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Abstract 

The ever growing demand for reliable, high-speed, wireless applications entails high 

transmission rates as well as small outage and average error probability. However, the 

limited available radio spectrum makes these goals difficult to achieve. Multiuser com

munication is a key technology to efficiently utilize radio resources through allocating 

time, frequency and space resources to different users. This thesis contributes to the 

performance analysis of the optimal multiuser receiver and optimal multiuser diversity 

receiver designs, as well as the design and analysis of intersymbol interference (ISI)-

controlled cochannel interference (CCI) whitening receivers. 

In the first part of this thesis, exact expressions for the bit error probability (BEP) of 

the jointly and individually optimal detectors (JOD and IOD) in a single-interferer addi

tive white Gaussian noise (AWGN) channel are derived. The resulting BEP expressions 

are intuitive as they are decomposable into the BEP of a single-user binary phase-shift 

keying signal in an AWGN channel plus a term due to interference. It is also shown that 

the JOD is sensitive to carrier phase recovery errors and that its performance can dra

matically degrade due to imperfect phase recovery. This part is concluded by deriving 

two multiuser receiver structures for space diversity reception of a signal distorted by 

multiple access interference and multipath fading. The proposed receivers minimize the 

BEP rather than maximizing the signal-to-noise-plus-interference-ratio (SINR), as does 

the optimum combining receiver. 

The second part of this thesis focuses on the problem of CCI suppression using inter-



ference whitening in multiuser communication systems. It is shown that CCI whitening 

in synchronous channels degrades rather than enhances the performance in contrast to 

previously reported results. Then, asynchronous CCI whitening in fading environments 

is considered and the conditions under which this receiver can be used with benefit are 

studied. It is shown that ISI can make the whitening receiver inferior to the conven

tional matched filter receiver for many practical situations. The SINR-maximizing filter 

(SINRMF) is also derived for the ISI-impaired and ISI-free cases. In both cases, the 

SINRMF is shown to be composed of a whitening receiver followed by a discrete time 

filter that combats ISI. The optimum transmitter filter for ISI-free and ISI-impaired sys

tems is also derived and its superiority over conventional systems employing a standard 

root raised-cosine filter is illustrated. 
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Chapter 1 

Introduction 

1.1 Background 

The use of wireless communications systems has been growing rapidly in the past decade. 

Today, in some societies, the number of subscribed cell phone users exceeds the pop

ulation of those societies. In addition to cell phones, there is a large variety of other 

wireless applications such as wireless local access networks, digital video broadcasting, 

digital audio broadcasting, local multi-point distribution services and mobile ad hoc 

networks that use part of the frequency spectrum. Thus, one of the most fundamental 

problems in wireless communications systems is "how can multiple users transmit effi

ciently and reliably over a limited available radio frequency spectrum?" To overcome 

the bandwidth and connectivity limitations in wireless communication systems, several 

novel technologies have been developed over the past decades. Multiuser communication 

systems such as code-division multiple access (CDMA), frequency-division multiple ac

cess (FDMA), time-division multiple access (TDMA) and space-division multiple access 

systems are all designed to improve radio spectral efficiency through accommodating 

several users on a common channel. 

Among the above systems, CDMA has received much attention because of its capa

bility of providing soft capacity. That is, a new user can always be added to a CDMA 

channel at the expense of inflicting more interference on the other users. However, in

creasing the number of users in TDMA or FDMA systems can be practically prohibitive. 
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For example, an inherent difficulty with TDMA systems is that by increasing the number 

of users, the transmitters have to transmit the same amount of energy over a shorter 

time interval. Thus, the instantaneous transmitter power for each user becomes large. 

Moreover, in FDMA systems the larger the number of users the wider the signal in the 

time domain will be. Thus, the coherence time of the channel will be comparable to the 

symbol interval and so the channel has stronger deleterious effects on the transmitted 

signal. However, in CDMA systems if users are selected to have different rates, the 

overall rate can exceed that of the FDMA or TDMA [1]. 

In an ideal CDMA system, if the signature waveforms are orthogonal and the channel 

is synchronous, i.e., all users have the same time offset which is known at the receiver, 

the sum of rates of all users can be increased by increasing the number of users. Unfortu

nately, the orthogonality between the transmitted signals can not be maintained in these 

systems and, thus, CDMA systems suffer from multiple access interference (MAI). On 

the other hand, practical TDMA and FDMA systems employ frequency reuse plans to 

achieve higher spectral efficiencies, i.e., users in different cells concurrently use an iden

tical carrier frequency [2]. As a consequence, TDMA and FDMA systems suffer from 

cochannel interference (CCI). Therefore, practical multiuser communication systems are 

mostly interference-limited rather than noise-limited as the received signal always has 

some amount of MAI. In many interference-limited multiuser systems the output of the 

matched filter (MF) is used as the decision statistic to detect the information bits. The 

MF used in these systems is either a conventional matched filter (CMF) [1], [3] or an 

interference-plus-noise whitening matched filter (WMF) [4]. As implied by its name, 

the latter receiver whitens the interference-plus-noise term prior to filtering the received 

signal using a MF. In these systems, employing a CMF or WMF receiver may lead to 

serious performance degradation if the open-eye condition does not hold.1 

In order to achieve a better performance than the MF receiver in interference-limited 

systems, more sophisticated detectors, referred to as multiuser detectors (MUDs), have 

been proposed. In these detectors, the amplitudes and signature waveforms as well as 

timing and carrier phase of all users are concurrently used to detect the information 
xThe open-eye condition holds if, in the absence of background noise, the desired signal's component 

is greater than the maximum destructive MAI component [3]. 
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symbols. MUDs make use of the output of the MF bank for all users and obtain the 

decision statistic for each user by applying a transformation to the sampled outputs of 

the MF bank. Depending on the type of their transformation, MUDs can be either linear 

or nonlinear. The structure and performance analysis of several well-known linear and 

nonlinear MUDs are presented in Chapter 2. Minimum mean-square error (MMSE) [5], 

decorrelating [6], and polynomial expansion (PE) detectors [7] are well-known examples 

of linear MUDs. The optimum MUD [8], [9] and almost all decision-driven detectors are 

nonlinear MUDs. A very well-known nonlinear MUD is the jointly optimum detector 

(JOD). This detector, also known as maximum-likelihood (ML) detector, chooses the 

information sequence that maximizes the joint a posteriori probability [3]. An inherent 

difficulty with the JOD (as with other ML sequence detectors) is that its complexity 

grows exponentially in the number of users that share the channel. Hence, a large 

body of research in multiuser detection has been focused on suboptimal detectors that 

have lower complexity than the JOD, yet perform very close to the optimum MUD. An 

important group of suboptimal MUDs are decision-driven MUDs [3].2 In these detectors, 

the entire or part of the MAI is subtracted out from the output of the desired user's 

MF output to obtain a possibly less interference-limited decision statistic for the user 

of interest. Successive interference cancellation (SIC) [11]—[13] and parallel interference 

cancellation (PIC) [14] are two examples of subtractive MUDs. 

1.2 Thesis Outline and Contributions 

As mentioned earlier, optimum MUD is not desirable for practical implementation due to 

its prohibitive computational complexity. Nevertheless, the bit error probability (BEP) 

performance of this receiver has received considerable attention as it can serve as a 

baseline of comparison for the suboptimal MUD receivers [3]. In other words, the BEP 

of the optimal MUD is a means to determine how close the suboptimal MUDs can 

perform to the optimal MUD. Motivated by this fact, in Chapters 3 and 4 we mainly 

focus on jointly and individually optimum MUDs. 

In Chapter 3, we first derive an exact expression for the BEP of a two-user jointly 

2Decision-driven MUDs are also known as subtractive interference cancelers [10]. 
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optimum receiver for the case when the carrier phase recovery is perfect, the channel is 

synchronous and the users employ rectangular pulse-shaping filters. The expression is 

insightful as it decomposes into the BEP of a single-user MF receiver plus a term due 

to the CCI. In Section 3.2, we derive the error probability of a two-user individually 

optimum detector (IOD) [15] in a synchronous additive white Gaussian noise (AWGN) 

channel and show that the error probability of the JOD can be considered as a special 

limiting case of the IOD when the signal-to-noise ratio (SNR) is large. We show that 

the receiver structures do not perform the same for small SNR values, particularly when 

the desired and interfering signals are highly correlated. We conclude this chapter by 

obtaining the error probability of the two-user JOD for the case where carrier phase 

recovery is imperfect and nonrectangular pulse-shaping is employed. This model rep

resents a general case of the model considered in Section 3.1 of this chapter. We show 

that in this case the JOD is very sensitive to carrier phase recovery errors. In particu

lar, we show that the JOD is not robust to the carrier phase recovery errors when the 

signal-to-interference ratio (SIR) is small. 

In Chapter 4, the problem of optimum signal detection in CCI, multipath fading 

and AWGN is considered. The desired and interfering signals are assumed to be like-

modulated and Rayleigh-faded. We raise the question of whether there are reception 

strategies that can outperform optimum combining (OC) in the sense of minimizing the 

error probability. Then, we address this question by deriving two better than OC mul

tiuser combining receiver diversity structures. The first receiver concurrently minimizes 

the error probability for all users and is composed of a bank of maximal ratio combining 

(MRC) modules followed by a ML detector. The ML detector used in this receiver is 

similar to the JOD used in multiuser communication systems. In the second receiver, 

the error probability is minimized only for the desired user. It is shown that the receiver 

comprises a MRC module followed by a likelihood ratio test (LRT) that picks the glob

ally best hypothesis. The latter block is identical to the IOD in the multiuser detection 

context. Simulation results illustrate the superiority of the proposed detection strategies 

over a receiver which makes use of OC, especially for small values of SIR. 

The WMF receiver does not require any information about the MAI other than its 

total power [4]. Thus, in the environments where a MUD can not be used due to lack of 
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information about the interfering signals, a WMF receiver may be employed instead of 

a CMF. In the absence of intersymbol interference (ISI), the WMF receiver is superior 

to the CMF receiver in having larger signal-to-interference-plus-noise ratio (SINR) [4]. 

Thus, the transmitter requires less energy to achieve a specific BEP when the system 

makes use of a WMF rather than a CMF receiver. Another attractive feature of the 

WMF is that it can coexist in conjunction with a MMSE-like MUD when some of the 

interferers are tracked, i.e., their information is available at the receiver [16]. Motivated 

by these facts we focus on the WMF receiver in Chapters 5 and 6. 

In Chapter 5, the problem of CCI suppression using a noise-plus-interference WMF 

receiver is studied. It is assumed that all signals are like-modulated and transmitted over 

a multipath fading channel in a bandlimited microcellular wireless system. We analyze 

the WMF receiver both in synchronous and asynchronous channels and show that the 

SINR of the WMF can not exceed that of the CMF receiver in synchronous CCI. This 

corrects some results reported in previous works on WMF receivers. In asynchronous 

channels, we show that CCI whitening can be used to improve the receiver's performance 

provided that the transmission is free of ISI. However, we show that in the presence of 

ISI, the WMF receiver is no longer SINR-maximizing and can degrade both the SINR 

and the error probability performance of the system relative to the case where a CMF 

receiver is employed. In this case, we derive the signal-to-interference-plus-noise ratio 

maximizing filter (SINRMF) in an asynchronous channel and show that it is composed 

of a WMF followed by a discrete time filter which combats the ISI. The SINRs of the 

ISI-free WMF and SINRMF receivers are analytically evaluated and compared for a 

standard raised-cosine (RC) and a Beaulieu-Tan-Damen (BTD) pulse. The SINR of the 

ISI-impaired system is also evaluated and the conditions under which this system can 

achieve close to ISI-free SINR are studied. It is shown that the SINRMF receiver can 

restore much of the SINR loss incurred due to ISI introduced by the WMF. 

Chapter 6 consists of two sections. In the first section, the problem of transmitter-

receiver (T-R) filter design for detection of a binary phase-shift keying (BPSK) signal 

in asynchronous cochannel interference and Gaussian noise is considered. It is shown 

that maximum signal-to-interference-plus-noise ratio (SINR) can be achieved only if the 

T-R niters have a flat spectrum with 100% excess bandwidth. The BEP performance 
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of a system with the proposed filters is compared to that of a system with conventional 

root RC filters both for perfect and imperfect timing recovery cases. It is shown that 

the proposed T-R filter design is superior to the conventional root RC filters both in 

having larger SINR and smaller BEP. In the second section, a more general form of the 

foregoing problem is considered in which the transmitter and the receiver filters do not 

necessarily have 100% excess bandwidth. We propose two T-R filter design method

ologies to maximize the SINR without introducing ISI. In the first methodology, the 

transmitter and receiver filters are designed to maximize the SINR while their overall 

spectrum maintains a given Nyquist spectrum to avoid ISI. In the second method, how

ever, the transmitter filter is assumed to be fixed and only the receiver filter is designed 

to achieve our goals. The SINR of the ISI-free SINR-maximizing filter is then analyti

cally compared with that of the ISI-free WMF, SINRMF and CMF receivers. We also 

evaluate the SINR of the proposed receiver for the cases where root RC and root BTD 

pulses are used at the transmitter. 

In Chapter 7, we present a summary of the results reported in this thesis. We 

conclude this chapter by providing some suggestions for future work. 
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Chapter 2 

Overview of Multiuser Detection 

In this chapter, we first present a basic signal model for a (K + l)-user communication 

system to be used in the sequel. Then, several well-known linear and nonlinear multiuser 

detectors are introduced. 

2.1 Signal Model 

The system model of the baseband received signal is shown in Fig. 2.1. We assume 

(K + 1) users are sharing an asynchronous AWGN channel. Denoting the A;th user's 

deterministic signal by Sk(t), the baseband received signal is given by [3] 

oo K 
rW = Yl Y,A^Mt-iT-Tk) + n{t) (2.1) 

i=—oo k=Q 

where 

• Ak and r^ are the fcth user's amplitude and propagation delay, respectively, fr^.i is 

the /cth user's information bit in the zth symbol interval and can take value either 

- 1 or 1. 

• The Sfc(t)'s are chosen such that they have unit energy and there is neither single-user 

nor cross-user ISI between them when the r^'s are zero, i.e., 

/ : 

§<j\ k=i 
sk(t)si(t - iT) dt = { (2.2a) 

PH S(i), k ^ I 
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Figure 2.1. The block diagram of the baseband cochannel interference communication system 

with (K + 1) synchronous users. 

where 

/

oo 
Sfc(i)sj(i)di 

-oo 

and S(-) is the Kronecker delta function defined as 

(2.2b) 

w = 1, fc = 0 

0, / c ^ O 
(2.3) 

• n(t) is the AWGN with mean zero and power spectral density (PSD) NQ/2. 

When the channel is synchronous, we can drop the time index in (2.1) and express the 

received signal as 
K 

r(t) = Y,Akbksk{t) + n(t). (2.4) 
fc=o 

At the receiver, the received signal is passed through a bank of filters matched to 

{sfc(i)}fc=0 and sampled at t = 0. The sampled received signal at the output of the 

Ith. MF is then given by 
K 

re = A(be + ^2Akbkpki + ne, £ = 0,...,K (2.5) 
fc=0 



where n/ is the projection of n(t) along s^{t) and has a Gaussian distribution with mean 

zero and variance 

E{nkne} = < A7 

Eq. (2.5) can be written in matrix form as 

r = R A b + n 

where 

r - fa), n , •-. , r /c] r 

b ^ [ 6 0 , 6i, . . . , bK]T 

n = [n0, ni , . . . , n ^ ] T 

^o 0 0 ... 0 

0 Ax 0 . . . 0 
A ^ 

(2.6) 

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

(2.7e) 

0 0 0 . . . 4 

[•]T denotes the matrix transpose and R is the covariance matrix whose zjth element 

is pij. Note that n is a zero-mean Gaussian vector with covariance matrix E{nnT} = 

(iVo/2)R. 

2.2 Matched Filter Receiver 

The MF receiver simply detects the kth information bit as b^ — sgn(r^) where r^ is the 

output of the fcth matched filter and sgn(-) denotes the signum function. The receiver 

filter can be either a CMF or an interference-plus-noise WMF. 

2.2.1 Conventional Matched Filter Receiver 

In a CMF receiver, the fcth user's receiver filter impulse response is defined as Sfc(—t).1 

Assuming that {sk(t)}£=0 satisfy the Nyquist criterion for zero ISI [1] and the transmit

ted bits are equiprobable, the error probability of the CMF receiver is given by [3] 

'AQ - Y^k=iAkhPko'' 
EIQ 

vW2 
(2.8) 

1We assume the Sk(t)'s are real. 
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where 
1 f°° t2 

Q(x) = - = \ e-^dt (2.9) 
v 2n Jx 

and the expectation in (2.8) should be taken over all 2K possible values of {6fc}fe=1. For 

example for K = 1, (2.8) becomes [3, 3.75] 

Q[AO^)+Q(AO + PAI 
(2.10) 

v W 2 ) ' "V y/N^ 

where for simplicity we have dropped the index of poi. 

The exact error probability of the MF receiver in slow Rayleigh fading channel with 

asynchronous users is given by [17] using the characteristic function of the interfering 

signals. For the synchronous case and independent complex-valued Rayleigh fading 

channels the bit error probability for the desired user is given by [3, eq. 3.135] 

Pfi = ^ 
A0 (2.11) 

y/No + ̂  + ZtiAlfio 

2.2.2 Interference-Plus-Noise Whi ten ing Matched Filter Receiver 

The interference-plus-noise WMF receiver was first proposed in [4]. This receiver first 

whitens the colored noise term composed of the CCI and AWGN and then passes the re

sulting signal through a filter matched to the desired user's deterministic signal. Assume 

that Sk(t) in (2.4) equals gr{t) cos9 k where 9 k is a random phase uniformly distributed 

over [0,27r) and 9Q = 0. Then, provided that the desired user (i.e., the 0th user) has 

infinite observation time and the ISI is negligible, the WMF receiver is defined as [4] 

9R(t) = F~ 
2 

(2.12) 
+ wTJtxA\\GT{u)\\ 

where T~l denotes the inverse Fourier transform and GT{OJ) is the Fourier transform 

of the transmitter filter, gr(t). Note that the only information that the WMF receiver 

needs about the CCI is its total power. More importantly, the interference-plus-noise 

whitening filter maximizes the output SINR [18], i.e., 

A% f°° \GT(u>)\2 

SINR = 3 f 
2TT J_ Nn ° ° ^ + 2T£f=i4KMw)|2 du. (2.13) 
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When the observation time is limited to one symbol interval, gii(t) for the desired 

user is obtained by solving the integral equation [4] 

s0(t)= [ R(t - u) gR(u) du (2.14) 
Jo 

where R(r)) is the autocorrelation function of the noise-plus-interference term given by 

R(V) = ^S(V) + ^ X > * r 9T(t)9T(t + V)dt. (2.15) 

In this case the output SINR equals [4] 

rT 

SINR = i 4 § / s0(t)gT(t) dt. (2.16) 
Jo 

2.3 Multiuser Detection 

The conventional MF receiver only uses the output of the desired user's MF. Therefore, 

the receiver's structure does not depend on number of users and is fixed for any number 

of interfering signals. Despite this advantage, the performance of this receiver becomes 

very poor when the interference power increases. Moreover, the conventional receiver 

suffers from the near-far problem. This problem occurs when the desired user is farther 

to the basestation than some or all of the interfering users. In this situation, the SIR of 

the desired user is so small that the error probability for this user approaches 0.5 even 

for vanishing small background noise. 

A MUD uses the sampled received signals at the outputs of all the MFs to generate a 

decision statistic for the user of interest. The MUD usually outperforms a conventional 

MF receiver. However, this is at the expense of higher complexity than the conventional 

receiver. In general, MUDs can be either linear or nonlinear. In next two subsections, 

we will review several important linear and nonlinear MUD designs. 

2.3.1 Linear M U D 

In a linear MUD, a linear transformation is applied to the sampled output vector of 

the MF bank to obtain a decision statistic for each user. Denoting the transformation 
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matrix by M, the detected information bits at the output of the linear MUD are given 

by 

b = sgn(Mr) (2.17) 

where M is a (K + 1) x (K + 1) matrix whose kth row is denoted by M^. Note that, 

the receiver does not need to know the whole matrix M as it can detect the kth symbol 

using 6̂  = sgn(M^Vfc). The bit error probability and asymptotic multiuser efficiency 

(AME)2 of this receiver, TJQ, for the desired user are [19], [20] 

I V y^I<RMo )\ 

Vo = maxjo, M ^ R 0 - f ^ | M £ R , 
*- k=\ ° 

(2.19) 
K 

M^RMo 

respectively, where R^ is the kth column of R, and the expectation in (2.18) is with 

respect to {&fc}fc=i- Decorrelating and MMSE detectors are the most well-known linear 

MUDs. 

2.3.1.1 Decorrelating detector 

In a decorrelating detector M = R""1 and each resulting decision statistic constitutes the 

desired signal plus an AWGN component. An important advantage of the decorrelating 

detector is that it does not need to estimate the received amplitudes. Furthermore, it can 

decorrelate the transmitted bits separately. It has been shown that the decorrelating 

detector is optimum when the received amplitudes are unknown [19]. The bit error 

probability and the AME of this detector for the fcth user are given by 

Pe = Q I . Ak I (2.20) 
.\[NOKJ2/ 

Vh = ^ r (2.21) 
"'kk 

2The effective energy of the fcth user in a multiuser system, Ek, is defined as the energy that the kth 

user requires to achieve its multiuser error probability in a single-user AWGN channel with the same 

level of background noise. The multiuser efficiency is the ratio between the actual and effective energies, 

i.e., A\/Ek- The asymptotic multiuser efficiency defined in [3, eq. (3.111)] is the limit of the multiuser 

efficiency as iVo —> 0. 

12 



respectively, where R^, is the fcfcth element of R~ . Obviously, neither Pe nor the AME 

depend on the interfering users' energies. It has been shown that when {Ak}k=0 are 

unknown the joint maximum likelihood estimation of the bk and Ak are given by 

Ak = \gk\ (2.22) 

bk = sgn(gk) (2.23) 

where g — R _ 1 r and gk is the kth element of g [19]. 

2.3.1.2 MMSE Detector 

The MMSE detector [5] minimizes the mean-square error between the vector of infor

mation bits and the soft output of the detector, i.e., 

£ { | | b - M r | | 2 } . (2.24) 

The matrix M that minimizes (2.24) has been shown to be [5] 

- l 

M = R + f A - (2.25) 

Clearly, in this case M depends on both the noise variance and the received signal 

amplitudes. Moreover, as iVo —> 0 the MMSE detector approaches the decorrelating 

detector while for large values of No the MMSE receiver performs almost the same 

as the conventional MF detector. Indeed, when iVo increases, the matrix M tends to 

become a diagonal matrix and M • r elements have the same sign as r. The MMSE 

detector is the optimal linear detector in the sense of maximizing the output SIR . The 

error probability of the MMSE receiver for the desired user is given by [21] 

K 
AQ (MR)oo 

l + ^2(3kbk 

fc=i 

(2.26) 
00 L 

where /3k = Bk/B0, Bk = Ak(M.R)ok, M is given by (2.25), (rvl)mn denotes the mnth 

element of the matrix M and the average in (2.26) is taken over all possible values of 

{fr/e}fcLi- Because the MMSE detector converges to decorrelating detector as iVo —> 0, 

its AME is the same as that of the decorrelating detector. 
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2.3.1.3 Polynomial expansion detector 

An approximate realization of either the decorrelating or MMSE detectors can be ac

complished using a PE detector [7], [22]. The PE detector approximates the matrix 

M in either of the above detectors by a polynomial in R. The PE detector has some 

attractive properties like simplicity and low computational complexity. Moreover, this 

detector does not need to estimate the received amplitudes. 

2.3.2 Nonl inear M U D 

In a nonlinear MUD, the decision statistics are obtained by applying a nonlinear trans

formation to the sampled outputs of the MF bank. The optimum MUD as well as 

successive interference cancellation receivers are well-known nonlinear MUDs. 

2.3.2.1 Optimum MUD 

There are two types of optimum MUD receivers, IOD [15] and JOD [9], The IOD chooses 

bo that maximizes the a posteriori probability, i.e., [3], [15] 

Prob{60 |r(t), teT} (2.27) 

where T is the observation interval. The JOD, however, chooses {6fc}fc=0 that maximizes 

the joint a posteriori probability, i.e., [8], [9] 

Pvob{(bQ,b1,---,bK)\r(t), tET}. 

It can be shown that (2.27) is equivalent to finding bo that maximizes 

K . 2 
/ I r(ti — Anhn.tnfrt — V * Ai,buR,J^ 

No 

(2.28) 

E < exp - / (r(t) - A0b0s0(t) -^2Akbksk{t)) dt (2.29) 

where the expectation in (2.29) should be taken over all 2K possible {61,62,... ,6^} 

sets. The IOD usually has a very complicated structure and involves hyperbolic and 

exponential functions. For the two-user case the desired bit estimate can be expressed 

as [3] 

60 = sgn r0 - -jj- log ( cosh 
2Am + 2ApAip 

No 
cosh 

2^4iri - 2A0Aip 

N0 

(2.30) 
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where log(-) denotes the natural logarithm function. The decision rule of the JOD is 

simpler than that of the IOD and can alternatively be expressed as 

K v 2 

arg max < exp 
{boM,...,bK} 

~J(r(t)-J^Akbksk(t)) dt (2.31) 

Again, for the two-user case, the desired bit is estimated as 

b0 = sgn 
A\ 

A0r0 + -7j- (In - AOP\ - In. + Aop\) (2.32) 

which is much simpler than (2.30) and does not depend on NQ. In general, the jointly 

optimal decision rule for a system with K + 1 users can be expressed as [3] 

arg max {2bTAr - b T A R A b } . (2.33) 
b 

Obviously, the complexity of this receiver grows exponentially with the number of users. 

Therefore, for a system with a large number of users, using a JOD is practically prohib

ited, even though it has a remarkable superiority over the conventional receiver. 

An upper and lower bound analysis of the JOD was first given by [9] based on 

indecomposable error sequences. Assume that b and b are the transmitted and the 

detected vectors of information bits, respectively. Also assume that 

• e = [eo, eo, • • •, ^K]T is an error vector. 

• Ek = {e € {—1,0,1}K+1, ek ^ 0} is the set of the error vectors that affect the kth 

user. 

K 

• E — U Ek is the set of all error vectors. 

fc=0 

• A(b) = (e € E, 2e — b € {—1,1}^+1} is the admissible set of error vectors for b. 

K 

• w(e) = Yl \ek\ is the weight of the error vector e. 
fc=o 

• e is decomposable into e' and e" if 

1. e = e' + e" 

2. If ek = 0, then e'k = 0 and e'j. = 0 

3. e ' r A R A e " > 0 
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If we denote the subset of indecomposable error vectors in Ek by Fk, it has been shown 

that the error probability of the JOD can be upper and lower bounded as [9] 

where dk m;n = min eTARAe and e* = arg min eTARAe. Note that for single-path 
eeFfc eeFk 

fading channels, the upper and lower bound analysis has been done in [23]. These bounds 

have been further improved in [24], [25] using a new method for identifying decomposable 

error sequences. 

2.3.2.2 Decision-Driven MUD 

The idea of decision-driven MUD3 is similar to that of decision feedback equalizers used 

to remove ISI [1]. In these detectors, the symbols which have been detected in the 

previous stage are used to remove the CCI. The most important decision-driven MUDs 

are SICs and PICs. 

The SIC is a nonlinear MUD that uses the previously detected bits to reproduce 

the entire or part of the interference (depending on the number of interfering symbols 

that have been detected in the previous stage) and subtract it out from the received 

signal [11]—[13]. In SIC, the order in which the users are demodulated is important and 

directly affects the receiver's performance. One approach is to demodulate users in the 

order of decreasing received powers. Another approach which seems to be more efficient, 

orders users according to the mean-square of their MF output [3], i.e., 

E J ̂ r(t)sk(t)d^\ = *Y + A\ + f>^V (2'35) 

Since this approach accounts for the cross-correlation between users, it is expected to 

be more efficient than the previous approach. Assuming that the k + 1, k + 2 , . . . , Kth. 

symbols have been already detected, the kth. user's bit can be estimated as 

K 

bk = sgn rk~ ^2 AiPjkbj 
j=k+l 

(2.36) 

3Also known as subtractive interference cancellation MUD. 
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Note that the SIC requires advance knowledge of the received amplitudes. Moreover, it 

has an inherent demodulation delay which increases linearly with the number of users. 

The SIC's performance can be improved by partially canceling the interference, i.e., weak 

interfering signals that are very unlikely to be detected reliably should not be canceled. 

This is because incorrectly canceling a weak interfering signal may double its amplitude 

and increase the overall interference power. 

PIC is very similar to the SIC except that it attempts to cancel the entire CCI for 

each user at once [11], [12], [26]. Assuming that all detected symbols are available, the 

kth symbol estimate will be 

K 

Sfc = sgn n-^AjPjkbj . (2.37) 

At the first stage, the PIC can use either a CMF receiver [14] or a decorrelating receiver 

[27]. 

We finally note that successive interference cancellation can also be accomplished 

using a zero-forcing decision-feedback (ZF-DF) detector [28], [29]. The ZF-DF detector 

has two stages: 

1. A linear transformation which partially decorrelates the received samples. 

2. An SIC that subtracts out the remaining interference from the previous stage. 

The ZF-DF detector uses the fact that the matrix R is a positive definite matrix that 

can be decomposed as R = F r F where F is a lower triangular matrix, i.e., Cholesky 

decomposition. By multiplying both sides of (2.7a) by ( F T ) _ 1 on the right one obtains 

r = FAb + n (2.38) 

where n is a white Gaussian noise vector with mean zero and covariance matrix {No/2) I 

and I is the identity matrix with appropriate dimensions. The feth bit can then be 

detected as 
fc-i 

h = rk-YlFkJAib3 (2-39) 
i=o 

where rk and Fkj are the fcth and fcjth elements of r and F, respectively. Similar to the 

MMSE detector, the ZF-DF detector requires knowledge of the received amplitudes, i.e., 
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AQ, Ax,..., Ai<. If the received amplitudes are estimated using a decorrelating detector, 

the ZF-DF detector performs the same as the decorrelating detector. It performs, how

ever, better than the decorrelating detector if the estimates are more reliable than those 

produced by the decorrelating detector and worse if less reliable [10]. 
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Chapter 3 

Performance Analysis of Jointly and 

Individually Optimum Receivers 

In this chapter, we analyze the performance of the jointly and individually optimum 

detectors derived in Subsection 2.3.2.1, in a two-user synchronous Gaussian channel. In 

the first two sections, we derive the error probability of the JOD and the IOD when the 

carrier phase is perfectly known at the receiver. In the third section, we consider a more 

practical scenario in which the carrier phase recovery is imperfect and the desired and 

interfering signals are bandlimited, i.e., a nonrectangular pulse-shaping filter is used. 

Note that the BEP performance analyses given in this chapter are valid for a two-

user synchronous channel. This is because many interference-limited multiuser com

munication systems are dominated by only one interferer and the contribution of other 

interferers is negligible (see [30] and references [18], [19] therein). Furthermore, in some 

multiuser systems only two users concurrently share the available radio spectrum. For ex

ample, in a nonorthogonal cooperative diversity system the source and the relay transmit 

simultaneously over the same subspace [31]. Thus, in nonorthogonal cooperative sys

tems each user experiences only one interferer at each time interval and the performance 

analyses given in this chapter are applicable to these systems. 
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3.1 Error Probability of a Two-User Synchronous JOD in 

AWGN 

The BEP of a synchronous optimal receiver [3] in the presence of a similar cochannel 

interferer and AWGN has been considered in [3], [32]-[35]. In [32], extensive computer 

simulation was used to evaluate the BEP of the receiver. Although, this method is 

a straightforward method for obtaining the BEP, it can be very time consuming and 

even impractical for large values of SNR, i.e., small values of the probability of error. 

When the users employ a BPSK modulation scheme, the jointly optimal receiver has 

only two decision regions in the two-dimensional received signal space [3], [33], [35]. 

In [35], the decision region is divided into three distinct regions for each desired user 

constellation point (six regions in total), and an extension of Craig's method [36] is 

used to evaluate the probability of the error of the receiver. The result, though exact, 

is somewhat complex, as it involves five numerical integrations whose integrands and 

limits of integration change for high, moderate and small values of SIR. In [3], upper 

and lower bounds to the exact probability of error were derived. However these bounds, 

though simple, are not tight for small SNR values. In [37], a union bound for the BER 

of a two-user JOD which makes use of diversity arrays is derived. The resulting bound is 

identical to that given in [38] but is obtained using a different approach. Also presented 

in [37] is an exact expression for the bit error probability of the two-user JOD. The final 

result, however, depends on four distinct events whose occurrence probabilities are not 

given in the paper. 

In this section, we derive a new, exact expression for the BEP of the receiver that is 

both simple and intuitive. We divide the decision region into two subregions and then, 

calculate the probability that noise components move the desired constellation point 

to each of these subregions, i.e., an error happens. The result involves a single definite 

integral and has the form of the BEP of BPSK in an AWGN channel plus an interference 

term. The latter has the same form for all values of SIR (in contrast to the solution 

in [33], [35]) and approaches zero when either the interferece power or the correlation 

between desired and interferer signals tends to zero. 
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3.1.1 Signal Mode l 

Following [32]-[35], we assume that a desired BPSK signal, boAo^/2/Tcos(wi), is trans

mitted over an AWGN channel in the presence of an interfering like-modulated signal, 

biAi^/2/Tcos(uit + 6). Furthermore, we assume that the desired and interfering users 

use a rectangular pulse whose duration is the same as their bit interval. Then, the 

received signal in the interval [0, T] is given by 

r(t) = b0AQJ- cos(ut) + hAiJ- cos(ut + 9) + n(t) (3.1) 

where bi, Ai and n(t) are defined in Subsection 2.1, 6 is the phase difference between 

desired and interferer unmodulated carriers and u> is the carrier frequency. Moreover, 

we define the SNR and SIR of the system as AQ/NO and A^/A\, respectively. Eq. (3.1) 

can be rewritten as 

[2 [2 
r(t) — (boAo + b\Ai cos 6) \ — cos(u>t) — b\A\ sin# y — sin(a;t) + n(t) 

= ( M o + M i cos 0) 0o(t) + &iAisin0 0i(£) + n(t) (3.2) 

where 

Mt)= y | c o s ( u ; t ) (3.3) 

Mt)±-J~M«>t). (3.4) 

Clearly, <f>o(t) and <pi(t) are orthogonal and have unit energy. Let the received signal 

components along <fio(t) and <pi(t) be denoted VQ and r\, respectively, defined as 

r 0^ [ r(t)Mt)dt 
Jo 

= b0A0 + M i c°s 8 +n0 (3.5) 

ri= f r{t)4>i{t)dt 
Jo 

= Misin6> + ni (3.6) 

where no and n\ are independent and identically distributed (i.i.d) Gaussian random 

variables (RVs) with zero mean, variance NQ/2 and common probability density function 
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(PDF), /(•). Assume that the unmodulated carriers of the two users are known at the 

receiver following the method explained in [39]. Then, the jointly optimum decisions for 

bits £>o and b\ are given by [3] 

b0 = sgn 

61 = sgn 

Aor0 + -AiI |ri sin0 + (r0 - AQ) cos0| - \n sin 0 + (r0 + A0) cos0| J (3.7) 

j4i(rocos0 + n s in0 ) + r ^ o j k o - Aicos0| - |ro + ^ i c o s 0 | | . (3.8) 

3.1.2 B E P Derivation 

Based on the values of 60 and 61, there are four distinct points (called Co, C\, C2 and 

Cz) in the received signal space as shown in Fig. 3.1. The coordinates of these points 

are given by 

Co 

Cx 

C2 

C3 

(~Ao - A\ cos 9,-Ai sin 0) 

(-ylo + ^4icos0, ^4isin0) 

( A0-Aicos9,-Aisin0) 

( ;4o + ^ icos0 , ^4isin0). 

(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

Furthermore, the intersection points of the decision boundaries are Pj and Pj with 

coordinates given by [33], [35] 

AQ — ^4icos0\ 
Pi : ( Ax cos 0, 

P. 

tan0 
AQ — A\ cos 0 

, : ( -Aicos0 , -
3 \ tan0 ) • 

(3.10) 

(3.11) 

Before going further, we establish the following fact which is used in the sequel (the 

proof is given in Appendix A.) 

Fact 1. The receiver's BEP for all values of 9, can be evaluated using the BEP expression 

given for 9 € [0, n/2). 

In the remainder of this section, 0 is assumed to be in the interval [0,7r/2). Assume 

that the desired bits are transmitted with equal probability. Then, because of symmetry, 

it is enough to consider the BEP of the receiver when the desired bit is equal to — 1. 
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Figure 3.1. The received signal constellation and decision boundaries for a BPSK signal with 

one identical cochannel interferer for 0 < 0 < ir/2. 

Assume that the origin is shifted to point Co in Fig. 3.1. Then the new coordinates of 

the points Pi and Pj and the equation defining the diagonal line L, are given by 

„ / , „ , . A) cos 6 - Ai cos(26>) \ 
Pi : [A0 + 2Ai cos^, — r~^ K— 

\ sin 8 / 

A\ — AQCOSO^ 
Pj : (Ao, 

sin I 
: ) 

(3.12) 

(3.13) 

where 

L : m — mno + a 

m — 
Ao — A\ cos 6 

A\ sin 9 
A2 - A2 

(3.14a) 

(3.14b) 

(3.14c) 
Ai sin 6 ' 

Since we assumed bo = — 1, depending on the value of b\, the desired constellation point 

would be Co or C\. The probability of error in this case is the probability that the noise 
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components along 4>o(t) and <j>\{t) move the desired constellation point to the shaded 

area in Fig. 3.1. This probability is the integral of the joint PDF of no and n\ over 

the shaded area. For calculating the integral, one can split the shaded area into two 

sub-areas 1 and 2 as shown in Fig. 3.1. Then, integrate the joint PDF over each sub-area 

separately. This yields 

rAn+2A\ cos0 rmno+a 

/ / f(ni)dm f(n0)dn0 
J An J—oo 

Po 
' Ao J—oo 

/•OO /"OO 

+ / / /(ni)rfni /(no)dno. (3.15) 
JA0+2Ai cos0 J—oo 

Similarly, if the origin is shifted to point C\ in Fig. 3.1, the coordinates of the points 

Pi and Pj and the equation defining the diagonal line L, will be changed to 

Pt: (Ao/^V4 1) (3.16) 
\ sin0 / 

r, / A ~A /> Aicos(20) - Aocos6\ . „„. 
PJ: [A0-2Aicose,— . " (3.17) 

V sine/ / 

where 

L : n\ — mno + (3 (3.18a) 

tL2A0AlCos6-Al-A\ 
13 ~ ArfTo • (318b) 

Again the probability of error can be determined by integrating the joint PDF of UQ and 

n\ over the subregions 1 and 2 in Fig. 3.1 which results in 

rAn rmno+0 roo />oo 

Pi = / / f(ni)dni f(n0)dn0 + / f(n{)dni f(n0)dn0. (3.19) 
J An—2AI COSO J-OO JAO J-OO 

Using eqs. (3.15) and (3.19), the overall probability of error becomes 

Pe(0) = 2?o + gPi 
[Ac 

JA0 2{^\^N0~/2j JAo \^/N^ 

'A0-2AlCosd\ fA° (mnp + P 

JAQ—2AI COS6 
+ Q["°~;"irV)- [ " Q[,-!1^¥^)f^o)dno}. (3.20) 

JA0-2Aii 
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By changing the variable no to x + AQ in the first integral and no to — x + AQ in the 

second integral in (3.20), we obtain 

2( W i V V V \/JVo72 
/•2Aicos# ^ 

-J [Q(a(x))f(x + Ao) + Q(-a(x))f(x-A0)]dx\ (3.21) 

where 
(cos 9 - 4^)x + A0 cos 9 - A\ 

a(x) = -± Al> -. (3.22) 
0 V 2 sine 

Denoting the integral term in (3.21) as T and replacing Q(—a{x)) with 1 — Q(a(x)) one 

can obtain 

1 = Q(^-JA11ose\_Q( A0 

r2Aicos9 

+ / Q(a{x))[f(x + A0)-f(x-A0)]dx. (3.23) 

Jo 

Now, we replace the integral term in (3.21) by the expression given for X in (3.23) to 

obtain the error probability as 

p , m „( Ay \ , Ax f2cose\ ( {Axx-AQf\ ( {Mx + Aof\ 

which can be simplified to 

w m n(Ao \ ^ M _ f2cose . u(2A0Alx\ ( (AlX)2 + A$\ 

^V ^N^/2sm9 J 

Note that eq. (3.25) is valid for 6 G [0,7r/2). For other values of 9, cos9 and sin0 in 

(3.25) must be replaced by | cos#| and | sin6>|, respectively (see Appendix A for a proof). 

3.1.3 Resul t s and Discuss ion 

The probability of the error of the receiver can be easily calculated from (3.25), for 

arbitrary values of SIR and 9. In Fig. 3.2 we have evaluated the BEP of the receiver for 
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Figure 3.2. The BEP of the jointly optimal receiver as a function of SIR for SNR = 15 dB 

and various values of 6. 

SNR = 15 dB and some 9 values. From this figure we can see that the performance of 

the receiver is poorer for larger values of cos#. This is because the correlation between 

the desired and interfering signals increases as cos0 increases. Thus, the receiver is less 

likely to correctly detect the desired information bit. Note that by decreasing the value 

of cos# the worst case SIR, i.e., the SIR at which the BEP is maximum, is increased. 

This happens because for a two-user synchronous jointly optimal receiver, the asymptotic 

multiuser efficiency is minimum at A\/AQ — \p\ (or equivalently, SIR = p~2) where p 

is the correlation between desired and interfering signals [19]. Thus, by decreasing the 

value of cos 9 the worst case SIR becomes larger. 

Fig. 3.3 shows the BEP performance of the jointly optimal receiver, averaged over 

6, i.e., 
1 f2* 

Pe = — y Pe(9)d9, (3.26) 
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Figure 3.3. The performance of the jointly optimal receiver as a function of the SIR for various 

values of SNR. 

as a function of SIR, obtained for different values of SNR. Note that, (3.25) has the 

interesting and intuitive form of the BEP of BPSK in AWGN (the first term) plus an 

additional error rate (the second term) due to interference. When Ai = 0 there is no 

interference and the second term disappears, so the BEP of the receiver becomes that of 

BPSK in AWGN. Also, one can show using (3.25) that as Ao/Ai —> oo or AI/AQ —> oo, 

corresponding to a very large and very small SIR condition, Pe —> Q(Ao/y/No/2). This 

is clearly seen in Fig. 3.3. In contrast to previous results [32]-[35], (3.25) highlights 

the dependence of Pe on 9. For example, when 9 = 7r/2 and 37r/2, the second term in 

(3.25) is zero and Pe is the same as BPSK in AWGN. This is because the interference 

is orthogonal to the desired signal and the component of the interference affecting the 

detection of the desired signal is zero. 

References [33], [35], have questioned the location of the maximum, i.e., worst case, 
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Figure 3.4. The worst case SIR as a function of SNR. 

BEP as a function of the SIR for various SNR values. Using (3.25) we have obtained 

the SIR values at which the BEP is maximum, for different values of SNR shown in Fig. 

3.4. Clearly, the maximum BEP does not always occur at SIR = 0 dB as conjectured 

in [33], [35]. For example, when the SNR is less than 4.17 dB, the worst case BEP 

occurs at some negative value of SIR as shown in Fig. 3.4. Moreover, the worst case SIR 

is not monotonically increasing for all values of SNR. Interestingly, the worst case SIR 

curve has a jump at SNR = 4.17 dB, and then asymptotically approaches 0 dB for SNR 

> 4.17 dB. This jump occurs because the BEP versus SIR curve has two local maxima 

on different sides of SIR = 0 dB (these maxima are very close to SIR = 0 dB and can 

not be seen in Fig. 3.3.) As the SNR increases from below 4.17 dB to greater than 4.17 

dB, the global maximum jumps from the local maximum below SIR = 0 dB to the local 

maximum above SIR = 0 dB which causes a jump in the worst case SIR versus SNR 

curve. 
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Figure 3.5. The performance of the jointly optimal receiver as a function of the SIR for some 

fixed values of INR. 

Fig. 3.5 shows the error probability of the JOD as a function of SIR when the 

interference-to-noise ratio (INR), i.e., A^/No is fixed. Since SIR = AQ/A^, one can 

readily find the SNR in dB as INR in dB plus SIR in dB. Interestingly, the BEP in 

this case is not a monotonically decreasing function of the SIR (or SNR) and has a 

local minimum around SIR = —6 dB. In other words, for some SIR range, increasing 

the desired user's power, just increases the BEP. For example, when INR = 18 dB and 

SIR = —6 dB increasing the SIR from —6 to 3 dB (or equivalently increasing the SNR 

from 12 to 21 dB) just degrades the receiver's performance. Thus, an efficient power 

control is one that attempts to keep the desired user's amplitude half of the amplitude 

of the interfering signal. 
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3.2 BER of a Two-User Synchronous IOD in AWGN 

As mentioned earlier, the IOD maximizes the a posteriori probability for the desired 

user's information bit and outperforms JOD. The structure of the IOD was first derived 

in [15] for a two-user synchronous Gaussian channel. In [32], the error probability of 

the IOD was compared to that of the conventional MF receiver for the case when users 

employ pure cosine waves with different phases which are time-limited to a symbol 

interval, or effectively, rectangular pulse-shaping is used. While the performance of the 

jointly optimum receiver (JOR) is well-studied in the literature (see [3, Chapter 4] and 

references therein), to the best of our knowledge there are no exact analytical results on 

the bit error probability of the individually optimum receiver (IOR). Using the results 

of [40], in this section we derive an exact expression for the error probability of an IOR 

used to detect a BPSK signal corrupted by a similar cochannel interferer and AWGN. 

We will show that both detectors perform almost the same for large values of SNR and 

use this fact to specialize the resulting bit error rate (BER) expression to give the error 

probability of a two-user synchronous JOD in AWGN. 

3.2.1 Signal Mode l and Receiver Structure 

Assume that the received signal is given by 

r(t) = A0b0s0(t) + Aihsi(t) + n(t) (3.27) 

where Sfc(i) (k = 0, 1) is the fcth user's signal waveform which has unit energy and is 

zero outside the interval [0, T]. The sampled output of the receiver filters matched to 

so(t) and si(t) are given by 

r0 = A0b0 + Arfip + n0 (3.28) 

n = A0b0p + Aibi + m (3.29) 

respectively, where p — J0 so(t)si(t)dt is the cross-correlation between so(t) and si(t) 

and rife = fQ n(t)sk(t)dt is the noise component along Sk(t) which is a Gaussian RV with 

mean zero and variance No/2. Moreover, no and n\ have covariance pNo/2. Assume 

now that p ^ 0 (i.e., so(t) and si(i) are correlated) and |p| < 1. Then one can use the 
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Gram-Schmidt orthonormalization procedure [1] to obtain two orthogonal basis functions 

as 

Mt) = ao(t) (3.30) 

, ,A si(t)-ps0(t) 
4>\{t) = ==—. (3.31) 

V1- P 

Clearly, the projection of r(t) onto <j>i(t) is 

rfa = Aibi y/l - p1 + 11^ 

1 
(n - roP) (3.32) 

^TTp-2 

where n^x is the component of n(t) along <j>\(t) and is a zero-mean Gaussian RV with 

variance No/2. Eq. (3.32) can be rewritten as 

r\ - r^ \/l- p2 + r0p. (3.33) 

Note that the components of n(t) along 4>o(t) and (j>i(t), i.e., n ,̂0 and n ^ , are i.i.d. with 

common PDF, /(•). 

3.2.2 B E R Derivation 

Some typical constellation points and the corresponding decision boundary of an IOR 

are shown in Figs. 3.6 and 3.7. The constellation points and the decision boundary are 

different depending on the sign of p. Thus, we obtain the probability of error for p > 0 

and p < 0, separately. Furthermore, it will be seen that for BER evaluation we need to 

find an equation defining the curve B in Figs. 3.6 and 3.7. To this end, one can obtain 

the equation of the decision boundary, B, from (2.30) by equating the argument of the 

signum function to zero, i.e., 

4A) ° g ^ c o s h [ 2 A i r i ^ A ° A l ? 

After some algebraic manipulations, one can obtain 

No ^>osh[2^°^] 
-2A 
N0 

ro = ff log , l
r " ! > • (3-34) 

2Anrn \2Air\ - 2AQAip-\ 2-Vo , \2Airi + 2AQAip 
1 = e "o cosh ' 

iora e No cosh 
N0 N0 

(3.35) 
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Figure 3.6. A typical received signal constellation and the decision boundary for a BPSK 

signal with one similar cochannel interferer for p > 0. 

Now, we separate the terms which include e x p [ ^ & ] from those which include exp[-2 A j r i] 

to obtain 

i l l l 
e No sinh 

2A0r0 + 2AQA1P 

Na 
_ ± 2 i T l vo sinh 

•2AQr0 - 2A0A1p 
NQ 

The last equation is equivalent to 

N / smh\2Aoro+JAoA'P} 
n = — - l o e l N° J 

4Ax 8V sinh[2^°-f°^j 

(3.36) 

(3.37) 

Now we replace n in (3.37) with the expression on the right in (3.33) and rearrange to 

obtain 

»>i = g(r0) = - rop 
+ 

iVo / s i n h [ 2 A o r o + ^ ° A ^ ] \ 
y r = V ' 4Ax v / 1 ^ 7 l o g (̂ ~ s i n h ^Moro^HTiJ J • (3-38) 

Eq. (3.38) is an end result that defines the decision boundary in the <fo-0i plane and 

will be used to determine the BER. It can be shown that g(-) is an odd function, i.e. 
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Figure 3.7. A typical received signal constellation and the decision boundary for a BPSK 

signal with one similar cochannel interferer for p < 0. 

9{x) = ~g{-x). Moreover, g(x) has two asymptotes at x = Aip and x = -Aip. That 

is, g{x) -> oo when a; -> Axp and #(x) -> - c o when x -> - ^ p as seen in Figs. 3.6 and 

3.7. When p is positive, an error will occur if n^ and n ^ move the desired constellation 

point (C0 or d) into the shaded area in Fig. 3.6. In order to calculate the probability 

of this event, we shift the origin to the point C0 in Fig. 3.6. Then, the new equation 

defining the decision boundary, B, in terms of n^0 and n ^ will be 

B: rift = ginfo - A0 - Axp) + Ax y/l - p2 (3.39) 

where g(-) is given by (3.38). In order to find the BEP, we split the shaded area in Fig. 

3.6 into two regions and integrate the joint PDF of n^0 and n^ over these regions. This 
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leads to 

r-A0+2Aip pg{n4lo-A0-Aip)+Aiy/l-p2 

PO 
lAo 
\ \ f (rift) drift f (rift) drift 

J Ao J—oo 
/•oo /-oo 

+ / / f(nft) drift f(rift) drift. (3.40) 
JAo+2Aip J—00 

Similarly, if we shift the origin to point C\, the new equation of B and the error probability 

will be 

B: rift= g(rift - A0 + Axp) - Ax y/\ - p2 (3.41) 

Mo f9(n<i>0 -Ao+Aip) -A\ \Jl-p2 

Pi = / / / W i ) drift f{rift) drift 
JAQ-2A\P J - oo 

roo /*oo 

+ / / fi^ft) drift f (rift) drift (3.42) 
./Ao J — 00 

respectively. By comparing Figs. 3.6 and 3.7, one can see that the constellation points 

and the decision boundary for the case when p < 0 are the reflection in the cfo-axis of 

those of the case when p > 0. In particular, Co and C\ in Fig. 3.7 are the reflection 

in the ^o-axis of C\ and CQ in Fig. 3.6, respectively. In other words, when p < 0, the 

probability that the noise components move the constellation points Co and C\ to the 

shaded area in Fig. 3.7 are p\ and po, respectively, where po and p\ are given by (3.40) 

and (3.42) . Since the overall probability of error, Pe, equals \(po + Pi), it can be seen 

that Pe is identical for the two cases provided that p is replaced with \p\ in (3.40) and 

(3.42). 

Using (3.40) and (3.42), one can obtain the probability of error as 

l\r,( A* \ , „{A0-2A1\p\\ f2A^ Pe n ^ v ^ r gv ̂ /AW2 Jo 

g(x - Ax\p\) + Aly/\ - p2 

dx\. (3.43) x f(x + A0) + Q(^ !/ko/2 )/(X ~ 0) 

Since <?(•) is an odd function, the argument of the first Q-function in the integrand 

in (3.43) is the negative of the argument of the second Q-function in the integrand. 

Using this fact and replacing Q(—a) with 1 — Q(a) in (3.43), one can obtain after some 
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manipulations, 

Ao 
p e - g 

\/No/2 

xQ 
M{l-\p\x) 

+ 
VNo/2 

:log 
s i n h [ ^ ] 

s i n h [ 2 ^ ^ - 2 ^ ' ) ] 
da;. (3.44) 

Eq. (3.44) is a general expression for the BER and is valid for all values of p, \p\ ^ 1. 

3.2.3 Resul t s 

When the SNR is large, i.e., NQ is very small, the logarithm term in (3.44) quickly 

approaches AAQAI(X + \p\)/No. Thus, the second term in the argument of the Q-

function in the integrand in (3.44) approaches Ao(x+ \p\)/y/No(l — p2)/2. Interestingly, 

if we replace the second term in the argument of the second Q-function in (3.44) by 

Ao(x + \p\)/y/N0{l-p2)/2, we obtain 

Ao \ , A, [2^___J (AlX)2 + A2
0 

P e - Q + \ 7 i V 2 y yfiffio 

r'APl ( 
sinh 

2A0Aix 

x Q 

No J V No 

(Ag - Ai\p\)x + Ai - Ap\p\\ 
dx. (3.45) 

y/N0(l - p2)/2 J 

Eq. (3.45) is equivalent to the expression for the probability of error of a JOR in the 

presence of AWGN and a similar cochannel interferer derived in [40]. Correspondingly, 

when iVo —• 0 and p > 0 the logarithm term in (3.38) approaches AAoro/No. Thus, 

(3.38) becomes 
An — A,n 

(3.46) 
^o - AlP 

Aiy/T-
which is the equation defining the diagonal line in the decision boundary of a JOR in 

a two-user BPSK channel when p > 0. Note that when \p\ —> 1, the (^-function in the 

integrand of (3.45) takes one of the values 0, 1 or ^ corresponding to positive, negative 

or zero values of (Ao — A{)(x — 1). Using this fact, one can obtain the error probability 

for the case when \p\ = 1 as 

Pe = 

if ^o > A\ 

Q(^)+J-2
(-iw(v0)]-iCAo<Ai 

1 + <^)+<7^)'. 

(3.47) 

if An = Ai 
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The error probability of the CMF receiver in a two-user synchronous AWGN channel 

is [3] 

When \p\ = 1, the error probability given by (3.47) is the same as the BER of the jointly 

optimal receiver for AQ > A\. In other words, in this special case the JOD does not 

have any superiority over the conventional MF receiver. Moreover, when |p| = 1 and 

AQ = A\, eq. (3.48) simplifies to 

Observing that Q(x) is concave up for x > 0 [3], we can use Jensen's inequality [41] to 

obtain 

Using (3.50) one can compare (3.49) with the expression given for the BER in (3.47) for 

Ao = A\ and conclude that the conventional receiver outperforms the ML receiver that 

jointly detects bo and b\. This is because the ML receiver tries to maximize the decision 

metric for both bo and b\, not for bo individually. In this special case, the individually 

optimal receiver outperforms the ML receiver and its probability of error equals that 

of a conventional MF receiver. Note that in this case, both receivers suffer from an 

irreducible error floor, i.e., the minimum error probability is | even when SNR —> oo. 

We have evaluated the BER of the IOR and JOR as a function of SNR for Ao — A\ 

and the following cases: 

i. p is deterministic and equals 0.99, 0.9, 0.5 and 0. 

ii. p is a random variable defined as p = cos#, where 8 is a uniform random variable 

over [0,2ir). In this case, the BER is averaged over 9. 

The results are shown in Fig. 3.8. When p = cos 9, and the BER is averaged over 9, 

the IOR achieves slightly better performance than the JOR only when the SNR is small 

and the BER is impractically large, or bordering on being so. For example, for BER 

= 0.2 the JOR needs almost 0.31 dB more power to achieve the same performance as 

the IOR, while at SNR = 3 dB and BER = 0.08, the receivers perform approximately 
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Figure 3.8. The average probability of error of the IOR and JOR for AQ — Ai and p = 

0.99,0.9, .5 and 0 and p = cosO where 9 is uniformly distributed over [0,27r). 

the same. Furthermore, Fig. 3.8 shows that the BER of the JOR approaches that of the 

IOR (even for low SNR values) as p approaches zero. 

The multiuser efficiency of the IOD and JOD as a function of A\/AQ is depicted in 

Fig. 3.9 for some selected values of SNR and p = cos 9 where 0 is uniformly distributed 

over [0, 2TT). Clearly, the IOD performs more efficiently than the JOD for all three values 

of SNR. Furthermore, for low SNR values the IOR has a higher multiuser efficiency than 

the JOR while for high SNRs the multiuser efficiency of both receivers is approximately 

the same. This is because for low SNR values the decision boundary of IOR is too 

curved to be approximated with the straight lines that constitute the JOR's decision 

boundaries [40]. Note that when SNR increases, the dominant source of error for the 

multiuser detectors (MUD's) is no longer background noise but the CCI. Thus, the 

multiuser efficiency of the MUD's decreases as SNR increases. 
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Figure 3.9. The multiuser efficiencies of the IOR and JOR as a function of A\/AQ for p — cos 9 

where 0 is uniformly distributed over [0,27r) and SNR = 4, 8 and 12 dB. 

3.3 BER of a Bandlimited Two-User JOD With Carrier 

Phase Error 

Two important limitations regarding the results in [3], [32]-[35], [40] are that in these 

references the carrier phase recovery is assumed perfect, and that the users are assumed 

to use a rectangular pulse. Most practical communications systems operating at finite 

values of SIR will exhibit some carrier phase recovery error mainly due to background 

noise, interference and instabilities in carrier frequency. Furthermore, in receivers which 

make use of a phase-locked loop for phase acquisition, severe phase offsets may be caused 

by hangups, cycle slippings and false locks [42], On the other hand, using a rectangular 

pulse is practically prohibited because a practical channel always has a limited bandwidth 

which distorts the rectangular pulse and causes intersymbol interference (ISI). In this 
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section, we extend the results in [40] to derive a new, exact BER expression for a ML 

receiver used to detect two BPSK signals in the presence of AWGN and imperfect carrier 

phase recovery. Different from the results in [35], [40], the new BER expression is valid for 

all values of cross-correlation between transmitted signals (not just for positive values) 

and accounts for both carrier phase recovery error and pulse-shaping. The results show 

that the BER is quite sensitive to phase errors, particularly for small values of SIR. 

3.3.1 S y s t e m Mode l 

Consider the transmission of two bandlimited BPSK signals over a synchronous, AWGN 

channel. Then, the received signal is given by 

oo 

r(t) = \/2 ^2 {Aobo,nPo(t - nT) cosut + 4i&i,npi(t - nT) cos(ut + 9)}+n(t) (3.51) 
n=—oo 

where bk,n € {—1,1} and Pk(t) are the information bit in the nth symbol interval and 

the transmitter pulse-shaping filter's impulse response of the ktb. user, respectively; T 

is the symbol interval and 6 and n(t) are as denned in Subsection 3.3.1. Assume that 

Pk(t) has unit energy and satisfies Nyquist's first criterion [1], i.e., RPkPk(nT) = 5(n) 

and RPkPl{t) is defined as 

/

oo 

Pk(r)pi(r-t)dT, k, 1 = 0, 1. (3.52) 

-oo 

Also assume that there is no cochannel interference from the symbols transmitted before 

or after the nth symbol, i.e., RpoPl(nT) = u6(n) where \fj,\ < 1. Defining so(t) = 

•\/2po(t) cos cut and s\(t) = \/2pi(t) cos(wt + 6), it can be readily seen that 

/

oo 
sQ(t)si(t)dt = n cos 9 (3.53) 

-oo 

provided that uiT » 1. At the receiver, r(t) is passed through two filters matched 

to (po(t) and 4>x{t) defined by (3.30) and (3.31), and sampled at t = IT. Using the 

assumption uT » 1 and the fact that Rpm{nT) is nonzero only if n equals zero, the 

sampled received signal at the output of the matched filters will be 
oo 

r0(lT)= ^2 {AobocosujlT + AibificoB(u}lT + d)}6(l-n) + no(lT) (3.54) 
n=—oo 
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1 oo 
n(lT) = . V {A0b0 [ncos(tolT + 0) - pcostolT] 

+Axbx [coswJT - Pficos(culT + 9)}} 5(1 - n) + ni(ZT) (3.55) 

where rikilT) = /f^ n(r)cj)k(T—lT)dr and no(lT) and ni(/T) are two independent Gaus

sian random variables with mean zero, variance NQ/2 and common PDF /(•). Assuming 

that u>T is an integer multiple of 2TT, eqs. (3.54) and (3.55) can be simplified to 

rQ = b0A0 + biAip + n0 (3.56) 

ri = hAiy/l - p 2 + ni (3.57) 

where for simplicity of notation we have dropped the arguments of rk(lT) and nk(lT). 

The maximum likelihood decision rule for bits bo and 61 (jointly optimal detection) is 

given by [3] 

argmax \b0Aoro + biAi (pr0 + \ A ~ P2 n) - bobiA0Aip\ (3.58) 
So, Si L ^ / J 

where 60 and b\ are the estimated bits corresponding to the desired and interfering users, 

respectively. 

3.3.2 B E R Derivat ion 

Assume that the carrier phases of the desired and interfering users are not perfectly 

known at the receiver and denote the estimated phase of the desired and interfering 

carriers as 9Q and 0\, respectively. Then, the fcth user's signal is given by 

sk(t) = V2 pk(t) cos(ujt + 6k) fc = 0, 1. (3.59) 

Furthermore, the cross-correlation between so(t) and §i(t) becomes p — /ixcos(#i — 6Q). 

Using the Gram-Schmidt orthonormalization procedure one can get two basis functions 

4>o(t) and <f>i(i) defined by (3.30) and (3.31) with p, so(t) and si(t) replaced by p, §o(t) 

and §i{t), respectively. The sampled received signal at the output of the filters matched 

to the new basis functions are 

f0 = b0co + b\cx + n0 (3.60a) 

f 1 = bQd0 + M i + fix (3.60b) 
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where 

di 

C{ ) = AQ cos 0o 

c\ = Ai)j,cos(6 — 0o) 

d0 = A0 

±At 

fJ, COS 0 i — /5 COS 0o 

[ V I - P 2 J 

cos(0 - 0i) — |U/3cos(0 - 0o) 

v / i - P 2 

(3.60c) 

(3.60d) 

(3.60e) 

(3.60f) 

and no and hi are the components of n(t) along 0o(£) and </>i(i), which are independent 

Gaussian random variables with the same mean, variance and PDF as no and m. In 

this case, the ML decision rule is again given by (3.58) with p, ro and ri replaced by p, 

fo and fi, respectively. This decision rule for bit bo can be alternatively expressed as [3] 

b0 = sgn { AQfo + -Ax pf0 + \ / l - / 5 2 fi - A)P 

- ^ 
pf0 + \ / l -yo2 h + A0p > (3.61) 

The constellation points and the corresponding decision boundaries for p > 0 and 

p < 0 are shown in Figs. 3.10 and 3.11, respectively. In order to obtain the equation 

defining the line L in the (f>o — 4>i plane, one should equate the argument of the signum 

function in (3.61) to zero, to get 

AQ sgn(p) - pAi 
L: fi 

Ai^/T ro- (3.62) 

Furthermore, it can be shown that the coordinates of the points Pi and Pj are given by 

Ao-Ai\p\.„. 
P: 

Pi-

MP, 

-Aip,-
Ao-Ai\p\ 

(3.63) 

(3.64) 

From Figs. 3.10 and 3.11 one can readily see that the constellation points are not 

symmetric about the decision boundaries. In other words, the receiver whose boundaries 

are shown in Figs. 3.10 and 3.11 is no longer minimum distance. It is important to note 

that if the carrier phase estimates, i.e., 0o and 0i are such that Co + ci < pAi, then 

Co and C3 will move to the bo = 1 and bo = — 1 decision regions, respectively. Hence, 
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Figure 3.10. A typical received signal constellation and the corresponding decision boundaries 

for a BPSK signal and one identical cochannel interferer in the presence of carrier phase error 

for p > 0. 

when 6o = 6i, i.e., the desired constellation point is either Co or C3, and the background 

noise is negligible, the receiver is likely to detect bo in error. Since 60 equals 61 in 50% 

of the cases (provided the transmitted bits are equiprobable), we expect the receiver's 

error probability to be approximately equal to O.5.1 Similarly, if —Co + c\ > pA\ and 

bo = —b\ the receiver is likely to detect bo in error in approximately 50% of the cases 

even for vanishing small background noise. When Co + c\ < pA\ < —Co + c\ and the 

background noise is negligible, the receiver always detects bo in error. In this case the 

background noise can improve the receiver's performance by moving the constellation 

points to their designated decision regions. 

Assume that the information bits are equiprobable. Then, because of symmetry, the 

probability of error is the same for bo = — 1 and 60 = 1- Thus, it is sufficient to derive 

xWhen p > 0 and — pA\ < co + ci < pAi an error floor occurs only if Co is below, and C3 is above, 

the diagonal line L. 
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Figure 3.11. A typical received signal constellation and the corresponding decision boundaries 

for a BPSK signal and one identical cochannel interferer in the presence of carrier phase error 

for p < 0. 

the probability of error for bQ = - 1 . Using this fact along with the procedure described 

in [40], one can obtain the receiver's bit error probability as 

-i i ( 

p.= E« 
i = 0 

-Axp + CQ + j-iyci 

r2p 
2_P) dp+ (-!)% 

V2 Jo V V( l - P2)N0/2 ' ^/jVo72 

x / (Ai sgn(p)(x -p) + c0 + (-iyCl) I dx. (3.65) 

Eq. (3.65) is a general expression for the receiver's error probability in the presence of 

carrier phase recovery error. By replacing 0Q with 0 and §i with 9 in (3.65) (through 

(3.60)) , one can obtain the receiver's error probability in the case of perfect carrier phase 

recovery for all values of p e ( - 1 , 1) as obtained in (3.45) . 
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Figure 3.12. The worst case SIR as a function of \p\ for different SNR values. 

3.3.3 Results and Discussion 

For a two-user JOR and vanishing background noise (i.e., NQ —> 0), the maximum BER 

occurs at SIR = |p|~2 [3]. To confirm this fact, and to see how sensitive the BER is to 

the value of \p\, we have evaluated the worst case SIR, i.e., the SIR at which the BER 

is maximum, as a function of \p\ for some SNR values which are shown in Fig. 3.12. 

From this figure one can see that for large SNR values, by increasing the value of |p|, 

the worst case SIR curve rapidly approaches that of vanishing noise. For example, the 

worst case SIR for SNR = 20 dB and SNR —> oo is graphically the same when \p\ is 

greater than 0.17. This happens for SNR = 15 and 10 dB when \p\ is greater than 0.35 

and 0.6, respectively. 

The receiver's error probability as a function of SIR for 6 = 45° and various values of 

#o and 6\ is depicted in Fig. 3.13. When the estimated interferer carrier phase is different 
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Figure 3.13. The JOD receiver's BER as a function of SIR for various values of §o and §i, 

SNR = 12 dB, 6 = 45° and ji = \. 

from its actual value, i.e., 6\ ^ B, the error probability approaches 0.5 for SIR < —20 dB 

for both 6o = 15° and §o — 0°. In other words, when the interferer's carrier phase is not 

exactly recovered (Q\ # 6) and SIR —> —oo dB, the optimum receiver becomes ineffective 

even if the desired user's carrier phase is perfectly estimated, i.e., OQ = 0°. Nonetheless, 

in the latter case, increasing the SIR improves the receiver's performance and for SIR > 5 

dB the receiver performs effectively. Note that from (3.65), it can be readily seen that 

when SIR—* oo the second term on the right approaches zero. Therefore, the receiver's 

error probability approaches Q(AQCOS6Q/\J'NQ/2) for large SIR values. Hence, when 

SIR —> oo, the receiver has the same 20 log10 cos 6Q dB SNR loss compared to the case 

of perfect phase recovery as does a single-user BPSK receiver in AWGN with the same 

phase error. 
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Figure 3.14. The receiver's BER as a function of 90 for SNR = 12 dB, 9 = 45°, \x = 1 and 

SIR = -10 dB. 

Figs. 3.14 and 3.15 show the receiver's BER as a function of 9Q for various values 

of ft and for fixed SIRs of - 1 0 and 10 dB. When SIR = - 1 0 dB and 60 is fixed, the 

receiver with Q\ = 45° outperforms those with an erroneous 0\ as shown in Fig. 3.15. 

Furthermore, the larger the value \9—6\ |, the wider is the do interval for which the receiver 

becomes ineffective, i.e., BER = 0.5. When SIR = 10 dB, the minimum achievable error 

probability can be reached by the receiver at or around the exact value of 6Q even for 

erroneous 6\ values, as shown in Fig. 3.15. Note that when 9\ = 75°, the minimum 

achievable BER can be reached for a wider 9Q interval compared to the case when 

6\ y^ 75°. This can be explained as follows. As the SIR increases the decision boundary 

in 0o — (f>i plane becomes narrower and in limit, i.e., SIR —> oo, the decision boundary 

simply is the <j>\ axis. Thus, the ML receiver will be the same as the conventional 

matched filter receiver. In this case, changing 6Q moves the constellation points mostly 
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Figure 3.15. The receiver's BER as a function of d0 for SNR = 12 dB, d = 45°, [i = 1 and 

SIR = 10 dB. 

along the 0i axis rather than along the <f>o axis. For the particular case of 0\ = 75°, the 

constellation points are moving from below the <J>Q axis to above it while their distances 

from the <j>\ axis are approximately constant. Hence, we expect the receiver to be more 

robust to 6Q errors in this case. 
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Chapter 4 

Two Multiuser Combining Receiver 

Diversity Structures 

CCI and multipath fading are two major sources of distortion in multiuser radio commu

nication systems. Receiver antenna diversity has been shown to be an effective means to 

simultaneously mitigate the fading and CCI [43]. In [43], it is shown that the optimum 

combining scheme is the best combining strategy in the sense of maximizing the output 

SINR for the desired user. For this reason, OC is also referred to as MMSE linear com

bining [44]. A large body of research has been reported that studies the performance of 

OC in multipath fading environments and compares its performance with that of other 

combining schemes such as MRC [45]. Many of the existing works have derived the 

BEP or symbol error probability as a performance indicator of the OC in multipath 

fading environments (see [46], [47] and references therein). The output SINR and the 

outage probability are also well-studied in the literature as performance measures of 

OC [48]-[51]. 

Although OC can diminish the effects of CCI and fading through maximizing the 

output SINR, we raise the question of whether there are detection strategies for wireless 

diversity reception that can outperform OC in the sense of minimizing the error prob

ability, i.e., whether we can find a better than optimum combining (BTOC) receiver. 

Our strategy for achieving this is to treat the interfering signals as multiusers in a mul

tiuser wireless system and derive ML and optimal digital diversity receivers to detect 
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the information symbols [3]. Reference [3] only considers MF and decorrelating space 

diversity receivers and the ML and optimum diversity receivers not examined in this 

reference are examined here. We note that a similar idea was previously reported in [52] 

where a ML detector for a multiuser system with receiver antenna diversity in Rayleigh 

fading and CCI was derived. In this reference, the channel gains are assumed to be 

unknown but Gaussian distributed with known mean and covariance matrix. However, 

the final result involves calculating a quadrature form for each hypothesis data sequence 

that requires inverting a large matrix. Furthermore, comparing the performance of the 

receiver proposed in [52] with that of the OC would not be a fair comparison as in the 

latter case the channel gains are assumed to be known. 

Motivated by the fact that a MMSE equalizer used to suppress ISI or CCI is inferior 

to a ML equalizer in terms of BEP [1], in this chapter we address the aforementioned 

question by deriving a ML as well as an optimum detector1 for diversity reception of 

BPSK in CCI and AWGN. The transmitted signals are assumed to be like-modulated 

and Rayleigh-faded. We show that the channel gains of the interfering users along with 

their deterministic transmitted waveforms must be exploited in a better way than the OC 

detection strategy to ensure minimum achievable error probability. In our treatment, we 

consider both ML [9] and optimum [15] diversity receivers, referred to as the jointly and 

individually optimal detectors in the context of MUD [3], respectively. We show that the 

BTOC receiver is composed of a bank of MRC combiners (one for each MF) followed by 

either a ML detector or a LRT that chooses the hypothesis with maximum a posteriori 

probability. Computer simulations will be used to compare the BER performance of the 

proposed BTOC receivers with that of the OC and MRC receivers in Rayleigh fading 

with CCI and AWGN. 

4.1 Signal Model and Optimum Combining 

The system model of the baseband signal received at the mth receiver antenna is shown 

in Fig. 4.1. The baseband received signal at the output of the mth antenna (m = 

xThe optimum diversity detector minimizes the BEP for a specific user only whereas the ML detector 

minimizes the BEP for all users at the same time. 
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Figure 4.1. The system model of the baseband received signal at the mth element of the 

antenna array. 

1,2,..., M) is given by 

oo K 
rm(t) = ^2 ^2 AkckitnbkjSk(t - iT) + nm{t) (4.1) 

i=—oo fc=0 

where Ak and bkti €{—1,1} are the kth user's amplitude and information bit in the zth 

interval, respectively and ck^m is the complex channel gain between the fcth user's trans

mitter and the mth antenna. We assume that Cfc;TO's are zero-mean complex Gaussian 

random variables with unit variance and the bk/s are equiprobable. It is assumed, as 

usual, that all transmission delays have been compensated. Also in (4.1), M is the num

ber of receiver antennas, K is the number of interfering signals, T is the symbol interval, 

sk(t) is the fcth user's transmitted waveform and nm(t) is a complex additive Gaussian 

noise process whose real and imaginary components are independent and zero-mean 

with unit PSD. All the random variables are assumed to be mutually independent. Fur

thermore, we assume that the Sfc(i)'s have unit energy and the transmission is ISI-free, 

i.e., 

pkj5(n), k^j 

5(ri), k = j 
Rsk,Sj(nT) = (4.2) 
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where 

/

oo 
x{t)y{t-T)dt (4.3) 

•00 

Pk,j is the cross-correlation between Sk(t) and Sj(t), and 5(n) denotes the Kronecker 

delta function. The average SNR per channel and the average SIR at the input of the 

receiver are 

% = f (4.4) 
SIR A ^ T ( 4 5 ) 

respectively, where P% = Y^k=i tfJT ' s t n e t o t a l interference power. 

The received signals are passed through a bank of filters matched to {sj(£)}jL0
 a n d 

sampled at t = IT to obtain 

K 

where 

r i 
= L^ AkPk,jbk,eCk + n j , 

fc=0 

r j = h j , r 2 J , ••• 

Cfc = [Cfc,l, Cfc,2, • • 

n j - K j > n 2 j , • • 

3 = 0, 

> r M,j] T 

., if (4.6a) 

(4.6b) 

(4.6c) 

(4.6d) 

rmj = Rrmt8j(£T) and nmj — Rnm,Si(HT). In the OC scheme, the elements of the Oth 

received array, ro, are weighted and combined according to [43] 

«K ro ) (4.7) 
I + Z)^o,fcCfccf 

I. L fc=i 

to obtain the decision statistic for bit bote, where 3?{-} and [-]H denote the real part and 

conjugate transpose operators respectively, and I is the identity matrix with appropriate 

dimension. In the absence of the CCI, the summation in (4.7) vanishes and the decision 

statistic of the OC simplifies to that of the MRC diversity receiver, i.e., ^{qfro}. 

4.2 Better Than Optimum Combining 

In this section we derive two BTOC diversity receivers for the signal model given in (4.6) 

that minimize the error probability either for all users or for the desired user only. In our 
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treatment, we assume that the channel gains as well as the deterministic transmitted 

waveforms of all users are known at the receiver. These assumptions are exactly the 

same as those made for the OC receiver when an OC scheme is to be used to detect 

information bits [43] and allow comparison to be made. We first consider the case where 

all signals have the same propagation delay and derive a ML receiver for this case. Then, 

we extend the results to the case where propagation delays are different. We also derive 

the BTOC receiver structure for the case where the detection of the information bit 

of a specific user is concerned. In this case, the receiver requires the knowledge of the 

interfering users deterministic waveforms in contrast to the OC receiver. Nevertheless, if 

all users use the same transmitted waveforms, the required information by the OC and 

BTOC receivers is again the same. 

4.2.1 Maximum-Likelihood Diversity Reception 

Assume that {Ak}%=0, {sk(t)}%_0 and {ck}%=0 are a priori known at the receiver. Then, 

the ML receiver chooses {fr/JfcLo *na* maximize [3]2 

Prob{{6fe}f=0 | {rm(t)}£f=1, teT} (4.8) 

where T is the observation time and is assumed to be long enough to ensure that (4.2) is 

satisfied. Recalling that {nm(t)}m=i a r e independent random processes and that {bk}%=Q 

are equiprobable, it can be shown that maximizing (4.8) is equivalent to maximizing 

M 

l[c{rm(t), tET \{bk}to} (4-9) 
m=l 

where 

£{rm(t), t€T | { 6 f c } f = 0 } = e x p f - i J rm(i) - ^^ feCfc,m6 fcs fc(i) dt) (4.10) 

is the likelihood function of rm(t) [3]. Eq. (4.9) can be simplified using (4.10) to obtain 

the ML estimates for the information bits as 

arg mm 
M . K 

m=l •JT fc=0 

dt (4.11) 

2For simplicity of notation, we drop the redundant time index, £, in the sequel. 

52 



or analogously 

M 

arg mm 
M , r K r K 

E / M*)i2 + £ 
^l|cfc,m|2Sfc(i) - 2U< 'Y^Akc*kymbkrm{t)sk(t) 

m = l , y r ' - fc=0 U=0 
K K 

+ E E -Afc^Jcfc,mcJ,m6fc6jSfc(*)si(*) 
/c=o j=o 

d« (4.12) 

where [•]* denotes complex conjugation. Denoting the double summation in the inte

grand of (4.12) by \I> and observing that interchanging k and j in the summand of \& 

yields the complex conjugate of its summand, it can be readily seen that 

* = 2 K J E E AkAj4,mCj,rnhbMt)sj(t)\- (4-13) 

After eliminating the terms that do not depend on {&fc}j[L0, i.e., the first and the second 

terms in the integrand of (4.12), and rearranging one obtains 

K K-\ K 
E ^ M ^ E E AkAjbkbjPkj (4.14a) arg max 
,fc=0 fc=0 j=k+l 

where 

h = K{cf rfc} 

Pk,j = Pk,j ^ { c f Cj}. 

Thus, the ML detection procedure can be summarized as: 

(4.14b) 

(4.14c) 

1. The received samples at the output of the fcth MF, {rk,m}m=i> are weighted by 

{ckm}m=i a n d combined using a MRC approach to obtain the rk's (eq. (4.14b)) 

2. The cross-correlations, Pkj's, are adjusted using the estimated channel gains to 

obtain the Pfcj's (eq. (4.14c)) 

3. The rjb's and pkj's are input to a ML detector to obtain the ML estimate of {bk}^Q 

(eq. (4.14a)) 

A block diagram of the ML diversity receiver for a (K + l)-user Rayleigh fading channel 

is depicted in Fig. 4.2. 
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F i g u r e 4 .2 . The block diagram of the ML diversity receiver with (K + 1) users and M receiver 

antennas. 

Assume now that the interfering signals have different delays than the desired signal. 

Then, the received signal will be 

00 K 
rm(t) = Yl X Akck,mh,iSk(t ~ iT - Tk,m) + nm(t) (4.15) 

i=—00 fc=0 

where Tk,m denotes the delay corresponding to the fcth user's signal received at the mth 

antenna. The main difference between this case and the case where delays are equal 

is that the information bits overlap each other and the longer the observation interval 

the better the detection will be. We assume that the receiver detects (27 + l)(K + 1) 

information bits labeled as {6fc,i}> 0 < k < K, —I<i<I. Similar to the procedure we 

used for the synchronous case, the ML estimates of the information bits can be shown 

to be 

argmax 
{bk,i} 

I K , I K N 

X ^2Akh,i \ 2rk,i - ] P ^2 Aebe,jp~k,e,i,j} 
i=-ifc=o ^ j=-ie=o '. 

(4.16a) 
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where 

M 

PkAiJ-^2ck,mclm Sk(t-iT-Tktm)se{t-jT-Tc,m)dt (4.16b) 
m=l i-

h,i = J2 » | 4,m f «fc(* -iT-Tk,m)rm{t)dt I (4.16c) 
m=l I j - J 

Clearly, the ML receiver in this case is very complicated as it must detect all the in

formation bits at the same time. When the Sfc(£)'s are time-limited (for example, when 

they are zero outside the [0,T) interval) Pk,e,i,j m (4.16a) will be nonzero only for a 

limited number of j ' s . In this case, a Viterbi decoder [53] whose metric is the summand 

of the second summation in (4.16a) can be used to detect the information bits [3]. 

4.2.2 O p t i m u m Diversi ty Recept ion 

We now turn our attention to the case where optimum detection of a specific user is 

concerned. Assume that bo is the desired information bit to be detected. Then, the 

optimum receiver should maximize the a posteriori probability [3] 

Prob{fe0 | {rmW)m=i> * e T } . (4-17) 

Recalling that {bk}%=i are equiprobable and independent, the a posteriori probability 

in (4.17) can be expressed as 

2 K 

- L j^Probf&o,®* | {rm( t)}£= 1 , t E T) (4.18a) 
9=1 

where <B9 denotes the event that bk = bq
k, 1 < k < K, where {b9

k}k
x
=1 are chosen such 

that 
K 

g = ]T2fc-a(b« + l). (418b) 
fc=l 

Using a procedure similar to that used to derive the ML multiuser receiver in [3], one 

can show that maximizing (4.18a) is analogous to maximizing 

->K ' M „ K ,2 \ 

q=\ V m=l ^ T fc=l 

dt . (4.19) 
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After some algebraic manipulations, it can be shown that the decision rule for the opti

mum receiver can be expressed as 

K 

2^exp^-
9=1 I 

K-\ 

j=k+l fe=l 

K 

AQ(r0-^2 Akb\ p0,fc ) + AKbq
KrK 

Ao[ro-^2Akbq
kpo,k 

. V fc=i J 

-AKb«KrK-^Akbl(rk- J2 AibQJP^) • (42°) 
fc=l ^ j=k+l ' J J 

Note that in this case, the receiver structure is the same as that of the ML diversity 

receiver (Fig. 4.2) except for the last block, i.e., the ML detector, tha t should be replaced 

by an appropriate LRT. 

4.3 Results and Discussions 

The BER performance of the proposed receivers has been evaluated and compared with 

that of the OC, MRC and single-user (SU) receivers using computer simulation for 

different values of M and K. The SU receiver is assumed to use MRC to combine the 

received signals at the output of the antenna array and its BEP is given by [54] 

M M-l 

Psu 
M E 

m=0 

M - 1 - m 

m 

l + fi 
(4.21) 

where /J, = \ / 7 c / ( l + 7c) > (fe) — n\/((n — k)\ k\) and z\ denotes the factorial of z. In our 

treatment, we have considered M — 2, 4 and 6 diversity order. For these values of M 

the average SNR per channel, j c , has been assumed to be 7, 4 and 2.2 dB, respectively. 

We first assume that there is only one dominant interferer, i.e., K = 1. In this case, 

the ML and the optimum decisions for bit bo are shown to be [3] 

£>ML &8T = s g n 
' ~ A\ / , „ A „ 
A0r0 + — \\T\ — A0po,i 

rOptimum 
°0 — sgn 

No , 

\ri +A0pati\) 

cosh(Aifi + AQAip0ti) 

(4.22) 

(4.23) 
AAQ " " ^ c o s h ^ i n - A0AipOii)t 

respectively, where sgn(-), log(-) and cosh(-) denote the signum, the natural logarithm 

and the hyperbolic cosine functions, respectively. 
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Figure 4.3. The SNR loss of the MRC, OC, ML and optimum diversity receivers relative to 

the SU receiver as a function of the SIR in a two-user channel with Rayleigh fading, M = 4, 

7C = 4 dB and p0,i = 0.25 and 1. 

An insightful performance measure for the receivers in CCI is their SNR loss relative 

to the SU receiver. This measure indicates the amount of extra SNR required by the 

receiver to achieve the same error probability as the SU receiver, i.e., a MRC receiver 

with the same number of receiver antennas and no CCI. We have evaluated the SNR 

loss of the ML, optimum, MRC and OC receivers for M = 4, 7C = 4 dB and po,i = 0.25 

and 1. These assumptions lead to a BER of 10~3 for the SU receiver. The results are 

illustrated in Fig. 4.3. When po,i = 0.25 neither the ML nor the optimal diversity 

receivers have significant SNR loss relative to the SU receiver. However, for po,i = 1 the 

maximum loss for both receivers is approximately 0.45 dB for SIR = 7.5 dB. In other 

words, the optimum receiver can restore most of the SNR loss incurred due to the CCI. 

Note that the SNR loss of the OC receiver is larger than that of the proposed receivers 
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for both values of /9o,i and approaches some constant value when the SIR becomes very 

small. This is because in a two-user channel with M receiver antennas and very large 

interference power, an OC receiver performs approximately the same as a MRC receiver 

with (M — 1) receiver antennas and no interference [43, eq. (23)]. Thus, recalling that 

the channel gains have unit variance, it can be readily seen that the OC receiver requires 

101og10(ygry) dB more SNR than the SU receiver to achieve the same BER. For the case 

where M = 4, this SNR loss approximately equals 1.25 dB as shown in Fig. 4.3. Note 

that the SNR loss of the MRC receiver with respect to the SU receiver, dramatically 

increases for both values of pot\, even when the SIR is not small. 

The effect of the number of receiver antennas, M, on the SNR loss of the ML and 

OC diversity receivers relative to the SU receiver as a function of the SIR is depicted in 

Fig. 4.4. The number of receiver antennas and their corresponding values of SNR per 

channel are assumed to be M = 1, 2, 3 and 5 and j c = 10, 7, 5.2 and 3 dB, respectively. 

Moreover, both users have the same transmitted waveform, i.e., so(t) — si(t). The 

maximum SNR loss of the ML receiver for the case where there is no antenna diversity, 

i.e., M = 1, is approximately equal to 2.15 dB. In this case, the SNR loss of the OC 

receiver increases as SIR decreases and has a maximum value of 7.34 dB for vanishing 

small SIR (not shown in the figure). When the number of receiver antennas is increased 

by one, i.e., M = 2, the ML receiver's maximum SNR loss reduces to 1 dB whereas 

the SNR loss of the OC receiver is close to 3 dB. For M = 5, the SNR loss of the ML 

receiver is less than 0.45 dB for all the examined values of the SIR while the OC incurs 

a SNR loss of 1 dB, for small SIR values. Observe that the SIR range for which the 

SNR loss of the ML receiver is nonzero becomes narrower as M increases. For the OC 

receiver, however, this range is approximately fixed for the examined values of M > 1. 

Note that in this case, the ML receiver achieves the BER of the MF in a SU system 

even for small SIR values. This is because detecting the desired signal in very small SIR 

is equivalent to detecting the interfering signal in very large SIR. Thus, for small SIRs 

the ML receiver effectively mitigates the interference and achieves a performance close 

to that of the SU system [55]. Expectedly, for each M there is a SIR where the BER of 

the ML receiver and, thus, the SNR loss is maximum as shown in Fig. 4.4. 

The BER performance of the ML, optimum, OC and MRC diversity receivers as 
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Figure 4.4. The effect of the number of receiver antennas on the SNR loss of the ML and 

OC receivers with respect to the SU receiver in a two-user channel with Rayleigh fading and 

/°o,i = 1-

a function of SIR is depicted in Fig. 4.5. The ML and optimum diversity receivers 

outperform the OC and MRC receivers for all examined values of the SIR and M, even 

when the number of receiver antennas is as large as 6. The performance improvement of 

the optimum and ML receivers over the OC and MRC receivers deteriorates when the SIR 

becomes large and for SIR = 6 dB, i.e., Ao = 2A\, all receivers perform approximately 

the same. Note that the proposed receivers have a constant BER for all the examined 

values of the SIR. To explain this, we recall from Fig. 4.3 that the proposed receivers 

have negligible SNR loss relative to the SU receiver for po,i = 0.25 and, thus, their BER 

is almost the same as that of the SU receiver. 

Fig. 4.6 shows the BER performance of the ML diversity receiver as well as that of 

the OC and MRC receivers for K = 8. In this case, the performance improvement over 
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Figure 4.5. The average BER of the MRC, OC, ML and optimum receivers as a function of 

the SIR in a two-user channel with Rayleigh fading, /)0,i = 0.25 and M = 2, 4 and 6. 

the OC achieved by using ML reception is more significant than for the two-user case, 

particularly when the SIR is very small. In fact, for M = 2 and 4, the OC and MRC 

receivers in a system with 9 users perform approximately the same and are significantly 

inferior to the ML receiver whose BER for all the examined SIR's is again nearly constant 

and very close to that of the SU receiver. 

Observe that in Figs. 4.5 and 4.6, the performance improvement achieved by ML 

detection relative to OC is significant only when the SIR is quite small. One may 

question whether such SIRs are practically feasible. To answer this question, we recall 

that the SIR in (4.5) was defined as the ratio of the received signal power to the total 

interference power, i.e., P%. The effective interference power, however, depends on the 

cross-correlations between the desired and interfering signals and is defined as P j f f = 

T X f̂cLi ^fcPofc' Thus, it can be much smaller than the total interference power. For 
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Figure 4.6. The average BER of the OC, MRC and ML receivers as a function of the SIR in 

Rayleigh fading with K — 8, {pk,j}k& =0 .1 and M — 2, 4 and 6. 

example, when the {pk,j}kjtj = 0.1 (as in Fig. 4.6) the effective interference power is 

only 1% of the total interference power. Consequently, the effective SIR of the system 

is 20 dB more than the SIR defined by (4.5). Thus, a SIR of as small as —15 dB can be 

considered feasible for a practical system. 
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Chapter 5 

Cochannel Interference Mitigation 

Using Whitening Receiver Designs 

in Bandlimited Microcellular 

Wireless Systems 

Cochannel interference mitigation using an interference WMF in direct-sequence code-

division multiple access (DS-CDMA) systems was first proposed in [4], [56]. The WMF 

receiver first whitens a colored noise term composed of CCI and AWGN. Then, it maxi

mizes the output SINR by employing a filter matched to the transmitter filter. Under the 

assumption of identical transmitter pulse-shaping, this receiver has reasonable complex

ity and does not require any information about the CCI other than its total power [4]. 

The results in [4] were generalized later in [16] to the case where the received signal 

observation time is finite and some of the interfering signals are locked, i.e., their chip 

delays and received powers are known at the receiver. It was shown that the SINR can 

be further maximized by employing a new filter that can estimate and suppress the con

tribution of the locked interferers in addition to the unlocked interferers. This receiver 

is a compromise between the WMF receiver, when there is no locked interferer, and a 

MMSE multiuser receiver [5], when all interferers are locked. 
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Little work has been reported that studies whitening filter receiver design for ban-

dlimited microcellular systems. Recently in [57], [58], CCI mitigation using an interfer

ence WMF was proposed for fading micro-cellular environments and the effects of the ISI 

generated by the WMF were studied. In these references, a MMSE equalizer was used 

to mitigate the ISI caused by the WMF. In this chapter, we examine in detail whether 

interference whitening can be used with benefit in bandlimited microcellular wireless 

systems, using realistic system models that account for ISI. Extending and correcting 

the results in [58], we first consider a WMF receiver in a synchronous fading channel 

and show that even when the observation time is infinite, the SINR at the output of the 

WMF receiver is less than that of the CMF receiver. This is due to the fact that in a 

synchronous channel, the CCI is a cyclostationary rather than a wide-sense stationary 

(WSS) process and the concept of interference whitening is not applicable to such a 

system. In consequence, the WMF in a synchronous channel is inferior to the CMF, in 

contrast to the results reported in [4], [16], [56], [58]. 

In the asynchronous case, we first consider an ISI-free1 system and observe that an 

ISI-free WMF can achieve some SINR gain over the CMF and that the gain depends 

on the pulse-shaping. We show that the WMF's SINR gain over the CMF is 1.76 dB 

for a standard RC pulse and 1.07 dB for a BTD [59] pulse. In practice, the desired 

user transmits more than one information symbol and the cascade of the transmitter 

and receiver filters does not necessarily satisfy Nyquist's first criterion for zero ISI [1]. 

Hence, the system is ISI-impaired and the interference WMF is no longer optimum in 

the sense of maximizing the output SINR. References [4], [16], [56] ignore the effect 

of the ISI created by the WMF in an asynchronous channel in their treatment; nor 

do they consider the use of equalization to reduce the ISI introduced by interference 

whitening as done in [58]. Our analysis for the ISI-impaired systems illustrates that 

the ISI can dramatically diminish the SINR of the WMF relative to the CMF and 

make the interference whitening ineffective. Using calculus of variations, we show that 

the SINRMF in the presence of asynchronous CCI, ISI and AWGN is composed of a 

continuous-time filter (which turns out to be the WMF receiver) followed by a discrete-

1 An ISI-free system is a system in which the desired user transmits only a single information symbol 

albeit the interfering users may transmit arbitrarily long information sequences. 
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time filter which is a MM8E equalizer as proposed in [58]. We then evaluate the SINR 

of the WMF as well as the SINRMF in an ISI-impaired system and clarify the effects of 

SIR, pulse-shaping filter excess bandwidth, and the severity of the fading on their SINR 

gains over the CMF. Our results show that the SINRMF is superior to the ISI-impaired 

WMF even in the presence of a strong ISI component that makes the WMF inferior 

to the CMF. The SINR was not considered in [58] when equalization was used. Since 

multiple access interference is the main source of distortion in multiuser communication 

systems, we employ the asymptotic SINR as a performance measure to compare the 

receivers. This performance measure quantifies how well the ISI-free, ISI-impaired and 

SINRMF receivers can mitigate the interference in a high SNR regime. 

5.1 Signal Model 

The block diagram of the (K + l)-user communication system is given in Fig. 5.1. The 

bandpass received signal at the input of the demodulator is [58] 

00 

f(t) = V2A0ao cos(uct) ^ botigT(t - IT) 
i=—oo 
K oo 

+ Y^ ^Ak<*k cos(u;ct + 6k) J ] ] h,i9r(t - rk - iT) + n(t) (5.1) 
fc=l i——oo 

where Ak, o^, Tfc, 6^ and bk,i € {—1,1} are the kth user's amplitude, channel attenu

ation, timing offset, phase offset and equiprobable information bit in the «th interval, 

respectively. Also in (5.1), T is the symbol interval, LOC is the carrier frequency, n(t) is 

AWGN with mean zero and double-sided PSD No/2, K denotes the number of interfering 

signals and gr(t) is the transmitter pulse-shaping. For simplicity of analysis, we assume 

gr(t) is an even function and Gf.(w) satisfies Nyquist's first criterion [1], where GT{OJ) 

is the Fourier transform of gr{t). Assume that 6k and rk are uniformly distributed over 

[0,27r) and [0,T), respectively.2 Also assume that ao has a Nakagami-m distribution 

2The interfering users are neither synchronous nor coherent with the desired user. Thus, choosing 

a uniform distribution for Ok's and TU 'S is a reasonable choice as it reflects the fact that the interfering 

users have minimum information about the timing and carrier phase of the desired user. 
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Figure 5.1. The block diagram of the cochannel interference communication system with 

(K + 1) asynchronous users. 

with unit energy [1], 

2 m" 
fa0{x) = =7-^- x2m 1 exp(-ma;2), m > 0.5 

1 (m) 
(5.2) 

where T(-) is the Gamma function defined as [41] 

/>oo 

T(m) = / e-mtm-ldt [5R{m} > 0] (5.3) 
Jo 

and the cc '̂s (fc ^ 0) each have a Rayleigh distribution with unit energy [1] 

fak(x) = 2xe-x\ (5.4) 

All random variables are assumed to be mutually independent. We can assume, without 

loss of generality, that the energy of gr(t) and the noise PSD are equal to unity. The 
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latter assumption implies that NQ = 2. Thus, the average SNR per bit is 

76 = §• (5.5) 

We also define the average SIR of the system as 

The received signal is multiplied by V2cos(uct) and passed through the receiver 

filter, gii(t). For simplicity of analysis we split the receiver filter into an ideal lowpass 

filter and gR.(t) as shown in Fig. 5.1. The lowpass filter has the same bandwidth as the 

received signals and passes them without distortion. Then, the received signal at the 

output of the lowpass filter is 

oo K oo 
r(t) = A0aQ Y^ bo,i9r(t -iT) + ^T Akak cos 6k ] T htigT(t - rk - iT) + n(t) (5.7) 

i=—oo fc=l i=—oo 

where now n(t) is a lowpass zero-mean Gaussian process with unit PSD over the band

width of the ideal lowpass filter. The received signal is passed through the receiver filter, 

gii(t), and sampled at t = IT. Then, the resulting decision statistic for the £th bit of 

the desired user is 

oo K oo 
re = A0a0 ^ b04g((£ - i)T) + ̂ 2 Akak cos 0k ^ bKig({l - i)T - rk) + nt (5.8) 

i=—oo fe=l i=—oo 

where 

/

oo 
gr(s)gR(t - s)ds (5.9) 

-oo 
and ne is a zero-mean Gaussian random variable with 

/

oo 
gR(t)gR((e-k)T-t)dt. (5.10) 

-oo 

Since in general g(t) is not a Nyquist pulse, the received sample in (5.8) will have an ISI 

term in addition to the CCI and noise, defined as 
00 

J±Aoa0 ]T bo,igd(e-i) (5.11) 
i=—oo 
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where gd(i) = g(£T) and J is a zero-mean random variable with variance Oj = SQEQ 

where 
oo 

4 = E »2(0 (5-i2) 
%——oo 

i#0 

and £o — ^o a o ^s the instantaneous energy of the desired user whose PDF can be 

expressed as [1, eq. (14.3-14)] 

Recalling that the CCI, the ISI and the noise terms in (5.8) are independent random 

variables, one can obtain the SINR at the output of gR,(t) as 

r= ei{0) . (5.14) 

where a\ is the variance of the CCI. As we will see in Section 5.2, our analysis depends 

on the PSD of the CCI which in turn, depends on the type of modulation used in the 

system [1, Section 4.4]. Thus, our results can be extended to the linear modulation 

schemes other than BPSK provided that the information symbols are uncorrelated and 

zero-mean and that the modulation is memoryless. 

5.2 Interference Whitening Filter 

In this section, we first describe the structure of the interference whitening receiver for 

asynchronous and synchronous channels. Then, we derive the SINR of the WMF receiver 

for these channels. In our treatment, we consider both ISI-free and ISI-impaired systems. 

5.2.1 Asynchronous CCI 

Defining the fcth interfering signal, Xfc(t), as 

00 

lk(t) = Akak cos 9k E bk,i9r(t - n - iT) (5.15) 
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it can be seen that Ik{t) is a zero-mean process. When the CCI is asynchronous, the 

autocorrelation function (ACF) of lk(t) can be obtained as 

Rfi™C(t,t + T,)±E{Ik(t)Tk(t + r,)} 

= A2
kEak{al}Eek{cos2ek} 

OO OO 

] T J2 E{bk,ibkj}ETk {gT(t - r k - iT)gr(t + v~rk- jT)}. 
OO OO 

X 

l = — OO J = — OO 

(5.16) 

Since E{cos2 8k} = 1/2, the afc's have unit energy, rk is uniformly distributed over [0, T], 

and E{bktibkj} = 5(i — j), eq. (5.16) can be simplified to 

A2 °° fT 

Ri!YNC(t,t + v) = ^ ^ 2 gT(t-Tk-iT)gT(t + V-Tk-iT)drk. (5.17) 
i=—oo 

By changing the variable rk in (5.17) to u — IT one obtains 

A2 oo /-(i+l)T 

4 f Y N C ( * , * + V) = 7% E / «r(* - u)sr(t + V ~ «) du 

4 2 /-OO 

= 2 # y 9T(u)gT(v + u)dU. (5.18) 

Clearly, i?jS Y N C( i , £ + rf) is only a function of r\ and does not depend on t. Hence, Ik(t) 

is a WSS process. Observe that {Zk(t)}k=1 are independent processes; it follows from 

(5.18) that the PSD of the overall interference, i.e., X(t) = X^i^fcW* 1S given by 

5 x M = Pr|C?T(w)|2 (5.19) 

where Pj is the total interference power defined as Px = £ f = 1 A2
k/2T. It is shown in [18] 

that for a signal distorted by a WSS process whose PSD equals Sn(u>), the frequency re

sponse of the receiver filter that maximizes the SNR is given by GR(LU) = GT(U>) j'Sn(ui). 

In our problem, the interference and noise terms in (5.7) are two independent WSS ran

dom processes and, thus, their sum is also WSS with PSD, 1 + PJ\GT{OO)\2 . Hence, the 

WMF and its corresponding SINR are given by [4], [18] 

0*<"> " T ^ H j M (5'20) 
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G2
T(u) 

+ PxG
2

T(u)i TlSI-free = r ~ / , , J, ^ 9 / N dw 
27T J_<X) 1 

= So 9(0)- (5.21) 

It can be shown that Tisi-free is larger that the SINR of the CMF receiver in an asyn

chronous channel. To this end, we first use the fact that G^(u>) satisfies Nyquist's first 

criterion to obtain the SINR of the CMF as 

£o_ 
r C M F = 1 , 1 r ° ° r> ^Af..\j..- (5-22) 

Then, we use the Cauchy-Schwarz inequality for integrals [41] to obtain 

w?Li+ML»)*"L[G|M+ft0|M]**(523) 

where the equality on the left of (5.23) follows from the fact that gr(t) has unit energy. 

Multiplying both sides of (5.23) by 

2TT£O 

JZo [ G r H + PxG^u)] dco 

we obtain 

TcMF < risi.free. (5-24) 

By comparing (5.21) with (5.14) for the case where Eg = 0, one sees that o\ + a\ = 

g(0). Thus, the SINR in the presence of the ISI is given by 

r = g ° g 2 ( 0 ) . • (5.25) 
g(Q) + SoEg 

The SINR given by (5.25) depends on OQ through £Q and, thus, is random. This depen

dence can be removed by averaging (5.25) over the distribution of £Q to obtain 

mg2(0) 

Eg r = 
where 

-(ffMift) "• * *> 
sv{x) = r e x p L x t ) dt x > o- (5-26b) 

Obviously, the mean of Tisi-free can be evaluated by replacing €o with AQ in (5.21). 
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5.2.2 S y n c h r o n o u s C C I 

When the CCI is synchronous, i.e., {7>!}|L1 = 0, Zfc(t) is a cyclostationary process with 

ACF [1, Section 4.4.1] 

ja °° 
R¥k

NC(t,t + rf) = ^ £ ar(t - tT)0r(t + r? - IT) (5.27) 
i=—oo 

In this case, the ACF is a periodic function of t with period T and averaging Rxk(t,t + rj) 

over a single period can remove the dependence of the ACF on t [1]. However, this process 

is not reversible. In other words, we can not use Jfc(i)'s PSD to find sample values of 

the ACF, as the former is only a function of t\ — t-i whereas the latter depends on both 

t\ and *2-3 We will show that in a synchronous channel the SINR of the WMF can 

not exceed that of the CMF and, thus, the WMF can neither maximize nor enhance 

the SINR. To this end, we first note that in a synchronous channel the variance of the 

interference term in (5.8) is 

of = Eg Ez (5.28a) 

where 
oo 

Eg = £ 9lii) (5.28b) 

is 9d(0's energy and Ex — -PjT is the total interference energy. Using the Cauchy-

Schwarz inequality for integrals one can obtain 

(k / I GT^)GR^)(L?J < Q- £ ^ G2
T(u)du?j (J- J~ &R(u)du?) . (5.29) 

Recalling that gr(t) has unit energy and a\ equals gR(t)'s energy (i.e., the second term 

on the right of (5.29)), one can obtain a lower bound for a\ from (5.29) as 

a" - ( ^ / I G{J)d^ = 5
2(0). (5.30) 

3When {T^} are nonzero but deterministic constants, the CCI is not WSS [60]. Such a channel 

is equivalent to a synchronous channel in which each interfering signal has been time-shifted by its 

corresponding delay. Thus, a WMF receiver in this channel, can not lead to a larger SINR than a CMF 

receiver as it can not in a synchronous channel. 
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Now, using (5.30) and the fact that a\ = Eg Ex, one has 

£os2(o) 
r = °l + °\ + <rj 

£o 
1 + EX + (EX + £Q)Eg/g*(0) 

* rrk (53I) 

where £o/(l + Ex) is the SINR of the CMF receiver in synchronous CCI. Note that we 

did not impose any constraint on gii{t) when obtaining (5.31). Thus, in a synchronous 

channel the CMF is optimum in the sense of maximizing the output SINR and is superior 

to the WMF as opposed to the results given in [4], [16], [56], [58]. When g(t) is not a 

Nyquist pulse, the WMF may cause significant performance degradation due to both 

decreasing the SINR and introducing ISI. In this case, the SINR of the ISI-free system 

can be obtained using (5.14) with Eg replaced by 0. In the presence of the ISI, one can 

average (5.14) over the distribution of So to obtain 

r--ITeXPI E3Al ) A + m { E,A> )• (5'32) 

When the observation interval is limited to [0, T] and the channel is synchronous [4, 

Section IV], the Cauchy-Schwarz inequality can be exploited to show that the WMF has 

smaller SINR than the CMF provided that the ISI is negligible. 

5.2.3 Discuss ion 

As mentioned earlier, in general, g(t) does not satisfy Nyquist's first criterion. Therefore, 

the CCI term in (5.8) is not Gaussian, neither for a synchronous nor for an asynchronous 

channel. For example, in a synchronous channel the PDF of each CCI term in (5.8) is 

obtained by summing an infinite number of Gaussian PDFs with mean zero and different 

variances, and this summation does not lead to a Gaussian distribution. Thus, the error 

probability given in [58, eq. (11)] for the WMF receiver in a synchronous channel is 

not correct as it is based on the false premise that the noise plus CCI term in (5.8) 

is a Gaussian process. When the CCI is asynchronous and the desired user transmits 

only a single information bit (i.e., transmission is ISI-free), a precise error probability 
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calculation for the WMF receiver has been executed in [58] using the Fourier series 

method given in [61]. 

5.3 Derivation of the SINR-Maximizing Filter 

The WMF receiver introduced in Section 5.2 maximizes the SINR based on the premise 

that the ISI power is negligible. This assumption is not necessarily true as in general, g(t) 

is not a Nyquist pulse and can have significant amplitude at time instants t = kT, k ^ 0. 

In this section, we derive a SINRMF receiver using a procedure similar to that used in [62] 

for the CCI-free case. 

5.3.1 I IR Real izat ion 

The expression defining the SINR in the presence of the ISI can be written as 

S I N R - 2*LJ-oo V ) j 

1 J n——oo 

(5.33) 

where the last two terms in the denominator of (5.33) denote the ISI energy and the 

second term follows from Parseval's theorem (see Appendix B). It can be seen that max

imizing the SINR is equivalent to minimizing the denominator of (5.33) provided that 

its numerator is a constant, i.e., g(0) is fixed. To this end, we add a nonzero multiplier 

of g(0) to the denominator of (5.33) and ignore the constant term SQ/^U^ G(v) dv\ 

to obtain an unconstrained functional as 

£ | 1+^:GM"+f/iE^-^) 
T n=—oo 

du 

/

oo 
G{u)dv (5.34) 

-oo 

where A is a nonzero multiplier to be determined. To obtain G(LO) that minimizes \& we 

take the derivative4 of ^ with respect to G(co) and set the resulting expression to zero. 

4 The functional derivative is defined as d l ^ = lim »|Q(»>+'«(»-')l-»[0(''>l w h e r e 5 ( . ) i s t h e 

Dirac delta function [63]. 
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This leads to 

o K i i ^Hi:<' ( '<- ? FH=°- <5-35> 
x i v / ' n=—oo 

Initially, finding G(w) seems to be complicated because of the infinite summation in 

(5.35). However, a closer look at the left side of (5.35) reveals that the multiplier of 

G(u>) in the first term is the Fourier transform of a continuous-time signal whereas the 

second term is the folded spectrum of G(u>), i.e., the Fourier transform of a discrete-time 

signal. Motivated by this fact, we can decompose G(u) as G(u>) = G®(LO)GC(LO), where 

Gv(u) and GC{OJ) are the discrete and continuous components of G(u>), respectively. 

Since Gv(u>) is a periodic function with period 2TT/T, it can be readily seen that G(u> — 

2im/T) = GV{U)GC(UJ - 2irn/T). Thus, Gv{co) can be obtained from (5.35) as 

GVH = . D ^ 2 , .. . (5.36) 

In order for Gv(co) to be periodic, the first term in the denominator of (5.36) should 

be a nonzero constant because neither Gc(u>) nor GT{W) is a periodic function. Thus, 

Gc (to) is given by 

where r\ is a nonzero constant. Now, letting rj = A = 1, one obtains 

G > ) = I + *ESUIG«(«-¥) <5'38) 
and 

Thus, the SINRMF is composed of the interference-plus-noise WMF followed by a dis

crete filter whose Fourier transform is given by (5.38). Note that the foregoing discrete 

filter is identical to the MMSE equalizer used to remove the ISI caused by the WMF 

in [58]. In other words, our analysis shows the MMSE equalizer in [58], although pro

posed there to combat the ISI, is indeed necessary to maximize the output SINR. The 

SINR of the SINRMF receiver is given by (see Appendix C) 

TSINRMF = V 3 " (5.40a) 
AsiNRMF 
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where 
T 

ASINRMF = ^ J \ Gv{uj)duj. (5.40b) 

Note that using the Cauchy-Schwarz inequality for integrals [41] one can obtain 

T I-l^) - A s i N R M F ( £ / f ^ M d u ; ) (5'41) .2TT 

or analogously 

INRMF S 27T 7_w T Zo 1 A-SINRMF du>. (5.42) 
+ PxG

2
T(u-^). 

Denoting the expression on the right side of (5.42) by x, one can change the variable to 

to (LO + 2im/T) and interchange the integral and the summation in this expression to 

obtain 

- 1 + £° r GrM , 
- ' + 2TT 7_ro 1 + P z G ^ f ^ 

= 1 + TlSI-free. (5.43) 

Thus, TSINRMF < Tisi-free a n d the SINRMF receiver can not entirely remove the ISI. 

5.3.2 FIR Realization 

The SINR expression given in (5.40) is valid only when Gv(u>) is implemented using an 

infinite impulse response (IIR) filter. In practice, we assume that the inverse Fourier 

transform of Gc(u>), i.e., gc(t), is zero outside some interval [—JfT, Jz?T] (jSf integer) 

and use a finite impulse response (FIR) transversal filter with J\f = 2M + 1 tap weights 

to implement Gv(u>) in the time domain. Denoting this transversal filter by a J\fx 1 

vector, C, it has been shown in [1], [64] that C = G - 1 z where G is & NxN matrix 

whose ijth element is 

£ sFiensFW-i + fiT)+ £&£&, K-j|<2j2? 
Ga - < t=-se (5.44a) 

0, otherwise 
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and z is a M x 1 vector whose ith element is 

gc(iT), \i\<J? 
Zi= < (5.44b) 

0, otherwise. 

In this case, the SINR is given by 

pSINRMF = _ 1 _ ( 5 4 5 a ) 

where 
J? 

e= X c^- (5-45b) 
Note that the denominator of the fraction in (5.45a) is nonnegative and proportional to 

the mean-square error. 

The main drawback of this approach is the computational complexity incurred due 

to inverting the matrix G which is 0(J\f3) [65]. However, in our problem gr(t) and, thus, 

gc(t) are even functions. Consequently, G is a symmetric Toeplitz matrix, i.e., Gij = Gj% 

and Gij = G^_j\. For symmetric Toeplitz matrices there are low-complexity inversion 

algorithms that run in 0(J\P) for small J\f [66], and superfast inversion algorithms that 

run in 0{N\o^{J\f)) for large M [65]. Interestingly, when the SNR is large, i.e., £Q » 1, 

Gij is approximately independent of £Q. AS a result, G should be calculated only once, 

provided that Pj is constant. In this case, if P% changes, G should be recalculated as 

the Gij's depend on Pj through gc(t). 

5.4 SINR Evaluation 

In this section, we evaluate the SINR of the WMF and SINRMF receivers. For the 

WMF receiver both synchronous and asynchronous channels and the ISI-free and ISI-

impaired systems are considered. However, for the SINRMF receiver we only consider 

the asynchronous channel. We assume that |Gr(o;)|2 has either a RC spectrum defined 

as [1] 

X R C H = { 

T, M < ^ 
T[1_sin(k£Th!L)]) Z[(W?)< |W| < l i ^ a (5.46) 

0, ^±^< M 
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or a BTD spectrum given by [59] 

^ B T D ( ^ ) 

T, 
\UT\-T 

2 c i 
\uT\-

T-%2 -" 

0, 

M < *(l-/3) 

£ < |W| <!L(^i 

where /3 € [0,1] denotes the filter's roll-off factor. 

5.4.1 WMF Receiver 

(5.47) 

In this subsection, we evaluate the average SINR and asymptotic signal-to-interference-

plus-noise ratio (ASINR) of the ISI-free and ISI-impaired WMF receivers for synchronous 

and asynchronous channels. 

5.4.1.1 Asynchronous Channel 

Assume that the channel is asynchronous. Then, using (5.21) the average SINR of the 

ISI-free system can be readily obtained as 

TlSI-free = ^0 5(0) 

where 

and Q equals 

5(0) = 
1 + g 

l + Ej 

QKC A JL 
E% 

(\ - x/1 + Ex 

for the RC pulse and 

C/BTD - TT log2 
tix 

(1 + Ex)1+Ez 

(5.48a) 

(5.48b) 

(5.48c) 

(5.48d) 
_(l + Ej/2)2+El_ 

for the BTD pulse and logm(-) denotes the base m logarithm. When ISI is present, one 

should use (5.26a) to obtain the average SINR. The main difficulty with this approach 

lies in evaluating Eg in (5.26a) because a closed-form expression may not exist for g(t). 

An efficient method for evaluating Eg is given in Appendix B. 
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When a CMF receiver is used, the average SINR for the two pulses is [67, Appendix 

B] 

VRO - i + & ( i - j ) (5'49) 

and 

r B T D ~ u p / i — Z J Z Y ( 5 - 5 } 

respectively, where log(-) denotes the natural logarithm. 

Assume now that the ASINR, T, is defined as 

T 4 lim r . (5.51) 
7(,->oo 

Then, recalling that 7& = Eji^, one can obtain 

T R C , ISI-free = T B T D , ISI-free = 2 ( 1 + / ? ) ^ (5.52) 

r W M F _ T W M F 
I Tin — J-RC — J-BTD 

m{l+(3 l+j9)2
 P Y n f w(l+/?) \ * / m(l+(3) \ n « 1 

2(1+/3)^, otherwise. 
(5.53) 

-CMF _ rf ^ T*c - frp (5'54) 

T $ B = — ^ j - (5.55) 
4 ~toK2j 

Hence, using the whitening filter in an ISI-free system increases the ASINR by a factor 

of (1 + /3)(4 - /?)/4 for the RC pulse and by a factor of (1 + (3) (4 - /3/ log(2))/4 for the 

BTD pulse compared to the case when a CMF receiver is used. 

5.4.1.2 Synchronous channel 

When the channel is synchronous, (5.21) is no longer valid because the CCI is not WSS. 

In order to find the SINR in this case, we first use (5.10) to obtain the noise variance 

for the RC and BTD pulses as 

CTn,RC - (1 + Ex)2 + (1 + ^ ) 3 / 2 ^ - 5 6 ) 

<BTD = j^£p + ̂ r y 2 log2(2 + E£) (5.57) 
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respectively. Eqs. (5.56) and (5.57) can then be used along with the fact that cr|- — Eg Ej 

to obtain 

where Q is given by (5.48c) for the RC pulse and by (5.48d) for the BTD pulse. Now, 

we substitute g(0) and a\ + <r| in (5.14) by their equivalent values in (5.48b) and (5.58) 

to obtain the average SINR of the ISI-free system as 

r ^ = I+Mi + ^ J ' (5'59) 

For an ISI-impaired system, one can use (5.32) to evaluate the SINR of the WMF 

receiver. 

The ASINR at the output of the WMF receiver for the ISI-free and ISI-impaired 

systems are 

-rWMF _ T W M F 
1 RC, ISI-free ~ l BTD, ISI-free ~ l W T f T T m (O.bUJ 

and 

TWMF _ TWMF _ J ~K 
m(l+P)2

 r v r Y ™(1+3/3) Y ^ / m(l+3/3) \ n R -, 
1-/3) e*V\2i>(3(l-!3))6l+™ (,2^/3(1-/3)J> U < £ < 1 

2,0, otherwise. 

(5.61) 

respectively. It can be easily shown that for a synchronous channel 

T$F = T™F = 2V, (5.62) 

Thus, the ASINR of the WMF receiver in an ISI-free system decreases by a factor of 

(1 + /3)2/(l + 3/3) compared to that of the CMF receiver in a synchronous channel. 

5.4.2 SINR-Maximizing Filter 

In this section, we evaluate the SINR of the SINRMF to determine how effectively this 

filter can restore the SINR loss due to the ISI. gr(t) is either a root RC or a root BTD 

pulse. To this end, we first use (5.40b) to evaluate A for the RC pulse as 

1 + Ex S0P(2 + ET) 
ARC = 

I + SQ + EX (2£0 + EX)(1 + SO + EX) 

2g 0 /V(2 + Ex)(2 + 2£0 + Ex)/(l + S0 + Ex) 
{2So + ET){2 + 2So + Ex) {™6} 
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and for the BTD pulse as 

(l + Ex)(l-p) pEx S0P(2 + EX) 
I + EX + SQ

 +
 2€O + EX 2S0 + ET 

i - C + \ c + / / i - C - x C -
2-c+y / V2-c-

(5.64a) 

where (+ and £_ are given by 

r gj(25o + Ez) ± ^Ex(2 + E2) (2g0 + Ex)(2 + 2£0 + Ex) 
U 2(l + £Q + Ex) ' [ ' 

Then, substitute A for each pulse in (5.40a) to obtain the maximum SINR. It can be 

shown that when £Q « Ex-, the SINRMF leads approximately to the same SINR as 

that of the WMF in the ISI-free system. Thus, for small SIR values the SINRMF can 

eliminate the effect of the ISI caused by the WMF in an ISI-impaired system. The 

average maximum SINR can be obtained by integrating TSINRMF in (5.40a) over the 

distribution of £0. In this case, the ASINR of the SINRMF is 

-SINRMF _ ^SINRMF _ j? f 2 ^ 0 $ (1 + / ? + 4 ^ a g ) 

*n i+2<K(2-/?) 
TSINRMF _ TSINRMF _ p. I * V " 0 \x T H T •* Y " p ; I /r Rr\ 

where the last equation follows from the fact that the limit and the ensemble average in 

(5.51) are interchangeable. Using (5.13), one can obtain 

^SINRMF _ TSINRMF _ 
exp(<5) 

1 R C — L BTD — 2 - 0 

where 

m(l + P) £i+m(6) + 4 V (1 + m) S2+m{5) (5.66a) 

m (5.66b) 
2^(2 - P) 

and <om(-) is given by (5.26b). 

5.5 Numerical Results 

We have evaluated the SINR of the WMF and the SINRMF receivers and compared 

them to that of the CMF in several different scenarios. Simulation results have been 

also presented in some scenarios to verify our analytical results. The BER of the CMF 

and the WMF receivers have been evaluated in a synchronous channel using computer 

simulation to highlight the differences between our results and those given in [58]. In 

the examples, two values of m are usually considered, m = 0.5 and m — oo. These 
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Figure 5.2. The SINR gain achieved by the WMF over the CMF for the RC and BTD pulses, 

/? = 1, ip = 0 dB for a synchronous channel. 

values represent severe fading and no fading, respectively and establish worst case and 

best case results. 

Figs. 5.2 and 5.3 illustrate the SINR gain over the CMF of the ISI-free and ISI-

impaired WMF as a function of SNR in synchronous and asynchronous channels. The 

pulses are assumed to have 100% excess bandwidth and the channel is Nakagarni-m fad

ing. When the channel is synchronous, the SINR of both ISI-free and ISI-impaired WMF 

receivers is smaller than that of the CMF receiver, as shown in Fig. 5.2. Furthermore, 

when a RC pulse is employed, the WMF receiver suffers from a larger SINR loss than 

does a WMF receiver with a BTD pulse. Interestingly, when 7& —» oo, the WMF receiver 

can achieve the same SINR as can the CMF receiver. This is because for vanishing small 

background noise, GR(UJ) approaches [ P J G T ( W ) ] - 1 - Since (3 is assumed to be unity, one 

can readily see that G(LO) tends to a Nyquist pulse spectrum and T —» £o/(l + ^l) 
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Figure 5.3. The SINR gain achieved by the WMF over the CMF for the RC and BTD pulses, 

/3 = 1, V = 0 dB for an asynchronous channel. 

which is the SINR of the CMF receiver. In the asynchronous channel, however, an ISI-

free WMF receiver can achieve a gain as large as 101og10 [(1 + /3)(4 — /3)/4]| |S=1 = 1.76 

dB over the CMF receiver when a RC pulse is used. The corresponding gain for the 

BTD pulse is at most 1.07 dB as shown in Fig. 5.3. Note, however, that for small SNR 

values and in the presence of ISI and severe fading, the WMF with BTD pulse achieves 

almost no SINR gain over the CMF, and with a RC pulse its SINR is inferior to that of 

the CMF. 

Fig. 5.4 shows the WMF's SINR gain over the CMF as a function of SNR for the case 

when (3 = 0.35 and m = 2. Both analytical and simulation results have been presented. 

Clearly, the ISI-impaired WMF has smaller SINR than the CMF for both pulses and 

thus, the superiority of the WMF over the CMF strongly depends on the ISI. Note that 

in synchronous CCI the SINR of the CMF is the same for all Nyquist pulses and thus, 
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Figure 5.4. The WMF receiver's SINR gain over the CMF receiver for RC and BTD pulses in 

synchronous and asynchronous CCI for Nakagami-rn fading (m = 2), with f3 = 0.35 and ip = 0 

dB. Markers denote simulation results. 

the ASINR gain is the same for both RC and BTD pulses. In contrast, in asynchronous 

CCI the gains are different because F^F / r g ^ . Moreover, when ^b -> oo, the SINR 

gain does not approach zero in contrast to the case when P = 1. This is because in this 

case G(u) —• Pi~x over [—7r(l + P)/T, 7r(l + (3)/T] and Nyquist's criterion is satisfied 

only if P = 0 or (3 = 1. Note that our simulation results match the analytical results 

quite well in all the examined cases. 

The exact and simulated SINR gains of the WMF over the CMF as a function of P 

are depicted in Fig. 5.5. The CCI is assumed to be asynchronous and the SNR and SIR 

are 15 dB and 0 dB, respectively. Although, the SINR gain for the ISI-free WMF is a 

monotonically increasing function of /3, it has some minimum value for the ISI-impaired 

receiver. For m = 0.5, 1 and oo the minima occur at /? = 0.36, 0.34 and 0.27 for the RC 
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P 

Figure 5.5. The effect of roll-off factor on the SINR gain of the WMF receiver over the CMF 

receiver for RC and BTD pulses in asynchronous CCI and Nakagami-m fading, for SNR = 15 

dB and ip = 0 dB. Markers denote simulation results. 

pulse and at /3 = 0.34, 0.32 and 0.28 for the BTD pulse, respectively. Furthermore, in 

the presence of the ISI and severe fading, a slight SINR gain can be achieved only when 

0 > 0.92 for the BTD pulse and /? > 0.97 for the RC pulse. When 0 = 1 and a BTD 

pulse is used, the SINR gains for m = 0.5, 1 and oo are approximately 0.55, 0.63 and 

0.72 dB, respectively which are close to those achieved by the ISI-free WMF. Note that 

the simulated SINR gain is in very good agreement with the exact SINR gain for all the 

cases studied. Thus, for (3 = 1, the WMF can achieve ISI-free SINR gain provided that 

the transmitter pulse has a rectangular spectrum [4], [68]. In this case, close to ISI-free 

SINR gain can be achieved for sufficiently large SNRs. 

Fig. 5.6 shows the WMF's SINR gain over the CMF as a function of SIR evaluated 

using both theoretical analysis and simulation. The SNR is assumed to be 15 dB, 

ft = 0.35 and the CCI is asynchronous. When the SIR is large, no SINR gain over the 
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Figure 5.6. The effect of SIR on the SINR gain of the WMF receiver over the CMF receiver 

for RC and BTD pulses in asynchronous CCI and Nakagami-m fading (m = 0.5), for SNR = 15 

dB and /? = 0.35. Markers denote simulation results. 

CMF can be achieved by the WMF even for an ISI-free system. This is because the 

WMF receiver approaches the CMF for large values of xp, and so it has the same SINR 

as the CMF. For small values of SIR, however, the ISI-impaired WMF exhibits some 

SINR gain over the CMF even for severe fading. The way to view this is that in the 

latter case a'j is much smaller than a\ in (5.14). Hence, the SINR of the ISI-impaired 

system approaches that of the ISI-free system which, in turn, is superior over the CMF 

in having larger SINR. Fig. 5.6 also shows that the simulation results compare well with 

the analytical results for all the examined scenarios. 

Fig. 5.7 illustrates the BER performance of the CMF and WMF receivers when 

the channel is synchronous. To highlight the differences between our results and those 

given in [58, Fig. 3], we assume that (3 = 1 for both pulses. We also assume that the 
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Figure 5.7. Performance of the whitening and the conventional MF receivers in Nakagami-m 

fading (m = 8) with synchronous CCI and AWGN for SIR = 10 dB and BTD and RC pulses 

with 100% excess bandwidth. 

channel is Nakagami-m (m = 8) for the desired user and Rayleigh for the interfering 

users. The BER of the CMF receiver has been obtained using the BER expression given 

in [67] for synchronous CCI and Nakagami-m fading while for the WMF, it has been 

evaluated using computer simulation. Fig. 5.7 clearly shows that the WMF receiver can 

not outperform the CMF receiver even for the ISI-free system in contrast to the results 

given in [4], [16], [58]. As mentioned in Section 5.2, this is due to the fact that the SINR 

at the output of the whitening filter is smaller than that of the CMF receiver. 

The BER performance of the WMF and SINRMF receivers for asynchronous CCI is 

shown in Fig. 5.8. Other assumptions are the same as those given for Fig. 5.7. Fig. 

5.8 reflects the fact that the ISI can significantly degrade the BER performance of the 

WMF receiver, especially when a RC pulse is used. Indeed, when 71, < 30 dB, the CMF 
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Figure 5.8. Performance of the CMF, WMF and SINRMF receivers in Nakagami-m fading 

(m = 8) with asynchronous CCI and AWGN for SIR = 10 dB and BTD and RC pulses with 

100% excess bandwidth. 

receiver outperforms the ISI-impaired WMF receiver and makes it ineffective for this 

SNR range. The SINRMF receiver, however, is superior to the CMF receiver for all the 

examined values of SNR. Note that our simulations results for the BER of the ISI-free 

WMF receiver compare quite well with analytical results given in [58, Section III-B]. 

The ASINR as a function of j3 of the ISI-free and ISI-impaired WMF as well as the 

SINRMF receivers are depicted in Fig. 5.9. The channel is Nakagami-m with m — 0.5 

and the SIR is 0 dB. The ASINR of both the ISI-impaired WMF and the SINRMF 

receivers approaches that of the ISI-free WMF receiver when fi is approaching 0 or 1. 

This is because for these values of /3 and vanishing small background noise, the WMF 

is approximately a Nyquist pulse and does not introduce ISI. Moreover, for /? = 1 the 

ASINR of the WMF is twice as large as that of the CMF, whereas for j3 = 0 the two filters 
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Figure 5.9. The ASINR of the SINRMF, WMF and CMF receivers versus /? in Nakagami-m 

fading (m = 0.5) for RC and BTD pulses, with ip = 0 dB. 

have the same ASINR. Note that for all values of (3, the SINR of the SINRMF closely 

follows that of the ISI-free WMF. As expected in a synchronous channel, the WMF 

can not achieve any SINR gain over the CMF even in the absence of ISI. However, in 

an asynchronous channel, the ISI-impaired SINR is larger than that of the CMF when 

(3 > 0.8 for the RC pulse and when (3 > 0.88 for the BTD pulse. To explain this, we 

note that the ASINR of the ISI-impaired WMF can be expressed as 

2(l + /3)2^ag 
T = E*{T (5.67) 

+ /? + 2 ( 1 - / ? ) / ? < / > < 

It can be shown that the argument of the expectation in (5.67) is greater than 2 ip (i.e., 

the instantaneous ASINR of the CMF receiver) when 

2ipi 
(3 > max < 0, 

2ip a2
0 + lj 

(5.68) 
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Figure 5.10. The SINR gain over the CMF receiver versus SNR in Nakagami-m fading (m = 

0.5) and asynchronous CCI, with ip = 10 dB, M = 12, j3 = 0.35 and j3 = 1 for an SINRMF 

receiver. 

In other words, for very small values of tj) «Q the ISI-impaired ASINR is almost certainly 

larger than that of the CMF. However, when ip OQ is large, the ASINR of the ISI-impaired 

system can not exceed that of the CMF unless (5 is very close to unity. 

Figs. 5.10 and 5.11 show the SINR gain of the ISI-impaired WMF and the SINRMF 

over the CMF as a function of SNR. The channel is assumed to be Nakagami-m fading 

with m = 0.5, ip = 10 dB and the pulses have either 35% or 100% excess bandwidth. 

These values of f3, ip and m can lead to significant SINR loss in the ISI-impaired WMF 

compared to the CMF, as shown in Fig 5.11. Fig 5.10 shows that the SINRMF always 

outperforms the CMF even for small SNR values. When the SNR is large and (3 = 0.35, 

the SINRMF can achieve a gain as large as 0.53 dB for the RC pulse and as large as 0.34 

dB for the BTD pulse. Comparing these gains with those achieved by the ISI-impaired 
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Figure 5.11. The SINR gain over the CMF receiver versus SNR in Nakagami-m fading (m = 

0.5) and asynchronous CCI, with ip = 10 dB, M = 12, /3 = 0.35 and /? = 1 for an ISI-impaired 

WMF receiver (markers denote simulation results). 

WMF, one observes that a SINRMF can increase the SINR of the ISI-impaired WMF 

by approximately 7.6 dB. Note that in this case the gains achieved by the SINRMF are 

still 0.38 dB less than the maximum achievable SINR gain for both pulses. For (3 = 1 

and large SNR values, the SINRMF can achieve the maximum achievable SINR for both 

pulses even when the SIR is as large as 10 dB. In this case, the SINR of the ISI-impaired 

WMF approaches that of the SINRMF only when the SNR is sufficiently large. Fig. 

5.10 also highlights the fact that the SINR of the FIR SINRMF receiver compares quite 

well with that of the IIR filter. Note that the analytical results presented in Fig 5.11 

match very well with the simulation results. 
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Chapter 6 

ISI-free Transmitter-Receiver 

Designs for Bandlimited 

Microcellular Wireless Systems 

In this chapter, we derive the T-R filter for bandlimited microcellular systems that can 

achieve maximum SINR without introducing ISI. In the first design, the transmitter 

and the receiver filters have flat spectrum with 100% excess bandwidth and can achieve 

the maximum achievable SINR in a strict sense. In the second design, a more general 

problem is considered in which the T-R pulses do not have a fixed excess bandwidth 

and their spectrum is not necessarily flat. In this case, we show that the receiver filter 

is composed of a WMF receiver followed by a discrete-time filter that removes the ISI 

caused by the WMF. 

6.1 Optimal 100% Excess Bandwidth Signaling in Cochan-

nel Interference 

In this section, we show that RC pulse-shaping is suboptimal for 100% excess bandwidth 

signaling in a CCI environment. This, perhaps surprising, result is revealed by optimizing 

the transmitter pulse-shaping and receiver pulse-shaping jointly under a transmitted 

signal power constraint for a channel that corrupts the transmitted signal with AWGN 
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Figure 6.1. The block diagram of the baseband cochannel interference communication system 

with (K + 1) asynchronous users. 

and like-modulated CCI. It is shown that the optimal transmitter and receiver filters 

that maximize the SINR and minimize the symbol error probability have constant (flat) 

amplitude across the full available bandwidth for all values of SNR, all values of SIR, 

and all values of SINR. The gain of optimal 100% excess bandwidth signaling over RC 

100% excess bandwidth signaling is a function of the signal power ratios, and is as much 

as 1.76 dB. 

6.1.1 Signal Mode l 

The block diagram of the baseband communication system is illustrated in Fig 6.1. As

sume that the desired (i.e., the 0th) and the interfering signals are BPSK modulated. 

Also assume that carrier phase recovery for the desired user is perfect. Then, the base

band received signal is given by [58] 

oo K oo 

r(t) = A0 J2 bo,i9r{t -T0-iT) + ^ Ak cos9k ^ bKigT{t - r k - iT) + n(t) (6.1) 
i=—oo fc=l »=—oo 

where the parameters of the signal model are defined in Section 5.1. We assume <?T(£)'S 

spectrum is zero outside [—W, W] where W = TT(1 + J3)/T and f3 is the pulse-shaping ex

cess bandwidth, and n(t) is a zero-mean Gaussian process with unit PSD over [—W, W]. 

All random variables are assumed to be mutually independent. 
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The received signal is passed through the receiver filter, gii(t), and sampled at t = 

IT + fo to obtain the decision statistic for b$j, as 

oo K oo 

n = A0 J2 boM(Z -i)T + 5)+J2 Ak cos 9k ] T hMW ~ l)T + ?0- n) + ne (6.2) 
i=—oo fc=l i=—oo 

where #(£) = J_OQgT(s)gR(t — s)ds, rig, is a zero-mean Gaussian random variable whose 

variance equals <7ft(i)'s energy, fo is the receiver's estimate of TO, and 8 = fo — To is the 

estimation error. 

6.1.2 Filter Des ign 

In this section we design the transmitter and receiver filters to maximize the SINR at 

the output of <7fl(t) subject to the following conditions: 

1. g(t) satisfies Nyquist's first criterion [1] for zero ISI. 

2. gr(t) has unit energy, i.e., 

/ _ 

oo 
2 g%{t) dt = 1. (6.3) 

Recalling from Section 5.1, eq. (6.3) implies that the average SNR and the average SIR 

per symbol at the input of the receiver are given by (5.5) and (5.6), respectively. 

Denoting the Fourier transform of gr(t), 9n{t) a n d g(t) by Gy(a;), GR(U>) and G(u>), 

respectively, and assuming that timing recovery is perfect (i.e., 5 = 0), the SINR at the 

output of gn(i) is given by 

|2 

SINR = 
Al h!^wG^)duJ 

2TT 

12 

L / U , ( l + ft|GrM|a)|C?fl(a;)PcL; 
(6.4) 

where 1 + PZ\GT(UJ)\2 is the PSD of the interference-plus-noise term (i.e., the last two 

terms on the right side of (6.1)) and P T is the total interference power. Our objective is 

to find the T-R filters that maximize the expression on the right side of (6.4). To this 

end, we first note that G(u) can be decomposed as 

GT(u) 
G{u) = Wl + Px\GT(u>)\*GR{u) 

V l + P z l G r M I 2 ] 
(6.5) 

92 



Then, we use the Cauchy-Schwarz inequality for integrals [69] to obtain 

I 

W 

1 /-W -|2 1 /-W 

27T 7 _ w J ~~ 2-7T J_w 1 
IGrMI 5 

w l + Px|GT(u/)|2 duj 

2TT 

or analogously 
rj r vv 

S I N R < ^ / -

The SINR in (6.6b) is maximized if 

I fVV 
r ( 1 + P J | G T H | 2 ) | G K H | 2 ^ (6.6a) 
™ J-w 

(6.6b) 
A | / w |G r (c) ] 2 

2TT J_W1 + PX\GT{UJ)\2 duo. 

or 

GR{u) = 
T]GT(OJ) 

(6.7) 

(6.8) 
l + Pr |G r(w) | 2 

where 77 is some constant. Thus, our problem reduces to finding GT(W) that maximizes 

the right side of (6.6b). For this purpose, we first rewrite the integral in (6.6b) as 

Li 
|GTw)|5 

oL> 
1 

l + P i | G T H | 2 J Z ^ I + P X I G T H I 2 " " y _ w P r 

Since P j is constant, maximizing SINR is equivalent to minimizing 

duj. 

/ 
dw. 

(6.9) 

(6.10) 
. W I + P X I G T H I 2 

This can be accomplished by recalling the Cauchy-Schwarz inequality for integrals as 

1 / 1 rw \ 2 1 rw 

(i- I du) < ;r- / 
\2TT J_w J 2ir J_w 

1 rw 

dw— [l + P x | G r H | 2 ] du. (6.11) 
2TT J_W LW1 + PX\GT(OO)\2 

Since gr(t) has unit energy, the second integral on the right side of (6.11) is constant 

and equals (1 + j3 + Ej)/T where Ex is the total interference energy per symbol. Thus, 

minimizing (6.10) is equivalent to minimizing the right side of (6.11) and this occurs if 

1 
A^/l + Px|GT(u;)|2 (6.12) 

y i + Px|Gr(u;)|2 

where A is some constant. Eq. (6.12) implies that Gr(w) should have a flat spectrum 

over [—W, W]. Using this fact along with (6.3), one can obtain GT(W) as1 

-W < to < W 

0, otherwise. 
GT{ui) 

T 

(6.13) 

1For simplicity of analysis we assume that GT(U) is a zero-phase filter, i.e., gr(t) = gr(—t). 

93 



In this case, the SINR will be 
A2 

SINR= ^ — (6.14) 
i + 1+0 

A related result was derived in [4] for a direct-sequence CDMA system whose users 

have equal energy. However, [4] neither examines the SINR gain nor considers the case 

of imperfect timing recovery. The present work differs in that it examines bandlimited 

CCI systems (not CDMA system), and in that it considers the SINR gain that can be 

achieved over the conventional RC system and examines the conditions under which this 

gain can be maximized. As we will see in the sequel the SINR gain is maximized when 

the total interference energy approaches infinity. This cannot be concluded from the 

results in [4]. 

The SINR of a system whose transmitter and receiver filters each have a root RC 

spectrum is given by [67, Appendix B] 

A2 

SINR = f £-• (6.15) 

1 + ^(1-1) 
It can be readily seen that for /3 — 1, the SINR of the optimal system is AQ/(1 + Ex/2) 

whereas the SINR of the conventional system equals AQ/(1 + 3f?i/4). Thus, the SINR 

gain of the optimal filter design over the conventional RC filter design is 

It can be seen from (6.16) that the largest possible SINR gain is 1.5 (or equivalently 

1.76 dB). This gain can be achieved only when Ej —> oo. Numerical examples will be 

given in the next section to show the gains for finite values of E%. 

6.1.3 Numerical Results 

The SINR gain of the optimal T-R filter design over the conventional root RC design 

as a function of the SNR and the SIR is depicted in Fig. 6.2. Observe that close 

to maximum SINR gain can be achieved when the SNR to SIR ratio or analogously 

Ex is large. Fig. 6.2 also shows the fact that the SINR gain is vanishing small only 

when the SIR is significantly large or when the SNR is very small, and in both cases, 

impractically so. For practical values of SIR and SNR, for example (SIR, SNR) = (5,10) 

dB and (SIR, SNR) = (3,12) dB the gain is 1.16 dB and 1.46 dB, respectively. 
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Figure 6.2. The SINR gain of the optimal T-R filter design over the conventional RC design 

as a function of 76 and ip. 

A practical issue regarding the optimal T-R filter design is that for this system 

g[t) is a sine function whose decay rate is 1/i whereas the RC pulse decays as 1/i3 

when t —> 00 [1]. Thus, in the presence of timing recovery error the performance of the 

optimal system may degrade relative to the RC system due to the presence of larger 

ISI. To examine this issue, we have evaluated the BER performance of the optimal and 

the conventional systems in perfect and imperfect timing recovery cases. When timing 

recovery is imperfect, the timing error 5 is modeled as a zero-mean Gaussian random 

variable with standard deviation a$ — 0.05T or ag — 0.1T. We have also assumed 

that g(t) is time-limited to [—6T, 6T] as is the case for practical systems [70, Sec. 

6.6.2]. The results for SIR = 8 dB and K = 8 are shown in Fig. 6.3, where, recall, the 

SIR is defined in terms of the total interference power. Note that the optimal system 

substantially outperforms the conventional system even when the standard deviation of 

the jitter is as large as 5% of a symbol interval. The BER of the optimal system is 
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Figure 6.3. The BER versus SNR of the optimal T-R filter design and the conventional root 

RC design as a function of 7b for perfect and imperfect timing recovery, SIR = 8 dB and K = 8. 

inferior to that of the conventional system only when a$ is as large as 0.1T. Expectedly, 

the conventional filter is more robust to timing recovery error than the optimal filter 

due to the fact that the time response of the former decays much faster than that of 

the latter as t increases. However, in receivers with good timing recovery, the optimal 

pulse-shaping design is superior. 

6.2 ISI-Free Cochannel Interference Whitening for Bandlim-

ited Systems 

In Chapter 5 we observed that interference-plus-noise whitening is an effective means to 

mitigate CCI in multiaccess communication systems. Although the interference whiten

ing filter suppresses the CCI, it may deteriorate the receiver's performance through 
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introducing ISI. To combat ISI, we modified the definition of the SINR to account for 

the ISI caused by the receiver filter. Then, we showed that the WMF receiver has to be 

used in conjunction with a discrete time filter in order for the SINR to be maximized. 

Although, the SINRMF receiver derived in Section 5 can maximize the output SINR, 

it needs to know the instantaneous received energy, i.e., <?o for each symbol interval. Con

sequently, in fast time-varying channels the frequency response of the SINRMF receiver 

changes each time that the channel gain changes. Furthermore, in some environments 

an accurate estimate of the channel gain may not be available at the receiver. Thus, the 

SINRMF receiver may not be used for suppressing the ISI caused by the WMF. 

Motivated by these facts, in this section we consider the problem of CCI mitigation 

in bandlimited micro-cellular systems using an ISI-free WMF receiver. For this purpose, 

we propose two methods in which the cascade of the transmitter and the receiver niters 

satisfies Nyquist's first criterion for zero ISI [1] while the SINR at the output of the 

receiver filter is maximized. Then, we analytically compare the SINR of the proposed 

methods with those of the CMF receiver and the interference whitening receiver in [4]. 

We derive exact expressions for the SINR of the ISI-free proposed receiver for the cases 

when the transmitter filter is chosen to have either a root RC [1] or a root BTD [59] 

spectrum. Note that the analysis presented in this section is different from the works 

that concurrently suppress CCI and ISI in multipath environments such as [71]. This is 

because in the latter work the ISI is caused by the multipath channel and is inevitable, 

whereas in the former the ISI is caused by the whitening filter and can be entirely 

removed by appropriate receiver design. 

6.2.1 Signal Model and Whitening Filter 

Consider a multiaccess communication system in which (K + 1) users share an asyn

chronous channel. Using the system model in Section 5.1, the received signal sampled 

at t — IT is given by 

oo K oo 

re = A0a0 J^ bQtig{(t - i)T) + ] T Akak cos 9k ^ bkiig((e - i)T - rfc) + nt (6.17) 
i=—oo k=\ i=—oo 
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where the parameters of the signal model have been defined in Section 5.1. Throughout 

this section, we assume that gx(t) is even, i.e.,2 

9r(t) = gr(-t) (6.18a) 

has unit energy, i.e., 

/

OO 1 /-O0 

g$.(t)dt =x- G2
T(oj)dw = 1 (6.18b) 

-OO ^ J —OO 

and its energy spectrum satisfies Nyquist's first criterion [1], i.e., 

£ G 3 , ( W - ^ ) = T . (6.18C) 
n=—oo 

Furthermore, we assume that GT{W) is bandlimited to [—(1 + (3)n/T, (1 + (3)ir/T\, where 

(3 E [0,1] denotes the filter's roll-off factor [1]. Assuming that the noise PSD equals unity, 

the average SNR per bit and the average SIR of the system at the input of the receiver 

are given by (5.5) and (5.6), respectively. 

6.2.2 ISI-Free Transmitter-Receiver Des ign 

The ISI introduced by the WMF receiver can dramatically diminish the output SINR 

and make its performance inferior to the CMF receiver. To address this issue, one 

can concurrently design the transmitter and the receiver filters to maximize the output 

SINR while the frequency response of the cascade of the two filters equals a given Nyquist 

spectrum, X(UJ), i.e., 

X(u) = GT,kHGR,k(") (6-19) 

where Gr,fe(w) and GR^OJ) denote the frequency response of the transmitter and the 

receiver filters for the fcth user, respectively. As we observed in Section 6.1, the WMF 

receiver can achieve the ISI-free SINR gain over the CMF if (5 = 1, i.e., a 100% excess 

bandwidth is used, and the transmitter pulse has a flat spectrum across the entire 

available bandwidth. However, using the entire excess bandwidth may not be always 

possible due to practical limitations. Thus, we assume that (3 < 1 and derive the T-R 

filters under this general assumption. 

2This implies that GT(OJ) is real and even. 
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The PSD of the noise-plus-interference term for the fcth user is [4], [58] 

K 

Sk{u>) = \ + Y,Pi&rJ<») (6-20) 
e=o 

where P^ = AJ/2T. It is shown in [72, Section 4.1.2] that the optimum transmitter and 

receiver niters that maximize the output SINR and their corresponding SINR are given 

by 

GT}k(u)=X12^)SUuJ) (6.21) 

GR,kH = ^ ^ (6.22) 

r =
 J^GI}^

 (6'23) 

provided that Gr,fc(w) has finite energy. Note that in this case, GT,1C(U) is not fixed 

and, thus, it does not necessarily have the properties mentioned in Section 6.2.1. Re

placing Sk(u>) in (6.21) with the expression given in (6.20) one can obtain after some 

manipulations 

c 4 » = x\u) 
K 

i + X>G^M 
ejtk 

Vfc. (6.24) 

Eq. (6.24) defines (K + 1) polynomial equations that should be solved both at the 

transmitter and the receiver to obtain the transmitter filter for each user. The receiver 

filter can then be obtained using (6.19). For the special case when Pk = V, Vfc, the 

transmitter and the receiver filters can be obtained as 

GT, IM = . WM (6.25) 

°«<"> - V w <6-26> 
respectively where 

KV \ K2V2 

&^ = xW) + f+x^y <627) 

Since in general the powers are not equal, finding the optimum filters can be compu

tationally complicated, if not impossible, especially when K is large. Furthermore, the 

transmitted powers of all users should be also known at the transmitters which is not 

realistic in many practical cases. 
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6.2.3 ISI-Free SINR-Maximiz ing Receiver 

The transmitter-receiver design method derived in Section 6.2.2 is practically prohibitive 

as it is rather involved and requires knowledge of transmitted powers both at the trans

mitter and the receiver sides. In this section, we derive the ISI-free SINRMF receiver 

based on the premise that the transmitter filter is fixed, and transfer the design problem 

into the receiver side. 

The SINR of the ISI-free system is defined as 

S1NR=£ [ /1H (r! ' i a ' ] 2 (6-28) 

provided that g(t) satisfies Nyquist's first criterion, i.e., 

27rn\ 

n=—oo 
J = T. (6.29) 

Eq. (6.29) implies that the numerator of (6.28) is constant and, thus, maximizing SINR 

is equivalent to minimizing 

[1 + ftGj.MlCM 
" / 00 

00 

Gj,(< OJ 

By changing the variable u to (u + 2im/T) and interchanging the integral and the 

summation in (6.30) we get 

.* ^ &T(u + m dWl (6i31) 

T n=—oo J V r I 

We can assume without loss of generality that G(ui) = Gv(u)Gc(u>) where Gx'(a;) and 

Gc(to) are the discrete and continuous components of G(u), respectively. Since Gv(u>) is 

the Fourier transform of a discrete-time signal, it is periodic with period 2n/T. Hence, 

using (6.29) one can readily see that 

^ = E£-^W) (6'32) 
and thus, 

°M " gU^fcW (6'33) 
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Replacing G(LO) from (6.33) in (6.31) results in 

A=r2 r 
« [1 + PxG

2
T{u + 2 p ) ] \GC(W + 2 p ) 

G2
T(tu + ^ ) 

doj. (6.34) 
_ E ^ _ 0 O G C ( c + 2 ^ ) _ 

Obviously, A is a functional of Gc(w) and we need to find Gc(u) that minimizes A. To 

this end, we find the derivative of A with respect to Gc(u>), i.e., 

|2 

<9A _ 2 T 2 

aGc(w) 
E£-coGC(^+¥) G2

T(u + ^ ) 

(l + PxG
2

T(u))GC(u) ~ w 2 ^ 
(6.35) 

Since the first term on the right side of (6.35) can not be zero, setting dk/dGc(oj) to 

zero is equivalent to setting the last expression on the right side of (6.35) to zero, i.e., 

.12 
~ [1 + PxG

2
T(u + ^)) Gc(u+2f±) 

G2
T{u + 2¥k) 

(l + PiG2
T{u))Gc{u) 

G2
T{ui) 

2*1* E ^ + f ) (M6) 

A thorough examination of (6.36) reveals that the expression on the left of this equation 

is periodic with period 2TV/T while the expression on the right of (6.36) is not periodic. 

Thus, the first term on the right of (6.36) should be constant. This yields 

G2
T(u) 

Thus, G{OJ) equals 

G(w) = T-

G » = 

G£(w) 

1 + PzCl(u>)' 

Er <%(" + ¥ ) 

(6.37) 

(6.38) 
1 + PTG2

T{u) ^ 1 + PxG
2

T(co + 2 p ) ' 

By substituting Gc(u) from (6.37) in (6.34), one can obtain A for the proposed receiver 

filter as 

Ap rop 
• / — 75=r 

- 1 

duo. (6.39) 
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Hence, the SINR is given by 

Tprop — 
2-KSQ 

J<2 f: £ Gf^ + gf?) 
1 + PJG2

T(UJ + ^ ) 

- l 

du (6.40) 

6.2.4 Optimum Transmitter Filter Design 

The analysis given in Subsection 6.2.3 was based on the premise that G T ( ^ ) has an 

arbitrary, but fixed, spectrum. Thus, the SINR of the proposed receiver depends on 

GT{OJ). In this subsection, we find the transmitter filter that maximizes the SINR given 

in (6.40). Note that the analysis in this section is different from the analysis given 

in Subsection 6.2.2 as in the latter the transmitter and receiver filters are designed 

concurrently while in the former the transmitter and receiver filters that maximize the 

SINR are derived individually. 

In order to maximize the SINR, we use variational calculus to find the transmitter 

filter that minimizes the integral term in (6.40) provided that the energy constraint given 

in (6.18b) is satisfied. Thus, the unconstrained functional of GT{W) to be minimized is 

given by 

- i 

/ . 
du + X G%{y)dv (6.41) 

where A is a nonzero multiplier whose value will be determined in the sequel. Taking 

the derivative of ^{pT{y)) with respect to GT{W) yields 

dV -2GT(LO) 

dGT(u) 
[1 + PjGU^f 

.niool+-PxG2,(uM-2$a) 

+ 2AGr(u;). (6.42) 

Setting d^/dGri^) equal to zero and using the facts that Gr(w) ^ 0, V o ) 6 [—(1 + 

f3)n/T, (1 + f3)ir/T], and the expressions inside brackets on the right of (6.42) are both 

positive, one can obtain 

2 

= A 
^—v Gj,[u) H——J 

(6.43) 
[l + PxG

2
T(u)]2 

It can be readily seen from (6.43) that A should be a positive number. Since Gy(w) 

satisfies Nyquist's first criterion the summation on the right of (6.43) has only one term 
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in the [0, (1 — j3)ir/T] frequency band. Thus, for this frequency range 

7X ~ G r H 
1 + PjG2

T{u) 

or analogously 

= 0 (6.44) 

GT{UJ) = -—. (6.45) 

For the same reason, the summation on the right of (6.43) has only two terms in the 

[(1 - f3)ir/T, (1 + (3)n/T] frequency range. Thus, for this range Gr(w) should satisfy 

L_ - QaT("_zJE3_+ <%("> (6.46) 
V\[l + PrG*,(u)] 1 + PIG2

T{UJ - f ) 1 + PIG2
T{UJ) 

Assume now that </?(w) is denned as 

^J^"**)' - * * " * * (6.47, 
I 0, otherwise. 

By changing u t o w + TT/T in (6.46) and using the fact that GT(U) is an even function, 

we obtain 

- •<-> + , , f f " ) , (6.48) 
Vx[i + Piv2(u)] i + Px<p2{-u) i + i W H ' 

A closer look at (6.48) reveals that negating u in this equation does not change the 

expression on its right side. Therefore, ip(co) is an even function. Replacing tp(—u) with 

ip(u) in (6.48) one can easily see that <p2(uj) — l/2\/A. Hence, in the [(1 — /3)TT/T, (1 + 

(3)ir/T] frequency range, GT(UJ) is given by 

Gr(w) = - L . (6.49) 

V4A 

Recalling that GT(W) has unit energy, it can be readily shown that A = T~2. Using 

(6.45) and (6.49) along with the fact that GT{OJ) is an even function, we obtain 

GT(o 

y/f, \U\ < ^ 

Tf E ^ < H < E M ( 6 . 5 O ) 

0, *!%&. < |W|. 

Using (6.40), the output SINR is given by 

« D = . . „T ^- (6-51) ^Opt _ ^ 0 
Prop 1 + EX(1 -I) 
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Since c*o has unit energy, the average SINR in this case can be obtained by replacing €Q 

with Al in (6.51). 

Comparing Tp^ with that of the CMF receiver with a root RC pulse, one can see 

that the proposed receiver with an optimum transmitter filter can achieve a gain of 

m% 
over the CMF receiver. In this case, the maximum gain is l + /3/(4 — 2/3) and is achieved 

when Ex —> oo. 

The optimum transmitter filter can be also derived for the SINRMF receiver using 

the above procedure and the objective function 
rf f fn °° a2 (v -+- ^2k\ 1 _ 1 r°° 

* ( C T M ) = / _ , [ 1 + | E^^iy - + A / _ ^ M - C68) 
In this case, the optimum transmitter filter that minimizes (6.53), can be obtained after 

some algebraic manipulations as 
f / T(2EQ+EX)' |, .1 < n(l-0) 

V 2£0+Ex(l+f))' H < - s - f r - t 

G^) = v ^ m ^ =v> < M < ^ (6.54) 
{ o, ^ ± & < |W|. 

With this transmitter filter the SINR of the SINRMF receiver will be 

r ° * - £O[2€Q + EJ(1 + (3)} 
1 S I N R M F " 2So + Ej(l + 0 + EI + 2£o)-f3£oET

 ( b ' 5 5 j 

Averaging r s i ^ R M F over the distribution of £Q, we obtain 

exp(5) 

2 + £r(2 - /3) 
r?iPNRMF = 9 j . w ( o }

 m [m£?r(l + m+m(6) + 2(1 + m ) ^ 2 + m ( < 5 ) ] (6.56a) 

where 

mEr( l+ /? + Ei) 

' = ^ P + a(2-ffl] (6'56b) 

and $v{-) is given by (5.26b). 

6.2.5 S I N R Analysis 

In this section we compare the SINR of the ISI-free proposed receiver with that of the 

CMF, ISI-free WMF and the SINRMF filter derived in Section 5.3. Then, the SINR of 

the proposed receiver is evaluated for the RC and BTD pulses. 
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6.2.5.1 SINR Comparison 

The SINR expression given in (6.40) does not provide any insight as to whether the 

proposed filter is superior to the CMF in having larger SINR or not. Furthermore, 

comparing the SINR of the proposed receiver with that of the SINRMF receiver might 

be of particular interest. We first show that rp r o p is greater than TCMF- TO this end, 

we use the Cauchy-Schwarz inequality [41] 

2 / oo •> t oo N. 

— - — - ( 6 - 5 7 ) E cn%) < ( E ^ ) ( E ti 
n=—oo ' Vi=—oo ' Vi=—oo 

with Cn = G^(u + 2im/T)[l + PxG\{u + 2im/T)] and r\n = G%(u + 2im/T)/[l + 

PxG\{u + 2-im/T)] to obtain 

E «?(» + T) 
l2 

2irn\^ < Y, G^ + ^)[ l + PxG!( . + ^ ) ] 

Since Gji(w) satisfies Nyquist's first criterion, i.e., eq. (6.18c), the expression on the left 

of (6.58) equals T2. Thus, (6.58) can be written as 

T l-n=—oo 

- 1 

dui < 

£/_* t «?.(»+^)[l + ftO?.(W + ^ ) ] * , (0.59) 
r n=—oo 

Dividing both sides of (6.59) by T2/2ir£o and changing the variable w t o w - 2ixn/T 

results in 

_°°_ /-(2n+l)f 1 
< 

Tpron 27r£[ -rop 
- y f 

(2n-l)f 
G^(w)[l + PxG^(u/)]dw 

So 

PT f°° 
1 + 7T- GA

T{L0)dw 
2 ? r J-oo 

(6.60) 

where the last equation follows from the fact that grip) has unit energy. Using (5.22), 

one can see 

TCMF < r P r o p . (6.61) 
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We now show that rp r o p is upper-bounded by TSINRMF (defined in (5.40)). For this 

purpose, we first define H(u>) as 

Using Cauchy-Schwarz inequality for integrals [41], one can see 

I < 
T_ 
2TT J-2L 1 + H(u) 

du> 
T_ 
2?r /I(1 + «R)^. 

1 + 
2TT 

— (1 - ASINRMF) 

After rearranging, (6.63) can be simplified to 

/•f _L 

or analogously 

cko 

27 
, < f - ASINRMF 

w) ~~ ASINRMF 

(6.62) 

(6.63) 

(6.64) 

(6.65) 1 Prop < TsiNRMF-

Recalling that TSINRMF is upper-bounded by the SINR of the ISI-free WMF receiver, 

i.e., rISi-free, it is clear that r P r o p < Tisi-free-

6.2.5.2 SINR Evaluation for the RC and BTD Pulses 

In this section, we find exact expressions for the SINR of the proposed receiver for the 

cases when \GT{W)\2 has either a RC [1] or a BTD spectrum [59]. Since both pulses 

are bandlimited to [—(1 + [3)ir/T,(l + f3)ir/T] and the integration in (6.40) is over 

[—n/T, 7r/T], only three terms (corresponding to n = —1, 0 and 1) in the summation 

on the right of (6.40) contribute to the integral in this equation. Thus, for the RC pulse 

eq. (6.40) becomes 

iRC 
Prop W-* XRC{u-^) 

+ 
^RC(W) 

L1 + PXXRC (w - f ) 1 + PxXKC (w) 

- i - i 

+ 
- l 

du (6.66) 
1 + PIXRC{LU + f ) . 

where, recall, XRC{U) denotes the Fourier transform of a RC pulse given by (5.46). 

By substituting -XRCO*') from (5.46) into (6.66), one can obtain after some algebraic 
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,1=2 

manipulations 

r*c
op = £0 2T 2T {l + Ex)dx 

L Jo 

^ n J0 \2 + E 
+ cos a; 

+ 
1 — cos x 

Ej(l + cosx) 2 + Ej(l - cosx) 
2€Q 

dx 

(6.67) 
2 + £ j (2 - p) + (y/A + 2EX - 2)(3 

where E% is the total interference energy. Averaging r p ^ p over the distribution of £Q 

and rearranging results in 

1 Prop 
Al 

1 + Ej + p (y/l + Ez/2 - 1 - Ez/2) ' 
(6.68) 

Similarly, the average SINR of the ISI-free proposed filter for the BTD pulse can be 

obtained as 

- l 

fBTD - A2 I 
1 P r o p — ^ 0 >• 

l + Ex + ^ io g 2 
(1 + Ex/2)2+Ex 

yjEi{2+Ex) 
(l + Ex+ y/Ej(2 + Exfj 

In this case, the ASINR for both pulses is the same and is given by 

(6.69) 

•*• P r o p •*• P r o p 

2- /3 
(6.70) 

6.2.6 Numerica l Resul t s 

The SINR gain of the proposed, ISI-free WMF and ISI-impaired WMF receivers over 

the CMF receiver has been numerically evaluated for several different scenarios and 

asynchronous CCI. Similar to Chapter 5, we have considered two values of m, m = 0.5 

and m = oo corresponding to severe fading and no fading, respectively. 

The SINR gain over the CMF of the ISI-free and ISI-impaired WMF receivers as 

well as the proposed receiver as a function of SIR is illustrated in Fig. 6.4. The SNR is 

assumed to be 10 dB and (3 equals 0.35. When the SIR is large, no SINR gain over the 

CMF can be achieved by any of the receivers even by the ISI-free WMF receiver. This is 

because, when SIR is large, i.e., interference power is very small, both the WMF and the 
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Figure 6.4. The effect of SIR on the SINR gain over the CMF receiver for RC and BTD pulses 

in asynchronous CCI and Nakagami-m fading, for SNR = 10 dB and /3 = 0.35. 

proposed receivers approach the CMF. Thus, their SINR is the same as that of the CMF 

receiver. When the SIR is unpractically small, the ISI-impaired WMF can achieve some 

SINR gain over the CMF even for severe fading. To explain this, we note that in the 

latter case E9EQ is much smaller than <J\ in (5.14). Thus, the SINR of the ISI-impaired 

WMF approaches that of the ISI-free WMF receiver which, in turn, is superior to the 

CMF in having larger SINR. Also observe that the SINR of the proposed receiver is 

superior to that of the CMF receiver for all values of the examined SIR. 

Fig. 6.5 shows the SINR gain over the CMF as a function of SNR for the case when 

/3 = 0.35 and m = oo, i.e., there is no fading for the desired signal. Both the RC and BTD 

pulses have been considered. As observed in Section 5, the ISI-impaired WMF receiver 

has smaller SINR than the CMF receiver for both pulses and, thus, ISI reduces the SINR 

108 



1 

0.8 

0.6 

0.4 

•I 0.2 

^ A 
• — I 

-0.2 

-0.4 

-0.6 

RC Pulse 
BTD Pulse 

^^£ 

! ! 1 

ISI-PreeWMF 
! 

s^'~~ 
: y Proposed \ 

/ / IJ-J-' • • **— "" _ 

*/' ^-— 
/ : ^ - » " " 

s \ . . . . 

\ \ \ \ : \ TV \ \ ^ ̂ v ^ ^ ISI-impaired WMF (ho fading) 
: v • :__ A 

• -s • n 

i i i i 

0 10 20 30 
lb (dB) 

40 50 

Figure 6.5. The SINR gain over the CMF receiver as a function of SNR for RC and BTD 

pulses in asynchronous CCI and Nakagami-m fading, with 0 — 0.35 and SIR = 0 dB. 

of the WMF receiver with respect to the CMF receiver. This is significant because there 

is no fading for the desired user. The proposed receiver, however, is superior to the 

CMF receiver for all examined values of SNR. For vanishing small background noise, i.e., 

SNR —> oo, the SINR of the proposed receiver is approximately 0.5 dB less than that of 

the ISI-free WMF both for the RC and the BTD pulses. This is because the proposed 

receiver enhances the CCI power even though it entirely removes the ISI component 

from the received signal. 

The SINR gain over the CMF as a function of 0 is depicted in Fig. 6.6. The SNR 

and SIR are assumed to be 10 dB and 0 dB, respectively. Although, the SINR gain 

for the ISI-free WMF is a monotonically increasing function of (3, it has some minimum 

value for the ISI-impaired receiver. For m = 0.5 and oo the minima occur at /3 = 0.42 
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Figure 6.6. The effect of roll-off factor on the SINR gain over the CMF receiver for RC and 

BTD pulses in asynchronous CCI and Nakagami-m fading, for SNR = 10 dB and SIR = 0 dB. 

and 0.3 for the RC pulse and at (3 = 0.37 and 0.29 for the BTD pulse, respectively. 

Furthermore, in the presence of the ISI and severe fading (i.e., m = 0.5), a slight SINR 

gain can be achieved only when (3 > 0.96 for the BTD pulse. When there is no fading 

a SINR gain can be achieved only when (3 > 0.69 for the RC pulse and (3 > 0.71 for 

the BTD pulse. Furthermore, the larger the roll-off factor the larger SINR gain can be 

achieved by the ISI-free WMF and the proposed receiver. 

Fig. 6.7 shows the ASINR gain of the ISI-free WMF, the SINRMF and the proposed 

receivers over the CMF receiver as a function of the roll-off factor. The SIR equals 10 

dB and the channel is Nakagami-m fading with m = 0.5. Both the RC and BTD pulses 

have been considered. For both pulses the ASINR gain of the proposed receiver is very 

close to that of the SINRMF receiver and for most values of (3 the difference between the 

ASINR gains is less than 0.1 dB. Using (5.65) one can show that for large SIR values the 
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Figure 6.7. The ASINR gain of the ISI-free WMF, SINRMF and proposed receivers over the 

CMF receiver for RC and BTD pulses in asynchronous CCI and Nakagami-m fading (m = 0.5), 

for SIR = 0 dB. 

ASINR of the SINRMF receiver approaches 4^/(2 - (5), i.e., the ASINR of the proposed 

receiver. Using eqs. (5.52) with (6.70) one can readily obtain the ASINR gain of the 

ISI-free WMF receiver over the ASINR of the proposed receiver as 

10fcft0(2zMM). (6.71) 

This gain has a maximum of 0.5115 dB at (3 = 0.5 as seen in Fig. 6.7. 

The SINR gain achieved by the proposed receiver with an optimum transmitter filter 

over a CMF receiver with a root RC is depicted in Fig. 6.8. The channel is Nakagami-m 

fading with m = 0.5 and the roll-off factor is 0.35. When the Ej » 1, the proposed 

receiver with the optimum transmitter filter can achieve the maximum possible SINR 
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Figure 6.8. The SINR gain achieved by the proposed receiver with an optimum transmitter fil

ter over the CMF receiver with a root RC filter for Nakagami-m fading (m = 0.5), asynchronous 

CCI and /? = 0.35. 

gam, i.e., 

10 log 10 
4-/? 
4-2/? 

0.44 dB (6.72) 
/3=0.35 

over the CMF receiver. Note that the SINR gain achieved by the proposed receiver in 

this case has a similar pattern to that of the optimal T-R design depicted in Fig. 6.2. 

However, our proposed T-R design does not need to utilize a pulse with 100% excess 

bandwidth. 

Fig. 6.9 illustrates the SINR gain of a system employing an optimum transmitter 

filter (eq. (6.54)) over a system using a root RC pulse at the transmitter side, when 

both systems use a SINRMF receiver. The channel is the same as that of Fig. 6.8 and 

the excess bandwidth is 100%. As seen in the figure, the optimum transmitter filter 

can increase the output SINR of the system by up to 1 dB. The gain is negligible when 

the SNR > > SIR. Note that both systems use the same receiver and have the same 
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Figure 6.9. The SINR gain achieved by the SINRMF receiver with an optimum transmit

ter filter over the SINRMF receiver with a root RC filter for Nakagami-m fading (m = 0.5), 

asynchronous CCI and /3 = 1. 

amount of complexity. In other words, the SINR gain is achieved without increasing the 

computational complexity. Fig. 6.9 also shows that the maximum SINR gain is achieved 

when the ratio of SIR and SNR is neither too large nor too small. 

Fig. 6.10 shows the SINR gain of a system employing an optimum transmitter filter 

(eq. (6.50)) and the proposed receiver, over a system using a root RC filter along with 

the proposed receiver. The SNR is assumed to be 10 dB and the channel is Nakagami-m 

fading with m = 0.5. For all examined values of the SIR, the maximum gain is achieved 

when (3—1. Furthermore, the SINR gain decreases when the SIR is significantly larger 

or smaller than the SNR, i.e., when Pj » 1 or Pj « 1, respectively. To explain this 

we note that the SINR of the proposed receiver (eq. (6.40)) is approximately constant 

and independent of the transmitter pulse-shaping when P% is very large or very small. 

The SINR gain of the SINRMF receiver over the proposed receiver when the receivers 
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Figure 6.10. The SINR gain achieved by the proposed receiver with an optimum transmit

ter filter over the proposed receiver with a root RC filter for Nakagami-m fading (m = 0.5), 

asynchronous CCI and SNR = 10 dB. 

are used with their corresponding optimum transmitter filters is illustrated in Fig. 6.11. 

The channel is again Nakagami-m with m = 0.5 and the excess bandwidth is 35%. As 

seen in Fig. 6.11, the maximum SINR gain is approximately 0.47 dB which is achieved 

when the SIR is small or when the SNR is large, i.e., when £Q « Ex. This is because 

when So » Ex, the SINRMF receiver and its corresponding optimum transmitter 

filter, i.e., eq. (6.54) are essentially the same as the proposed receiver filter and its 

corresponding optimum transmitter filter given in (6.50). Hence, we do not expect a 

large SINR gain in this case. However, when £0 < < Ej, the SINR at the output of the 

SINRMF receiver is approximately 

rs iPNRMF*Jr( l + /3) (6.73) 

which is (1 + /3)(1 - (3/2) times larger than the SINR of the proposed receiver with 
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Figure 6.11. The SINR gain achieved by the SINRMF receiver with an optimum transmitter 

filter over the proposed receiver with its corresponding optimum transmitter filter for Nakagami-

m fading (m = 0.5), asynchronous CCI and /? = 0.35. 

optimum transmitter filter. This gain is approximately 0.47 dB for j3 = 0.35 as seen in 

Fig. 6.11. In this case, the maximum gain is achieved when £Q « Ex and (3 = 0.5, and 

equals 9/8 or equivalently 0.5115 dB. 
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Chapter 7 

Conclusion and Future Work 

7.1 Concluding Remarks 

In this thesis, we studied the structure and performance of several well-known linear 

and nonlinear multiuser receivers. It was observed that the ML multiuser detector can 

achieve the best error probability performance among all multiuser receivers. The ML 

receiver is practically prohibited due to its large computational complexity. However, 

the performance of the ML receiver is important as it can be used as a reference of 

comparison for suboptimal multiuser receivers. 

Jointly and individually optimal detectors were introduced and new analytical so

lutions for their exact bit error probability were derived and compared for a two-user 

synchronous Gaussian channel. It was observed that the IOD can outperform the JOD 

for small SNRs whereas for moderate and large SNRs the two receivers perform ap

proximately the same. Consequently, using an IOD instead of a JOD for practical SNR 

values yields small performance improvement at the expense of substantially increased 

complexity. Thus, an IOD may not be desirable in many practical scenarios. We also 

analyzed the performance of the JOD in the presence of carrier phase errors for a ban-

dlimited two-user channel, and showed that the jointly optimal detector can not achieve 

near single-user performance at very small values of SIR for sufficiently large carrier 

phase errors. In other words, we showed that the JOD receiver is near-far resistant if 

the carrier phase recovery is perfect or close to perfect, and substantial performance 
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improvements over the CMF receiver can not be achieved when SIR is small and phase 

phase recovery error is large. 

Although optimal combining is an effective method to concurrently combat multiac

cess interference and multipath fading in wireless communication systems, it is not the 

best detection strategy in the sense of minimizing the bit error probability. We showed 

that the ML and the optimal diversity receivers are both superior to the OC in having 

smaller error probability. The ML diversity receiver was shown to be composed of a bank 

of maximal ratio combiners, one for each matched filter, followed by an ML detector. 

We also showed that minimum error probability for a desired user can be achieved if 

the ML detector in the foregoing structure is replaced by an appropriate likelihood ratio 

test that picks the globally best hypothesis. The main advantage of the better than 

optimum combining receivers is that they can exploit the multipath fading to achieve a 

performance that is almost independent of the interference power and is very close to 

that of an optimum single-user receiver which makes use of MRC. We observed that the 

benefit is quite substantial, particularly for interference-dominated systems. 

An interference-plus-noise whitening receiver was shown to degrade the performance 

of a microcellular wireless system in synchronous CCI due to the fact that in a syn

chronous channel the cochannel interference is a cyclostationary process rather than a 

wide-sense stationary process. This receiver, however, can improve the performance of 

a bandlimited microcellular system by increasing the SINR, provided that the CCI is 

asynchronous and under the impractical assumption that the transmission is ISI-free. 

We showed that in practical systems, the ISI generated by the whitening receiver can 

deteriorate both the SINR and the error probability performance of the receiver and 

make the whitening ineffective. We also showed that the whitening receiver can no 

longer maximize the SINR due to the ISI. In this case, the SINR-maximizing filter was 

derived and it was shown that a gain in SINR can be achieved in an asynchronous chan

nel, particularly when the SIR is small. The improvement due to interference whitening 

depends crucially on the interference power or the choice of the excess bandwidth, both 

when the desired signal is not subject to fading and when it is subject to fading. Both 

FIR and IIR realizations of the SINR-maximizing receiver were shown to outperform 

the CMF receiver. 
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An ISI-free SINR-maximizing transmitter-receiver filter design for a BPSK signal 

corrupted with like-modulated interference and Gaussian noise was shown to have a a fiat 

spectrum across the entire available frequency spectrum with 100% excess bandwidth. 

We showed that this transmitter-receiver set can achieve a SINR gain as large as 1.76 dB 

over the conventional filter design without adding any additional complexity. The BER 

performance of the optimal system was compared to that of the conventional system 

when timing recovery is imperfect. It was observed that the optimal system is superior 

to the conventional system for practical values of the timing jitter. When the available 

excess bandwidth is less than 100%, we proposed two ISI-free techniques to design the 

transmitter-receiver niters for maximizing the output SINR. In both techniques the ISI-

free transmission is achieved by setting the cascade of the transmitter and the receiver 

filters equal to a given Nyquist spectrum. In the first technique, each user was assumed to 

have its own transmitter and receiver filters, and these niters were concurrently designed 

to maximize the SINR for each user. In the second technique, all users were assumed to 

have the same transmitter filter and only their receiver filters were designed to achieve 

the maximum SINR. The ISI-free SINR-maximizing receiver filter designed based on the 

second method was shown to effectively restore much of the SINR loss due to ISI and 

is always superior to the CMF receiver in having larger SINR. We also observed that 

interference whitening is more beneficial when the SNR and the excess bandwidth are 

large, or when the SIR is small. 

7.2 Suggestions for Future Work 

• It would be highly useful to extend the BEP analysis presented in Chapter 3 to 

cases where there are more than two users in the channel and to cases where higher 

order modulation schemes, such as QPSK or MQAM, are used in the system. This 

appears to be a very challenging task. 

• The BEP versus SIR curves depicted in Fig. 3.5 show that for some SIR ranges, 

reducing the signal power can improve the performance provided that the INR is 

fixed. This fact can be used to develop novel power control techniques for multiuser 

systems that make use of a JOR. 
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• In Section 3.3 we evaluated the BEP of the JOR in the case where carrier phase 

recovery was not perfect. The analysis given in this section can be readily executed 

for the case where there is frequency mismatch between the transmitter and receiver 

carriers. 

• The BEP performance analysis of the ML receiver proposed in Section 4 has out-

reacing interest. In particular, when all users employ the same signature waveforms, 

it is insightful to compare the performance of the ML receiver with that of the 

single-user receiver when the number of receiver antennae is large. 

• MAI suppression is an important problem in ultra-wideband (UWB) systems [73]. 

An interference whitening receiver is an effective means to combat the MAI in UWB 

systems when only the total interference power is known at the receiver. Importantly, 

the whitening receiver can coexist with the receivers which exploit the multipath 

diversity of the UWB channels (e.g., RAKE receivers [74]). Indeed, in some cases, it 

can decrease the complexity of the latter receivers by reducing the number of their 

processing branches. This is a promising topic for investigation. 

• It may be productive to investigate the efficacy of the interference whitening tech

nique for mitigating the MAI in nonorthogonal cooperative communication systems 

where the source and the relay may transmit simultaneously over nonorthogonal 

subspaces [31]. 

• The optimum transmitter filters derived for the ISI-free and ISI-impaired SINR-

maximizing receivers in Section 6.2 were analyzed based on the premise that the 

synchronization is perfect. The SINR analysis of these filters in the presence of 

synchronization errors is of great interest, because the timing recovery in practical 

systems is imperfect. 
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Appendix A 

Proof of Fact 1 

We first assume 9 to be in each of the second, third and fourth quadrants. For each case 

we express 9 in terms of a 6>o € [0,7r/2) and then show that the receiver's BEP in each 

case is the same as the BEP for the case where the phase difference between desired and 

interfering unmodulated carriers is 9Q. 

A.l 0e[f ,7r) 

In this case, 9 can be expressed as 9 = •K — 9Q. If we replace 9 in (3.9) with ir — 9o, 

we conclude that the ordinates of all constellation points remain unchanged but the 

abscissas of Co and C2 must be exchanged with those of C\ and C3, respectively. This 

causes the new constellation points1 and decision boundaries to be the reflection in the 

y-axis of the constellation points and decision boundaries of the case when 9 is in the 

first quadrant, as shown in Fig. A.l. Using the facts that no and n\ are i.i.d. Gaussian 

RVs and the information bits are equiprobable, one concludes that the BEP in this case 

is the same as the BEP for the case that the unmodulated carriers of the users have 

a phase difference equal to 9Q. Note that the probability of error expression given in 

(3.25) is only valid for 6Q arid should be revised for 6 E [TT/2, TX). Since 9 = ir — do, 

sin# is equal to sin#o while cos# = — cos#o- Thus, cos# in (3.25) should be replaced 

by — cos 9 to get the correct expression for the BEP in this case. 
JIn this case, Co, Ci, C2 and C3 are the reflection in the y-axis of C2, C3, Co and C\ of the case 

where 6 € [0,7r/2), respectively. 
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Figure A.l . The received signal constellation points and decision boundaries for 7r/2 < 6 < TT. 

A.2 e e [TT, f ) 

Clearly, 9 can be expressed as 9 = -K + 9Q. Replacing 9 in (3.9) with TC+9Q, one concludes 

that in this case the locations of the constellation points will be the same as those in 

Fig. 3.1, with Co and C2 exchanged with C\ and C3, respectively. These exchanges, 

however, do not affect the decision regions and boundaries as shown in Fig. A.2. Thus, 

the receiver's BEP is the same as that of the case when the phase difference between 

unmodulated carriers is 9Q. Furthermore, in this case cos0 and sin0 are the negatives 

of cos 0o and sin#0j respectively. Therefore, one has to negate both sin# and cos0 in 

(3.25) to obtain a correct expression for the BEP in this case. 

A . 3 fle[f,27r) 

In this case, one can express 9 as 9 = 2w — 9o. Replacing 9 in (3.9) with 2ir — 9Q does not 

change the abscissas of the constellation points while it causes the ordinates of Co and 

C2 to be exchanged with those of C\ and C3, respectively. Thus, the new constellation 

points and decision boundaries (shown in Fig. A.3) are the reflection in the x-axis of 

those shown in Fig. 3.1. For the same reasons as mentioned for A.l, the receiver's BEP 

in this case is the same as that of the case where unmodulated carriers of the users 
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Figure A.2. The received signal constellation points and decision boundaries for n < 9 < 37r/2. 
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Figure A.3. The received signal constellation points and decision boundaries for 3ir/2 < 6 < 

2?r. 

sharing the channel, have a phase difference equal to QQ. Moreover, in this case sin# is 

the negative of sin#o- Hence, one has to negate sin 6 in (3.25) to get the appropriate 

expression for the BEP when 6 € [3ir/2, 2ir). 
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Appendix B 

u 

Evaluating Eg 

In order to evaluate Eg, one can use the fact that Eg = Eg — <72(0), where Eg is gd(-)'s 

energy and g(Q) is given by (5.48b). Using Parseval's theorem [75], one can obtain 

Eg = ~ fjGd(e^T)\2dw 

2ixT J_JL ^ \ T J 
27rn\ 

du! 

(B.l) 

(B.2) 

where G!d(e,'w) is the Fourier transform of gd(i)- Note that the summation in (B.2) 

denotes the folded (aliased) spectrum of g(t) when the sampling rate is \jT [75]. Since 

in our problem, G(u>) is bandlimited to [—7r(l + f3)/T, 7r(l + /3)/T] and the integration 

in (B.2) is over [—ir/T,ir/T], only three terms of the summation on the right of (B.2) 

(corresponding to n = —1, 0 and 1) contribute to the integral in this equation. By 

expanding this integrand, one can obtain 

Eg ~ 2TTT 
f \ G2(u;- ^)du> + [l G2(u,)du + [I G2(u + ^)duj 

J — __. J _ J __ 

/

— r\ i* — 

T G(LO)G(U + -p)du + 2 / T G{LO)G(LO 

2TT 

T 
\du 

+2/lG(" + l ) G ( " 2TT 
dui (B.3) 

The last integral on the right of (B.3) is zero because G(u + 2ir/T) and G(u> — 2n/T) 

do not overlap. Now, we change u> to UJ + 2ir/T in the first integral and u> to u> — 2ir/T 

in the third and fourth integrals in (B.3) and use the fact that G(u) is an even function 
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to obtain 

^ ~ 2 ^ f 

. (i+ffH 

l_i^
G2^du+iIL,G^a(u-Y) du (B.4) 

Thus, after some algebraic manipulations, Eg for the RC and BTD pulses can be obtained 

as 

E9frC 4 -
8 + ffr(16 + 7EX) 

(1 + EX)2 ' Ex2V (1 + ^ j ) 2 {l + Exfl\2 + ET)\ 
1-/3 + P 

E, '9,BTD 
1 - / 3 

+ 
P 

(1 + Ex)2 EX 
- l l o § 2 

4+3Ej 
(1 + ffr) 2+g? 

3ET
2+8ET+4 

~A$ 

(B.5) 

(B.6) 

.(l + Ex/2) d+Ex)2 

respectively. Now, we use eqs. (5.48b)-(5.48d) along with (B.5) and (B.6) to obtain Eg 

for the RC and BTD pulses as 

E, g,RC JL 
Ej 

4 -
Ex2 8 + E2(1Q + 7 Ex) 

(l + £ j ) 2 (1 + Exf^(2 + Ex)\ (1 + Ex) 
GRC(GRC + 2) (B.7) 

P 
Eg>BTD = —$ log2 

4 + 3 B 7 

(1 + Ex) 2+Ez 
3f i x

2+8iST+4 

(1 + Ex/2) d+^x)2 

£BTD((?BTD + 2) 

(l + £z) 2 

respectively. Clearly, when P = 0, Eg and, thus, the ISI become zero for both pulses 

(B.8) 
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Appendix C 

Evaluating the SINR of the 

SINRMF Receiver 

In order to find the SINR of the SINRMF filter, we evaluate each of the integrals given 

in eq. (5.33). To this end, we first use eqs. (5.37)-(5.39) to write the first integral in 

the denominator of (5.33) as 

rco {l + PxG
2

T{u))G2(u) 
f\ -f. 

-I. — CO 

oo 

n=—oo T 
oo 

G2
T(u) 

Gc{u) [Gv(to)]2du 

f(2n+l) 

(2n-l) 

2im\ 

du> 

= £ / Gc(u)[GV(u)]2du 

^ j_y(.-^){o^-^) cLu 

(C.l) 

(C.2) 

n=—oo " T 

where the last equation obtained by changing the variable w to w - 2im/T in (C.l). 

Now, using the fact that integration and summation in (C.2) are interchangeable along 

with the fact that Gv{u>) is a periodic function with period 2ir/T, one can obtain 

2im\ 
.[<*%<>] E * ( ' 
T n=—oo 

Using (5.38), it can be shown that 

T • ) 

duj. (C.3) 

oo 

£*(„-
2ixn T l-Gv{co) 

£o[ Gv{u) 
(C.4) 
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Thus (C.3) can be rewritten as 

•i = Jr/*CP(W)[l-G%;)]du,. (C.5) 

The second and third integrals in the denominator of (5.33) can be obtained in a similar 

manner as 

So2 

,,JL 0 0 0 

T n=—oo 

r [i-Gv(u)]2duj. 

duj 

(C.6) 

and 

I duo 
/

oo 

G{u) 
-oo 

= f/M t G<(-f> 
T n=—oo 

= iyT
w[l-GD(W)]dW. (C.7) 

respectively. Thus, the SINR of the SINRMF receiver in (5.33) can be evaluated as 

TSINRMF = 

So. ai 
27r^3 

^1 + ^ ^ 2 - &S? 

l -£ / -^gP(a ; )du ; 

1 - AsiNRMF 

As: INRMF 
(C.8) 

where ASINRMF is defined in (5.40b). 
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