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A master archer hits

A target at a hundred yards because

He skill posSesSesﬁEut, to mékexto meet
Two arrows in mid-air, head-on, goes far

Beyond the skill of ordinary man.

_,s‘?i‘ A

:  DQan Zenji
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i ' Abétract,
A collection of FORTRAN routines has been déveloped-for use
in minimﬂm variance modeliing and control. The routines can
be‘géoﬁped iﬁto five categqfﬁes : tiﬁe series modelling,
SISO transfer function plus noise modelling, MIMO transfer
function plus néisé.mndelling;‘unconétfained minimum
variance con%rﬁller design and constfained minimum variance
controller design. :

Within a category, -outines can bevgrouped by the step
at which they are usecG. %of example, transfer function plus
noise models require five steps : differencing,
prgwhitening‘ model order identification, preliminary'
estimation and least squares esti@ation. The main line

routine used to perform each step calls on a number of

‘subroutines. After each step has been completed, the analyst

-

must interpret the graphical and numeric outputs produced.
o ,

The decision then is whether to continuegto the next step

. or change some input and rerun the current step. That is,

the modelling process is_intéractive and'iterative,iﬁ
natdre.

Feﬂ?teen main line rout1nes are required to run the
1nd1v1dual steps in the five categor1es .of tasks which can
be performed. These main line routxnes-rely on seventy-eight
subroutinés to petrform the-work. Altogether, this aﬁounts to

about ten thousand lines of code.

The only way to. rellably generate this amount of code

'is to have some standard- ptactxces, and a rich test

-

Y

’



environment. The test environment was provided by a
"neatness” program called *FTNTIDY, along with a very -good
checking compiler and run-time system, *IF. Some of the
standard practices were:

1. one funqtion per subrogtine

2. top-down coding

3. chunk'implementation and checkout

4. consistent subroutine ééll_argument format

5. explicit declaration:of allivariébles‘

6. levels of nesting.ihdicated by indentation

%. errors handled within the routine where they occur

As currently implemeﬁted, this set of subroutines is
dependent on two features of MTS - the IMSL library, and the
plotting library. ,
| Of course, there are other time series packages. The
package developed by the author differs from the MTS
resident "Time Series Processet" by its extensive use of
_ graphics to reéresént results{f{t also has the capability
for transfg: function plus noise modelling, aﬁd can derive
| minimum variance controllers from t;ansfef function plus.,
noiée models. These additions make the package much more
useful in control applications. ‘

The purpose of this ;hesis,fs to dévelop the background
necessary for the use of this subroutine library. This will
serve as an introduction to simple stochastic modelling, and
minimum variance codfrol; as Qell a; the foundations of

adaptive control.

vi
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1f INTRODUCTION
In _-actice, estimating the possible return on a computer
cont .ol application is difficult. Applications are selected
on the basis sf possible benefits from a change in the mean
value of some key~variablg(s). The aim is to reduce the
amount of off-specification product, increase throughput,
decrease energy consumption, etc.

But substantial gains .can also result from just
reducing the variance of a key vériable. This can occur when
profit is related to the key variable by a nonlinear
function. | ’

For example, the ratio of hydrogen to nitrogen (H/N
ratio) at the synthesis converter inlet is a key variable in
ammon{é plants. Figure 1.1 presents a typical plant
performance function, as tons per day of production versus

H/N ratio, for a given set of operating conditions. This

function can be approximated as:

y = 997.5 - 8937.5(u-2.9)* (1.1)
where: .

y = tons/day production

u = H/N ratio

Assume that, without computer contrcl, the H/N ratic is
2;910.3. Also assume that a combination cf gas chromatograph
and hydrogen analyzer cculd be.used in a computer control
scheme tc produce a ratic of 2.520.05.

If the distribution of H/N ratic is uniform (all values

Y

egually likely), then computer ccntrcl can change the

o]

average producticn from $60.C tcns‘day, tc 39€.S5 tens/day.
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If the distribution is normal (i.e. Gaussian), the change is
from 992.8 tons/day to 996.9 tons/day.

That is, without changing the mean value of the key
variable, production can be iﬁcreased.

In other situations (e.g. fractionator‘;ontrol), the
reduced variance permits operation closer to a éonstraint.
Here, the prime benefit is from a change in the mean value,
once the vériation 1s reduced to perm;t the change.

The objective of this thesis is to present, in a clear,
concise manner, a set of procedures for aéhieving minimum
variation. The intention is to be reasonabiy mathematically
rigorous. However, there are some ba;ic concepts left
-undefined (e.g. expected value vé._wide sense expectation).
Alsc, as this thesis 1s intended to present only one method,
concepts not central to the development have been skipped,

" or merely hinted at (e.g. state estimators). It is hoped
that the result 1s a clearly defined introduction to the
broad field of system identification and parameter
estimation.

>

As part of this introduction to‘éhe field, an extensive
set of toolé will be presented. These' tools have been |
implemented as a library of FORTRAN subroutines They deal

A

with progressively more complex Situatidns in modelling. A

\ .

g . . ! \ -
facility for deriving various types of con;roller from these

models has also been included. Tﬁe chief ad?antage of ﬁhfg

/

set of tools is the rich graphical output which is

AN

indispensable in this application. Consistency of



implementation and documentation are also important factors
recommending the library's: use.

However, as wvell as these tools for offline analysis,
tools for ~nline, open-loop experimentation are required.
These are not included in the library, since their
implementation is highly situation dependent.

In the follouing‘chapters, the background necessary for
the use of the library will be built up stepwise.'Chapter_Z
sets out the general notions of model building, and examines
various techniques bfiefly. The correlaﬁion method for
building input-output modéls of stochastic-planfs)is then
éutlined. The foundation of the correlation method is
examined more ciosely inFChapter 3. This chapﬁer sets out
' three fundamental tools - autocorrélétion,'partial
autocorrelation, and power spectrum. This is the basic
toolkit fbr both time series and transfer functién.
modelling. (Time series modelling is not central to this
thesis, but the éechnique is of great significance. The
topic is detailed in Appendix A.) Transfer function plus
noise modelling (Chépter 4) follows naturally from Chapter
3. Here, definition of the modelling procedurelis-éompleted,
and illustrated with an e;ample. | »

Finally, Chapter 5 addresses the problem of deriviﬁg a
contrél law from the plant model. The;chapter ends with an
illustration of qontrol of the plant' modelled in Chapter,4;‘

Chapter 6 presents a series of conclusions and_observations

on the method. , ' - - .=



2. MODELLING STOCHASTIC PLANTS
In this chapter, we wil& introduce some basic concepﬁé and
terminologf. Firét, we present a few categoriés into which
models may be set. Our purpose is to indicéte the nature of
the models and techniques to be deQeloped. Next, two
'important methods for describing éyséems - via state .space
and transfer function modéls - are considered bﬁiefly. These
fifst sections serve to indicate the genéral characteristics
of the models to be used, and‘ﬁo speéify tﬁeir form. The

remaining sections outline procedures which can be used in

the building of thesé models.

2.1 Categories_of Models
There are two basic approaches to modelling the dynamic
behavior of a system. The first apgrodch co;ld be called'  ;
theorefical model buildihg. It requites the following steps:
‘1. Apply basic conservation laws to the process _being |
studied. i
2. Derive the ordinary or partial differéntial/difference
equations describing those aspects of the system;ﬁ'
behaviér which are of interest. ' -
3. Estimate any unknown modél parameters;“
é.ifvéfify and test the model.
The second appfoach is experimental determination of the
system model, on.the basis of input-oqtput data. In this
case we obtain a representation 6n1y of the observable and

controllable part of the system.



For an existing plant,xthe best "model" is the plant
itself. That is, experimental methods will 1nvolve the whole
plant (valve | p051t10ners, p1p1ng, d1str1butor plates, etc.)
Theoretlcal models can never be fully descriptive, but are
1nd15pensable for pred1ct1ng e1ther the behavior of new
plants, or the results of- extreme changes “in operating
conditions., | fg' L

This work will concentrate on experimental models.

I

o

‘Further, the models con51dered will be written in discrete
time, rather than continuous t1me; to allow for:

1. slow measurements (e.q. laboratory analyses)

2. time-shared instruments (e.g. gas chromatographs)

_3. use of. d1g1tal computers in data acqu151tlon and control
Models can also be d1fferent1ated on: the basis of whether or
not they attempt to deal w1th' norSe In the deterministic
~case, elther there 1s no n01se,“or it is negligible. Strejc
(1981) presents a summary of the most common determ1n15t1c
methods. W1th such methodS'.evaluatlon of plant measurements
'y1e1ds exact'values for model parameters. .

Techn1qués for developlng deterministic models fail at
lowe51gnaldto n01se rat1os- In this reg1on, systemeresponse
te a test inpuévcannOt easily be distinguished frem the
:System response to the”noise that is normally present.
| Stochasticlmodels are based on statistical methods, to
accountifof the effects of noise. This neise may be assumed
to act at §atious places in the system (input, measurement,

etc.) The noise itself is usually unmeasureable. Evaluations



of plant measurements yield only estimates of the parameters

in the plant model. To apply such methods, we should have

some notion as to what characterizes a "good" estimator.:

Some definitions of desirable properties follow:

1.

Unbiasedness: Let & be.an estimate of a parameter vector
6. Iania} = 6, then § is an unbiased estimate of 6. (E
denotes expected value.) \.
Consistenty:‘The estimété é converges in prébability to
¢ as the number of samples, N, in;reases. A

lim {Pr(|€ - 6]) = 0} = 1

N
Consistency implies unbiasedness,fbut not vice versa.

Efficiency: 8 is an efficient estimate if no other

unbiased estimator has smaller variance than

E{(8-6)(6-0)}.

Sufficiency: A sufficient estimator contains all the.
informgffgn in the obsérvations regarding the paramet;rs
to be eétimated; A sufficient estimate a of 6, based on
the sample.vector‘g, is such that the conditional
expectation E(@]Y} is independént of 6.

Estimators have been characterized by Strejc (1981)

according to the error cost function andmprdbabilistic

concept bs follows:

Bayes estimation (Ho and Lee,(1964); Peterka(1978))

Maximum likelihood (Deutsch,(1965); Astrom,(1980))

Markov estimate (Deutsch,(1965))

e

Stochastic apprbximatibn (Kiefer and wOlfowitz;(1952))
Least équarés (Strejc,(1980))

R

\
\
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6. Weighted least squares (Deutsch,(1965))
7. Generalized least squares (Eykhoff,(1974);
| 'Hastings—James and Sage, (1969)) -
8. Extended least squares (Young and Hastings¥James,(1970))
9. Square root filtering (Peterka, (1975))
10. Kalman-Bucy filéering (Kalman and Bucy, (1967))
11.‘Instrumentai variables (Keﬁdail and Stuart,(1961); Young
and Jakeman, (1979))
That is, many éstimators are available,_all with varying
st:engthé; BEach has its proper applications. For example,
ieast squares cannot be used in closed loop. Instrumental
Vafiables prqve their worth in such an application.
Finally,.models can be characterized as parametricmor
nonparametric. The essential difference is that parametric
modelslcan be economic in their use of parameters. They
assume somé knowledge of the plant's structure.
Nonparametric models.are prodigal in their use of
parameters. Wﬂen using parametric methods, if the structure
of the plant is unknown, an iéerative search must be
followed. This can sometimé§ be avoided by the use of al’
nonparametric method. For example; the step response of a
system is a nonparametric model Which'cahyyield insight into
the system structure.
Such a two step approach to modelling illustrates that
we really have two probléms to éonsider; First is the |
problgm of identification of the plant structure._Tﬂe second

problem is the estimation of the unknown parameters. Two

4



. families of models commonly used are state space and

transfer function, or input-outpbt, models.

- 2.2 State Space Models

The'pqpaviot of a linear dynaﬁic stochastic system can
- be described by theé state variable modelxz

o(k+1,K)x(K) + #(k+1,K)u(k) + F(k+1,k)w(k)

H(k+1)x(k+1) (2.1)
y(k+1) + v(k+1) .

x(k+1)"
y(k+1)
z(k+1)
In this model, x is the state véctor, which is sufficient to
specify the position of the system. u is the forcing or.
control vectdr; w is the disturbance to 'the state. 'y is tﬁe
true system output, while z is the measugeﬁent corrupted by
noise v. l |

The state vector, control vector andlﬁe@éuremgnt'arg
" 'all zero mean with dimensions s, t, and';. The\éeQuenéés
{v(k)} and {w(k)} are independently dist%ibufed ki§h zero,\
mean, and covariances V ahd W respective}yl |

This type of model can be‘derivgd'from a theoretical
analysis of the process. The state variables maf or may not
represent observable and/or controilable sysfém attribufes;
.It can be shown (Kalman, (1963)) that there are an infinite
number of state representations of the same'syﬁtem. This is
due to the fact fhat the relatidnship bgtween the input u,
and the output y is not éffedted bi'a npﬁsingular linear
“transformation of state variébles, Two modeis in the form.of
Equations (2.1) are said to be eqﬁivalent ifs

1. Their input-output relationships are the same for the

L
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case of no noise. (v = w = 0)
2. The statistical properties of the outputs of the

unforced systems are the same. (u = 0)

2.3 Input-Output Models: |

Besides simply changiné the state vector, there is
another transformation of Equations (2.1) which is of
interest. By applying the Kalman filter theorem to Equations
(2.1), we obtain: “

R(k+1) = ®(k+1,K)k(k) + ®(k+1,k)ulk) + K(k+1)a(k)
y(k) = C(k)&(k) + D(k)u(k) + a(k) (2.2)

where %(k) is the conditional expectation of x(k), given
y(k-1), y(k-2), ... and a(k) is independently randomly
distributed with zero mean, and covariance R. Equation (2.2)

reduces to:

y(k) = B(z-') u(k) + C(z-') a(k)
A{z"") 3 %}z“S o (2.3)

for systems with one input adg one output (Eykhoff,(1974)),
As before, 'y énd u a;é zero mean; a is ipdépendehtly
randomly distributed.

The common denominator in Equation (2.3) implies that
bothﬂthe input, u, énd the noise, a, are processed along
different paths of_the same system. Generalizing slightly to
avoig this:assumption, we obtain:

v(K) = w(z-') zBu(k) + 8(z-")alk) ,
_ 5(z- ') o(z- ") . (2.4)

where the polynomials are defined as:

w(z"') = w(0) - Zw(i)z-! i=1, ..., s
8(z-') = 1 - z6(i)z-! i=1, ..., r (2.5) °
6(z-') = 1 - Z6(i)z-" 1=, (.., qQ
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. ¢(z")=1—2¢(i)"zL‘ i=1, ..., p
and b is the number of whole periods of delay.

Equafion (2.4) can also be obtained by represenfing thé
- deterministic dynamic behavior of the system as the linear
filter:
y(k) = Zv(i)ulk-i) i=0, ..., = (2.6)
in which.the output, y, is represented as a linear o
combination of a series qf impulse response weights, {v(i)},
scaled by thé input {u(k-i)ii Thf; is analogous to the
convolution integral for coﬁ;inudus systems. Making use of

operator notation, Equation (2.6) becomes:

y(k) = v(z-")u(k), v(z-') = Zv(i)z~' i=0, ..., =
' (2.7)

r'he operator v(z-') is éalled the transfer function of the
filter. To parameterize the system somewhét more
économically, v(z-') can be represented as the rational
operator:"

viz="') = w(z-') z-b
N ICEED) . . ~ (2.8)

where the value for b reflects the fact that one or more of
the initial v(i) may be zero.vSubstituting Equation (2.8)
back into Equatioh (2.7):

y(k) = w(z=') zbu(k)
. 3z-7) (2.9)

To include the effects of noise on the output signal, let:

y(k) = w(z-') z-bu(k) + n(k)
. 8z ") - (2.10)

where {n(k)} is an independently, randomly distributed

sequence.
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The noise sequence may in turn be modelled as the
output of a linear filter with random input:

n(k) = 8(z-') a(k)
. plz- ') : ' (2.11)

Thus, we arrive back at Equation (2.4):

y(k) = w(z"') z-bu(k) + 6(z-")a(k)
. 5(2"5 g ¢ZZ'.'5 (2.4)

2.4 Freqﬁency Response Analysis

| Given a restricted class of models to consider (e.g.
state space or input—output), the task in a particular
aéplication will be to define the system parameters.
Histérically, this began with frequency response analysis 6f
transfer functions. The simplest case is that of a sine wave
forcing fo a linear process Qith noise-free output. Here,
| the system's amplitude and phase response can be determined

from a recording of the input, u, and output, y:

|G(jw) | = ¥ ¥G(jw) = -t -360°
‘ U T - (2.12)

where T is the period of the input, and t 1is the émountiof.
time by which the outbut lags the input. The amplitude ratio =
and phase aggle, ¢, are related to the transfer function bhy:
C G(jw) = |G(jw) e (2.13)
Both depend on the input freqﬁency. The transfer function
can, in principle, be found from the response of the process
over the e;tire range of frequencies, Oswse.
VThere are two common graphical means of,fepresenting

frequency response. The first is a pair of plots - amplitude

ratio and phase angle versus frequency. This is called the
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Bode diagram. Tne second is a polar‘plot of G(jw) in the
complex plane, called the Nyquist diagram.

Frequen;f respbnse methbds have become more practical
with the advent of digital spectral analysis, and numerical
Ferier tranéfbrﬁs. However, gﬂese methods will give ’
saéisfactory results only if the output signal tc noise
ratio isvvery high.

Jenkins and Watts (1968), and Wellstead (1981) describe
\ nonparametric techniques of spectral analysis in detail.
Ljung ‘and Glover (1981) contrast the features of frequency'
and?time domain‘methods. They conclude tha- the two

approaches complement each other.

2.5 Impulse Response Analysis
If we use an input signal of the forﬁ:
u(t) = ké(t) ¥ | (2.14)
where & is the Dirac delta, the process output Qill be:
y(t) = kv(t) + n(t) | (2.15)
where v(;) is the impulse response, and n(t) is noise
corrupting the output. In practice, &§(t) has té be
approximéted by impulse functions with short but finite
duration, and limited amplitude. In this)case, inversion of

the convolution:
y(t) = !v(r)u(t-r)dr (2.16)

will determine the impulse response. However, deconvolution

may suffer sﬂgnificantly from ill-cohditioned inputs and/or

/
et
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ncnnegligible noise (Rake,(1980)). Thus, the approximate
. appreoach 1s impractical.

approach tc impulse response

N

The currently accepte

analysis involves the use of statistical methods.

2.6 Correlation Methods
Correlation methods are based on the analysis of
autocovariance and cross-covariance functions of stochastic
processes.
The autocovariance function 1s an important statistical
property cf a process, defined as: N
v(u,u,ty,tz) = Elu(t,)u(t;)] . l’?2;17)
where the operator "E" denotes expecﬁed value. If ‘the
stochastic procoss is weakly stationary, a term that will be
definéd in detail later, then the covariance depends only on
the time difference |t, -'t:|. Setting this ‘equal to r,
y(u,u,r) = Efu(t)u(t+r)] (2.18)
Similarly, the cross-covariance betyeen two weakly
. stationary processes is:
y(u,y,r) = Efu(t)y(t+r)] ' (2.19)
On the ergodic hypothesis, the tjme average équals the%

~ensemble average. So, for a weakly stationary, ergodic

process uf(t),

y(u,u,r) = E[u(t)u(t+r)] _
. T , '
= {lim _1 Ju(t)u(t+r)dr} (2.20)
T 2T -T

Similarly, the cross-covariance can be defined as:
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T ‘
y(u,y,r) = {lim 1 Ju(t) u(t+r)dr} 2.21)

Te+= 2T -T
Using Equation (2.20), the folléwing §Eoperties for the
autocorrelation funétion are evident:
1. It is an even function of r.
2. v(u,u,0)2|y(u,u,r) ¥ r
3. 7(u,u?0) = E[u?(t)] = o?(u).
4. If-a signal has only random components, then 20 as 72w,
5. A given autocovariance may give rise to an infinite
number of time functions, but any given function of time
gives rise to only one autocovariance.
Similafiy, the cross-covariance has the following
properties:
1. ~y(u,y,r)#y(u,y,-7)
2. (u,y,7) = y(y,u,-7)
3. 7 is not necessarily maximum at r=0.
The integral definitions in Equations (2.20) and (2.21)°
become immediately useful if we wish to examine the
connection between these functions and the impulse response.

Starting with the convolution integral:
(-]

y(t+T) = Jv(r)u(t+T+r) dr (2.22)

-
where T is some fixed constant, multiplying by u(t) and

taking expectations:

[--}

y(u,y,T) = Jv(r)y(u,u,.+T)dr (2.23)

-0

In discrete form:
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v(u,y,k) = Zv(i)y(u,u,i+k) - (2.24)

1=-—c
That is, if we.apply an input signal of autocovariance v(r),
the impulse response can be obtained by deconvolution. In

particular, white noise has autocovariance:

v{u,u,7) = ké6(7) (2.25)
b4
Now Equation (2.23) becomes:
y(u,y,7) = kSv(r)s(r+T)dr
s —®
v(u,y,7) = kv(r) © (2.26)

By adding white noise to the normal operating input signal,
we obtain a:cross—covariance proportional to the impulse ‘
response., In performing such a test, it is 6ur choice
whether to apply a continuousAor periodic signal. Wellstead
(1981) shows that, using a periodic test signal;.with
'impulée—like autocovariance over the period, reduces the
variability of the estimated impulse response. This is the
motivation for the use of "pseudo-noise” test signéls,
particularly pseudo-random binary signals (PRBS). -

In a manner similar to the above development for
impulse response ahalysis, we can examine the connection
between frequency response ahalysis and correlation methods.
In brief, we can estimate a system'é frequency response from
the autospectrum, S(u,u,w), aﬁd cross-spectrum, S(u,y,w) :

S(u,u,0) = G(j0)S(u,u,0) (2.27)
where S(u,u,w) and S(u,y,w) are the Fourier transforms of

-

7(u,u,7) and y(u,y,r) respectively.
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™
Thus, correlation methods can form the basis for both

-impulse and frequency response analysis. Correlétion methods
have the advantage‘of n§§se immunity. Both impulse and

" frequency response analysis yield nonparametric models.
These are generally useful in exposing system structure.
However, parémetric'models are much more useful in

summarizing or predicting ‘behavior.

2.7 Parameter Estimation Methods
~To apply a parametric method in system®identification,
~a certain model structure must first be assumed. Then the
model pafameters are estimated by minimizing an error
between model and process responses. For parametric'
identification methods, an iterative search muét be used if
the correct model structure is not known in advance. In
confrast, nonparémetrié methods yield the final model
direézig;

We presented a general input—output‘description of a

linear process earlier:

y(k) = w(z-') zbu(k) + 6(z-")a(k) |
§(z=7) o elzTTy (2.4)

Thé objective of the various methods is to estimate the
parameters of the po;ynomials in Equation (2.4) from
in?utroutput daté._In.Table 2.1, -the important properties
and computational features of several methods are summarized
(Isermann, (1980)). Performance comparisons have been based
on simulations (Saridis,(1974)); (Isermann et al,(1974)) and

analytical methods (Soderstrom et al,(1978)).

.
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Modelling is generally an iteration through the
following steps:

1. Specify the application for the model.

2. Use any a priori knowledge to specify Zeneral features
of the system., (e.g.klinearfty, time constants, delays,
etc.) |

.3., Choose an identification method.

4. Select input signals, Eampling time, length of
experiment, |

5. ~Generépe measurementé{

6. Identify model structure and estimate parémeters.

7. Test the candidate’model. - “ |

>8. Accept the model, or changg the experimental or model

.:struqture. . . |

In addition to choosing an identification meghod, many other

task$ have to be pefformed.'The genetai proceduré consists

of several steps, requiring both an understanding of the

proceés,nand a strong theoretical background. o

-
2.8 Summary
The purpose of this chapter was to provide theg
terminology and motivation for the developments to'fgllqw._
tfirst, we examined the various céteésgies of'models.
These categories provide the referents'for all further
-

developments. In this work, we will be concerned with

experimental, .discrete stochastic models.
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Two families of models were next examined. State spacé
" models were outlined, since they are a significant langmark
in modelling. As demonstrated, thef are closely related to
ihput-outpﬁt médels. In the femainder of this work, we will
deal oniy with input-output models. a

‘he difficult step in building input-output models is
.dentif .ng : =ir structure. We wiIl'useononparémetric
met:ods to identify system structure, and then use parameter
est.unation -+ithin this structure. The nonparametric
te;hniques used classically are frequency.and impulse
response analysis. However, neither analysis, in its
original form, deals adegquately with noise. Their connection
with correlation methods, which deal expiicitly with noise;
will be taken advantage of in the following chapters.

This establishes the neéessary background. Correlation
methods will be used to take us through the diffiéult
initial stép of model structure identification. Once a
tehtative model structure has been established, nohlinear.
least squares estimation. for an input-output model will be
used. | f »

This method of attack is reférred_to by Isermann as

COR-LS.



3. BUILDING THE NOISE MODEL
In this chapter, we will develdp'the‘fqundations_of the
correlation - least squares method. First, we consider
briefly the‘interpretatioh'of the class of models selected.
These models are based on two represehtations - the pure
autoregressive and pure moving average forms. There are
several interesting,paréllels between the two forms. One
parallel appears during a close look at ¢0pvergence
conditions. Anothér appears as wé consider identification
tools for the two forms. The autocorrelation function is
related to the.moving aQerage form; fhe partial
- autocorrelation is related to the autoregressive form. These
two functions are defined, and'thgir application is |
.demonstrated in an example. One additional tool - the power
specfrﬁm - is also introduced, and applied in the same
example. | ' ~
The’ciass of models which we propose to use:

y(k) = w(z-') z-bu(k) + 6(z-')a(k)
5(z ') | o(z- ") (3.1)

consists bf two parté. The first term describes the
deterministic part of the plant.'Thé seéond_term describes
the effects of stochastic signals whigh afe always present,
passing through the. plant. The stbchastié;%ignals will be
referre? to as noise. ’

'Id;htification of the noise médel will be considered
first. This will require several concepts and tools which

will be develdped further in modelling the plant transfer

function.

21
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The noi;e model subproblem is of considerable interest
in itself, and falls witﬂin fhe general topic of time series
analysis. To begin with, we should detérmine how to
interpret the class of models:

n(k) = 8(z-') a(k)

¢(z- ") (3.2)
- where : ' .
6(z-*) =1 -6,z i=1, ..., g
¢(z-') = 1 - Z¢,z"" i=1, ..., p
- a(k) = N(0,0%*(a))

Yule.(1927) proposed that a series of observations whiéh
appear to follow some pattern can be regarded as having been
generated from a séries of independent shocks. That is, we
can picture the prbcess noise as having been generafed from
white noise passing through a linear filter. |
In Equation (3.2), wé wrote the filter as a rational
 operator. to economize on parameters, by using both past
inputs_and outputs. The pure input fofmulation:
n(k) = *(z")é(k) ' (3.3)
where ‘ .
_ $(z-') =1 + ZYz-!' i=1, ..., o
is refgrred to ai/; movingkaverage (MA) process, This is
somewhat of a mi;nomer, in that the weights do not
necessarily suﬁ-to unity.
The pure output formulation:
m(z-')n(k) = a(k) (3.4)
where o : '
(z-*') =1 +Zx27' i=1, ...,

is referred to as an autoregressive (AR) process, since the

output is being regressed on ‘itself.
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3.1lStationarity and Inver;ibility
Consider a process written in puré MA form:
n(k) = Zy,alk-3) § =0, ..., o (3.5)
where’both.é(k) and n(k). are zero mean. The variance of the

process is defined as:

\ 0*(n) = E(n?(k))’ ‘ (3.6)
Substitﬁtihg'for n(k) from Equation (3.5):
o*(n) = E[Z¢} a*(k-])] i=0, ..., = (3.7)

Also, by definition: |
_ E(a*(k)) = o?(a) - (3.8)
Substituting Equation (3.8) into Egquation (3.7) and

simplifying:

0:(n) = o*(a)E¥] =0, ..., = (3.9)
which makes sense as loﬁg as the series sum converges.

So, for n(k) to have finite variance, ®(z-') must
converge for |z-'|s1. This is known as the stationarity
condition. ' |

I1f we consider the bure AR process:

n(z-')n(k) = a(k) : ' (3.10)
then following a similar procedure as above, we obtain:

o(a) = o2(n)Zgl =0, ..., = , (3.11)
This sajs that for the observed series n(k) tovhavé arisen
from a series of finiteIVariance, then M(z-') must converge
for |z-']s1. This_#s known as the invertibility condition.

{ Byt since we have elected to use finite order
polynomials, what is the motivation for considering these
infinite order polynomials ? Via polynomial givision, a

s

-
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finite order mgudng average process can be represented as an

infinite order autoregressive process. And a finite order. AR

précess“can likewise be represented as infinite order MA.
'So the stationarity conditidh that *(z“) converge,

where:

n(k) = ¥(z-")&k) . (3.12)
is important for AR processes only. (A finite order moving
average operétor will always conygrge.)

Conversely, the invertibility condition that H(;")
%onverge, where: |

N(z-')n(k) = a(k) ' o (3.13)
is important only for MA processes. For example, consider
the MA process of order one ( MA(1) ) :

n(k) = (1-6z-')a(k) - (3.14)
where |6|<1. This can be represented as an infinite order AR
process ( AR(=) ) :

Nz ")n(k) = a(k) © (3.18)
where n; = -6/, The invertibility condition is satisfied,
given [6]< 1.

If we consider representing the MA(Q) process:

a(k) = (1= Z,z")a(k) i=1, ..., @ (3.16)

Al

aé an autoregressive process:

6(z-")n(k) = a(k) o . (3.17)
where the original polynomial can be factorized as:

6(z-*') =nm(1 -Ty2"') i=1, ..., q (3.18)
then the inverted polynoﬁial can be répresented as: :

6-'(z"') = L A i=1,...,q9
1T -7,z : (3.19)
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which converges only for |T,|<f. The roots of 6(z-') must
lie outside the unit circle for invertibility.
If we copsider_representing the AR(p) process:

(1 - 26,27 ")n(k) = a(k) i=1, ..., p (3.20)
‘as a moving average process: ‘

n(k) = ¢-'(z"")a(k) o (3.21)
with the. original polynomial factorized és:

| #lz=') = I(1 - Pyz=) '  (3.22)

then the inverted polynomial is:

p-'(z-') =L Af i=1,...,p
< . 1 - P,z ' (3.23)

-which converges for |P,|< 1. The roots of ¢(z-') must lie

outside the unit circle for stationarity.

3.2 Further Remarks on Stationafity

It should be stressed that stationafity implies that
the process maihfains statisgical equilibrium,.

Strict stationarity implies that the mean, variance ana
all higher order moments are constant. Stationarity of order
kﬂmeans that all moments up to order k are constant. Since
only the first two moﬁents.arevhecessary tovdéfine a
Gaussian distribdtion, assuming normality plus stationarity
of order 2 implies strict stationarity;

However, bonsidering.the typical changes'ih an
industrial plant, it is perhapsuunreaSOnable to assume that
process disturbancgs will héve a fixed-mean;‘lf we consider:

(1 - ¢z-")n(k) = a(k) | (3.24)

with |¢|< 1, the process is stable. With |¢] > 1, }Xk) grows
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"

exponentially. But, if ¢ = 1, then:
a(k) (3.25)

(1t - z='")n(k)
or:

a(k) ' (3.26)

n(k) - n(k-1)
so that now we ére concerned only with successive changes in
n(k), rather than absolute values.

That is, we model the changes in n(k). The observed
process noise is considered the result ofvinteg:ating these
changes. |

If we define:

Ve (1-2z1) (3.27)
then Box and Jenkins (1976) refer to the model:

Vin(k) = 6(z-') a(k)
d(z- ") - (3.28)

\
Y .

' e
as an autoregressive, integrated moving average model of

order (p,d,q). This is ﬁbbfeviated as ARIMA(p,d,q).
- ' ~
3.3 Autocorrelation
There are three basic tsols used in ARIMA model
identification. The first of these is the autocorrelation
function. It is felated'to‘the less general concept of

variance, Variance is defined as:

, 02(n) = E{n?(k)] . (3.29)
where n . g
n(k) = fi(k) ~ n
fi(k) = observed valye

N = mean value:
Variance is estimated as:
s*(n) = (1/N)Zn} i =1, ..., N (3.30)

The more general autocovariance is defined as:
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v (3) =

y(3) = E[n(k)n(k+j)] (3.31)

It is best estimated as:

c(j) = (1/N)Zn(i)n(i+j) i = 1, ..., N-3 (3.32)

02

Note that +(0)

To obtain the autocorrelation function, we normalize

the autogovariance:
" () = v(3)/v(0) | (3.33)
\\

The autocorrelation of a process is thus independent of its

variance.

The autocorrelation function is estimated as:

r{(j) = c(3j)/c(0) (3.34)

)

Wﬁat does the éutocorfelation indicate ? Consider the MA(q)
-~ ~ess: _

n(k) = 6(z~')a(k) (3.35)
Substituting Equation (3.25) into Equation (3.31) we obtain:

y(3) = El(a(k)-6(1)alk-1)-...-8(q)alt-q)) X
(a(k-3)=6(1)alk-3-1)-...-6a(k-j-q)]1 (3.36)

For k = 0, we obtain:
y(0) = (1462 (1)+...+6%(q)) o?(a) - (3.37)

and for k # (J:

é(—e<j3¢eg1)epf41>+...+ 6(q-j)e(a))e?(a) , j=1,...q
[0 | , 3> (3.38)

\

We have used the fact that: °

{o’(a) , 1 =0

Efla(k)a(k-1)] = (3.39)

(0 , 1% 0
tb»obtaib these results. If we look at thé‘autocorrelation

functionts

p(3) =0 , 3> q (3.40)
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That is, for a pure moviﬁg average procesé,'the theoretical
autocorrelation function is zero beyond lag g. Since a
finite order autoregressive process is equivalent to an
MA(=) process, its theoretical autocorrelation function will
be infinite in extent.

In practice, we will estimate p(k) from a series of
measurements. We will need some criterion for’deciding
whether p(k) is effectively zero beyond a given lag. The
variance of the estimate r(k) for a statioﬁarylﬁormal”
process, is given by Bartlett (1955) as:

o (r(3))=(1/N)Z{p? (1) +p(i+j)p(i-3)

C —sp(i)elideling) +2p2 ()0 (§)) (3.41)
If t° autocorrelation is zero for k > q: '
o*(r(3N)=(1/M){1 + 2Zp *(i)}, i=1, ...,q , J >> g (3.42)
Substituting r(i) for p(i), we obtain the large lag standard

error of the autocorrelation estimates.

3.4‘Paftial Autocorrelation
Since the autocorrelation reveals the moving average
nature of a process, we might expect another tool to reveal
the autoregressive nature of a process. This tool is the
partial autocorrelation.
Consider the AR(p) proceés:
#(z" " In(k) = a(k) o (3.43)
where: - ‘
¢(£") =1-Z¢;z-' 1=1, ..., p ' (3.44)-

Changing the notation somewhat, 1ét_¢(p,j) be the j'th



29

coefficient of an AR(p) process. We now have:

plz=') = 1 - E¢(p,i)z'i =1, ..., P ‘_ (3.45)
If we define the set of_éutoregression coefficients,
{e(i,1)}, as the partial autocorrelation,

6(i,i) =0, i>p (3.46)
for a pure AR(p) process: That is, for a pure autoregressive
process, the partial autocorrelation cuts off for i > p. |
Since MA(g) is equivalent to AR(=), the theoretical partial
autocorrelation for a pure moving average process is
infinite in extent.

There are fwo alternatives for estimating‘khe partial
autocorrelations. The first is based on a solution in terms
‘of the autocorrelations, called‘the Yule—Wa}ker equations.
Consider the AR(i) process: |

n(k) = ¢(i, In(k-1)+...+¢(i,i)n(k-i) + a(k)  (3.47)

Multiplying by n(t-k) and taking expectations:

v(3) = (i, Ny(3=N+. .+ ¢(i,1)y(3-1) , § >0 - . _(3.48)
or: | |
p(3) = ¢(i,1)p(j-1)+...+.¢(i,i)§(j-i) » 3 >0 (3.49)
So that:

P(k)®(k) = p(k) . " (3.50)
where :

1 p(1) ... p(k=1)
P(k) = [p(1) 1 ee. p(k-2)

p(k=1) p(k=2) ... 1

& (k) (k,2) ... ¢(k,k)]
)y ) .. p(k)]

[o(k,1
p(k [p(1

These eguations are solved for increasing values of k.
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Durbin (1960) presents a recursive algorithm for solving
Equations (3.50). |
However, the Yule-Walker equations are not well

conditionéd; A more stable alternative is to fit
autoregressive modgls of increasing order to the data, via
least squares.

~ Again, to determine whether a particulér value is
significant, we need a test. Quenouille (1949) has shown
that, assuming the process is AR(p), the estimated partial
autocorrelations are approximately independently distributed
for i > p. Then: | -

o*(¢(i,i)) = (1/N), i > p (3.51)

where N is the number of observations.

3.5 Power Spectrum
Neither the autocorrelation nor the partial
autocorrelation will reveal the presence of periodic
components in the observations.‘The Fourierhfransform of the
autoéorrelation yields the/ power spectrum, which will show
periodicities. In particuléf, a large peak in the low
freguency range may indicate a slowly changing level or
sloée which may be removed by differencing. . o
Given an odd number of obeservations, N = 2gq+1, we fit
the Fourier series model:
n(k) = a(0) .+ Z(a(i)c(i, k) +B(i)s(i,k) + e(k) , i=1, ...qg
where:

cos(wa(i)k)
sin(27f(i)k) £(i) = (i/N)

c(i,k)
s(i,k)
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The least squares estimates for a and B are:

a(0) = n . o ,
a(i) = (2/N)In(k)c(i,k) i=1, ..., g (3.53)
b(i) = (2/N)In(k)s(i,k) k=1, ., N ’

Now that the data has been‘transformed into the'freQUency
domain, we must represent it .somehow. The usual technique is
to plot Signal strength versus frequency. This is known as
tbe signal spectrum. The signal strength, or intensity, ét
frequency f(i) is defined as:

I(E(i)) = (N/2)(a?(i) + b?(i)) 1i=1, ..., gq ' (3.54)

For an even number of samples, N, the procedure is modified

slightly. Let N = 2q, and:

a(g) = (1/N)Z(-1)*n(k) k=1, ..., N
b(g) = 0 _
I(f(q)) = Na%(q) I (3.55)

'wi;h a(i), b(i) and I(f(i)) for i = 1, ..., g-1 as before.
For a truly random series:
n(k) = a(0) + e(k) (3.56)

That is, the signal will havé only a DC component gqual to
the sighal average, plus some error component cauging it to
vary about this value. In this case,_thé expected value of
1(£(i)) is 2¢*(n), distributed as ¢2(n)x?(2). (The intensity
of white nbise is uniform at all frequencies, and equals
207 (n).) |

" If there are periodic components in the series, the
power spectrum will show an increase of intensity in the
vicinity of the frequencies of these components. (See Figure

3.1)
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CIf wevinﬁegrate and normali;e the_spectrum, deviatioqs
from the expected behavior of white noise can be assé;sed
via the Kolmogotov-SmirnoQ bounds. (§eé Figure 3.2) White.
_ngise has a uniform'frequency contént, so its integrated
spectrum will be a straight line of slopé 20*. Normalizing
by 0?, we obtain a straight line of slope 2. Limit lines can
be drawn at distances K(e)//q above and below this line.
For white noise” an ‘excursion over the limit line will occur
.wi;h prdbability\e. On Figure 3.2, theblines nearest the
ceﬁtral white noise line will be crossed with'102 |
probability. The lines further out would be crossed by white
noise with 1% probability. Approximately, K(0.01) = 1,63,

and k(0;1) = 1,22,

3.6 An Autoregressive Process

.In this section, we present an example of identifying a
pure AR procéss.’The advantage we'haye here over phe real .
case is.that we will actually épeéify'the underlying.
process. wé will generate a séries»of samples (termed a -
"realization" of»the pfocLss), and'theﬁ see how weil our
tools reveal it to us. We will examine both numerical and
graphical representations, although we would normally réiy
on the graphical information. -

Considér fhe AR(2) process: - : o

(1-1.162-7+0.332-*)n(k) = a(k) , a(k) = N(0,0.05) (3.57)

which has the roots at z"' = 1.5 and z-' = 2. If we generate

a realization of this process using the initial values:
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\

n(-1) = -2.2 , n(0) = 1,2 (3.58)
we obtain the results presehted irmTable 3.1. The
autocorrelation énd partial’autocofrelation estimateg, with
confideqce'limits,'are presented in figyres 3.3 and 3.4.
Note that the estimated values in Tabler3.1 compare’Quite
well with the theoretiéal values for this process. The
Significant results, howevef, are'in the_figufes; The
estimated autocorrelation is significant over a number of
lags. This is as it should be for a pure autoregressive
process. On the other.hand, the_partial autocorrelétiOn cﬁts
off after lag 2. This process would be tentatively,

correctly, identified as AR(2).
\.

3'7,A Moving Average Procégs
As for the éR(Z)fexample, we will specify a process,
generate a reélization, and see how well our tools wdrk.f
Consider the ﬁk(z) process: o
n(k) = (141.05z-7+0.82-2)a(k) , a(k) = N(0,1) (3.59)
Thé\numerical results are presented'in’Table 3.2. The '
estimatéd éutocorrelation'and partial autocorrélatiod’ére
presented in Figures 3.5 and 3.6. As before, the estiﬁates
comparé favourabiy with the theoretical values. The partial
autocorrelation is significant.over»a number of lags, while
the autocorrelation cuts off after lag 2. Again, this

\
process would be properly identified as MA(2).



36
3.8 A Mixed Process

Mixed processes are the norm in real applications, and
represent the most difficult identification problems. Here,
it is not siﬁply a ca§e of one function being.éontinuéus,
“and the other cﬁtting off cleanly. Both judgement and
experience are required. An additional complexity is

introduced by the possibility of nonstationarity.

1\ -

Actual Estimate - ~ Actual Estimate
p(1) 0.872 .0.818 ¢(1,1) 0.872  0.818
p(2)  0.682 0.606 N 4(2,2) -0.33 -0.19

p(3) 0.503 ~ 0.429 $(3,3) 0.0 -0.018

'Table 3.1 Results for AR(2)

Actual Estimate
p(1)  0.63 0.643
p(2) 0.292 . 0.231

p(3) 0.0 -0.039

‘Table_3.2 Results for MA(2)

To test our tools, we use a realization of the
ARIMA(1,1,1) proceés: .
(1+0.2z"')Vn(k) = (1-0.5z"')a(k) ~, a(k) = N(0,1)  (3.60)
This can be rearranged as: |

n(k) = 0.8n(k-1)+0.2n(k-2)+a(k)-0.5a(k=1) = (3.61)
The‘autocorrelation plot (Figure 3.7) is significant over a
large number of lags. That this couid be due to |

nonstationarity is confirmed by the large peak near DC in

the power spectrum (Figure 3.8).
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After taking the first difference of the data, both the
autocprrela;ion and partial autocorrelation die out
quickly.(Figures 3.9 and 3.10), |

This process would probably be initiéliy identified as
ARIMA(1,1,0), d&e to the behavior, of the autocorrelation
plot of the first difference. Diagnostics in the parameter
estimation stage would later force an increase to

ARIMA(1,1,1).

3.9 Summary

The main purpose of this chapter has been to develop
and present examples of the autocorrelation, partial
autocorrelation and power spectrum. These are the tools with
which the structure of the noise model is 1dentified.

Along with this,»thé concepts of statiocnarity and
invertibility were presented. In the context of transfer
function analysis, these correspond to the classical
concepts ofAstability and minimum phase behavior. w

But the techniques presented here must be developed
further to be useful. To actually identify the noise model
and estimate its parameters, thé noise series must be
available. This will only be posﬁible if we have some means
tc partition our measurements of the plant output into
deterministic and noise.components,

a
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4. TRANSFER FUNCTION PLUS NOISE MODELS
In this chapter, we will extend the results of the previous
‘chapter. The fundamental tools of the correlatidn method
~have been introduced. First, we will consider a
generali23tion of éutocovariance, called cross-covariance.
This function aids us in exploring apparent causal
relationships.

The cross-covariance is of moré utility, however, once
‘we establish its co;nection to the impﬁ;ge response of a
'system. This connection will be shown to be particularly
direct when the input to the system-is white noise. With the
system impulse rFsponse available, we are.ablé,to partifion
our measurements into deterministic and noise components.
This puts us into a position to identify both transfer
function and noise model structure.

The last step is the simplest. Given a candidate model,
we estimate parameters by least'squares; Since this
procedure can have trouble when starting, we first consider
how to obtain good initial guesses. Then we examine
nonlinear least squares in detail.

Lastly, once the parameter estimates are'! available, we
must have some criteria for deciding their acceptability.
This is covered in the section on diagnostic checks. .To:

<

conclude the chapter, we present an illustrative example.
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4.1 Cross-correlation
Recall the class of models being considered:

y(k) = w(z-")zDu(k) = nlk)
§(z- ') ‘ (4.1)

One idea intrinsic to this class of models is that u and y
are causally related. In other worés, we are interested in
the conjoint variation of these two variables,

We define the crosﬁ-covariance from u to y as:

v(u,y,3j) = E[u(k)y(k+j)] ' (4.2)

whe;e both u and y denote deviations from the mean. (Note
that the autocovariance of y is y(y,y.,j).)

Ih general, 7(ﬁ,y,j)#7(y,u,j). But n5te;
7(u,y,3) = Elulk-3)y (K 1=Ely(ulk=3)] = v(y,u,-5) (4.3)

. ) 2
In a manner similar to autocorrelation:

p(u,y,3) = 1(usztj)j k=0,1,...
OV'UOY , . )

defines the cross-correlation function. The cross-covariance

(4.4)

is best estimated as:
(1/N)Zu(k)y(k+3) k=1, ..., N-j j=0,1,...

c(u,y,j) = o
(1/N)Zy(k)ulk~-3) k=1, ..., N+j j=-1,-2,

"(4.5)
To estimate the cross-correlation:
plu,y,j) = clu, v, 3)
vel{u,u,0) vely,y,0) "(4.6)

Aé befofe,‘we wi}l require a criterion for deciding whether
‘aaparticular term in the cross-correlation function is
significant. Bartlett (1955) shows that the approximate .
standard error of a cross-correlation éstimate:is:

o*(r(u,y,j))=(N-7)'Z[ g(u,u,i)p(y,y,i)+p(u,y,j+i)p(u,y,j—i)
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+p*(u,y,i){p?*(u,y,i) +(1/2)p’(u,u,i)+(i/2)p‘(y,y,i)}
L =2p(uyy, ) ie(u,u,i)plu,y,j+i) +olu,y,-i)ely,y,j+i)}]

1 = ~», ® (4.7)
If u and y are not cross-correlatéd, p(u,x,i)#o, so that all
but the figst term in Equatipn (4.7) are zero:
o (rlu,y,5)=(N-9)""F plu,u,i)ply,y,i)  i=-=, ® (4.8)

i

If u is white noise:
p(u,u,i) = 0 i#0 \ (4.9)
andfby definition: 4
plu,u,0) = ply,y,0) = 1 (4.10)
So on the hypothesis that ﬁ and ylare not chSSfcar;elated,
and u is white noise:

ot (rlu,y,j))=(N-j) - (4.11)

4.2 Input Prevhiteni@g )
Suppose that aftér differenfing the original series d
times: ” .- |
~y(k) = v(0)u(k) + v(1)u(k-1) + ..." + n(k) (4.,12)
where the weights {v(i)} are the systeﬁ impulse response,
Multiplying»by u(k-3j), and taking gxpectations:
vy(u,y,3) = v(0)y(u,u,j) + v(1)y(u,u,j=1) + ... + y(u,n,j)
v | | (8.13)
Aésuming that u(k-j) is uncorrelated with ﬁ(kf'}or all j:
y(u,y,3) = v(0)v(u,u,3) + v(Dylu,u,j=1) + ... (4.14)
Beyond some poinﬁ, the impulse response of the system will
die out. Truncatihg Equétion (4.14) at the point where the

v(i) are effectively zero, and then writing the system of

equations from k=0 to k=K:
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r
/ . , yuy = Tuu V . , - (4.15)
2 where: ' ” ‘
y(u,u,0) y(u,u, 1)~ . y(u,u,j) | -
. Muu = v(u,u, 1) 7(u,u,0) .o v(u,u,j-1)
v(u,u,3) v(u,u,j-1) . v(u,u,0) J

yuy = [v(u,¥,0) «o' 7(u,y,k)1, V = [v(0) ... v(§)]
‘Now,.gy/substituting.estimates for y(u,u) and v(u,y), we can
sélvé/for thé impulse weights. However, we can obtain‘the
same r su}xSﬁmore simplyf Suppése‘thgt we rep;esent the
input u(k) as a time series:

ul(k) = (6u(z"")/eu(z""))a(k) ~al(k) = N(0,0%(a) (4.16)
And model the o;tput'y(k) with the same filter, but é
different input: |

Cy(k) = (BulzT ) /(2T ))B(K) (4.17)
Substituting fof u(k) andhy(k) in Equation (4.12) from .
Equations (4.16) and (4.17): |

B(k) = v(z-')a(k) + e(k) - |

e(k) = (¢Q(z*')/0u(z“))n(k) (4.18)
Mq;tiplyihg Equation‘(4}18) 5y~a(k-j), takiTg expectations,
and assuming no cro§s-correIation between a(k) and ®e(k): |

v(a,6,3) = v(5)o®(a)  (aa19)
which yields the estimafe for the impulse reéponse:

v(§) = v(a,B,3)/ 0*(a) ) (4.20)
This.proceés of fitting a time serie; model to the input
‘series, u(k), is called prewhitening. Obviously, if the
input_is white to start with, the impulse reéponse is'jusf a

scaling of the cross-correlation.
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4.3 Ildentification -

Once the impulsé response has been arrived at, we can
use it to estimate the noise series as: »

n(k) ; y(k) = v(z=")ulk) (4.21)

Study of the autocorrelation, partial aﬁtocorrelatibn and
power spectrum will yield the noise model structure. We can
also use the impulse response to identify the structure of
the transfer funétion.

Recall the form of model being used:

| y(k) = (w(z7')/8(z-"))zPu(k) (4.22)
where: : '
w(z"'") = w(0) - Zw(i)z-t i =1, ..., s
§(z-') = 1 - Z&(i)z ' i=1, , r
and the definition of :impulse response:
y(k) = v(z~')u(k) (4.23)

Equating Equations (4.22) and (4,.23) we obtain:
8(z")v(z " )u(k) =-wlz-")zPulk) (4.24)

Equating coefficients of equal powers of z-' in Equation

L J

(4.24):

i.. v(i) = 0 i=0, ..., b-1 |

2 v(i) = Zv(i-3j)6(j) = -w(i) j=1, min(i,r), i=b, ..., b+s
3. v(i) = Zv(i-3)8(3) = 0 3=1, min(i,r), izb+s+1

(4.25)
That is, the first b impulse response weights will be zero.

~ And the weights v(i), i2b+s+1 will follow the homogeneous
r'th order difference equation with initial conditions v(i),
i=b+s+1-r, ..., b+s. The intermediate sequence of weights is
dictated by a sequence of inhomogeneous r'th order
difference equations.,ln'partiéular, v(b) is the first

nonzero weight, so identification of b is straiéﬁfforward;
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The choice of r; which is normally limited to 0, 1, or
2, is less’ direct. The contrast in impulse response between
processes of various orders is not always clear. Here, the
step response weights are:more easily interpreted.

Let V(i) denote the i'th step response weight. Then:

v(i) = Zv(j) , j=0, ..., 1 (4.26)
Without numerator dynamics (i.e. s = 0), the distinction in
step response ' ; -uite clcar. (See Figure 4.1) Zero'th\order
_processes responc completely at the first step. First order
processes follow a simple exponential curve. At least second
order dynamics will be necessary to explain anything more
cdmplex. (overshoot with oscillation, eic.)

‘The addition of numerator dynamics makes the issue less
cieér, by adding terms to the initial response. Zero'th
order processes with numerator dynamics will show a linear
increase ﬁp to full response. But it is very difficult fo
discern thé»presence of nuﬁerator dynamics in first or
.second order processes. By underfitting the model iﬁitially,
" and adding numerator dynamic% only if the model is

inadequate, satisfactory results will be obtained.

4.4 Preliminary Parameter Estimates

From the cross-correlation, we have an estimate of the

impulse response:

y(k) = v(z=")ulk) o (a2

We wish to find a starting point for estimating the

parameters in: ‘ | .

v
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Cy(k) = (wlzm ) /8(z7 )z b ulk) | (4.28)
- Equating Equations (4.27) and (4.28):

8(z-')v(z " ulk) = w(z ")z bulk) (4.25)
E*panding, grouping terms, and equating coefficients of |
eqgual powers of z"' in Equation (4,295, we obﬁain the
follqwipg preliminary gsfimates:

1. v(j) = 0 j<b
2. I1f r>0, find 6(z-') from: , ' ' (4.30)
AS = V |

where: :
6=[8(1) ... 86(r)] v=[v(b+s+1) ... v(b++s+r)]
[ai’j] = v(bts+i-j) , jSb+s+i ‘
: .. 0 2, J>b+s+i

and matrix A is rxr.

3. w0 = v | (4.31)
4, .If s>0, find w(z-') from: .
If r>0, w=B6 - v (4.32)
where. [bij] = V(b+i-j) ’ jS].
. . 0 , j>i |
1f r=0, w = -v - ' (4.33)

The noise model preliminary estimates are obtained as for
time series models. (See Appendix A.).

w~ It should be kept in mind that these estimates are
extremely}inefficient. In cases wheré the objeétive function
(sum of squared errots) ié'very large at_the starting point,
it ma& be usefpl to start with all parameters set tb a i

small, nonzero value (e.g. 10-°).

4.5 Nonlinear Least Squares.
In general terms, our problem is to minimize:
\ .

£(x) = oT(x,k)0(x, k) | O (4.32)

where Q is a function that produces residuals at the .
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observation times, given the parameter vector x. The
fesiduals are the difference between the model prediction
based on parameters x, and the actual observation. f(x) is
dﬁr objective funétion. The gradieﬁt is: |

VE = 2J7Q (4.35)

where J, the Jacobian, 1is:

(3Q/3x(1)) |+ ... (8Q/3x(m))|, .
J o= (4.36)

(00/3x(1)){n ... (9Q/3x(m))],
F;om\this point on, let subscripts denote the stage of
iteration. Approx1mate Equatloq)(4 35), ,as:
ij.,_ZJ.Q.., | | | (2.37)
and approximate Q;.; by the Taylor series: )
Qi 12y + Ji(x.y-x,) (4.38)
. Substituting Equation (4.38) into (4.37): |
VE, . 22303, (x,., -x¢) + 2370, (4.39)
At the minimum, a necessary condition is: |
Vfi” =0 : (4.40)
Substltutlng Equation (4.40) into (4.39): ‘
Xi.i = x; - (3733 JTo, ' C(4.41)

which is Gauss' method of least squares.

4.5.1 Levenburg - Marquardt correction
To ensure that the matrix inversion requ’ -ed by
Equatlon (4.41) is possible, it is sufficient that the

matrix JTJ be positive definite. Scale JTb as:

-4

m=c-Jlac-* S (4.42)

where:
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Positive definiteness can »De guarén;?ed if we let:

(3731 [+ A1) Ce

[373]- (375 + aci]- . (4.44)

where A 1s a positive constant such that A > -min{a,}. Here,
the a, are the e*genva1ues of M. That is, X guarantees
1nvert1b111ty by mavﬁug the elgenVa ues.gg.J J into the

right half‘plane. Suostltut1ng Equatlcn 14 i& ,dnto (4. 41)

(G,

X,.oo=x, - [3T0 + cil-aT QL.; vfﬁf (4. 45)
We can further stabilize the algorithm by ghobsing:

X,., =x, -C . [c1agTa,c + a1l 'cialg, (4.46)

As we ihcréase A, AC? dominates JTﬁ, and the procedure looks

more like steepest descent:

X, .y = x; ~- (1/2X)C-3V £, ' , i4.47)

¢

But also note that inc-easing A decreases the step size. As

‘the minimum is‘apprqached, A -should approach. zero, to return

us to Gauss' method. Thus, let:
)\i.,‘ = ki/v L (4.48)
’ ‘ »,
whére v is a constant greater thanm 1. For the transfer

function plus'noise problem, the residuals a(k). are

~calculated in three‘steps: I e

1. y'(k) = (w(z‘;g/é(z“))z‘ﬁu(k) (4.49)
2. n(k) = y(x) - y'(k); . (4.50)
3. alk) = (e(z-',, 6(z))n(k) - “(4.51)

/

wr
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The algorithm will become unstable if there are
redundant parameters. A redundant parame: will result in
one cclumn of the Jacobian being linearly dépendent.on the
o;heré. Thus, the matrix will become singular, and cannot be

inverted.

4.6 Diagnostic Checks

_ dnce a particular model has beeg fitted, 1ts adequacy

mﬁst be checked. Most diagnostics‘aE%%based on the model

residuals. The following five qhecks4shou1d be performed:

1. The input, u(k). should not be cross-correlated Qith the
residuals. If it is, there is .a "residual” relationship
between input and output ﬂhich has nmot been explained by
the model. | |

2. 'Thé model residuals'should not be aﬁtocorrelated. If the
residuals ére‘autocorrelated; but not cross-correlated

"with the output, y(k), then there is some difficulty in
’Athe noise model which induces this auo;;ofrelatioh.
3.; We can also test the first'few terms of the
cross-;orrelation, r(a,a,kSQ or the autocorfelation,
r(a,a,k). This will e a chi-square test, where:

2

x*(») = vsi/o* , Elx*(»)] = as2) L

afd: o
: v = number of degrees of freedom . Ei_' o
s* = observed variance AN
o? = true variance . R
: ‘ Hhl
a. The stetistic: ' .
S = NZr*(a,a,i) , N=(n- max(s+b+p,p')) (4.53)
. - J o

i=0, ..., § o
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will be distributed as x*(j-(r+s)), where:

number of observations

n =
p' .= prewhitening transform autoregressive degree
J = number of cross-correlations to be considered

o

b. The statistic: |
Q = NZr?(a,a,i) , N = (n-(s+b+p)) | © (4.54)

will be distributed as x*(j-(p+q)). |
"If either statistic is much larger than its expected value,
the corresponding correlation ( r(a,a,k) or r(a,a,k) )
should be viewed with suspicion.
4. The uncertainty interval for a parameter should not

include zero.
5. The power spectrum of the residuals shduld be white.
If all these checks are passed, the modei can.bg consiaeréd
a good candidéte. Given hore then one candidate model, that
with fewest parameters should ve chosen.
4.7 Stirr~d Tank Heater . o -

| As an example, we Qill congéder modelling a stirred
tank heater. (See Figure 4.2) Our objective is -to f£ind the
trgnsfer‘function élus noise‘modelmfor_outlet temperature
~.response to steam {Jﬁv.

To obtagp the input—output data, an open-ioop test must
b;,pe;férmednghis requires that we perturb the input, and
'sample'the plant output.

oA priori, it is difficult to define an optimum input

signal}(Bok and Jenkins,(1976)). The basic criterion is that

R &4
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it must be rich enough tc excite all the modes of -interest.
This criterion is 5~ i<.1ed by a white noise sequence. The

most common white noise generator is the central limit
' \

theorem generator.

Approximately normal random variables can be generated

from:

p=mn, * ... % 0z (4.55)
where:

o*(p) =1, p=26
and n is unjformly distributed in [0,1]. Uniform
distributions are usually Echieved by congruential schemes.

For example,

n,.; = cn, (modulo m) . (4.56)
where: no is odd m=2%+1
' c = 8t#3 t some integer

will yield 29 ? values in the range [0, m-1] before
repeating. We could use:

65539 = 8¥8192 + 3
201+ 1

C
m

nu

Given an input signal, we must also decide on the sampling
rate, and sample size. Sampling raté is determined by the
need to recognize high frequency components. The highest
frequéncy that can be recognized is detefminea by the <.
sampling theofem to be ‘one half the sampling frequency.
Sample size is determined by the need to recognize low
frgquency gomponents. As a rule of thumb, estimates.pf la§
components of more thaﬁ 20% - 3b% offfhe data should
probabl} be avoided..Théﬁleésﬁ qqhstraihing choice is to

sample as quickly as possiblgﬂﬁbﬁl#s long as possible, while

T
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acknowleag;ng these caveats:

1. Very large data sets make statistical inferences
.meaningless because of the éxplosicn of degrees of
freedom. |

2. The variance of a parameter estimate is roughly
prhportional to the inverse square root of the number of-
samples.

3. - Data collection can be a very expensivé.process.

In the present example, a central limit theorem generator

was used to build up a steam valve position input with mean

50% andvvariance 20%. The sahpling'interval selected was 5

seconds (0.2 Hz). A total of 200 points were gathered. (See

Appehdik”B for a listing of-the data.) This scheme is A

prbbably usefui for frequencies from 0.01 Hz to 0.1 Hz. The

test results are presented in FigUrés 4.3 - 4.6.

Firstly, the cross-correlation (Figure 4.3) appears’
reasohable, in thatuah‘increase in steam flow is correlated
with an increase in temperature. Note that the
croés—correlétibh ar lag-i is just sighificant, so that h =

1.

- The step respon$et(§igure 4.4) show§ a process with
overshqot, so that at least second oréér dydémi;s are

‘required.(i.e. r = 2) No guess as to numerator dynamics can

be made at this p01nt. The autocorrelatlon of the nozse

.Ta "'\«:
es 'ggte (Flgure 4.5) dies out. rather slouly. Inspecting the

noise part1al autocorrelatzon (Flgure 4.6), it appears we

have a largely autoregressive process (p =.1), but perhaps
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with Some moving average character.

‘In tﬁis case, tﬁe‘tentatiVe transfer function plus
noise model has orders §f (r,s,b) - (p,d,q) eqgual to (2,0,1)
- (1,0,0).

We find eventually that the diagnostic checks are
satisfied only with the addition of numerator dynamics, plus
one moving average parameter in the noise model. The best
model is of. orders (2,1,1) - (1,0,1).

fhe plots of pé’ametgr valge versus iteration'nqmber
(Figures 4.7 and. 4.8) show smooth convergence. .

' The autocorrelation plot of the residuals (Figure 4.9)
shows no‘significant terms. And the residual power spéctrum
(Figure 4.10) lies within-the boumds for white noise.

Thé'cross—corrélation between input and residualé
(Figure 4;11)7§hows one significant terﬁ; but this is at a

. o
very large lag, so it can be discbunted, ;

The parameter values obtained are given in fable 4.1. .
Thus; the model for this case is fairly straightforvafd to
obtain. -It should be emphasizéd that even for this problem,
building the model required an iteration, from
identification and_estimation, through diagnostic checking
and correction, thence back to estimation.

".é‘Sunnary

In this chaptef{.our first step was to define.the

cross—correlation function. Botﬁ'tpg cross-correlation .

function and impulse response are nonparametric models of a

>



system. Perhaps, then,‘it is no;.surprising that the two are
closely related. Inrthe simplest case of white noise inbgt
to a system, the impuise response 1s -u.- - scaling of the
cross—-correlation., Even when the input .. not whife, ﬁhere
is an orthogonal set of equations relating cross-correlation

to impulse response.

5, 5, Wo | wy ®, 8,
- falue  1.01  -0.0064 0.0246 -0.0218 0.956  0.08
t20 0.01 0.011  0.00002 0.0003 0.002 0.03
Table 4.1 Reﬁults-of Parameter Estimation
iThis relationship“is important, since we can determine
the cross-éorrelatﬁon function from experimental data. Thus,
; ve can?é? imgtg the impulsé résponse. Finally, from the

/é;):'impul_gu sponse, we can identify the structure of the
. ) I, iR N .
G“M_fi}réaéﬁer function.

With both the traééfef function and noise ﬁbdel
identified, we can attempt‘to'estimate a set of parameters.
Before d§ing so, we may want to generate a set Bg}

'preliminéry estimateé as a starting point for the. least
squares routine.

With the parameter estimates in hand, we run through a :
series of diagnostic checks. If all checks are péésed, we
have a good c¢andidate model. If the checks are not passéd,
we modify the model structure accordingly, and estimate a
new barameter‘set. o s

In developing the transfer fun 1ion plus noise model,

"we go through an alternating series of steps. On one hand,
. Q .
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we have a set of strictly analytical procedures(caliculate

and display autocorrelation, etc.). These steps can easily

s

be auvtomated. Cn the cther hand, we have a set of pattern

recognition steps. ‘e.g. Does the step response show first

72

cr secgnd crder cynamics ?) These are less easily automated.

\

The .ibrary :mplemented »y the author rellies on rich,

wel.-def.ned graphical output, ¢ allow the modelier :c
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~ good cont-cl.

.

5. MINIMUM VARIANCE CONTROL

@;v
The prev:ious chapters have assembled the bafk round

f).

necessary for modelling stochastic plants, via oneé speczflc
method. This is perhaps useful in itself, but if we can

predict plant .behavior, then we should be able tc obtain

-~
(U

Consider once more the model:

y(k) = (u(z")/é(z")l z- b u(k) o+ (6(z-")/¢(z""))alk)

T (5.1)
where: - : e
) = deviation frfh tardet
) -

= deviation from value which holds y(k) at zero
pure process delay

n = x

y (
u(
f
Our problem is tgggerlve a feedback controller.

' - u(k) = f(y(k)) —_— (5.2)

which'minimizes the variance in y(k). For example, consider.

- the case: , , . Y

g;‘-‘l_':" .

" L ﬂ(k+1la:_¢n(k)‘: 6a(k)

e,

- 5

y(0) = w(0)ulk-1)+n(k) TRk =(1-6277)/(1-¢) -a(k)  (5.3)

For the noise to-have no effect at the ontput, yﬂkl = 0.
, . )

Then Equatlon (5 3) becomes.

};u(k) - (- 1/w(0))n(k+1) o . (5.4)

To *ma efthe’q?ntrol adjustment, we must somehoﬁlﬁrediot

n(k+1).-FromquuatiOn (5.3): :; : v .
n(k) = (1—92")/(1 ¢z"')a(k) | : . (5.5)

. which can be rewritten:

n(k+1) = ¢n(k) * a(k+1) - 6a (k) ’l‘ (5.6)

-
L3

Taklng expectat1ons at instant k we are 1eft w1th

(5.7)

Q. By
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where we have used the fact that, at instant k, Efa(k+1)} =
0. Substituting for n(k+1) in Eguation (5.4):

. ;) ) ) )
ulk) = (-1/w(0)) (en(¥)-6a(k)) (5.8)

n

‘Now, the best that this controller can do is:
yl{k+1) = a(k+f) : (5 9)

51nce the error in predlctlng n(k+1) will show up in the

-
}

af:; Noutput ‘That is, the m1n1mum‘var1ance we can accomplish in
this case is o? (y) = o?(a). Substitut g Equation (5.9) into
{5.8), and us1ng the noise model to substltute for n(k) in
terms of a(k): ‘
e W) = (-1/0(0)) (9=8)/(1-92" ) y(K) (5.10)
ﬁw@ich givgs the cont;ol output in terms of the current plant -
output. Here, wé have used the transfer fungtion plus noise
model to design a controller which will reject noise. In |
thlS derivation, we ‘have 1mp11c1tly#§§3umed the desgred
process output (setpoint) to be zero. That 1s, ‘we desire
- zero deylatlon from the steady-state value at whlqh»the
model Qas‘déveldped. (Recall that both y(k) and u(kY
represent dev@ations from steady-state..) Lef'ué”consider the
e‘clzase of a non—zerOFSetpdiht,~say Y(§}'= ysp(k). Now, if'
" noise has no effect, y(k) = ysp(k)._gubstiéutiné this into
_ EqUétion (5.3) and rearraﬁgipg: _ o .

u(k) - = (g5pu.1/0(0)) = (n(k+1)/w(0))’ (s 11)

11

The second term on the right will lead to the same result as
-before, so that the regulatory plus servo control law 1s',

u(k) = (y8py.:/0(0)) - (1/a(0)) (4= 6) /- sz )y (k) '(5.12)



Wt
A_5.1 Analytical Derivation
When we dérived the minimum variance controller for the
first example, we took the following steﬁg:
1. Set y(k) = 0, to obtain the control law from the
tranéfer function plus noise model;
2. From the noise model, ohtaih”the”eStimates n{k+i)
required in the*control law, |
3. Substitute these estimatfs to obtain the conttol law in
terms of al(k), u(k)=g(a(t))i
4. Obtain the relationship betweén y(k) 'and a(k) determined
.by the pred@ction errors., |
5. Use this relationship to‘obtain the contrdl law in terms
of measurements y(k), ingstead of the noise model jnpth,
a(k). | | |
This procedure may be eﬁtirely acteptabie.‘gowevgg, we -
require a constructive prhof to show thatlthe cqﬁtrollér -
-will give m1n1mum variance. o |
To begln ve requ1re an, expre551on for: the variance of
the plant output. We will then use. analytlc methods to

Rt
N

. derive the' m1n1mum varlance control law.

of a(k) alone. Th1s ‘should le“wéus to expedt that the

variance of y(k) should be expressibl%;nn@terms of the

variance of a(k) ;335 T L e
Recaik“the orlglnal model° i ;w: o _
§Sk+ff}f’ (w(z")/é(z"))u(k) + (9(20*)/¢(i"))a(k+f+1) .
s ,_._w“::?'»'. . ’fﬁ‘ . .;/‘ -~ B 2, . Co. 7:‘3.‘- S . - . ( sv‘}g ) .
“ B ’ ce . . N o L 3 )ﬂm

43 . Note that above, we were able to- exp%ess y(k) in tgrms _*v' -

2t

&,
o%

8



tclosely Deflne the 1mpulse respo

A

By definition, the transfer function is just .an economical

parameter1zat10n of the impulse response, v(z~'), where:

viz-') = Zv{idz-' = (w(z=')/8(z" "))

1=0, ..., @

Substituting Equation (5.14) into (5.13)":

y(k+f+1) = v(z-*)u(k) + (6(z"')/¢(z""'))alk+f+1)
Recalling the third step in.our_heurietic-procedure above, o

we should be able to express the:control action in terms of

the noise model inp *s'

L(z")a(k)

u(k) = ZL(1)a(k i)

i=0, coo,m

(5.14)

(5.15)

(5.16)

Substituting Equation (5.16) into (5.15), we obtain y(k) .

entirely in terms of a(k):

y(k+E+1) = v(z“)L(z")a(k) + (6(2")/¢(z

¢(z‘*) = Zw(l)z" = 6(z- %) /¢(z"")

N o 4;1' . . . -
s “ S ) i = 0' . P

ERGINE » :"(’ ‘?; . \

=

Now separate thls 1nto two parts:’

) s le) 2ot gy (2o

P2

o rema1ﬁ1ng h1gh‘or3er part of w(Z")inhen-

R )

"¢

cast the second term in a s1m11ar§orm to examine

)

2

3

e of the noise mo

(5.19)

-so that~¢1(z ') 1s,of degree f and z ‘4"’w (z ') is the

.

1.'
¢
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vi(z-")a(k+f+1) = ¢y, (z"-")a(k+f+1) + Y, (z"")a(k) - (5,20) .
So'w1(z‘ﬂ) operates on disturbances which have not yeff‘L
arisen .at instant k. Now, substituting Equation (5.19) into

(5.17):

y(k+f+1) = {v(z")L(z;‘) + y,(z"')}la(k) + w,(z")a(k+f;1)
| (5.21)

Sqﬁaring: |

yi (k+E+1) = f[z(z:;;?f§;;3?£iéi;;)]’a’(k) u

C+[2v(z-)L(z )y, (27 1)
v+ 29 (27 )Y (27 ) Jalk)a (ke £+,

(5.22)
and t;king expected valueé,_yé‘obtain:
a’(y) =_{Z(v(i)L(i)4Wz(i))’ + Zwa(i);}o’(a)' (5.23)
_Aé required,'we héw have an expression for the variance of
y(k). As mentioned.above, itfkéé possible to obtain this
ent%rely in terms of a(k).‘And,_aﬁ.promised, we will now
proqeqﬁ to.minTmize this’varfaﬁéé énalytically. ¥
€3 “.giégt, we réqui%e one simgié result. We defined‘the’
noise model impulse fe%ponse Q%Xw(z“).-That is:
6(z-')/8(z"') = ¥(z=') , ¥(z=') = 1+ yyz7" + ... (5.24)
_Subétituting from Equatioh (5.19): - o

&

6(z-1)/8(z"") = ¥y (z ) +zoF 1) gy (zo1) /(5.25)

LA :
At" some pofﬁ%, we will have .to determine ¥,(z- ') and

~

Y2(27'). This can be looked at as a problem in polynomial

¥
N

division, where V¥;(z"') gives the remainder terms. That is,

we Eén_define:’ ‘ g | ,
Va(z7) = T(z71)/(z71) , T(z7') = T(0) + T(1)z' + ...

L (5,26)

e

.
EARE
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m/;,

We will need this result later. Let us pick up where we
left pff{ in the minimization. The second sum in Equation
(5.23) is independent of our actions. Only the first sum
contains terms related to the control.lan. (This shonld not
be surprising - recall that the second sum is'related to i
as-yet unrealized disturbances.) So it will be sufficient to
minimize the first sum. The minimum for a sqnared real value
is zero, so we require:

0 (5.27)
0

Z(v(i)L(i) + ¢y, (i)™
i.e. v(z-")L(z"') + y.(z- '}

non

4

L(z') = = ¥alz"")/v(z=") © . (5.28)

This will be satisified using the control law:

This is a reasonable result. At the plant output, we could
‘negate the dlsturbances with -y,(z"'). We move‘th{s action
to the plant input by multlplylng by the 1nverse of the
plant transfer function. '
Substltutlng Equatlon (5 28) into (5 16)
u(k) = = ¥o(z ") /v(z"") alk) (5.29)

Substituting for v(z-') from Equation (5.14), and for

- ¢z (z"") from Equation (5. 26) : ' ' —
(5.30)

.

u(k) = - (8(z7)T(z ")) /Mwlz" ez 1) a (k)

icr >

Now we are at a stage similar to the fo p in the

e

heu&gztic procedure. We have u(k) as a f'*{?ﬁﬁé of a(k), and

woulﬁ like u(k) as a function of y(k).
response w(z") 1n the’ orlgﬁ; l model, we have: _

y(k) = (w(z")/&(z"))u(k £- 1) + y(z-')a(k) ‘A (5;31)
Snbstitutlng for y(z-') from Equation (5.19), for’wz(z“)

: : 4 . . ¢ )
from Equation (5.26), and for u(k) from the control law,
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Equation (5.30):
y(k) = y,(z-")a(k) o (5.32)
As expected, the deviations are caused by the as-yet
unrealized disturbances. Rearranging Equation (5.32) for
A%ﬁk), und substituting into the control law, Equation
(S.BOX: . -
. u(k) = - (é(z;‘)T(z-())/(w(Z")¢(z")W1(z‘f)) y (k) (5:33)
This 1s the minimum variance control law, written in'terus ¢
of plant 1nput and output
&
5.2”Nduminimum Phase Systems
If w(z") has zeroes on or inside the unit c1rcle, the

control law in Equatxon (5.33) will. requ1re 1nf1-1_

variance for the input u(k). Even if w(z-') is ing
experience has shown that unacéeptably’large input variance
may be ¢alled for. One solution is to add a constraint to

the mlnlmlzatlon. That is, minimize the output varlance,

f.“'lﬂ’f\ve

'o (y), sk Ject to an upper bound on the 1nput var1ance,

j1

o0*(u). §§M§'the problem:
. Min o%(y) s.t. az(u)Sca’(a) ‘ . (5 34)
lthe method of Lagranglan multipliers leads to a m1n1m1zation
of: » ) “
Fluy,N) = ot (y) * A (w) - cota))  (5.35) O

Since we cannot effect o0?(a), this function will be minimum
\ , b

if: ’ _ - : 5:2_ . .
G(u,y,0) = o*ly) + %Kot (u) L 5%

. is minimum. Given that:

ir
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& u(k) = ZL(i)a(k-i) = L(z"')a(k) . (5.16)
the input variance can be expressed’as: |

~0*(u) = ZL*(jlo*(a) , j =0, ..., . (5.37).
Substituting from Equations (5.23) andA(5.37) into Equation
(5.36):
G(u,y,A) = {Z(v(i)L(i)+y,(i))? ' S |

+ Z¥i(j) + AEL*(j)}e*(a) (5.38)
i=0, ..., = j=0, e f ‘

. Again Jthe second sum is independent of the\controliiew, s0
5‘

x:we need only to minimize:

G(u,y,k) = {Z(w2(1)+ZL(k)v(1 k))? +XZL’(1)}0 (a) (5.39) ...
: - 1 =0, eey @ k=0, cens i

“where ‘the f1rst summation has s1mply been rearranged , o

.r~\- *

h leferentlatlng, and since the first j terms are 1ndependent

ot gL .

dZ (Y, (1)+ZL(k)v(i-k))?/aL(j) =
' , . ZZv(l ])(wz(l)+ZL(k)v(1 k)) (5.40)
5 e i=0, ..., ® 1=3, ..., =« k=0, ...,1i

" .. Substitutipg Equation (5.40) into (5.38), differentiating

~ ¢

the seconq.term, and eqnatlng to zéro: S L,

Zv(1<5)W(I)AAL(5) = 0,320, i=3, ...,=  (5.41)

wherer ‘ _ ‘ . ,
W(i) = ¥p(i) + ZL(K)w(i-k) , k=0,...,i  (5.42)

To get from the set of Equations (5.41) to the final form

.

_for the controller requ1res three somewhat:involved st?ps.

‘

Flrst we will rewrlte Equatlons (5.41) in operator fg}m.

,.‘

Then we will perform a spectral factor1zat10n fq; th%gsum of

two polynomlals. Lastly, we use partlal fractions tG
B
rearrange the equatlon. The reader may w1sh to leave“these
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steps for a second reading, and go directly to Equarien
(5.53) .
This first manipulation is a rather elegant approach,

due to WllSOﬂ (196%9a).

The equations for the L can be solver e easily
if we can pass back to an operator notatiorn ier:
v(z)W(z"') + AL(z"') = H(z) (5.43)
where: A » o
L H(z) = ZH(i)z' i = ~», ..., =

'{; W(z-") = L{z"'")v(z-"') + Wz(z“)

Expanding the left side, and equating coefficients of equal

RS

powers of z, we find that Hi = 0, is0, is required to
satlsfy Equatlons (5.41) The coefficients of H,, i >0, are

Equatlon (5. 41)- and w1ll be left free.

not constralnedafl
, the serles problem of Equation (5.41)
(5.43)._Restat1ng,'w

NI © (5.44)

our original defin®™ion was:
H(z) = ZH(i)z' i

but Equations (5.41) constrain

1

H(z) = ZH(i)z' N ceeie © (5.45)

which ie a powerASeries in z, with a zero leaaihg,
, eoefficiee;. Substituting from Equation (5.44) into (5.43):"
v(2MI(z vz ) ¥ e (g 4 ALz ) = H(z) ~ (5.46)
ve?subsritﬁting for v(z-') and y,(z"') from Equatiedef}S.f4)

and (5.26):

CL(z-w(z)w(z ) + A8(z)8(z"') + w(z)T(z-) = H(z)

6(z)6(z“') 8(z)e(z" 1) . (5.47) :
T — ) . . a B ‘ P - 4 - .
/We noﬁ\hawe two terms on the left “in various polynomials,bfi e B
z and z“& What we are after is a solution for L(z“) What v ¥
o z e L. ,3;%‘

: . T S8 ' X . S . o
“H . - o . ' e
W T P

o - R N L
) ) N : A)' - . '

7, B ~ A
pe] Y
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we require, then, is some way to disentangle the polynbmials
ih z™ ! ffem tpPse in z. Let's_stért witﬁ the first term on
- the left. The spectral factorization theorem will-let us
perferm the factorization as:

o(z)wlz 1) + A6(2)8(z ) = y(z)y(z ") (5.48)"
whefeAf(z“) has no'zeroes inside or on the unit circle.
Further defail can bé found in Wileon (1969b).-Substituting
from Equation (5.48) into (5.47):

L(z"

1)y
5(z)6

y(z)y(z* 1) + (z)T(z"') = H(z)
_ )6(z- ") 6(i7¢(z") ; ‘ v (5.49)
Slnce y(z) is: 1nver;1ble, we cadn multlply by 8(z)/v(:

L(z" ‘)7(z") 4’ (z)T(z“) = H'(z) ‘
5(z- ") 6(z)¢(z") - (5.50)

o
’ v
)

vhere, 51m11ar to H(z)
‘H' (z) = ZH|z' i=1, ..., @
Now,; the first term is all in z~'. Separating the second

. {
term by partial fractlons.

“w(z)T(z70) = Qi) +.05(x) . |
et | ST ata) (5:51)

where Qz(z) must have a zero constant term for unlqueness._

.,ff‘substltutlng ﬁrom Equatlon (5.51) into (5.5Q9. /_
“)7(2“)u- Qs(z7') = Q,(z) + H'(z) - o Tael
§(z=1') 1\“‘) = v(z) *~(352)

When expanded, the rlght side .is'a power serleshln @ w1th
. no‘constant term. The left s;de is a power serles in z-*.

Thus;"tﬁe?equépioh is Separeble, and:
L‘(Z-i) = 5(2.-1)9_1(2-1) ‘ . S ;
. . 7(2-1)¢(z-1) "_.\ (5.53) .

-

Subst;tut1ng Equatlon (5 53) 1nto (5 16)

v R o

)

T

™
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\

u(k) = &(z-')Q,(z- "a(k) :
ERICER (5.54)

The intérpretation of th%s equatidn i§ much less clear than
for Bquation (5.2%). Recall the asgociated Eguation (5.30):
ﬁ(k) = = (&(z"")T(z" ")) (wl(z” ez ")) a(k) (5.30)
‘_iooking at BEguation (5.51), we note that Q.(z" ') is closely
related tQ-T(z"\. The majoer change from Eguation (5.30) to
\5;%4) has beed the replacement of u(:“\j:y yiz '), This is

onable, since we were having problems with zerces of

-

*
1)
w
on

«wtz" ') inside or or the unit circle; We can guarantee that
~{z7"  will have aii roots outside the unit circle. Once
“‘again, we are in the position of havinda control law in
terms of aik). Sclvi;g Eguation (5.54) for atk),

substituting inte Equation (5.1), and rearranging for u(k):

C
P
/]

6(z-')Q,(z"") ‘ vik) °
w(z "IQylz ")z ¥ 7 T+ y(z ) E~ ) ‘

(5.55)
vhfch.is thé final form for this controller. In fhis
derivaticn, we havé dealt directly with two comﬁoh‘problems.
Firét, non-minimuﬁ‘phase behavior has been accounted for.

And excessive manipulation of the control input can be taken

care of by ..» same approach;

5.3 Example
If we use the subroutine library to derive the

unconstrained controller for the system 'modelled in section’

4.7, we obtain:

ul(k) = 2.698(z"* - 14.73)(2"' - 1.06)y(k)
‘ "z T+ 1.132)(z 7 = 1.05)  (5.56)

Cancelling the approximate pair near the circle: .



.68 ‘
1.132 . {5.57)

1
Ty

. . A, .
Appiy:ng this controller, we obtain the results shown 1n

(a4

Figure 5.°'. Note that the transfer function has also been

(&4

used to derive a servc controller, while variance from the
target s minimized by the Joint use of noise and transfer

function models.

84
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6. SUMMARY AND OBSERVATIONS
This thHesis was motivated, in the Introduction, by a
consideration of the effects of imprsved regulatory control.
'This was followed by a consideration of the cafegofies of
models - in particular, state space and input-output models.

Using the state space description

x(k+1) = ¢(k+1,k)x(k) + ®(k+1,k)u(k) + I'(k+1,k)w(k)
y(k+1) = H(k+1)x(k+1) (2.1)
z(k+1) = y(k+1) + v(k+1) , :

was stated to be equivalent to using the input-output

description:

y(k) = B(z-') u(k) + C(z-') al(k) ~
, Az ") Az ") (2.3)

as a consequence of applying the Kalman filter theorem. This
was generalized slightly to obtain:

y(k) = w(z"') zPu(k) + 6(z"')a(k)
5(z- ") p(z- ) ' (2.4)

\
|

|
~where the polynomials are defined as:

w(z-') = w(0) - Za(i)z"! i=4d, ..., s
§(z-') = 1 - £6(i)z"" i=1, ..., r (2.5)
6(z-') = 1 - £6(i)z"" i=1, .. g
¢(z-') = 1 - Z¢(i)z" i=1, ..., p

Then two.approaches to developinc such models - via
frequency and impulse iesponse methods - were defined.
Basically, the difference between the two approaches is the
domain of representation selected - frequency, or time.
Next, the convolution integral was used fo show that the
correlation method is one way to perform impulse response
~analysis. It was also shown that the auto and
cross-spectrum, used in frequency résponse analysis; are

just Fourier transforms of their time-domain equivalents,

86
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thgjaﬁto ana cross-correlation. Chapter 2 finished with an
introduction of the path from nonparametric representations
(e.g. impulse response), to parametric representations (e.q.
transfer function). The iterative nature of the modelling
process was emphasized, to ensure that the method to  be
présented would not be perceived as some sort of panacea.
The observation was made that three hajor steps must be
accomplished. First, we idéntify a céndidate model
structure. Then we estimate parameters for this structure.
After evaluating the results, either_khe model is accepted,
~or we make a change and iterate through the process again.
In Chapter 3, the duestion of stability was considered,
N

in conjunction with the noise model:

n(k) = 8(z-') a(k)

FYCEED) (3.2)
where .
6(z-') = 1 - Z8,z"!' i=1, ..., q
¢(z-') = 1 - Z¢, 27! i=1, ..., p

a(k) = N(0,0%(a9)
First, it was observed that the autoregressive (AR) and
moving average (MA) operators are in some sense
complementary. A finite order MA operator can be represénted'
as an infinite order AR operator, and vice versa.
Stationarity is defined as the convergence of an MA
operator. Invertibilify is defined as conve;abnce of an AR

r
operator. For finite or 'er polynomial operatqif with bounded
coefficients, convergence of the sum of coeffié?énts is
guaranteed. The issues of invértibilit} énd stationarity
arise only in the case of infinite order operators. So

stationarity is important for infinite order MA pperatofs,
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that is, for finite order AR operators. And invertibility is
important for 'infinite order AR operators, or finite order
MA operators. In either case, the roots of the operator
6(2")_of ¢(z-") must lie outside the unit circle for
stébility‘of the noise model. |

Following this, the threeé basic tools for noise model
identification were introauced. The autocovariance is

related to the idea of variance. It is defined as:

v(3) Eln(k)n(k+j)] ‘ ,(3.31)

ané is estimatedfgs:

M c(i) = (1/NJZn(i)n(i+j) 1 =1, ..., N=-j (3.32)
%

To remove the dependance of this measure on the process

. variance, we normalize to obtain the autocorrelation:

r(3) = c(3)/c(0) , (3.34)

- The autocorrelation will indicate the order of a pure MA

process.
To determ?ne the bfder of a pure AR process, the
partial autocéf;elation'wés defined. This measure is
somewhat more of é made-to-order device, since the partial
autocorrelation coefficients are actually best deriVéd by
fitting pure AR models of incregsiﬁg degree to the data.
Neither_the autocorrelation or parfial autocorrelation
will reveal the pfesénce of periodicities in the data. Tﬁis
type of behavior can'be ihvestiéated with‘the povér spectrum

of the data. The procedure here is to fit a Fourier series

model:

Eom

n(k) = a(0) + Z(a(ideli, k) +8(i)s(i, k) + e(kh, i=1, ...q
- S (3.82)

3
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"where:
c(i, k)

cos(2rf(i)k)
s(i,k) i)k)

sin(2nf (1 £(i) = (i/N)

mon

and then to re@resent the intensity at each frequency:
I(f(i))>= (N/é)(a‘(i) + b?(i)) i=1, ..., g | (3.54)
graphically, versus frequency. If there ére periodic ”
components in the s¢ries, the power spectrum will show an
increase of intensity .in the vicinity of the frequencies of
these componenté.

Following examples ot the use of these tools for pure
and mixed processes, it.was then noted that to identify the
noise model (i.e. to actually calculate the functions
abdve), we must be able to partition the observatidns
between the transfer function.and noise model. .

Continuing to woik with nonparametric system
representations in Chapter 4, the connection between
cross-correlation and imptlse‘respon3e~;as examined in" some
detail. Itjwas shown that thé cross-correlation from ihput
to outputlis the convolution of the autocorreiation of the
input signal witﬁ the system impulse response. Given fhat we
have an input-output seriés, deconvolution can be used to
obtain an estimate of the impulse response. This will not‘
necessarily be an efficient estimate, but it will allow
identification of the noise ﬁodel structure. A typeldf‘
decoﬁvolutibn called prewhitenin§ was examined in this
respect. ' i

With an estimate for the noise seiigs in hand, we can
identify the q?iﬁs_mgﬂéIIStructufe. We can also identify the

/]/'

P
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transfer f*dction structure as a result of this'same\
deveiopment. bnce the  output series.can bé partitioned into
transfer function and noise model contributions, each part
c:n be identified. The noise model is identéfied via the
previously considered‘autocorrelation; parﬁial
autocorrelation and p?wer spectrum. The transfer function is
identified via thevimpulse‘gr step response.

"With an identified model in hand, we can proceed to
parameter estimation. Thﬁs.is done via nonlinear least
“squéres. The algofithm.uséd is a version ¢f Gauss' methdd,
called the Levenburg - Marquardt correction:

Xi.1 = x; - C ' [C1aTa,co 1 + A1)-'cridr0, (4.46)
and ve let: ‘ :
Neev = N /v | (4.48)
where » is a constant greater than 1. The Jacobian in the
above equation can be estimated numerically, or calculated
~analytically. The library touyine developed uses analytical
éélculations, since the model structure is fairly simple.

iTheVmodel;'once obtained, is only a means to an end. It
can be used, for example, to understand the behavior of }he
plant witﬁin the range 6f the test data. It can also be used
for bétter controi. The.noise model can be used to
anticipate the effgcts of éérreléted disturbances. By using
it to derive a regulator,'minimum variance about a setpoint
" can be obfaiﬁgd. Special methods are required where th;‘

variance of the regulator's.odtput is too high, or when the

process is nonminimum phase. The transfer function model can

N
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>

©of course, also be used to advantage, for servo control..The
simplest technique is to simply invert the-trahsfer' '
function, which is the method used in the last.chaéter..
There are much more robust approaches.’ -;/”\

What are the shortcomings of the method?

‘=
y

The majof problem is the requirement for -on-line,
open-loop testing 6f.the'plant} to obtain an idput?oﬁtpﬁi
series. This is objectionable in an indbstrial environmént
wvhere risks to people, ﬁhe surrounding community, éqqipmenﬁf
and profitability all must be considered. The‘requiredent_
for 6pen-loop iesting arises from the'assuméﬁion ;hat’the
input and noise are not cr&ss-correlated; in close6~loop;

plant input is a function of control error, which is in turn
! 4

..rv-’]d

'cQ%felatgd vith the disturbances.
What can the method.contribuxe?
Used as infended,‘the method is capable of delivering a
transfer function plus noise model which can be used both.
fof a bésic uhderstanding of the plant, and for impfoved
.contrbl.' _ .
When compared to on-line methods, the most obvious
difference is the émphasis on diagnostic checks; It is
certainly possible to follow on-liﬁe_the autocorrelation of.
the control error Zanalogous to residuals in the off-line
analysis). The control errors should not be autocorrelated -
if they are, there is some deficiency in the regulator. The

autocorrelation of the control errors should be distributed

~as x*(»). And the power spectrum of the control errors



;.contrlbute. First, }F ¢@n be used
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should be white.

Philosophicall/r th&fmethod h 1'at leasf two things to

Z'a stepping-off plece_ to

the" toplc of adapty¢® Cohtrol Secondly, . it can be used as
an-introduction to ¢C§Chﬁst1c processes. (e g. Does the
noise model represeﬂﬁ thy | imperfect representatlon of the
-plant by the transwf fu“ctlon7 or. does it represent
v’somethlng inherent ’ﬁ the 5yscem?) Both of these topics, to "
say nothing of the {@latQa area of time series ana1y51s, can

profitably be studx¢ﬁ at length.
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APPENDIX A. TIME SERIES MODELLING

In Chapter 3, it was sbggested-that the model:

Vin(k) = (8(z"'")/e(z ")) a(k) (A.7)
can generate a series of observations which appear to follow
scme pattern. Howe or, this remark was made in the context
of transfer function modelling. That.is, ve were
considéring:‘

y(k) = (w(z7')/8(z""))z" u(k) + n(k) (A.2)
where there is an‘;mplied causal relationship between u(k)
and y(k). In contrast, models such as Z4.a. on (A.1) can be
‘used to forecast a variable (e.g. a ~-ozr pr.ce) without
specifying any causal relationship to an~-“er observable.
This is referred to as time series modeliingL

The subroutine package referred to previously provides
the necéssafg tools for pure time series modeliing.
| The modelling procedure is similar to that for transfer
function "odeliing. First, the auto;orrelation, partial
éutocorrela;ion~and power spectrum of the series must be
considered, in order to find the model structure.

Given the model structure, the next stép is to estimate
the model parameters. This process can be simplified by the
availability of reasonable.initial guesses. -

Consider the mixed ARMA(p;q) process:

n(k) ='¢(1)n(k-1)+..{+¢(p)n(k-p) + a(k);9(1)a(k41)-...
-6(qla(k-q) . - | (A.3)
Multiplying by n(k-i) and taking expectations:

(i) = ¢(1)y(i-1)+...+¢(p)y(i-p)
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+ y(n,a,i)-6(1)y(n,a,1-1)-...6(g)y(n,a,i-q) (A.4)
Given: ”
y(n,a,1) =0 1>0

\ y(n,a,i) = 0 i<0 -

Then:
(1) = o(V)y(i+1)+. ..+ o(p)y(i-p) k2q+1
In matrix form:
G® =T

where:

¢ = [e(1)...0(p)]

"T = [c(g+1)...c(g+p)]

[gij]=C(Iq+i-j|) ilj=1l eee P

.So that the initial estimates for the autoregessive
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parameters are readily available from these equations, known

as the Yule-Walker equations.
Once the estimates are available, we can rewrite
" Equation (A.3) as:
-¢(0)n(k)=-¢(1)n(k-1)-...-¢(p)n(k-p) =
a(k)-6(Da(k=-1)-...-6(qlalk-q)  #(0)=-1
Let: .
w(k) = a(k)-6(1)a(k-1)-...-O(q)a(k—q)
(r?e the moving average éart of the process,\so that:
w(k) = =¢(0)n(k)=¢(1)n(k-1)-...~¢(p) n(k-p)

Multiplying by w(k-i) and taking expectations:

\

é(w,w,i) = ZZ¢(1)¢(m) c(n,n,|i+l-m|)  i=0,...,q
» _ BN 1,m=0,...,p (A.5)

A

We aiso have: . N
w(k) = a(k)-6(1)a(k=-1)-...-6(q)alk-q)  a(k) = N(0 0%/

which can be rewritten as:

w(k)

7(0)e(k)r(1)e(k=-1)+...+7(g)e(k-q)
e(k) :

N(O, 1)

i
1
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6(i) = -r(1)/7(0) i=1,...,q9
g*{a) = 7(0) ‘ '

Multiplying this Sy w(k-i) and taking expectations:
c(w,w,k) = Zr(ﬁ)f(j+k) - i=0,...,q9 X
, j=0,...,g9-i (A.6)
Then the initial estimates of the moving average parameters
are available gy iterating on r (e.q. Newton:Raphson)ﬁkfo
solve: ) ’ h /

c(w,w,i) = c(w,w,1)
Zr(j)r(j+i) - é(w,w,i) =0

For more details, see Wilson (1969b). )
Given the model structure, plus a starting point, we
can perform 4 ;egressicn to estimate the parameters. But,
for the class ofl%odels w; have chosen, the sum of squares
is nonlinear with respeet to some of tﬁe'parameters. |
Let [a(k)] dénote Ela(k)], the expécted'value of Fhe
model residuals. For a pure autoregressive process:
fa(k)] = ¢(z-')n(k)
so that B
dala(k)]/0¢(i) = -[n(k-1)] + ¢(z")a[n(k)j)a¢(i)
For t > 0, [n(k)] = n(k), and 3[n(k)1/3¢, = 0. So:
3lalk)1/8¢(i) = -n(k-i)
whiéh is linear in é.
| ~For a pure moving average pfbcess:‘

[a(k)] = 6-'(z-'")A(k)
ala(k)]/06(i) = -6-*(z"')[n(k-3)] +6-'(z-')dln(k)1/36(3)

which is nonlinear in 4.
Our approach will be a variation of Gauss' method:

Xivy = X, - (J13,)-+ JTp,



102

vhere: 4
X is the parameter vector
J is the Jacobian of the obtitive’function
P is the vector of residuals
The Marquardt-Levenburg correction is to substitute:
L (3713, + A1) f.%., = N /v
for J'J above. This ensures that the Hessian will remain
positive definite during the approach to the extremum. -This
ensures invertibility. It also requires discreﬁibn in our
choice of Ay and ». Typically, A, should be chosen to give
an initial condition numger of about 1, for (JT3+A\I). The
constant » should be chosen so that the condition numbef
stays below about 100.
| Box ahd Jenkins further stabilize the algorithm by
ﬁsing: | A 
 X,., =% -o0@bp+)-pfe
: where‘D is the inverse of the purely diagonal matrix “
. composed of the square root of the diagonal of J.

Of course, the objéctive‘function being minimized is
the sum’of squared residuals. However, we need more than
just-a choice for the parameter values to be ablé to
calculate the residﬁals.

- bThe general ARMA(p,q) model can be written:
a(k) = n(k) - ¢(1)n(k-1)-...-¢(p)n(k-p)
K + 8(1alk-1)+...+6(g)a(k-q)
To start this model, we need the p values of n(k), and g

values of a(k) which occurred previous to the recorded



103

series, , |
One possibility is~tol5eti£hejunknown vaiues equal to
their expected values:’ . |
Efa(k)] = 0 E[n(k)j =0 k<0
A second possibility which assumes less is to 'start tﬁe
calculation from k = p+1, and set: i |
Ela(k)] = 0 k<p
.The resulting loss of information'is aceeptable for large
sample sizes. However, we do have the opt1on of calculating
the sum of squares without makipg any of these assumptions.
The genefal ARMA(p,q).mode1 eaane written in two |
equivalent forms: o | © , 1
e(z7n(k) = 6(z"Dalk) . o (A7)
¢(z)n(k) = 6(z)e(k) o (A.8)
We first use: | " |
le(k)] = ¢(z)n(k) + 9(1)[e(k+1)] .40 () [elk+q) ]
to generate values for e(k), where.
[e(k)] " t>N-p
Then. ) _
[n(k)] ¢(1)n(k+1¥+ +¢(p)n(k+p) + 0(z)e(k) e(k)=0 , k<0
is used to geherate n(k) for k=0, ..., -Q. Because ¢(z‘f) is
:stationary, these estimates approach zero at some instant;vk
= -Q. Lastly, - |
[a(k)} = #(27In(k) 6 (1)alk-1)+.. 46 (@a(k-g)
a(k)=0 , ks- Q
is used to generate the residﬁals for t =}-Q,...;N. As well

as the objective function, we must evaluate the Jacobian.
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P

“N\ )
Given the simplicity of the models being used, it is

relatively easy to use analytical rather than approximate

“derivatives. Recall:

)

e(i) = n(i)-¢n(i+1)-...-¢(p)n(i+p) +6(1)e(i+1)...+8(qg)e(i+q)

So: ‘
de(i) = an(i) - ¢(1)an(i+1)-...-¢(p)dn(i+p)
96 (7) 96(3) 36 (3) 06(7)
+6(1)de(i+1)+...+6(g)de(i+q)+e(i+i)
36(3) 96(3)  36(3)
de(i) = an(i) - ¢(1)dn(i+1)-...-¢(p)an(i+p)
3gp(3) 09(7) 09(3) 9¢(3)
+641)de (i+1)+...+6(q)de(i+q)-n(i+7)
36 (7) T ae(3) 39(3)

But given the N observations of n(i):
on(i)/86(j) = an(i)/8¢(j) = 0 i=1, ..., N
So that: | |

Be(i) = 6(1)de(i+1)+...+6(q)de(i+q)+e(i+j)
36(3) 36(3) . 36(3)

de(i)e 6(1)de(i+1)+...+8(q)de(i+q)-n(i+3)
(30 T 2e(P) 26 (3)

which can be uéed to backforecast the derivatives for i =
N-p%...,liﬁy using- the expeétapions: .

e(i) = 2e(i)/26(j) = de(i)/38(§) = 0 - i>N-p
Then we can backforecast the Starfing values:

on(i) = ¢(1)on(i+1)+...+¢(p)dn(i+p)
36(3) 26(37- 20(3) -
+ de(i)-6(1)de(i+1)-...~6(q)de(i+q)-e(i+i)
36(3) — 96(3) “giarjv‘gf 3373?‘ |
an(i) = ¢(1)an(i+1)+...+¢(p)an(i+p) h
26 (3) 36(3) %¢555 .
+ de(i)-6(1)3e(i+1)-...~8(q)de(i+q)+n(i+i)
(3] 2037 — 26 (3) a¢15§
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for i = 0,...,-Q , given:
an(i)/26(3) = 9an(i)/3¢(j) = 0 i=1, ..., N
e(i) = 2e(i)/39(j) = de(i)/36(3) = 0  is0
- Finally, the required derivatives can be forecast:

8a(i) = 3n(i)-¢(1)an{i-=1)-...-g(p)dn(i-p)

86(3) 36(3) — 86(3) 36(3)
+9(1)da(i-1)+...+6(q)dali-q)+a(i-1)
h 26(3) 361(3) 357371‘
3a(i) = an(i)-¢(1)an(i-1)-...-¢(p)an{i-p)

36(3) 08(3)  0¢(3) 3¢ (3)
‘ +6(1)da(i-1)+...+6(g)da(i-g)-n(i-5)

2¢(3) 3¢ (73) 2¢(7)

given:

an(i)/26(j) = an(i)/3¢(j) =0 i=1, ..., N

a(i) = 2a(i)/26(3) = 2a(i)/3e(3) = 0 i<-0Q
The.usélof these ratﬂer exacting calculations makes it
.possible to tackle small sample problems with confidence.

After obtaining a set of parameter estimates, several
tests can be applied to determine their adequacy. First, ﬁhe
plot of residuals should bé& inspected, looking for.any
uﬁhsual‘ﬁeatures.

‘Second,‘the autocorrelation of the residuals should
contain no significant terms. '
' We can also consider the first i autoco;relafions as a
group. If the fitted ﬁodel is.appropriéte:

Q = NIr} 3=, L.,

should.be-distributed as x*(i-p-q).

Lastly, the power speétrum of the residuals should be.

white. .
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1f more than one model can pass all the diagnostic
tests, then the model with least parameters should be

[

accepted.

Time series models éan be useful for highly complex
systems, which'do.not yield initially to.a more descriptive
analysis. In such situations: their predictive power can be
very useful. Using this approach, a wide vériety of
phenomenae can be ipvestigated. But the basic assumption of
ﬁhe method is that .the observed behavior is the result of a
random input to a linear filter. So any investigation of
causal relationships will have to rely instead on sémething
like transfer function modélling, with or without a
" stochastic element. This topic is éovered in detail in the

main body of this thesis.



APPENDIX B. TEST DATA

'This file contains data irdm the stirred tank “heater, ﬁith
inputs made to the steam valve every 5 seconds, and tank
temperature read at the same time. The DP for the water flow
was also read. The data is recorded below as: temperature

- (DegC), steam valve position (%), DP (mm. Hg), in format =

0.39979E+02
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3E15.5 .
0.42533E+02  0.00000E+00 0.81216E+03
0.41837E+02  0.80000E+02 0.81510E+03
0.41606E+02 0.71000E+02 0.8298 1E+03

 0.42768E+02 0.24000E+02  0.83570E+03
0.42996E+02 0.53006;+02 o.eés7oz+03
0.42069E+02  0.58000E+02  0.81216E+03
0.42069E+02  0.52000E+02  0.80980E+03
0.41606E+02  0.56000E+02  0.83570E+03
0.41606E+02 0.,64000E+02 0.83276E+03
0.41837E+02  0.75000E+02  0.83570E+03
0.4276:B¥02 0.56000E+02  0.82393E+03
0.43227E+02  0.17000E+02  0,82981E+03
0.42533E+02  0.37000E+02  0.81804E+03
0.41837E+02  0.45000E+02  0.B0686E+03
0.40909E+02  0.41000E+02  0.80686E+03
0.39979E+02  0.23000E+02  0.82687E+03

0.39047E+02  0.71000E+02  0.83570E+03
0.39047E+02  0,70000E+02 10.82981E+03
0.38000E+02 0.80098E+03



0.39746E+02
0.39513E+02
0.38814E+02
0.37647E+02
0.36945E+02
0.36009E+02
0.3507dE+oz
6.343655+02
0.33659E+02
0.32481E+02
0.32481E+02
0.32717E+02
0.32717E+02
0.32009E+02
0.31300E+02
0;313003402
0.31536E+02
0.31064E+02

. 0.31300E+02

0.31536E+02
0.31773E+02
0.31773E+02
0.31536E+02
0.32009E+02
0.32481E+02

0.31536E+02

0.31300E+02

o o o o’

©O © 0O o ©o o o

0.54000E+02
.20000E+02

.44000E+02

. 12000E+02

.37000E+02
.30000E+Oé
.20000E+02
.63000E+02
.40000E+02
.34000E+02
0.40000E+02

0.70000E+01

0.71000E+02
0.00000E+00

0.53000E+02

0.35000E+02
0.56000E+02
0.48000E+02

0.35000E+02 .

0.38000E+02

0.67000E+02

0.38000E+02
0.19000E+02

0.52000E+02

0.82000E+02

.39000E+02

.40000E+0Q2.

O O O © O o o o

o

0.83570E+03
0.83805E+03
0.81804E+03

' 0.80392E+03

(@]

.843384E+03

.82687E+03
.81216E+03
.81216E+03
.82393E+03
.B26B7E+03
.B2393E+03
.81216E+03
.83570E+03

o O

.B1804E+03
.82393E+03
0.82393E+403
0.82981é+03
0.82687E+03
0.82981E+03

0.82687E+03

0.82687E+03
0.81216E+03
0.82393E+03
0.82981E+03
0.82687E+03
0.82687E+03

.838055+03 '

P2
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0.32953E+02

10.33895E+02

.34835E+02

o O o

.33895E+02

ou§2953ﬁibé
*0.32245E+02
“0.31300E+02

" 0.31536E+02

0.32009E+02
0.33188E+02
. 0.34835E+02
0.37413E+02

0.38348E+02

0.37179E+02
0.36009E+02
0.35540E+02
0.36009E+02

0.36711E+02

0.37413E+02
o.3sa14éf02
0.39513E+02
0.40212E+02
0.40444E+02
0.41141E+02
0.41373E+02
0.40909E+02

.34365E+02 .

0.30000E+02
0.86000E+02
0.29000E+02
0.16000E+02
0.29000E+02
0.33000E+02

~ 0.32000E+02

0.56000E+02
0.47000E+02
0.68000E+02
0.94000E+02
0.81000E+02

10.35000E+02

0.26000E+02

' 0.60000E+01

0.62000E+02

0.52000E+oz 
‘o.séoooa+oz
0.64000E+02
0.75000E+02
0.56000E+02

' 0.68000E+02

0.49000E+02
0.76000E+D2
0.44000E+02
0.43000E+02
0.5900?E+02

0.83570E+03
0.86395E+03
0.84688E+03
0.82687E+03
0.82393E+03
.81510E+03
.82393E+03
.81216E+03

o O o o

o

.83570E+03
.80392E+03
.82393E+03
,8498gé+03

© o o o

.BO6BEE+03
.81510E+03
.83805E+03
.83570E+03
.81216E+03
.82099E+03
.B1804E+03

o o O o o o o

.80686E+03
0.80980E+03
0.84100E+03
0.80686E+03
0.81216E+03

' 0.84688E+03

0.83276E+03

.83570E+03.~
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0.40909E+02
0.41141E+02
0.40677E+02
0.41606E+02
0.42069E+02
0.42069E+02
0.41141E+02
0.40909E+02
0.40677E+02
0.39979E+02
0.40212E+02
0.39513E+02
0.39047E+02
0.38814E+02
0.38114E+02
0.36945E+02
' 0.36477E+02
0.36243E+02
0.35774E+02

0.35070E+02

0.34130E+02

0.32953E+02

0.31536E+02 .

0.30827E+02
0.31536E+02

0.32009E+02 "

 0.32245E+02

0.63000E+02
0.35000E+02
0.93000E+02
0.58000E+02
0.30000E+02
0.32000E+02
0.70000E+02
0.23000E+02
0.60000E+02
0.55000E+02
0.21000E+02
0.62000E+02
0.36000E+02
0.27000E+02
0.4 1000E+02
0.42000E+02
0.56000E+02
0.37000E+02
0.23000E+02
0.33000E+02
0.00000E+00
0.32000E+02
0.27000E+02

0.76000E+02

0.38000E+02
0.52000E+02
0.48000E+02

/

(a)

C.81216E+0

>

0.812%16E+03
0.83805E+03
0.83805E+03
0.82099E+03
0.81510E+03
0.81B04E+02
0.83370E+C:
0.8357OE+03
0.83805E+03
0.82393E+03
0.81510E+03

0.81804E+03

0.81510E+03
0.81216E+03
0.84100E+03
0.83805E+03
0.81804E+03
0.82393E+03
0.83276E+03
0.82099E+03
0.82393E+03
0.80392E+03
0.82687E+03

0.83805E+03
' 0.83570E+03

.B1216E+03



0.32481E+02
0.32953E+02
0.33424E+02
- 0.33188E+02
10.33659E+02
0.33895E+02
0.34130E+02
0.34835E+02
0.35070E+02
0.35540E+02
0.37179E+02
0.37881E+02
0.36945E+02
0.37179E+02
0.39047E+02
0.40212E+02
0.40909E+02
0.41141E+02

0.42533E+02

0.43227E+02

10.43920E+02
0.45305E+02
0.45995E+02

0.45985E+02

0.45074E+02
0.44151E+02
0.42068E+02

0.60000E+02
0.52000E+02
0.24000E+02

0.67000E+02

0.42000E+02

0.560003+02
0.63000E+02
0.54000E+02
0.62000E+02
0.84000E+02
0.23000E+02
0.25000E+02
0.50000E+02

0.91000E+02

0.52000E+02
0.73000E+02
0.58000E+02
0.79000E+02
0.57000E+02
0.79000E+02
0.81000E+02
0.51000E+02
0.58000E+02
0.16000E+02
b.4oobos+oz
0.13000E+02
0.52000E+02

0.83276E+03 -

0.82383E+03

0.82881E+03

0.81510E+03
0.820993+03
0.81804E+03
0.81216E+03
0.81510E+03
0.81510E+03
0.829853+03
0.83570E+03

0.78685E+03

0.84982E+03
0.82393E+03

0.83276E+03
 0.82393E+03

0.82099E+03
0.80686E+03

0.81510E+03

0.81510E+03

1 0.82393E+03

0.82099E+03
0.82981E+03
0.83276E+03
0.83570E+03
0.83570E+03
0.82099E+33

-

1M



0.41373E+02
0.41606E+02

0.42996E+02

0.43689E+02

0.43689E+02
0.43920E+02
0.44382E+02
0.44151E+02
0:43227E+02
0.42301Ef02
0.42533E+02
0.42301E+02

0.41606E+02

0.42069E+02
0.42764E+02
0.43227E+02

0.43689E+02

0.43227E+02

0.42301E+02 -

0.42069E+02
0.42533E+02
0.42764E+02
0.42069E+02
0:41141E+02
0.40212E+02
0.39513E+02
0.38581E+02

0.68000E+02
0.82000E+02
0.67000E+02
0.27000E+02
0.92000E+02
0.55000E+02
0.54000E+02
0.28000E+02
0.4100QE+02
0.67000E+02
0.50000E+02
0.46000E+02

0.69000E+02
0.74000E+02

0.51000E+02

0.75000E+02

0.34000E+02
0.15000E+02
0.69000E+02
0.62000E+02
0.62000E+02

0.70000E+01

0.39000E+02
0.51000E+02
0.29000E+02
0.41000E+02
0.60000E+02

0.81804E+03

0.82687E+03

0.835707+03
.80980E+03
.82393E+03
.82099E+03
.82687E+03

0.82099E+03 \\5

0.86395E+03
0.82099E+03
0.80980E+03
0.80980E+03
0.82393E+03
0.83805E+03
0.81510E+03
0.81804E+03
0.81804E+03
0.82393E+03
0.82687E+03
0.82099E+03

0.80980E+03 -

0.81510E+03
0.82981E+03
0. "2981E+03
0.82099E+03
0.82687E+03

0.81804E+03

112



0.38581E+02
0.38348E+02

0.37881E+02

0.37881E+02

0.37647E+02
0.38348E+02
0.38581E+02
0.37881E+02
0.37881E+02
0.37179E+02
0.36945E+02
0.36477E+02
' 0.35540E+02
0.35070E+02
0.35070E+02
0.36009E+02

. 0.36009E+02

0.35774E+02
0.3694SE+02
0.37413E+02
0.37647E+02
0.37881E+02
0.38114E+02

0.38114E+02

0.37881E+02

0.38581E+02

0.39746E+02

0.43000E+02

.0.55000E+02

0.55000E+02
0.45000E+02
0.74000E+02

0.31000E+02

.0.57000E+02

0.42000E+02

0.42000E+02

0.50000E+02
0.40000E+02
0.34000E+02
0.37000E+02

- 0.68000E+02

0.56000E+02
0.50000E+02
0.45000E+02
0.97000E+02

' 0.36000E+02
0.65000E+02

0.50000E+02
0.64000E+02
0.48000E+02
C.4°000E+02
0.84000E+02

0.63000E+02

0.23000E+02

O O O O O O o O o ©o o o

10.82099E+03

0.83276E+03

0.83276E+03

'0.80686E+03

0.82393E+03
0.82099E+03
0.81804E+03
.82393E+03
.80392E+03
.86689E+03
.82687E+03
.82393E+03
.82393E+03
.81510E+03
.82393E+03
.83276E+03
.81804E+03
.82981E+03
.82099E+03

o

.82099E+03
0.81804E+03
0.81216E+03
0.80980E+03
0.84688E+03
0.80980E+03
0.82099E+03

1 0.82393E+03

113



0.39746E+02
0.38814E+02
0.38348E+02
0.3858 1E+02
' 0.38348E+02
0.38114E+02
0.39746E+02
0.40212E+02
0.41141E+07
0.41373E+02
0.40909E+02
0.40909E+02
‘0.41 141E+02
0.40444E+02
'0.39513E+02

0.38581E+02

'0.38814E+02
0.39047E+02
0.38814E+02

0.49000E+02
0.50000E+02
0.58000E+02
0.14000E+02
0.76000E+02

- 0.79000E+02

0.55000E+02
0.74000E+02
0.24000E+02
0.67000E+02
0.44000E+02
0.63000E+02
0.11000E+02

0.44000E+D2

0.40000E+02

0.77000E+02

0.42000E+02
0.53000E+02
0.31000E+02

0.82393E+03

0.82099E+03

0.82687E+03
0.82393E+03
0.81510E+03
0.81510E+03
0.81510B+03
0.82393E+03
0.81804E+03
0.82687E+03
0.86395E+03

0.829B1E+03"
‘0.8209S8E+03

0.82393E+03

0.83276E+03

0.820993+03
0.823933+03
0.82393E+03
0.81804E+03

9.

114



