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Abstract

The large-scale relay network is a promising component of future wireless sys-

tems, as it can improve the coverage and throughput of wireless communications.

The large-scale scenario brings many new challenges. In this thesis, two of the

fundamental problems are investigated, i.e., performance analysis and transmission

design for large-scale relay networks.

For performance analysis, this thesis studies both distributed relaying schemes,

e.g., relay selection and distributed relay beamforming, and centralized relaying

scheme, e.g., maximal-ratio combining/transmission (MRC/MRT). For best relay

selection (BRS), closed-form expressions of the average received SNR and ergodic

capacity are derived, which provide insights on the array gain and ergodic capac-

ity behaviour of BRS. For distributed relay beamforming, the power allocation that

maximizes the sum-rate is proposed. Then the asymptotic behaviour of the SNR is

derived rigorously for the high transmit power regime. For MRC/MRT, a compre-

hensive performance scaling law and performance analysis is provided in a multi-

user massive MIMO relay network with channel state information (CSI) error. The

results show quantitatively the trade-off between the network parameters and their

effects on the performance. In addition, a sufficient condition on the parameter

scalings for the signal-to-interference-plus-noise-ratio (SINR) to be asymptotically

deterministic is derived, which covers existing studies as special cases. Further, the

scenario where the SINR increases linearly with the number of relay antennas is

studied. The sufficient and necessary condition on the parameter scaling for this
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scenario is proved. The outage probability and average bit error rate (ABER) of the

relay network in this case are analysed. Besides performance analysis, rank detec-

tion design is also investigated. Due to the spatial correlation and antenna coupling,

the large-scale channel matrix usually has reduced rank. Accurate rank detection is

crucial in the estimation of such channel matrices. Several rank detection methods

are proposed, which provides higher rank detection rate than existing ones.

∼
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Chapter 1

Introduction

The ultimate goal of wireless networks is to enable communication of any type of

information with anyone, at anytime, from anywhere. We are getting closer and

closer to this goal with the ever-evolving wireless technologies. It started from

1980’s, when the first generation of wireless systems (1G), the analog cellular sys-

tem, was deployed. At the time, users could make voice calls within one country.

Since then, the wireless technology has found itself significantly improved in every

decade. In 1990’s, the second generation of wireless systems (2G) (e.g., Global Sys-

tem for Mobile Communications (GSM), Interim Standard-95, etc.) was launched.

With digital signal processing applied, not only the voice transmission rate had been

increased more than 10-fold of 1G, but also the data services were introduced for

the first time, including text images and multi-media. The maximum data rate of

2G is 50 kbit/s with General Packet Radio Service (GPRS), and 500 kbit/s with En-

hanced Data Rates for GSM Evolution (EDGE). While 2G is mainly built for voice

services and slow data transmission, the third generation of wireless systems (3G),

developed in late 1990’s, was intended for high-volume data services. It provides

a minimum data rate of 2 Mbit/s for stationary or walking users, and 384 kbit/s

in a moving vehicle. The data rate improvement enables various data-driven ser-

vices, e.g., mobile TV, video conferencing, and on-line gaming. Driven by even

data-desiring services, e.g., high-definition mobile TV and three-dimensional (3D)

television, and the booming mobile devices, e.g., smart phones, laptops, and tablets,

the evolution of the wireless networks came to the fourth generation of wireless

systems (4G). In March 2008, the International Telecommunication Union-Radio
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(ITU-R) communication sector specified a set of requirements for 4G standards,

named the International Mobile Telecommunications Advanced (IMT-Advanced)

specification, setting peak rate of 4G at 100 Mbit/s for high mobility communica-

tions and 1 Gbit/s for low mobility communications.

The above is the evolution of wireless communication technologies in the past

decades. The driving force behind the innovations is the booming user demand. On

one hand, the number of mobile devices increases dramatically. By 2015, global

mobile devices and connections have grown up to 7.9 billion, with a 563 mil-

lion increase in 2015 [1]. On the other hand, the mobile services have expanded

from voice call services to the diverse mobile video and social networking services,

which leads to more data usage per mobile device. These result in huge data traffic

growth. In the past ten years, the mobile data traffic has grown 4,000-fold (Fig.

1.1). In 2015 alone, the global mobile data traffic grew 74 percent [1]. This trend

will continue even more wildly in the next few years. By 2020, the mobile data

traffic will be almost 10 times of 2015 (Fig. 1.2). This urges further evolution of

the wireless technology, and calls for the the fifth generation of wireless systems

(5G).

Figure 1.1: Global mobile data traffic growth [2].
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Figure 1.2: Forecast of global mobile data traffic growth [1].

To accommodate the huge data traffic, 5G must support higher capacity with

better reliability, higher spectrum and energy efficiency. One technology that is

promising to meet these requirements is massive MIMO, where a large number

of antennas are deployed at the base station. 5G should also provide ubiquitous

coverage, i.e., the service should be available to anyone from anywhere, even for

users in rural areas or at the cell edge of a cellular network. One technology that

extends the coverage of a wireless network is the relay technology, which assists

the communication between nodes that do not have reliable direct connection. The

combination of massive MIMO and relay is called the large-scale relay network. It

is expected to inherit the advantages of both and play an important role in 5G 1.

1.1 Large-Scale Relay Network

The concept of large-scale relay network originates from the conventional relay

technology, and incorporates the ascendant massive MIMO technology. In what

follows, the two important components will be introduced.

1Other famous technologies for 5G include cognitive radio, millimetre wave, and etc. Engaged
readers can find their introductions in [7]
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1.1.1 Relay Communications

The basic idea of relay is to forward messages from sources to destinations. Orig-

inated since 1980’s, relay technology has witnessed a rapid growth in the past

decades, which has been integrated into various 3G and 4G standards [3–5] and

being a strong candidate for 5G [6]. In the conceptual 5G hybrid topology (Fig-

ure. 1.3) [7], relay finds its diverse applications, e.g., mobile relay, multi-hop relay,

and user-equipment-based relay2. In the following, the benefits of relays in future

wireless networks are generally summarized.

Figure 1.3: Current vision of the hybrid networking topology in 5G [7]. In the
figure, EPC stands for Evolved Packed Core, which is the core network. eNB stands
for Evolved NodeB, which is the base station.

• Improving cell-edge performance. In cellular systems, user equipments at

the cell edge experience severe path-loss because of the long distance from

2Note that, besides relaying, there are various advanced technologies applied in this network, e.g.,
device-to-device (D2D), small cell, coordinated multipoint (CoMP), and remote radio unit (RRU).
Engaged readers can find their introductions in [7].
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the base station. To guarantee the quality-of-service (QoS) of those users,

traditionally, very high transmit power is used to overcome the path-loss. In

the hybrid-topology cellular network, one relay or multi-hop relay stations

can be deployed between the base station and the cell-edge users [7]. The use

of relay will reduce the path-loss, extend the coverage of the cellular network,

and also reduce the transmit power of both the base station and users [8].

• Assisting mobile communications. User equipments in a mobile vehicle,

e.g., a mobile train, experience severe penetration-loss when the signal pen-

etrates walls. Implementing a relay station on the mobile vehicle can elim-

inate the penetration-loss and improve the communication quality of mobile

users [7]. Moreover, the transmit power of user devices can be reduced sig-

nificantly as the relay is much closer than the base station.

• Assisting D2D communications. The D2D communication is an important

component of the hybrid topology of future wireless networks [7]. In D2D

systems, devices communicate with each other directly without traversing

the base station or the core network. The application of D2D releases the

pressure on the core network and improves the energy efficiency and spectral

efficiency. When there is no reliable direct link between devices, a relay sta-

tion can be deployed between source devices and destination devices [9]. Or

alternatively, the devices between sources and destinations can act as relays

and cooperate to assist the communications [8]. In either way, the capacity of

D2D systems will be improved.

These are the advantages of relay technology in future wireless networks. To

further boost its performance for new 5G applications, the future relay technology

will incorporate another promising technology, massive MIMO, which will be in-

troduced next.

1.1.2 Massive MIMO

Multiple-input multiple-output (MIMO) systems, or multiple antenna systems, re-

fer to systems with multiple antennas implemented at the transceiver nodes. The
5



MIMO technology has matured and has been incorporated into many wireless stan-

dards including the Institute of Electrical and Electronics Engineers (IEEE) 802.11n,

IEEE 802.11ac, Worldwide Interoperability for Microwave Access(WiMAX), and

Long-Term Evolution (LTE) [29, 30]. For example, the LTE standard allows for

up to 8 antenna ports. With more antennas at the transmitter/receiver, the propaga-

tion channel will have more degrees of freedom, which can be exploited to provide

higher data rate or link reliability to fulfil the huge demand of data rate in future

wireless networks. Besides, it is more practical and efficient compared with other

solutions, e.g., increasing frequency spectrum or transmission power, considering

that the available frequency spectrum is limited and the future communications need

to be more power efficient. Therefore, a novel scheme, called large-scale MIMO

or massive MIMO, where hundreds of antennas are implemented at the transmitter

nodes [10], has attracted much attention recently. With the massive MIMO tech-

nology, the following advantages can be gained over conventional MIMO systems.

• Higher energy efficiency. While conventional MIMO is energy efficient,

with a large number of antennas, energy can be focused with extreme sharp-

ness into the small regions of desired terminals, making massive MIMO more

efficient in energy usage.

• Reduced effect of small-scale fading. Small-scale fading is a fundamen-

tal feature of wireless propagation that conventional MIMO systems exploit.

With very large scale, the randomness of channel vectors can be reduced by

using simple processing techniques. Thus the effect of small-scale fading can

be asymptotically eliminated in massive MIMO systems.

• Reduced interference. The inter-user interference is a major problem in

MIMO systems with multiple users. With massive MIMO, due to the large

scale, the random channel vectors between different users and the base sta-

tions become mutually orthogonal asymptotically. Thus, the interference can

be asymptotically cancelled with simple processing.

With these advantages, the massive MIMO concept is widely recognized to be

a basic component of 5G networks [7].
6



Massive MIMO technology has the following application scenarios: 1) multi-

user networks where a massive MIMO base station serves many user devices which

are equipped with limited number of antennas; 2) relay networks with a massive

MIMO relay station or a large number of distributed single-antenna relays help the

communications from a group of user devices to another group of user devices.

The latter case is called the large-scale relay network. Compared with conventional

relay networks, the large-scale relay network can not only improve the network

coverage, but also provide much higher throughput and serve more users, to meet

the requirement of future wireless networks. This thesis focuses on the research of

large-scale relay networks.

1.2 Thesis Motivation and Contributions

1.2.1 Motivation

As mentioned before, the large-scale relay network is a strong candidate for future

wireless networks for its potential to increase the throughput, coverage, energy ef-

ficiency and spectrum efficiency. The brief procedure of communication in a large-

scale relay network is introduced as follows. Firstly, the signals are transmitted

from the sources to the relays. Then the relays process the signals and retransmit

to the destinations. The processing at the relays is called the relaying schemes.

Popular relaying schemes include relay selection, distributed relay beamforming,

maximal-ratio combining/transmission (MRC/MRT), and so on. Relaying schemes

are the key to the high performance of the relay network. On the other hand, as

most relaying schemes require channel state information (CSI) at the relay, channel

estimation is conducted before the data transmission.

From the procedure, we can see that the performance analysis of relaying schemes

and transmission design play important roles in understanding and designing the

network. The two problems will be described in detail as below.

• Performance analysis. Performance analysis shows the properties of differ-

ent relaying schemes and effects of the network parameters on the perfor-

mance. These results will help to design the large-scale relay networks in
7



practice.

In this thesis, we are looking for neat, systematic, general, closed-form or

semi-closed-form expressions for the performance of large-scale relay net-

works. From the expressions, the network performance with respect to dif-

ferent parameters can be easily observed. This problem is challenging and

different from conventional relay performance analysis for the following rea-

sons.

– The analysis of multiple-antenna relay networks has always been a chal-

lenging problem. Existing performance analyses for traditional relay

networks [11–18] are based on the distribution of the signal-to-noise-

ratio (SNR). However, due to the complexity of the two-hop transmis-

sion, i.e., the source-to-relay and relay-to-destination transmissions, ex-

plicit expressions of performance metrics, e.g., average SNR and er-

godic capacity, are rare and little insights are available.

– In large-scale relay networks, it is of more importance to derive the

asymptotic performance behaviour of the network when the relay an-

tenna number is very large. This is different to conventional relay net-

works, where the performance analysis mainly focuses on the limited

relay antenna number case.

• Transmission design. For transmission design, we specialise on the rank

detection problem. The channel matrix of large-scale relay networks usually

has reduced rank [10]. For reduced-rank channel, accurate rank detection is

important for the following two reasons. On one hand, it can improve the

channel estimation quality, which is crucial for the signal processing at the

relay. On the other hand, when the relay is serving multiple users, the rank of

channel matrix between users and the relay determines how many users can

be served within the same time-frequency bandwidth. Thus, accurate channel

rank detection is an important part of channel estimation and is essential for

large-scale relay systems.
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Most existing rank detection methods are threshold-based [19–26], where

singular values of the received signal matrix are compared with a thresh-

old to detect the rank. The derivation of the threshold is usually based on

the distribution of the noise matrix, aiming at minimizing the mean squared

error (MSE) of the channel estimation [19–24] or maximizing a generalized

likelihood-ratio function [25]. The limitation of existing rank detection meth-

ods is that they only consider deterministic channel matrix, where the chan-

nels are assumed to be static. Novel designs that take into account the channel

randomness will further improve the rank detection accuracy.

1.2.2 Research Contributions

Aiming at fundamental studies of the promising large-scale relay network, this the-

sis investigates the performance analysis and transmission design for the system.

The main contributions of this thesis are listed as follows.

1. To analyze the asymptotic performance of best relay selection (BRS). The

average SNR and ergodic capacity of BRS in a single-user large-scale relay

network are analyzed. Due to the complexity of the distribution of the re-

ceived SNR, closed-form expressions that reveal insights for average SNR

and ergodic capacity performance of BRS are not available in existing litera-

ture.

With the help of extreme value theory (EVT) and careful manipulations of

special functions, closed-form approximations for the average SNR and er-

godic capacity of BRS are derived for high power range. Compared with

existing results in integral forms or with special functions, our results are in

closed-form and provide useful insights on the behaviour of the array gain

and the ergodic capacity with respect to network parameters.

2. To design the distributed relay beamforming scheme for multi-user re-

lay networks and analyze its asymptotic performance. Distributed relay

beamforming is investigated in a multiple-user large-scale relay network,

where users are allocated orthogonal channels to avoid interference. The
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power allocation (PA) designs and performance analysis results for this re-

laying scheme are rare.

Firstly, the PA problem of distributed relay beamforming is solved to max-

imize the network throughput. Then the SNR and capacity of the proposed

scheme are derived when the number of relays goes to infinity. The analytical

results show that, with distributed relay beamforming in large-scale relay net-

works, the received SNR of each user increases linearly with the number of

relay antennas and also linearly with the minimum of the user transmit power

and relay power.

3. To uncover the fundamental performance scaling-law of MRC/MRT re-

laying scheme with channel estimation error. The performance of MRC/MRT

is analyzed in multiple-user large-scale relay networks. Firstly, a sum-rate

lower bound is derived which manifests the effect of system parameters in-

cluding the number of users, the training quality, and the transmit powers of

the sources and the relay. Via a general scaling model on the system parame-

ters with respect to the number of relay antennas, the asymptotic scaling law

of the network sum-rate as a function of the parameter scalings is obtained.

The results show quantitatively the trade-off between the network parameters

and their effects on the sum-rate. Besides, a sufficient condition for asymptot-

ically deterministic signal-to-interference-plus-noise ratio (SINR) is shown,

which covers the existing work as special cases. At last, for linearly increas-

ing SINR, it is shown that in this case, the interference power dominates the

random behaviour. Then, the outage probability and average bit error rate

(ABER) are analyzed, which is not available in the literature.

4. To design rank detection schemes for reduced-rank channel estimation.

Novel threshold-based rank detection algorithms for reduced-rank channels

are proposed. Different from previous work, a system with random channel

matrix model, a general training length, and unitary training matrix is consid-

ered. Lower bounds on the probability of correct rank detection are derived

using the distribution of the channel matrix and noise matrix, based on which
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the rank detection thresholds are optimized. In addition to the traditional

single-threshold detection algorithm, two low-complexity multiple-threshold

algorithms are further proposed. Compared with the existing schemes, our

proposed schemes can achieve higher rank detection rate for various scenar-

ios.

1.3 Organization of the Thesis

The thesis is organized as follows.

In Chapter 2, basic concepts on wireless communications, MIMO systems, and

relaying schemes are introduced.

Chapter 3 represents the analysis on the average SNR and ergodic capacity of

large-scale relay networks with BRS [132]. The system model, probability den-

sity function (PDF) and cumulative distribution function (CDF) analysis of the re-

ceived SNR, average SNR and ergodic capacity analysis are derived. Simulations

are shown to verify the analytical results.

In Chapter 4, the relay PA is investigated to maximize the network sum-rate for

a multi-user multi-relay network with a total relay power constraint [121]. First, the

PA problem is formulated and solved by optimization methods. Then the asymp-

totic performance of the designed scheme is analyzed. Simulation results are pre-

sented to show the advantage of the design and verify the analytical results.

Chapter 5 is on the performance analysis and scaling law of MRC/MRT relay-

ing in multi-user large-scale relay networks with CSI error. Firstly, the performance

scaling law is derived with all network parameters represented by the scales of the

relay antenna number. Then, a sufficient condition for the SINR to be asymptoti-

cally deterministic is obtained. At last, linearly increasing SINR case is analyzed.

The sufficient and necessary condition for the case is derived. Then the interference

power PDF, outage probability and ABER expressions are derived and analyzed.

Simulations are shown to verify the analytical results.

Chapter 6 focuses on the rank detection design for singular value decomposi-

tion (SVD)-based reduced-rank channel estimation in large-scale relay networks
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[133, 134]. The channel model, training model and rank detection problem are first

presented. Then a threshold selection method for single-threshold rank detection al-

gorithm and two improved multiple-threshold rank detection methods are proposed.

Finally, simulation results on the correct rank detection probability are presented to

show the advantages of the proposed schemes.

Chapter 7 summarizes the main contributions of this thesis and proposes possi-

ble directions for future work.

∼
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Chapter 2

Background

In this chapter, we first review some basics on wireless channels and channel es-

timation. Then, the MIMO system and related communication models are briefly

introduced. At last, important relaying schemes are described, including both dis-

tributed relaying schemes and centralized relaying schemes.

2.1 Basics of Wireless Communications

2.1.1 Characteristics of Wireless Channels

The model of wireless channel is essential for the analysis of wireless networks.

Different from wired communications, signals transmitted through wireless chan-

nels may suffer from severe attenuation and distortion. The effects are characterized

by two factors, i.e., large-scale fading and small-scale fading [8].

Large-Scale Fading

Large-scale fading refers to the signal attenuation caused by path loss and shad-

owing. Path loss measures the degradation of signals over transmission distances.

Shadowing is caused by the diffraction from obstacles. The long-distance model

that jointly considers both path loss and shadowing effects is given by [8]

Pr(dB) = Pt(dB) + P0(dB) + 10 log10

(
d0
d

)α

+X0, (2.1)

where Pt is the transmit power, Pr is the received power at distance d, d0 is the

reference distance, P0 is the path loss at the reference distance, α is the path loss
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exponent, and X0 is a zero-mean Gaussian random variable modelling shadowing

effect. The value of the path loss exponent α depends on the propagation environ-

ment and usually ranges between 2 and 6.

Small-Scale Fading

Small-scale fading refers to the signal attenuation due to the presence of reflec-

tors and scatterers that cause multiple copies of transmitted signals to arrive at the

receiver. Each copy has different attenuation, delay and phase shift. Thus, these

copies may add up constructively or destructively, resulting in rapid fluctuation in

the signal strength.

The commonly used small-scale fading models include the Rayleigh fading

model and Rician fading model. Both models assume a rich scattering environment.

Thus with central limit theorem (CLT), the superposition of the channel responses

from a large number of identical and independent paths are approximately Gaussian

distributed.

Rayleigh fading is for the channel without a line-of-sight component. In this

case, the real and imaginary part of the channel impulse response are approximately

independent and identically distributed (i.i.d.) Gaussian random variables. And its

phase will be evenly distributed between 0 and 2π radians. Its envelope follows the

Rayleigh distribution with the PDF given by

f(x) =
x

σ2
exp

(
− x2

2σ2

)
, x ≥ 0, (2.2)

where σ2

2
is the average envelope power [8]. When represented by a complex

number, the channel impulse response of Rayleigh fading is distributed as circular-

symmetric complex Gaussian (CSCG), i.e., CN (0, σ2).

Rician fading is for the channel with a dominant path, typically a line-of-sight

path. In this case, the amplitude gain of the channel impulse response follows

Rician distribution, whose PDF is given by [8]

f(x) =
x

σ2
exp

(
x2 + A2

2σ2

)
I0

(
Ax

σ2

)
, x ≥ 0, (2.3)

where A is the peak amplitude of the dominant signal, and I0(·) is the modified
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Bessel function of the first kind with order 0 [27]. From the PDFs in (2.3) and (2.2)

we could see that, Rayleigh fading is a special case of Rician fading with A = 0.

2.1.2 Channel Estimation

In most MIMO and relay communication schemes, full or partial knowledge of the

channel coefficients is required at the relay, the destination, or the source for signal

processing. In practice, CSI must be obtained through channel estimation.

In training-based channel estimation, known signals, which are called pilots,

are sent and the channel values are estimated based on the known pilots and the

received signals. In practice, due to the existence of noises, channel estimation can-

not be perfect. The main metric to measure the channel estimation quality is the

mean squared error (MSE). It is the average of the square of the distance between

the estimation and exact parameter matrix. Denote the parameter matrix to be esti-

mated (in MIMO training, it is the MIMO channel matrix) as X, and the estimated

matrix value (in MIMO training, it is the channel estimation) as X̂, then the MSE

is formulated as follows.

MSE = E{‖X̂−X‖2F}. (2.4)

In the following, two basic estimation methods, i.e., minimum-mean-squared-

error (MMSE) estimator and maximal-likelihood (ML) estimator, are introduced.

MMSE and ML Estimation

MMSE estimator is the estimation that minimizes the MSE:

X̂MMSE = arg min
X̂

MSE. (2.5)

It is proved that, the estimator is the average value of the parameters conditioned on

the observation, i.e.,

X̂MMSE = E{X|Y = Ys}, (2.6)

where Y is the observation and Ys is the sample observation from Y.

ML estimator maximizes the likelihood function. The likelihood function is

defined as the probability (for discrete random variable) or probability density (for
15



continuous random variable) of the received symbol Y given the transmitted sym-

bol X, i.e., fY(Y|X). Thus ML estimator can be represented as

X̂ML = arg max fY(Y|X). (2.7)

Compared with MMSE estimator, ML estimator has lower complexity. And

with ML estimator, when the number of observations goes to infinity, the estimation

error is almost surely zero under mild conditions on the likelihood function [28].

2.2 Introduction of MIMO Systems

The transmission in wireless systems may fail when the channels are in deep fad-

ing. To overcome the fading effects, different diversity techniques can be exploited.

For example, different versions of the same signal can be sent at different time

instants to exploit the time diversity; or sent over several frequency channels to

exploit the frequency diversity [29, 30]. As the time diversity and the frequency

diversity are limited by the scarce time and frequency resources, to further improve

the performance of wireless systems, the spatial diversity techniques are proposed,

where the signal is transmitted over several different propagation paths. MIMO is

the most popular spatial diversity technique, which deploys multiple antennas at

the transmitter or the receiver. The research on MIMO techniques can be traced

back to 1970’s. It became more and more popular since early 1990’s [29,30]. Now,

MIMO has become an essential element of 3G and 4G wireless communication

standards [29, 30]. In what follows, the basic MIMO transmission and linear pro-

cessing techniques are introduced.

2.2.1 MIMO Communications

A basic MIMO system model is shown in Fig. 2.1, where the transmitter is equipped

with M antennas and the receiver is equipped with N antennas. The channels

between the transmitter and the receiver can be represented by an N × M matrix

H, whose (i, j)-th entry, hi,j , is the channel from the j-th transmitter antenna to the

i-th receiver antenna. As the MIMO channel may have reduced-rank [29, 30], we

assume that the rank of H is r (r ≤ min(M,N)).
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Figure 2.1: Single-user MIMO system diagram

Let x be the M × 1 transmitted symbol vector, Wt be the M ×M transmit pre-

coding matrix, and Wr be N ×N receive combining matrix. Then, at the receiver

side, after combining, the N × 1 symbol vector , y, is

y =
√
PWrHWtx+Wrw, (2.8)

where P is the total transmit power and w is the additive noise vector, whose entries

are i.i.d. Gaussian distributed with zero mean and variance σ2
w.

With the use of channel estimation, H can be known at both the transmitter and

receiver. We can then design the precoding and combining matrices to exploit the

spatial diversity.

First, decompose H with SVD as

H = UΣVH , (2.9)

where U and V are N×N and M×M unitary matrices, and Σ is an N×M diagonal

matrix with r non-zero singular values of H on its diagonal in non-increasing order.

Then, by designing the precoding and combining matrices as Wt = V and

Wr = UH , we have

y =
√
PΣx+ w̃, (2.10)

where w̃ = UHw is the equivalent noise vector. It can be shown that entries of

w̃ are uncorrelated. Since Σ is a diagonal matrix with r non-zero elements, we
17



have produced equivalently r parallel channels with uncorrelated noises. So r is the

maximum number of symbols can be transmitted at one time such that the receiver

is able to successfully separate all transmitted symbols without interference.

With r parallel sub-channels available, the MIMO system can be designed to

achieve the spatial diversity gain or spatial multiplexing gain as described below.

• Spatial diversity gain is achieved by transmitting different versions of the

same symbol over multiple sub-channels. With appropriate combining at the

receiver, the transmission reliability will be improved, resulting in lower sym-

bol error probability. The maximum possible spatial diversity order is shown

to be the product of the number of transmit and receive antennas (i.e. MN ).

It is achievable when all channel coefficients are independently distributed.

• Spatial multiplexing gain is achieved by transmitting multiple symbols over

the sub-channels. This results in throughput improvement without extra cost

of power or frequency bandwidth. The maximum spatial multiplexing gain

achieved by the MIMO system described above is r.

Obviously, the maximum spatial diversity gain and spatial multiplexing gain

cannot be achieved simultaneously. A natural trade-off exists between the two ben-

efits [29, 30].

2.2.2 Performance Metrics

To evaluate the performance of a MIMO or relay system, performance metrics have

been proposed. The popular ones include the average SNR, ergodic capacity, outage

probability, ABER, correct rank detection probability and asymptotic parameter

scaling.

• The average SNR is the expected value of the SNR over all channel states. It

shows the average communication quality. Besides, from the average SNR,

we can find the array gain for MIMO or virtual MIMO systems. Array gain

is defined as the power gain of using multiple antennas or multiple virtual

communication paths over single-antenna systems. It can be obtained by

dividing the average SNR with the average SNR of single-antenna system.
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• The ergodic capacity is the average Shannon capacity over all channel states.

Shannon capacity is defined as the maximum data rate of error-free trans-

mission with specified bandwidth. For fading channels with additive white

Gaussian noise, the ergodic capacity, denoted as Cerg, is given by

Cerg = B

∫ ∞

0

log2(1 + γ)f(γ)dγ, (2.11)

where B is the bandwidth in hertz, γ is the received SNR, and f(γ) is the

PDF of the received SNR.

Besides, from the ergodic capacity, the multiplexing gain can be calculated.

With the ergodic capacity represented as a function of the average transmit

SNR, i.e., Cerg(SNRt), the multiplexing gain is defined by [29]

gm = lim
SNRt→∞

Cerg(SNRt)

log2 SNRt

. (2.12)

• The outage probability is defined as the probability that the instantaneous

SNR falls below a certain threshold. The threshold is often selected to guar-

antee the desired QoS. Thus, the outage probability is an important measure

for the quality of communication systems. From the definition, it can be

found directly from the CDF of the SNR:

Pout(γth) = P (SNR < γth), (2.13)

where γth is the predefined threshold and P (·) is the CDF of the SNR.

From the outage probability, the diversity gain can be obtained as below,

when the outage probability is represented as a function of the transmit SNR.

gd = − lim
SNRt→∞

log2 Pout(γth, SNRt)

log2 SNRt

. (2.14)

• The ABER, also known as bit error probability, is the probability that a bit is

incorrectly decoded at the receiver. It depends on the SNR at the receiver as

well as the modulation and coding schemes. To derive the average BER, we

need to average the BER over the distribution of the SNR, i.e.,

Pb =

∫ ∞

0

Pb(e|γ)f(γ)dγ,
19



where Pb(e|γ) is the BER conditioned on the instantaneous SNR.

With ABER represented as a function of the transmit SNR, we have an alter-

native definition of the diversity gain as

gd = − lim
SNRt→∞

lnPb(SNRt)

ln SNRt

. (2.15)

• Correct rank detection probability is the probability that the channel rank is

correctly detected. For reduced-rank MIMO channel, rank detection is an

important factor of channel estimation. It is also essential for transmission

design as channel rank indicates the maximum number of symbols can be

reliable communicated within the same time-frequency bandwidth.

• Asymptotic parameter scaling shows how the network performance metrics

scale with network parameters when the parameters approach certain values

asymptotically. It is important for the performance analysis of MIMO sys-

tems, especially massive MIMO systems and will help guide the design of

such networks.

2.3 Relaying Schemes

As introduced in the previous section, MIMO systems exploit the spatial diversity

by embedding multiple antennas on the transceivers. However, for many applica-

tions, e.g., in sensor networks or for personal mobile devices, due to the limited

size and cost, it may not be practical to place multiple antennas on the transceiver

devices. In this case, an alternative technology to achieve spatial diversity is to use

relays, where the relay antennas can form a virtual MIMO antenna array. In this

section, relay networks and important relaying schemes will be introduced.

As has been shown in Fig.1.3, there are different types of relay networks. Ba-

sically, they can be classified as the infrastructure-based relay network and the co-

operative relay network, as shown in Fig.2.2. In the figure, ’BS’ stands for base

station, and ’RS’ stands for relay station. In infrastructure-based relay network,

a supportive relay station is deployed in the network to help the communication

between the users with the base station (Fig.2.2a) or the communication between
20



(a) Infrastructure-based relay network
with a base station

(b) Infrastructure-based relay network
for D2D communication

(c) Cooperative relay network

Figure 2.2: Different types of relay networks.

users directly (Fig.2.2b). Unlike the base station, the relay station usually has a

smaller size, less transmit power, and wireless backhaul connections. Thus it is

less expensive and much easier to deploy in the network [8]. Different from the

infrastructure-based relay network, the cooperative relay network does not have a

deployed relay station, and instead, the user devices act as relay nodes to help trans-

mit each other’s signal. Fig.2.2c shows that a group of users are helping relaying

signals from a source node to a destination node. Compared with the infrastructure-

based relay network, the cooperative relay network is more flexible and costs less

to implement. But due to the opportunistic and dynamic nature of the relay nodes,

the cooperative relay network is not as reliable as the infrastructure-based relay net-

work. In addition, as most MIMO technologies can be directly applied at the relay

station in the infrastructure-based relay network, thus this network is also referred

to as the MIMO relay network. When the number of relay antennas is very large, it

is called the massive MIMO relay network.

In both kinds of relay networks, the transmission of signals from the sources to

the destinations takes two steps. In the first step, the sources transmit signals to the
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relays. In the second step, the relays process their received signals, and transmit the

processed signals to the destinations.

The processing at relays, referred to as relaying schemes, is a key component of

relay technology. The original studies of relay date back to 1970’s [31, 32], where

properties of relay channels are investigated. The relay technology becomes very

popular in 2000’s, and various protocols and schemes have been proposed for relay

communications [11, 33–35]. Two basic ones are amplify-and-forward (AF) and

decode-and-forward (DF).

• Amplify-and-Forward. In AF, the relays amplify the received signals from

the sources and forward them to the destinations, without explicitly decoding

or demodulating the messages or symbols. It is often referred to as non-

regenerative relaying schemes. Compared with DF, AF requires simpler pro-

cessing, which makes for low-cost implementation and short processing delay

for relaying [8]. Its disadvantage is that besides the desired signals, noise and

interference are also amplified by the relays [8], causing degradation in the

performance.

• Decode-and-Forward. In DF, the relays first decode the received signals

then retransmit the decoded information to the destinations with or without

re-encoding. Compared with AF, DF overcomes the drawback of noise and

interference amplification, thus can result in better throughput [8]. But DF

relaying is more complex than AF and prone to error propagation and pro-

cessing delays [8].

Compared with DF, AF is preferred for large-scale relay networks for its sim-

plicity and low cost, as well as high asymptotic performance [36–45]. Thus, in this

thesis, we mainly focus on AF relaying schemes, where the relay processes and

retransmits the signals without decoding.

Next, a few popular relaying schemes will be introduced, including distributed

relaying schemes and centralized relaying schemes.
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2.3.1 Distributed Relaying Schemes

Distributed relaying schemes are mainly designed for the cooperative relay net-

works (Fig. 2.2c). In a distributed relaying scheme, each relay node only has its

own channel information, and there is no or limited information sharing between

the relays. This feature reduces the overhead of inter-communications between re-

lays, making it possible to be implemented in networks with a large number of

relays. Besides, each relay only performs simple signal processing, e.g., angle

adjustment and power amplification, making it fit for devices with limited power

and processing capability. Popular distributed relaying schemes include orthogo-

nal cooperation, distributed space-time coding, relay selection and distributed relay

beamforming [8]. In this thesis, we mainly consider relay selection and distributed

relay beamforming. The orthogonal cooperation is not considered as it requires all

sources and relays transmit over orthogonal time or frequency channels [8], which

is impractical for large-scale relay networks when the number of relay antennas is

large. While distributed space-time coding can achieve full diversity gain without

knowledge of the instantaneous CSI at the relay [8], its high complexity and in-

volved code design for high dimension makes it inappropriate for large-scale relay

networks. In the following, the two most-commonly used relaying schemes, relay

selection and distributed relay beamforming, will be introduced.

Relay Selection

In relay selection, a subset of relays are chosen to cooperate. The most promi-

nent advantages of relay selection are its low overhead and low synchronization

requirements. It has also been shown that proper selection of relays can lead to

high performance such as full diversity [11–14]. Compared with schemes where

the relays transmit in orthogonal channels, relay selection can achieve higher spec-

tral efficiency [33]. Thus, relay selection is a highly practical relaying scheme with

good potentials in performance.

The most commonly-used relay selection scheme is BRS, where the best relay

path with the highest SNR is selected. In [11], with rigorous derivations on error

probability, BRS is proved to achieve full diversity order. The outage probability,
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average SNR, ergodic capacity, and symbol error probability are further analysed

in [15–18]. In [46], from the information theory point of view, the capacity scaling

law of BRS with respect to the number of relays are shown for large-scale relay

networks.

Distributed Relay Beamforming

Different from relay selection, in distributed relay beamforming, all relays partic-

ipate in the communications using the same frequency bandwidth. Although each

relay only has single antenna, the cooperation between relays can form a virtual

antenna array. Thus beamforming can be applied distributively at the relays.

In distributed relay beamforming, each relay adjusts the power and phase of

its received signal according to its own channel information [34, 35]. With per-

fect phase alignment, distributed relay beamforming usually reduces to PA. In [35]

and [34], for single-antenna multiple-relay networks with perfect CSI, closed-form

solutions were provided for the relay beamforming vector under a total relay power

constraint and per-relay power constraints, respectively. [12, 47, 48] investigated

distributed beamforming with partial CSI. Relay beamforming and PA for multiple-

user multiple-relay networks were studied in [49–58].

2.3.2 Centralized Relaying Schemes

Centralized relaying schemes are mainly proposed for infrastructure-based relay

networks (Fig. 2.2a, Fig. 2.2b), where a multiple-antenna relay station is installed.

It can be used to assist communications of cell-edge users, mobile users, or D2D ter-

minals. Unlike distributed relaying schemes, the overhead of inter-communications

of relay antennas is not a concern in centralized relaying schemes, because all relay

antennas are connected to a central controller. In centralized relaying schemes, the

central controller first combines the received signals from all relay antennas using

the CSI of source-to-relay channels. Then the combined signals are precoded based

on the CSI of relay-to-destination channels and sent to the destinations. Compared

with distributed relaying schemes, where each relay antenna only processes its local

received signal with local CSI, centralized relaying schemes can better combine and
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precode the signals to further reduce the effect of small-scale fading and inter-user

interference. For networks with a centralized multi-antenna relay, the source-to-

relay transmission alone is equivalent to the uplink MIMO transmission, and the

relay-to-destination transmission alone is equivalent to the downlink MIMO trans-

mission. But different from a simple decoupled combination of MIMO uplink and

downlink transmission, in the second step, the interference and noise in the first step

is also amplified, making its performance more complex to analyse. But, due to the

similarity to MIMO transmissions, typical MIMO uplink precoding and downlink

receiving structures or concepts can be used for the relay network. Both linear pro-

cessing schemes and non-linear processing schemes have been proposed for MIMO

transmissions. The non-linear processing schemes, e.g., ML detection [59] and

dirty paper coding [60, 61], can usually better mitigate inter-user interference and

achieve higher performance than the linear ones, but at the cost of considerable

higher complexity. Besides, in large-scale networks, the linear processing schemes

can achieve comparable performance to the non-linear processing schemes [36].

Thus the linear processing schemes are more preferred. Popular linear process-

ing schemes include MRC/MRT and zero-forcing (ZF) processing schemes. In the

following, the two schemes will be introduced.

• MRC/MRT processing. In MRC/MRT, the signals received from all relay

antennas are firstly combined following the MRC rule. The MRC rule co-

herently combines the signals from the same source but received by different

antennas. This is done by multiplying the received signal vector with the

MRC matrix, which is the conjugate transpose of the source-to-relay channel

matrix. Then, the combined signals are precoded following the MRT rule.

The MRT rule is designed for the intended signals received from different

wireless links to be added together coherently at the target destination. This

is done by MRT precoding, where the combined signal vector is multiplied

with the conjugate transpose of the relay-to-destination channel matrix before

transmitted to the destinations. With the source-to-relay channel denoted as

F, and the relay-to-destination channel denoted as G, the signal processing
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matrix for MRC/MRT is

Wmrcmrt = GHFH . (2.16)

• Zero-forcing processing. The principle of ZF is to nullify multi-user inter-

ference by using the CSI. In ZF relaying, firstly, the signals received at the re-

lay antennas are combined by multiplying the received signal vector with the

pseudo inverse of source-to-relay channel matrix. Then, the combined signals

are precoded by multiplying with the pseudo inverse of relay-to-destination

channel matrix. The signal processing matrix for ZF is

Wzf = GH
(
GGH

)−1 (
FHF

)−1
FH . (2.17)

Generally, ZF relaying outperforms MRC/MRT relaying due to its ability to to-

tally cancel inter-user interference. While, MRC/MRT relaying is better than ZF

in its robustness and less computation burden. In large-scale relay networks, both

schemes can achieve high energy and spectral efficiency [36]. While, ZF outper-

forms MRC/MRT for high spectral efficiency and low energy efficiency scenarios,

but in low spectral efficiency and high energy efficiency scenarios, the opposite

holds [62].

∼
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Chapter 3

Closed-Form Average SNR and

Ergodic Capacity Expressions for

Best Relay Selection

In this chapter, we analyse the average SNR and ergodic capacity of large-scale

relay networks with BRS. First, EVT is used to obtain an implicit expression for

the asymptotic CDF of the received SNR when the number of relays is large. Then

via high power approximations, closed-form expressions for the CDF and PDF of

the received SNR are achieved, from which closed-form expressions of the aver-

age received SNR and ergodic capacity are derived. Insights on the array gain and

ergodic capacity behaviour of BRS can be observed from the derived results. Sim-

ulations show that the derived approximations are tight, even for not-so-large relay

networks.

3.1 Introduction

As introduced in Section 2.3.1, BRS is one of the most popular relaying schemes

for its low overhead and high performance. It has been widely investigated in the

literature [11,13,15–18,46]. In [11], with rigorous derivations on error probability,

BRS was proved to achieve full diversity order. In [15], exact expressions of the

outage probability, average SNR, ergodic capacity, and symbol error probability

were derived. However, the results are represented as summations of infinite series,

with special functions, or in integral forms. They are not in closed-form and provide
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little insights. Other work on performance analysis uses approximations. In [17,18],

the received SNR of a relay path is approximated as the smaller value of the SNRs of

the source-to-relay and relay-to-destination links. Closed-form approximations on

the outage probability, symbol error probability, average SNR, and ergodic capacity

were derived for Rayleigh fading channels. Although the approximations on the

error rate and outage probability are tight, the average SNR and ergodic capacity

approximations are loose since the derived CDF and PDF of the received SNR are

only tight around the origin. Another approximation is by ignoring a noise term

in the received SNR [16]. But results from this approximation are in forms of

products/summations of special functions and little insights can be obtained. The

only work gives insight on the ergodic capacity is [46]. From the information theory

point of view, [46] showed the capacity scaling law with respect to the number

of relays for large-scale relay networks. However, closed-form expression for the

ergodic capacity was not available.

Thus, while the symbol error rate and outage probability of BRS for high power

region have been well-understood (tight closed-form approximations were derived),

existing closed-form expressions for the average SNR and ergodic capacity are ei-

ther not tight [17,18] or in forms of products/summations of special functions [16],

which give little insights. The main reason is the complexity of the distribution of

the received SNR for relay networks. For symbol error rate or outage probability,

it was proved in [14] that they are dominated by the behaviour of the SNR distri-

bution around zero only, which can be derived in tractable form. For average SNR

or capacity, however, the behaviour of the SNR distribution in the medium or large

value range is more important, which is difficult to derive or approximate.

In this chapter, with the help of EVT, we derive tight and closed-form approxi-

mations on the average SNR and ergodic capacity of BRS in large-scale relay net-

works [35, 36, 63–69]. EVT studies the behaviour of the maxima of i.i.d. random

variables [71]. It has been used to analyse the performance of broadcast MIMO

networks [72] and spectrum sharing multi-hop relay networks [73]. We first ob-

tain an asymptotic and implicit expression for the CDF of the received SNR via

EVT. Then with high power approximations, we derive tractable and closed-form
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Figure 3.1: System model for single-user multiple-relay networks

approximations of the CDF and PDF of the received SNR. Simulation shows that

the approximations are tight for the whole variable range (not just around zero).

Using the same approximations, closed-form expressions on the average SNR and

ergodic capacity are derived, from which their behaviour with respect to network

parameters such as the number of relays and transmit power can be observed. Sim-

ulation shows that our derived approximations can well represent the performance

of BRS, even for not-so-large relay networks.

The rest of the chapter is organized as follows. In Section 3.2, the relay network

model and BRS are introduced. Section 3.3 is on the derivations of closed-form

approximations on the PDF and CDF of the received SNR. Section 3.4 contains

closed-form approximations of the average SNR and ergodic capacity. In Sec-

tion 3.5, simulations are shown. In Section 3.6, we summarize this chapter.

3.2 System Model

We consider a network model as shown in Fig. 3.1, with one single-antenna source,

one single-antenna destination, and N single-antenna relays (N → ∞ for large-

scale relay networks). Denote the channel from the source to the nth relay as fn

and the channel from the nth relay to the destination as gn. All channels are as-

sumed to be independent and follow zero-mean CSCG distribution, i.e., Rayleigh

fading channels. We assume that the distance from the source/destination to differ-
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ent relays are about the same. Thus, fi’s have the same variance, denoted as σ2
f ;

gi’s have the same variance, denoted as σ2
g . One application is for networks where

the source and destination are far apart and a cluster of relays (close to each other)

are available to help their communications. Denote the transmit power of the trans-

mitter as P and the transmit power of each relay as Q. All noises are assumed to be

i.i.d. and follow CN (0, 1).

With the two-step BRS scheme described in Chapter 2, the end-to-end received

SNR via the nth relay path, denoted as SNRn, is well known to be

SNRn =
PQ|fngn|2

1 + P |fn|2 +Q|gn|2 , (3.1)

Note that SNRn’s are i.i.d. due to the independence of different relay paths. In

BRS, the relay path with the maximum end-to-end received SNR is selected. The

received SNR after selection, denoted as SNRS , is

SNRS = max
n=1,2,...,N

{SNRn}. (3.2)

3.3 PDF and CDF Analysis of the Received SNR

In this section, we derive closed-form approximations on the CDF and PDF of

SNRS using EVT and high power approximations.

We first review the EVT results needed for this work, which are from Theorem

3.1 and Proposition 3.3 of [70] and related results in [71]. Let X1, X2, . . . , XN be a

sequence of N i.i.d. random variables whose CDF and PDF, denoted as FX and fX

respectively, satisfy

lim
x→∞

f ′X(x)[1− FX(x)]

f 2
X(x)

= −1. (3.3)

Let Y � max{X1, X2, . . . , XN}. When N → ∞, the CDF of Y can be derived as

follows

lim
N→∞

FY (y) = exp

(
− exp

[
−y − bN

aN

])
,

where

bN = F−1X (1− 1/N) , aN =
1− FX(bN)

fX(bN)
(3.4)
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with F−1X (·) the inverse function of FX(·).
With the EVT results, we can derive the CDF of SNRS , which is the maxima

of SNRn’s We first verify that the CDF and PDF of SNRn satisfy (3.3). The exact

CDF and PDF of SNRn are as the following [12, 15].

F (x)=1−exp

(
−x(1 + η)

ησ2
fP

)
2
√

x(1 + x)√
ησ2

fP
K1

(
2
√
x(1 + x)√
ησ2

fP

)
, (3.5)

f(x)=
2 exp

(
−x(1+η)

ησ2
fP

)
η3/2σ4

fP
2

[
(1+η)

√
x(1+x)K1

(
2
√
x(1+x)√
ησ2

fP

)

+
√
η(1+2x)K0

(
2
√
x(1+x)√
ησ2

fP

)]
, (3.6)

where η is defined as

η �
σ2
g

σ2
f

· Q
P
. (3.7)

Lemma 1. The exact CDF and PDF of SNRn satisfy the condition in (3.3).

Proof. The proof is available in Appendix A.

So, when N → ∞, the CDF of SNRS is

lim
N→∞

FSNR,S(x) = exp

(
− exp

[
−x− bN

aN

])
, (3.8)

where aN and bN are given in (3.4) with FX and fX replaced by the exact CDF and

PDF of SNRn given in (3.5) and (3.6).

The right-hand-side of (3.8) is the CDF of a Gumbel distribution whose scale

parameter is aN and location parameter is bN . For finite N , the CDF in the right

hand side of (3.8) is an approximation.

The asymptotic CDF result in (3.8) is obtained by direct use of EVT after verify-

ing the condition in (3.3). Due to the modified Bessel function in F (x) and f(x), as

well as the inverse function in bN , the CDF in (3.8) is in implicit form, not explicit

closed-form. Its use in further analysis of the average SNR and ergodic capacity

cannot lead to insightful results. Thus, in what follows, we derive tight approxi-

mations on aN , bN to obtain closed-form CDF and PDF formulas. This is also our
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main technical contribution in this Section. The results are presented in Proposition

1.

Proposition 1. Define

C1 �
η

1
4

1 +
√
η

(3.9)

and

C2 � 2.9753

⎡⎣1−
⎛⎝1+ 0.3361

√
ln(NC1)− 0.2742

1−0.0042 [2 ln(NC1)−0.5484] exp
[
−0.0201

√
2 ln(NC1)− 0.5484

]
⎞⎠−1⎤⎦ .

(3.10)

When N → ∞, P,Q 
 1, and η is bounded, the CDF of SNRS can be approx-

imated as

FSNR,S(x) ≈ exp

[
−
√

π

2
NC1 exp

(
C2 − 1

σ2
f

√
ηC2

1

x

P

)]
; (3.11)

the PDF of SNRS can be approximated as

fSNR,S(x)≈
√

π

2

N

σ2
f

√
ηC1P

exp

[
−
√

π

2
NC1 exp

(
C2− x

σ2
f

√
ηC2

1P

)
− x

σ2
f

√
ηC2

1P
+C2

]
.

(3.12)

Proof. The proof is available in Appendix B.

Our main effort in the proof of Proposition 1 is to find tight closed-form approx-

imations of aN and bN . There are other ways for their approximations, for example,

by annealing simulated PDF (histogram) of a given network with the CDF structure

in (3.8), or numerically finding aN and bN by solving Equations (B.1) and (3.4).

However, with these methods, the approximations can only be done trial by trial. A

new trial is needed for a change in the network setting (e.g., channel covariances,

source/relay power, or network size). Besides, analytical formulas for the PDF and

CDF cannot be obtained. On the contrast, our results in Proposition 1 are in ana-

lytical closed-form and allow further derivations on the average SNR and ergodic

capacity.
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In the literature, for performance analysis of relay networks, two widely used

approximations on SNRn are used. One is the harmonic mean [16], where SNRn

in (3.1) is approximated with the following upper bound:

SNRn ≤ PQ|fngn|2
P |fn|2 +Q|gn|2 .

The other is the minimum SNR of the source-relay and relay-destination links [17,

18], which is also an upper bound of SNRn:

SNRn ≤ min{P |fn|2, Q|gn|2}.

The derived CDF/PDF approximations corresponding to the two approximations

are, respectively,

FSNR,S,harmonic ≈
[
1−exp

(
−x(1 + η)

ησ2
fP

)
2x√
ησ2

fP
K1

(
2x√
ησ2

fP

)]N

, (3.13)

fSNR,S,harmonic ≈ 2Nx

ησ4
fP

2
exp

(
−1 + η

ησ2
fP

x

)[
1 + η√

η
K1

(
2x√
ησ2

fP

)
+2K0

(
2x√
ησ2

fP

)]
×[

1− exp

(
−x(1 + η)

ησ2
fP

)
2x√
ησ2

fP
K1

(
2x√
ησ2

fP

)]N−1

, (3.14)

and

FSNR,S,min(x)≈
[
1− exp

(
−1 + η

ησ2
fP

x

)]N

, (3.15)

fSNR,S,min(x)≈ 1 + η

ησ2
fP

N exp

(
−1 + η

ησ2
fP

x

)[
1− exp

(
−1 + η

ησ2
fP

x

)]N−1

.(3.16)

Compared with the exact PDF/CDF formulas in [15] and the harmonic mean ap-

proximations, both containing products of N modified Bessel functions, our results

are more tractable and favourable in further analysis of the average SNR and er-

godic capacity. The minimum link-SNR approximations have simpler expressions

than our results. But they are tight for x close to 0 only. For other values of x,

the approximations are loose. Our CDF and PDF results are tight for all values of

the received SNR, when the transmit power is high. It is noteworthy that since the

channels are random variables, the high transmit power condition and the high SNR
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condition are different. Even with high transmit power, the received SNR value may

be small when channels are in deep fading.

Our derived approximations converge to the exact ones only when the number of

relays grows to infinity. Thus it can be used to analyze the asymptotic performance

of the large-scale relay networks [35, 36, 63–69]. But simulation shows that they

are also tight for a wide practical range of relay numbers such as N = 10 or 20. So

they can be useful for not-so-large relay networks as well.

3.4 Average Received SNR and Ergodic Capacity Anal-

ysis

In this section, we analyse the average received SNR and ergodic capacity using

the closed-form CDF and PDF approximations in Proposition 1, and discuss their

behaviour.

For the Gumbel CDF in (3.8) with scale parameter aN and location parameter

bN , its average is [75]

E(SNRS) = bN + γaN ,

where γ is the Euler constant. Thus, with straightforward calculations, when N →
∞, P,Q 
 1, and η is bounded, we can use the approximations of aN and bN in

(B.8) and (B.7) to obtain the following closed-form approximation on the average

received SNR of BRS:

E{SNRS}≈√
ηC2

1σ
2
f

[
lnN+lnC1+C2+

1

2
ln

π

2
+γ

]
P, (3.17)

where C1 and C2 are defined in (3.9) and (3.10).

While existing results on the average received SNR based on the exact SNR

distribution and its harmonic mean approximation are in integral forms, or in sum-

mation forms with special functions [15, 16], our result is in closed-form. If the

minimum link-SNR approximation is used, we can obtain the following neat for-

mula for the average SNR [18]:

E{SNRS,min} ≈
(

N∑
n=1

1

n

)
ησ2

f

1 + η
P. (3.18)
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But this approximation has considerable difference to the simulated average SNR,

especially when the transmit power is high. Compared to it, our results are sig-

nificantly tighter for a wide range of network scenarios, as will be shown by the

simulation results in Section 4.5.

Now we discuss the behaviour of the average SNR with respect to the number of

relays N and transmit power P using (3.17). First, from the definition in (3.9), C1

is independent of N , but only a function of η defined in (3.9). Although C2 depends

on N , we can show easily that C2 ∈ (0, 2.9753]. Thus for large N , the average SNR

is of the order of lnN . Also, we can see that with fixed η, the average SNR is linear

in P . Our results can help the designs of relay networks. For example, we can use

the formula to get the required number of relays and transmit power for given SNR

requirement, or to decide whether BRS can meet service requirement.

Next, we compare the array gains [29] of BRS and a few other systems to under-

stand the quantitative improvement/impairment in the received SNR with respect to

several system settings. To focus on the difference in transmission schemes and

systems, we consider the homogeneous case where σ2
f = σ2

g = σ2 and P = Q.

Thus η = 1. In all systems, the channels are assumed to be i.i.d. Rayleigh fading

following CN (0, σ2).

1. Array gain of BRS in an N -relay network: From (3.17), the array gain of BRS

is

GBRS =
σ2

4

[
lnN + ln

1

2
+ C2 +

1

2
ln

π

2
+ γ

]
. (3.19)

To our best knowledge, closed-form result for the array gain of BRS was

unavailable in existing literature. We can see that it is linear in lnN when N

is large.

2. Array gain of single-relay AF network: For a single-relay AF network, where

both the source power and the relay power are P , the array gain is GSR =

σ2/3 [76]. From the comparison with BRS we know that, although in both

schemes only one relay participate, the array gain improvement of BRS is

GBRS

GSR

=
3

4

[
lnN+ln

1

2
+C2+

1

2
ln

π

2
+γ

]
≈3

4
lnN
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for large N . This improvement is due to the spatial diversity provided by the

N relays.

3. Array gain of distributed relay beamforming [34, 35]: In distributed relay

beamforming, all relays cooperate with perfect synchronization and phase

and power coordination. For an N -relay network, where both the source

power and the total relay power are P , the array gain of distributed relay

beamforming is GDRBF = Nσ2/3 [76]. Compared with distributed relay

beamforming, the impairment in the array gain of BRS is

GDRBF

GBRS

≈ 4N

3 lnN
.

This is due to different channel information and synchronization require-

ments. For distributed relay beamforming, each relay needs to know its chan-

nels and perfectly synchronize with others; while for BRS, no channel infor-

mation or synchronization is needed at the relays.

4. Array gain of MISO system with antenna selection: For an N × 1 MISO sys-

tem, antenna selection chooses the transmit antenna leading to the highest re-

ceived SNR. The array gain is known as GMISO−AS = σ2
∑N

n=1
1
n
≈ σ2 lnN .

Compared with the MISO system with antenna selection, the impairment in

the array gain of BRS in a relay network is

GMISO−AS

GBRS

≈ 4 ≈ 6dB.

for large N . This impairment is due to the relay noise amplification in a relay

network.

While the array gain comparison of single-antenna case, antenna selection, and

beamforming is available for multiple-antenna systems [29], it is unavailable for

relay networks due to the complexity of the SNR distribution. Our results fill this

missing part.

Now, we analyse the ergodic capacity of BRS. When N → ∞, P,Q 
 1,

and η is bounded, from (3.17) and Jensen’s inequality, we obtain the following
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approximation:

CErg≤1

2
log2 (1 + E{SNRS})

≈1
2
log2

[
1+

√
ηC2

1σ
2
f

(
lnN+lnC1+C2+

1

2
ln
π

2
+γ

)
P

]
, (3.20)

where C1 and C2 are defined in (3.9) and (3.10).

We can see from (3.20) that the ergodic capacity scales as logP for large P and

log logN for large N . This coincides with the capacity scaling law in [46], which

shows that when N 
 1 and P fixed, the capacity of BRS scales as 1
2
log logN +

O(1). Compared with this result, our approximation provides more details of the

capacity and is a tight approximation for a wider parameter range. Our result can

help the designs of networks, e.g., to achieve a certain ergodic capacity, how many

relays to deploy and how much power to use.

If the minimum link-SNR approximation is used, the following approximation

can be obtained similarly:

CErg,min ≈ 1

2
log2

[
1 +

(
N∑

n=1

1

n

)
ησ2

f

1 + η
P

]
. (3.21)

This result shows the same asymptotic behaviour of the capacity with respect to

P and N . But it is a very loose approximation of the capacity, while our result in

(3.20) is significantly tighter and can approximate the capacity values for a wide

range of network scenarios.

3.5 Simulation Results

In this section, we show simulation results to verify the derived approximations and

compare with existing results.

In Fig. 3.2 and Fig. 3.3, we show the closed-form CDF and PDF approximations

of the received SNR in (3.11) and (3.12) and compare with three cases: 1) the

simulated CDF and PDF; 2) the CDF and PDF in [17]; 3) the CDF and PDF in [16].

In both figures, the number of relays is set as 20. The transmit powers of the source

and relays are set to be the same. We use 10dB and 15dB in the simulation. From

the figures, we see that our closed-form approximations match the simulated ones
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Figure 3.2: CDF of the received SNR for networks with 20 relays.

well for all values of x. The CDF and PDF approximations in [16] are tighter than

the proposed ones. However, they are less tractable and not favourable for further

analysis. The CDF and PDF approximations in [17] are only tight for x around zero,

which is why they can be useful in the outage probability and error rate analysis,

but do not work well for the average SNR and ergodic capacity analysis.

In Fig. 3.4 and Fig. 3.5, we show the average received SNR derived in (3.17)

and compare with two cases: 1) the simulated values and 2) the approximation

in [18]. We consider the same transmit power for the source and the relays, i.e.,

P = Q. In Fig. 3.4, we plot the average received SNR values for different transmit

powers, where the number of relays is set as 10, 30 and 60. We can see that our

approximation is tight for all simulated power values. The approximation in [18],

although in closed-form, is largely different from the actual values. Although EVT

is exact for large N only, this figure shows that the derived approximation is tight for

N as small as 10. In Fig. 3.5, we plot the average received SNR values for networks

with different numbers of relays, where the transmit power is set as P = Q = 10dB

and P = Q = 15dB. We can see that the derived closed-form formula is tight for

all values of N and the difference with simulated values diminishes as N increases.
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Figure 3.3: PDF of the received SNR for networks with 20 relays.

The approximation in [18] is loose and its error increases as N increase. The curves

in this figure also show that the average received SNR is linear in logN for large

N .

In Fig. 3.6, we show the derived ergodic capacity in (3.20) for different power

values and compare with the simulated values. The number of relays is set to be 10,

30, and 60. The simulation shows that our approximation is tight for a wide range

of N and power values. In the derivation of (3.20), Jensen’s inequality is used.

So to understand its effect, we also show the ergodic capacity by direct integration

using the approximate PDF in (3.12). The values are obtained numerically. We can

see that the effect of Jensen’s inequality is negligible. We also compare with the

minimum link-SNR approximation in (3.21). For the readability of the figure, we

only show this result when N = 30. We can see that (3.21) is largely deviated from

the simulated result.
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3.6 Conclusion

In this chapter, with the help of EVT and manipulations of special functions, closed-

form approximations for the average SNR and ergodic capacity of BRS in a large-

scale relay network is derived for the high power range. Compared with existing

results in integral forms or with special functions, our results are in closed-form and

provide useful insights on the behaviour of the array gain and the ergodic capacity

with respect to network parameters. Simulation results show that the proposed

approximations are tight for a wide range of the transmit power and number of

relays, and are significantly superior to existing closed-form results.

∼
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Chapter 4

Power Allocation and Performance

Analysis of Distributed Relay

Beamforming in Multiple-User

Networks

In this chapter, for a multi-user multi-relay network with a total relay power con-

straint, we investigate the relay PA that maximizes the network sum-rate. With the

optimal relay beamforming for each user, the problem reduces to finding the opti-

mal power the relays use in total to help each user. We first prove that the problem

is convex and propose a closed-form suboptimal solution. Further, the SNR and

sum-rate are analyzed for networks with a large number of relay antennas. The

asymptotic behaviour of the SNR is derived rigorously for the high transmit power

regime. Simulation results are provided to show the significance of proper PA and

to justify the analytical SNR and sum-rate results.

4.1 Introduction

As introduced in Section 2.3.1, there have been numerous publications on dis-

tributed relay beamforming and the PA problem, e.g., [12, 33–35, 47–58, 77–80].

Early research on distributed relay beamforming and relay PA focused on single-

user networks, e.g., [12, 33–35, 47, 48, 77–79]. In particular, for single-antenna

multi-relay networks with perfect CSI, [35] and [34] provided closed-form solu-

tions for the relay beamforming vector under a total relay power constraint and per-
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relay power constraint, respectively. For a multi-antenna single-relay network, the

optimal relay beamforming was solved in [77]. [12, 47, 48] investigated distributed

beamforming with partial CSI.

To fulfil current and future communication demands, concurrent multi-user trans-

missions are needed. Multi-user communications can also lead to high bandwidth

efficiency. Recently, some work on beamforming and PA in multi-user relay net-

works was presented [49–58,80]. In [49], distributed relay PA among sub-channels

in a multi-user multi-channel cellular relay network was investigated using non-

cooperative game. [50, 51] also used game theory framework to solve the relay PA

among users in a multi-user single-relay network. [52, 53] worked on the relay PA

in multi-user multi-relay single-antenna networks, where user and relay transmis-

sions are on orthogonal channels. In [57, 58, 80], the optimal relay beamforming

designs and PA were investigated for multi-user multi-relay networks with the exis-

tence of user-interference. [57,58] considered single-antenna relays; while [80] was

on multi-antenna relays. [54] researched on the optimal relay beamforming design

for multi-user multi-relay networks with quantized partial CSI. In [55, 56], beam-

forming designs for multi-user multi-relay networks, where user transmissions are

orthogonal but relay transmissions are non-orthogonal, were considered. In [55],

all users transmit to the same destination; while in [56], users transmit to different

destinations. In [56], numerical algorithms for relay PA were provided to solve

two problems: the total relay power minimization under received SNR constraints

and the maximization of the minimum SNR with total and separate relay power

constraints.

In this chapter, we consider the same multi-user relay network as in [56], but

investigate the relay beamforming and PA that maximizes the network sum-rate.

Thus, our problem is different to [56]. Compared with aforementioned references,

our work is different in the network model and the transmission/reception tech-

niques. By using the results of optimal beamforming for single-user networks, we

first simplify the problem formulation and show that the PA problem is convex.

A closed-form approximate solution is also proposed. Further, for a network with

asymptotically large number of relay antennas, we analyze the received SNR of
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each user and the network sum-rate. For high transmit power, we rigorously derive

the dominant term of the received SNR formula. To the best of our knowledge, our

work is the first that provides theoretical analysis on the performance of distributed

relay beamforming; while previous work relied solely on numerical simulations.

We should clarify that our analytical results are asymptotic and valid for large num-

ber of relay antennas only (applicable to massive-antenna relay stations [10, 36]).

The remaining of the chapter is organized as follows. In the next section, the

multi-user relay network model and the relay PA problem are introduced. In Section

4.3, we show that the sum-rate maximizing relay PA problem is convex, and propose

a closed-form suboptimal solution. Section 4.4 is on the received SNR and network

sum-rate analysis when the number of relay antennas is large. Section 4.5 shows

the simulation results and Section 4.6 contains the conclusions.

4.2 Problem Formulation

Consider a one-way multi-user multi-relay network in Fig. 4.1. There are M users,

each sending information to its own destination with the help of N relays. Every

node is equipped with a single antenna. Denote the channel from User m to Re-

lay n as fmn and from Relay n to Destination m as gnm. There is no direct link

between the users and the destinations. The channels are assumed to be i.i.d. and

follow the zero-mean CSCG distribution, i.e., Rayleigh fading channels. Assume

that fmn has variance σ2
f,m, and gnm has variance σ2

g,m. With this, we actually as-

sume that channels corresponding to the same relay but different users/destinations

have different variances; while channels corresponding to different relays but the

same user/destination have the same variance. This applies to networks where the

relay antennas are co-located or the relays are close to each other; while the users

are arbitrarily distributed. The transmit power of each user is assumed to be the

same, denoted as P . The total relay power is assumed to be Q.

To avoid interference, the transmissions of different source-destination pairs

are allocated with orthogonal channels, e.g., frequency division multiple access

(FDMA). But the relay transmissions in helping the same user are non-orthogonal.
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Figure 4.1: Multi-user multi-relay network model.

Every relay helps all users. The transmission and reception of User m’s information

in the mth channel are as follows. The two-step distributed beamforming scheme

[34, 35] is adopted. In Step 1, User m sends its signal sm to the relays; and in Step

2, all relays adjust the power and phases of their received signals, and forward to

Destination m. For the optimal phase adjustment, Relay n should cancel the phases

of fmn and gnm, so the forwarded signals add coherently at the destination. For the

power adjustment, we use coefficient αnm. That is, the amount of power Relay n

uses for User m is α2
nmQ. By following the description in [34, 35], the transceiver

equation of User m can be written as

xm =
N∑

n=1

αnm|fmngnm|
√
PQ√

1 + |fmn|2P
sm +

N∑
n=1

αnm|gnm|
√
Q√

1 + |fmn|2P
vmn + wm, (4.1)

where xm is the received signal at Destination m, vmn, wm are the noises at the nth

relay (with a phase shift) and the destination. They are assumed to be i.i.d. following

CN (0, 1).

From (4.1), the received SNR of User m can be calculated to be

SNRm =

∑N
n=1

α2
nm|fmngnm|2PQ

1+|fmn|2P∑N
n=1

α2
nm|gnm|2Q
1+|fmn|2P + 1

. (4.2)

The network sum-rate is thus

Rsum =
M∑

m=1

log2 (1 + SNRm) .

Recall that α2
nmQ is the power Relay n uses in helping User m. Since the total

power of all relays is constrained to Q, we have
∑M,N

m=1,n=1 α
2
nm ≤ 1. It is easy
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to show that the optimal performance is obtained when the constraint takes the

equality. The PA problem is thus the following:

max
M∑

m=1

log2 (1 + SNRm) s.t.
M,N∑

m=1,n=1

α2
nm = 1. (4.3)

4.3 Power Allocation Solution

Let γm �
∑N

n=1 α
2
nm, which is the percentage of the total relay power used for User

m. From (4.3), we have
∑M

m=1 γm = 1. The problem in (4.3) can be re-written as

max
M∑

m=1

log2

(
1 + max∑N

n=1 α
2
nm=γm

SNRm

)

s.t.
M∑

m=1

γm = 1 and γm ≥ 0, for any m.

For a fixed γm, the sub-problem

max∑N
n=1 α

2
nm=γm

SNRm

is the same as the relay PA in single-user multi-relay networks with total relay

power γmQ. We can use the result in [35] to get the optimal solution:

α2
nm = cm

|fmngnm|2 (1 + |fmn|2P )PQ

1 + |fmn|2P + γm|gnm|2Q , (4.4)

cm = γm

[
N∑

n=1

|fmngnm|2 (1 + |fmn|2P )PQ

1 + |fmn|2P + γm|gnm|2Q

]−1
,

with which

SNRm = γm

N∑
n=1

|fmngnm|2PQ

1 + |fmn|2P + γm|gnm|2Q. (4.5)

The problem thus reduces to

max
M∑

m=1

log2

(
1+γm

N∑
n=1

|fmngnm|2PQ

1 + |fmn|2P + γm|gnm|2Q

)

s.t.
M∑

m=1

γm = 1 and γm ≥ 0, for any m. (4.6)

The original (MN)-dimensional optimization problem in (4.3) is reduced to an

M -dimensional one, which is on the optimization of the power the relays use in

total in forwarding each user’s information.
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Proposition 2. The optimization problem (4.6) is convex.

Proof. First, the constraints of the optimization problem are linear, thus convex.

By directly calculating the Hessian of the objective function and seeing that it is

negative semi-definite, we can show that the objective function is concave. Thus

the optimization problem (4.6) is convex.

This proposition helps to find the globally optimal PA via efficient convex opti-

mization algorithms such as the interior method [81].

Next we propose an approximate solution in closed-form. Ignoring the γm in

the denominator, we approximate the SNR in (4.5) as

SNRm ≈ γm

N∑
n=1

|fmngnm|2PQ

1 + |fmn|2P + |gnm|2Q.

This approximation is valid when γmQ|gnm|2 is small compared with the other two

terms in the denominator. Thus, it is expected to be tight when Q 	 1 or P 
 Q,

corresponding to networks where the relays have limited power or significantly less

power than the users. These are also scenarios where proper PA among users is

crucial. We define

hm �
N∑

n=1

|fmngnm|2PQ

1 + |fmn|2P + |gnm|2Q (4.7)

to simplify the presentation. The PA problem is thus approximated as

max
M∑

m=1

log2 (1 + γmhm)

s.t.
M∑

m=1

γm = 1 and − γm ≤ 0, for any m.

A closed-form solution1 can be found by water-filling algorithm within M steps.

The typical water-filling algorithm provides the solution as

γi = max

(
1

i

(
1 +

i∑
j=1

h−1j

)
− 1

hi

, 0

)
∀i, s.t.

M∑
m=1

γm = 1.

To implement it, an algorithm is presented on the next page. Without loss of

generality, we assume that hm’s are ordered as h1 > h2 · · · > hM .
1According to wikipedia, an expression is in closed-form if it can be evaluated in finite number of
operations.
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1: for i = M : 1 do

2: Calculate c = 1
i

(
1 +

∑i
j=1 h

−1
j

)
and γi = c− 1

hi
.

3: If γi ≥ 0, go to Step 4.
4: γl = c− h−1l for l = 1, · · · , i and γi+1=· · ·= γM=0.

Algorithm 1: Approximate PA solution.

4.4 Performance Analysis

The following theorem on the received SNR is proved.

Theorem 1. Assume that N → ∞. Let ηm � Qσ2
g,m

Pσ2
f,m

γm. When P 
 1 but ηm is

bounded (e.g., Q has the same order as P ), the received SNR of User m has the

following behaviour:

1

N
SNRm=P

[
σ2
f,m

η3m − 2η2m log2(ηm)− ηm
(ηm − 1)3

+O
(
1

P

)]
. (4.8)

Proof. Proof is available in Appendix C.

This theorem shows the asymptotic behaviour of the received SNR for the multi-

user large-scale relay network. First, we can see from (4.8) that the received SNR

of each user increases linearly with N , the number of relay antennas. On the other

hand, if the number of relay antennas is increased by a factor of a, to achieve the

same end-to-end SNR, we can decrease both the user transmit power and the total

relay power by a factor of 1/a. The network is thus more energy efficient with more

relay antennas. Second, we can see that with a fixed N , if P/Q is bounded (powers

of the relays and the users have the same scaling), the SNR increases linearly in P ,

the transmit power. With further manipulation, we can also show that if both P and

Q increase but at different rates, the SNR increases linearly in min{P,Q}.

From (4.8), when P,Q 
 1, we have

SNRm≈ NPσ2
f,m

η3m − 2η2m log2(ηm)− ηm
(ηm − 1)3

� S̃NRm. (4.9)
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We can also calculate the sum-rate of the network as follows:

Rsum=
M∑

m=1

log2

[
NPσ2

f,m

η3m−2η2m log2(ηm)−ηm
(ηm − 1)3

]
+O

(
1

P

)

≈
M∑

m=1

log2(1 + S̃NRm). (4.10)

Relay PA that maximizes (4.10) can be conducted. It can be shown that the sum-

rate optimization problem is still convex. But compared with (4.6), the sum-rate in

(4.10) is independent of the instantaneous channel coefficients, and only depends

on the channel variances. So the PA optimization can be conducted off-line and its

complexity is no longer a concern, due to the massive number of antennas at the

relays.

4.5 Simulation Results
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Figure 4.2: Network sum-rate under different PAs.

Figure 4.2 shows the simulated sum-rate of a network with 7 users and 4 re-

lays (M = 7, N = 4) under different power conditions. We use a simple network

configuration, where all nodes are on one line. The relays are located at the origin;
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while the locations of all sources and destinations are generated randomly between

(−1, 1) following uniform distribution. A pass-loss exponent 4 is assumed, so the

variance of a channel is d−4 if the distance between its two nodes is d. The chan-

nel magnitudes follow independent Rayleigh distributions. We compare four PA

schemes: 1) no PA, where αmn = 1/(MN); 2) even PA, where γm = 1/M with

optimal relay beamforming in (4.4); 3) optimal PA with optimal relay beamforming

obtained via convex optimization; and 4) approximate PA with optimal relay beam-

forming using Algorithm 1. We can see from the figure that proper PA among users

and relay beamforming can significantly improve the network sum-rate. The pro-

posed approximate solution (in closed-form) has close performance to the optimal

solution when Q is small or P 
 Q.
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Figure 4.3: Ratio of SNR-difference to SNR.

In Figure 4.3, we consider a network with 5 users and 200 relays (M = 5, N =

200). All channel variances are assumed to be the same. The users thus have the

same received SNR and the optimal PA is γm = 1/M . Also, ηm = η = Q/(PM).

We show the ratio of the difference of the derived SNR in (4.9) and the true SNR

to the true SNR value for different η’s, i.e., S̃NR−SNR
SNR

. It can be seen from the figure

that the derived SNR is very close to the true SNR value when the transmit power
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is high.

4.6 Conclusion

In this chapter, for a multi-user multi-relay network, we investigated the PA problem

that maximizes the sum-rate. The problem was proved to be convex. An approxi-

mate closed-form solution was also proposed. For networks with a large number of

relay antennas, we analytically derived the asymptotic behaviour of the user SNR

and the network sum-rate. Simulation results were shown to justify the importance

of proper PA among users and also to verify the performance analysis results.

∼
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Chapter 5

Performance Analysis and Scaling

Law of MRC/MRT Relaying with

CSI Error in Centralized Relay

Networks

This chapter provides a comprehensive scaling law and performance analysis for

multi-user massive MIMO relay networks, where the relay station is equipped with

a large number of antennas and uses the combination of MRC and MRT for low-

complexity processing. CSI error is considered in our model and analysis. First, a

sum-rate lower bound is derived which manifests the effect of system parameters

including the number of relay antennas, the number of users, the CSI quality, and

the transmit powers of the sources and the relay. Via a general scaling model on

the system parameters with respect to the number of relay antennas, the asymptotic

scaling law of the network sum-rate as a function of the parameter scalings is ob-

tained. Th results show quantitatively the trade-off between the network parameters

and their effect on the sum-rate. In addition, a sufficient condition on the parame-

ter scalings for the SINR to be asymptotically deterministic is given, which cover

existing studies on asymptotically deterministic analysis as special cases. Then,

the scenario where the SINR increases linearly with the number of relay anten-

nas is studied. A sufficient and necessary condition on the parameter scaling for

this scenario is proved. It is shown that in this case, the interference power is not

asymptotically deterministic. The distribution of the interference power is derived,

based on which the outage probability and ABER of the relay network are analysed.
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5.1 Introduction

As the performance of massive MIMO networks provides benchmark for the per-

formance of the large-scale relay networks, in this section, the literature on the

performance analysis of massive MIMO networks will firstly be briefly reviewed.

With the advantages of massive MIMO (as have been discussed in Section

1.1.2), its performance has been widely studied in the literature [62,85–89]. In [85],

for the uplink of massive MIMO systems with MRC or ZF, the deterministic equiv-

alence of the achievable sum-rate is derived by using the law of large numbers.

The CSI is obtained with MMSE estimation. The following power scaling laws

are shown. With perfect CSI, the user and/or relay power can be scaled down lin-

early with the number of antennas while maintaining the same SINR; when there

is CSI error and the training power equals the data transmit power, the power can

only be scaled down by the square root of the number of antennas. Besides, it is

also shown that with MRC or ZF, the spectral efficiency and energy efficiency can

be improved simultaneously. Another work on the energy efficiency and power

efficiency of a single-cell multi-user massive MIMO network is reported in [62],

where a Bayesian approach is used to obtain the capacity lower bounds for both

MRT and ZF precodings in the downlink. It is shown that that for high spectral

efficiency and low energy efficiency, ZF outperforms MRT, while at low spectral

efficiency and high energy efficiency the opposite holds. While the channel models

used in [62,85] are Rayleigh fading, Ricean fading channel is considered in [86] in

the uplink of massive MIMO systems, where the CSI is also obtained with MMSE

estimator. Sum-rate approximations on the MRC and ZF receivers are obtained us-

ing the mean values of the components in the SINR formula. The derived power

scaling law is that when the CSI is perfect or Ricean factor is non-zero, the user

transmit power can be scaled down inversely proportional with the number of an-

tennas while maintaining the same SINR level. Otherwise, the transmit power can

only be scaled down inversely proportional to the square root of the antennas.

While the aforementioned work analyses the sum-rate performance and power

scaling law, there are also some work on the distribution and outage probability of
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the SINR. In [87], the SINR PDF of MRT precoding is derived in closed-form in the

downlink of a single-cell multi-user massive MIMO network. Besides, the asymp-

totic SINR performance is analysed when the number of users remains constant or

scales linearly with the number of antennas. For the same network, in [88], the

outage probability of MRT precoding was derived in closed-form. The authors first

derive the distribution of the interference power. It’s shown that for a reasonable

transmit power and limited number of users, the interference power dominates the

random property of the SINR. Then the outage probability of the SINR is derived in

closed-form. While only small-scale fading is considered in [87, 88], the effects of

both small-scale (Rayleigh) fading and large-scale (log-normal) fading are consid-

ered in [89]. In this work, the PDF of the SINR of MRC receiver is approximated

by log-normal distribution. Then the outage probability is derived in closed-form.

The analysis showed that the shadowing effect cannot be eliminated by the use of a

large number of antennas.

Intrigued by the massive MIMO, research activities on massive MIMO relay

networks are increasing in recent years [37–45, 63, 83, 84]. In [83, 84], for a single-

user massive MIMO relay network with co-channel interferences at the relay, the

ergodic capacity and outage probability of MRC/MRT and ZF relaying schemes

are derived in closed-forms. The more general multiple-user massive MIMO relay

networks are analysed in [37–45, 63]. Depending on the structure of the network

model, the works can be divided to the following two categories.

In [37–39], a network with multiple single-antenna users, one massive MIMO

relay station and one massive MIMO destination is considered. This model applies

to the relay-assisted uplink multiple-access network, and the destination is the base

station. In [37], it is shown with perfect CSI, and infinite relay and destination

antennas, the relay or user transmit power can scale inversely proportional to the

number of antennas without affecting the performance. When there is CSI error,

the user or relay power can only scale down with the square root of the number

of antennas, given that the training power equals the transmit power. The same

network is also considered in [38, 39] while the co-channel interference and pilot

contamination are considered in [38], and the channel aging effect is considered
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in [39]. The effects of these factors on the power scaling are shown therein.

Another type of network is the relay-assisted multi-pair transmission network,

where multiple single-antenna sources communicate with their own destinations

with the help of a massive MIMO relay [40–45, 63]. In [40, 63], the sum-rates

of multi-pair massive MIMO relay network with MRC/MRT and ZF relaying are

analyzed for one-way and two-way relaying respectively. Perfect CSI is assumed

at the relay station. In both work, with the deterministic equivalence analysis, it

is shown that the sum-rate can remain constant when the transmit power of each

source and/or relay scales inversely proportional to the number of relay antennas.

In [41], the same network model as [40] is considered for MRC/MRT relaying

where the number of relay antennas is assumed to be large but finite. The analysis

shows that, when the transmit powers of the relay and sources are much larger than

the noise power, the achievable rate per source-destination pair is proportional to the

logarithm of the number of relay antennas, and is also proportional to the logarithm

of the reciprocal of the interferer number. Some typical asymptotic scenarios are

also discussed and similar power scaling law results to [40] are obtained. In [42],

the full-duplex model is considered for one-way MRC/MRT relaying. A sum-rate

lower bound is derived with Jensen’s inequality. The effect of loop interference

is investigated when the source or relay power scales inversely proportional to the

number of relay antennas.

While the above work assume perfect CSI at the relay, recent study has turned to

networks with estimation error [43–45], which is more practical and challenging to

analyze. In [43, 44], a one-way massive MIMO relay network model is considered,

where MMSE estimation is used to obtain the CSI. While [43] uses ZF relaying and

assumes that the CSI error exists in both hops, [44] uses MRC/MRT relaying and

assumes that the CSI error only exists in the relay-destination hop. In both work,

the power scalings of the sources and relay for non-vanishing SINR are discussed.

It is assumed in the analysis that the training power equals the data transmission

power. Compared with previous power scaling law results, the analysis in [43, 44]

are more comprehensive by allowing the power scaling to be anywhere between

constant and linearly increasing with the number of relay antennas. In [45], a two-
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way MRC/MRT relaying network with CSI error is considered. With determin-

istic equivalence analysis, it is shown that when the source or relay power scales

inversely proportional to the number of relay antennas, the effects of small-scale

fading, self-interference, and noise caused by CSI error all diminish.

In this chapter, the performance of MRC/MRT relaying in a one-way massive

MIMO relay network with CSI error is investigated. Firstly, by deriving a lower

bound on the sum-rate, we investigate the performance scaling law with respect to

the relay antenna number for a general setting on the scaling of the network param-

eters, including the number of source-destination pairs, the CSI quality parameter,

and the transmit powers of the sources and the relay. The derived scaling law re-

sults show explicitly the trade-off between network parameters and the effect of

the parameters to the sum-rate. Then, since deterministic equivalence is an impor-

tant framework for performance analysis of massive MIMO systems, we derive a

sufficient condition on the parameter scales for the SINR to be asymptotically deter-

ministic. The results cover existing literature on deterministic equivalence analysis

as special cases. In addition, we consider the scenario where the SINR increases

linearly with respect to the relay antenna number for applications with high QoS

demands. The sufficient and necessary condition for such scenario is provided.

Moreover, it is shown that in this case the interference power does not diminish and

dominates the statistical performance of the SINR. By deriving the PDF of the in-

terference power in closed-form, expressions for outage probability and ABER are

obtained, and their behaviour with respect to different parameters are discussed.

Our major differences from existing work are summarized as blow.

• Our system model is different from all the mentioned existing work in relay-

ing scheme, CSI assumption, or communication protocol. The work with the

closest model is [44], where the CSI error is assumed to exist in the relay-

destinations hop only. We use a more general model where CSI error exists

in both hops.

• In our sum-rate scaling law analysis, a general model for the scaling of each

network parameter, including the number of source-destination pairs, the CSI
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quality parameter, the transmit powers of the source and the relay, is pro-

posed. In this model, the scale exponent with respect to the relay antenna

number can take continuous values from ’0’ to ’1’. In most existing work,

only a few discrete values for the power scaling, 0, 1, 1/2, are allowed. Al-

though [43, 44] also allow continuous exponent values, they constrains the

number of sources as constant and the training power equals to the transmit

power.

• While in existing work, the asymptotically deterministic equivalence analysis

is based on the law of large numbers, we use the quantized measure, squared

coefficient of variation (SCV), to examine this property. As the law of large

numbers only applies to the summation of i.i.d. random variables, by using

the SCV, we can discuss the asymptotically deterministic property of random

variables with more complex structures. By examining the SCV of each com-

ponent of the SINR, we can decide if it is asymptotically deterministic so that

it can be approximated with its mean value to simplify the SINR expression.

Based on these features that distinguish our work from existing ones, our unique

contributions are listed as below.

1. A general scaling-law that relates the scaling of the user SINR and the scal-

ings of the network parameters are derived. The law provides comprehensive

insights and reveals quantitatively the trade-off among different system pa-

rameters.

2. We derive a sufficient condition on the parameter scales for the SINR to be

asymptotically deterministic. Compared with existing work, where only spe-

cific asymptotic cases are discussed, our derived sufficient condition is more

comprehensive. It covers the cases discussed in previous works, and also

shows more asymptotically deterministic SINR scenarios. Besides, for the

SINR to be asymptotically deterministic, the trade-off between different pa-

rameter scales is also discussed.
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3. Through the scaling law results, it is shown that, for practical network scenar-

ios, the average SINR is at the maximum linearly increasing with the number

of relay antennas. We prove that the sufficient and necessary condition for it

is that all other network parameters remain constant. While the existing work

mainly focus on the constant SINR case, this linearly increasing SINR case

is not well studied. Our work fills this gap and analyses its outage probability

and ABER performance.

The remaining of the chapter is organized as follows. In the next section, the

system model including both the channel estimation and data transmission under

MRC/MRT relaying are introduced. Then the performance scaling law is analyzed

in Section 5.3. In Section 5.4, the asymptotically deterministic SINR case is dis-

cussed. The linearly increasing SINR case is investigated in Secion 5.5. Section 5.6

shows the simulation results and Section 5.7 contains the conclusion.

5.2 System Model and Preliminaries for Scaling Law

Analysis

We consider a multi-pair relay network with K single-antenna sources (S1, · · · , SK),

each transmitting to its own destination. That is, Si sends information to Destination

i, Di. We assume that the sources are far away from the destinations so that no di-

rect connections exist. To help the communications, a relay station is deployed [8].

The number of antennas at the relay station, M , is assumed to be large, e.g., a few

hundreds [37–39,41–45,64,65,83,84]. This enables the relay station to apply mas-

sive MIMO technologies to achieve high energy and spectral efficiency [42,43,45].

In addition, we assume M 
 K, because under this condition, the simple linear

processing, e.g., MRC/MRT at the relay, can have near optimal performance in

massive MIMO systems [90].

Denote the M ×K and K ×M channel matrices of the source-relay and relay-

destination links as F and G, respectively. The channels are assumed to be i.i.d.

Rayleigh fading, i.e., entries of F and G are mutually independent and every en-

try follows the CSCG distribution with zero-mean and unit-variance, denoted as
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CN (0, 1). The assumption that the channels are mutually independent is valid when

the relay antennas are well separated.

The information of F and G is called CSI, which is essential for signal pro-

cessing in the relaying schemes. In practice, the CSI is estimated through channel

training. Due to the existence of noise and interferer, channel estimation cannot be

perfect but always contains error. The CSI error is an important issue for massive

MIMO systems [43–45, 85, 86]. In what follows, we will first describe our chan-

nel estimation model, then the data transmission process and MRC/MRT relaying

scheme will be introduced.

5.2.1 Channel Estimation

To combine the received signals from the sources and precode the signals for the

destinations, the relay must acquire CSI, the values of F and G. F is the uplink

channel from the sources to the relay, which can be estimated by letting the sources

send pilots to the relay. In small-scale MIMO systems, G can be estimated by send-

ing pilots from the relay to the destinations and the destinations will feedback the

estimation results to the relay [8, 29]. However, this strategy is not viable for mas-

sive MIMO systems, as the number of time slots needed for pilots grows linearly

with the number of relay antennas M , which may exceed the channel coherence in-

terval. Consequently, to estimate G, we assume a time-division-duplexing (TDD)

system with channel reciprocity [10]. So pilots are sent from the destinations and

the relay-destination channels can be estimated at the relay station.

Without loss of generality, we elaborate the estimation of F, and the estimation

of G is similar. Since the channel estimation is the same as that in the single-hop

MIMO system, we will briefly review it and more details can be found in [8, 29]

and references therein. Denote the length of the pilot sequences as τ . For effective

estimation, τ is no less than the number of sources K [62,85]. Assume that all nodes

use the same transmit power for training, which is denoted as Pt. Therefore, the

pilot sequences from all K sources can be represented by a τ ×K matrix
√
τPtΦ,

which satisfies ΦHΦ = IK . The M × τ received pilot matrix at the relay is

Ytrain =
√

τPtFΦ
T +N,
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where N is the M × τ noise matrix with i.i.d. CN (0, 1) elements.

The MMSE channel estimation is considered, which is widely used in the chan-

nel estimation of massive MIMO networks [37, 43, 85, 86]. The MMSE estimation

of F given Ytrain is

F̂ =
1√
τPt

YtrainΦ
∗ τPt

1 + τPt

=
τPt

1 + τPt

(

F+
1√
τPt

NF

)

,

where NF � NΦ∗. As ΦHΦ = IK , NF has i.i.d. CN (0, 1) elements. Similarly,

the MMSE estimation of G is

Ĝ =
τPt

1 + τPt

(

G+
1√
τPt

NG

)

.

Define Ef � F̂−F and Eg � Ĝ−G which are the estimation error matrices. Due

to the feature of MMSE estimation, F̂ and Ef , Ĝ and Eg are mutual independent.

Elements of F̂ and Ĝ are distributed as CN (0, τPt

τPt+1
). Elements of Ef and Eg are

distributed as CN (0, 1
τPt+1

). Define

Et � τPt and Pc �
τPt

τPt + 1
. (5.1)

So Et is total energy spent in training. Pc is the power of the estimated channel

element, representing the quality of the estimated CSI, while 1 − Pc is the power

of the CSI error. It is straightforward to see that 0 ≤ Pc ≤ 1. When Pc → 1,

the channel estimation is nearly perfect. When Pc → 0, the quality of the channel

estimation is very poor.

Note that, different combinations of τ and Pt can result in the same Pc. For

the majority of this chapter, Pc will be used in the performance analysis instead of

τ and Pt. This allows us to isolate the detailed training designs and to focus on

how the quality of CSI affects the system performance. When we consider special

cases with popular training settings, e.g., τ = K and the same training and data

transmission power for users, τ and Pt will be used instead of Pc in modeling the

CSI error.

5.2.2 Data Transmissions

With the estimated CSI, the next step is the data transmission. Various relay schemes

have been proposed [8]. For massive MIMO systems, the MRC/MRT relaying is
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preferred for its computational simplicity, robustness, and high asymptotic perfor-

mance [40, 41, 44, 45, 63, 83, 84]. In the rest of this section, the data transmission

with MRC/MRT relaying and CSI error will be introduced.

Denote the data symbol of Si as si and the vector of symbols from all sources

as s. With the normalization E(|si|2) = 1, we have E(sHs) = K, where (·)H
represents the Hermitian of a matrix or vector. Let P be the average transmit power

of each source. The received signal vector at the relay is

x =
√
PFs+ nr, (5.2)

where nr is the noise vector at the relay with i.i.d. entries each following CN (0, 1).

With MRC/MRT relaying, the retransmitted signal vector from the relay is

aeĜ
HF̂Hx, where ae is the coefficient to normalize the average transmit power

of the relay to be Q.

With straightforward calculations, we have

a2e =
Q

E{tr
(

(ĜHF̂Hx)(ĜHF̂Hx)H
)

}
≈ Q

PKP 3
c M

3(1 + K
MPc

+ 1
PPcM

)
, (5.3)

where the approximation is made by ignoring the low order terms of M .

Denote fi, f̂i, and εf,i as the ith columns of F, F̂ and Ef respectively; gi, ĝi and

εg,i as the ith rows of G, Ĝ and Eg respectively. Then, the received signal at Di

can be written as follows.

yi = ae
√
PgiĜ

HF̂HFs+ aegiĜ
HF̂Hnr + nd,i,

= ae
√
P ĝiĜ

HF̂H f̂isi
︸ ︷︷ ︸

desired signal

+ ae
√
P

K∑

k=1,k �=i

giĜ
HF̂Hfksk

︸ ︷︷ ︸
multi-user interference

+ aegiĜ
HF̂Hnr

︸ ︷︷ ︸
forwarded relay noise

+

ae
√
Pεg,iĜ

HF̂Hεf,isi − ae
√
P ĝiĜ

HF̂Hεf,isi − ae
√
Pεg,iĜ

HF̂H f̂isi
︸ ︷︷ ︸

noise due to CSI error

+nd,i,(5.4)

where nd,i is the noise at the ith destination following CN (0, 1). From (5.4), we can

see that the received signal is composed of 5 parts: the desired signal, the multi-user

interference, the forwarded relay noise, the CSI error term, and the noise at Di.
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Define

Ps,e �
|ĝiĜ

HF̂H f̂i|2
M4

, Pi,e �
1

K − 1

K∑

k=1,k �=i

|giĜ
HF̂Hfk|2
M3

, (5.5)

Pn,e �
||giĜ

HF̂H ||2F
M3

, Pe,1 �
(1− Pc)

2

M3

K∑

n=1

K∑

m=1

f̂Hn f̂mĝmĝ
H
n , (5.6)

Pe,2 � (1− Pc)
‖ĝiĜ

HF̂H‖2F
M3

, Pe,3 � (1− Pc)
‖ĜHF̂H f̂i‖2F

M3
. (5.7)

From (5.4) we know that Ps,e, Pi,e, Pn,e and Pe,1 + Pe,2 + Pe,3 are the normalized

powers of the signal, the interference, the forwarded relay noise, and the noise

due to CSI error respectively. With these definitions, the SINR of the ith source-

destination pair can be written as

SINRi = M
Ps,e

(K − 1)Pi,e +
1
P
Pn,e + Pe,1 + Pe,2 + Pe,3 +

KP 3
c (1+

K
MPc

+ 1
PPcM

)

Q

.

(5.8)

The achievable rate for the ith source-destination pair is

Ci = E

{
1

2
log2(1 + SINRi)

}

. (5.9)

5.2.3 Preliminaries for Scaling Law Analysis

In the following sections, we study the performance behaviour and asymptotic per-

formance scaling law of the massive MIMO relay network. It is assumed throughout

the chapter that the number of relay antennas M is very large and the scaling law is

obtained by studying the highest-order term with respect to M .

Due to the complexity of the network, it is impossible to rigorously derive the

properties of the SINR and the achievable rate for the general M case. Instead,

we find the asymptotic performance properties for very large M with the help of

Lindebergy-Lévy CLT. The CLT states that, for two length-M independent column

vectors v1 and v2, whose elements are i.i.d. zero-mean random variables with

variances σ2
1 and σ2

2 ,
1√
M

vH
1 v2

d−→ CN (0, σ2
1σ

2
2),

where d−→ means convergence in distribution when M → ∞.
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Another important concept in the performance analysis of massive MIMO sys-

tems is asymptotically deterministic. Basically, a random variable sequence XM

with a bounded mean is said to be asymptotically deterministic if it converges in

probability to a deterministic value x, i.e.,

XM
P−→ x when M → ∞. (5.10)

In existing literature, where strong law of large numbers is used to derive the deter-

ministic equivalence, the random variable converges almost surely to a determinis-

tic value. The almost sure convergence implies the convergence in probability [91].

Another type of convergence that implies convergence in probability is the conver-

gence in mean square [91]. For a random variable sequence XM ,M = 1, 2, · · ·
with a bounded mean, XM converges in mean square to a deterministic value x,

i.e., XM
m.s.−→ x if

lim
M→∞

Var{XM} = 0.

The convergence in mean square requires the variances of the random variable se-

quence are asymptotically zero, which is the same as the condition for channel hard-

ening effects [92, 93]. Thus, by the definition of channel hardening effects [92, 93],

the convergence in mean square in a massive MIMO system means that the effects

of small-scale fading is ignorable when the number of antennas is large. Besides,

compared with other types of convergence, the convergence in mean square is more

tractable for analysis as only the variances of the variable sequence are needed.

Therefore, in this work, we decide a random variable sequence with a bounded

mean as asymptotically deterministic when it converges in mean square to a deter-

ministic value.

However, the use of the variance may cause inconvenience and sometimes con-

fusion. One can always scale XM by 1/Mn with large enough n to have the asymp-

totic deterministic property and the scaled random variable converges in probability

to 0. But this does not help the performance analysis when the scaling factor Mn

is put back into the SINR formula. Thus to avoid the scaling ambiguity, we use

SCV, defined as the square of the ratio of the standard deviation over the mean of

the random variable [94].
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In this work, we use the variance measure to see whether a random variable is

asymptotically deterministic, which is a more direct and less messy method than the

definition in (5.10). It is noteworthy that the bounded mean condition is important.

Without this condition, the convergence with M → ∞ is not well defined. Thus

in this work, a random variable sequence XM with non-zero mean is said to be

asymptotically deterministic if

lim
M→∞

SCV{XM} = 0. (5.11)

This definition is mathematically speaking more strict than (5.10) but is more ap-

propriate for performance analysis in massive MIMO systems.

5.3 Analysis on the Achievable Rate Scaling Law

The general performance scaling law of the massive MIMO relay network will be

studied in this section. We start with analysing the components of the received

SINR to obtain a large-scale approximation. Consequently, a lower bound on the

sum-rate is derived via Jensen’s inequality. Then the performance scaling law and

conditions for favourable SINR (non-decreasing SINR with respect to M ) are de-

rived. Typical network scenarios are discussed. Our analysis will show the relation-

ship between the SINR scale and the parameter scales, and the trade-off between

different parameter scales to achieve certain SINR performance.

5.3.1 Sum-Rate Lower Bound and Asymptotically Equivalent

SINR

For the analysis of the SINR, we first derive the means and SCVs of the components

of the SINR, i.e., Ps,e, Pi,e, Pn,e, Pe,1, Pe,2 and Pe,3.

With the help of CLT and tedious derivations, the following lemma on the means

and SCVs of SINR components can be obtained.
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Lemma 2.

E{Ps,e} ≈ P 4
c , SCV{Ps,e} ≈ 8

M
, (5.12)

E{Pi,e} ≈ P 3
c

(

2 +
K

MPc

)

, (5.13)

SCV{Pi,e} ≈
4

K−1 +
8+10Pc

PcM
+ K2+18(K−2)Pc

(K−1)P 2
c M

2

4 + K2

M2P 2
c
+ 4K

MPc

, (5.14)

E{Pn,e} ≈ P 3
c +

K

M
P 2
c , SCV{Pn,e} ≈ 2 + 5Pc − 2P 2

c

MPc +
K2

MPc
+ 2K

, (5.15)

E{Pe,1} ≈ K

M
P 2
c (1− Pc)

2, SCV{Pe,1} ≈ 3

K
, (5.16)

E{Pe,2} = E{Pe,3} ≈ P 3
c (1− Pc), SCV{Pe,2} = SCV{Pe,3} ≈ 1. (5.17)

Proof. The proof is available in Appendix D.

In the lemma, the approximations are made by keeping the dominant terms of

M .

With our definitions in (5.5)-(5.7) and by noticing that Pc ∈ [0, 1], the random

variables Ps,e, Pi,e, Pn,e, Pe,1, Pe,2, Pe,3 all have non-zero means. From (5.12),

we know that Ps,e is asymptotically deterministic since its SCV approaches to 0 as

M → ∞. Furthermore, the decreasing rate of its SCV is linear in M , showing

a fast convergence rate. Thus, for large M , we can approximate it with its mean

values. While for the rest of the components in the SINR, the SCVs depend on the

scalings of multiple network parameters (such as K and Pc) and their combinations,

which do not necessarily converge to 0. We cannot assume they are asymptotically

deterministic so far. With the aforementioned approximation, the SINR expression

becomes

SINRi ≈ MP 4
c

(K − 1)Pi,e +
1
P
Pn,e + Pe,1 + Pe,2 + Pe,3 +

KP 3
c (1+

K
MPc

+ 1
PPcM

)

Q

. (5.18)

With this simplification, the following result on the sum-rate can be obtained.

Lemma 3. The achievable rate of User i in the massive MIMO relay network has

the following lower bound:

Ci ≥ Ci,LB � 1

2
log2

(

1 + S̃INRi

)

, (5.19)
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where

S̃INRi �
1

2K
MPc

+ K2

M2P 2
c
+ 1

MPPc
+ K

M2PP 2
c
+ K

MPcQ
+ K2

M2P 2
c Q

+ K
M2PP 2

c Q

. (5.20)

Proof. As log2(1+
1
x
) is a convex function of x [81], according to Jensen’s inequal-

ity, we have

Ci ≥ 1

2
log2

⎛

⎝1 +
1

E
{

1
SINRi

}

⎞

⎠ .

By apply the SINR approximation in (5.18), we have

1

E
{

1
SINRi

} =
MP 4

c

E

{

(K − 1)Pi,e +
1
P
Pn,e + Pe,1 + Pe,2 + Pe,3 +

KP 3
c (1+

K
MPc

+ 1
PPcM

)

Q

}

=
1

K−1
M

[
2
Pc

+ K
MP 2

c

]

+ 1
MPPc

+ K
M2PP 2

c
+ K

M2 (
1
Pc

− 1)2 + 2(1−Pc)
MPc

+
K(1+ K

MPc
+ 1

PPcM
)

MPcQ

,

≈ 1
2K
MPc

+ K2

M2P 2
c
+ 1

MPPc
+ K

M2PP 2
c
+ K

MPcQ
+ K2

M2P 2
c Q

+ K
M2PP 2

c Q

= S̃INRi,

where the approximation is made by ignoring the lower order terms of M when

M 
 1. Thus the lower bound in (5.19) is obtained.

Note that, by using the method in Lemma 1 of [86], the sum-rate expression in

(5.19) can also be obtained. But with the method in [86], the derived expression is

an approximation, while our derivations show that it is a lower bound for large M .

On the other hand, from Lemma 1 of [86], we know that the lower bound becomes

tighter when the number of relay antennas M or the number of sources K increases.

From (5.19) and (5.20), we can see that as expected the achievable rate lower bound

increases logarithmically with M and Pc. But its increasing rates with P , Q, 1/K

are slower than logarithmic increase.

The parameter S̃INRi has the physical meaning of asymptotic effective SINR

corresponding to the achievable rate lower bound. Due to the monotonic relation-

ship in (5.19), to understand the scaling law of the achievable rate is equivalent to

understanding the scaling law of S̃INRi. In the next subsection, the scaling law of

S̃INRi with respect to different parameters will be studied.
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5.3.2 Scaling-Law Results

Now, the scaling law of the asymptotic effective SINR will be analyzed to show

how the system performance is affected by the size of the relay antenna array and

other network parameters. To have a comprehensive coverage of network setups and

applications, for all system parameters including the number of source-destination

pairs K, the source transmit power P , the relay transmit power Q, and the CSI

quality parameter Pc, a general scaling model with respect to M is used.

Assume that

K = O(M rk),
1

P
= O(M rp),

1

Q
= O(M rq),

1

Pc

= O(M rc). (5.21)

Thus the exponents rk, rp, rq, and rc represents the relative scales of K, 1/P , 1/Q,

and 1/Pc with respect to M . For practical ranges of the system parameters, we

assume that 0 ≤ rk, rp, rq, rc ≤ 1. The reasons are given in the following.

• The scale of K. Following typical applications of massive MIMO, the num-

ber of users should increase or keep constant with the number of relay anten-

nas. Thus rk ≥ 0. On the other hand, the increasing rate of K cannot exceed

the increasing rate of the number of relay antennas since the maximum mul-

tiplexing gain provided by the relay antennas is M . Thus, rk ≤ 1.

• The scale of P and Q. Following the high energy efficiency and low power

consumption requirements of massive MIMO applications, the source trans-

mit power and relay transmit power should not increase with the number

of relay antennas. But they can decrease as the number of relay antennas

increases with the condition that their decreasing rates do not exceed the in-

creasing rate of the antenna number. This is because that the maximum array

gain achievable from M antennas is M . A higher-than-linear decrease will

for sure make the receive SINR a decreasing function of M , which contra-

dicts the promise of massive MIMO communications. This discussion means

that 0 ≤ rp, rq ≤ 1.

• The scale of Pc. From the definition of Pc in (5.1), we have 1/Pc = 1+1/Et,

thus rc ≥ 0. This is consistent with the understanding that the CSI quality will
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not improve as the number of relay antennas increases, as the training process

cannot get benefits from extra antennas [10]. On the other hand, since similar

to the data transmission, the total training energy should not has lower scaling

than 1/M , we conclude that 1/Pc should not have a higher scaling than M .

Thus rc ≤ 1.

In the previous modelling of the parameters, the exponents can take any value

in the continuous range [0, 1]. This is different from most existing work where only

one or two special values are assumed for the parameters. Widely used values are

0, 0.5, and 1, which mean that the parameters scale as a constant, a linear function,

and the square-root of M . Our model covers existing work as special cases.

To represent the scaling law of the S̃INRi, define its scaling with respect to M

as

S̃INRi = O(M rs), or equivalently, rs = lim
M→∞

log2 S̃INRi

log2M
. (5.22)

The exponent rs shows the scaling of S̃INRi.

Theorem 2. For the massive MIMO relay network with MRC/MRT relaying and

CSI error, with the model in (5.21) and (5.22), we have the following performance

scaling law:

rs = 1− rc −max(rp, rk + rq). (5.23)

Proof. From (5.20) we can see that, the maximal scaling exponent of the terms in

the denominator determines the scaling exponent of S̃INRi with respect to M . After

some tedious calculation, we find that the term with the highest scaling exponent is

either 1
MPPc

or K
MPcQ

. By using the parameter models in (5.21), the results in (5.23)

is obtained.

Sensible massive MIMO system should have rs ≥ 0, i.e., asymptotic effec-

tive SINR and the sum-rate scale at least as O(1). Otherwise, the system perfor-

mance will decrease as M increases, which contradicts the motivations of massive

MIMO systems. To help the presentation, we refer to the case where rs ≥ 0 as the

favourable-SINR scenario. The condition for favourable-SINR is presented in the

following corollary.
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Corollary 1. The necessary and sufficient condition for the massive MIMO relay

network with MRC/MRT relaying and CSI error to have favourable-SINR is

rc +max(rp, rk + rq) ≤ 1, rc, rp, rq, rk ∈ [0, 1]. (5.24)

Proof. This is a straightforward extension from (5.23) of Theorem 2.

The scaling law in (5.23) illustrates quantitatively the concatenation of the scal-

ings of different parameters and their effects on the network performance. The

condition in (5.24) forms a region of rk, rp, rq, rc that makes the SINR favourable.

They provide guidelines for the plan and design of the massive MIMO relay net-

work. Next, we discuss the physical meanings of (5.23) and (5.24), and several

popular network setups.

Firstly, in (5.23), rk and rq appears as a summation. According to their defi-

nitions in (5.21), the summation is the scaling exponent of K/Q. Then in (5.23),

max(rp, rk + rq), which also equals min(−rp,−rk − rq), is the minimum of the

power scaling exponents of P and Q/K. Recall that P is the per-source transmit

power. And Q/K is the average relay power allocated to each source-destination

pair. Thus, from (5.23), we can see that the performance scaling of the SINR is

determined by two factors: 1) max(rp, rk + rq), which is the worse per-source-

destination-pair power scaling of the two steps, and 2) Pc, which is the CSI quality.

Further, (5.23) shows that rs, which represents the scale of the system perfor-

mance is a decreasing function of both max(rp, rk + rq) and rc. Thus high transmit

power and better CSI quality result in improved performance. There is a natural

tradeoff between the worse per-source-destination-pair power and channel training

(e.g., between the data transmission phase and the training phase), and one can com-

pensate for the other to keep the performance scaling of the system unchanged. For

the two-step communication, it is the worse step that dominates the overall system

performance.

The condition in (5.24) implies rk + rq ≤ 1, which means that for the SINR

to be favourable, the scaling of the per-source-destination-pair relay power should

be no less that 1/M . This also shows a trade-off between rk and rq. Recall that
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0 ≤ rk, rq ≤ 1. That is, with extra relay antennas, we can serve more users or

use less relay power for the same level of performance, but the improvement in the

two aspects has a total limit. For example, two cases satisfying the constraint are

1) rk = 1, rq = 0; 2) rq = 1, rk = 0. The first case means that, when the number

of users increases linearly with the number of relay antennas (i.e., rk = 1), the

relay power must remain constant (i.e., rq = 0), and thus the goal of saving relay

power cannot be achieved. The second case is the opposite: when the relay power

is scaled inversely proportional to the number of relay antennas, the goal of serving

more users cannot be achieved.

5.3.3 Discussions on Several Popular Network Settings

In this subsection, we further elaborate the scaling law in (5.23) and the condition

in (5.24) for popular network settings.

1. First, we consider the case of rc = 0, corresponding to perfect or constant

CSI quality case (for example, Pt and τ are large constants). From (5.23) and

(5.24), the resulting SINR scaling exponent is rs = 1−max(rp, rk + rq) and

the necessary and sufficient condition for favourable SINR is rk + rq ≤ 1.

Its physical meaning is that, when the CSI is perfect and for the SINR to

be favourable, the most power-saving design is to make both the per-source-

destination-pair power of the two hops decrease linearly with the number of

antennas. Thus, when the CSI quality is good, we can design the networks

to serve more users and/or save power consumption, while maintain certain

QoS.

2. Next, we consider the case of rc = 1, which is equivalent to Et = O(1/M).

This means that the total energy used in training is inversely proportional

to the relay antenna number. In this case, the SINR scaling exponent is

rs = −max(rp, rk + rq). To have favourable SINR, from (5.24), we need

rp = rk = rq = 0. That is, the source data transmit power, the per-source-

destination-pair relay power, and the number of users should all remain con-

stant for favourable SINR when the CSI quality is inversely proportional to
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the relay antenna number. This shows that the CSI quality is key to the per-

formance of massive MIMO relay networks. With low CSI quality, all the

promising features of the massive MIMO network are gone.

3. For any general rc ∈ (0, 1), favourable SINR requires max(rp, rk + rq) ≤
1−rc. That is, the worse transmit power per source-destination pair of the two

steps cannot be lower than O(1/M1−rc). This shows the trade-off between

the training phase and the data transmission phase. Also shows how CSI

quality affects the system performance.

4. For the most power saving setting where rp = 1 or rk + rq = 1, the per-pair

transmit power of either the two steps scales as 1/M . To have favourable

SINR, rc = 0 is needed. Thus, the per source-destination pair data transmit

power of either or both steps can be made inverse proportional to the number

of relay antennas. But at the same time, the training power must at least

remain constant, not a decreasing function of M . If furthermore rk = 0 (the

number of source-destination pairs K remains constant), we have for this

setting P or Q scales with 1/M , which is the major power scaling scenario

considered in the literature. It is obvious that our result covers this case, and

shows more insights by considering the scales of K and Pc.

5. While in the previous discussions, rc is treated as a free parameter, next, we

consider the special case of Pt = P and τ = K. The condition Pt = P

corresponds to the practical scenario that user devices always use the same

transmit power, no matter for training or data transmission. It is a common

assumption in the literature [43–45]. τ = K is the minimum training length

for effective communication [85]. It is shown in [62] that, for maximal-ratio

processing, this is the case when the maximal spectral efficiency is achieved.

We can see that, in this case, rc = max{0, rp − rk}. Consequently, the SINR

scale exponent is rs = 1 − max{0, rp − rk} − max(rp, rk + rq). For the

SINR to be favourable, we need max(rp, rk + rq) ≤ 1, 2rp − rk ≤ 1, and

rp + rq ≤ 1. rp = rc ≤ 1/2. Further, we consider a special case of rk = 0,

i.e., the number of source-destination pairs is constant. For favourable SINR
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we need rp ≤ 1/2, i.e., the source transmit power can be reduced by 1/
√
M

at maximum. This is same as the conclusion as in [43–45]. But note that our

model is different from [43–45] and is more general.

6. Another popular setting is to have the number of source-destination pairs

increase linearly with M , i.e., rk = 1. One example is assuming that K/M

is a constant as M increases. From (5.23) and (5.24), for this case, the SINR

scaling exponent is rs = −rc − rq and to have favourable SINR, we need

rc = rq = 0. Thus, to support such number of source-destinations, the CSI

quality must be high and at the same time the relay power cannot decrease

with M .

5.4 Systems with Asymptotically Deterministic SINR

One important concept appearing in massive MIMO systems is the asymptotically

deterministic property. For example, with receiver combining and/or pre-coding at

the base station or relay station, random variables such as the signal power and inter-

ference power which are random in finite-dimension cases converge in probability

to deterministic values as the number of relay antennas is large [64,65]. This effect

is also called channel hardening [10, 92]. With channel hardening, the small-scale

fading effect is negligible, and so is the channel variance in the frequency domain.

This not only simplifies many design issues but also enables performance analy-

sis via the deterministic equivalences of the random variables. Many performance

analysis results in massive MIMO literature rely on asymptotically deterministic

property, e.g., [64, 65, 85].

One important question is thus when the massive MIMO system have asymptot-

ically deterministic SINR for the corresponding performance analysis to be valid. In

this section, we derive a sufficient condition on asymptotically deterministic SINR

and discuss typical scenarios for it, which include scenarios in existing work as

special cases.
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Firstly, The SINR expression in (5.8) can be reformulated as

SINRi,e=
M rsPs,e/P

4
c

Pi,e
K−1

P 4
c M

1−rs+
1

PP 4
c M

1−rsPn,e+
1

P 4
c M

1−rs (Pe,1+Pe,2+Pe,3)+
K(1+ K

MPc
+ 1

PPcM
)

QPcM1−rs

.

(5.25)

The received SINR is asymptotically deterministic when its SCV approaches

zero as M → ∞. However, due to the complex structure of the SINR expression, it

is highly challenging to obtain its SCV directly. Alternatively, as is shown in Sec-

tion 5.3, Ps,e/P
4
c is asymptotically deterministic, thus for the SINR to be asymptot-

ically deterministic, the sufficient and necessary condition is that the denominator

of the formula in (5.25) is asymptotically deterministic. One sufficient condition

is that the SCV of the denominator denoted as SCVd, is no larger than E/M , for

some constant E 1. By the definition of SCV, this condition can be expressed as

SCVd=
Var

{

Pi,e
K−1

P 4
c M

1−rs+
1

PP 4
c M

1−rsPn,e+
1

P 4
c M

1−rs (Pe,1+Pe,2+Pe,3)
}

(

E
{

Pi,e
K−1

P 4
c M

1−rs+
1

PP 4
c M

1−rsPn,e+
1

P 4
c M

1−rs (Pe,1+Pe,2+Pe,3)
})2 ≤ E

M
.

(5.26)

From (5.25), we have

Ps,e/P
4
c

Pi,e
K−1

P 4
c M

1−rs+
1

PP 4
c M

1−rsPn,e+
1

P 4
c M

1−rs (Pe,1+Pe,2+Pe,3)+
K(1+ K

MPc
+ 1

PPcM
)

QPcM1−rs

=O(1),

and since Ps,e/P
4
c

m.s.−→ 1, we can see that

E

{

Pi,e
K − 1

P 4
c M

1−rs +
1

PP 4
c M

1−rsPn,e +
1

P 4
c M

1−rs (Pe,1 + Pe,2 + Pe,3)

}

= O(1).

Thus (5.26) is equivalent to that

Var

{

Pi,e
K − 1

P 4
c M

1−rs +
1

PP 4
c M

1−rsPn,e +
1

P 4
c M

1−rs (Pe,1 + Pe,2 + Pe,3)

}

≤ E ′

M
,

(5.27)

for some constant E ′.

Lemma 4. A sufficient condition for (5.27) is that the variance of each term in

(5.27) scales no larger than 1/M , i.e., the maximum scale order of Var
{

Pi,e
K−1

P 4
c M

1−rs

}

,

1Note that, when M → ∞, given any positive number α, 1/Mα → 0. But for practical applications
of the deterministic equivalence analysis in large but finite-dimension systems, we consider the sce-
nario that the SCV decrease linearly with the number of antennas or faster. The derived condition
is thus sufficient but not necessary.
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Var
{

1
PP 4

c M
1−rsPn,e

}

, Var
{

1
P 4
c M

1−rsPe,1

}

, Var
{

1
P 4
c M

1−rsPe,2

}

, and Var
{

1
P 4
c M

1−rsPe,3

}

,

is no larger than 1/M .

Proof. The variance of Pi,e
K−1

P 4
c M

1−rs +
1

PP 4
c M

1−rsPn,e +
1

P 4
c M

1−rs (Pe,1 + Pe,2 + Pe,3)

is the summation of two parts: the variances of each term, and the covariance of

every two terms. Now, we will prove that if the variances of each term scales no

larger than 1/M , their covariance also scales no larger than 1/M .

To make it general and clear, we define Y =
∑N

n=1 Xn, where N is a limited

constant integer and Xn’s are random variables. Without loss of generality, we

assume that Var{X1} has the highest scale among all Var{Xn}’s and Var{X1} =

O(1/Mα), where α ≥ 1. The variance of Y is

Var{Y } =
N∑

n=1

Var{Xn}+
∑

i �=j

Cov{Xi, Xj}.

By the definition of covariance,
∑

i �=j Cov{Xi, Xj} takes the maximum value

when Xn’s are linearly correlated, i.e., X1 = X2/a2 = X3/a3 · · · = XN/aN . In

this case, we can obtain that

∑

i �=j

Cov{Xi, Xj} = Var{X1}
∑

i �=j

aiaj,

where we define a1 = 1.

As Var{X1} has the highest scale, we have an scales no higher than O(1),

that is, there exists constants cn’s such that an ≤ cn. Thus
∑

i �=j Cov{Xi, Xj} =

O(1/Mα), and consequently Var{Y } scales no higher than 1/Mα.

Given Lemma 4, we only need to find the condition for the variances of (K −
1)Pi,e/(P

4
c M

1−rs), Pn,e/(PP 4
c M

1−rs), Pe,1/(P
4
c M

1−rs), Pe,2/(P
4
c M

1−rs), and 1
P 4
c M

1−rsPe,3

to scale no larger than 1/M . Using the results on the variances of SINR compo-
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nents, the variances of the terms can be obtained as

Var{ K − 1

P 4
c M

1−rsPi,e} =
(K − 1)2

P 2
c M

2−2rs

(
4

K − 1
+
8 + 10Pc

PcM
+
K2 + 18(K − 2)Pc

(K − 1)P 2
c M

2

)

∼ O (
M−(2−2rs−2rc−rk)) ,

Var{ 1

PP 4
c M

1−rsPn,e} =

2
P 3
c
+ 5

P 2
c
− 2

Pc

M3−2rsP 2
∼ O (

M−(3−2rs−3rc−2rp)) ,

Var{ 1

P 4
c M

1−rsPe,1} =
3K

M4−2rs (
1

Pc

− 1)4 ∼ O (
M−(4−2rs−4rc−rk)) ,

Var{ 1

P 4
c M

1−rsPe,2} = Var{ 1

P 4
c M

1−rsPe,3} =
1

M2−2rs (
1

Pc

− 1)2

∼ O (
M−(2−2rs−2rc)) ,

where the scaling behaviour at the end of each line is obtained from the definitions

of the scaling exponents in (5.21) and considering the constraints in (5.24). Then,

we can see that the condition for the order each term to be no higher than 1/M is

that both following constrains are satisfied.

rk + 2rc + 2rs ≤ 1, 2rp + 3rc + 2rs ≤ 2. (5.28)

Combining constrains (5.24) and (5.28), we get a sufficient condition for the SINR

to be deterministic in the following proposition.

Proposition 3. When M 
 1, a sufficient condition for the SINR to be asymptoti-

cally deterministic is

1) rs + rc +max{rp, rk + rq} = 1 2) 2rs + 2rc + rk ≤ 1,

3) 2rs + 3rc + 2rp ≤ 2, 4) rc, rp, rq, rk ∈ [0, 1].

From constraint 2) of the condition, we can see that rs ≤ 1/2, meaning that the

highest possible SINR scaling is 1/
√
M for the sufficient condition. In addition,

rc ≤ 1/2, meaning that to make the SINR asymptotically deterministic, the CSI

quality should scale no lower than 1/
√
M . By the definition of Pc in (5.1), the

lowest scaling the training power Pt can have is 1/
√
M . Note that, for a favourable

SINR, the scale of the CSI quality just has to be larger than 1/M . Therefore, for

asymptotically deterministic SINR, the constraint on the CSI quality is more strict.
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In what follows, we will investigate typical scenarios for the SINR scaling,

which include all possible cases if rs and rc are allowed to take values from {0, 1/2, 1}
only. The trade-off between parameters will be revealed.

1. To achieve both rs = 1/2 (the SINR increases linearly with
√
M ) and asymp-

totically deterministic SINR, the sufficient condition reduces to rk = 0,

rc = 0, and max{rp, rq} = 1/2. It means that when the number of users

and the CSI quality remain constant, the lower of the source power and the

relay power must scale as 1/
√
M . While in existing work, only constant

SINR case (rs = 0) has been considered [64,65,85], our result shows that the

SINR can scale as
√
M with asymptotically deterministic property.

2. To achieve rs = 0 (constant SINR level) and asymptotically deterministic

SINR, two cases may happen: a) rc = 0 and max{rp, rk + rq} = 1; and b)

rc = 1/2, rk = 0, rp ≤ 1/4 and rq = 1/2.

For Case a), when the CSI quality has constant scaling (e.g., perfect CSI or

high quality channel estimation), the scale of the lower per-pair transmission

power of the two hops should scale as 1/M for asymptotically constant SINR.

This is the case considered in [64, 65]. Similar scenarios for massive MIMO

systems without relays have also been reported in [85].

Case b) indicates that when the CSI quality scales as 1/
√
M (e,g., the training

power scales as 1/
√
M with fixed training length), the number of source-

destination pairs should remain constant, the relay power should scale as

1/M , and the source power can scale smaller than 1/ 4
√
M .

5.5 Systems with Linearly Increasing SINR

In our asymptotically deterministic SINR analysis, the scale of the SINR is no larger

than O(
√
M). While, it can be seen from the SINR scaling formula in (5.23) that,

the maximum scale of the SINR with respect to the number of relay antennas M , is

O(M), i.e., linearly increasing with M . In this case the sum-rate scales as log2 M .

This is a very attractive scenario for massive MIMO relay networks, in the sense
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that, when M 
 1 significant improvement in the network throughput and com-

munication quality can be achieved. Possible applications for such scenario are

networks with high reliability and throughput requirement such as industrial wire-

less networks and high-definition video.

In this section, we study networks with linearly increasing SINR. First, the con-

dition on the parameter scaling for the SINR to be linearly increasing is investigated.

Then we show that in this case the interference power of the system is not asymp-

totically deterministic, but with a non-diminishing SCV as M → ∞. Thus existing

deterministic equivalence analysis does not apply and the small-scale effect needs

to be considered in analyzing the performance. We first derive a closed-form PDF

of the interference power, then obtain expressions for the outage probability and

ABER. Their scalings with network parameters are revealed.

Linearly increasing SINR means that the SINR scaling exponent is 1, i.e., rs =

1. Thus the SINR can be formulated as

SINRi,e = M
Ps,e/P

4
c

Pi,e
K−1
P 4
c

+ 1
PP 4

c
Pn,e +

1
P 4
c
(Pe,1 + Pe,2 + Pe,3) +

K(1+ K
MPc

+ 1
PPcM

)

QPc

.

From SINR scaling expression in (5.23), we can see that the sufficient and nec-

essary condition for rs = 1 is rc = rp = rk = rq = 0 (note that rc, rp, rq, rk ∈ [0, 1]

), i.e., the CSI quality, the source transmit power, the relay power, and the number

of users all remain constant.

With the parameter values, we can calculate that the SCVs of Ps,e/P
4
c and

Pn,e/P/P
4
c scales of 1/M . Therefore, they are asymptotically deterministic and

can be approximated with their mean values. On the other hand, the SCVs of

(K − 1)Pi,e/P
4
c , Pe,1/P

4
c , Pe,2/P

4
c , and Pe,3/P

4
c are constant. But we can see that

Var{K − 1

P 4
c

Pi,e} ≥ 4(K − 1)

P 2
c

≥ 4(K − 1)

(
1

Pc

− 1

)2

= 4(K − 1)Var{Pe,2

P 4
c

}.

Notice that Pe,2 and Pe,3 have the same distribution. As we mainly consider the

non-trivial case that K ≥ 3, we have Var{(K − 1)Pi,e/P
4
c } 
 Pe,2/P

4
c , Pe,3/P

4
c ,

especially when the CSI quality Pc is high. Besides, the mean of Pe,1/P
4
c scales as

1/M , and its variance scales as 1/M2. Thus the variance of this term is also much

smaller than Pi,e(K − 1)/P 4
c . Therefore, Pi,e(K − 1)/P 4

c dominates the random
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behaviour of the SINR and other terms can all be approximated with their mean

values. Thus the SINR can be approximated as

SINRi,e ≈ M

Pi,e
(K−1)
P 4
c

+
(

1
P
+ K

Q

)

( 1
Pc

+ K
MP 2

c
) + 2

(
1
Pc

− 1
)

+ K
M

(
1
Pc

− 1
)2 ,

(5.29)

where only dominant terms of M are kept.

Now, we can conclude that for linearly-increasing SINR, the interference power

is not asymptotically deterministic and does not diminish as M increases. In ad-

dition, the randomness of the interference power is the dominant contributor to the

random behaviour of the SINR. With this result, to analyse the outage probability

and ABER performance, the distribution of the interference needs to be derived.

Proposition 4. Define

ρe =
1√
M

√
4
Pc

+ 10

2 + K
MPc

, (5.30)

be = (K − 1)ρe, ce = 1− ρe, de =
P 3
c

K − 1

(

2 +
K

MPc

)

. (5.31)

When M 
 1, the PDF of Pi,e has the following approximation:

fPi,e
(y) =

ce
be + ce

∞∑

i=0

(
be

be + ce

)i

φ(y;K + i− 1, dece) , (5.32)

where φ(y;α, β) = yα−1e−y/β

βα(α−1)! is the PDF of Gamma distribution with shape pa-

rameter α and scale β. It can also be rewritten into the following closed-form

expression:

fPi,e
(y) ≈ (be + ce)

K−3

debK−2e

×
[

exp

(

− y

de(be + ce)

)

− exp

(

− y

dece

)K−3∑

n=0

1

n!

(
be

dece(be + ce)
y

)n
]

. (5.33)

Proof. The proof is available in Appendix E.

From (5.32), it can be seen that the distribution of the interference power is a

mixture of infinite Gamma distributions with the same scale parameter which is dece

but different shape parameters. But as (E.3) is in the form of an infinite summation,
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it is manipulated to be (5.33) for further analysis. Besides, when the CSI quality

is good, i.e., Pc is close to 1, we have K/(MPc) 	 1 and thus ρe and de can be

simplified by ignoring the term K/(MPc). Compared with the perfect CSI case

where Pc = 1, the CSI error makes dece, the scale parameter, smaller.

With this distribution, the outage probability and ABER of the network can be

derived as shown in the next two subsections.

5.5.1 Outage Probability Analysis

Outage probability is defined as the probability that the SINR falls below a certain

threshold. Due to the complexity of relaying communications, the user-interference

and the large scale, the outage probability analysis of multi-user massive MIMO re-

lay networks is not available in the literature. With the help of CLT, we obtained

an approximate PDF for the interference power and derived simplified SINR ap-

proximation in (5.29) for linearly increasing SINR case. These allow the following

outage probability derivation.

Let γth be the SINR threshold and define

ξ �
(
1

P
+

K

Q

)(
1

Pc

+
K

MP 2
c

)

+ 2

(
1

Pc

− 1

)

+
K

M

(
1

Pc

− 1

)2

.

The outage probability of User i can be approximated as

Pout(γth) =P(SINRi,e < γth)

≈P

(

M

Pi,e
K−1
P 4
c

+ ξ
< γth

)

= P

(

Pi,e >

(
M

γth
− ξ

)
P 4
c

K − 1

)

=

{
1 if γth ≥ M

ξ

P
(

Pi,e >
(

M
γth

− ξ
)

P 4
c

K−1

)

otherwise
.

When γth < M
ξ

, from (5.33), we have

Pout(γth) ≈
(

be
be + ce

)2−K
exp

⎛

⎝−
(

M
γth

− ξ
)

P 4
c

(K − 1)de(be + ce)

⎞

⎠

− ce
be + ce

K−3∑

n=0

1

Γ(n+ 1)

(
be

be + ce

)n−K+2

Γ

⎛

⎝n+ 1,

(
M
γth

− ξ
)

P 4
c

(K − 1)dece

⎞

⎠,(5.34)
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where Γ(s, x) �
∫∞
x

ts−1e−tdt is the upper incomplete gamma function [27]. This

outage probability expression is too complex for useful insights. A simplified one

is derived in the following proposition for systems with good CSI quality.

Proposition 5. Define

D �

(

2 (1− Pc) +
1
P
+ K

Q

)

P 3
c

(K − 1)de(be + ce)
.

When Et 
 1 and M 
 γth

(

2dece(1 +
ce
be
)K(K − 1) + 1

P
+ K

Q

)

, we have

Pout(γth) ≈
(

be
be + ce

)2−K
exp

(

D − MP 4
c

γth(K − 1)de(be + ce)

)

. (5.35)

Proof. By the definition of Pc and Et in (5.1), when Et 
 1, we have Pc ≈ 1. Thus

ξ ≈ 1/P +K/Q. Further define that

a �
be

(
M
γth

− ξ
)

P 4
c

(K − 1)dece(be + ce)
.

Thus, when M 
 γth

(

2dece(1 +
ce
be
)K(K − 1) + 1

P
+ K

Q

)

, we have a 
 2K > 1

and therefore (
M
γth

− ξ
)

P 4
c

(K − 1)dece

 1.

Then, from [27, 8.357] we know that

Γ

⎛

⎝n+ 1,

(
M
γth

− ξ
)

P 4
c

(K − 1)dece

⎞

⎠ ≈
⎛

⎝

(
M
γth

− ξ
)

P 4
c

(K − 1)dece

⎞

⎠

n

exp

⎛

⎝−
(

M
γth

− ξ
)

P 4
c

(K − 1)dece

⎞

⎠ .

With this approximation, the outage probability expression in (5.34) can be refor-

mulated as

Pout(γth)≈
(

be
be + ce

)2−K
exp

⎛

⎝−
(

M
γth

− ξ
)

P 4
c

(K − 1)de(be + ce)

⎞

⎠

[

1−
∑K−3

n=0
an

Γ(n+1)

be+ce
ce

exp(a)

]

=

(
be

be + ce

)2−K
exp

⎛

⎝−
(

M
γth

− ξ
)

P 4
c

(K − 1)de(be + ce)

⎞

⎠

[

1− ce
be + ce

∑K−3
n=0

an

Γ(n+1)
∑∞

n=0
an

Γ(n+1)

]

Now, we examine the increasing rate of an

Γ(n+1)
with respect to n. First, we have

d an

Γ(n+1)

dn
=

an(ln a+ γ −∑n
k=1

1
k
)

Γ(n+ 1)
,
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where γ is the Euler−Mascheroni constant. Let aI be the largest integer that is

no larger than a. As aI 
 1, we have γ ≈ − ln aI +
∑aI

k=1 1/k. Thus, when

n = aI , d (an/Γ(n+ 1)) /dn ≈ 0. Therefore, an/Γ(n + 1) is increasing with n

when n < aI .

As aI > 2K, we have
∑K−3

n=0
an

Γ(n+1)

be+ce
ce

exp(a)
=

∑K−3
n=0

an

Γ(n+1)

be+ce
ce

∑∞
n=0

an

Γ(n+1)

<

∑K−3
n=0

an

Γ(n+1)
∑K−3

n=0
an

Γ(n+1)
+

∑2K−5
n=K−2

an

Γ(n+1)

.

Further, aK−2

Γ(K−1) = a
K−2

aK−3

Γ(K−2) > 2 aK−3

Γ(K−2) , which means that the least term

in the summation
∑2K−5

n=K−2
an

Γ(n+1)
is twice of the largest term in the summation

∑K−3
n=0

an

Γ(n+1)
. Besides, there are K − 2 terms in both summations. Comparing

each pair of terms, the ratio is aK−2/Γ(K − 1) 
 1 since a 
 2K. Thus we can

conclude that
ce

be + ce

∑K−3
n=0

1
Γ(n+1)

(a)n

∑∞
n=0

1
Γ(n+1)

(a)n
	 1

3
.

Therefore, this term can be ignored and the approximation in (5.35) is obtained.

We can see that the outage probability approximation in (5.35) is tight when

the number of relay antennas is much larger than the number of source-destination

pairs and the training power and transmit powers are high. These conditions will

result in a high received SINR. Thus, the approximation in (5.35) applies to the high

SINR case.

Note that (5.35) can also be obtained by deleting the 2nd summation term in

the PDF formula in (5.33) and then integrating with the approximated PDF. This

is because that, for the high SINR case, the outage probability is determined by

the SINR distribution in the small SINR region, which is equivalently the high

interference power region, corresponding to the tail of the PDF of the interference

power. It can be seen from the PDF formula in (5.33) that, the 1st term has a heavier

tail, thus dominates the outage probability behaviour, and the second summation

term can be ignored.

Now, we explore insights from (5.35). As be, ce, de are irrelevant with P or Q,

we can see that the outage probability scales as exp
(

P 3
c

P (K−1)de(be+ce)

)

with P and

scales as exp
(

KP 3
c

Q(K−1)de(be+ce)

)

with Q. Firstly, it shows the natural phenomenon
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that increasing P or Q will decrease the outage probability. Also, we can see that

the outage probability curve with respect to Q has a sharper slope than that with P .

For example, let P = Q = α, doubling P alone will shrink the outage probability

by a factor of exp
(

P 3
c

2(K−1)de(be+ce)α

)

, while doubling Q alone will shrink the outage

probability by a factor of exp
(

KP 3
c

2(K−1)de(be+ce)α

)

, which is K powers of the shrink-

age of the doubling-P case. Furthermore, increasing the user and relay transmit

power will not make the outage probability diminish to zero. An error floor exists

due to the user-interference. On the other hand, increasing the number of relay

antennas to infinity leads to faster decrease in the outage probability and makes it

approach zero.

Note that, in our analysis, we assume M 
 1 but does not go to infinity, so

terms with 1/
√
M are not treated as asymptotically small and thus are not ignored.

If M → ∞ and Pc → 1, the 1/
√
M terms can be seen as 0 and we will have

Pout(γth) ≈
(

(K−1)√3.5√
M

)2−K
exp

(

− M
2γth

)

. However, this asymptotic analysis is

not practical, because the number of massive MIMO antennas is usually a few hun-

dreds in practice, so that
√
M may not be much larger than other parameters such

as K,P,Q.

5.5.2 ABER analysis

ABER is anther important metric of communication performance. Due to the com-

plexity of the SINR distribution, ABER analysis of the massive MIMO relay net-

work is not available in the literature. For the linearly increasing SINR case, the

ABER can be analyzed as below.

Denote the ABER as Pb(e). It is given by

Pb(e) =

∫ ∞

0

Pb(e|r)fSINR(r)dr, (5.36)

where Pb(e|r) is the conditional error probability and fSINR(r) is the PDF of the

SINR.

As is known, for channels with additive white Gaussian noise, Pb(e|r) is in the

form of Aerfc
(√

Br
)

, or equivalently 2AQ
(√

2Br
)

for several Gray bit-mapped

constellations employed in practical systems. Here erfc(x) and Q(x) are comple-
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mentary error function and Gaussian Q-function respectively. A and B are con-

stants depended on the modulation, for example, for BPSK, A = 0.5, B = 1.

On the other hand, with the PDF of the interference power and the SINR approx-

imation in the linearly increasing SINR case, the PDF of the SINR can be derived

as below.

fSINR(r) =
(be + ce)

K−3MP 4
c

r2(K − 1)debK−2e

exp

(

−
(
M
r
− ξ

)
P 4
c

(K − 1)de(be + ce)

)

−
K−3∑

n=0

(be + ce)
K−n−3MP 4n+4

c

Γ(n+ 1)((K − 1)de)n+1cne b
K−n−2
e

(
M
r
− ξ

)n

r2
×

exp

(

−
(
M
r
− ξ

)
P 4
c

(K − 1)dece

)

, r∈
(

0,
M

ξ

)

. (5.37)

With Pb(e|r) in (5.36) and fSINR(r) in (5.37), an approximation on the ABER

is derived in the following proposition.

Proposition 6. When Et 
 1 and M 
 2dece(1 + ce/be)K(K − 1) + 1
P
+ K

Q
, the

ABER can be approximated as

Pb(e) ≈ A

(
be

be + ce

)2−K
exp

(

D − 2P 2
c

√

BM

(K − 1)de(be + ce)

)

. (5.38)

Proof. The PDF of the SINR in (5.37) can be rewritten as

fSINR(r) =
(be + ce)

K−3 MP 4
c

r2(K − 1)debK−2e

exp

(

−
(
M
r
− ξ

)
P 4
c

(K − 1)de(be + ce)

)

×
⎡

⎢
⎢
⎢
⎢
⎣

1−
∑K−3

n=0

(
be(M

r −ξ)P4
c

(K−1)dece(be+ce)

)n

Γ(n+1)

exp

(
be(M

r
−ξ)P 4

c

(K−1)dece(be+ce)

)

⎤

⎥
⎥
⎥
⎥
⎦

. (5.39)

As the ABER is determined by the PDF when r is small [14], we can assume r < 1.

With Et 
 1 and M 
 2dece(1+ ce/be)K(K− 1)+ 1
P
+ K

Q
, similarly as the proof

of Proposition 5, we can show that

∑K−3
n=0

(
be(M

r
−ξ)P 4

c

(K−1)dece(be+ce)

)n

Γ(n+ 1) exp

(
be(M

r
−ξ)P 4

c

(K−1)dece(be+ce)

) 	 1,
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and thus this term can be ignored.

With the approximated PDF, the ABER can be derived by solving

∫ M/ξ

r=0

Aerfc(
√
Br)fSINR(r)dr.

As the ABER is determined by the region when r is small, we can replace the inte-

gration region with
∫∞
r=0

for tractability. Then, by substituting erfc(x) = Γ(1
2
, x2)/

√
π,

using the integration formula
∫∞
0

exp(−μx)Γ(v, a
x
)dx = 2av/2μv/2−1Kv(2

√
μa)

[27], and using K 1
2
(x) =

√
π
2x

exp(−x) [95], the ABER approximation in (5.38) is

obtained.

We can see from (5.38) that increasing M will make the ABER decrease and

approach zero. Besides, we can see from (5.38) that for very large M the ABER

behaves as C exp
(

−C ′
√
M

)

. As is known, the ABER of traditional MIMO sys-

tem with M transmit antennas and 1 receive antenna under Rayleigh fading is

CmSINR
−C′mM . This shows different ABER behaviour in massive MIMO systems,

where the ABER decreases exponentially with respect to
√
M . If using the diver-

sity gain definition of traditional MIMO system [29], the massive relay network

will have infinite diversity gain.

Besides, comparing (5.38) with (5.35), we see that the ABER and the outage

probability has the same scaling with P and Q respectively. Thus P , Q scaling

analysis for the outage probability also applies to the ABER. In addition, if the

threshold is set as γth =
√

MP 4
c

4B(K−1)de(be+c3)
, the ABER equals A times the outage

probability. Thus, there is a easy transformation between the two metrics.

5.6 Simulation Results

In this section, simulation results are shown to verify the analytical results. In Fig.

5.1, the average SINR scaling with the number of relay antennas M is shown for

the five cases in Table 5.1. In the table, �√M� is the floor function that rounds
√
M

towards minus infinity. From the settings of Pc, P , Q, and K, we can find their

scales with M and then the rs values are calculated based on the SINR scaling law

in (5.23). The first three cases are constant SINR cases. In Case 4 and Case 5, the
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Pc P Q K rs
Case 1 0.8 10 10 M

10
0

Case 2 100
M

10 10 10 0
Case 3 0.8 10 1√

M
�√M� 0

Case 4 0.8 1 1 20 1
Case 5 10√

M
10 10 20 1

2

Table 5.1: Different cases for Fig. 5.1
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Figure 5.1: Average SINR scaling for different number of relay antennas M for
different scenarios.
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Figure 5.2: Achievable rate for different number of sources. M = 200 or 100,
P = Q = 0 dB, Pc =

1
2
.

average SINR increases linearly with the relay antenna number, and the square root

of the relay antenna number respectively. The figure verifies our scaling law results

for different cases.

In Fig. 5.2, the average achievable rate per source-destination pair is simulated

for different number of sources with 200 or 100 relay antennas. The source and the

relay powers are set to be 0 dB. The CSI quality is set as Pc =
1
2
. From the figure,

we can see that the approximated lower bound in (5.19) is very tight. With given

number of relay antennas, the achievable rate per source-destination pair decreases

as there are more pairs.

In Fig. 5.3, for a relay network with 20 or 10 source-destination pairs and 200

relay antennas, the simulated PDF of Pi,e is shown. The CSI quality parameter is

set as Pc = 0.8. The analytical expression in (5.33) is compared with the simulated

values. We can see from Fig. 5.3 that the PDF approximation is tight for the whole

parameter range. Especially, the approximation matches good at the tail when the

interference power is large, which corresponds to the case with outage and trans-

mission error. Thus the outage probability and ABER expressions derived with the
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Figure 5.3: PDF of interference power. K = 20 or 10, Pc = 0.8, M = 200.

PDF approximation will be tight.

Fig. 5.4 and Fig. 5.5 are on the outage probability for different number of

sources and different number of relay antennas. The analytical expressions in (5.34)

and (5.35) are compared with the simulated values. The transmit powers of the users

and the relay are set as 10 dB. The CSI quality parameter is Pc = 0.95. For Fig. 5.4,

the number of relay antennas is 200, and the SINR threshold is 6 dB. For Fig. 5.5,

the number of sources is 8 or 12 and the SINR threshold is 8 dB. We can see that

our analytical result in (5.34) and the further approximation in (5.35) are both tight

for all the simulated parameter ranges.

In Fig. 5.6 and Fig. 5.7, the ABER for BPSK is simulated. The analytical

approximation in (5.38) is compared with the simulated values. Fig. 5.6 is for

different number of sources with M = 200 or 300, P = Q = 10 dB and Pc = 0.95.

Fig. 5.7 is for different number of relay antennas with K = 8 or 12, P = Q = 10

dB and Pc = 0.95. From the figures, we can see that the analytical results in (5.38)

is tight for the simulated values.
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Figure 5.4: Outage probability for different number of sources. M = 200, P =
Q = 10 dB, γth = 6 dB, and Pc = 0.95

5.7 Conclusion

In this chapter, we analyzed the performance of a massive MIMO relay network

with multiple source-destination pairs under MRC/MRT relaying with imperfect

CSI. Firstly, the performance scaling law is analyzed which shows that the scale of

the sum-rate is decided by the summation of the scale of the CSI quality plus the

smaller of the per-pair transmission power of the two hops. With this result, typical

scenarios and trade-off between parameters are shown. Our scaling law is com-

prehensive as it takes into considerations many network parameters, including the

number of relay antennas, the number of source-destination pairs, the source trans-

mit power and the relay transmit power. Then, a sufficient condition for asymp-

totically deterministic SINR is derived, based on which new network scenarios for

systems with the asymptotically deterministic property are found and trade-off be-

tween the parameters is analyzed. At last, we specify the necessary and sufficient

condition for networks whose SINR increases linearly with the number of relay an-

tennas. In addition, our work shows that for this case the interference power does

88



200 210 220 230 240 250 260 270 280 290 300
10−4

10−3

10−2

10−1

100

Number of relay antennas, M

O
ut

ag
e 

pr
ob

ab
ili

ty

Simulated values
Analytical result in (5.34)
Approximation in (5.35)

K=8

K=12

Figure 5.5: Outage probability for different number of relay antennas. K =
8 or 12, P = Q = 10 dB, γth = 8 dB, Pc = 0.95.
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Figure 5.6: ABER of BPSK for different number of users K. M = 200 or 300, P =
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8 or 12, P = Q = 10 dB, Pc = 0.95.

not become asymptotically deterministic and derived the PDF of the interference

power in closed-form. Then the outage probability and ABER expressions for the

relay network are obtained and their behaviour with respect to network parameters

are analysed. Simulations show that the analytical results are tight.

∼
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Chapter 6

SVD-Based Rank Detection for

Reduced-Rank Channel Matrix

In practical large-scale relay systems, the channel matrices often have reduced rank.

Reliable detection of the channel rank is essential in achieving the significant gain

provided by the configuration. Existing work on the channel rank detection assume

a static channel model, so the proposed methods only consider the noise distribu-

tions while the distributions of the channels are not considered. In this chapter,

we employ a random channel model and propose three threshold-based rank de-

tection methods which take into account the distributions of both the channels and

the noises. In our first algorithm, following existing single-threshold rank detection

scheme, we rigorously derive an analytical lower bound on the correct rank detec-

tion probability and propose a systematic threshold selection method by maximiz-

ing the lower bound. Then we propose two new rank detection methods which use

multiple thresholds, where each threshold corresponds to one possible rank value.

The thresholds are optimized based on the derived lower bounds on the rank detec-

tion probability for different channel rank values. The convergence and complexity

of the proposed algorithms are analyzed. Simulation results on the correct rank de-

tection probability of the proposed schemes are provided to show their advantages

over existing schemes.
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6.1 Introduction

As introduced in Chapter 2, the MIMO or relay channel usually has reduced rank,

especially when the dimension is large. An important issue for the reduced-rank

MIMO/relay system is the channel rank detection and channel matrix estimation,

since most MIMO/relay transceiver techniques require channel state information

(CSI) at the transmitter side and/or the receiver side for smart signal processing.

For example, in the MIMO multiplexing transmissions, the transmitter should align

multiple data-streams with the eigenspaces of the channel. To achieve this, pre-

cise estimates on the channel rank and channel matrix are needed. This chapter is

concerned with the channel rank detection, which is an important part of channel es-

timation. Thus, in what follows, we explain related literature on channel estimation

and rank detection.

Some existing work on MIMO channel estimation focus on full-rank MIMO

channel matrices with independent or correlated entries [97–100]. Their channel es-

timation schemes are entry-based, where the unknown channel matrix is parametrized

by its entries. However, when the channel matrix has reduced rank, the num-

ber of its entries is larger than its true dimension, which means that the channel

entries are not independent. In this case, entry-based parametrization becomes

inefficient. A more sensible approach is to use SVD-based channel estimations

[19–24, 26, 101, 102]. It was shown in [19, 102] that the ML estimation of the

reduced-rank MIMO channel with Gaussian noise is the truncated SVD method. In

truncated SVD, if the channel rank is known to be r, the MIMO channel matrix is

estimated from the SVD of the received signal-plus-noise matrix, by keeping the

largest r singular values and their corresponding singular vectors. While the trun-

cated SVD method traces back to 1930’s [103], it was rediscovered in [19, 102] for

MIMO channel estimation and further improved to reduce the MSE of the estima-

tion [20–24]. One improved scheme is shrinkage-and-threshold SVD, where the

truncated singular values are further shrunk to remove the noise effect.

In both truncated SVD and shrinkage-and-threshold SVD, the channel estima-

tion accuracy largely depends on the correct truncation of the singular values, which
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is the rank detection of the channel matrix. Thus correct rank detection can im-

prove the channel estimation quality, which is crucial for advanced MIMO and

relay techniques such as beamforming and PA among data-streams. Furthermore,

for a MIMO channel matrix, the rank is the indicator of how many data streams can

be spatially multiplexed on the channel, and the data streams are represented by

the singular values and the corresponding singular vectors. Similarly, for a multi-

user system with multiple antennas at the base station or relay station, the rank of

the channel matrix from all users to the station determines how many users can be

served by the station within the same time-frequency bandwidth. Thus, accurate

channel rank detection is an important part of channel estimation and is essential

for MIMO and relay systems.

Various rank detection methods are available in the literature [19–24, 26]. In

[19], a minimum description length-based rank detection was used for MIMO chan-

nels. A threshold is calculated at each instance of the channel to minimize the min-

imum description length. The minimum description length-based detection aims at

minimizing the MSE. It also requires a large number of samples to work. In [26],

several rank detection methods were proposed for a real-valued channel matrix. In

the proposed method, the singular values or functions of singular values are com-

pared with a threshold for rank detection. Lower and upper bounds on the threshold

selection were discussed. [20] considered both the MIMO channel rank detection

and the shrinkage of the singular values for the channel estimation. The rank de-

tection scheme is also threshold-based, where two threshold selection methods are

proposed. In the first method, the threshold parameter and the shrinkage parame-

ter are jointly optimized for each channel realization to minimize a Stein unbiased

risk estimate (SURE) of the MSE of the MIMO channel estimation. In the second

method, the threshold is calculated from the distribution of the largest singular value

of the noise matrix. In [21–24], for asymptotic MIMO channels where both dimen-

sions of the channel matrix approach infinity with a fixed ratio, simple closed-form

thresholds were derived for threshold-based rank detection.

In this chapter, we propose a threshold optimization method for the traditional

single-threshold-based rank detection scheme and two new multiple-threshold-based
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rank detection schemes. For the threshold optimization of the traditional single-

threshold scheme, we first derive a closed-form lower bound on the probability of

correct rank detection based on the a-priori channel rank distribution, then the op-

timal threshold is decided via the maximization of the lower bound. For the two

new multiple-threshold schemes, different thresholds are used for different possi-

ble rank values, and each threshold is derived by maximizing the lower bound on

the probability of correct rank detection when a specific rank value is assumed.

Properties (e.g., well-posedness, convergence, complexity) of the two new schemes

are discussed. Simulation results on the probability of correct rank detection of

the proposed schemes are shown and their advantages over existing schemes are

discussed.

Our model, problem formulation, and methods differ from existing ones in the

following major aspects. First, we assume a random channel matrix where the

channel entries follow Rayleigh flat-fading and the distribution of the channel co-

efficients is taken into account in the threshold optimization. On the contrary, in all

existing work, the channels are assumed to be static and the distribution of the chan-

nel matrix is not used in the rank detection designs [19–26]. Also, in our model,

a general training length and unitary training matrix are considered, while most

existing work (e.g., [19–24, 26]) apply to identity training matrix only, where the

training length equals the number of transmit antennas. Finally, in this work, we

use the probability of correct rank detection as the performance measure and op-

timization objective, while existing work (except [26]) targeted at minimizing the

MSE of the MIMO channel estimation [19–24].

In what follows, we clarify the major difference of our channel rank detec-

tion and channel estimation problem to the reduced-rank filter design problem in

[25, 105, 109–115]. The goal of channel estimation is to estimate the channel ma-

trix itself given limited training time. In communications, channel estimation is

usually required in the transceiver designs to optimize the communication perfor-

mance such as outage probability and BER. For the filter design, the goal is to obtain

a precise estimate of the signals by filtering the observations, and usually the MSE

is used as the design criterion. Regardless of the channel rank, a reduced-rank filter
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can be used to lower the computational complexity and required training length.

Naturally, precise channel rank detection and channel estimation can be helpful in

reduced-rank filter design, but it is not a necessary step in filter design. Also the

optimal rank for the filter may not be the true rank of the channel matrix.

The rest of this chapter is organized as follows. In Section 6.2, the reduced-rank

channel model, the truncated SVD-based channel estimation, and the rank detection

problem are presented. In Section 6.3, for the traditional single-threshold-based

rank detection, we derive a lower bound on the probability of correct rank detection

and propose to optimize the threshold via the maximization of the lower bound.

Two new rank detection algorithms based on multiple thresholds corresponding to

different possible rank values are introduced in Section 6.4, as well as discussions

on their properties. Simulation results on the probability of correct rank detection

in Section 6.5. Section 6.6 contains the conclusions.

6.2 Reduced-Rank Channel Model and Rank Detec-

tion Problem

6.2.1 Reduced-Rank Channel Model

We consider the estimation of the source-to-relay channel in a multi-user large-scale

relay network, where there are M single-antenna sources and one relay with N

antennas. Note that, the channel of relay-to-destination link can be estimated using

the same method if channel reciprocity is assumed. The source-to-relay channel

can be seen as a virtual MIMO channel. The channels are assumed to be flat-fading

and block-fading. Denote the M × N channel matrix as H with its (i, j)-th entry

being the channel from the ith transmit antenna to the jth receive antenna. Define

L � max{M,N}, (6.1)

K � min{M,N}. (6.2)

Denote the rank of the channel matrix as r, i.e., rank(H) = r. If r = K, the

channel has full rank. If r < K, the channel has reduced rank. For a reduced-rank

channel, the number of degrees of freedom in the channel matrix is less than its
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dimension. A rank analysis on typical propagation environments shows that MIMO

channels often experience rank deficiency [82,116–119]. For example, in [116], the

rank distribution of 8×8 MIMO channels under four scenarios, namely generalized

typical urban, generalized bad urban, generalized hill terrain, and generalized rural

area, are reported. For all four scenarios, the probability that the channel matrix

has full rank is zero. Especially for the scenarios of generalized typical urban and

generalized hill terrain, the rank of the 8 × 8 MIMO channel is always no higher

than 4.

A typical reduced-rank channel model is the finite scatterers/dimensional chan-

nel [82, 119], where the number of (clusters of) scatterers is finite. The rank of

the channel matrix is not only constrained by the number of transmit and receive

antennas, but also constrained by the number of scatterers. In the finite scatterers

model in [119], under the assumptions that both the transmit and receive elements

are isotropic and uncoupled and the signal bandwidth is narrow compared with the

overall channel bandwidth, the channel matrix can be described as the product of a

full-rank steering matrix and a propagation matrix. The propagation matrix models

independent fast fading, geometric attenuation, and shadow fading. Following the

model in [119] and the rank factorization in [25, 116], we assume that the channel

matrix has the following decomposition:

H � AB, (6.3)

where A is an M × r full-rank matrix and B is a r × N full-rank rectangular uni-

tary matrix. In this work, we focus on Rayleigh fading by assuming that entries of

A are i.i.d. and follow CSCG distribution, with zero-mean and unit-variance, i.e.,

aij ∼ CN (0, 1), where aij is the (i, j)-th entry of A. It can thus be shown straight-

forwardly that each entry of H has CSCG distribution and hi,j ∼ CN (0, ‖bj‖2F ),
where bj is the j-th column of B. It is noteworthy that the rank detection schemes

proposed in this paper are not constrained to Rayleigh distribution and can be ex-

tended to more general channel fading models. The schemes are also not con-

strained to the unitary B case and can be extended to any general deterministic B

matrix.
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6.2.2 Training Model

To estimate the channel matrix, a training process is needed. Denote the length

of the training period as T and average transmit power used for each training time

slot as P . During the training period, the transmitter sends
√
PT/MS, where S is

the T ×M pilot matrix. For the observability of the channel rank detection model

with respect to all possible rank values, we assume that T ≥ M , which guarantees

that the number of independent equations in the training equation is no less than

the number of independent unknown coefficients in the channel matrix. We further

assume that S is unitary, i.e., S∗S = IM , which means that the pilot vector sent

from each transmit antenna is orthogonal to each other and has the same energy.

Denote the T ×N matrix received at the receiver as Y. We have

Y =

√
PT

M
SH + W, (6.4)

where W is the T ×N noise matrix. Entries of the noise matrix are assumed to be

i.i.d. CSCG random variables with zero-mean and unit-variance. The pilot and the

noise are assumed to be independent to the channel matrix, which applies to most

practical systems.

6.2.3 SVD-Based Channel Estimation and Rank Detection Prob-

lem

The channel estimation problem is to estimate H from the observation Y. To do

this, we first transform the training equation in (6.4) to obtain a more direct rela-

tionship between the channel and the (transformed) received signal. Define

Ỹ �
√

M

PT
S∗Y, (6.5)

which is the M × N transformed received signal matrix. By left-multiplying both

sides of (6.4) with
√

M
PT

S∗, we have

Ỹ = H + W̃, (6.6)

where

W̃ �
√

M

PT
S∗W. (6.7)
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Since S∗ is an M × T unitary matrix, W̃ is an M × N random matrix. Entries

of W̃ can be shown to be i.i.d. CSCG random variables with zero-mean and their

variances are M/(PT ). From (6.6), Ỹ is a noisy observation of the channel matrix

H with white Gaussian noises.

Let Ỹ = Pdiag{σ1, · · · , σK}Q∗ be the SVD of Ỹ, where P and Q are M ×K

and K × N unitary matrices and σi’s are in non-increasing order, i.e., σ1 ≥ · · · ≥
σK ≥ 0. If the rank of H is known to be r, the ML estimation of H has been proved

to be the truncated SVD of Ỹ given as follows [103]:

Ĥ = Pdiag {σ1, · · · , σr, 0, · · · , 0}Q∗. (6.8)

In (6.8), an estimation with rank-r is obtained by keeping the subspaces with

respect to the r strongest singular values of Ỹ. Subspaces with respect to the K− r

smallest singular values are seen as the noise effect and are ignored. This process

guarantees that the estimator has the same rank with the real channel.

On the other hand, if the channel rank is unknown or the channel has full rank,

an entry-based ML estimation can be obtained as [97]

Ĥentry=

√
M

PT
(S∗S)−1S∗Y. (6.9)

The entry-based estimation leads to a full-rank matrix. When r = K, i.e., the chan-

nel has full rank, the SVD-based estimation and entry-based estimation are equiv-

alent. When r < K, i.e., the channel has reduced rank, the entry-based estimation

will contain subspaces due to the noise effect only, thus have worse performance.

Therefore, the rank detection is an essential problem for the SVD-based esti-

mation. Wrong rank detection will lead to channel estimation error. In addition, it

can degrade the performance of the communication. If the detected rank is smaller

than r, some singular values and the corresponding singular spaces existing in the

channel matrix may be detected as the noise effect only, and the subspaces will

be lost in the estimated channel. On the other hand, if the detected rank is larger

than r, some singular values and the corresponding singular spaces which do not

exist in the channel matrix but appear in Ỹ because of the noise disturbance, may

be detected as part of the channel matrix. In the communication, information and
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power will be allocated to such subspaces, which cause loss of information and

wasting of power since the sub-spaces do not exist in the channel. Our problem of

this chapter is to detect the channel rank from the received signal Y, or the trans-

formed received signal Ỹ. It is noteworthy that the rank detection does not require

extra training since the same observations can be used for both rank detection and

channel estimation.

6.3 Single-Threshold-Based Rank Detection

We can detect the rank of H from the singular values of Ỹ. Threshold-based al-

gorithm appears to be a natural and common strategy [26], where the rank of H is

detected as the number of singular values of Ỹ that are larger than the threshold.

With this scheme, singular values of Ỹ that are smaller than the threshold are seen

as the effect of the noise only; while singular values of Ỹ that are larger than the

threshold are seen as the effect of non-zero component of the channel matrix with

small noise disturbance.

Let εth be the threshold. Recall that σi’s are the singular values of Ỹ in non-

increasing order. The single-threshold-based rank detection scheme, denoted as

RD1, can be represented as follows:

RD1 : r = max
σi≥εth

{i}. (6.10)

If no singular value is larger than εth, i.e., σ1 < εth, the rank detection result is set

to be 1 since the rank of a MIMO channel cannot be zero. The algorithm is given

in Algorithm 2.

1: for (i = K : 1) do

2: if σi ≥ εth then

3: The rank of H is detected as i; break;
4: if εth > σ1 then

5: The rank of H is detected as 1.
Algorithm 2: Rank detection algorithm with single threshold

This single-threshold-based rank detection idea is not new and was proposed

and used in [19–24, 26]. But the major challenge of using this scheme for rank
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detection lies in the selection of the threshold εth. Appropriate selection of the εth

value is crucial to the detected result.

In this section, we first derive a lower bound on the probability of correct detec-

tion in Section 6.3.1, then propose a systematic method for the threshold selection

based on maximizing the lower bound in Section 6.3.2, and finally discuss the dif-

ference of the proposed method with existing ones in Section 6.3.3.

6.3.1 Derivation of a Lower Bound on the Conditional Proba-

bility of Correct Rank Detection

To find a systematic way of optimizing the threshold, we first derive a lower bound

on the probability of correct detection conditioned on an arbitrary rank value of the

channel matrix. The lower bound takes into consideration the system dimensions

(e.g., T , M , and N ), training power P , as well as the distributions of the channel

coefficients and the noises. It will be used in the threshold optimization in later

sections.

To help presenting our results, we first introduce the following definitions. De-

fine the K×K matrix F (1)(μ) and the r× r matrix F (r)(μ), whose (i, j)-th entries

are:
[
F (1)(μ)

]

i,j
� γ(L−K + i+ j − 1, μ), (6.11)

[
F (r)(μ)

]

i,j
� Γ(M − r + i+ j − 1, μ), (6.12)

where γ(k, u) and Γ(k, u) are the lower and upper incomplete gamma functions

[104], respectively.

The following proposition on the probability of correct rank detection under the

condition that the rank of the MIMO channel matrix is r (for 1 ≤ r ≤ K) is derived.

Proposition 7. If the rank of H is r, the probability of correct rank detection of

Algorithm 2 with threshold εth has the following lower bound:

φr(εth) � C1C2 · det
(
F (r)

(
4ε2th

))
det

(

F (1)

(
PT

M
ε2th

))

, (6.13)

where

C1=
r∏

i=1

[(M − i)!(r − i)!]−1 , C2=
K∏

i=1

[(L− i)!(K − i)!]−1 . (6.14)
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Proof. Recall that σi’s are the singular values of Ỹ in non-increasing order, i.e.,

σ1 ≥ · · · ≥ σr ≥ · · · ≥ σK ≥ 0. Let λi and γi be the singular values of H and W̃,

respectively, both in non-increasing order, i.e, λ1 ≥ · · · ≥ λr ≥ 0 and γ1 ≥ · · · ≥
γr ≥ · · · ≥ γK ≥ 0. Since rank(H) = r, we have λr+1 = · · · = λK = 0.

We will first show that when λr ≥ 2εth ≥ 2γ1, our algorithms will detect the

rank of H as r, which is the correct detection. According to [26, 120], from (6.6),

we have for all i = 1, · · · , K ,

|σi − λi| ≤ γi ≤ γ1. (6.15)

By noticing that λr+1 = 0, from (6.15) with i = r + 1, we have σr+1 ≤ γ1. Thus

when λr ≥ 2εth ≥ 2γ1, we have σr+1 ≤ γ1 ≤ εth. Also from (6.15) with i = r,

σr ≥ λr − γ1 ≥ 2εth − γ1 ≥ εth. By noticing that σi’s are in non-increasing order,

we can conclude that the rank detection result of Algorithm 2 is r, which is the

correct detection.

Thus, a lower bound on the probability of correct detection is obtained as fol-

lows,

P(correct detection|rank(H) = r)

≥P (λr ≥ 2εth ≥ 2γ1|rank(H) = r)

=P (λr ≥ 2εth & γ1 ≤ εth|rank(H) = r)

=P (λr ≥ 2εth|rank(H) = r)P(γ1 ≤ εth), (6.16)

where the last step is because that γ1, the largest eigenvalue of W̃, is independent

of both λr and the rank of H.

Recall that our channel is modelled as H = AB, where the M × r matrix A

has independent entries following CN (0, 1) and B is a r×N unitary matrix. Then

HH∗ = ABB∗A=AA∗, which is an M ×M central Wishart matrix with degree

r. The singular values of H are the square roots of the eigenvalues of HH∗. The

CDF of the smallest non-zero eigenvalue of HH∗ is known as follows [104]:

Fωr(μ) = 1− C1 · det(F (r)(μ)), (6.17)
101



where F (r) and C1 are defined in (6.12) and (6.14), respectively. Thus,

P (λr ≥ 2εth|rank(H) = r) = 1− Fωr(4ε
2
th) = C1 · det(F (r)(4ε2th)). (6.18)

Next, we calculate P(γ1 ≤ εth). Recall that entries of W̃ are i.i.d. following

CN (0,M/PT ). Thus, (PT/M)W̃W̃∗ is an M × M central Wishart matrix with

degree N . The CDF of its largest eigenvalue is known to be [104]

Fω1(μ) = C2 · det(F (1)(μ)), (6.19)

where F (1) and C2 are defined in (6.11) and (6.14), respectively. Therefore,

P(γ1 ≤ εth) = C2 det

(

F (1)

(
PT

M
ε2th

))

. (6.20)

By using (6.18) and (6.20) in (6.16), the lower bound in (6.13) is obtained.

6.3.2 Threshold Optimization

Assume that the a-priori probability mass function of the channel rank, P(rank(H) =

r) for r = 1, · · · , K, is known. Define

φ(εth) � C2 det

(

F (1)

(
PT

M
ε2th

))

·
K∑

r=1

C1 det
(
F (r)

(
4ε2th

))
P(rank(H) = r).

(6.21)

Given Algorithm 2 and threshold εth, the overall probability of correct rank detec-

tion can be lower bounded by φ(εth). The derivations are as follows.

P(correct detection)

=
K∑

r=1

P(correct detection|rank(H) = r)P(rank(H) = r)

≥
K∑

r=1

φr(εth)P(rank(H) = r) (6.22)

=C2 det

(

F (1)

(
PT

M
ε2th

)) K∑

r=1

C1 det
(
F (r)

(
4ε2th

))
P(rank(H) = r),(6.23)

where in (6.22) and (6.23), the results in Proposition 7 have been used.

We thus choose the threshold εth so that the lower bound is maximized, i.e.,

ε∗th = argmax
εth

φ(εth). (6.24)
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The optimization problem in (6.24) is one-dimensional and can be optimally

solved via exhaustive grid search. But there is a natural tradeoff between preci-

sion and computational complexity. For low computational complexity, in solving

(6.24), we can find a zero point of d lnφ(εth)/dεth via bisection method and use it

as the threshold. This low complexity method can result in sub-optimality when

d lnφ(εth)/dεth has multiple zero-points.

In this section, for the traditional single-threshold-based rank detection, we rig-

orously derived an analytical lower bound on the correct rank detection probability,

based on which a systematic threshold optimization scheme that maximizes this

lower bound is proposed. The derived optimal threshold is adaptive to the num-

ber of transmit and receive antennas of the MIMO channel, the training length and

power, as well as the distributions of the channel coefficients and the noise. Mean-

while, it is independent of the instantaneous channel values or singular values of the

channel matrix. Thus the threshold optimization can be conducted off-line, which

largely reduces the delay of channel rank detection in real applications.

It is noteworthy that the proposed method is not limited to Rayleigh fading chan-

nel model but can be extended to other distributions. Our lower bound calculation

and threshold optimization need the distributions of the singular values of the chan-

nel matrix. For other channel fading models, even if no closed-form expressions

for the distributions of the singular values are available, numerical estimations of

the singular value distributions can be obtained via simulation, and our method can

still be used. Especially as our methods can be conducted off-line, the computa-

tion complexity is not an issue in the real-time channel rank detection and channel

estimation within a coherence interval of the channel.

Notice that in the proof of Proposition 7, we can loose our condition for the

lower bound λr ≥ 2εth ≥ 2γ1 to λr ≥ 2εth ≥ 2γr without affecting the valid-

ity of the proof. With this change, another lower bounds on the conditional and

overall probabilities of correct rank detection, denoted as φ̃r(εth) and φ̃(εth), can be
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obtained as follows:

φ̃r(εth) � P (λr ≥ 2εth|rank(H) = r)P(γr ≤ εth),

φ̃(εth) �
K∑

r=1

φ̃r(εth)P(rank(H) = r).

Since γr < γ1, it can be shown straightforwardly that φ̃r(εth) > φr(εth) and

φ̃(εth) > φ(εth), which means that the new lower bounds are tighter, and we

may obtain a better threshold by maximizing φ̃(εth). However, the expression for

P(γr ≤ εth) is much more complex than P(γ1 ≤ εth). Notice that it is the rth

largest singular value of W̃, not the smallest singular value since W̃ has full rank

with probability 1. Thus the calculation of the derivative of φ̃(εth) is more involved,

and the maximization of φ̃(εth) has higher computational complexity. Our simula-

tions show that, the use of φ̃(εth) improves the performance but the improvement

is moderate. Thus, balancing the performance and computation complexity, we

choose φ(εth) for our algorithms.

6.3.3 Difference to Existing Single-Threshold Schemes

In this subsection, we explain the difference of our work with existing results on

threshold-based rank detection in [20, 22, 23, 26].

First, the research in [20,22,23,26] are for real-valued channel matrix and real-

valued noise matrix. Also, they consider the special case of T = M and S = Im.

Our work applies for complex-valued channel matrix and complex-valued noise

matrix, a general training length T where T ≥ M , and unitary T ×M pilot S. In

what follows, we explain existing threshold selections and calibrate the results to

our model and notation.

In [26], lower and upper bounds on the threshold selection were provided. No

specific threshold value or optimization method was given.

In [22] and [23], the channel rank detection and channel estimation problem

were considered jointly for the asymptotic case, where the channel matrix dimen-

sions approach to infinity but with a fixed ratio. The threshold for the rank detection

was chosen to minimize the MSE of the truncated SVD channel estimation. The
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rank detection follows the traditional single-threshold algorithm in Algorithm 2.

After calibrating their results to our model, the threshold proposed in [23] is

εth,[20] =

√
MN

PT

√

2

(
K

L
+ 1

)

+
8K

K + L+
√
K2 + 14KL+ L2

,

and the threshold proposed in [22] is

εth,[19] =

(

1 +

√
K

L

)√
MN

PT
.

In [20], the single-threshold Algorithm 2 was used and the threshold selection

was based on the minimization of the SURE of the MSE of the channel estima-

tion. Two methods were proposed. The first method needs numerical threshold

optimization and the optimization problem changes with the instantaneous channel

realization. Thus, the threshold optimization needs to be repeated for every coher-

ence interval, impairing its practicality and efficiency. As in the second method, an

analytical threshold was proposed. After calibrated to our model, the threshold is

εth,[22] = F−1
W̃1

(

1− 1√
logL

)

,

where F−1
W̃1

(x) represents the inverse function of the CDF of the largest singular

value of the noise matrix W̃ in (6.7).

In all three aforementioned works, the proposed threshold selection methods de-

pend on the distribution of the noise matrix only, where [22,23] used the asymptotic

behaviour of the singular values and singular vectors of the noisy observation ma-

trix when the dimensions of the channel matrix approach infinity; and [20] used the

distribution of the largest singular value of the noise matrix. It was assumed in their

work that the channel matrix is deterministic and their results cannot take advan-

tage of the distribution of the channel matrix. On the contrary, we adopt a random

channel model and our threshold selection takes into account both the distribution

of the channel coefficients and the distribution of the noises.

6.4 Multiple-Threshold Rank-Detection Methods

To use the rank detection scheme in Algorithm 2 with the proposed threshold in the

previous section, the a-priori probabilities of the channel rank need to be known.
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However, for some wireless communication systems, the channel rank distribution

may not be precisely known due to the mobility and complexity of the signal prop-

agation environment. In this case, a rank detection algorithm that does not rely

on the channel rank distribution is required. In addition, the lower bound on the

probability of correct rank detection in (6.21) provides the average rank detection

performance over all possible rank values. It may not be sharp enough for one

channel realization with a specific rank value. Thus, in this section, we propose two

improved rank detection algorithms which do not need the rank distribution.

6.4.1 Rank Detection Algorithm with Multiple Thresholds

Instead of using only a single threshold for the rank detection as in Algorithm 2, we

propose to use K thresholds ε∗th,1, ε
∗
th,2, · · · , ε∗th,K , each corresponding to one of the

K possible rank values, 1, · · · , K. These thresholds are optimized by maximizing

the lower bound on the probability of correct rank detection conditioned on the

channel rank value, i.e.,

ε∗th,i = argmax
ε

φi(ε), (6.25)

where φi(ε) is defined in (6.13).

ε∗th,i serves as the rank detection threshold when the channel rank is i, and ε∗th,i+1

serves as the rank detection threshold when the channel rank is i + 1. Recall that

σ1, · · · , σK are ordered singular values of Ỹ. Thus, it is natural to detect the channel

rank as i when both the following two conditions are satisfied C1) σi ≥ ε∗th,i and

C2) σi+1 < ε∗th,i+1. To help the presentation, we define the following set:

I = {i|σi ≥ ε∗th,i & σi+1 < ε∗th,i+1, i = 1, · · · , K − 1},

which is the set of rank detection values that satisfy the two conditions. Since it is

possible that I has 2 or more elements, for the uniqueness of the detection result,

we detect the rank as the largest index that satisfies the two conditions. In other

words, the detection rule, called RD2, can be represented as follows:

RD2 : r = max
i∈I

{i}. (6.26)

To guarantee the existence of a rank detection result, we also need to consider the

case that there is no element in I, i.e., I = ∅. The following claim is proved.
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Claim 1. For two sequences of real numbers a1, · · · , aK and b1, · · · , bK . If there

exists no integer i (for 1 ≤ i ≤ K − 1) such that ai ≥ bi and ai+1 < bi+1, one of

the following two cases must be true:

1. there exists an integer D, 1 ≤ D ≤ K, such that ai < bi for i < D, and

ai ≥ bi for i ≥ D

2. ai < bi for all i.

Proof. Assume that there exists no integer i (for 1 ≤ i ≤ K − 1) such that ai ≥ bi

and ai+1 < bi+1. We consider the two cases aK < bK and aK ≥ bK separately.

When aK < bK , if there exists an i such that ai ≥ bi, let imax be the largest i

satisfying ai ≥ bi. We have aimax ≥ bimax and aimax+1 < bimax+1 , which contradicts

the assumption. Thus ai < bi for all i.

When aK ≥ bK , if there exists an i such that ai < bi, let imax be the largest i

satisfying ai < bi. Then, we will have ai < bi for all i ≤ imax, based on the same

reasoning as above. In this case, D = imax+1. When there does not exist an i such

that ai < bi, meaning ai ≥ bi for all i, D = 1.

Based on Claim 1, when I = ∅, we have either σi < ε∗th,i for i < D and

σi ≥ ε∗th,i for i ≥ D (1 ≤ D ≤ K), in which case the rank detection result

should be K; or σi < ε∗th,i for all i = 1, · · · , K, in which case the rank detection

result should be 1, which is the lowest possible rank for the random Rayleigh-fading

channel matrix H.

Given these discussions, our second rank detection scheme with multiple thresh-

olds is described in Algorithm 3.

6.4.2 Iterative Rank Detection Algorithm with Multiple Thresh-

olds

In our third rank detection algorithm, we iteratively use the K thresholds ε∗th,1, · · · ,

ε∗th,K defined in (6.25) to refine our rank detection threshold and detection result. In

each iteration, single threshold-based rank detection is performed and the threshold

value is set using the rank detection result of the previous iteration. The iteration
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1: while (i ≤ K − 1) do

2: if σi ≥ ε∗th,i and σi+1 < ε∗th,i+1 then

3: The rank of H is detected as i; break;
4: i = i+ 1;
5: if (i == K) then

6: if σK ≥ ε∗th,K then

7: The rank of H is detected as K.
8: if σK < ε∗th,K then

9: The rank of H is detected as 1.
Algorithm 3: Rank detection algorithm with multiple thresholds.

ends when the rank detection result of the current iteration is the same as the result

of the previous one. More specifically, first, a rank detection result r1 is initialized,

e.g., r1 = 1, then ε∗th,r1 is used for the threshold of the next iteration. The new

rank detection result is found using Algorithm 2, that is, the rank is detected as the

maximum index i such that σi ≥ ε∗th,r1 or 1 if all singular values of Ỹ are smaller

than ε∗th,r1 . This new rank detection result is denoted as r2. If r2 �= r1, ε∗th,r2 is

used as the threshold for the next iteration, and a new rank detection result can be

obtained. The scheme is described in Algorithm 4. Please note that Lines 3-8 of

Algorithm 4 are the same as Algorithm 2.

1: r0 = 0, i = 1. Choose an integer value for r1 between [1, K], e.g., r1 = 1.
2: while ri! = ri−1 do

3: for m = K : 1 do

4: if σm ≥ ε∗th,ri then

5: ri+1 = m; break;
6: if ε∗th,ri > σ1 then

7: ri+1 = 1.
8: i = i+ 1;
9: The rank of H is detected as ri;

Algorithm 4: Iterative rank detection algorithm with multiple thresholds.

Claim 2. If ε∗th,1 ≥ ε∗th,2 ≥ · · · ≥ ε∗th,K , Algorithm 4 always converges.

Proof. We prove the convergence by contradiction. Assume that the algorithm does

not converge. From the algorithm, r2 is the new rank detection result when using

threshold ε∗th,r1 . For any initial value for r1, if r2 = r1, Algorithm 4 converges and
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the rank detection result is r1, which causes a contradiction. Next we consider the

cases r2 > r1 and r2 < r1 separately.

Case 1: r1 < r2. Recall that r2 is the new rank detection result when using

threshold ε∗th,r1 . Thus, we have either

• Case A: r2 = K and σK ≥ ε∗th,r1 ; or

• Case B: σr2 ≥ ε∗th,r1 and σr2+1 < ε∗th,r1 .

Since ε∗th,i’s are in non-increasing order, for Case A, we have σK ≥ ε∗th,r1 ≥ ε∗th,K .

Thus the new rank detection result is K, i.e., r3 = K. Then r3 = r2 and Algorithm

4 terminates, which contradicts the assumption. For Case B, since r1 < r2, we have

σr2 ≥ ε∗th,r1 ≥ ε∗th,r2 . Thus the next rank detection result cannot be smaller than r2,

i.e., r2 ≤ r3. If r2 = r3, Algorithm 4 terminates, which contradicts the assumption.

Thus r2 < r3. The same situation happens for the next iterations. So, if Algorithm

4 does not converge, we will find an infinite strictly increasing integer sequence

r1 < r2 < r3 < · · · . This contradicts the fact that rm’s are in the range of [1, K].

Case 2: r1 > r2. Similarly, we have either Case A (r2 = 1 and σ1 < ε∗th,r1) or

Case B listed above. For Case A, we have σ1 < ε∗th,r1 ≤ ε∗th,1. Thus the new rank

detection result is 1, i.e., r3 = 1 and Algorithm 4 terminates, which contradicts the

assumption. For Case B, since r1 > r2, we have σr2+1 < ε∗th,r1 ≤ ε∗th,r2 . Thus

the next rank detection result cannot be larger than r2, i.e., r3 ≤ r2. If r2 = r3,

Algorithm 4 terminates, which contradicts the assumption. Thus r2 < r3. The same

situation happens for the next iterations. So, if Algorithm 4 does not converge, we

will find an infinite strictly decreasing integer sequence r1 > r2 > r3 > · · · . This

contradicts the fact that rm’s are in the range of [1, K].

Claim 2 shows that when the thresholds corresponding to the K rank values

are in non-increasing order, Algorithm 4 is guaranteed to converge. Also, from

the proof of Claim 2, we can see that the convergence is guaranteed within K it-

erations. Our limited simulation results indicate that the algorithm converges very

fast (within 2-3 iterations). Intuitively, as ε∗th,i is the threshold when the channel

rank is i and the singular values are non-increasingly ordered, it is natural to have
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ε∗th,1, ε
∗
th,2, · · · , ε∗th,K in non-increasing order. However, we cannot prove this ana-

lytically. When violation of the ordering happens on one threshold, we can simply

reset the threshold to be the average of the one before and the one after to fix the

ordering problem and have guaranteed convergence.1

Although the convergence of Algorithm 4 is guaranteed, we cannot not guar-

antee the uniqueness of the rank detection solution with respect to different ini-

tial values for r1. In other words, for different initial rank values, the algorithm

may converge to different solutions. An example is as follows. Assume that

σ1 > ε∗th,1 > σ2 > ε∗th,2 > · · · > σK > ε∗th,K . Then the final rank detection

result of Algorithm 4 will equal to r1 for any initial r1-value.

6.4.3 Discussion on Complexity

The computational complexity of Algorithms 3 and 4 is composed of two parts: the

calculations of ε∗th,1, · · · , ε∗th,K and the rank detection part.

The optimization of ε∗th,i only depends on the dimensions of the channel matrix

M and N , the training time T , and the training power P . It is independent of

the channel realization of each coherence interval. Thus the optimization can be

conducted off-line. Further, the following lemma is proved which can be used to

reduce the computational complexity of the optimization.

Lemma 5. The function φr(εth) in (6.13) is a log-concave function of εth.

Proof. For the Hermitian matrices F (1)(μ) and F (r)(μ), we can show that all their

leading principal minors are positive when μ > 0 from the definitions in (6.11),

(6.12), and the CDFs in (6.17), (6.19). Thus the two matrices are positive definite

and det
(
F (1)

(
PT
M

ε2th
))

and det
(
F (r) (4ε2th)

)
are log-concave functions since the

determinant of a positive definite matrix is log-concave [81]. Based on [81], the

product of log-concave functions is also log-concave. This ends the proof.

Notice that ε∗th,r is the maximum point of lnφr(εth). With the log-concavity of

φr(εth), we can find ε∗th,r by finding the unique zero-point of d lnφr(εth)/dεth, using

1In simulations, the thresholds we numerically obtain from (6.25) are in non-increasing order, except
when the channel dimension gets large. When the values of M and N are large, violation of the
non-increasing order occasionally happens due to the limited precision of computer calculation.
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bisection method. The calculations are as follows. From (6.13) and the definitions

in (6.11) and (6.12), we have

lnφr(εth) = lnC1 + lnC2 + ln det
(
F (r)

(
4ε2th

))
+ ln det

(

F (1)

(
PT

M
ε2th

))

,

and

d(lnφr(εth))

dεth
= tr

[(
F (r)

(
4ε2th

))−1
Dr

]

+ tr

[(

F (1)

(
PT

M
ε2th

))−1
D1

]

, (6.27)

where Dr � d
(
F (r) (4ε2th)

)
/dεth and D1 � d

(
F (1)

(
PT
M

ε2th
))

/dεth. The (i, j)-th

entries of Dr and D1 are respectively

[Dr]i,j = −8εth exp
(−4ε2th

)
(4ε2th)

M−r+i+j−2, (6.28)

[D1]i,j = 2
PT

M
εth exp

(

−PT

M
ε2th

)(
PT

M
ε2th

)i+j−2
.

Next, we analyze the complexity of the rank detection part. For Algorithm 3,

the total number of comparisons in the worst scenario is 2K, thus the complex-

ity is O(K). For Algorithm 4, in the worst case, the number of iterations is K;

and for each iteration, at most K + 1 comparisons are needed. The overall num-

ber of comparisons is K(K + 1). Thus the complexity is O(K2). Notice that

K = min{M,N}. For large-scale relay systems with N relay antennas and M

single-antenna users, where N is large (e.g., hundreds), the complexities of the two

proposed rank detection algorithms are linear and quadratic in the number of users,

respectively.

6.5 Simulation Results

In this section, simulation results are shown for Algorithm 2 with our proposed

threshold optimization in Section 6.3, and the two new rank detection algorithms

with multiple thresholds, Algorithm 3 and Algorithm 4, proposed in Section 6.4.

We simulate the probability of correct rank detection for different average training

power P . In our simulation, channel coefficients are generated as Rayleigh fading

following the model in (6.3). S is generated as a random T ×M unitary matrix fol-

lowing the isotropic distribution. For comparison, we also show the rank detection
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Figure 6.1: Probability of correct rank detection of 7 × 50 large-scale system for
different average training power, with uniformly distributed channel rank values.

accuracy of Algorithm 2 with the threshold values proposed in [20, 22, 23]. While,

the results in [20,22,23] are for T = M and S = IM , we extend them for a general

T ≥ M and unitary S as explained in Section 6.3.3.

In Fig. 6.1, we consider the source-to-relay link of the large-scale relay system.

The receiver is a relay station where 50 antennas are deployed. The transmitters are

7 single-antenna users or one user with 7 antennas. The training length is T = 20.

The channel rank is assumed to be uniformly distributed over 1 to 7. The proba-

bilities of correct rank detection for different average training powers are shown.

We can observe from this figure that for the single-threshold algorithm, Algorithm

2, the proposed threshold has about the same performance as the threshold in [20]

for the whole training power range and are much better than the ones in [22, 23].

The proposed multiple-threshold algorithms, Algorithm 3 and Algorithm 4, achieve

considerably higher detection rate than Algorithm 2 when the training power is

higher than 8 dB. Algorithm 3 is slightly better than Algorithm 4 at high training

power, but is sightly worse at low training power.

112



6.6 Conclusion

In this chapter, we proposed novel threshold-based rank detection algorithms for

reduced-rank large-scale relay systems. Different from previous work, we consider

a system with random channel matrix model, a general training length, and unitary

training matrix. Lower bounds on the probability of correct rank detection were de-

rived using the distribution of the channel matrix and noise matrix, based on which

the rank detection thresholds were optimized. In addition to the traditional single-

threshold detection algorithm, we further proposed two low-complexity multiple-

threshold algorithms. Compared with the existing schemes, our proposed schemes

can achieve higher rank detection rate for various scenarios.

∼
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

To meet the requirement of high throughput as well as wide coverage of future

wireless networks, the novel infrastructure, large-scale relay network, which inher-

its the advantages of both relaying and massive MIMO, is investigated in this thesis.

For this network, we analyzed the performance of popular relaying schemes. The

derived neat closed-form expressions help us better understand the network perfor-

mance with respect to different network parameters. We also designed novel rank

detection algorithms that improves the rank detection accuracy for reduced-rank

channel estimation. Specific contributions are as follows.

• Chapter 3 characterizes the performance of BRS in large-scale relay net-

works. Closed-form approximations for the average SNR and ergodic capac-

ity are derived. The closed-form expressions will help to design the network

parameters to satisfy certain requirements. Besides, from the average SNR,

we conclude that the array gain of BRS is linear in the logarithm of the relay

antenna number. Simulation results show that our results are tight for a wide

range of the transmit power and relay number, and are significantly superior

to existing closed-form results.

• Chapter 4 first presents solutions to the PA problem of distributed relay beam-

forming in a multi-user multi-relay network. An optimal solution as well as

an approximate closed-form solution are proposed. Then, the user SNR and
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the network sum-rate are analyzed when the relay number is large. The anal-

ysis shows that the received SNR of each user is linear with the number of

relay antennas and also the transmit power, thus we can make the transmit

power inversely proportional to the number of relay antennas while maintain-

ing the same SNR performance. It also shows that the sum rate is independent

of the instantaneous channel coefficients, and only depends on channel vari-

ances, thus the PA problem can be conducted off-line and its complexity is

no longer a certain due to the large number of antennas.

• Chapter 5 is on the performance of MRC/MRT relaying in a multi-user mas-

sive MIMO relay network with imperfect CSI. Firstly, the performance scal-

ing law is analyzed with all parameters, including the number of sources, the

CSI quality, and the transmit powers of sources and relay, scaling with the

number of relay antennas. It is shown that the scale of the sum-rate equals

the summation of the scales of the CSI quality and the minimum of the per-

pair transmission power of the two hops. From the scaling law, the trade-off

between parameters and their effects on the performance are revealed. Then,

for the asymptotically deterministic SINR case, a sufficient condition for this

case is derived. The condition covers existing results as special cases. At

last, for linearly increasing SINR case, the sufficient and necessary condi-

tion for this case is shown be that the number of source-destination pairs, the

transmit powers of sources and relay and the CSI quality should all remain

constant. In this case, we show that the interference power does not diminish

and dominates the statistical properties of the SINR. With its PDF derived in

closed-form, the outage probability and ABER expressions for the network

are obtained. Their performance with respect to network parameters are ana-

lyzed.

• Chapter 6 investigates the threshold-based rank detection algorithms for reduced-

rank large-scale relay networks. Lower bounds on the probability of correct

rank detection are derived. Different from existing work, in the derivation the

distribution of both channel matrix and noise matrix are considered, making
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the lower bound more accurate. For the traditional single-threshold rank de-

tection, the proposed algorithm provides an optimal threshold that maximizes

the lower bound. Besides, the optimization can be conducted off-line as it is

independent of the instantaneous channel states. In addition to the single-

threshold algorithm, two novel multiple-threshold algorithms are proposed to

improve the detection accuracy. Both algorithms are proved to be well-posed

and their complexities are irrelevant with the number of relay antennas and

only in the order of the number of users. Simulation results show that the

proposed algorithms achieve higher correct rank detection rate that existing

ones.

7.2 Future Work

In the following, we outline a couple of possible future research directions.

• Further analysis on the asymptotic performance of distributed relaying schemes

with estimation error or quantized CSI.

In this thesis, we assumed perfect CSI in analyzing the distributed relaying

schemes. But, in practice, the channel estimation cannot be perfect. The

estimation error will affect the performance of the relaying schemes. Thus,

one possible extension of this thesis is to further analyze the effect of error

on the performance of distributed relaying schemes in large-scale relay net-

works. We may also explore the conditions for the effect of estimation error

to diminish asymptotically by using a large number of relay antennas.

On the other hand, as stated in Chapter 2, distributed relaying schemes re-

quire communication between relay antennas to share some channel or signal

information. To reduce this overhead, the shared information is often quan-

tized. The quantization loss in the accuracy of the shared information will

affect the performance. Future work of this thesis may analyze the effect of

quantization on the performance of large-scale relay networks, and find the

optimal quantization solution to meet certain performance requirements.
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• Investigation on novel transmission schemes for large-scale relay networks.

The large scale brings new challenges as well as opportunities for the design

of transmission schemes. In this thesis, we proposed novel rank detection

algorithms in Chapter 6 for the channel estimation of large-scale relay net-

works. In the future work, we may investigate other transmission designs to

improve the performance of the network.

One possible direction is the design of the hybrid processor. Traditional re-

laying schemes require each antenna to freely receive and send signals with

arbitrary phase and amplitude change. Thus, each antenna should connect to

an individual radio-frequency (RF) chain. A RF chain contains amplifiers,

mixers and analog-to-digital converters/digital-to-analog converters. While,

for large-scale relay networks with centralized relay systems, where all an-

tennas and RF chains are implemented on one relay station, it is often ex-

pensive to provide each antenna with a RF chain, because of its high cost

and power consumption [10]. A practical solution is to use less RF chains

than antennas elements. This design has been proposed for massive MIMO

networks [123–130], where a hybrid processor is implemented by cascading

a high-dimension RF beamformer and a low-dimension baseband processor.

The analyses in those work show that the hybrid processor can achieve the

promised gains of massive MIMO systems with less RF chains. Recently, this

hybrid processor has been applied to single-user large-scale relay networks

in [131]. But for a more practical multiple-user large-scale relay network, the

hybrid processor still needs to be designed and analyzed.
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Appendix A

Proof of Lemma 1

With the exact close-form F (x) and f(x) expressions in (3.5) and (3.6), we need to

verify that

lim
x→∞

f ′(x)[1− F (x)]

f 2(x)
= −1.

First, we derive f ′(x) as

f ′(x) = 2
√
η
(−1− η + ηPσ2

f − 2(η + 1)x
)
K0

(

2
√
x(1 + x)√
ηPσ2

f

)
2 exp

(
−x(1+η)

ηPσ2
f

)

η5/2(Pσ2
f )

3

−η + x+ η(6 + η)x+ (1 + 6η + η2)x2

√
x(x+ 1)

K1

(

2
√

x(1 + x)√
ηPσ2

f

)
2 exp

(
−x(1+η)

ηPσ2
f

)

η5/2(Pσ2
f )

3
.

By noticing that exp
(
−x(1+η)

ηPσ2
f

)

is the common factor of 1 − F (x), f ′(x) and

f(x), it can be eliminated from both the numerator and denominator. From [74,

03.04.06.0010.01], when x 
 1,

Kν(x) =

√
π

2

exp(−x)√
x

(

1 +O
(
1

x

))

for v = 0, 1.

Thus we have

lim
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x(1+x)√
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fP
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(
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After cancelling common factors from the numerator and denominator, we have

lim
x→∞

f ′(x)[1− F (x)]

f 2(x)

=

2
η5/2(Pσ2

f )
3

[

2
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= −1.

Thus the condition in (3.3) is satisfied.
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Appendix B

Proof for Proposition 1

From the definition of bN in (3.4) and the F (x) in (3.5), bN is the solution of the

following equation:

exp

(

− la(x)

p

)
lb(x)

P
K1

(
lb(x)

P

)

=
1

N
, (B.1)

where we have defined la(x) � x(1 + η)/(ησ2
f ) and lb(x) � 2

√
x(1 + x)/(

√
ησ2

f ).

When N → ∞, we have 1/N → 0. For (B.1) to be satisfied, we need la(x)/P →
∞ or lb(x)/P → ∞. Since η is bounded and P is large, this leads to x/P → ∞.

Thus the solution of (B.1) is large and has a higher order than P , i.e., x 
 P

or equivalently x/P 
 1. So when P 
 1, we have x + 1 ≈ x, and lb(x) ≈
2x/(

√
ησ2

f ). The equation in (B.1) can be approximated as

exp
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− la(x)
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f

1
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K1

(

2x√
ησ2

f

1

P

)

=
1

N
. (B.2)

According to [74, 03.04.06.0010.01], when x/P 
 1,
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(
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f
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P

)

=
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π

2

exp
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Applying this approximation to (B.2), after some straightforward manipulations,

we get

−2(
√
η + 1)2

σ2
fη

x

P
exp

(

−2(
√
η + 1)2

σ2
fη

x

P

)

=
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N2π
√
η

. (B.4)
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The inverse function for z exp(z) (when z < −1/e) is the Lambert W function

W−1(x) [106]. Notice that since x/P 
 1, the condition −2(√η+1)2

σ2
fη

x
P

< −1
e

is

satisfied. Thus the solution for Equation (B.4) for large P can be approximated as

follows:

bN ≈ − σ2
fη

2(
√
η + 1)2

W−1

(−2(
√
η + 1)2

π
√
η

1

N2

)

P. (B.5)

Since this solution of bN is still not favourable for analysis, we use the following

tight approximation for W−1(x) [107]:

W−1(x) ≈ ln(−x)−5.9506

⎡

⎣1−
⎛

⎝1+
0.2377

√− ln(−ex)

1+0.0042 ln(−ex) exp
(

−0.0201
√− ln(−ex)

)

⎞

⎠

−1⎤

⎦.

(B.6)

By using (B.6) in (B.5), we have

bN ≈ σ2
f

√
ηC2

1

[

ln (NC1) + ln

(√
π

2

)

+ C2

]

P, (B.7)

where C1 and C2 are defined in (3.9) and (3.10).

For aN , from (3.4) and the facts that bN 
 P , bN + 1 ≈ bN , and

K0

(

2bN√
ηPσ2

f

)

/K1

(

2bN√
ηPσ2

f

)

≈ 1,

we have

aN ≈ σ2
f

√
ηC2

1P. (B.8)

By substituting (B.7) and (B.8) in (3.8), after some straightforward manipulations,

the CDF in (3.11) can be obtained. The PDF is derived from the derivative of the

CDF.
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Appendix C

Proof for Theorem 1

First, a widely-used SNR upper bound [14] is

SNRm < SNRub =
N∑

n=1

γmPQ|fmngnm|2
|fmn|2P + γm|gnm|2Q.

Notice that the terms in the summation series are i.i.d.. When N → ∞, from the

law of large numbers,
1

N
SNRub

a.s.→ E (Im) ,

where E stands for the expectation, a.s. stands for almost surely, and

Im � γmPQ|fmngnm|2
|fmn|2P + γm|gnm|2Q.

The CDF of Im is [108]:

FIm(x) = 1− ax exp(−bx)K1(ax),

where a � 2η
− 1

2
m (σ2

f,mP )−1, b � (η−1m + 1)(σ2
f,mP )−1, and Kν(·) is the ν-th order

modified Bessel function of the second kind. From the CDF, the PDF of Im can be

derived as

fIm(x) = abx exp(−bx)K1(ax) + ax exp(−bx)K0(ax),

using which we can show that

E(Im) =
b(b2 − a2)− a2

√
b2 − a2 ln

(
b+
√
b2−a2
a

)

(b2 − a2)2
.
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Note that (ηmσ2
f,mP )2(b2 − a2) = (ηm − 1)2. After straightforward manipulation,

we obtain

E(Im) = Pσ2
f,m

η3m − 2η2m ln(ηm)− ηm
(ηm − 1)3

.

Next, we derive a lower bound for SNR. To simplify notation, we define X �
P |fmn|2 and Y � γmQ|gnm|2. Then, X ∼ exp(1/(Pσ2

f,m)) and Y ∼ exp(1/(γmQσ2
g,m)).

The following inequality always holds

(X + Y )2 > (X + Y )2 − 1 = (X + Y + 1) (X + Y − 1) .

Multiplying both sides with XY
(X+Y )2(X+Y+1)

, we get

XY

X + Y + 1
>

XY (X + Y − 1)

(X + Y )2
=

XY

X + Y
− XY

(X + Y )2

Averaging both sides, we have

1

N
SNRm = E

[
XY

X + Y + 1

]

>E

[
XY

X + Y

]

− E

[
XY

(X + Y )2

]

= E(Im)− E [Z] ,

where Z � XY
(X+Y )2

. We can see that Z ≤ 1. Therefore, E (Z) ≤ O(1). Then,

combining the upper bound and the lower bound, we conclude

E(Im)−O(1) <
1

N
SNRm < E(Im),

which proves (4.8) in Theorem 1.
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Appendix D

Proof of Lemma 2

Here, we show the derivations of E{Ps,e} and SCV{Ps,e}. The rest can be derived

in a similar way.

Firstly, we have

E{Ps,e} = E

{
|ĝiĝ

H
i f̂

H
i f̂i +

∑K
k=1,k �=i ĝiĝ

H
k f̂

H
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M4

}

= E
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M4

}

, (D.1)

where the last step is obtained because the means of the cross terms are zero.

In the first term of (D.1), as entries of ĝi and f̂i are i.i.d. whose distribution fol-

lows CN (0, Pc), ‖ĝi‖2F and ‖f̂i‖2F have a gamma distribution with shape parameter

M and scale parameter Pc. Thus,

E

{

‖ĝi‖4F‖f̂i‖4F
M4

}

= P 4
c

(

1 +
2

M
+

1

M2

)

≈ P 4
c ,

where the approximation is made by ignoring lower order terms of M when M 

1.

In the rest K − 1 terms of (D.1), we have

ĝiĝ
H
k f̂

H
k f̂i =

M∑

mg=1

M∑

mf=1

ĝi,mg ĝ
∗
k,mg

f̂ ∗k,mf
f̂i,mf

,
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where ĝi,mg is the (i,mg)th entry of Ĝ, and f̂i,mf
is the (i,mf )th entry of F̂. Thus

ĝiĝ
H
k f̂

H
k f̂i can be seen the summation of M2 terms of i.i.d. random variables, each

with mean 0, variance P 2
c . According to CLT, the distribution of ĝiĝ

H
k f̂Hk f̂i
M

converges

to CN (0, P 4
c ) when M → ∞. Then |ĝiĝ

H
k f̂Hk f̂i|2
M4 has a gamma distribution with shape

parameter 1 and scale parameter P 4
c /M

2. Thus, we can obtain

K∑

k=1,k �=i

E

{

|ĝiĝ
H
k f̂

H
k f̂i|2

M4

}

=
(K − 1)P 4

c

M2
.

As M 
 K, we have (K−1)P 4
c

M2 	 P 4
c . Thus the mean of Ps is P 4

c .

Similarly, we can derive the variance of Ps,e as below.

Var{Ps,e}=E

{
|ĝiĝ

H
i f̂

H
i f̂i +

∑K
k=1,k �=i ĝiĝ

H
k f̂

H
k f̂i|4

M8

}

− E{Ps,e}2

≈E

{

‖ĝi‖8F‖f̂i‖8F
M8

}

− P 8
c

(

1 +
2

M
+

1

M2

)2

=P 8
c

(M + 3)2(M + 2)2(M + 1)2

M6
− P 8

c

(

1 +
2

M
+

1

M2

)2

≈ 8P 8
c

M
,

where the approximations are made by keeping the dominant terms of M . Then,

we have SCV{Ps,e} = Var{Ps,e}/(E{Ps,e})2 = 8/M .
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Appendix E

Proof of Proposition 4

When K = 2, Pi,e =
∣
∣
∣
giĝ

H
i f̂Hi fk√
M3

+
giĝ

H
k f̂Hk fk√
M3

∣
∣
∣

2

/(K − 1). Then, using CLT, Pi,e has

an exponential distribution with parameter 1
de

. Then, the PDF can be approximated

as fPi,e
(y) ≈ exp(−y/de)/de, which is the same as (5.33) for K = 2.

Now, we work on the more complicated case of K ≥ 3. Firstly,

|giĜ
HF̂Hfk|2
M3

=

∣
∣
∣
∣
∣

giĝ
H
i f̂

H
i fk√

M3
+
giĝ

H
k f̂

H
k fk√

M3
+

M∑

n �=i,n �=k

giĝ
H
n f̂

H
n fk√

M3

∣
∣
∣
∣
∣

2

With the help of CLT, as M 
 1, giĝ
H
i f̂Hi fk√
M3

is approximately distributed as

CN(0, P 3
c + P 2

c

M
), and giĝ

H
n f̂Hn fk√
M3

is approximately distributed as CN(0, P
2
c

M
). We

can further show that the covariances between giĝ
H
i f̂Hi fk√
M3

, giĝ
H
n f̂Hn fk√
M3

, and giĝ
H
k f̂Hk fk√
M3

are

zero, thus they are uncorrelated. For tractable analysis, we assume independence

as they are Gaussian distributed. Now we conclude that |giĜ
H F̂H fk|2

(K−1)M3 has a gamma

distribution with shape parameter 1 and scale parameter P 3
c

K−1

(

2 + K
MPc

)

, which is

also defined as de.

Using CLT, the covariance between |giĜ
H F̂H fk|2

(K−1)M3 and |giĜ
H F̂H fl|2

(K−1)M3 (k �= l) can be

derived as

Cov =
4P 5

c + 10P 6
c

(K − 1)2M
+

18P 5
c + (2K − 4)P 6

c

(K − 1)2M2
, (E.1)

where the proof is omitted due to the space limit. The correlation coefficient be-

tween the two is subsequently

ρjl=
Cov

{
|giĜ

H F̂H fk|2
(K−1)M3 , |giĜ

H F̂H fl|2
(K−1)M3

}

√

Var
{
|giĜH F̂H fk|2
(K−1)M3

}

Var
{
|giĜH F̂H fl|2
(K−1)M3

}≈ 1

M

4
Pc

+ 10

(2 + K
MPc

)2
, (E.2)
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where the approximation is made by only keeping the dominant terms. It equals ρ2e
based on the definition in (5.30).

Thus Pi,e is a summation of K − 1 correlated random variables following the

same Gamma distribution. From Corollary 1 of [96], the PDF of Pi,e is

fPi,e
(y) =

K−1∏

i=1

(σ1

σi

) ∞∑

j=0

δjy
K+j−2 exp (−y/σ1)

σK+j−1
1 Γ(K + j − 1)

, (E.3)

where σ1 ≤ σ2 ≤ · · · ≤ σK−1 are the ordered eigenvalues of the (K−1)× (K−1)

matrix A, whose diagonal entries are de and off-diagonal entries are deρe, and δj’s

are defined iteratively as

δ0 � 1, δj+1 �
1

j + 1

j+1∑

m=1

[
K−1∑

n=1

(

1− σ1

σn

)m]

δj+1−m. (E.4)

As A is a circulant matrix whose off-diagonal entries are the same, its eigenvalues

can be calculated as

σ1 = · · · = σK−2 = de − deρe, (E.5)

σK−1= de + (K − 2)deρe. (E.6)

Then we can show that

δj =

(

(K − 1)ρe
1 + (K − 2)ρe

)j

=

(
be

be + ce

)j

. (E.7)

Substituting (E.5), (E.6) and (E.7) into (E.3), we can get PDF of Pi,e as in (5.32) in

Proposition 4. Notice that

∞∑

i=0

(
be

be + ce

)i

φ(y;K+ i−1, dece)

=

(
be

be + ce

)−(K−2)exp
(

− y
dece

)

dece

(∞∑

n=0

−
K−3∑

n=0

)(
be

dece(be + ce)

)n
yn

n!
.

By Taylor series for exponential function and straightforward calculations, we can

obtain the closed-form PDF of Pi,e in (5.33).

∼
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