Gap Analysis of Codes and Standards for Hydrogen Refueling Stations

Anirudha Joshi

Graduate Research Assistant, Department of Chemical Engineering, University of Alberta

Dr. Fereshteh Sattari

Research Director, Lynch School of Engineering Safety and Risk Management, Department of Chemical Engineering, University of Alberta

Dr. Mohd Adnan Khan

Research Fellow, The Transition Accelerator; Assistant Professor, Department of Chemical Engineering, University of Alberta

Dr. Lianne M. Lefsrud, P.Eng.

Risk Innovation and Sustainability Chair and Professor, Lynch School of Engineering Safety and Risk Management, Department of Chemical Engineering, University of Alberta

14 February 2024

David & Joan Lynch

School of Engineering Safety & Risk Management

Table of Contents

1	Introduction	.3
2	Applicable codes and standards for HRS	.4
3	Potential standards for HRS	.9
4	Reference	12

List of Tables

List of Figures	
Table 5: List of potential standards for HRS	9
Table 4: HRS safety standards	9
Table 3: Refueling station operations - Applicable standards	7
Table 2: HRS component design - Applicable standards	5
Table 1: Tube-trailer delivery of hydrogen gas - Applicable standards	5

List of Figures

Figure '	1: Hydrogen	refueling station	codes and standards categories4
----------	-------------	-------------------	---------------------------------

1 Executive Summary

Table 1 illustrates the gaps identified in various codes and standards, provides recommendations to resolve each gap, and assigns a priority level to indicate the order in which the gaps should be addressed.

Country	Standard/Code	Description	Gap	Recommendation
CAN	CSA B339-18	Cylinders, Spheres, and Tubes for the Transportation of Dangerous Goods	Lacks specifications on filling pressure limits for hydrogen containers in this edition: New edition to be released in 2024	49 California Code of Regulations (CFR) Part 173 Subpart G provides the pressure limits for hydrogen cylinders
CAN	CAN/BNQ-1784- 000-22	Canadian Hydrogen Installation Code	Does not provide guidelines for classifying hazardous zones and determining risk- informed separation distances for electrical equipment at stations through detailed quantitative analyses	The code must align with the Canadian Electrical Code Part 1, section 18 that covers installation of electrical equipment in hazardous locations Additional Industrial hydrogen standards such as NFPA 50A, 497 and API 505 provide electrical area classification distances.
ALB, CAN	NFC(AE)	Alberta Fire Code	The code does not explicitly mention requirements for hydrogen-fueling, creating a regulatory roadblock in addressing specific provincial requirements for establishing HRSs	The California Fire Code addresses this gap with section 5473, which sets out minimum separation requirements for regulating hydrogen systems based on the station's capacity

Table 1: Gaps in codes and standards with recommendations

2 Introduction

Applicable codes and standards for Hydrogen Refueling Station (HRS) are broadly divided into following categories shown in Figure 1.

Figure 1: Hydrogen refueling station codes and standards categories

With the emerging hydrogen industry, harmonizing codes and standards applicable for hydrogen end-use applications has gained crucial momentum. This study aims to identify gaps in codes and standards specifically applicable to the design, installation, operation, and maintenance of HRSs.

3 Applicable codes and standards for HRS

Tables 1 to 4 include applicable codes and standards for HRSs. The majority of standards identified in these tables align with the accepted practices in existing HRSs across North America, although a few need to be aligned to hydrogen-specific requirements. Additionally, standards that can be useful for developing potential hydrogen-specific standards and can serve as preliminary guidance are listed in Table 6.

Country	Standard	Standard description	Gap	Reference
CAN CSA B339-7		Cylinders, Spheres, and Tubes for the Transportation of Dangerous Goods	Lacks specifications on filling pressure limits for hydrogen containers in this edition: New edition to be released in 2024	[1]
CAN	CSA B340-18	Selection and use of cylinders, spheres, tubes, and other containers for the transportation of dangerous goods, Class 2	Needs to be aligned with the hydrogen specific requirements on update in CSA B339; New edition to be released in 2024	[2]
CAN	CSA B341-18	UN pressure receptacles and multiple-element gas containers for the transport of dangerous goods	No gap exists. This edition provides all requirements for UN pressure receptables bearing hydrogen gas	[3]
CAN CSA B342-18 containers, and other		No gap exists. This edition provides all selection requirements for UN pressure receptables bearing hydrogen gas	[4]	

Table 2: Tube-trailer delivery of hydrogen gas - Applicable standards

Table 3: HRS component design - Applicable standards
--

Country	Standard	Standard description	Gap	Reference
CAN	CAN/BNQ- 1784-000-22	Canadian Hydrogen Installation Code	- BNQ standard lacks CSA B51 part 2 tank requirements for ground storage/on-board storage	[5]
CAN		Boiler, pressure vessel, and pressure piping code	No gap exists. This edition provides all requirements	[6]

Country	Standard	Standard description	Gap	Reference
			necessary for design and operation	
CAN	CSA/ANSI HGV 4.4-21	Gaseous Hydrogen - Fuelling Stations – Valves	No gap exists. This edition provides all requirements necessary for design and operation	[7]
CAN	CSA/ANSI HGV 4.10-21	Standard for fittings for use in compressed gaseous hydrogen refuelling station	No gap exists. This edition provides all requirements necessary for design and operation	[8]
CAN	CSA/ANSI HGV 4.2-22	Hoses for compressed hydrogen fuel stations, dispensers, and vehicle fuel systems	No gap exists. This edition provides all requirements necessary for design and operation	[9]
US	ASME B31.12- 23	Hydrogen Piping and Pipelines	No gap exists. This edition provides all requirements necessary for design and operation	[10]
US	ASME B31.1- 22	Power Piping	No gap exists. This edition provides all requirements necessary for design and operation	[11]
US ASME B31.3-		Process Piping	No gap exists. This edition provides all requirements necessary for design and operation	[12]
US	CGA S Series -1.1-3-20	Pressure Relief Device Standards	No gap exists. This edition provides all requirements necessary for design and operation	[13]
US	CGA-G-5.5-21	Hydrogen Vent Systems	No gap exists. This edition provides all requirements necessary for design and operation	[14]
US CGA H-5-14		Standard For Bulk Hydrogen Supply Systems - Second Edition	No gap exists. This edition provides all requirements necessary for design and operation	[15]

Country	Standard	Standard description	Gap	Reference
		Compressed Hydrogen Surface Vehicle Fueling Connection Devices	No gap exists. This edition provides all requirements necessary for design and operation	[16]
US	UL 2075-23	Standard for Gas and Vapor Detectors and Sensors	No gap exists. This edition provides all requirements necessary for design and operation	[17]

Table 4: Refueling station operations - Applicable standards

Country	Standard	Standard description	Gap	Reference
CAN	CAN/BNQ- 1784-000- 22	Canadian Hydrogen Installation Code	Does not provide guidelines for classifying hazardous zones and determining risk- informed separation distances for electrical equipment at stations through detailed quantitative analyses	[5]
CAN	CSA/ANSI HGV 4.1-20	Hydrogen-Dispensing Systems	No gap exists. This edition provides all requirements necessary for design and operation	[18]
CAN	CSA/ANSI HGV 4.3-19	Test Methods for Hydrogen Fuelling Parameter Evaluation	No gap exists. This edition provides all requirements necessary for design and operation	[19]
CAN	CSA/ANSI HGV 4.9-20	Hydrogen Fuelling Stations	No gap exists. This edition provides all requirements necessary for design and operation	[20]
INT	ISO 17268- 20	Gaseous Hydrogen Land Vehicle Refuelling Connection Devices	No gap exists. This edition provides all requirements necessary for design and operation	[21]

Country	Country Standard Standard description		Gap	Reference
US	US SAE J2600- 15 Compressed I Surface Vehic Connection D		No gap exists. This edition provides all requirements necessary for design and operation	[16]
US	US SAE J2601- 20 Fuelling Protocols for Light Duty Gaseous Hydrogen Surface		No gap exists. This edition provides all requirements necessary for design and operation	[22]
US	SAE J2601- 2-23	Fuelling Protocol for Gaseous Hydrogen Powered Heavy Duty Vehicles	No gap exists. This edition provides all requirements necessary for design and operation	[23]
US	SAE J2601- 3-23	Fuelling Protocol for Gaseous Hydrogen Powered Industrial Trucks	No gap exists. This edition provides all requirements necessary for design and operation	[24]
US	SAE J2799- 19	Hydrogen Surface Vehicle to Station Communications Hardware and Software	No gap exists. This edition provides all requirements necessary for design and operation	[25]
US	SAE J2719- 20	Hydrogen Fuel Quality for Fuel Cell Vehicles	No gap exists. This edition provides all requirements necessary for design and operation	[26]

Country	Standard	Standard description	Reference
US	NFPA 2	Hydrogen Technologies Code	[27]
US	NFPA 1	Fire Code	[28]
INT	ISO 19880	Gaseous hydrogen - Fuelling stations.	[29]
AB, CAN	Alberta Fire Code	The code does not explicitly mention requirements for hydrogen-fueling station	[30]

Table 5: HRS safety standards

4 Potential standards for HRS

A list of standards that can be useful for developing potential hydrogen-specific standards and can serve as preliminary guidance is listed below:

Country	Applicability	Standard	Standard description	Reference
INT	Hydrogen storage	ISO 11439:2013	Gas Cylinders	[31]
INT	Hydrogen storage	ISO 11114	Gas cylinders	[32]
INT	Hydrogen storage	ISO 9809-1-19	Gas Cylinders - Refillable seamless steel gas - cylinders Design, construction, and testing - Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa	[33]
INT	Hydrogen storage	ISO 11119-3- 20	Gas Cylinders of composite construction	[34]

Table 6: List of potential standards for HRS

Country	Applicability	Standard	Standard description	Reference
INT	Hydrogen storage	ISO 11515:2022	Gas Cylinders - Refillable composite reinforced tubes of water capacity between 450 L and 3000 I - Design, construction, and testing	[35]
CHINA	Hydrogen storage/delivery	GB/T 26466	Storage and transportation systems for gaseous hydrogen - Part 1: General requirements	[36]
US	Hydrogen storage/delivery	NFPA 497A	Recommended Practice for the Classification of Flammable Liquids, Gases, or Vapors and Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas	[37]
US	Hydrogen storage/delivery	OHSA 1910.103	Hydrogen DOT-CFFC-basic requirements for fully wrapped carbon-fiber reinforced aluminum - lined cylinders	[38]
US	Hydrogen storage/delivery	ANSI/AIAA G- 095A-2017	Guide To Safety of Hydrogen And Hydrogen Systems	[39]
US	Hydrogen storage/delivery	ANSI/NACE TM0284-2016	Evaluation Of Pipeline and Pressure Vessel Steels for Resistance To Hydrogen- Induced Cracking	[40]
EUROPE	Hydrogen storage/delivery	BS EN 17533	Gaseous hydrogen. Cylinders and tubes for stationary storage	[41]
EUROPE	Hydrogen storage/delivery	BS EN 14025:2018	Tanks for the transport of dangerous goods. Metallic pressure tanks. Design and construction	[42]
EUROPE	Hydrogen storage/delivery	BS EN 12972:2001	Tanks for the transport of dangerous goods. Testing, inspection, and marketing of metallic tanks	[43]
EUROPE	Hydrogen storage/delivery	BS EN 14432:2014	Tanks for the transport of dangerous goods. Tank equipment for the transport of liquid chemicals and liquefied	[44]

Country	Applicability	Standard	Standard description	Reference
			gases. Product discharge and air inlet valves	
EUROPE	Hydrogen storage/delivery	CSN EN 17339	Transportable gas cylinders - Fully wrapped carbon composite cylinders and tubes for hydrogen	[45]

5 Reference

- 1. B339-18 (R2023) | Product | CSA Group [Internet]. [cited 2024 Jan 28]; Available from: https://www.csagroup.org/store/product/B339-18/
- 2. B340-18 (R2023) | Product | CSA Group [Internet]. [cited 2024 Jan 28]; Available from: https://www.csagroup.org/store/product/2701648/
- 3. B341-18 (R2023) | Product | CSA Group [Internet]. [cited 2024 Jan 28]; Available from: https://www.csagroup.org/store/product/2702945/
- 4. B342-18 (R2023) | Product | CSA Group [Internet]. [cited 2024 Jan 28]; Available from: https://www.csagroup.org/store/product/B342-18/
- Bureau de normalization du Quebec. Canadian Hydrogen Installation Code [Internet]. Québec: 2022 [cited 2023 Aug 19]. Available from: https://www.bnq.qc.ca/en/standardization/hydrogen/canadian-hydrogen-installationcode.html
- 6. CSA B51:19 | Product | CSA Group [Internet]. [cited 2024 Jan 28]; Available from: https://www.csagroup.org/store/product/CSA%20B51:19/
- CSA HGV4.4 Gaseous Hydrogen Fueling Stations Valves | Hydrogen Tools [Internet]. [cited 2023 Dec 14]; Available from: https://h2tools.org/fuel-cell-codes-andstandards/csa-hgv44-gaseous-hydrogen-fueling-stations-valves
- 8. CSA/ANSI HGV 4.10:21 | Product | CSA Group [Internet]. [cited 2024 Jan 28]; Available from: https://www.csagroup.org/store/product/2428481/
- CSA HGV4.2 Hose and Hose Assemblies for Hydrogen Vehicles and Dispensing Systems | Hydrogen Tools [Internet]. [cited 2023 Dec 14]; Available from: https://h2tools.org/fuel-cell-codes-and-standards/csa-hgv42-hose-and-hoseassemblies-hydrogen-vehicles-and-dispensing
- 10. American Society of Mechanical Engineers. Hydrogen piping and pipelines ASME Code for Pressure Piping, B31.
- 11. B31.1 Power Piping ASME [Internet]. [cited 2024 Jan 28]; Available from: https://www.asme.org/codes-standards/find-codes-standards/b31-1-power-piping

- 12. B31.3 Process Piping ASME [Internet]. [cited 2024 Jan 28]; Available from: https://www.asme.org/codes-standards/find-codes-standards/b31-3-process-piping
- CGA S-1.1: PRESSURE RELIEF DEVICE STANDARDS—PART 1— CYLINDERS FOR COMPRESSED GASES [Internet]. [cited 2024 Jan 28]; Available from: https://global.ihs.com/doc_detail.cfm?document_name=CGA%20S%2D1%2E1&item_ s_key=00023432
- 14. CGA G-5.5 Hydrogen Vent Systems [Internet]. [cited 2024 Jan 28]; Available from: https://webstore.ansi.org/standards/cga/cga-1272213
- H-5: Standard for Bulk Hydrogen Supply Systems (an American National Standard) [Internet]. [cited 2024 Jan 28]; Available from: https://portal.cganet.com/Publication/Details.aspx?id=H-5
- J2600_201510: Compressed Hydrogen Surface Vehicle Fueling Connection Devices -SAE International [Internet]. [cited 2024 Jan 28]; Available from: https://www.sae.org/standards/content/j2600_201510/
- UL 2075 | UL Standards & Engagement | UL Standard [Internet]. [cited 2024 Jan 28];
 Available from: https://shopulstandards.com/ProductDetail.aspx?productId=UL2075_2_S_20130305
- CSA/ANSI HGV 4.1-2020 Hydrogen-dispensing systems [Internet]. [cited 2023 Dec 14]; Available from: https://webstore.ansi.org/standards/csa/csaansihgv2020
- 19. CSA/ANSI HGV 4.3:19 | Product | CSA Group [Internet]. [cited 2024 Jan 28]; Available from: https://www.csagroup.org/store/product/2426672/
- 20. CSA/ANSI HGV 4.9:20 | Product | CSA Group [Internet]. [cited 2023 Dec 14]; Available from: https://www.csagroup.org/store/product/2703959/
- 21. ISO 17268:2020 Gaseous hydrogen land vehicle refuelling connection devices [Internet]. [cited 2023 Dec 14]; Available from: https://www.iso.org/standard/68442.html
- 22. SAE J2601. J2601- Fueling protocols for light duty gaseous hydrogen surface vehicle [Internet]. 2010 [cited 2023 Sep 28]. Available from: https://scholar.google.com/scholar_lookup?title=Fueling%20protocols%20for%20light %20duty%20gaseous%20hydrogen%20surface%20vehicle&author=Society%20of%2 0Automotive%20Engineers&publication_year=2010

- J2601/2_202307: Fueling Protocol for Gaseous Hydrogen Powered Heavy Duty Vehicles - SAE International [Internet]. [cited 2024 Jan 28]; Available from: https://www.sae.org/standards/content/j2601/2_202307/
- J2601/3_202209: Fueling Protocol for Gaseous Hydrogen Powered Industrial Trucks -SAE International [Internet]. [cited 2024 Jan 28]; Available from: https://www.sae.org/standards/content/j2601/3_202209/
- J2799_201912: Hydrogen Surface Vehicle to Station Communications Hardware and Software - SAE International [Internet]. [cited 2023 Dec 14]; Available from: https://www.sae.org/standards/content/j2799_201912/
- J2719_202003: Hydrogen Fuel Quality for Fuel Cell Vehicles SAE International [Internet]. [cited 2023 Dec 14]; Available from: https://www.sae.org/standards/content/j2719_202003/
- 27. NFPA 2 [Internet]. 2023 [cited 2023 Nov 10]; Available from: https://www.nfpa.org/product/nfpa-2-code/p0002code
- NFPA 1 Code Development [Internet]. [cited 2024 Jan 28]; Available from: https://www.nfpa.org/codes-and-standards/1/nfpa-1
- ISO 19880-1:2020 Gaseous hydrogen Fuelling stations Part 1: General requirements [Internet]. [cited 2023 Dec 14]; Available from: https://www.iso.org/standard/71940.html
- Canadian Commission on Building and Fire Codes (CCBFC). National Fire Code 2019 Alberta Edition. 2019.
- ISO 11439:2013 Gas cylinders High-pressure cylinders for the onboard storage of natural gas as a fuel for automotive vehicles [Internet]. [cited 2024 Jan 28]; Available from: https://www.iso.org/standard/44755.html
- 32. ISO 11114-1:2020 Gas cylinders Compatibility of cylinder and valve materials with gas contents — Part 1: Metallic materials [Internet]. [cited 2024 Jan 28]; Available from: https://www.iso.org/standard/76081.html
- 33. ISO 9809-1:2019 Gas cylinders Design, construction and testing of refillable seamless steel gas cylinders and tubes Part 1: Quenched and tempered steel

cylinders and tubes with tensile strength less than 1 100 MPa [Internet]. [cited 2024 Jan 28];Available from: https://www.iso.org/standard/70377.html

- 34. ISO 11119-3:2020 Gas cylinders Design, construction and testing of refillable composite gas cylinders and tubes Part 3: Fully wrapped fibre-reinforced composite gas cylinders and tubes up to 450 l with non-load-sharing metallic or non-metallic liners or without liners [Internet]. [cited 2024 Jan 28]; Available from: https://www.iso.org/standard/75817.html
- ISO 11515:2022 Gas cylinders Refillable composite reinforced tubes of water capacity between 450 I and 3000 I — Design, construction and testing [Internet]. [cited 2024 Jan 28]; Available from: https://www.iso.org/standard/78506.html
- 36. GB/T 26466-2011 English PDF (GBT 26466-2011) [Internet]. [cited 2024 Jan 28]; Available from: https://www.chinesestandard.net/PDF/English.aspx/GBT26466-2011
- 37. NFPA 497 Standard Development [Internet]. [cited 2024 Jan 28]; Available from: https://www.nfpa.org/codes-and-standards/4/9/7/nfpa-497
- 1910.103 Hydrogen. | Occupational Safety and Health Administration [Internet]. [cited
 2024 Jan 28]; Available from: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.103
- Guide to Safety of Hydrogen and Hydrogen Systems (ANSI/AIAA G-095A-2017). Guide to Safety of Hydrogen and Hydrogen Systems (ANSI/AIAA G-095A-2017) 2017.
- AMPP Store ANSI/NACE TM0284-2016, Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking [Internet]. [cited 2024 Jan 28]; Available from: https://store.ampp.org/ansi-nace-tm0284-2016
- BS EN 17533:2020 Gaseous hydrogen. Cylinders and tubes for stationary storage [Internet]. [cited 2024 Jan 28]; Available from: https://www.en-standard.eu/bs-en-17533-2020-gaseous-hydrogen-cylinders-and-tubes-for-stationary-storage/
- 42. BS EN 14025:2018 | 31 Mar 2020 | BSI Knowledge [Internet]. [cited 2024 Jan 28]; Available from: https://knowledge.bsigroup.com/products/tanks-for-the-transport-ofdangerous-goods-metallic-pressure-tanks-design-and-construction-1?version=standard

- 43. BS EN 12972:2001 | 15 Jun 2001 | BSI Knowledge [Internet]. [cited 2024 Jan 28]; Available from: https://knowledge.bsigroup.com/products/tanks-for-transport-ofdangerous-goods-testing-inspection-and-marking-of-metallic-tanks?version=standard
- 44. BS EN 14432:2014 | 31 Oct 2014 | BSI Knowledge [Internet]. [cited 2024 Jan 28]; Available from: https://knowledge.bsigroup.com/products/tanks-for-the-transport-ofdangerous-goods-tank-equipment-for-the-transport-of-liquid-chemicals-and-liquefiedgases-product-discharge-and-air-inlet-valves?version=standard
- 45. CSN EN 17339 Transportable gas cylinders Fully wrapped carbon composite cylinders and tubes for hydrogen [Internet]. [cited 2024 Jan 28]; Available from: https://www.en-standard.eu/csn-en-17339-transportable-gas-cylinders-fully-wrapped-carbon-composite-cylinders-and-tubes-for-hydrogen/