=1

(∥∥[X̂i,n(θ)]tk+1∧t

∥∥− ∥∥[X̂i,n(θ)]tk
∥∥)

(23)

+ 1

n


t/ε�∑
k=1

〈µn
kε−, ζ ε

k 〉.

Next, we divide 〈µn
t − µt, e−θ 〉 into components:

〈µn
t − µt, e−θ 〉 = ûn

t (θ) + v̂n
t (θ) + χ̂n

t (θ).

Here, we define

ûn
t (θ)

.=
∫ t

0
�(θ)ûn

s (θ) ds + M̂n
t (θ),(24)

χ̂n
t (θ)

.= 〈χn
t , e−θ 〉(25)

with

〈χn
t , ϕ〉 .= 〈µn

0 − µ0, ϕ〉 +
∫ t

0
〈χn

s−,Bε
s ϕ〉ds ∀ϕ ∈ T ,(26)

and

v̂n
t (θ)

.= 〈µn
t − µt, e−θ 〉 − ûn

t (θ) − χ̂n
t (θ).(27)

Note that, in the above definition, χn
t is just the unnormalized filtering process µt

with the initial distribution µn
0 − µ0. We define

A1
.= Ê1/2{‖ûn

t − ûn
s ‖2

L2(γ )

}
,

A2
.= Ê1/2{‖v̂n

t − v̂n
s ‖2

L2(γ )

}
,

A3
.= Ê1/2{‖χ̂n

t − χ̂n
s ‖2

L2(γ )

}
.

Then,

E1/2{‖(µn
t − µt) − (µn

s − µs)‖2
γ } ≤ A1 + A2 + A3(28)

by Minkowski’s inequality. In the following, we will estimate Ai , 1 ≤ i ≤ 3, one by
one.

(a) Estimation of A1.

One finds from Proposition 2 that the following Wiener integral makes sense
and from (24), as well as integration by parts, that

ûn
t (θ) =

∫ t

0
exp{(t − s)�(θ)}dM̂n

s (θ).(29)
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Fixing a r ≥ 2, one finds from (29) that, for 0 ≤ s < t ≤ T ,

Ê{|ûn
t (θ) − ûn

s (θ)|2r}

= Ê

{∣∣∣∣(exp{(t − s)�(θ)} − 1
)
ûn

s (θ) +
∫ t

s
exp{(t − τ)�(θ)}dM̂n

τ (θ)

∣∣∣∣
2r}

.

Yet, using Burkholder’s inequality, we find that

Ê{|ûn
t (θ) − ûn

s (θ)|2r}
≤ c(r)

{
| exp{(t − s)�(θ)} − 1|2r

× Ê

{(∫ s

0
exp
{
−2(s − τ)

(30)

×
∫
Sd1

|θ ′z|α�(dz)

}
d‖[M̂n(θ)]τ‖

)r}

+ Ê

{(∫ t

s
exp
{
−2(t − τ)

×
∫
Sd1

|θ ′z|α�(dz)

}
d‖[M̂n(θ)]τ‖

)r}}
.

We define

Mn,e
τ (θ)

.= 1

n


τ/ε�∑
k=0

‖µn
tk

‖∑
i=1

(
e−θ

(
X

i,n
tk+1∧τ

)− e−θ

(
X

i,n
tk

)− ∫ tk+1∧τ

tk

(Le−θ )(X
i,n
u ) du

)

and

Mn,b
τ (θ)

.= 1

n


τ/ε�∑
k=1

‖µn
tk−‖∑

i=1

〈
δ
X

i,n
tk−

, e−θ

〉

× (sign
(
ξε
k

(
X

i,n
tk−
))

1{Ui,k∈[0,|ξε
k (X

i,n
tk−)|)} − ξε

k

(
X

i,n
tk−
))

.

Then, M̂n,e
τ (θ) and M̂n,b

τ (θ) are, respectively, the evolving and branching portions
of the martingale M̂n

τ (θ). Considering (23) and separating ûn
t (θ) into parts driven

by M̂n,e
τ (θ) and M̂n,b

τ (θ), we find from double use of Hölder’s inequality and
Lemma 8 that the evolving part of (30) satisfies

Ê1/r{|ûn,e
t (θ) − ûn,e

s (θ)|2r}
≤ c(r)

{
| exp{(t − s)�(θ)} − 1|2r Ê{‖[M̂n,e(θ)]s‖r}

+
(
Ê

{∫ t

s
exp
{
−4r(t − τ)

∫
Sd1

|θ ′z|α�(dz)

}
d‖[M̂n,e(θ)]τ‖

})1/2

(31)
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× (Ê{(‖[M̂n,e(θ)]t‖ − ‖[M̂n,e(θ)]s‖)2r−1})1/2
}1/r

≤ c(r,‖�‖)
n

sup
0≤τ≤T

Ê1/r{〈µn
τ ,1〉r}

×
{
| exp{(t − s)�(θ)} − 1|2r (|θ |α ∨ |θ |αr)s

+
(

1 − exp
{
−4r(t − s)

∫
Sd1

|θ ′z|α�(dz)

})1/2

× ((|θ |α ∨ |θ |αr)(t − s)
)1/2
}1/r

≤ c(r,α,‖�‖)
n

sup
0≤τ≤T

Ê1/r{〈µn
τ ,1〉r}

× {(|θ |α ∨ |θ |αr)(|θ |α| ln |θ‖ + 1)(t − s)}1/r .

Furthermore, using the last two claims of Proposition 2 and (21), we find that the
branching part of ûn

t (θ) satisfies

Ê1/r{|ûn,b
t (θ) − ûn,b

s (θ)|2r}

≤ c(r)

n

{
| exp{(t − s)�(θ)} − 1|2r

×
(
Ê

{∣∣∣∣∣

s/ε�∑
k=1

exp
{

2(kε − s)

∫
Sd1

|θ ′z|α�(dz)

}
〈µn

kε−, ζ ε
k 〉
∣∣∣∣∣
r}

+ nrÊ

{∣∣∣∣∣

s/ε�∑
k=1

exp
{

2(kε − s)

∫
Sd1

|θ ′z|α�(dz)

}

× (‖[M̂n(θ)]kε‖ − ÊU {‖[M̂n(θ)]kε‖})
∣∣∣∣∣
r})

+ exp
{
−2rt

∫
Sd1

|θ ′z|α�(dz)

}

×
(
Ê

{∣∣∣∣∣

t/ε�∑

k=
s/ε�+1

exp
{

2kε

∫
Sd1

|θ ′z|α�(dz)

}
〈µn

kε−, ζ ε
k 〉
∣∣∣∣∣
r}

+ nrÊ

{∣∣∣∣∣

t/ε�∑

k=
s/ε�+1

exp
{

2kε

∫
Sd1

|θ ′z|α�(dz)

}
(32)
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× (‖[M̂n(θ)]kε‖ − ÊU {‖[M̂n(θ)]kε‖})
∣∣∣∣∣
r})}1/r

≤ c(r)(‖h′h‖∞ ∨ 1)r/2

n

×
{
| exp{(t − s)�(θ)} − 1|2r

×
(
Ê

{∣∣∣∣∣

s/ε�∑
k=1

〈µn
kε−, ζ ε

k 〉
∣∣∣∣∣
r}

+ ε(1−r)/2 sup
0≤τ≤T

Ê{〈µn
τ ,1〉r}

)

+ Ê

{∣∣∣∣∣

tε�∑

k=
s/ε�+1

〈µn
kε−, ζ ε

k 〉
∣∣∣∣∣
r}

+ ε1/2
(⌊

t

ε

⌋
−
⌊

s

ε

⌋)r/2

sup
0≤τ≤T

Ê{〈µn
τ ,1〉r}

}1/r

.

Using Jensen’s inequality applied to normalized sums and Lemma 3, we find
from (32) that

Ê1/r{|ûn,b
t (θ) − ûn,b

s (θ)|2r}

≤ c(r)(‖h′h‖∞ ∨ 1)r/2 sup0≤τ≤T Ê1/r{〈µn
τ ,1〉r}

n

×
{
| exp{(t − s)�(θ)} − 1|2r

(
εr/2

(⌊
s

ε

⌋)r−1

+ ε(1−r)/2
)

+ εr/2
(⌊

t

ε

⌋
−
⌊

s

ε

⌋)r−1

+ ε1/2
(⌊

t

ε

⌋
−
⌊

s

ε

⌋)r/2}1/r

(33)

≤ c(r,α,‖�‖)(‖h′h‖∞ ∨ 1)r/2 sup0≤τ≤T Ê1/r{〈µn
τ ,1〉r}

ε1/2n

×
{
ε1/(2r)(1 ∧ {|θ |α| ln |θ‖(t − s)})2

+ ε

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)(r−1)/r

+ ε(r+1)/(2r)

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)1/2}
.

Piecing together (31), (33) and Lemma 9, one has that

Ê1/r{|ûn
t (θ) − ûn

s (θ)|2r}

≤ c(r,�,α,‖�‖, T )(‖h′h‖∞ ∨ 1)3r/2

ε1/2n
(34)
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×
{
ε1/(2r)(|θ |α/r ∨ |θ |α(r+2)/r)(t − s)1/r

+ ε

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)(r−1)/r

+ ε(r+1)/(2r)

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)1/2}
.

Then, using Minkowski’s integral inequality and (34), we find that

Ê1/(2r){‖ûn
t − ûn

s ‖2r
L2(γ )

}

≤
(∫

R
d1

Ê1/r{|ûn
t (θ) − ûn

s (θ)|2r}γ (dθ)

)1/2

≤ c(r,�,d1, α,‖�‖,‖h′h‖∞, T )

ε1/4n1/2(35)

×
{
ε1/(4r)(t − s)1/(2r) + ε1/2

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)(r−1)/(2r)

+ ε(r+1)/(4r)

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)1/4}
.

Moreover, we find from (35) that

sup
0≤τ≤T

Ê1/(2r){‖ûn
τ‖2r

L2(γ )

}≤ c(r,�,d1, α,‖�‖,‖h′h‖∞, T )

ε(r−1)/(4r)n1/2 .(36)

(b) Estimation of A2.

In the sequel, we use ∗ to denote the convolution of functions. By our assump-
tion that h ∈ S(Rd1), one finds that 
ε

k ∈ S(Rd1) for k ∈ N. We define the function

ψτ (θ)
.= exp{�(θ)τ } ∀ θ ∈ R

d1, τ ∈ R

and the operators

Akf
.= (1 + Bk)f, Bkf

.= 
̂ε
k ∗ f,


̂ε
k(θ)

.=
∫

R
d1

e−θ (x)
ε
k(x) dx, k ∈ N,

(37)

T

t/ε�
t,s f

.= ψt−
t/ε�εA
t/ε�
( 
t/ε�−1∏

k=�s/ε
+1

{ψεAk}
)
ψεB�s/ε
f,

Tt,sf
.= ψt−
t/ε�εA
t/ε�

( 
t/ε�−1∏
k=�s/ε
+1

{ψεAk}
)
ψ(�s/ε
+1)ε−sf
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for f ∈ L2(Rd1;γ (dθ)), with the interpretations that the products go from right to
left as one goes from the bottom. We find by (22) and (24)–(27) that

v̂n
t (θ) =

∫ t

0

(
�(θ) + (DŶ ε

s ∗ v̂n
s−)(θ)

)
ds +

∫ t

0
(DŶ ε

s ∗ ûn
s−)(θ) ds.

Hence, v̂n
t (θ) is given by

v̂n
t (θ) =


t/ε�∑
k=1

T

t/ε�
t,kε ûn

kε−(θ).(38)

Moreover, we find for 0 ≤ s < t ≤ T that

|v̂n
t (θ) − v̂n

s (θ)| ≤ |(Tt,s − ψt−s)v̂
n
s (θ)| + |(ψt−s − 1)v̂n

s (θ)|
(39)

+
∣∣∣∣∣


t/ε�∑
k=
s/ε�+1

T

t/ε�
t,kε ûn

kε−(θ)

∣∣∣∣∣.
Yet, recalling (37) and defining

T̃ l
t,sf (θ) = ψt−lεBlψεT(l−1)ε,sf (θ) ∀ l =

⌈
s

ε

⌉
+ 1, . . . ,

⌊
t

ε

⌋
,(40)

we see that, for any θ ∈ R
d1 , 0 ≤ s ≤ T ,

(Tt,s − ψt−s)v̂
n
s (θ) =


t/ε�∑
l=�s/ε
+1

T̃ l
t,s v̂

n
s (θ)

and for any θ ∈ R
d1 , 0 ≤ u < v ≤ T ,


v/ε�∑
k=
u/ε�+1

T

v/ε�
v,kε ûn

kε−(θ)

are sums of, respectively, forward martingale and backward martingale differ-
ences. Thus, we find that

Ê{|(Tt,s − ψt−s)v̂
n
s (θ)|2} =


t/ε�∑
l=
s/ε�+1

Ê{|T̃ l
t,s v̂

n
s (θ)|2},(41)

Ê

{∣∣∣∣∣

v/ε�∑

k=
u/ε�+1

T

v/ε�
v,kε ûn

kε−(θ)

∣∣∣∣∣
2}

=

v/ε�∑

k=
u/ε�+1

Ê
{∣∣T 
v/ε�

v,kε ûn
kε−(θ)

∣∣2}.(42)

For � ∈ R
d1 , we define

m�(·) .= (1 + | · |2)−γ /2(1 + | · +� |2)γ /2.
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Then, by Minkowski’s integral inequality, classical multiplier theorem (see [18],
page 96, Theorem 3), Jensen’s inequality, independence, the assumption on h,
(11) and Lemma 3, we find that

Ê
{‖Blf ‖2

L2(γ )

}= Ê

{∫
R

d1

∣∣∣∣
∫

R
d1


̂ε
l (�)f (θ − �)(1 + |θ |2)γ /2 d�

∣∣∣∣
2

dθ

}

≤ Ê

{(∫
R

d1
|
̂ε

l (�)| · ‖f · (1 + | · +� |2)γ /2‖L2 d�

)2}

= Ê

{(∫
R

d1
|
̂ε

l (�)| · ‖m� · f · (1 + | · |2)γ /2‖L2 d�

)2}

≤ c(d1)Ê

{(∫
R

d1
|
̂ε

l (�)|(1 + |� |2)[d1/2]+1−γ /2 d�

)2

‖f ‖2
L2(γ )

}
(43)

≤ c(d1)Ê
{∥∥(1 + | · |2)([d1−2γ ]+2)/2
̂ε

l

∥∥2
L2 · ‖f ‖2

L2(γ )

}
≤ c(d1)Ê

{|‖
ε
l ‖|2[d1−2γ ]+2

}
Ê
{‖f ‖2

L2(γ )

}
≤ c
(
d1, 〈〈h〉〉[d1−2γ ]+2

)
εÊ
{‖f ‖2

L2(γ )

}
for any f ∈ L2(�̂, F tl−, L2(Rd1; γ (dθ))), where

|‖
ε
l ‖|[d1−2γ ]+2 =

( ∑
|τ |≤[d1−2γ ]+2

‖Dτ
ε
l ‖2

L2

)1/2

is the standard Sobolev W [d1−2γ ]+2,2-norm of 
ε
l . Moreover, using (40), the fact

that |ψε(θ)| ≤ 1, independence, (43) and recursion, we find that

max
s/ε�+1≤l≤
t/ε� Ê
1/2{‖T̃ l

t,s v̂
n
s ‖2

L2(γ )

}
≤ max
s/ε�+1≤l≤
t/ε�

(
c
(
d1, 〈〈h〉〉[d1−2γ ]+2

)
εÊ
{∥∥T(l−1)ε,s v̂

n
s

∥∥2
L2(γ )

})1/2

= max
s/ε�+1≤l≤
t/ε�

(
c
(
d1, 〈〈h〉〉[d1−2γ ]+2

)
ε

×
∫

R
d1

Ê
{∣∣ψεT(l−2)ε,s v̂

n
s (θ)

∣∣2
+ ∣∣Bl−1ψεT(l−2)ε,s v̂

n
s (θ)

∣∣2}γ (dθ)

)1/2

≤ max
s/ε�+1≤l≤
t/ε�
(
c
(
d1, 〈〈h〉〉[d1−2γ ]+2

)
ε
(
1 + c

(
d1, 〈〈h〉〉[d1−2γ ]+2

)
ε
)

× Ê
{∥∥T(l−2)ε,s v̂

n
s

∥∥2
L2(γ )

})1/2

≤ max
s/ε�+1≤l≤
t/ε�
(
c
(
d1, 〈〈h〉〉[d1−2γ ]+2

)
ε
(
1 + c

(
d1, 〈〈h〉〉[d1−2γ ]+2

)
ε
)l−1(44)
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× Ê
{‖v̂n

s ‖2
L2(γ )

})1/2

≤ c
(
d1, 〈〈h〉〉[d1−2γ ]+2

)
ε1/2Ê1/2{‖v̂n

s ‖2
L2(γ )

}
.

Now, in a similar manner to (44), we find from (36) with r = 2 and Jensen’s in-
equality that

max
u/ε�+1≤k≤
v/ε� Ê
1/2{∥∥T 
v/ε�

v,kε ûn
kε−
∥∥2
L2(γ )

}
≤ c
(
d1, 〈〈h〉〉[d1−2γ ]+2

)
ε1/2Ê1/2{‖ûn

s ‖2
L2(γ )

}
(45)

≤ c(�,d1, α,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )ε3/8

n1/2 .

Hence, combining (42), (45) and (38), we find that

Ê1/2

{∥∥∥∥∥

t/ε�∑

k=
s/ε�+1

T

t/ε�
t,kε ûn

kε−

∥∥∥∥∥
2

L2(γ )

}

(46)

≤ c(�,d1, α,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )ε3/8

n1/2

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)1/2

,

Ê1/2{‖v̂n
t ‖2

L2(γ )

}≤ c(�,d1, α,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )

ε1/8n1/2 .(47)

Replacing γ (dθ) with (|θ |α ln |θ |)2γ (dθ), noting that γ < −(d1/2 + 2α) by the
assumption and repeating the above arguments, one finds that

Ê1/2
{∫

Rd
(|θ |α ln |θ |)2|v̂n

s |2(θ)γ (dθ)

}
(48)

≤ c(�,d1, α,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )

ε1/8n1/2 .

Now, it follows by (41), (44) and (??) that

Ê1/2{‖(Tt,s − ψt−s)v̂s‖2
L2(γ )

}
(49)

≤ c(�,d1, α,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )ε3/8

n1/2

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)1/2

.

Finally, using the bound |ψt−s(θ)−1|2 ≤ c(α,‖�‖)(|θ |α ln |θ |)2|t −s|2, (39), (46),
(48) and (49), one finds that

Ê1/2{‖v̂n
t − v̂n

s ‖2
L2(γ )

}
≤ c(�,d1, α,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )

ε1/8n1/2(50)

×
{
(t − s) + ε1/2

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)1/2}
.
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(c) Estimation of A3.

Note that the solution χ̂n
t (θ) defined by (26) and (25) can be written as

χ̂n
t (θ) = ψt−
t/ε�ε


t/ε�∏
k=1

{Akψε}〈µn
0 − µ0, e−θ 〉

and

Ê1/2{|〈µn
0 − µ0, e−θ 〉|2} ≤ 4

n1/2 ∀n ∈ N, θ ∈ R
d1 .(51)

Then, one finds similarly to (50) that

Ê1/2{‖χ̂n
t − χ̂n

s ‖2
L2(γ )

}

≤ c(�,d1, α,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )ε1/2

n1/2(52)

×
{
(t − s) +

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)1/2}
.

Therefore, (12) follows from (28), (35) with r = 2, Jensen’s inequality, (50)
and (52). By virtue of (51), (13) is an immediate consequence of (12) by letting
� = ε1/2. �

3.3. Proof of Corollary 5. Since α = 2, we find by (30) and (18) that

Ê1/r{|ûn,e
t (θ) − ûn,e

s (θ)|2r}
≤ c(r)

n
sup

0≤τ≤T

Ê1/r{〈µn
τ ,1〉r}

×
{(

exp
{
−(t − s)

∫
Sd1

|θ ′z|2�(dz)

}
− 1
)2r

×
(∫ s

0
exp
{
−2(s − τ)

∫
Sd1

|θ ′z|2�(dz)

}
d

(
τ

∫
Sd1

|θ ′z|2�(dz)

))r

(53)

+
(∫ t

s
exp
{
−2(t − τ)

∫
Sd1

|θ ′z|2�(dz)

}
d

(
τ

∫
Sd1

|θ ′z|2�(dz)

))r}1/r

≤ c(r)

n
sup

0≤τ≤T

Ê1/r{〈µn
τ ,1〉r}

(
1 − exp

{
−2(t − s)

∫
Sd1

|θ ′z|2�(dz)

})

≤ c(r,‖�‖)
n

sup
0≤τ≤T

Ê1/r{〈µn
τ ,1〉r}(t − s)|θ |2.



RATES FOR PARTICLE APPROXIMATIONS OF FILTERS 2765

Replacing (31) with (53), we find similarly to (35) that

Ê1/(2r){‖ûn
t − ûn

s ‖2r
L2(γ )

}≤ c(r,�,d1,‖�‖,‖h′h‖∞, T )

ε1/4n1/2

×
{
ε1/(4r)(t − s)1/2 + ε1/2

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)(r−1)/(2r)

+ ε(r+1)/(4r)

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)1/4}
.

Letting r = 2, we then find that, for β > 1/8,

Ê
{‖ûn

t − ûn
s ‖4

L2(γ )

}≤ c(�,d1,‖�‖,‖h′h‖∞, T )

εn2

×
{
ε1/2(t − s)2 + ε2

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)
+ ε3/2

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)}

≤ c(�,d1,‖�‖,‖h′h‖∞, T )

εn2

×
{
ε1/2(t − s)2 + ε2

(⌊
t

ε

⌋
−
⌊

s

ε

⌋)(1/2)+4β

+ ε3/2
(⌊

t

ε

⌋
−
⌊

s

ε

⌋)(1/2)+4β}
.

Thus, by Lemma 10, we find that

Ê1/2
{

sup
0≤s<t≤T

‖ûn
t − ûn

s ‖2
L2(γ )

}
≤ Ê1/4

{
sup

0≤s<t≤T

‖ûn
t − ûn

s ‖4
L2(γ )

}
(54)

≤ c(�,d1, β,‖�‖,‖h′h‖∞, T )

εβn1/2 .

Similarly, by (50), (52) and Lemma 10, we find that

Ê1/2
{

sup
0≤s<t≤T

‖v̂n
t − v̂n

s ‖2
L2(γ )

}
≤ c(�,d1, β,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )

εβn1/2(55)

and

Ê1/2
{

sup
0≤s<t≤T

‖χ̂n
t − χ̂n

s ‖2
L2(γ )

}
≤ c(�,d1, β,‖�‖, 〈〈h〉〉[d1−2γ ]+2, T )

εβn1/2 .(56)

Therefore, (14) follows from (28), (54), (55) and (56). By virtue of (51), (15) is an
immediate consequence of (14) by letting � = ε1/2. �
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APPENDIX: PROOFS OF LEMMA 1, PROPOSITION 2 AND LEMMA 3

In the current section we give the proofs of Lemma 1, Proposition 2 and
Lemma 3. We realize that similar results are well known in a variety of settings
and only give them for the sake of completeness.

PROOF OF LEMMA 1. For ϕ ∈ T , we have that

ϕ(Xt) − ϕ(X0) =
∫ t

0
Lϕ(Xs) ds + Mt (ϕ),

where Mt (ϕ) is an Xt -martingale. Then,

ϕ(Xt)η
−1
t = ϕ(X0) +

∫ t

0
Lϕ(Xs)η

−1
s ds +

∫ t

0
η−1

s− dMs(ϕ)

+

t/ε�∑
k=1

ϕ
(
Xtk

)
η−1

tk

(
1 − exp

{
−(Ytk − Ytk−1

)′
h
(
Xtk

)

+ (tk − tk−1)(h
′h)(Xtk )

2

})
.

By the independence of X and Y under P , we find that Mt (ϕ) is also an
Xt ∨ YT -martingale so E{∫ t

0 η−1
s− dMs(ϕ)|Yt } = 0. Hence,

〈µt,ϕ〉 = 〈µ0, ϕ〉 +
∫ t

0
〈µs,Lϕ〉ds

(57)

+

t/ε�∑
k=1

〈
µtk , ϕ

(
1 − exp

{
−(Ytk − Ytk−1

)′
h + (tk − tk−1)h

′h
2

})〉
.

On the other hand, we obtain from the definition of µt and the stochastic continuity
of X that, for any continuous bounded function ϕ on R

d1 , and k ≥ 1,〈
µtk , ϕ

(
1 − exp

{
−(Ytk − Ytk−1

)′
h + (tk − tk−1)h

′h
2

})〉

= EX

{
ϕ
(
Xtk

)(
1 − exp

{
−(Ytk − Ytk−1

)′
h
(
Xtk

)+ (tk − tk−1)(h
′h)(Xtk )

2

})

×
k∏

l=1

exp
{(

Ytl − Ytl−1

)′
h
(
Xtl

)− (tl − tl−1)(h
′h)(Xtl )

2

}}

= EX

{
ϕ
(
Xtk

)(
exp
{(

Ytk − Ytk−1

)′
h
(
Xtk

)− (tk − tk−1)(h
′h)(Xtk )

2

}
− 1
)

×
k−1∏
l=1

exp
{(

Ytl − Ytl−1

)′
h
(
Xtl

)− (tl − tl−1)(h
′h)(Xtl )

2

}}
(58)
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= lim
t↑tk

〈
µt,ϕ

(
exp
{(

Ytk − Ytk−1

)′
h − (tk − tk−1)h

′h
2

}
− 1
)〉

=
〈
µtk−, ϕ

(
exp
{(

Ytk − Ytk−1

)′
h − (tk − tk−1)h

′h
2

}
− 1
)〉

,

where EX is the expectation taken only with respect to X. Further, (58) holds for
any ϕ ∈ Bb(R

d1) by the monotone class theorem. Substituting (58) into (57), we
get (4).

The uniqueness of µt can be proved by the action of L on the trigonometric
polynomials and induction. In fact, suppose that {µt, t ≥ 0} and {νt , t ≥ 0} sat-
isfy (4), and µt = νt for t ≤ tk for some k ≥ 0. Note that

Le−θ =




−
(∫

Sd1

|θ ′z|α
(

1 + i sign(θ ′z) tan
(

απ

2

))
�(dz)

)
e−θ , for α �= 1,

−
(∫

Sd1

|θ ′z|
(

1 − 2i

π
sign(θ ′z) ln |θ ′z|

)
�(dz)

)
e−θ , for α = 1.

From (4), one finds that, for any θ ∈ R
d1 , tk ≤ t < tk+1,

〈µt, e−θ 〉

=




〈µtk , e−θ 〉 exp
{
−(t − tk)

∫
Sd1

|θ ′z|α
(

1 + i sign(θ ′z) tan
(

απ

2

))
�(dz)

}
,

for α �= 1,

〈µtk , e−θ 〉 exp
{
−(t − tk)

∫
Sd1

|θ ′z|
(

1 − 2i

π
sign(θ ′z) ln |θ ′z|

)
�(dz)

}
,

for α = 1
= 〈νt , e−θ 〉.

Since the set of trigonometric polynomials is measure-determining, µt = νt , tk ≤
t < tk+1. Hence, by (4), we find that µtk+1 = νtk+1 . Therefore, the uniqueness of µt

follows by induction. �

PROOF OF LEMMA 3. Let W be a standard R
d2 -valued Brownian motion

on (�̂, F̂ , P̂ ). We fix an x ∈ R
d1 and define

Zx
t

.= exp
{
(Wt)

′h(x) − t (h′h)(x)

2

}
.

Then,

Ê{|
ε
k(x)|r} = Ê{|Zx

ε − 1|r}
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for any k ∈ N. By Burkholder’s, Minkowski’s integral and Jensen’s inequalities,
we find that, for any 0 ≤ t ≤ ε,

Ê{|Zx
t − 1|r} ≤ c(r)‖h′h‖r/2∞ Ê

{(∫ t

0
(Zx

s )2 ds

)r/2}

≤ c(r)‖h′h‖r/2∞
(
Ê

{(∫ t

0
(Zx

s − 1)2 ds

)r/2}
+ εr/2

)

≤ c(r)‖h′h‖r/2∞
((∫ t

0
(Ê{|Zx

s − 1|r})2/r ds

)r/2

+ εr/2
)

≤ c(r)‖h′h‖r/2∞
(
ε(r/2)−1

∫ t

0
Ê{|Zx

s − 1|r}ds + εr/2
)
,

where we have assumed without loss of generality that r ≥ 2 above. Applying
Gronwall’s inequality, one then discovers that

sup
0≤t≤ε

Ê{|Zx
t − 1|r} ≤ c(r)‖h′h‖r/2∞ εr/2

and the lemma follows. �

PROOF OF PROPOSITION 2. To ease the notation in the sequel, we let ξk = ξε
k .

For ϕ ∈ T , we define

Mn
t (ϕ)

.= 1

n


t/ε�∑
k=0

‖µn
tk

‖∑
i=1

(
ϕ
(
X

i,n
tk+1∧t

)− ϕ
(
X

i,n
tk

)− ∫ tk+1∧t

tk

Lϕ(Xi,n
u ) du

)

+ 1

n


t/ε�∑
k=1

‖µn
tk−‖∑

i=1

〈
δ
X

i,n
tk−

, ϕ
〉

(59)

× (sign
(
ξk

(
X

i,n
tk−
))

1{Ui,k∈[0,|ξk(X
i,n
tk−)|)} − ξk

(
X

i,n
tk−
))

.

Then, we find from our algorithm and (1) that (6) holds. Recalling that the {Ui,k}
are independent and compensating the square of the jumps in the second term
of (59), we find that {Mn

t (ϕ)}t≥0 is a cádlág {Gt }t≥0-martingale satisfying (7).
Now, turning to bounding the difference between the quadratic variation

[Mn(ϕ)]t and the expected quadratic variation ÊU {[Mn(ϕ)]t }, we define

Ai,k .= 1

n

〈
δ
X

i,n
tk−

, ϕ
〉(

sign
(
ξk

(
X

i,n
tk−
))

1{Ui,k∈[0,|ξk(X
i,n
tk−)|)} − ξk

(
X

i,n
tk−
))

.

Letting {fk}∞k=1 ⊂ R, recognizing the martingale transform and using Burkholder’s
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and Jensen’s inequalities, we bound

Ê

{∣∣∣∣∣

t/ε�∑

k=
s/ε�+1

fk

([Mn(ϕ)]kε − ÊU {[Mn(ϕ)]kε})
∣∣∣∣∣
r}

= Ê

{∣∣∣∣∣

t/ε�∑

k=
s/ε�+1

fk

((‖µn
tk−‖∑

i=1

Ai,k

)2

− ÊU

{(‖µn
tk−‖∑

i=1

Ai,k

)2})∣∣∣∣∣
r}

≤ c(r)Ê

{∣∣∣∣∣

t/ε�∑

k=
s/ε�+1

f 2
k

((‖µn
tk−‖∑

i=1

Ai,k

)2

− ÊU

{(‖µn
tk−‖∑

i=1

Ai,k

)2})2∣∣∣∣∣
r/2}

(60)

≤ c(r)

( 
t/ε�∑
k=
s/ε�+1

f 2
k

)(r/2)−1

×

t/ε�∑

k=
s/ε�+1

f 2
k Ê

{∣∣∣∣∣
(‖µn

tk−‖∑
i=1

Ai,k

)2

− ÊU

{(‖µn
tk−‖∑

i=1

Ai,k

)2}∣∣∣∣∣
r}

.

However, defining the filtrations {F m
k,+}∞m=1 and {F m

k,−}∞m=1 via

F m
k,+

.= Gtk− ∨ σ {Ui,k, i ≤ m}, F m
k,−

.= Gtk− ∨ σ {Ui,k, i ≥ m},
we find that

m →
(

m∑
i=1

Ai,k

)2

− ÊU

{(
m∑

i=1

Ai,k

)2}

is an {F m
k,+}∞m=1-martingale and m → Ai,k∑i−1

j=m Aj,k is a backward
{F m

k,−}∞m=1-martingale for each i. This means we can again apply Burkholder’s,
Jensen’s and 2ab ≤ a2 +b2 inequalities and use the independence of {Ui,k} to find
that

Ê

{∣∣∣∣∣
(‖µn

tk−‖∑
i=1

Ai,k

)2

− ÊU

{(‖µn
tk−‖∑

i=1

Ai,k

)2}∣∣∣∣∣
r ∣∣∣∣Gtk−

}

≤ c(r)
∥∥µn

tk−
∥∥(r/2)−1

‖µn
tk−‖∑

i=1

Ê

{
|(Ai,k)2 − ÊU {(Ai,k)2}|r

+
∣∣∣∣∣2Ai,k

i−1∑
j=1

Aj,k

∣∣∣∣∣
r ∣∣∣∣Gtk−

}

≤ c(r)
∥∥µn

tk−
∥∥r−2

‖µn
tk−‖∑

i=1

(
Ê
{|(Ai,k)2 − ÊU {(Ai,k)2}|r |Gtk−}(61)
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+
i−1∑
j=1

Ê{|Ai,kAj,k|r |Gtk−}
)

≤ c(r)
∥∥µn

tk−
∥∥r−2

‖µn
tk−‖∑

i=1

(
iÊU {|(Ai,k)2 − ÊU {(Ai,k)2}|r}

+ (i − 1)
(
ÊU {(Ai,k)2})r

+
i−1∑
j=1

(
ÊU {|(Aj,k)2 − ÊU {(Aj,k)2}|r}

+ (ÊU {(Aj,k)2})r)
)

≤ c(r)
∥∥µn

tk−
∥∥r−1

‖µn
tk−‖∑

i=1

(
ÊU {|(Ai,k)2 − ÊU {(Ai,k)2}|r}

+ (ÊU {(Ai,k)2})r), P̂ -a.s.

Now, ‖µn
tk−‖ = n〈µn

tk−,1〉 and it follows by direct calculation of ÊU {|(Ai,k)2 −
ÊU {(Ai,k)2}|r} that

Ê

{(
n
〈
µn

tk−,1
〉)r−1

‖µn
tk−‖∑

i=1

|(Ai,k)2 − ÊU {(Ai,k)2}|r
}

= Ê

{
1

nr

〈
µn

tk−,1
〉r−1〈

µn
tk−, |ϕ|2r{∣∣1 − 3|ξk| + 2ξ2

k

∣∣r |ξk|

+ ∣∣2ξ2
k − |ξk|

∣∣r (1 − |ξk|)}〉
}
.

Next, conditioning on σ {µn
tk−}, using the independence of the increments of Y and

Lemma 3, we find that

Ê

{(
n
〈
µn

tk−,1
〉)r−1

‖µn
tk−‖∑

i=1

|(Ai,k)2 − ÊU {(Ai,k)2}|r
}

(62)

≤ c‖h′h‖1/2∞ ε1/2

nr
Ê
{〈
µn

tk−,1
〉r}‖ϕ‖2r∞.

By Lemma 3 and the fact that

(
ÊU {(Ai,k)2})r = (|ξk| − ξ2

k )rn−2rϕ2r(Xi,n
tk−
)
,
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we find that

Ê

{(
n
〈
µn

tk−,1
〉)r−1

‖µn
tk−‖∑

i=1

(
ÊU {(Ai,k)2})r

}

(63)

≤ c(r)‖h′h‖r/2∞ εr/2

nr
Ê
{〈
µn

tk−,1
〉r}‖ϕ‖2r∞.

Then, substituting (62) and (63) into (61) and (60), we find that

Ê

{∣∣∣∣∣

t/ε�∑

k=
s/ε�+1

fk

([Mn(ϕ)]kε − ÊU {[Mn(ϕ)]kε})
∣∣∣∣∣
r}

≤ c(r)(‖h′h‖∞ ∨ 1)r/2

( 
t/ε�∑
k=
s/ε�+1

f 2
k

)r/2
ε1/2

nr

(
sup

0≤τ≤T

Ê{〈µn
τ ,1〉r}

)
‖ϕ‖2r∞

for some constant c(r) > 0 independent of d1, d2, ε, n, t , s, ϕ. �
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