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ABSTRACT 

Increasing urban development degrades ecosystems partly by diminishing natural area 

connectivity and quality, ultimately reducing and homogenizing urban biodiversity. To support 

biodiversity, ecological planners in Edmonton, Alberta (hereafter the City) have implemented 

tools to incorporate wildlife habitat into land use planning. These tools include circuit-based 

simulation models that used permeability estimates based on coyote (Canis latrans) movement to 

approximate connectivity for urban mammals. Two other indices, biodiversity potential and 

ecological connectivity, estimate the ecological value of natural areas based on patch 

characteristics. 

To evaluate the predictive capacity of these tools, this thesis compared the predicted 

permeability and habitat values with animal occurrence data from GPS collars, camera traps, and 

small mammal track tube arrays. In Chapter 2, I explored how habitat selection by 19 urban 

coyotes fitted with GPS collars was affected by health status (via infection with sarcoptic mange; 

Sarcoptes scabiei) and season (summer vs. winter) using two modelling approaches. I used two 

seasonal compositional analyses to explore the selection of broad categories to obtain selection 

estimates as log-ratios of proportionate use to compare with feature-specific permeability ratings. 

I then built a RSF model to assess fine-scale habitat selection and derived a habitat suitability 

index (HSI) to compare with cumulative landscape permeability values used in circuit-based 

models in linear regressions. 

From compositional analyses, whether coyotes used or avoided habitat was consistent 

between seasons, but used natural forests, natural shrubland, modified grass/shrubland and 

residential areas more in winter. The RSF model showed that coyotes largely avoided developed 

areas, but selected steeper slopes and areas closer to natural areas, modified forests and 
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grass/shrubland, and residential areas. Coyotes with mange were more likely to use human-

dominated areas, especially in winter. The feature-specific permeability ratings used in circuit-

based models undervalued residential and developed areas in both seasons and maintained grass 

in summer, while overvaluing most natural vegetation types and the North Saskatchewan River 

in winter. The landscape permeability estimates were predictive of the RSF-derived HSI, but less 

so in winter and when coyotes had mange, and the model fit was poor. 

In Chapter 3, I used data from 89 camera traps and 47 track tube arrays placed throughout 

Edmonton, Alberta to measure the occurrence and relative abundance of three groups of 

terrestrial mammals (small, medium, and large) and 13 species. I used these as response 

variables to evaluate the predictive capacity of two ecological indices used by the City in zero-

inflated Poisson and linear mixed models. I also modelled detections of the three groups and five 

species using various remotely-sensed and site-based variables. The indices of biodiversity 

potential and ecological connectivity used by the City correlated variably and generally with the 

occurrence or relative abundance of groups and species. As biodiversity potential increased, 

large mammals occurred more often, and white-tailed deer (Odocoileus virginianus) were more 

abundant, but the abundance of small mammals declined. By contrast, higher ecological 

connectivity predicted more abundant small mammals, but less abundant snowshoe hare (Lepus 

americanus) and white-tailed deer. I found high variability in the predictiveness of remotely-

sensed and field-measured variables among and within species groups, with patch-level 

covariates predicting only small mammal abundance from track tubes. I found generally adverse 

effects of human disturbances, such as urban density, human activity, and off-leash areas, but 

with some positive associations with detections of domestic dogs. 
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In combination, my results suggest that expert-derived estimates of landscape permeability 

used to model connectivity by the City reflect habitat selection by urban coyotes. However, the 

accuracy of such models could be improved by using empirical data, such as those provided by 

GPS collars. Doing so could identify the effects of individual variation and season, and the high 

capability of using developed areas by urban-adapted species like coyotes. My results from the 

tests of ecological indices suggest that a larger buffer width may be necessary to represent 

connective habitat for larger species, and a lower weight for wetland habitat may better reflect 

habitat quality for mammal species in Edmonton. The accuracy of ecological indices used by 

urban planners could be increased by considering surrounding vegetation density and type, and 

human infrastructure and activity. Further development of such indices will assist Edmonton and 

other cities retain biodiversity and the many ecological benefits provided by wildlife. 
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PREFACE 

This thesis is an original work by Cassondra J. Stevenson. The GPS location data for coyotes 

used in Chapter 2 were collected by Maureen Murray. The camera trap and/or track tube data 

used in Chapter 3 resulted from a collaboration between the University of Alberta, the City of 

Edmonton, and the Urban Wildlife Information Network (UWIN). The field data were collected 

between May 2018 and September 2021 by Cassondra Stevenson, Kelsey Gourlie, Catherine 

Shier, Colleen St. Clair, Julia Shonfield, Nicole Boucher, Deanna Steckler, Garret Tierney, 

Robin Glover, and numerous volunteers (listed below) who provided support in both field data 

collection and data processing. 

The data collected from camera traps and small mammal track tubes received animal ethics 

approval from the University of Alberta Animal Care and Use Committee (“Edmonton Urban 

Coyote Project”; No. AUP00002336, 2018). The City of Edmonton permitted data collection. 

The GPS collar data was supported by Animal Damage Control (particularly B. Abercrombie) 

and the City of Edmonton Animal Control & Control Centre. All animal handling was following 

the guidelines of the University of Alberta Animal Care and Use Committee and the Canadian 

Council on Animal Care. 

Data chapters 2 and 3 were formatted using the pronoun “we” to recognize the 

collaborative work of several authors and because both were prepared for submission to a peer-

reviewed journal following the thesis defense. Formatting to support publications also caused 

some redundancy of information between the two chapters. Citations included in the "Literature 

Cited" were formatted for submission to "Ecosphere" and thus to coincide with a modified 

Chicago Manual of Style author-date style. Chapter 2 will include Catherine Shier, Maureen 

Murray, and Colleen St. Clair as co-authors, and Chapter 3 will include Catherine Shier, Kelsey 

Gourlie, and Colleen St. Clair as co-authors. 
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GLOSSARY 

Biodiversity: "The number and variability of organisms found within a specified geographic region; this 

includes diversity within species, between species and of ecosystems" (City of Edmonton 2010a). 

Biodiversity potential: The capacity of a natural area to support biodiversity (City of Edmonton 2014a). 

Connectivity: The degree to which a landscape facilitates or impedes movement among resource patches. 

It may be provided by stepping stones, corridors and/or compatible land uses (City of Edmonton 2007).  

Corridor: "Natural or semi-natural linear vegetated patches that enhance movement among other habitat 

patches such as core areas or natural stepping stones" (City of Edmonton 2007). Where core areas 

"habitat patches of suitable size and quality so as to provide environmental conditions that support entire 

populations of animals and plants and associated ecological functions" (City of Edmonton 2007). 

Developed: Defined as "high impact development" which is "any land use which, because of its type, 

scale, location or intensity, may generate negative off-site, cross-border impacts including, but not limited 

to, obstruction or intrusion, servicing demands, hazards to persons or property or other environmental 

impacts" (City of Edmonton 2010a). 

Ecological connectivity: "The connectivity required to enable plants, wildlife, and ecological processes 

to persist on a landscape scale by facilitating ecological processes (e.g., nutrient flow, genetic exchange, 

and movement)" (City of Edmonton 2007) evaluated as the potential for use by wildlife (City of 

Edmonton 2014a). 

Ecological network: "A coherent system of natural and/or semi-natural landscape elements. The basic 

structure of an ecological network has three main landscape elements: core areas, linkages (stepping 

stones and/or corridors) and a matrix" (City of Edmonton 2007); where linkages are "arrangements of 

natural or semi-natural vegetation that enhance either structural and/or functional connectivity (for 

species, communities or ecological processes) between core areas" (City of Edmonton 2007, 2010a). 

Ecological network approach: "Configuring and managing an ecological network with the objective of 

maintaining or restoring ecological functions as a means to conserve biodiversity" (City of Edmonton 

2007). 

Habitat: Areas required by wildlife species (singular or multiple) to fulfill their resource requirements. 

Habitat diversity: defined as "Site types," which are "the fundamental land unit classification 

nested within the land cover that includes additional categories to the Provincial PLVI that 

provide more information relevant to urban settings" (City of Edmonton 2014b). 
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Habitat fragmentation: "A process during which a habitat is transformed into a number of smaller 

patches of smaller total area and isolated from each other by a matrix of habitats unlike the original" 

(Fahrig et al. 2003). 

Habitat selection: The disproportionate use of resources or conditions by living things;  differs from use 

or association (implies choice); is commonly measured as use relative to availability or as use versus non-

use (Boyce 2006; Mayor et al. 2015). 

Industrial area: "Areas with established industrial businesses where new industrial development, 

associated businesses, and supporting services may locate" (City of Edmonton 2010a). 

Modified areas / modified vegetation: Defined as "semi-natural landscape elements" which are areas 

that are "at least partially manicured green spaces (such as active recreation parks, schoolyards, 

cemeteries, conventional stormwater management facilities and some rights-of-way)" (City of Edmonton 

2007). 

Natural Area: "An area of land or water that is dominated by native vegetation in naturally occurring 

patterns. Such areas could include grasslands, forests, wetlands, peatlands or riparian areas. Areas such as 

groomed parks, sports fields and schoolyards are not natural areas" (City of Edmonton 2007, 2010a). 

Natural features: Defined as "natural landscape elements" which are areas "that are are dominated by 

native vegetation in naturally occurring patterns (such as natural areas and naturalized stormwater 

management facilities or parks)" (City of Edmonton 2007). 

Neighbourhood: "A residential area with an appropriate mix of housing types with convenience-type 

commercial facilities and where appropriate, schools or park facilities" (City of Edmonton 2010a). 

North Saskatchewan River Valley and Ravine System: "The North Saskatchewan River Valley, its 

banks and the banks of its tributary system in the city of Edmonton" (City of Edmonton 2010a). 

Open space: "Areas of land and water that are semi-natural in composition. Such spaces could include 

active recreation parks, schoolyards, conventional stormwater management facilities and some 

boulevards" (City of Edmonton 2010a). 

Parkland: "Any property, developed or not, that is owned, controlled or maintained by the City and that 

is intended to be used by members of the public for recreation as a natural area, preserved as a natural 

area, used as a cemetery, zoned AP (public parks), A (metropolitan recreation), AN (River Valley activity 

node) or US (urban services), contained in the North Saskatchewan River Valley and Ravine System 

Protection Overlay as, described in the City bylaw governing land use, designated as municipal reserve, 
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environmental reserve or a public utility lot pursuant to the Municipal Government Act, [or] that portion 

of any boulevard contiguous with, partially within, or fully within any property described above" (City of 

Edmonton 2010a). 

Peri-urban: On the fringe of an urban area. 

Protected area: Using the definition of "Enivronmental reserve" — "Land that is required to be 

dedicated at the time of subdivision that qualifies as environmental reserve under the Municipal 

Government Act, R.S.A. 2000, c. M-26, which may include ravines, land adjacent to a body of water or 

land subject to flooding" (City of Edmonton 2010a). 

Restoration: "The re-establishment of habitat in order to improve ecological processes or connectivity" 

(City of Edmonton 2007, 2010a). 

River valley: "The North Saskatchewan River Valley and associated system of tributary ravines" (City of 

Edmonton 2007). 

Semi-natural: Defined as areas with "semi-native vegetation," which is "a plant community that includes 

at least some plant species native to the region" (City of Edmonton 2010a). 

Stepping-stone: "Natural or semi-natural non-linear vegetated patches that provide many resources for 

species but may not be of sufficient size or quality to provide for all habitat requirements or ecological 

functions. They are usually separated by a less hospitable matrix or linked by corridors" (City of 

Edmonton 2007). 

Sustainability: "A way of living which meets the needs of the present and does not compromise the 

ability of future generations to meet their own needs. Urban planning takes an integrated, holistic view of 

urban environments and defines sustainability in the context of interrelated ecosystems encompassing 

economic, social, environmental and cultural sustainability. The principle of sustainability also includes 

financial sustainability, ensuring urban planning recognizes and addresses resource constraints and 

capacities" (City of Edmonton 2010a). 

Tablelands: "The upland areas above the North Saskatchewan River Valley and Ravine System" (City of 

Edmonton 2007, 2010a). 

Wetland: "Land having water at, near, or above the its surface, or which is saturated with water long 

enough to promote wetland or aquatic processes, as indicated by poorly drained (hydric) soils, 

hydrophytic vegetation, and various kinds of biological activity that are adapted to the wet environment" 

(City of Edmonton 2010a).
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CHAPTER 1 - General Introduction 

Urbanization reduces, fragments, and degrades natural areas (Grimm et al. 2008; Bongaarts 

2019), which results in habitat loss, diminished natural connectivity, and ultimately biodiversity 

loss and homogenization of species within cities (McKinney 2006; Beninde, Veith, and 

Hochkirch 2015; Newbold et al. 2018). Although conservation research historically mostly 

ignored urban settings (Miller and Hobbs 2002), urban planners increasingly recognize the 

importance of proactive planning to retain biodiversity (Apfelbeck et al. 2019). However, urban 

areas are expanding faster than any other land use type (Bongaarts 2019), and even seemingly 

remote regions have become heavily urbanized (~74% of Canada’s population; Statistics Canada 

2018).  Such rapid growth and sprawl of urban areas increase the challenge of conserving 

adequate habitat for wildlife in urban areas (Angel et al. 2011; Pickett et al. 2011). 

Edmonton, Alberta, Canada, is one such city where rapid population growth (Statistics 

Canada 2021b) and extensive urban sprawl (City of Edmonton 2017a) increase pressure to 

develop existing wildlife habitat located in areas of high apparent connectivity (City of 

Edmonton 2020b). This growing urban metropolis contains 95% of the region’s population (City 

of Edmonton 2017a) and Canada's largest urban park (City of Edmonton 2020b, 2022). The City 

of Edmonton (hereafter the City) aims to maintain the City’s “ribbon of green” and its remnant 

natural areas as a connected ecological network to conserve biodiversity and develop sustainably 

(City of Edmonton 2020b). To achieve this, urban planners need efficient tools to assess 

environmental sensitivities (Kay et al. 2021), such as the ecological connectivity and habitat 

value of natural areas, to prioritize protection, conservation, and restoration (City of Edmonton 

2017b). 

In Edmonton, AB, urban ecological planners have implemented tools to incorporate the 

needs of urban wildlife into land use planning to enhance sustainability and support biodiversity. 

One of these tools is a circuit-based simulation model of coyote (Canis latrans) movement 

intended to estimate connectivity for other terrestrial mammal species, created using expert-

derived permeability estimates and remotely-sensed data (City of Edmonton 2017b). Two other 

indices, biodiversity potential and ecological connectivity, are used to estimate the ecological 

value of natural areas based on patch characteristics (City of Edmonton 2014a). Ideally, these 

tools would be verified with independent information about habitat use by representative or 
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target species (Zeller, McGarigal, and Whiteley 2012), and such data are increasingly available 

for urban areas, including Edmonton. 

Additional analyses could support tests of the indices used by planners because many other 

factors that affect habitat quality and permeability for wildlife are necessarily omitted from these 

estimators. For example, the permeability estimates used in cost-based connectivity analyses 

were based on expert-opinion using coyotes as a target species, but without considering the 

health status of animals. Previous work in my lab and others has shown that sarcoptic mange 

(Sarcoptes scabiei) alters habitat selection and movement by coyotes (Murray et al. 2015b; 

Murray and St. Clair 2017). Understanding how wildlife diseases impact spatial patterns of 

habitat use by animals may be especially important in urban areas, where reduced connectivity 

and congregation may facilitate the spread of wildlife diseases (Dougherty et al. 2018), including 

coyote-borne zoonoses such as Echinococcus multilocularis that are present in Edmonton 

(Luong et al. 2018; Sugden et al. 2020). 

Two additional contributors to animal use of urban spaces include the conversion of natural 

to semi-natural spaces and the concomitant use of both of these areas by people. The two indices 

used by the City were designed to estimate the ecological value of areas with natural habitat 

types, but they were not intended to apply to parks with modified vegetation types. However, 

many semi-natural parks have qualities of natural areas, such as shrubs and trees, that may 

support species which rely on high vegetation structure, such as rodents (Glennon and Porter 

2007) or snowshoe hare (Murray 2003; Holbrook et al. 2017). Semi-natural areas may also 

support movement (Lynch 2018). Conversely, urban green spaces may be too small or isolated 

(Beninde, Veith, and Hochkirch 2015), or contain vegetation that is homogenized or too 

simplified in structure (Bigsby, McHale, and Hess 2013) to support persistence over time. 

Human use also affects habitat use; however, variably among species (Nickel et al. 2020). 

One more limitation of the ecological indices used by urban planners is the high variability 

among species in how they respond to urbanization (McIntyre 2014; Newbold et al. 2018; Fidino 

et al. 2021). Urban landscapes may support an increase in the abundance of species that can 

adapt or exploit urban areas, while others decline (McKinney 2002; Ducatez et al. 2018; 

Newbold et al. 2018), which often corresponds to characteristics of urban avoiders vs. adapters 

and exploiters (sensu Blair, 1996; McKinney, 2002). Species' behavioural traits and adaptability 

greatly influence habitat use (Ducatez et al. 2018), and adapted species may use low-quality 
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habitat. However, adaptability varies among species, even among flexible species, like 

carnivores (Nickel et al. 2020). Differences in functional traits of species will influence habitat 

use and thus habitat quality, such as the ability to disperse, where smaller species are likely to 

persist in more disturbed and isolated areas (Aronson et al. 2016; delBarco-Trillo and O’Donnell 

2020). As a result, species able to disperse more easily tend to be more abundant where habitat is 

fragmented (Parker and Nilon 2012), whereas smaller species decline (Barko et al. 2003; 

Munshi-South 2012). Habitat use by small mammals may be influenced by the avoidance of 

predation by domestic dogs (Lenth, Knight, and Brennan 2008), or they might prefer areas near 

humans to avoid natural predators (Suraci et al. 2019). Urban disturbances may also shift 

carnivores into more natural spaces (Parsons et al. 2019), which may indirectly alter predator-

prey dynamics. Maintaining biodiversity requires protecting habitat that accommodates the needs 

of rare as well as abundant species in urban areas. Better planning could occur by understanding 

the responses of species groups and individual species that vary in size, habitat associations, 

natural history, and urban adaptation to various urban features and disturbances. Such 

information may help urban planners understand the processes by which urban biodiversity is 

homogenized to weigh the impacts of land use decisions for retaining species of particular 

interest and ultimately promote biodiversity over time. 

This thesis aims to 1) advance information about the predictors of habitat selection of 

urban coyotes and of the occurrence and relative abundance of three groups of terrestrial 

mammals and individual species, and 2) to support the use of connectivity models and ecological 

indices used in urban planning in Edmonton, Alberta, Canada by testing their fit to measures of 

habitat use, animal occurrence, and relative abundance derived from empirical data. In each of 

the two data chapters, I combined these two goals by using empirical data from animal detections 

to test the predictions of models or indices used by the City of Edmonton as planning tools to 

protect biodiversity.  

In Chapter 2, I had two objectives. First, I used pre-existing data from GPS collars fitted on 

urban coyotes to understand how variation in habitat selection, including that caused by infection 

with sarcoptic mange and season, could be predicted from remotely-sensed variables. Second, I 

assessed the similarity between these detection-based measures of habitat suitability and 

presumed permeability with expert-derived estimates of permeability used in circuit-based 

connectivity models by the City of Edmonton (2017b). To achieve these objectives, I used pre-
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existing GPS collar data for 19 urban coyotes from Edmonton to obtain feature-specific selection 

estimates (suitability) of 10 land cover types across two seasons (winter and summer) based on 

log-ratios of proportionate use. I also constructed a resource selection function (RSF) for 14 

healthy coyotes and five animals with visible evidence of sarcoptic mange to understand 

seasonal and health-based differences in habitat selection. I assessed the selection of 13 land 

cover features by coyotes and obtained a habitat suitability index (HSI) specific to disease status 

and season. Finally, I compared the feature-specific suitability estimates from log-ratio analyses 

with the feature-specific permeability ratings used in circuit-based models, and the RSF-derived 

HSI values with the cumulative landscape permeability estimates, along with health status and 

season in linear regressions. 

In Chapter 3, again, I had two objectives. First, I used data from camera traps and small 

mammal track tube arrays to a) test the predicted habitat value of two indices used by the City 

(City of Edmonton 2014a). Second, I assessed the predictive value of a variety of remotely-

sensed and site-based variables for the occurrence and relative abundance of terrestrial mammals 

detected between 2018 and 2021. To achieve these objectives, I acquired measures of occurrence 

and relative abundance of urban terrestrial mammals from 89 camera traps and 47 small mammal 

track tube arrays placed in both natural and semi-natural areas. I used camera data to calculate 

relative abundance as detection rate (O'Brien, Kinnaird, and Wibisono 2003; Palmer et al. 2018; 

Kays et al. 2020) as the frequency of independent detections per month for (a) the three mammal 

groups and (b) 13 individual species. I also modelled the occurrence and relative abundance of 

the three species groups and five species, expressing a range of sizes and habitat associations 

using a combination of remotely-sensed and site-based variables. 

By addressing the objectives of my two data chapters, I sought to increase an 

understanding of the best ecological predictors of habitat use by coyotes, and of the occurrence 

and relative abundance of other mammal species across an urban gradient, and test and advance 

models of urban ecological connectivity and habitat value. I hope this work can tangibly 

contribute to proactive ecological planning in the City of Edmonton and other cities to mitigate 

the adverse effects of urban development on biodiversity. 
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CHAPTER 2 - Methods used to model connectivity predict habitat suitability for GPS-collared 

urban coyotes (Canis latrans) 

2.1 INTRODUCTION 

Urbanization reduces, fragments, and degrades natural areas (Grimm et al. 2008), resulting in 

habitat loss, diminished natural connectivity, and, ultimately, biodiversity loss within cities 

(Beninde, Veith, and Hochkirch 2015). This occurs when land use change adversely affects 

individual behaviour and movement patterns (Apfelbeck et al. 2019), which alters population 

dynamics and species distributions (Shochat et al. 2006; Aronson et al. 2016). As a result, 

urbanization causes a reduction in the number of species and changes in species composition in 

the remaining natural areas of urban landscapes (McKinney 2006; Beninde, Veith, and 

Hochkirch 2015). Cities strive to limit this loss in part because biodiversity is essential to the 

many ecological processes (Bongaarts 2019) that support human well-being (Fuller et al. 2007). 

The connectivity that supports population persistence over time is challenging to maintain in 

cities due to habitat loss and fragmentation caused by the high interspersion of built 

environments that generally inhibit animal movement (Cadenasso, Pickett, and Schwarz 2007; 

Forman 2016). 

Although conservation research historically mostly ignored urban settings (Miller and 

Hobbs 2002), urban planners increasingly recognize the importance of proactive planning to 

retain biodiversity (Apfelbeck et al. 2019). Ideally, urban planners could use the recently 

expanding body of urban research to incorporate wildlife considerations in planning decisions. 

However, different environmental conditions between cities often lead to highly variable 

responses of wildlife species (Magle et al. 2019). In Edmonton, Alberta, Canada, there is an 

opportunity to investigate the varying effects of urbanization on wildlife because it combines 

rapid growth (Statistics Canada 2021b) and sprawling infrastructure (City of Edmonton 2017a) 

with considerable wildlife habitat located in areas of high apparent connectivity in an extensive 

system of protected areas concentrated in a river valley and ravine system (City of Edmonton 

2020b). The City of Edmonton (hereafter the City) aims to maintain Edmonton’s natural areas as 

a connected ecological network, even amid increasing development (City of Edmonton 2007). 

Realizing this goal necessitates information on environmental sensitivities, such as ecological 

connectivity, to prioritize protection, conservation, and restoration (City of Edmonton 2017b). 
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Edmonton city planners have attempted to advance this information partly by commissioning an 

estimate of ecological connectivity via circuit-based simulation models using Circuitscape 

(McRae et al. 2008; City of Edmonton 2017b). 

Circuitscape software uses circuit theory, a branch of network theory, to evaluate the 

connectivity of a landscape by estimating movement as ‘current flow’ as the product of 

conductance (i.e., permeability) and voltage (McRae et al. 2008). Permeability is estimated for 

features or map units as weights of “attraction” or “avoidance” that signify the probability of 

moving through particular features or spatial units. Landscape permeability is then approximated 

for an entire mapping surface as the cumulative score of many feature-specific estimates or as 

one value derived from a habitat suitability model (Zeller, McGarigal, and Whiteley 2012). 

Sources and ground nodes are placed, and voltage is applied to model movement across the 

landscape (McRae et al. 2008). When enough paired nodes are placed, circuit-based models 

reflect the various movement alternatives (rather than the “best” route; McRae et al. 2008; Koen 

et al. 2014; McRae et al. 2016), which supports evaluating tradeoffs between ecological 

sensitivity and development objectives (City of Edmonton 2017b).  

The City used expert opinion on the permeability of a variety of human disturbances and 

natural features with a model species of urban coyotes (Canis latrans), a representative of 

medium to large‐sized, urban-adapted mammals, to parameterize two seasonal landscape 

permeability layers (City of Edmonton 2017b). These layers were then used to construct two 

seasonal connectivity models with the specific goal of identifying areas where movement may be 

constricted to prioritize restoration efforts (City of Edmonton 2017b). Seasonal models 

accommodated the expectation that the North Saskatchewan River, which bisects the City, may 

be a conduit to movement in the winter but a barrier in the summer (Harrison 1992; City of 

Edmonton 2017b). Ideally, such estimates of landscape permeability would be verified with 

independent information about habitat use or movement by representative or target species 

(Zeller, McGarigal, and Whiteley 2012), and such data are increasingly available for urban areas. 

Exploring the fit between modelled and measured movement could increase the utility of tools 

like Circuitscape for ecological planners in other cities. 

An ideal source for testing cost-based connectivity models is occurrence data, such as 

telemetry data acquired via GPS collars. Telemetry data are often used to estimate the probability 

of use (or suitability) of features by comparing the characteristics of used vs. available resources 
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(Manly et al. 2002). Habitat suitability values reflect the relative ease (or cost) of use, where 

highly suitable habitat is interpreted as highly permeable (Zeller, McGarigal, and Whiteley 

2012). Ergo, such habitat suitability models are well-suited to validate connectivity models that 

use expert opinion to assign estimates of permeability, such as the model the City commissioned 

for urban coyotes. The suitability of features is commonly estimated as the probability of 

selection using either compositional analyses (Aebischer, Robertson, and Kenward 1993) or 

resource selection functions (RSFs; Manly et al. 2002). 

Compositional analyses can be used to obtain habitat-specific suitability estimates by using 

log-ratio analyses that compare the proportional use and availability of each habitat relative to 

the use and availability of all other habitat types simultaneously (Aebischer, Robertson, and 

Kenward 1993). The log-ratio approach is commonly used to address the unit-sum constraint by 

transforming proportions into log-ratios (Aebischer, Robertson, and Kenward 1993; Manly et al. 

2002). These log-ratios can also be used to evaluate differences in use between habitat types, to 

rank habitats types based on relative use (Aebischer, Robertson, and Kenward 1993), or to 

estimate the strength of selection for each habitat type either for individuals or as a population 

average (Conner, Smith, and Burger 2003; Gosselink et al. 2003; Mueller, Drake, and Allen 

2018). Log-ratios of proportional use are sometimes used to create resistance layers to model 

connectivity (Kautz et al. 2006; LaPoint et al. 2013), indicating that they provide feature-specific 

suitability estimates that could be used to evaluate expert-based permeability ratings. However, 

there are some constraints when using compositional analyses, including that they are less 

suitable for features that lack area (e.g., lines or points), require relatively high sample sizes to 

compare selection between groups (Aitchison 1982; Aebischer, Robertson, and Kenward 1993), 

and are generally inadequate to address interactions. Interactions may be particularly important 

in urban areas with high heterogeneity (Cadenasso, Pickett, and Schwarz 2007; Forman 2016), 

which may lead to more complex patterns of selection. 

Resource selection functions (RSFs) can evaluate the probability of use of features 

regardless of area, such as roads, incorporate distance-based metrics that mitigate error 

associated with GPS bias, and evaluate interactions, thus addressing constraints of compositional 

analyses. RSFs constructed via logistic regression can be used to estimate the suitability of 

particular resources (or suites of resources) by comparing landscape characteristics at used GPS 

locations vs. randomly generated available locations (Boyce et al. 2002; Manly et al. 2002; 
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Johnson, Seip, and Boyce 2004). Model equations from RSFs can be applied to particular 

locations or grid squares to predict the suitability of resources where presence/absence data has 

not been collected (Boyce et al. 2002; Manly et al. 2002; Johnson, Seip, and Boyce 2004), 

providing a form of habitat suitability index (HSI; Boyce et al. 2002; Meyer and Thuiller 2006). 

RSFs can be used to create similar estimates to expert-based landscape permeability values 

(Zeller, McGarigal, and Whiteley 2012). However, using logistic regression to evaluate habitat 

selection has been criticized for a variety of reasons, including issues with spatial autocorrelation 

(Fieberg et al. 2010), using points as the sampling unit rather than individuals (individual 

variation and/or sampling intensity; Aebischer, Robertson, and Kenward 1993), and the inability 

to demonstrate non-use (Boyce et al. 2002). Yet, mixed models can be used to simultaneously 

consider the behaviour of the population (average individual) while accounting for both 

individual variability and sampling intensity, thereby allowing population-level inference (Aarts 

et al. 2008). At the same time, the additional complexity in habitat selection analyses occurs due 

to variation in behaviour (Greenberg and Holekamp 2017; Murray and St. Clair 2017), age 

(Desbiez et al. 2020), sex (Saïd et al. 2011; Desbiez et al. 2020), and disease status (Cross et al. 

2016; Hoverman and Searle 2016).  

For coyotes, habitat selection is known to vary with individual behaviour (Murray and St. 

Clair 2015; Newsome et al. 2015), sex (Mueller, Drake, and Allen 2018), and disease status 

(Murray et al. 2015b; Reddell et al. 2021). Wildlife diseases can alter wildlife movement patterns 

through higher energetic demand (Selakovic, de Ruiter, and Heesterbeek 2014), decreased 

movement (Cross et al. 2016; Süld et al. 2017), or diminished capacity to maintain high-quality 

territory (Pence and Windberg 1994). One of the diseases that affects coyotes is sarcoptic mange 

(Sarcoptes scabiei), a globally distributed parasitic mite that is common in wild canids 

(Bornstein, Mörner, and William 2001) and present in Edmonton, AB (Murray et al. 2015b). 

Infection with diseases such as mange can alter habitat selection by increasing energetic demand 

(Cross et al. 2016), resulting in larger home ranges, and can increase diurnal activity (Murray et 

al. 2015b), reliance on urban areas (Murray et al. 2015b; Reddell et al. 2021), and proclivity for 

conflict (Contesse et al. 2004; Goodrich et al. 2011; Murray et al. 2015a; Murray et al. 2015b). 

These multiple effects on habitat selection suggest that connectivity will differ for healthy vs. 

diseased wildlife, especially in urban areas where the prevalence of mange is likely intensified 

by high densities of coyotes (Bornstein, Mörner, and William 2001). 
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The purpose of this study was to advance information about the habitat selection of urban 

coyotes and use that information to test predictions of the City’s planning models to improve 

their utility in future. More specifically, our objectives were to use data acquired from GPS 

collars fitted on urban coyotes to (1) understand how variation in habitat selection, including that 

caused by infection with sarcoptic mange and season, can be predicted from remotely-sensed 

variables and (2) assess the similarity between these detection-based measures of habitat 

suitability and presumed permeability, with expert-derived estimates of permeability used by the 

City to model urban connectivity in Edmonton. To achieve this, we used pre-existing GPS collar 

data for 19 urban coyotes from Edmonton to first perform log-ratio analyses of proportionate use 

of categorical habitat compositions to evaluate differences in habitat use between two seasons 

(winter and summer) and to obtain feature-specific habitat selection estimates. Secondly, we 

constructed a Resource Selection Function (RSF) for healthy (n = 14) and diseased (n = 5) 

coyotes to estimate their habitat selection in two seasons (winter and summer) and to obtain a 

habitat suitability index. Finally, we compared the feature-specific selection estimates obtained 

from log-ratio analyses for coyotes to the expert-derived permeability ratings and the RSF-based 

habitat suitability index for coyotes with the expert-derived landscape permeability estimates 

used as the input for circuit-based models. 

2.2 MATERIALS AND METHODS 

2.2.1 Study area 

This study took place in Edmonton, Alberta, Canada (53.5472° N, 113.5006° W) and the 

surrounding peri-urban area (within a 3.2 km buffer of the city boundary; Fig. 2.1). The buffered 

peri-urban area was included to remove bias associated with artificial edges (Koen et al. 2014). 

The city area is 783 km² (City of Edmonton 2019c), with a metropolitan population of over 1.4 

million (Statistics Canada 2021b) and a population density of 1,370 people/km² (Statistics 

Canada 2017). Edmonton is 671 m above sea level, has a mean annual temperature of 3.9℃, and 

a mean annual precipitation of 476.9 mm (Government of Canada 2021). Edmonton has the 

largest urban park in Canada (City of Edmonton 2020b, 2022), comprised of an extensive river 

valley and ravine system of 7,400 ha in area and spanning a linear distance of 100 km with the 

many ravines and tributaries (City of Edmonton 2020b) preserving a high degree of connectivity 
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for wildlife. Edmonton’s natural areas consist predominantly of Aspen parkland (City of 

Edmonton 2020b) with interspersed urban green spaces (golf courses, urban parks, cemeteries, 

and remnant natural patches). 

2.2.2 Coyote location data and resource use and availability 

We used pre-existing GPS collar data for 14 healthy and five mange-infected urban coyotes 

captured from October 2009 to February 2013 (as detailed by Murray et al. 2015b). This data 

was collected to evaluate associations between urban coyote age, sex, health, individual 

variation, habitat selection, and the use of anthropogenic resources (Murray et al. 2015b; Murray 

and St. Clair 2015; Murray et al. 2016; Murray and St. Clair 2017). We rarefied telemetry 

locations to a 3-hour fix rate (11,817 points) to ensure inconsistent fix-frequency between 

coyotes did not affect measures of selection (Johnson and Ganskopp 2008). We used telemetry 

locations for coyotes with a minimum of 30 locations per season (winter: Dec.1 – Mar. 31 and 

summer: Apr. 1 – Nov. 31) to ensure stable estimates of home range size (Seaman et al. 1999). 

We used these points to evaluate two orders of selection in a used-available method (below; 

Manly et al. 2002): (1) within seasonal individual home ranges using compositional analyses (3rd 

-order selection) and (2) individual locations within winter and summer population ranges using 

a RSF (2nd-order; Meyer and Thuiller 2006, adapted from Johnson 1980). We first performed 

compositional analyses by comparing the proportions of landscape features at coyote GPS 

locations in both winter and summer seasons (used) to the proportion of each habitat type within 

respective seasonal home ranges (available; Aebischer, Robertson, and Kenward 1993; Manly et 

al. 2002). We used the adehabitatHR package in R (Calenge 2006; R Core Team 2019) to 

estimate seasonal 95% fixed kernel home ranges for each individual using least-square cross-

validation (LSCV; Seaman and Powell 1996). We considered all telemetry locations within these 

95% fixed kernel home ranges (individual and season respective; n = 11,473). We used 

individual GPS points to develop a RSF model that compared landscape features at coyote GPS 

locations (used) to random locations (available; Manly et al. 2002; Johnson et al. 2006). We first 

calculated two seasonal (winter and summer) 95% minimum convex polygons (MCPs; Lortie et 

al. 2020) in ArcMap (v10.7.1, Redlands, CA). We identified seasonal used locations as telemetry 

locations that fell within respective MCPs (n = 11,748) and randomly generated available 

locations at a 1:2 ratio (used:available; Table 2.1). To support a more realistic estimation of 
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habitat selection, we excluded buildings (City of Edmonton 2018a) from the available area for 

both winter and summer in both analyses, and additionally, water bodies for the summer season 

(City of Edmonton 2018d) for the RSF model. 

2.2.3 Environmental Data  

We used a Geographic Information System (ArcMap, v10.7.1, Redlands, CA) to derive 10 

proportional and 13 continuous explanatory variables (Table 2.2; Fig. 2.2) from six geographic 

information system layers, including slope (Nielsen, unpublished data, 2020), buildings (City of 

Edmonton 2018a), roads (City of Edmonton 2018c), land cover (City of Edmonton 2018d), and 

unique landforms (river valley/ravine [City of Edmonton unpublished data 2016c]). To derive 

explanatory metrics related to land cover, we collapsed land cover information from the City of 

Edmonton urban Primary Land and Vegetation Inventory (uPLVI) and unique landforms as 13 

land cover types: natural forest, natural grass, natural shrub, modified forest, modified 

grass/shrub (excluding maintained grass), maintained grass, agricultural, residential, developed, 

transportation surface, the river valley and ravine system, natural areas, and the North 

Saskatchewan River (City of Edmonton 2018d). This information is adapted from provincial 

vegetation inventories to incorporate unique urban features (City of Edmonton 2014b). 

We derived proportional variables for compositional analyses (below); they described the 

used and available proportions of 10 land cover types, including the North Saskatchewan River 

(Table 2.2; Fig. 2.2). We identified the proportions of used habitat as the proportion of GPS 

points from each individual located in each habitat type in both winter and summer, except for 

the North Saskatchewan River, for which we used points that were at least 15 m from the river’s 

edge to account for GPS collar error (Rettie and McLoughlin 1999). We then quantified 

available proportions as the proportion of each habitat type within individual 95% fixed kernel 

HRs for both seasons. We used continuous variables to develop a resource selection model; they 

described slope and proximity to 12 landscape features, including land cover types, buildings, 

and roads (Table 2.2; Fig. 2.2). Because the importance of a feature is expected to decline with 

distance to it, we applied an exponential decay function (e-αd where d was the distance in meters, 

and α was set at 0.001) that negated the influence of features farther than 1000 m away (Nielsen, 

Cranston, and Stenhouse 2009). 



12 

 

2.2.4 Habitat selection  

To obtain habitat-specific selection estimates to compare with expert-derived permeability 

ratings, we conducted two seasonal compositional analyses (Aitchison 1982; Aebischer, 

Robertson, and Kenward 1993) at the home range scale to investigate the selection of 10 land 

cover types (Table 2.2; Fig 2.2). We did not assess the selection of all the features used in the 

circuit-based models due to sample size limitations and because some land cover types were 

unavailable to most individuals (Aebischer, Robertson, and Kenward 1993). Instead, we grouped 

select land cover types that were given similar permeability ratings and lumped otherwise 

excluded categories into “other” (Table 2.2), which was necessary to obtain selection estimates 

relative to the use and availability of other features. 

We used these proportions (Appendix 2.1 - Table 1) first to create matrices of the pairwise 

differences of the natural log-ratios (“pwd”) of the use to available proportions of habitat for 

each individual, where a positive pwd suggests that a habitat type is selected for, zero indicates 

random use, and a negative pwd suggests avoidance (Aebischer, Robertson, and Kenward 1993). 

Since a zero value in either the numerator or denominator of a ratio is invalid, if a habitat type 

was available but not used by an individual, we replaced the zero proportion of unused habitat 

with a value corresponding to 10% of the least available habitat proportion (Aebischer, 

Robertson, and Kenward 1993). When zeros persisted in the residual log-ratios, we replaced the 

missing values with the weighted mean lambda (described in Aebischer, Robertson, and 

Kenward 1993). We used the adehabitatHS package in R (Calenge 2006, 2011; R Core Team 

2019) to determine if habitat selection was non-random (Wilk’s Lambda; p < 0.05). We then 

used weighted one-way ANOVAs (square root of the number of GPS locations per individual; 

Aebischer, Robertson, and Kenward 1993) for each habitat type to determine if use differed by 

season and excluded log-ratios when both used and available proportions were missing (habitat 

type not available to the individual). Lastly, we averaged the pwd values for each habitat type 

across individuals for each season as the weighted mean pwd. 

We then built a RSF model to compare the effects of season and health status on habitat 

selection by coyotes and to support the comparison of habitat selection with circuit-based 

connectivity models. We evaluated urban coyote selection of slope and proximity to each of 

buildings, roads, the river valley and ravine system, natural areas and eight other land cover 

types as described above (Table 2.2; Fig. 2.2). We used distance-based variables to eliminate the 
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need for an arbitrary reference category, to avoid issues of scale and GPS error (Conner, Smith, 

and Burger 2003; Benson and O'Hara 2013), and to more meaningfully evaluate interactions that 

may occur if the selection of one feature is dependent on the nearness of another. Therefore, we 

inferred a higher probability of use when used locations were closer to features than available 

(random) locations. 

We built resource selection functions using three steps. First, we investigated all main 

effects and interactions using univariate statistics and retained those that were liberally 

significant (p < 0.25; Hosmer and Lemeshow, 1989). Second, if two or more variables were 

correlated (Pearson’s correlation coefficient exceeding an absolute value of 0.6), we applied 

principal components analysis (PCA) to combinations of correlated variables to obtain composite 

metrics using the axis scores from the principal components explaining ~70% of the variance. 

Because we were interested in the most predictive model, we subsequently tested each PCA 

metric against its components and retained the one with the lowest AIC score (Akaike 1978; 

Burnham and Anderson 2002). We assessed two-way and three-way interactions between both 

health status and season, and each of the variables associated with human development 

(buildings, roads, residential areas, developed areas, maintained grass, and/or PCA terms), or 

natural land cover and contiguous habitat (the river valley and ravine system, natural areas, 

natural forest, natural grass/shrub, and/or PCA terms), or modified grassland/agricultural areas, 

and/or PCA term; Table 2.2). We deemed interactions with season and health status relevant to 

our objectives, including differentiating potential effects of season (winter vs summer) and 

health status (healthy vs mange-infected) on habitat selection. We additionally assessed two-way 

interactions between variables associated with human development and natural land cover. We 

deemed interactions with human development and variables related to modified and natural land 

covers relevant because of the potential for vegetated features to alter anthropogenic effects. We 

included interactions between natural land cover due to our goal of identifying the most 

predictive model. We rescaled continuous variables between 0 and 1 to support the comparison 

of coefficients and to assess the relative magnitude of effect sizes. 

After identifying our list of liberally significant variables and their interactions, we built a 

combined model using the R package lme4 (Bates et al. 2015) with a binary (0 = available, 1 = 

used) response variable. Because we were primarily interested in prediction, not hypothesis 

testing, we used an all-subsets approach to model habitat selection by coyotes. We identified the 
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most parsimonious top model among competing generalized linear mixed-effect models 

(GLMMs) with a logit link for our used-available response variable and retained models within 2 

ΔBIC (Schwarz 1978). We used a random effect for individual coyotes to account for unequal 

sampling effort and partition variance appropriately. We penalized models for more terms with 

the Bayesian Information Criterion (BIC; Schwarz 1978) because it more heavily penalizes 

complex models (Boyce et al. 2002; Hastie, Tibshirani, and Friedman 2008) to favour 

parsimony. We assessed the model fit to the whole dataset using k-fold cross-validation (k = 10; 

reps = 3; Boyce et al. 2002; Pearce and Boyce 2006). We determined the explanatory value of 

the random effect by comparing the deviance of the top model with and without it using a 

likelihood-ratio Chi2 test, and used an approximated p-value to account for the random effect (Pr 

> ChiSq / 2; Bolker et al. 2009). We then used the RSF model equation to obtain a habitat 

suitability index (HSI) for each used GPS location. 

2.2.5 Circuitscape models 

The City commissioned two seasonal Circuitscape (McRae et al. 2008) models, prepared by 

Solstice Canada Corp., to evaluate seasonal landscape connectivity using estimated permeability 

for coyotes, a representative of medium to large‐sized urban-adapted mammals, for both winter 

(Dec.1 – Mar. 31) and summer (Apr. 1 – Nov. 31 [City of Edmonton 2017b]). Seasonal models 

accommodated the hypothesis that the North Saskatchewan River, which bisects the City, may 

be a conduit for movement in the winter but a barrier in the summer (Harrison 1992; City of 

Edmonton 2017b). The model authors modelled movement based on patterns during evening and 

dusk (when coyotes are most active) using locally relevant literature on urban coyote movement 

(City of Edmonton 2017b). 

The model authors created two seasonal permeability layers to serve as the input for 

Circuitscape by first creating feature-specific layers and scoring each 10x10 m cell based on the 

expected influence of that feature on connectivity (permeable, a barrier, or modifiers [City of 

Edmonton 2017b]). The assigned values ranged from -10 (least permeable) to 10 (suitable). They 

included categories of habitat type (e.g., natural forest), human use (e.g., parks trails), open space 

(e.g., maintained turf), physical barriers (e.g., buildings), railways, roads, and whether the cell 

was in the North Saskatchewan River floodway (Table 2.2 [City of Edmonton 2017b]). The 

model authors created ‘modifying layers’ to adjust ratings for spatially coincident features that 
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were expected to further influence connectivity, which included slope, culverts, human use (e.g., 

parks), and land use (e.g., residential areas; Table 2.2 [City of Edmonton 2017b]). The various 

layers were combined by adding weights for overlapping cells to create two seasonal 

permeability layers to model connectivity (City of Edmonton 2016b, 2017b). We used these 

layers to extract the expert-derived landscape permeability estimates for each used point 

respective of the season that each GPS fix occurred. 

2.2.6 Testing permeability estimates with habitat suitability indices 

To compare the predictive accuracy of the expert-derived permeability ratings with feature-

specific estimates of use by coyotes, we scaled the weighted mean pwds for each habitat type 

from both seasons (obtained above) relative to the most or least selected feature from either 

season (most positive or negative value; 10 or -10). We did so to allow the comparison between 

pwds, expert-based ratings, and between seasons on the same relative scale (between -10 and 10; 

Table 2.2 [City of Edmonton 2017b]). We compared these values by assessing whether the 

expected permeability ratings for each feature were within the 95% confidence interval of the 

weighted average pwd values. 

To assess the predictive accuracy of the expert-derived landscape permeability estimates 

(used as the input layer to construct circuit-based models), we then used generalized linear 

models (GLMs) in an all-subsets approach to compare the landscape permeability values with 

RSF-derived HSI values from used locations, as well as two-way and three-way interactions 

between both health status and season. We included interactions between health status and 

season to explore the influence of mange infection and season on the predictive ability of the 

expert-derived cumulative permeability layer. We identified the most parsimonious top model 

among competing GLMs with different transformations on landscape permeability values and 

our HSI response variable (logarithmic, square root, cubic) and retained models within 2 ΔAIC 

(Akaike 1978; Burnham and Anderson 2002). We performed all analyses in R 3.6.1 (R Core 

Team 2019). 
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2.3 RESULTS 

2.3.1 Habitat selection 

We conducted two seasonal compositional analyses to evaluate differences in selection by season 

using weighted ANOVAs and to obtain habitat-specific selection estimates as weighted pwd. 

The seasonal compositional analyses produced weighted mean pwd values between -68.7 and 

48.83 in winter and between -45.86 and 26.1 in summer (Table 2.3). Habitat use differed from 

random predictions in both the winter (Λ = 0.017; p = 0.006) and summer (Λ = 0.008; p = 0.001). 

In weighted ANOVAs, habitat use was higher in winter for natural forests, natural shrubland, 

modified grass/shrubland and residential areas, but there were no significant differences in 

seasonal use of natural grassland, maintained grass, developed areas, transportation surfaces, and 

the North Saskatchewan River (Table 2.4; Fig. 2.3). 

For the RSF analysis using composite metrics, only one PCA metric was more explanatory 

than its components; it approximated natural areas and included proximity to natural forests and 

the river valley and ravine system (PC1 = 87.5%). The final list of uncorrelated variables 

evaluated in the RSF model of coyote habitat selection included slope, proximity to each of 

natural areas (PCA metric; with positive values indicating closer proximity to natural areas), 

modified forests, modified grass/shrubland, residential areas, developed areas, and all 25 tested 

interactions. The most parsimonious top model (rank 1) for predicting the probability of resource 

use by coyotes included all six main effects, as well as 25 interactions (18 significant; Table 2.5; 

Fig. 2.4). There were no competing top models (Appendix 2.1 - Table 3). The probability of use 

increased with increasing slope, and closer to each of natural areas, modified forests, modified 

grass/shrubland, and residential areas, whereas the probability of use decreased closer to 

developed areas (Table 2.5; Fig. 2.4). Based on odds ratios (Table 2.5), the likelihood of coyotes 

selecting natural areas was higher than in modified forests (~1.5 times), modified 

grass/shrubland (~2.4 times), residential (~1.7 times) and developed areas (~5.9 times). The 

probability of use of modified forests was ~1.1 times greater than residential and ~3.8 times 

greater than developed areas. Modified grass/shrubland was ~2.4 times more likely to be used 

than developed areas (Table 2.5; Fig. 2.4). 

Among 15 significant two-way interactions involving season, disease status, and land 

cover (Table 2.5; Fig. 2.4), three positive interactions revealed that the probability of use of 
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modified forest was ~1.1 times higher in winter, and use of residential and developed areas 

increased if animals had mange (~1.6 and ~1.3 times higher, respectively). Two other positive 

interactions indicated that when natural areas were closer, coyotes were ~1.2 times more likely to 

use modified grass/shrub and ~1.1 times more likely to use developed areas. Three more positive 

interactions revealed that the probability of use of residential areas also increased when modified 

forests (~1.3 times higher) or modified grass/shrubland (~1.2 times higher) were closer, and use 

of modified grass/shrub increased when developed areas were closer (~1.1 times higher). Four 

significant negative two-way interactions showed that in winter, the probability of using either 

modified grass/shrubland and residential areas was ~1.4 times lower, and use declined for natural 

areas and modified forests when animals had mange (~2.2 and ~1.25 times lower, respectively). 

Three more negative interactions revealed that the probability of use of residential areas was 1.5 

times lower when either natural areas or developed areas were closer, and the use of modified 

forests was ~1.5 times lower when developed areas were closer. Three significant three-way 

interactions demonstrated the complex nature of habitat selection when combined with health 

status and season. When animals had mange, positive associations for the probability of use of 

modified forests was ~1.3 times higher in winter. However, mange reduced the dampening 

effects of winter on the likelihood of using residential areas (~1.3 times higher). One more three-

way interaction showed that the probability of use of natural areas decreased in winter when 

animals had mange (~1.3 times lower). Six other interactions contributed to the best fit of our top 

model but were not significant (Table 2.5; Fig. 2.4). The predictive accuracy of the most 

parsimonious top model (rank 1) using k-fold cross-validation was 0.760 (±0.070 SD), 

suggesting a moderately high fit. Including a random effect for individuals significantly 

improved the model (p < 0.001). 

2.3.2 Comparing habitat suitability index with expert-derived permeability values 

To discuss the differences between habitat use of each habitat type measured from locations of 

coyotes and expert-based ratings on the same relative scale (between -10 and 10 [City of 

Edmonton 2017b]), we scaled weighted mean pwd values from both seasons relative to the North 

Saskatchewan River in winter (given a value of -10; Table 2.3). The seasonal compositional 

analyses produced scaled mean pwd values between -10 and 7.11 in winter and between -6.68 

and 3.8 in summer (Table 2.3; Fig. 2.3). When we determined whether expert-derived ratings fell 
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within 95% confidence intervals of measured scaled weighted mean pwd, the expert-derived 

ratings were higher than the scaled weighted mean pwd in both winter and summer for natural 

forests, natural grass, modified forests, and for the North Saskatchewan River in winter, and 

additionally, in summer for natural shrubs and modified grass/shrub (Table 2.3; Fig. 2.3). The 

expert-derived ratings were slightly above the scaled weighted mean pwd values for natural 

shrubs in winter but within the confidence interval range for transportation surfaces in both 

seasons and for modified grass/shrub and maintained grass in winter (Table 2.3; Fig. 2.3). The 

expert-derived ratings were lower than the scaled weighted mean pwd for residential and 

developed areas in both seasons and additionally for maintained grass and the North 

Saskatchewan River in the summer (Table 2.3; Fig. 2.3). 

We used GLMs to compare the accuracy of cumulative permeability estimates in 

predicting RSF-derived HSI values (Table 2.6) while including season, mange, two-way, and 

three-way interactions. The most parsimonious top model included square-root transformed 

cumulative permeability estimates, season, mange, and all four interactions, all of which were 

significant, with RSF-derived logarithmic HSI values as the response variable (Table 2.7; Fig. 

2.5). There were no competing top models (Appendix 2.1 - Table 4). The HSI values were higher 

when expert-derived landscape permeability estimates increased and in winter, but lower when 

coyotes had mange (Table 2.7; Fig. 2.5). Four significant 2-way and 3-way interactions revealed 

that HSI values were higher for mangy coyotes in winter and that the expert-derived landscape 

permeability values were less related to HSI values when coyotes had mange, in winter, and 

especially when coyotes had mange in winter (Table 2.7; Fig. 2.5). Additionally, even when 

using the best fit model (lowest AIC) of multiple tested models with different transformation 

types, the model fit was poor (R2 = 0.072; Table 2.7; Appendix 2.1 - Table 4). 

2.4 DISCUSSION 

Ecological connectivity is believed to be an essential contributor to the retention of biodiversity 

in urban areas, but there are few tools with which it can be measured to support emphasis by 

urban planners. We tested the predicted permeability estimates used in the City of Edmonton’s 

planning models of coyote movement commissioned by the City of Edmonton with GPS collar 

data. We evaluated habitat selection of healthy and mange-infected urban coyotes across winter 

and summer in compositional analyses and a RSF. We then compared the feature-specific 
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suitability estimates from compositional analyses to expert-derived ratings and the RSF model 

HSI to landscape permeability values. We used compositional analyses to assess broad-scale 

habitat associations and a RSF model to develop a HSI at a finer scale that could be compared to 

landscape permeability values. We found that coyotes used natural forests, natural shrubs, 

modified grass/shrubland, and residential areas more in the winter. The RSF model showed that 

urban coyotes avoided developed areas, but were attracted to areas with steeper slopes and closer 

to each of natural areas, modified forests, and residential areas, with various interactions that 

suggest habitat preference differed by season and health. When evaluating the accuracy of 

expert-based ratings using feature-specific selection estimates, the expert-based ratings were 

accurate for some features, but consistently underestimated the use of residential and developed 

areas and overestimated the value of natural grass, modified forests, and the North Saskatchewan 

River. When we compared HSI values derived from a RSF to corresponding landscape 

permeability estimates, the expert-derived values predicted the HSI for urban coyotes, but were 

less accurate in winter and when coyotes had mange, and the model fit was poor. 

The strongest predictors of habitat selection in the RSF model were an attraction to natural 

areas composite metric and avoidance of developed areas. The natural areas variable in our final 

model was a composite PCA metric of natural forests and the river valley and ravine system. The 

inclusion of the river valley and ravine system within the most explanatory PCA metric for 

natural areas suggests the importance of contiguous habitat for coyotes. Based on odds ratios, 

coyotes selected natural areas ~1.5 times more than modified forests, ~2.4 times more than 

modified grass/shrubland, ~1.7 times more than residential areas, and ~5.9 times more than 

developed areas. Urban coyotes seem to prefer natural land use types over modified or developed 

types (Poessel, Breck, and Gese 2016; Franckowiak, Perdicas, and Smith 2019), especially in 

densely vegetated areas, such as forests (Atwood, Weeks, and Gehring 2004; Greenspan, 

Nielsen, and Cassel 2018). This preference presumably stems from high prey availability (Richer 

et al. 2016) and vegetation that provides hiding cover (Gosselink et al. 2003), facilitating habitat 

use and movement. When natural areas were closer, coyotes were ~1.2 times more likely to use 

modified grass/shrubland and ~1.1 times more likely to use developed areas, suggesting that 

natural areas may buffer anthropogenic effects (Reddell et al. 2021), allowing coyotes to 

withstand the negative impacts of developed areas by remaining close to natural cover and high-

quality habitat. However, modified grass/shrublands had very similar buffering effects. 



20 

 

Coyotes were attracted to modified grass/shrubland and residential areas, perhaps due to 

congregated anthropogenic food subsidies, such as garbage, fruit trees, or bird feeders (Murray 

and St. Clair 2017). Anthropogenic food subsidies are widespread in urban areas, influence 

resource use for various urban species, and frequently contribute to overabundant wildlife 

populations (DeStefano and DeGraaf 2003), especially urban-adapting species. Accordingly, 

coyotes appear to thrive in cities partially due to their ability to find, access, and consume food 

subsidies provided by anthropogenic waste (Murray et al. 2016; Murray and St. Clair 2017). 

Attractants were the most significant predictor of space use for dingoes (Canis lupus dingo; 

Newsome et al. 2015). Residential gardens are also valuable habitats for mammals (Van Helden, 

Close, and Steven 2020) and may promote the abundance of small rodent prey species. Coyotes 

used both modified grass/shrubland and residential areas ~1.4 times less in winter, coinciding 

with when fewer attractants are present. Some sources of anthropogenic food also cause disease 

in wildlife or increase infection rates (Murray et al. 2015b), contribute to high densities of 

species (Wright and Gompper 2005), and alter space use when diseased individuals seek out 

such attractants (Murray et al. 2016). 

Urban coyotes also relied on modified habitat types more than developed types areas, some 

of which may increase the tolerance of coyotes to human disturbances. Coyotes used modified 

forests ~1.1 times more than residential areas and ~3.8 times more than developed areas and used 

modified grass/shrubland ~2.4 times more than developed areas. These areas likely provide 

cover, host a variety of small rodent prey (Morey, Gese, and Ghert 2007; Ofori et al. 2018), and 

separate coyotes from adjacent human activity (Gallo et al. 2017; Wurth, Ellington, and Gehrt 

2020), and may serve as stepping-stones (Lynch 2018) through highly fragmented landscapes. 

Coyotes were also ~1.1 times more likely to use modified grass/shrublands when developed 

areas were nearby, suggesting that even modified vegetation types increase the tolerance of 

coyotes to the disturbances that occur in urban areas. However, this effect was slight and given 

that coyotes are known urban-adapters (McIntyre 2014; Perry et al. 2020) which generally 

appear to be less reliant on the most natural areas than other species, species-specific analyses 

are likely warranted before concluding that modified vegetation types act as conservation 

features for other species. 

Coyotes infected with mange preferred human-dominated areas and more so in winter 

months. Mange-infected coyotes were ~1.6 times more likely to select areas closer to residential 
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areas, ~1.3 times more likely to select developed areas, and two times less likely to select natural 

areas. A few of these preferences increased in winter months; coyotes infected with mange were 

~1.5 times more attracted to residential areas and made even less use of natural areas (~0.8 

times), despite that the overall study population used residential areas less and natural areas more 

in winter months. Since infection with mange can reduce internal fat stores (Bornstein, Mörner, 

and William 2001), their greater use of human-associated areas may have resulted from 

increased energetic demand and diminished capacity to maintain high-quality territory (Pence 

and Windberg 1994). The areas they selected are also more likely to have anthropogenic food 

subsidies (Murray et al. 2016; Murray and St. Clair 2017), which may encourage dispersal from 

natural areas and increase coyote tolerance of coyotes to human disturbances, especially in the 

winter when harsh weather reduces food availability. Using the same GPS collar data, another 

research team in our group found that coyotes with mange were more likely to use more 

developed areas (Murray et al. 2015b). Others have reported that winter can result in larger home 

ranges of coyotes (Gosselink et al. 2003; Ellington, Muntz, and Gehrt 2020) that are also less 

responsive to disturbances when foraging (Ellington, Muntz, and Gehrt 2020). Moreover, this 

period coincides with increased sightings (and conflict) of coyotes and in less natural spaces 

(Poessel et al. 2012). Our results reveal the complex nature of habitat selection when combined 

with health status and season and emphasize the importance of considering wildlife disease in 

habitat selection analyses, which may be especially relevant in urban areas where wildlife 

diseases are prevalent (Bradley and Altizer 2007; Reddell et al. 2021). 

A core purpose of our work was to compare the expert-derived permeability ratings 

assigned to specific features to feature-specific habitat selection estimates obtained from log-

ratio analyses of compositions. The expert-based ratings were fairly accurate for transportation 

surfaces in both seasons, for natural shrubs, modified grass/shrub and maintained grass in winter 

and the North Saskatchewan River in summer. However, our results suggest that the expert-

based ratings may have overestimated the permeability of natural forests, natural grass, modified 

forests, and the North Saskatchewan River in winter, and additionally of natural shrubs and 

modified grass/shrub in summer. We included the North Saskatchewan River to acknowledge the 

hypothesis that it may be a conduit for movement in the winter; we believed that the probable 

bias from GPS error (Conner, Smith, and Burger 2003; Ganskopp and Johnson 2007) would be 

similar across seasons, but we expected that the relative difference between seasonal estimates 
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might approximate the extent of differential use. Despite the 15 m buffer used to reduce GPS 

error, locations occurred in the river in both seasons. Increased “use” in summer is likely 

partially related to accessing the adjacent and highly valuable floodplains, wetlands, and riparian 

areas (Pringle 2017). We did not detect a difference in use between seasons, suggesting that the 

river does not act as more of a conduit for movement in winter as expected (Harrison 1992; City 

of Edmonton 2017b). However, estimates of use from compositional analyses have been 

scrutinized because classification is prone to error (Conner, Smith, and Burger 2003; Ganskopp 

and Johnson 2007). Our sample size was also fairly small. Our results also suggest that the 

expert-based ratings may have underestimated the permeability value of residential and 

developed areas in both seasons and for maintained grass in the summer. The lack of association 

for these features supports the hypothesis that residential areas are more permeable than the 

expert-derived ratings suggested, especially for highly adaptable coyotes (McIntyre 2014; Perry 

et al. 2020); others have shown readily use areas associated with human development (Poessel, 

Breck, and Gese 2016; Reddell et al. 2021). Our results also suggest that seasonal models may 

better match habitat use by coyotes. 

A final purpose of our study was to determine whether permeability estimates based on 

expert-derived assessments of landscape permeability generated similar predictions to a RSF 

model of habitat suitability based on GPS data. We found a significant positive relationship 

between expert-derived permeability estimates and HSI values, but the model that best explained 

this relationship included season, health, and several interactions. Even with these additional 

variables, however, the model fit was poor. Expert-derived estimates were even less accurate for 

coyotes with mange, in winter, and especially for mangy coyotes in winter. Mange-infected 

coyotes used areas with significantly lower quality habitat, and our RSF model results also 

suggest they relied more on human-dominated areas. Without considering health-based effects, it 

seems that expert-derived ratings underestimated the permeability of modified and developed 

areas to diseased coyotes, especially in winter when cold temperatures further these effects. 

Higher accuracy in summer may have resulted from greater use of natural areas to avoid humans 

while denning (Gehrt, Anchor, and White 2009; Wurth, Ellington, and Gehrt 2020), or when 

natural food is more abundant, as suggested by larger dietary niche breadth (Sugden et al. 2021). 

Coyotes were likely to use areas with higher HSI values in summer, such as natural areas, for 

which the permeability value may have been easier to predict. These results indicate insensitivity 
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of the expert-derived estimates to both the higher perceived permeability of disturbed areas to 

diseased coyotes and fluctuating habitat requirements across seasons. A further limitation of the 

expert-based permeability values was that they estimated permeability for all land uses 

associated with human development, such as residential areas, to be consistently low (ranging 

from 0 to -7), thereby producing very low landscape permeability estimates in these areas. Yet, 

coyotes used areas that were expected to impede movement, which produced zero-inflated 

permeability values when derived for GPS locations. Even when using the exhaustive approach 

of testing multiple models with different variable transformations, the zero-inflated nature of the 

permeability values likely contributed to the very poor fits. The results suggest that consideration 

of both season and health influence the accuracy of expert-derived permeability estimates and 

imply that connectivity will also differ for healthy vs. diseased coyotes and by season. 

There are some limitations to our study that affect its interpretations. First, resource use 

may have been influenced by several factors we did not measure in this study, as indicated by the 

significant random effect for individuals. This suggests variation in resource use within the 

sampled population, which may have stemmed from age, breeding status, and relative population 

density. Others have found that coyotes vary in their use of anthropogenic resources (Newsome 

et al. 2015), avoidance of roads (Benson, Mahoney, and Patterson 2015; Murray and St. Clair 

2015), and that females generally have smaller home ranges (Mueller, Drake, and Allen 2018). A 

second limitation of our study as a test of the importance of expert-derived permeability 

estimates is the choice of coyotes as a model species. A carnivore may not represent the needs of 

other species targeted by biodiversity planning and may be an especially poor umbrella species 

for sensitive species (Beier, Majka, and Newell 2009; Cushman and Landguth 2012). Coyotes 

have large home ranges (Šálek, Drahníková, and Tkadlec 2014) and are notoriously able to adapt 

to urban areas (McIntyre 2014; Perry et al. 2020). Other species may have lower dispersal ability 

in urban areas (Cushman, Landguth, and Flather 2013). A better approach might be identifying a 

few focal species to represent the varying tolerance to fragmentation, life history, and dispersal 

ability (Beier, Majka, and Spencer 2008; Cushman and Landguth 2012). A third limitation is the 

small and unbalanced sample size of 14 healthy and five mange-infected coyotes. Since we 

considered individuals as the sampling unit in compositional analysis, we could not evaluate 

differences in habitat selection based on health (Aebischer, Robertson, and Kenward 1993). This 

may be the reason we did not detect differences in the use of most land cover types between 



24 

 

seasons in the compositional analysis, despite apparent differences in the RSF model. However, 

others have also noted differences in results between these methods, and suggest that the RSF 

model is more accurate (Long et al. 2009). 

Despite these limitations, our study offers some insights into promoting urban biodiversity. 

Model coefficients from the RSF model could help urban planners weigh the relative cost or 

benefit of maintaining certain vegetated land classes, create predictive maps or movement 

models to identify pinch points, or adjust the expected permeability of features to increase the 

accuracy of their circuit-based models. The model coefficients could also be used to assist 

wildlife managers and urban planners mitigate human-wildlife conflict, and reduce the 

significant ecological and health problems associated with wildlife diseases (Herrera and Nunn 

2019). Movement analyses using occurrence data may also offer valuable insights into the 

consequences of altered spatial patterns, such as reduced connectivity, for the spread of wildlife 

diseases (Dougherty et al. 2018). Such tools may be especially applicable in Edmonton, where 

coyotes have an unusually high prevalence of the zoonotic tapeworm, Echinococcus 

multilocularis (Luong et al. 2018). Perhaps the most important result of our work is to 

demonstrate the extensive use coyotes make of residential and developed areas relative to the 

predictions of the Circuitscape model.  

In summary, resource use by coyotes was driven by natural land use type and human 

development, with natural and developed areas being the most influential over natural 

grass/shrubland, modified forests, modified grass/shrubland, maintained grass, residential areas, 

roads, and buildings. The results from the RSF model strongly suggest that resource use is 

influenced by health and season, where mange-infected coyotes were more reliant on residential 

and developed areas, and less reliant on natural areas, especially in winter for some effects. Our 

results also suggest that tolerance to human infrastructure increases with proximity to natural 

areas, and certain modified habitat types may buffer the adverse effects of urban development. 

We suggested how these results could help urban planners in a variety of ways. We concluded 

that the circuit-based models based on expert opinion might be a cost-effective tool for 

modelling urban connectivity, but with less precision than movement data from animals can 

provide and without the capacity to identify individual differences that might often stem from 

animal condition and other circumstances.  
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2.5 TABLES 

Table 2.1 Summary of the number of coyotes, used and available points, and available area used to model 

habitat selection of 14 healthy and five mange-infected coyotes in winter and summer in Edmonton, 

Alberta, via compositional analyses and a resource selection function (RSF). 

Analysis Season† Health 
Number of 

coyotes 

Number of radiotelemetry 

(used) points‡ 

Number of 

available points§ 

Available 

area (km²)¶ 

Compositional 

analysis 
Winter - 14 4259 - 27.4 

Summer - 15 7145 - 29.7 

Resource selection 

function (RSF) Winter 
Healthy 

19 

3243 6486 
232.2 

Mangy 1208 2416 

Summer 
Healthy 4265 8530 

282.7 
Mangey 3032 6064 

† Seasons were defined as winter: Dec.1 – Mar. 31 and summer: Apr. 1 – Nov. 31. 

‡ The number of used points as radiotelemetry (GPS) locations by season; for compositional analyses: those within 

individual 95% fixed kernel home ranges; for the RSF: those within 95% minimum convex polygons (MCPs) 

around seasonal population ranges. 

§ Randomly generated within each seasonal MCP at a 1:2 ratio (used:available).  

¶ For compositional analyses: average area within seasonal/individual 95% fixed kernel home ranges; for RSF: area 

within 95% MCPs around seasonal population ranges. 
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Table 2.2 The variables used to parameterize permeability layers for circuit-based connectivity models by 

the City of Edmonton (2016b, 2017b), with asset category, feature name, and ratings (left side of the 

table), and comparable variables (some were grouped for variable reduction), data ranges, and PCA terms 

used in seasonal compositional analyses and a resource selection function (RSF; right side of the table) 

for 19 urban coyotes in Edmonton, Alberta. 

Circuitscape 

Asset 
Circuitscape feature 

Permeability 

rating 

Compositional 

analysis 

variable name 

Compositional 

data range 

(Continuous; 

proportional) 

RSF variable 

name 

RSF data 

range 

(Continuous; 

proximity) 

RSF PCA 

terms† 

  ‡ ‡ ‡ ‡ 

River valley 

and ravine 

system 

0.01 - 1   

  ‡ ‡ ‡ ‡ Natural areas 0.14 - 1   

Natural area 

(PC1)§ 

Permeable 

- Habitat  

Natural forest; 

 decid./conif. 
10 Natural forest 0.03 - 0.81 Natural forest 0.14 - 1 

Natural shrubby; 

 mod. to high 

 density¶ 

9 Natural shrub  0 - 0.31 
Natural 

grass/shrub 
0.03 - 1   

Natural grassland/ 

 pasture¶ 
6 Natural grass 0 - 0.04 Agricultural 0 - 1 

OR Modified 

grass/shrub 

(PC1; pasture) 

Ornamental tree; low 

 density 
6 

Modified 

forest 
0 - 0.05 

Modified 

forest 
0.07 - 1  ‡ 

Ornamental shrub; 

 low density¶ 
6 Modified 

grass/shrub 
0.01 - 0.93 

Modified 

grass/shrub 
0.15 - 1 Modified 

grass/shrub 

(PC1) Crop 4 Agricultural# # 

Grassland, turf 6 
Maintained 

grass 
0 - 0.2 

Maintained 

grass 
0.05 - 1 ‡ 

Wetland 7 ‡ ‡ ‡ ‡ ‡ 

Permeable 

- River 

(winter) North Sask. river 

 floodway 

3 
North Sask. 

(winter) 
0 - 0.26 ‡ || ‡ 

Barrier- 

River 

(summer) 

-5 
North Sask. 

(summer) 
0 - 0.24 ‡ || ‡ 

Barrier - 

Human use 

/ physical 

(parks) 

Bridge -5 ‡ ‡ ‡ ‡ ‡ 

Stairs -5 ‡ ‡ ‡ ‡ ‡ 

Trail -1 ‡ ‡ ‡ ‡ ‡ 

Cleared pad area -6 ‡ ‡ ‡ ‡ ‡ 

Barrier - 

Open 

space 

Maintained turf -4 
Maintained 

grass# 
# 

Maintained 

grass# 
# ‡ 

Barrier - 

Physical 

Rail fence -5 ‡ ‡ ‡ ‡ ‡ 

Chain link fence -8 ‡ ‡ ‡ ‡ ‡ 

Retaining wall -4 ‡ ‡ ‡ ‡ ‡ 

Buildings -10 Developed 0 - 0.66 Buildings 0.1 - 1  Urban (PC1) 
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Barrier - 

Rail 

Railway + 10 m 

 buff. 
-4 

Transp. 

Surface 
0 - 0.08 

‡ ‡ ‡ 

Barrier - 

Road 

Highway/Arterial -5 

Roads 0.44 - 1  Urban (PC1) 
Secondary -4 

Residential  -3 

Alley -1 

Modifier - 

Slope 

Level (0‐4.9%) 0 

‡ ‡ 
Slope 

(degrees) 
0 - 42.86 ‡ 

Moderate (5‐15%) -2 

Strong (14.9‐30%) -5 

Very strong/steep 

 (>30%) 
-10 

Modifier - 

Culvert 

Small terrestrial 

 (0.3‐1 m diam) 
6 ‡ ‡ ‡ ‡ ‡ 

Medium mammal & 

 amphibian (1‐2.3 

 m diam) 

7 ‡ ‡ ‡ ‡ ‡ 

Large mammal (>2.4 

 m diam) 
9 ‡ ‡ ‡ ‡ ‡ 

Modifier - 

Human 

use 

(parks) 

Greenway 0 ‡ ‡ ‡ ‡ ‡ 

Natural area 0 ‡ ‡ ‡ ‡ ‡ 

City Park -2 ‡ ‡ ‡ ‡ ‡ 

Other land use 

 (cemetery) 
-2 ‡ ‡ ‡ ‡ ‡ 

School & 

 Community Park 
-4 ‡ ‡ ‡ ‡ ‡ 

Modifier - 

Land use 

Vacant/ 

 Undeveloped 
0 ‡ ‡ ‡ ‡ ‡ 

Recreation/Open 

 space 
0 ‡ ‡ ‡ ‡ ‡ 

Transportation†† 
0 

Transp. 

Surface# 
# ‡ ‡ ‡ 

Agricultural -2 
Modified 

grass/shrub# 
# Agricultural# # 

Modified 

grass/shrub 

(PC1) 

Acreage -4   ‡   ‡ ‡ 

Telecommunication/ 

 utility 
-2 

Developed# # Developed  0.45 - 1 
Urban (PC1) 

Institutional -5 

Commercial -5 

Industrial -5 

Residential -7 Residential 0 - 0.53 Residential 0.01 - 1 

† Used in RSF model only. 

‡ Not included/not applicable. 

§ In the final list of uncorrelated variables for evaluation in the RSF model. 

¶ Used as separate variables in compositional analyses but combined in the RSF model.  

# Similar coverage in another variable or covered above. 

|| Covered in study design by including/excluding The North Saskatchewan River in seasonal available domains. 

†† “Transportation” in Circuitscape permeability ratings includes railways. 

‡‡ All road types were considered as one variable.  
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Table 2.3 The weighted mean pairwise log-ratio differences (“pwd;” Aebischer, 1993) calculated using 

log-ratio analyses of compositions of 10 land cover types in two seasons for 19 urban coyotes in 

Edmonton, Alberta, with scaled pwd values, and the permeability ratings used to create circuit-based 

connectivity models by the City of Edmonton (2016b, 2017b). 

Season† Land cover 
Weighted 

mean pwd‡ 

Weighted 

mean pwd 

95% LCL 

Weighted 

mean pwd 

95% UCL 

Scaled 

pwd§ 

Scaled pwd 

95% LCL 

Scaled pwd 

95% UCL 

Circuitscape 

permeability 

rating¶ 

Winter 
Natural forest 

48.83 40.16 57.49 7.11 5.85 8.37 
10  

Summer 23.54 19.72 27.36 3.43 2.87 3.98 

Winter 
Natural shrub 

47.33 32.92 61.73 6.89 4.79 8.99 
9  

Summer 26.10 21.04 31.15 3.80 3.06 4.53 

Winter 
Natural grass 

-22.26 -59.08 14.56 -3.24 -8.60 2.12 
6 

Summer -1.60 -14.13 10.92 -0.23 -2.06 1.59 

Winter 
Modified forest 

-35.19 -75.19 4.81 -5.12 -10.94 0.70 
6 

Summer -4.19 -14.57 6.18 -0.61 -2.12 0.90 

Winter Modified 

grass/shrub 

37.30 25.83 48.77 5.43 3.76 7.10 
6 

Summer 13.62 8.70 18.55 1.98 1.27 2.70 

Winter Maintained 

grass 

-21.18 -54.45 12.09 -3.08 -7.92 1.76 
-4 

Summer 0.37 -3.58 4.33 0.05 -0.52 0.63 

Winter 
Residential 

12.59 -2.81 27.98 1.83 -0.41 4.07 
-7 

Summer -12.88 -22.00 -3.77 -1.88 -3.20 -0.55 

Winter 
Developed 

19.15 -3.56 41.87 2.79 -0.52 6.09 
-5 

Summer -5.01 -15.51 5.48 -0.73 -2.26 0.80 

Winter 
Transp. surface 

-37.31 -71.95 -2.67 -5.43 -10.47 -0.39 -5 to -1 

Summer -11.31 -19.98 -2.63 -1.65 -2.91 -0.38  

Winter North Sask. 

River 

-68.70 -108.86 -28.55 -10.00 -15.85 -4.15 3 

Summer -45.86 -57.09 -34.64 -6.68 -8.31 -5.04 -5 

Winter 
Other 

10.86 -16.35 38.06 1.58 -2.38 5.54 ‡  

  Summer 8.23 -2.59 19.05 1.20 -0.38 2.77 

† Seasons were defined as winter: Dec.1 – Mar. 31 and summer: Apr. 1 – Nov. 31. Number of coyotes used: winter 

= 14; summer = 15. 

‡ Weighted by the square root of the number of points used for each individual. 

§ Scaled relative to the North Sask. River in winter (assigned -10) to correspond with relative permeability ratings. 

¶ Feature-specific permeability ratings that were used to create the cumulative permeability layers used in circuit-

based models by the City of Edmonton (2016b, 2017b). 
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Table 2.4 One-way weighted ANOVA tests evaluating differences between seasons in pairwise log-ratio 

values (relative use) obtained from compositional analyses for 10 land cover types by 19 urban coyotes in 

Edmonton, Alberta. 

Landcover   Sum of squares Mean square df F-value p-value 

Natural forest Season (Winter)† 84,579 84,579 1 28.24 <0.001 

Residuals 80,874 2,995 27   
 

Natural shrub Season (Winter) 59,642 59,642 1 7.817 0.009 

  Residuals 205,999 7,630 27   

Natural grass Season (Winter) 52,156 52,156 1 1.156 0.293 

  Residuals 1,128,350 45,134 25   

Modified forest Season (Winter) 127,115 127,115 1 2.318 0.14 

  Residuals 1,480,813 54,845 27   

Modified grass/shrub Season (Winter) 74,149 74,149 1 14.29 <0.001 

Residuals 140,153 5,191 27   
 

Maintained grass Season (Winter) 58,831 58,831 1 1.738 0.199 

  Residuals 846,318 33,853 25   

Residential Season (Winter) 82,151 82,151 1 7.71 0.010 

  Residuals 266,383 10,655 25   

Developed Season (Winter) 77,263 77,263 1 3.677 0.066 

  Residuals 567,334 21,012 27   

Transp. surface Season (Winter) 89,475 89,475 1 2.188 

  

0.151 

Residuals 1,104,164 40,895 27   

North Sask. River Season (Winter) 57,731 57,731 1 1.056 0.316 

Residuals 1,147,806 54,657 21     

Other Season (Winter) 912 912 1 0.032 0.859 

Residuals 765,217 28,341 27     

† Seasons were defined as winter: Dec.1 – Mar. 31; summer: Apr. 1 – Nov. 31. Number of coyotes used: winter = 

14; summer = 15. 
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Table 2.5 Estimated coefficients (β), lower and upper 95% confidence limits (LCL and UCL, 

respectively) for the most parsimonious top model of the logistic mixed regression models (resource 

selection) for habitat selection by 19 urban coyotes in Edmonton, Alberta, including odds ratio (OR). 

Parameter β 
95% 

LCL 

95% 

UCL 

 Odds 

ratio 

(OR) 

OR 

95% 

LCL 

OR 

95% 

UCL 

p-value 

Intercept*** -1.072 -1.264 -0.881 0.34 0.28 0.41 <0.001 

Slope*** 0.473 0.440 0.505 1.60 1.55 1.66 <0.001 

Natural areas*** 0.995 0.943 1.046 2.70 2.57 2.85 <0.001 

Modified forest*** 0.565 0.506 0.623 1.76 1.66 1.87 <0.001 

Modified grass/shrub** 0.112 0.041 0.183 1.12 1.04 1.20 0.002 

Residential*** 0.437 0.370 0.503 1.55 1.45 1.65 <0.001 

Developed*** -0.774 -0.843 -0.705 0.46 0.43 0.49 <0.001 

Natural area x Modified forest 0.027 -0.002 0.055 1.03 1.00 1.06 0.066 

Natural area x Modified grass/shrub*** 0.205 0.177 0.234 1.23 1.19 1.26 <0.001 

Natural area x Residential* -0.040 -0.079 -0.002 0.96 0.92 1.00 0.040 

Natural area x Developed* 0.051 0.011 0.091 1.05 1.01 1.10 0.012 

Modified forest x Modified grass/shrub 0.011 -0.022 0.045 1.01 0.98 1.05 0.507 

Modified forest x Residential*** 0.253 0.211 0.295 1.29 1.24 1.34 <0.001 

Modified forest x Developed*** -0.422 -0.466 -0.378 0.66 0.63 0.69 <0.001 

Modified grass/shrub x Residential*** 0.178 0.125 0.232 1.20 1.13 1.26 <0.001 

Modified grass/shrub x Developed* 0.068 0.013 0.123 1.07 1.01 1.13 0.015 

Residential x Developed*** -0.425 -0.466 -0.384 0.65 0.63 0.68 <0.001 

Season‡ x Natural area 0.066 -0.724 -0.595 1.07 0.49 0.55 0.069 

Season x Modified forest** 0.131 -0.360 -0.195 1.14 0.70 0.82 0.002 

Season x Modified grass/shrub*** -0.345 -0.014 0.174 0.71 0.99 1.19 <0.001 

Season x Residential*** -0.311 0.377 0.581 0.73 1.46 1.79 <0.001 

Season x Developed 0.039 0.194 0.386 1.04 1.21 1.47 0.363 

Mange† x Natural area*** -0.660 -0.005 0.137 0.52 1.00 1.15 <0.001 

Mange x Modified forest*** -0.277 0.048 0.214 0.76 1.05 1.24 <0.001 

Mange x Modified grass/shrub 0.080 -0.443 -0.247 1.08 0.64 0.78 0.095 

Mange x Residential*** 0.479 -0.404 -0.219 1.61 0.67 0.80 <0.001 

Mange x Developed*** 0.290 -0.046 0.124 1.34 0.96 1.13 <0.001 

Season x Mange x Natural area*** -0.283 -0.387 -0.179 0.75 0.68 0.84 <0.001 

Season x Mange x Modified forest*** 0.271 0.137 0.405 1.31 1.15 1.50 <0.001 

Season x Mange x Modified grass/shrub -0.002 -0.147 0.143 1.00 0.86 1.15 0.980 

Season x Mange x Residential*** 0.379 0.212 0.547 1.46 1.24 1.73 <0.001 

Season x Mange x Developed 0.015 -0.157 0.186 1.01 0.86 1.20 0.866 

Notes: The level of significance (p < 0.05) is indicated with asterisks for parameters and bolded coefficients (β). 

† Using 14 healthy coyotes and five mange-infected urban coyotes. 

‡ Seasonal effect of winter; seasons were defined as winter: Dec.1 – Mar. 31 and summer: Apr. 1 – Nov. 31.  
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Table 2.6 Summary statistics for habitat suitability index (HSI) derived from a resource selection 

function (RSF) equation and expert-derived permeability values (used in circuit-based models) obtained 

for used GPS locations of 19 urban coyotes in Edmonton, Alberta. 

Habitat value type Mean (± SE) Median (± SD) Data range Skew[X] 

Habitat suitability†  0.39 (± 0.01) 0.49 (± 1.28) -4.09 - 4.66 -0.439 

Permeability‡ 31.31 (± 0.21) 28 (± 23.08) 0 - 159 0.496 

Notes: Shown are means, standard errors (SE), medians, standard deviations (SD), data ranges, and skewness 

(Skew[X]). Both habitat suitability index (HSI) and permeability were obtained from 11,748 radiotelemetry 

locations. 

† Habitat suitability index (HSI) from a resource selection function (RSF) model equation modelled using 19 urban 

coyotes (14 healthy and five mange-infected). 

‡ Estimated permeability was obtained from the expert-derived seasonal permeability layers (cumulative) by the 

City of Edmonton (2016b, 2017b).  
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Table 2.7 Estimated coefficients (β) and lower and upper 95% confidence limits (LCL and UCL, 

respectively) for GLMs comparing habitat suitability index (HSI) with expert-derived permeability values 

(used in circuit-based models) values, season, and health-status for used GPS locations for 19 urban 

coyotes in Edmonton, Alberta. 

Parameter β 95% LCL 95% UCL p-value 

Intercept*** 1.025 1.024 1.027 <0.001 

Permeability est.*** 0.012 0.010 0.013 <0.001 

Season*** 0.008 0.006 0.011 <0.001 

Season x Permeability est.** -0.004 -0.006 -0.001 0.003 

Mange*** -0.023 -0.025 -0.020 <0.001 

Mange x Permeability est.*** -0.006 -0.009 -0.004 <0.001 

Mange x Season* 0.005 0.001 0.010 0.024 

Mange x Season x Permeability est.* 0.005 0.000 0.009 0.036 

      AIC -35127.6 

      df 11740 

      R2 0.072 

      Pseudo R2 -0.004 

Notes: Shown are degrees of freedom (df), log-likelihood (LL), Akaike Information Criterion (AIC), R-squared 

(R2), and Nagelkerke Pseudo R2 (Nagelkerke, 1991). The habitat suitability index (HSI) tested was derived from a 

resource selection function (RSF) model equation modelled using 19 urban coyotes (n = 11,748 “used” 

radiotelemetry locations) and logarithmically transformed. The level of significance (p < 0.05) is indicated with 

asterisks and bold for estimated coefficients (β). 

† Estimated permeability obtained from expert-derived permeability layers (cumulative) used to create circuit-based 

models by the City of Edmonton (2016b, 2017b) and square-root transformed. 

‡ Seasons were defined as winter: Dec.1 – Mar. 31 and summer: Apr. 1 – Nov. 31.  

§ Using 14 healthy coyotes and five mange-infected coyotes. 
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2.6 FIGURES 

 

Fig. 2.1 Edmonton study area in Alberta and coyote GPS collar fix locations for 14 healthy and five 

mange-infected, subadult and adult coyotes captured between October 2009 to February 2013, with the 

available domain defined as 95% minimum convex polygons by season (MCPs; buildings excluded; 

water bodies excluded for summer). The inset map shows the study area location in Alberta, Canada. 
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Fig. 2.2 Variables related to land use, contiguous habitat, and human development considered for habitat 

selection analyses of healthy and mange-infected urban coyotes in Edmonton, Alberta. 
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Fig. 2.3 Average scaled pairwise log-ratio difference (“pwd”) for each habitat type (scaled relative to the 

North Saskatchewan River in winter) from two seasonal compositional analyses (winter: Dec.1 – Mar. 31; 

summer: Apr. 1 – Nov. 31) evaluating habitat selection of 19 urban coyotes in Edmonton, Alberta, 

including 95% CI values and the expert-derived permeability ratings used to parameterize permeability 

circuit-based models by the City of Edmonton (2016b, 2017b). 
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Fig. 2.4 Model coefficients for a generalized linear mixed model evaluating habitat selection in a resource 

selection function (RSF) for 14 healthy and five mange-infected urban coyotes in Edmonton, Alberta, 

including season (winter: Dec.1 – Mar. 31 and summer: Apr. 1 – Nov. 31) and health, with top model 

predictor variables, corresponding coefficients, and 95% confidence intervals. Clip-art from Murray et al. 

(2016). 
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Fig. 2.5 Model coefficients for a generalized linear mixed model comparing a habitat suitability index 

(HSI) derived from resource selection function (RSF) model for 14 healthy and five mange-infected urban 

coyotes in Edmonton, Alberta, with expert-derived cumulative permeability estimates used in circuit-

based models by the City of Edmonton (2016b, 2017b), including season (winter: Dec.1 – Mar. 31 and 

summer: Apr. 1 – Nov. 31) and health, with top model predictor variables, corresponding coefficients, 

and 95% confidence intervals. Clip-art from Murray et al. (2016).
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CHAPTER 3 - Urban mammal occurrence and relative abundance at camera traps correlate 

weakly with estimators of habitat ecological value used in urban planning 

3.1 INTRODUCTION 

Urbanization causes both a reduction in the number of species and changes the composition of 

species in the remaining natural areas of urban landscapes (Beninde, Veith, and Hochkirch 

2015). These detrimental effects occur in part because development reduces, fragments, and 

degrades areas that previously supported wildlife (Grimm et al. 2008). Impervious urban 

infrastructure diminishes habitat quality and connectivity (Cadenasso, Pickett, and Schwarz 

2007; Forman 2016) and typically increases with human population density (Newbold et al. 

2018). Urban landscapes tend to support an increasing abundance of species that can adapt to or 

exploit urban areas, while other species decline (McKinney 2002; McIntyre 2014; Beninde, 

Veith, and Hochkirch 2015). Cities strive to limit this loss because greater biodiversity supports 

many ecological processes (Bongaarts 2019) and human well-being (Fuller et al. 2007). 

Retaining urban biodiversity requires the protection of the natural areas that accommodate the 

needs of rare, as well as abundant, species in urban areas. 

As cities expand to accommodate human population growth, surrounding natural areas are 

being lost throughout the world (Bongaarts 2019), including relatively remote parts of North 

America, where urban sprawl is encouraged by the lower cost of rural land (Carruthers and 

Ulfarsson 2002). Edmonton, Alberta, Canada, is one such city, where rapid population growth 

(Statistics Canada 2021b) and urban sprawl (City of Edmonton 2017a) increase the challenge of 

conserving adequate habitat for wildlife. Edmonton has the largest urban park in Canada, which 

comprises an extensive river valley and ravine system (City of Edmonton 2020b; 2022) and 

preserves a high degree of connectivity for wildlife. The City of Edmonton (hereafter the City) 

aims to maintain this system along with upland natural areas (tablelands) as a connected 

ecological network even amid increasing development (City of Edmonton 2007). 

The urban planners that developed Edmonton’s ecological network approach emphasized the 

configuration of natural areas as movement pathways for wildlife and their composition or 

ecological integrity as wildlife habitat (City of Edmonton 2007). To support subsequent land use 

decisions to retain biodiversity, ecological planners developed two related indices termed 

biodiversity potential and ecological connectivity (City of Edmonton 2014a). Both indices are 
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calculated as relative scores based on patch characteristics using remotely sensed data (City of 

Edmonton 2014a). Biodiversity potential is intended to estimate the integrity and function 

(habitat quality), and it is scored based on the size, shape, and habitat diversity of a natural area 

(City of Edmonton 2014a). Conversely, ecological connectivity is intended to estimate the 

movement and dispersal potential of animals, and it is scored based on the area of upland and 

wetland habitats within a 100 m buffer of a natural area (City of Edmonton 2014a). The City 

described these indices in the Phase II Ecological Network Report (ENRII [City of Edmonton 

2014a]) as a consistent and scientifically-based means to evaluate trade-offs in future land use 

decisions (City of Edmonton 2014a). Although these indices were based on information in the 

ecological peer-reviewed literature (City of Edmonton 2014a), they have not been compared to 

wildlife occurrence data, such as that obtained from camera traps and similar census techniques. 

Tests of the indices used by planners could be supported by additional analyses because many 

other factors that affect habitat quality for wildlife are necessarily omitted. Two additional 

contributors to animal use of urban spaces include the conversion of natural to semi-natural 

spaces and the concomitant use of both of these areas by people. The two indices used by the 

City were designed to estimate the ecological value of areas with natural habitat types, but they 

were not intended to apply to parks with modified vegetation types. However, many semi-natural 

parks have qualities of natural areas, such as shrubs and trees, that may support species which 

rely on high vegetation structure, such as rodents (Glennon and Porter 2007) or snowshoe hare 

(Murray 2003; Holbrook et al. 2017). Semi-natural areas can serve as stepping-stones for 

movement between natural habitats if the density is high enough (Lynch 2018). Even somewhat 

disturbed urban green spaces with simplified vegetation, such as cemeteries and golf courses, can 

have similar species diversity to natural areas (Gallo et al. 2017). Conversely, semi-natural areas 

may be low-quality habitat for many species, such as if they are too small or isolated (Beninde, 

Veith, and Hochkirch 2015), or if they contain homogenous or simplified vegetation (Bigsby, 

McHale, and Hess 2013). Human use also affects habitat use; however, the effects on wildlife 

habitat use vary among species (Nickel et al. 2020). 

One more limitation of the ecological indices used by urban planners is the high variability 

among species in how they respond to urbanization (McIntyre 2014; Newbold et al. 2018; Fidino 

et al. 2021). Urban landscapes tend to support an increase in the abundance of species that can 

adapt or exploit urban areas, while others decline (McKinney 2002; Ducatez et al. 2018; 
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Newbold et al. 2018). This homogenization often corresponds to characteristics of urban 

avoiders vs. adapters and exploiters (sensu Blair, 1996; McKinney, 2002). Species adaptability 

greatly influences habitat use (Ducatez et al. 2018). For example, some species adjust diel 

activity patterns to reduce overlap with humans by becoming more active at night (Gaynor et al. 

2018; Gallo et al. 2022), which may increase use of land cover types that are predicted to be poor 

quality. However, adaptability also varies among species, even among flexible species, like 

carnivores (Nickel et al. 2020). Differences in functional traits will influence habitat use and thus 

habitat quality for wildlife species, such as dispersal ability, where smaller species are less likely 

to occur or persist in more disturbed and isolated areas. As a result, species able to disperse more 

easily tend to be more abundant where natural areas are fragmented (Parker and Nilon 2012), 

whereas smaller species decline (Barko et al. 2003; Munshi-South 2012). Selection pressures 

also influence habitat use. For example, prey species such as rodents or hares may be sensitive to 

domestic dogs that mimic predators (Lenth, Knight, and Brennan 2008), but may also prefer to 

use areas closer to human activity to shield natural predators (Suraci et al. 2019). Urban 

disturbances can result in increased use of natural spaces by carnivores and thus increasing 

species interactions, which may indirectly alter habitat use by other species (Parsons et al. 2019). 

Maintaining biodiversity requires protecting habitat that accommodates the needs of rare as well 

as abundant species in urban areas. Better planning could occur by understanding the responses 

to various urban features and disturbances of species groups that vary in size and of individual 

species habitat associations, natural history, and urban adaptation. 

Camera traps are an increasingly common tool for measuring wildlife occurrence, 

distribution, abundance, habitat use, and behaviour (O'Connell, Nichols, and Karanth 2011; 

Burton et al. 2015). Camera traps offer high accuracy rates with less cost and invasiveness than 

other forms of census (Burton et al. 2015; Kucera and Barrett 2011; O'Connell, Nichols, and 

Karanth 2011; O’Brien 2011; Steenweg et al. 2017), and they may also help to engage citizens in 

wildlife monitoring and protection (Wearn & Glover-Kapfer 2017). However, camera traps are 

less effective at monitoring small species, such as rodents (O’Brien, Kinnaird, and Wibisono 

2011), for which track tubes containing boards treated with ink or carbon can passively sample 

footprints (Glennon, Porter, and Demers 2002; Duffie et al. 2019). Track tubes effectively 

estimate the relative abundance of small mammals and they can be used to measure a range of 
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microtine rodents (e.g., mice and voles) and larger animals, such as squirrels (Glennon, Porter, 

and Demers 2002). 

This study used remote cameras at 89 sites (between 2018-2021) and track tubes at 47 sites 

(in 2020 only) to census mammals in natural and semi-natural parks in Edmonton, Alberta, to 

test the predictive ability of two ecological indices used by the City, and then of a variety of 

other remotely-sensed and site-based variables. We did so by comparing the index values with 

the presence (hereafter occurrence) and detection rate (hereafter relative abundance) of similarly 

sized groups of terrestrial mammals, including small (e.g., red squirrel [Tamiasciurus 

hudsonicus]), medium (e.g., hare/rabbit [Lepus spp.] to coyote), and large mammals (e.g., mule 

deer [Odocoileus hemionus]) that were designated as ecological design groups (hereafter species 

groups) by the City of Edmonton (City of Edmonton 2010b; 2014a) and several mammal species 

individually. We then compared detections of the three species groups and five species chosen as 

representatives of each species group to (a) several covariates associated with land cover that 

were measured remotely and (b) site-based variables that were measured in the field. In addition 

to the objectives described for this study, our camera data contributed to the Urban Wildlife 

Information Network (UWIN, 2021), a collaborative group of over 40 cities that uses a 

standardized protocol to set and report information from camera traps. Our purpose was to 

support ecological planning in the City of Edmonton while contributing to broader studies of 

urban biodiversity. 

3.2 MATERIAL AND METHODS 

3.2.1 Study area and site selection 

This study took place in Edmonton, Alberta, Canada (53.5472° N, 113.5006° W) and the 

surrounding peri-urban area (within a 3.2 km buffer of the city boundary; Fig 3.1), which 

allowed us to capture a gradient of urban density. The city area is 783 km² (City of Edmonton 

2019c), with a metropolitan population of over 1.4 million (Statistics Canada 2021a) and an 

average population density of 1,370 people/km² (Statistics Canada 2017). Edmonton is 671 m 

above sea level, has a mean annual temperature of 3.9℃, and a mean annual precipitation of 

476.9 mm (Government of Canada 2021). The river valley and ravine system is 7,400 ha in area 

and spans a linear distance of 100 km, with the many ravines and tributaries (City of Edmonton 
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2020b). Edmonton's 9% natural areas (City of Edmonton 2007) consist predominantly of Aspen 

parkland (City of Edmonton 2020b) with interspersed semi-natural urban green spaces (golf 

courses, urban parks, cemeteries, and remnant natural patches).  

To survey terrestrial mammals, we deployed 89 camera traps between May 2018 and 

September 2021 and 47 small mammal track tube arrays in July and August 2020 throughout 

Edmonton and the city periphery. Of these, we placed 69 camera traps and 37 track tube arrays 

in natural areas (including Edmonton’s river valley and ravine system) and 20 camera traps and 9 

track tube arrays in semi-natural urban locations (Fig. 3.1). We selected these locations following 

a standardized protocol (Magle et al. 2019; UWIN n.d.) across a gradient of urban density across 

four transects emanating from Edmonton’s urban centre in the NE, NW, SE, and SW directions. 

Two transects ran parallel to the river valley corridor (NE and SW), with some duplication of the 

SW transect in the Whitemud Creek Ravine owing to its extensive natural habitat and interest to 

the City. These transects were assumed to include highly connective forested habitat that 

supports several mammal species (City of Edmonton 2010b). Two other transects ran 

approximately perpendicular to Edmonton’s river valley corridor (NW and SE), encompassing 

both natural and semi-natural areas in which conservation theory would predict lower landscape-

level connectivity due to isolated green spaces and disconnected ravines. We selected sites 

within ~2 km of each transect, and either separated by at least 1 km or without temporal overlap 

(UWIN n.d.). We expected a 1 km separation distance to reduce spatial autocorrelation as it 

exceeds the home range size of many urban species (Magle et al. 2019). 

3.2.2 Detection data 

At each of the 89 camera trap locations, we placed one camera, triggered by either motion or 

infrared heat, on a tree or post at 1 m height facing an open area, game trail, or between two trees 

(Magle et al. 2019). We mainly used Reconyx Hyperfire cameras (PC800, PC900, or HF2X 

[Reconyx, Holmen, WI, USA]), but we also deployed a small number of Bushnell cameras (X-8 

[Bushnell Corp., Overland Park, KS, USA]) early in the study. We placed a synthetic fatty acid 

scent lure (Pocatello Supply Depot, Pocatello, ID, US) ~2 m in front of each camera for four 

months of the year (January, April, July, and October) until July 2019, when the network jointly 

discontinued the use of lure due to limited evidence of efficacy. Due to camera thefts, vandalism, 

and malfunction, and periodic logistical constraints, both the temporal and spatial coverage of 
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camera traps were variable. We deployed an average of 43 camera traps per month (min = 26; 

max = 61) and obtained data from 1,783 camera trap months. 

After we retrieved cameras, we used AI technology (Microsoft 2020) to remove images of 

humans and then used Timelapse2 (Greenberg 2018) to derive monthly detection rates as an 

index of relative abundance of terrestrial mammal species (O'Brien, Kinnaird, and Wibisono 

2003; Palmer et al. 2018; Kays et al. 2020). We expressed detection rate as the count of 

independent detections per month using 30 minutes as the threshold of elapsed time between 

consecutive images of the same species to define separate events (Burton et al. 2015; Avrin et al. 

2021). We summarized detections for each species and, as counts, summed them into three 

ecological design groups: small, medium, and large terrestrial mammals (Table 3.1 [City of 

Edmonton 2010b, 2014a]). Ecological design groups (hereafter species groups) are groups of 

species of similar body size, life history characteristics, and mitigation requirements used by the 

City to assess development impacts on wildlife movement and use (City of Edmonton 2014a) 

and for the planning of wildlife passages (City of Edmonton 2010b). 

We analyzed detection data for three mammal groups and 13 species (Table 3.1) to assess 

the predictive accuracy of the two ecological indices for species with diverse habitat preferences, 

dispersal ability, and urban sensitivity and to compare the predictiveness between species groups 

and individual species. For subsequent multivariate modelling, we analyzed data for three 

mammal groups and five individual species, chosen to represent each group to support the 

comparison of remotely-sensed and site-based predictors between groups and species. We 

selected one species to represent each of the small and large mammal groups, and three from the 

medium-sized mammal group to accommodate the high variability of life-history strategies of 

species within that group (Table 3.1). Thus, we created models of occurrence and relative 

abundance for three species groups, red squirrel, snowshoe hare (Lepus americanus), porcupine 

(Erethizon dorsatum), coyote, and mule deer. Camera traps are sometimes used to study small 

mammal populations (Burton et al. 2015), and those with infrared sensors are more likely to 

capture smaller species (Swann, Kawanishi, and Palmer 2011). However, using camera traps to 

survey small mammals has been criticized because the low detectability of smaller species 

results in unreliable detection data (O’Brien, Kinnaird, and Wibisono 2011; Anile and Devillard 

2016). For this reason, we used track tubes to provide comparable estimates to live-trapping 

(Glennon, Porter, and Demers 2002) as a supplement to camera data. 
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We measured the relative abundance of small mammals at 47 track tube sites over three 

sampling periods (July and August of 2020). For each deployment, we placed three track tubes at 

each site; the first was placed ~5 m in front of the camera, and the other two were placed at 45-

degree angles, resulting in a triangular arrangement with approximately ~20 m spacing between 

tubes (Glennon, Porter, and Demers 2002). Each track tube consisted of a track board nested 

inside a PVC pipe approximately 30 m long with a diameter that was either small (8 cm diam. x 

25 cm length) or large (12 cm diam. x 30 cm length). We used two sizes of piping to maximize 

the likelihood of capturing a diversity of small mammals (Palma and Gurgel-Gonçalves 2007). 

Each track board consisted of an 8 cm x 22 cm board cut from corrugated plastic affixed with a 4 

cm2 inkpad made of felt material that was glued to the center of the board, and two 8 cm x 12 cm 

strips of chemically treated contact paper taped to either end of the board. We treated the contact 

paper with a solution of tannic acid, ethanol, and water (King and Edgar 1977). We surrounded 

each inkpad with a 1 cm silicone bead to control ink bleed and applied an ink solution of ferric 

nitrate, polyethene glycol, Anthrox BL725, and distilled water (King and Edgar 1977). When 

animals enter the tube, the solution transfers onto the contact paper to leave a waterproof and 

smudge-proof print. We baited each track tube with a dime-sized amount of peanut butter 

smeared in the center of the roof of each tube. 

We expressed relative abundance from track tubes as the proportion of total sampled area 

(contact paper) covered by tracks for each deployment and per day deployed (proportion 

occupied/deployment/day). To quantify this, we created a 1 cm2 grid on each side of the two 

segments of contact paper from each tube to control for variability in the size of contact paper, 

ink-bleeding, and damage. We counted the number of readable grid cells for each track board as 

those entirely on the contact paper and less than 50% obscured by ink bleed or other damage 

(sampled area). We counted cells containing one or more tracks (occupied cells); tracks that 

overlapped multiple cells we only counted once. We then separately summed the total number of 

occupied and readable cells from all the track tubes for each deployment. We divided the total 

occupied cells/readable cells and then by the number of days the track tube was deployed. Each 

sampling period was ~8 days on average, and we collected relative abundance data for 130 

deployments (103 deployments from 38 natural sites; 27 deployments from 9 modified sites). 
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3.2.3 Environmental data 

To further explore predictors of mammal occurrence and relative abundance, we used remotely-

sensed data, site-specific information from field surveys, camera traps, and track tubes to derive 

one categorical, three binary, and 32 continuous variables to develop independent variables and 

models (described below; Table 3.2; Fig. 3.1). For the remotely-sensed data, we used a 

Geographic Information System (ArcMap, v10.7.1, Redlands, CA) to derive eight geographic 

information system layers, including buildings (City of Edmonton 2018a), roads (City of 

Edmonton 2018c), sidewalks (City of Edmonton 2021b), neighbourhoods (City of Edmonton 

2021a), land use (City of Edmonton 2021c), dog off-leash areas (City of Edmonton 2020a), 

urban Primary Land and Vegetation Inventory (uPLVI [City of Edmonton 2018d]), and unique 

landforms (river valley/ravine [City of Edmonton unpublished data 2016c]). To extract 

explanatory metrics related to land cover, we collapsed land cover from the City’s uPLVI, 

unique landforms, and land use layers as five land cover types: natural forest, natural 

grass/shrub, modified vegetation (grass/shrub/trees; excluding maintained grass), maintained 

grass, the river valley and ravine system, and housing. The uPLVI was adapted from provincial 

vegetation inventories to incorporate unique urban features (City of Edmonton 2014b). We 

derived housing density as the density of dwellings and population density by combining 

neighbourhood data with census data (City of Edmonton 2019a, 2019b). We used the uPLVI, 

sidewalk, road, and building layers (listed above) to calculate the cover of impervious surfaces, 

which we used, along with other human disturbance-related variables, to create an urbanization 

index using principal component analysis (PCA; below). This approach was similarly 

implemented in a variety of other studies in the UWIN group (Fidino, Lehrer, and Magle 2016; 

Magle, Lehrer, and Fidino 2016; Fidino and Magle 2017; Gallo et al. 2017; Gallo et al. 2019) to 

control for the influence of highly correlated disturbance-related variables.  

Remotely-sensed metrics comprised 14 explanatory variables (Table 3.2), including the 

density of vegetated land cover types (four), urban density, distance to the river valley and ravine 

system, vegetation type (natural forest; n = 43, natural grassland; n = 16, maintained 

grass/transplanted treed; n = 20), and site occurrence in natural areas (n = 69; vs modified; n = 

20) and off-leash dog parks (n = 17). Of the 14 remotely-sensed metrics, we derived patch-level 

metrics analogous to the components used to score the ecological indices. We did so to assess the 

predictive capacity of similar patch-level metrics to those used in the indices when evaluated 
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along with other predictors relevant to both natural and semi-natural areas. The variables used to 

represent biodiversity potential included patch area (ha), shape index, and habitat diversity 

within the natural area. The variable used to represent ecological connectivity for models for 

camera data was the amount of contiguous habitat as the combined area (ha) of upland and 

wetland area within a 100 m buffer. For track tube data, the variable used to represent ecological 

connectivity was whether sites were in contiguous habitat (vs. disconnected parks; natural and 

semi-natural). These variables differed for camera traps and track tubes to provide comparable 

variables on biological relevant scales (other variables largely measured at such scales using 500 

m/30 m). 

We derived density metrics (buildings, roads, population, and land cover; Table 3.2) within 

a 500 m buffer of each site for models using camera data and within a 30 m buffer for models 

using track tube data. Because the importance of a feature is expected to decline with distance to 

it, we applied an exponential decay function to proximity metrics (e-αd [Taylor, 1967]), where d 

was the distance in meters, and α was set to correspond with each scale. We chose a 500 m scale 

for variables used to model camera data because it encompassed the home range of many of the 

focal species (Etter et al. 2002; Hämäläinen, Fey, and Selonen 2018), while avoiding 

pseudoreplication (Manly et al. 2002; Miguet et al. 2015). This scale also supported the 

comparison of effects between species (Miguet et al. 2015) and was used in other multi-species 

urban studies (Fidino, Lehrer, and Magle 2016; Fidino and Magle 2017; Gallo et al. 2017; Gallo 

et al. 2019). We chose a 30 m scale for variables used to model track tube data based on the 

home range size of rodent species (Schirmer et al. 2020) and scales used in other studies 

(Glennon and Porter 2007). 

We conducted field surveys at 71 camera locations in the summer of 2019 to obtain 12 

continuous explanatory variables. These included forest or grassland structure, land cover type, 

tree density, vegetative diversity, anthropogenic impact, human and game trails, and various 

cover measures (e.g., canopy, shrubs, coarse woody debris, etc.; Table 3.2). Surveys were guided 

by the City of Edmonton Temporary Sample Plot (TSP) and Permanent Sample Plot (PSP) 

Procedures (City of Edmonton 2016a) and Urban Ecological Field Guide (City of Edmonton 

2015). We measured characteristics either as the count (i.e., game trails) or average value (e.g., 

forest structure class) within a 30 m buffer or the average of four cover plots placed at 30 m from 

each camera in all cardinal directions. We replaced missing field data with the average values 
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from non-missing sites based on whether the site was in a natural or modified area (replaced: 14 

sites; 112 sample months, four sites; 15 sample months, respectively). 

Lastly, we used data from camera traps, track tubes, and temporal values from the literature 

(ABMI 2018, 2021) to derive eight additional continuous variables as measures of species co-

occurrence, site-specific human disturbance, and those that may influence detection probability 

(Table 3.2). We used data from cameras to derive the number of images of humans and domestic 

dogs and the number of detections of predator (coyote; for small mammals [group], red squirrel, 

snowshoe hare, and porcupine) and prey species (small mammals; for coyote models) per month. 

We used track tube data to derive a secondary measure of the prevalence of small mammal prey 

as the average proportion of occupied cells/day and used the average values for two sites where 

data was missing. We included season (summer: Apr. – Oct.; winter: Nov. – Mar.) and lured as 

the proportion of the month that lure was effective (~3 weeks [Wildlife Control Supplies 2018]). 

To account for variability in the camera field of view, we used temporal values from the 

literature (ABMI 2018, 2021) to calculate the effective detection distance (EDD) based on 

species, season, and habitat type; for the species groups, we averaged the values for species 

within each group. 

3.2.4 Ecological indices 

To determine whether ecological indices were good predictors of occurrence or relative 

abundance for our target species and guilds, we derived biodiversity potential and ecological 

connectivity scores for 69 camera trap locations and 38 track tube arrays in natural areas. The 

indices were designed to assess the value of natural areas, and they were not intended to apply to 

the urban parks we monitored as part of a broader set of camera traps and track tubes. We used 

the uPLVI (City of Edmonton 2018d) to derive scores by replicating the scoring process used by 

the City described in the Phase II Ecological Network Report (ENRII; Appendix 3.1 - Table 1 

[City of Edmonton 2014a]). Thus, we delineated natural areas as “contiguous natural land cover” 

(City of Edmonton 2018b) by dissolving all adjacent polygons of the following land 

classifications: naturally wooded, non-wooded, wetland, and natural water bodies, excluding the 

North Saskatchewan River (City of Edmonton 2018d). We scored biodiversity potential (out of a 

total of 35) by deriving and combining scores based on the total area (0 to 15), shape (-8 to 0), 

and habitat diversity (1 to 4; Appendix 3.1 - Table 1 [City of Edmonton 2014a]). We scored 
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ecological connectivity (out of a total of 20) as the combined score for the area of nearby upland 

(0 to 10) and wetland habitat (0 to 10) found within a 100 m buffer of each natural area 

(Appendix 3.1 - Table 1 [City of Edmonton 2014a]). For the 69 camera trap locations and 38 

track tube arrays, we extracted values of biodiversity potential (-4 to 33; 0 – 33, respectively) and 

ecological connectivity (both 0 - 13) to compare with detection data. 

3.2.5 Analytical approach - Testing ecological indices 

 To evaluate the predictive accuracy of two ecological indices, we used two types of generalized 

linear mixed models, including one method that could address the zero-inflation we encountered 

in the count (Poisson) data from camera traps. Count data often contain a disproportionate 

number of zeros relative to the count distribution (Poisson) or are “zero-inflated” (Lambert 

1992), suggesting that some zeros relate to the probability a species will occur, which results 

from a separate process (Martin et al. 2005). Because excess zeros can result from environmental 

causes, the inability to detect present individuals (i.e., imperfect detection [MacKenzie, Bailey, 

and Nichols 2004]), and chance (Martin et al. 2005), particular models are needed to partition 

variance appropriately and avoid biased parameter estimates (Harrison 2014; Blasco‐Moreno et 

al. 2019). 

Zero-inflated Poisson models (hereafter ZIP; Lambert 1992) fit two linear models 

simultaneously to address the sources of zero-inflation (probability of a zero value; inversely, 

probability of occurrence) separately from zeros that belong to the count distribution (Lambert 

1992; Blasco‐Moreno et al. 2019). The zero-inflation model-part is a logistic regression, and 

since counts are repeatedly measured over time, the binary response serves as a detection history 

(Dénes et al. 2015). Thus, the zero-inflation model-part can include predictors of “false” zeros 

(e.g., imperfect detection) and “true” zeros that relate to occurrence (Lambert 1992; Blasco‐

Moreno et al. 2019). Additionally, this model-part can also mitigate problematic variability from 

other “false” zeros (e.g., not present but generally occurs, or uses the feature, but not at that site). 

The second model-part is a Poisson model used to assess predictors of the counts (relative 

abundance given presence [Lambert 1992; Wenger and Freeman 2008]). 

We used ZIP models with random effects (i.e., mixed models) to compare the indices to 

the occurrence and relative abundance of three groups and 13 species (Table 3.1) from camera 

traps and generalized linear mixed models (hereafter LMM) to compare relative abundance from 



49 

 

track tubes. In both model sets, we used an all-subsets approach to assess the predictive capacity 

of biodiversity potential and ecological connectivity, along with season and the two-way 

interactions between the indices and season. For both model types, we first determined whether 

the indices were correlated (Pearson’s correlation coefficient; r > 0.6). We then rescaled scores 

between 0 and 1 to support the comparison of coefficients and to assess the relative magnitude of 

effect sizes. 

For ZIP models, we included all variables and interactions in both the zero-inflation (or 

inversely, occurrence; ψ) and conditional (relative abundance; λ) components of the two-part 

model. We included an offset term to account for partial months by converting each count to a 

rate (log of the number of active days per deployment) and a random effect for site to account for 

repeated measures and unequal sampling effort. We identified the most parsimonious top model 

among competing ZIP mixed-models with a logit link for the binary response variable (detected 

= 1, not detected = 0) and a log link for the count response (number of detections per month) and 

retained those within 2 ΔBIC (Schwarz 1978; Zuur, Ieno, and Smith 2007). We used Bayesian 

Information Criterion (BIC; Schwarz 1978) because it more heavily penalizes complex models to 

favour parsimony (Hastie, Tibshirani, and Friedman 2008) and reduces type 1 errors in the 

presence of overdispersion (Campbell and O'Hara 2021). Since the coefficients from the zero-

inflation model-part corresponds with the probability of zeros (absence; Brooks et al. 2017), we 

inversely transformed these coefficients to obtain estimates that corresponded with the 

probability of occurrence (ψ). To compare the same predictors to the relative abundance from 

track tubes, we used a similar approach as in ZIP models, aside from a few adjustments for the 

different response variable. We used LMMs with a square root transformation for the response 

variable calculated from the proportion of occupied cells/deployment/day. No offset was 

necessary, but we included a random effect for site to account for repeated measures. We 

identified the most parsimonious top model among competing LMMs using Akaike’s 

Information Criterion for small sample sizes (AICc; retained those within 2 ΔAICc; Akaike 

1978; Burnham and Anderson 2002). 

3.2.6 Analytical approach - Modelling wildlife occurrence and relative abundance 

To complement these assessments, we used the same model types to evaluate the predictive 

value of several remotely-sensed, human-use, and field measurements on the occurrence and 
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relative abundance of groups and individual species. We built ZIP mixed models to evaluate the 

influence of 30 explanatory variables (Table 3.2) on the occurrence and relative abundance of 

red squirrel, snowshoe hare, porcupine, coyote, mule deer and three species groups (small, 

medium, and large mammals; Table 3.1) from camera traps. We then built LMMs to assess the 

effects of 27 variables on the relative abundance of small mammals from track tubes. 

To build models, we first used camera data from 13 species (Table 3.1) to create an 

urbanization index by applying principal component analysis (PCA) to variables that proxied 

urban intensity, including the density of roads, buildings, population, housing, and impervious 

surfaces, as well as proximity to buildings and roads (Table 3.2). We applied PCA to all 

combinations of correlated variables (r > 0.5 [Burnham and Anderson 2002]) and identified 

principal components with single-axis scores explaining ~70% of the variance. Because we were 

interested in the most predictive urban index, we subsequently tested PCA metrics in both the 

zero-inflation (inversely occurrence; ψ) and conditional model parts (abundance; λ) for each 

species and retained the PCA metric that was most consistently within 2 ΔBIC (Schwarz 1978; 

Zuur, Ieno, and Smith 2007). Because we wanted a single index of urbanization (Fidino, Lehrer, 

and Magle 2016; Magle, Lehrer, and Fidino 2016; Fidino and Magle 2017; Gallo et al. 2017; 

Gallo et al. 2019), we discarded any development-related variables from subsequent modelling 

regardless of correlation coefficients. 

For both model types, we then investigated all variables using univariate statistics and 

retained those that were liberally significant (p < 0.25 [Hosmer and Lemeshow 1989]). For ZIP 

models, we did so first for the zero-inflation part of the two-part model. If two or more variables 

(including the PCA metric) were correlated (r > 0.5), we retained the most explanatory using 

best-fit, defined as the variable with the lowest BIC score (Schwarz 1978) for ZIP models and 

lowest AICc (Akaike 1978) for LMMs. We rescaled continuous variables between 0 and 1 and 

then built combined models using an all-subsets approach because we were primarily interested 

in prediction, not hypothesis testing.  

For ZIP mixed models, we built combined occurrence (ψ) models in the zero-inflation 

model-part, which included a log-offset term and a random effect for site. We used BIC 

(Schwarz 1978) to identify parsimonious top ψ models among competing ZIP mixed models 

(Poisson GLMM) with a logit link for the binary response variable (detected = 1, not detected = 

0), retaining models within 2 ΔBIC (Zuur, Ieno, and Smith 2007). Retaining the variables from 
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top ψ models, we repeated the above steps to build combined conditional models (relative 

abundance; λ) to identify parsimonious top λ models among competing ZIP mixed models with a 

log link for the count response variable. We inversely transformed the coefficients from the zero-

inflation part to correspond with the probability of occurrence (ψ). To model relative abundance 

data from track tubes, we followed similar steps to build combined LMMs for the square-root-

transformed proportion occupied/deployment/day response variable. We included a random 

effect for site and used AICc (Akaike 1978) to identify parsimonious top models (retained 

models within 2 ΔAICc; Burnham and Anderson 2002). 

For all analyses, we assessed model fit using Nakagawa's R2 for mixed models (Nakagawa, 

Johnson, and Schielzeth 2017) using the performance package (Lüdecke et al. 2021). This 

approach to assessing fit accounts for zero-inflation via the insight package (Lüdecke et al. 

2022). We determined the explanatory value of the random effect by comparing the deviance of 

the top model with and without it using a likelihood-ratio Chi2 test with an approximate p-value 

to account for the random effect (Pr > ChiSq / 2 [Stram and Lee 1994; Hall 2000; Bolker et al. 

2009]). For ZIP models, we also used the DHARMA package (Hartig 2021) to derive dispersion 

parameters (ĉ) for the global (Burnham and Anderson 2002) and best-fit models (Liu, Ma, and 

Johnstone 2020; Markle et al. 2020) and to visually assess Q–Q plots based on simulated 

residuals. We performed all analyses in R 3.6.1 (R Core Team 2019) using the additional 

packages, lme4 (Bates et al. 2015), glmmTMB (Brooks et al. 2017), and MuMin (Barton 2009). 

3.3 RESULTS 

We collected occurrence and relative abundance for terrestrial mammal species throughout 

Edmonton, AB, during 1,783 camera trapping months from camera traps deployed at 89 

locations between May 2018 and September 2021 (Appendix 3.1 - Table 2; Fig. 3.2). We 

collected 1,520 of these camera months from the 69 camera traps placed in natural areas and the 

remaining 263 camera months from the 20 camera traps placed in modified urban parks. We 

collected 21,996 detections of 23 terrestrial mammal species or genera (Table 3.1; Fig. 3.2); the 

number of detections per species averaged 818 (SD = 1,838.46; median = 31; SE = 383.35) and 

ranged from 1 for cougar (Puma concolor) and elk (Cervus canadensis) to 7,662 for coyote 

(Canis latrans; Table 3.1; Fig. 3.2). We had sufficient detections of 13 species for subsequent 

modelling. 
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3.3.1 Testing ecological indices 

We used ZIP mixed models and LMMs to compare values for indices of biodiversity potential 

and ecological connectivity, developed by the City of Edmonton, with the occurrence and 

relative abundance from camera traps and track tubes placed in natural areas. We tested these 

indices for three species groups and for 13 individual species from camera traps and the relative 

abundance of small mammals from track tubes. The indices had some predictive value for only 

the small and medium groups, and snowshoe hare, coyote, and white-tailed deer from camera 

traps (Table 3.3), but the direction of these effects varied (Table 3.4; Fig. 3.3).  

Among six significant effects of the indices and six interactions between indices or with 

season (Table 3.4; Fig. 3.3), as a main effect, higher biodiversity potential predicted lower 

relative abundance of the small mammal group, but higher occurrence of large mammals and 

relative abundance of white-tailed deer. Higher ecological connectivity predicted higher relative 

abundance of the small mammal group, and lower relative abundance of both snowshoe hare and 

white-tailed deer. Significant two-way interactions between the indices showed that higher 

ecological connectivity values increased the positive effect of biodiversity potential on the 

relative abundance of white-tailed deer, but reduced the negative effect of biodiversity potential 

on coyotes. Five significant interactions between indices and season revealed that the predictive 

ability of the ecological indices was sometimes dependent on season. The winter season 

increased the negative effect of biodiversity potential on the relative abundance of small 

mammals, but reduced its negative effect on coyotes. Winter reduced the positive effect of 

ecological connectivity on the relative abundance of small mammals and increased its negative 

effect on snowshoe hare and white-tailed deer (Table 3.4; Fig. 3.3).  

Each of these models had a single top model, except for large mammals, which had two 

(Table 3.3). As an indication of model fit, the dispersion parameters (ĉ) from the global models 

for snowshoe hare, coyote, and the large species group models suggested overdispersion of data 

(ĉ > 1; ranged from 0.02 to 1.90; Table 3.3; Burnham and Anderson 2002). However, none of the 

test statistics from overdispersion tests were significant (global models; Table 3.3), and Q-Q 

plots suggested the fits were adequate. The R2 values (Nakagawa, Johnson, and Schielzeth 2017) 

were also reported (Table 3.3). However, they should be interpreted cautiously for models with ĉ 

> 1 because overdispersion may inflate conditional R2 values (Harrison 2014). Including a 

random effect for site improved models for all species groups and species (p < 0.001). 
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3.3.2 Modelling occurrence and relative abundance 

We used ZIP mixed models and LMMs to examine the predictive value of several environmental 

variables for the occurrence and relative abundance of three design groups used by the City and 

five species from camera traps and the relative abundance of small mammals from track tubes. 

One urbanization index from the PCA was the most explanatory component among models for 

each species. It included density of impervious surfaces and natural forests (PC1 = 75.3% for 

camera data; 87.5% for track tube data), where higher values indicated increasingly dense, 

impervious surfaces and housing (approximating urban intensity). For ZIP models for each group 

and species from camera traps, we first modelled the zero-inflation (ψ; inversely, occurrence) 

from the final list of uncorrelated and most explanatory variables (best-fit in ψ model part; 

Appendix 3.1 - Table 3). We identified the variables within the most parsimonious top ψ models 

and held them constant for the ψ component of the two-part model to subsequently model 

relative abundance via the conditional model (λ; Table 3.5; Appendix 3.1 - Table 3). 

For small-sized mammals, we ran a ZIP mixed model for red squirrel as an individual 

species from camera traps, but we also used LMMs to model the relative abundance of small 

mammals at track tubes (Table 3.6; Fig. 3.4). Red squirrel occurrence declined with increasing 

amounts of modified vegetation and increased in winter. Relative abundance of red squirrels 

declined with human detections, and increased with dog detections and the winter season. For the 

small mammal group, occurrence declined with increasing cover of both grasses/forbes and 

shrubs, and increased with the number of dog detections from cameras. Abundance of small 

mammals declined with modified vegetation and human detections and increased with dog 

detections and in winter. Relative abundance of small mammals from track tubes increased in 

connected habitats and with increasing cover of trees and coarse woody debris (Table 3.6; Fig. 

3.4). 

For medium-sized mammals, we ran individual models for snowshoe hare, porcupine, and 

coyote (Table 3.6; Fig. 3.5). Occurrence of snowshoe hare declined with increasing maintained 

grass; both occurrence and relative abundance increased in winter. Occurrence of porcupines 

declined with increasing urban density and winter, but there were no significant predictors of 

relative abundance. Both occurrence and relative abundance of coyotes increased with the 

relative abundance of prey (defined as detection on camera traps), presence of lure and in winter. 

Coyote occurrence declined with increasing urban density, and relative abundance increased with 



54 

 

dog detections and natural vs. modified habitats. As a group, medium mammal occurrence and 

relative abundance both increased with detections of dogs, use of lure, and winter, season, 

whereas occurrence declined with increasing tree cover (Table 3.6; Fig. 3.5). 

For large mammals, we ran a separate model only for mule deer (Table 3.6; Fig. 3.6), for 

which occurrence increased with modified vegetation and declined in winter, while relative 

abundance declined with increasing forest structure and urban density. For the large mammal 

group, occurrence increased with natural forests and modified vegetation and declined with 

human detections and in winter (Table 3.6; Fig. 3.6). The relative abundance of large mammals 

declined in areas designated as off-leash (Table 3.6; Fig. 3.6). 

There was a single top model for every species and species group, with no competing top 

models (Table 3.5). Regarding model fit of ZIP mixed models, the dispersion parameters (ĉ) 

from global models for snowshoe hare, coyote, and the medium species group models suggested 

overdispersion (ĉ > 1; Table 3.5; Burnham and Anderson 2002). The simulation-based residual 

tests indicated that the dispersion parameters from global models ranged from 0.01 to 2.05 

(Table 3.5). However, none of the test statistics from overdispersion tests were significant 

(global models), and the Q-Q plots suggested adequate fits (Table 3.5). The R2 values 

(Nakagawa, Johnson, and Schielzeth 2017) were also reported (Table 3.5). Again, R2 values 

should be interpreted cautiously for models with ĉ > 1 because overdispersion may inflate the 

conditional R2 (Harrison 2014). The model fit of LMMs modelling relative abundance of small 

mammals from track tubes suggested the fit was adequate (conditional R2 = 0.34 and marginal R2 

= 0.20; Table 3.5). Including a random effect for site improved models for all species groups and 

species in ZIP mixed models (p < 0.001), with support of improved LMMs modelling relative 

abundance from track tubes (p = 0.059). 

3.4 DISCUSSION 

Mitigating urban biodiversity loss requires conserving adequate habitat to accommodate the 

needs of diverse species, which urban planners sometimes attempt to predict with indices of 

habitat value derived from remotely-sensed information. We tested two such indices used by the 

City of Edmonton and explored several remote and field-based measures on the occurrence and 

relative abundance of mammals detected with camera traps and, for small mammals, track tubes. 

We found that the City’s indices rarely predicted greater occurrence or relative abundance of 
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species groups and individual species; however, biodiversity potential was more generally 

predictive of higher occurrence or abundance than was ecological connectivity. Among the 

remotely sensed variables we tested, species occurrence or relative abundance typically increased 

with the naturalness of vegetation density and declined with various forms of human disturbance, 

such as urban density, human detections from camera traps, and in designated off-leash areas, 

but with some positive responses to the abundance of domestic dogs. In addition to assessing 

predictors of species occurrence and abundance, we showed that camera traps effectively 

captured 13 different mammal species, several of which are rarely observed in Edmonton. 

A core purpose of our work was to compare the occurrence and detection rates of urban 

terrestrial mammals with two ecological indices developed by the City of Edmonton that we 

scored for natural areas throughout the city. We found inconsistent predictive power of the 

indices among groups and species, but biodiversity potential performed closer to expectations 

than ecological connectivity. As biodiversity potential increased, we found that large mammals 

were more likely to occur, and that white-tailed deer were more abundant. Because the index of 

biodiversity potential reflects the larger size, more rotund shape, and greater habitat diversity of 

natural areas, it logically correlates with the presence of ungulates, which rely on large patches 

with less edge habitat (at a 2 km scale; Kie et al. 2002). White-tailed deer prefer diverse habitats 

(Miller, Muller, and Demarais 2003) and habitat edges between habitat types, but less so when 

edges are heterogeneous (Quinn, Williams, and Porter 2013). Biodiversity potential was weakly 

negatively predictive for the abundance of coyotes, but with confidence intervals that broadly 

overlapped zero. The negative effect of biodiversity potential on small mammals may have 

stemmed from the high proportion of upland-loving red squirrels in our sample of small 

mammals. Although red squirrels are specialists on spruce in the boreal forest near Edmonton 

(Wheatley, Larsen, and Boutin 2002), they appear to thrive in uplands of every sort (Yahner 

2003). Red squirrels may tolerate small patches and disturbed edges more easily when 

considering the home range size and tolerance to urban disturbances of similar species (Fey, 

Hämäläinen, and Selonen 2016; Uchida et al. 2016). Since biodiversity potential is scored for the 

entire natural area, this scale could be too large to reflect high-quality habitat for smaller species 

(Fisher, Anholt, and Volpe 2011). 

We found that higher ecological connectivity values were associated with a higher relative 

abundance of the small mammals, which increased in winter, but a lower relative abundance of 
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snowshoe hare and white-tailed deer that was reduced in winter. Because the index of ecological 

connectivity was based on the presence of nearby upland and wetland areas, the positive 

association for small mammals could be due to the high prevalence of tree squirrels within this 

group. Many tree squirrels are tolerant of urban disturbances (Uchida et al. 2016) that may be 

more prevalent at patch edges. In contrast, snowshoe hares tend to avoid edge habitat (Lewis et 

al. 2011), and so do white-tailed deer when edges are heterogeneous (Quinn, Williams, and 

Porter 2013). Thus, wetland areas interspersed in natural areas may have low value for both 

snowshoe hare (Murray 2003) and white-tailed deer. White-tailed deer, in particular, appear to 

avoid water bodies in urban areas (Magle et al. 2014). The predicted value for ecological 

connectivity was not correlated with detections of beaver (nor was biodiversity potential), a 

wetland specialist (Baker and Hill 2003), suggesting that the score for wetland habitat may not 

reflect the expected benefit even for those which rely on wetlands. Ecological connectivity may 

have limited predictive value because of the 100 m scale used to measure connective habitat. 

Perhaps 100 m adequately encompasses the area necessary to support the movement of small 

mammals, but not for large mammals with higher dispersal ability. Higher dispersal ability is 

often associated with greater reliance on connective habitat (Cushman and Landguth 2012), but 

also very scale-dependent habitat associations (Bowyer and Kie 2006). Thus, positive 

correlations may have occurred if ecological connectivity scores were calculated using a larger 

buffer width. Ecological connectivity was weakly negatively predictive of the abundance of 

coyotes, but with broad confidence intervals suggestive of little effect. This outcome may stem 

from the tremendous breadth of habitats occupied by urban coyotes (Grubbs and Krausman 

2009; Hinton, van Manen, and Chamberlain 2015; Franckowiak, Perdicas, and Smith 2019; 

Wurth, Ellington, and Gehrt 2020). 

To complement assessments of the indices used by the City, we examined the predictive 

capacity of several remotely-sensed and field-based covariates, including similar patch-level 

metrics to those used to score the indices. We included the three design groups used by the City 

to assess the similarities in habitat use of species groups and similar-sized individual species, and 

did so separately for small, medium, and large mammals. Beginning with the small mammals 

and based on camera data, the occurrence of small mammals declined with increasing cover of 

grasses/forbes and shrubs, perhaps because this group contained mainly tree squirrels, which 

prefer forests (Yahner 2003). A similar squirrel species, the Eurasian red squirrel (Sciurus 
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vulgaris), seems to prefer more densely treed urban areas (Hämäläinen, Fey, and Selonen 2018), 

despite the capacity to occupy a variety of habitats (Uchida et al. 2016). Many of the sites 

possessing high coverage of grasses occurred in semi-natural urban parks, which differ from the 

preferred habitat of many small mammals for natural shrubs and dense, coarse woody debris 

(Glennon and Porter 2007). This general preference explains why we found that red squirrels 

occurred less often, and small mammals were less abundant as modified vegetation increased. 

Such areas likely limit the movement of smaller rodents that are highly vulnerable to fragmented 

urban areas (Barko et al. 2003; Munshi-South 2012), and perhaps for some tree squirrel species 

which seem to be less impacted by disturbances such as roads (Fey, Hämäläinen, and Selonen 

2016), but still have smaller home ranges (Hämäläinen, Fey, and Selonen 2018). These factors 

combine to isolate small mammal populations in urban green spaces (Munshi-South 2012), and 

our track tube results suggest that their populations are supported by a combination of tree cover, 

coarse woody debris, and connected habitat. Together, these results indicate that connected 

natural areas increase habitat quality, even for small species, to support greater rodent diversity 

in urban areas (Johnson and Karels 2015). 

Medium mammals and coyotes responded to fairly similar features, but their predictors did 

not much overlap with snowshoe hare and porcupine. For example, medium mammals were 

negatively associated with tree cover, snowshoe hare declined with maintained grass, and only 

urbanization (negatively) predicted porcupines. The negative association with forest cover for the 

medium mammal group was probably driven by the high rates of occupancy and relative 

abundance of coyotes, which thrive in open areas (Hinton, van Manen, and Chamberlain 2015) 

because forested areas are typically preferred by snowshoe hare (Murray 2003; Lewis et al. 

2011) and porcupine (Harder 1980; Roze and Ilse 2003). Snowshoe hares may have occurred 

less when maintained grass was dense because they rely on highly complex vegetation structure 

and cover for reproduction and to evade predation (Murray 2003; Holbrook et al. 2017). The 

negative association between medium mammals and forest cover could stem from reduced 

detectability (Iknayan et al. 2014; Hofmeester et al. 2019) rather than habitat avoidance. Coyotes 

may prefer natural areas to avoid human activity and access more available prey (Richer et al. 

2016) and cover (Gosselink et al. 2003). The negative effect of urbanization on coyotes and 

porcupines may have stemmed partly from their high sensitivity to road networks (Roze and Ilse 

2003; Franckowiak, Perdicas, and Smith 2019). 
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Large mammals and mule deer responded opposingly to forest density and structure but 

otherwise had similar habitat preferences. We found that large mammals occurred more often 

where forest density was high, whereas mule deer, were less abundant when forest structure 

increased. Many ungulates use forested habitats (Mackie et al. 2003; Miller, Muller, and 

Demarais 2003), especially white-tailed deer, which require higher quality forage (Miller, 

Muller, and Demarais 2003) and that were the most common large species in our dataset. In 

contrast, mule deer prefer open forests, shrubland areas, and watercourses (Mackie et al. 2003) to 

explain their avoidance of highly structured forests. Forest structure may have been a predictor 

of detectability, considering a higher structure would have made it more difficult to differentiate 

between the deer species, which were sometimes identified only to genus. Large mammals and 

mule deer both occurred more often where modified vegetation was dense, a feature that could 

increase hiding cover to support movement among larger patches of natural habitat if the density 

is high enough (Lynch 2018). These features may also increase opportunities for a combination 

of grazing and browsing that are favoured by deer (Miller, Muller, and Demarais 2003), and 

especially the preference for shrubs exhibited by mule deer (Berry et al. 2019). It was not 

surprising that large mammals occurred less often as human detections increased and in off-leash 

areas, and that mule deer were less abundant in more urban areas. Others have found that white-

tailed deer are generally highly tolerant of urbanization (Miller, Muller, and Demarais 2003) and 

have even been referred to as “quintessential” urban species (Magle et al. 2021), compared to the 

historic higher sensitivity to infrastructure of mule deer (Mackie et al. 2003). Nonetheless, 

urbanized populations of mule deer are rapidly increasing in more rural settings (McCrory, 

Paquet, and Parr 2017; CBC 2020). 

We found little similarity among groups of similar-sized species in the land cover types 

associated with either occurrence or relative abundance. For example, modified vegetation 

negatively affected small mammals, red squirrels, and snowshoe hare, but generally positive 

effects on larger animals, including mule deer. We speculate that since larger species rely on 

connective habitat (Cushman and Landguth 2012), semi-natural areas may be suitable as 

stepping-stones for ungulates, but not for smaller dispersal-limited species. Additionally, 

modified habitats such as mowed grass may have lacked the habitat structure needed by smaller 

species, such as the ground “forms” of snowshoe hare (Murray 2003), which were sensitive to 

maintained grass in particular. Among the individual species we examined, urbanization was 
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predictive of negative responses only for coyotes, porcupines, and deer, suggesting that red 

squirrels could accommodate high rates of urban density within 500 m provided they had 

adequate cover for their territories of typically ~90 m diameter (Larsen and Boutin 1994). 

Urbanization can be detrimental to many species, but the impact on coyotes may be more 

consistent (Fidino et al. 2021), and porcupines may have more specific habitat requirements than 

other species (Harder 1980; Roze and Ilse 2003). 

We were surprised to find a positive effect of domestic dogs on red squirrels, small and 

medium mammals, and coyotes and suspect this stems from one or more indirect effects. First, 

dogs may have been attracted to the scent, sight or sound of all prey in the vicinity of our 

cameras, especially squirrels, which are common targets for dogs in urban areas (Weston et al. 

2014). Second, people may prefer to walk their dogs in the most natural areas of their local 

neighbourhoods (Bijker and Sijtsma 2017), which may also support relatively greater 

biodiversity of other species, especially if these are the only remaining natural areas for less 

adapted species (Parsons et al. 2019). Third, dogs may create or reinforce trails used by wildlife 

(e.g., 99% of domestic dogs in natural areas [Parsons et al. 2016]). A fourth reason for the 

positive association with dogs is that many species may use locations where domestic dogs occur 

(Parsons et al. 2019), but reduce temporal overlap by being more active at night (Parsons et al. 

2016). Finally, the presence of dogs may frequently indicate the presence of people nearby, 

which could increase habitat attractiveness for other species because humans act as predator 

shields (Suraci et al. 2019), or because they frequently leave anthropogenic sources of food (e.g., 

bird feed that attracts small mammals [Jokimäki et al. 2017]). 

There are some limitations to our study that affect its interpretations. The biggest of these 

is the variation among sites, species, and seasons in detectability. Unmeasured variation in 

detectability can cause large errors in estimates of both occurrence and abundance (Burton et al. 

2015; Dénes et al. 2015; Kays et al. 2021). For example, obscured detection may have caused the 

negative effects of cover for small and medium mammals and forest structure for mule deer 

(Iknayan et al. 2014; Hofmeester et al. 2019) rather than avoidance (as described above). ZIP 

mixed models can be used to model predictors of detectability and minimize other confounding 

variation when species are relatively common, and sampling sites over extended periods reduces 

the variation in detection probability (O’Brien 2011). Others have suggested that ZIP models are 

still an option that can address model detection probability through the zero-inflation model-part 
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and do not assume that detection probability is independent of abundance (Johnson 2008; 

Etterson, Niemi, and Danz 2009). However, since we did not assess detection probability at sites 

and for groups and species prior to modelling, we still could not differentiate preference from 

detectability (Jennelle, Runge, and MacKenzie 2002), which is a limitation of camera studies 

(Burton et al. 2015; Dénes et al. 2015; Kays et al. 2021). Future research could consider model 

types that consider a third model-part, as suggested by Wenger and Freeman (2008) 

Three more limitations include an important limitation of our study was the use of camera 

traps to survey small mammals, which are often undetected due to their small size (O’Brien, 

Kinnaird, and Wibisono 2011; Anile and Devillard 2016). This is the reason we used track tubes 

as a secondary method to support conclusions for small mammals, but the results from models 

using track tube data were inconsistent with the model for small mammals using camera data. 

Future studies of small species using cameras could address this constraint by including body 

size as a parameter (O’Brien, Kinnaird, and Wibisono 2011). A third limitation is the use of 

groups comprising detections of many species. The preferences of the most abundant species 

heavily influenced these groups, which could have been avoided by weighting the detections 

from each species respective to their prevalence. A fourth limitation of our study is that some 

dispersion parameters suggested data were overdispersed, which could have biased our results 

toward type 1 errors (Harrison 2014; Blasco‐Moreno et al. 2019). We could not address this bias 

using zero-inflated negative binomial (ZINB) models due to inconsistent zero-inflation within 

random effect levels; we felt it was more important to use a model that allowed correlated 

random effects (Min and Agresti 2005). These models may not be accurate if very low habitat 

suitability leads to a consistent absence of species (Kéry, Royle, and Schmid 2005), and they 

ignore overdispersion related to landscape heterogeneity that may relate to habitat suitability 

(Etterson, Niemi, and Danz 2009). We expect this source of bias to be minimal because we used 

BIC, a conservative approach to variable selection (Campbell and O'Hara 2021), and our 

simulation-based dispersion tests were not significant (Harrison et al. 2018).  

Despite these limitations, our study offers some insights into using remotely-sensed 

information, including indices derived from it, to support planning for urban biodiversity. The 

index of biodiversity potential, which was based on natural area size, shape, and habitat 

diversity, predicted the presence of large mammals and more abundant white-tailed deer, 

suggesting some utility for the larger urban-dwelling species that may otherwise decline with 
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habitat loss. Biodiversity potential appears to have less utility for small mammals. The negative 

correlation of biodiversity potential with the relative abundance of small mammals may have 

stemmed from the high prevalence of tree squirrel detections, but it could also be a matter of 

scale. Ecological connectivity, however, may have value for small mammals, but perhaps not for 

snowshoe hare and white-tailed deer (or the remaining 10 species). This could have occurred due 

to sensitivity, or lack thereof, to edge habitat. However, our results suggest that for ecological 

connectivity, a larger scale may be necessary to represent connective habitat for larger species, 

and a lower weight for wetland habitat may better represent the habitat needs of various species 

present in Edmonton. We also found similarly high variability in the other predictors (remotely-

sensed and field-measured) of occurrence and relative abundance among and within these 

mammal groups, suggesting that simple, comprehensive metrics for predicting urban biodiversity 

may not exist. We found generally adverse effects of human disturbances, such as urban density, 

human detections on cameras, and areas designated as off-leash for dogs, corroborating the 

generally negative effects of urban development on biodiversity from many other studies 

(Rodewald and Gehrt 2014; Beninde, Veith, and Hochkirch 2015; Newbold et al. 2018; Murray 

et al. 2019). Nonetheless, the positive responses of some species to domestic dogs, which are 

typically accompanied by people, suggest that these effects are nuanced and context-specific. 

Taken together, these results suggest that future indices of habitat suitability should consider the 

type and density of surrounding vegetation and infrastructure, and the degree of use by people. 

Our study also contributes to the growing body of urban research exploring approaches to urban 

biodiversity conservation (Collins, Magle, and Gallo 2021) and supported concurrent multi-city 

analyses led by others (Magle et al. 2021; contributed data to 10 others in prep). Together, a 

growing literature on urban biodiversity may assist urban planners to mitigate the adverse effects 

of urban development in cities throughout the world.  
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3.5 TABLES 

Table 3.1 Number of independent detections per month for three ecological design groups (small, 

medium, and large terrestrial mammals [City of Edmonton 2010b, 2014a]) and 23 individual species 

(including “sp.” abbreviated identified to genus), and the number of sites where each was detected from 

89 camera traps placed throughout Edmonton, Alberta from May 2018 to September 2021. 

Ecological design 

group 
Species 

Num. of 

detections 

Num. of 

unique sites 

Small mammals†§ Red squirrel (Tamiasciurus hudsonicus)†§ 1,763 59 

Small mammal (spp.) 352 44 

Mouse/vole (spp.) 94 9 

Northern flying squirrel (Glaucomys sabrinus)† 91 18 

Least chipmunk (Eutamias minimus)† 57 8 

Squirrel (spp.) 14 4 

Weasel (Mustela spp.) 6 4 

Richardson’s ground squirrel (Spermophilus richardsoni) 3 2 

Total small 2,380 69 

Medium 

mammals†§  

Coyote (Canis latrans)†§ 7,662 85 

Snowshoe hare (Lepus americanus)†§ 2,964 53 

Lepus (Lepus spp.) 728 51 

White-tailed jackrabbit (Lepus townsendii)† 685 32 

Porcupine (Erethizon dorsatum)†§ 382 40 

Canid (Canis spp.) 100 34 

Beaver (Castor canadensis)† 31 8 

Striped skunk (Mephitis mephitis)† 30 2 

Red fox (Vulpes vulpes)† 21 8 

Raccoon (Procyon lotor) 9 10 

Fisher (Martes pennanti) 6 4 

Badger (Taxidea taxus) 4 2 

Muskrat (Ondatra zibethicus) 2 1 

Lynx (Lynx canadensis) 2 2 

Cougar (Puma concolor) 1 1 

Total medium 12,627 86 

Large mammals†§ White-tailed deer (Odocoileus virginianus)† 4,261 47 

Deer (Odocoileus spp.) 1,982 52 

Mule deer (Odocoileus hemionus)†§ 583 36 

Moose (Alces alces)† 162 16 

Elk (Cervus canadensis) 1 1 

Total large 6,989 60 

  Total  21,996 88 

† Compared with two ecological indices (zero-inflated Poisson mixed models; ZIP). 

‡ Used in occurrence and relative abundance models (zero-inflated Poisson mixed models; ZIP).  
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Table 3.2 Variables used to model terrestrial mammal occurrence and relative abundance at 89 camera 

traps and 47 track tube arrays placed throughout Edmonton, Alberta, via zero-inflated Poisson (ZIP) and 

linear mixed models (LMM), with data type, group, variable name, abbreviation, units, and data range. 

Data type Data group Variable name Abbreviation Units Data range 

Remotely 

sensed 

Density                                                                                              

(30/500 m 

buff.) 

Natural forest %Natural forest Continuous (%) 0 - 0.46 

Natural grass/shrub %Natural grass/shrub Continuous (%) 0 - 0.42 

Modified veg.† %Modified veg. Continuous (%) 0 - 0.7 

Maintained grass† %Maint. grass Continuous (%) 0 - 0.21 

Building† %Building Continuous (%) 0 - 0.25 

Housing‡ %Housing Continuous (%) 0 - 0.62 

Road† %Roads Continuous (%) 0 - 0.21 

Impervious surface‡ %Impervious Continuous (%) 0.01 - 0.95 
 Population density† Popln. dens. Continuous 17.54 - 2560.4 

Proximity                    

(500 m dist. 

decay) 

Building† Prox. buildings Continuous 0.22 – 0.98 

Roads† Prox. roads Continuous 0.25 - 0.98 

River valley/ravine system Prox. Riv/rav Continuous 0 - 1 

Patch 

Patch size (ha)§ Patch.size Continuous (ha) 0.47 - 8194.55 

Shape index§ Shape index Continuous 0.08 - 18.48 

Connective habitat (100 m buff)¶ Connective hab.ar Continuous (ha) 0 - 16.2 

Habitat diversity Hab.diversity Continuous 0 - 8 

Site-

specific 

Connected site¶ Site.Connected Binary 0/1 

Natural/modified Nat./mod. Binary  0/1 

Off-leash area Off-leash area Binary  0/1 

Site vegetation category Veg. type Categorical - 

  

 Field 

surveys 

Site-

specific               

(avg. within 

30 m buff.) 

Forest structure Site.Forest structure Continuous 0 - 4 

Grass structure Site.Grass structure Continuous 0 - 4 

Anthropogenic disturbance Site.Anthro dist. Continuous 0 - 6 

Human trails Site#Human.trail Continuous (Count) 0 - 4 

Game trails Site.#Game.trail Continuous (Count) 0 - 7 

Site-

specific 

(avg of 4                      

cover plots) 

Canopy cover Site.%Canopy Continuous (%) 0 - 0.98 

Tree cover Site.%Treed Continuous (%) 0.21 

Shrub cover Site.%Shrub Continuous (%) 0 - 0.7 

Grass/forb cover Site.%Grass/forbe Continuous (%) 0 - 1 

Coarse woody debris cover Site.%CWD  Continuous (%) 0 - 0.41 

Bare ground cover Site.%Bare Continuous (%) 0 - 0.44 

Open water cover Site.%Water Continuous (%) 0 - 0.54 

Vegetative diversity Site.Veg.diversity Continuous (Count) 0 - 7.5 

Detection 

Detection Domestic dog abundance Domestic dog Continuous (Count) 0 - 70 
 Human abundance Human Continuous (Count) 0 - 2728 
 Predator relative abundance Pred. abundance Continuous (Count) 0 - 41 
 

Prey relative abundance 
Prey abundance (CT) Continuous (Count) 0 - 38 

 Prey abundance (TT) Continuous (Prop.) 0 - 0.08 

Known/ 

derived 

Imperfect 

detection 

Season (winter)# Season Binary - 

Lure Lure Continuous (Prop.) 0 - 1 

Effective detection distance  Effective.detect.dist. Continuous 5.48 - 11.02 

† Evaluated in "urban" PCA metrics. 

‡ Included in "urban" PCA metric for analyses. 

§ Evaluated in models using camera trap data (ZIP mixed), but not track tube data (LMMs). 

¶ "Connective habitat" used for camera trap data; "connected site" as a scale-appropriate proxy for track tube data. 

# Seasons were defined as winter: Nov. – Mar and summer: Apr. – Oct.  
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Table 3.3 Most parsimonious top zero-inflated Poisson (ZIP) mixed regression models (within 2 ΔBIC) 

comparing the occurrence and relative abundance of two ecological design groups (City of Edmonton 

2010b, 2014a) and three individual species from 69 camera traps placed in natural areas throughout 

Edmonton, Alberta, to two ecological indices used by the City of Edmonton (2014a) along with season. 

    Most parsimonious top model(s) Global model 

Species/ 

group 
Top model BIC LL df ĉ† p‡ R2

Cond R2
Marg ĉ p R2

Cond R2
Marg 

Small EDG 

(camera trap) 

ψ§(.), λ¶(BP + EC + 

Season [winter]# + 

BP*Season + 

EC*Season) 

4000.7 -1967.4 9 0.50 0.460 0.50 0.05 0.31 0.500 0.53 0.07 

Snowshoe 

hare 

ψ(Season), λ†(BP + 

Season + EC*Season) 
4652.0 -2296.7 9 1.90 0.112 0.60 0.09 1.94 0.116 0.56 0.09 

Coyote 

ψ(Season), λ(BP + EC + 

Season + BP*EC + 

BP*Season 

9738.8 -4832.8 10 1.71 0.080 0.60 0.09 1.52 0.168 0.63 0.08 

Large EDG ψ(BP + Season), λ(.) 7351.7 -3653.9 6 1.04 0.212 0.70 0.00 

1.21 0.164 0.67 0.18 

 ψ(Season), λ(BP) 7352.6 -3654.3 6 1.71 0.104 0.66 0.11 

White-tailed 

deer 

ψ(Season), λ(BP + EC + 

Season + BP*EC + 

EC*Season) 

5568.6 -2747.7 10 0.02 0.668 0.58 0.16 0.01 0.712 0.61 0.15 

Notes: Shown are Bayesian Information Criterion (BIC; top as within 2 ΔBIC), log-likelihood (LL), degrees of 

freedom (df), dispersion parameter (ĉ) of global and best-fit models with associated p-values, and conditional 

(R2
Cond) and marginal (R2

Marg) Nakagawa's R2 for mixed models. Abbreviations: BP, biodiversity potential; EC, 

ecological connectivity. n = 1,520 for all species groups and individual species. 

† Dispersion parameters from comparisons of observed to simulated residuals. 

‡ Test statistics from simulation-based tests for overdispersion. 

§ ψ = probability of occurrence (ψ; logit link) in zero-inflation models. 

¶ λ = relative abundance modelled as counts conditional on occurrence (λ; log link) in zero-inflation models. 

# Seasons were defined as winter: Nov. – Mar and summer: Apr. – Oct. 
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Table 3.4 Estimated coefficients (γ/β) with lower and upper (LCL and UCL) 95% confidence limits for 

the most parsimonious top zero-inflated Poisson (ZIP) mixed models comparing the occurrence and 

relative abundance of two ecological design groups (City of Edmonton 2010b, 2014a) and three 

individual species from 69 camera traps placed in natural areas throughout Edmonton, Alberta to two 

ecological indices used by the City of Edmonton (2014a) along with season. 

Species Measure Parameter γ†/β‡ 
95% 

LCL 

95% 

UCL 

OR/ 

RR 

OR 

95% 

LCL 

OR 

95% 

UCL 

p 

 Small EDG 

(camera trap) 

Occurrence (ψ) zi(Intercept)*** 3.073 3.471 2.675 0.05 0.03 0.07 <0.001 

Relative 

abundance (λ) 
cond(Intercept)*** -3.364 -3.847 -2.880 0.03 0.02 0.06 <0.001 

Biodiversity potential* -0.537 -0.997 -0.076 0.58 0.37 0.93 0.023 

Ecological connectivity* 0.429 0.021 0.836 1.54 1.02 2.31 0.039 

Season (winter)§*** 0.327 0.209 0.446 1.39 1.23 1.56 <0.001 

Biodiversity potential x     

Season*** 
0.453 0.309 0.597 1.57 1.36 1.82 <0.001 

Ecological connectivity x  

Season*** 
-0.368 -0.511 -0.225 0.69 0.60 0.80 <0.001 

Snowshoe 

hare 

Occurrence (ψ) zi(Intercept)*** 1.627 2.253 1.000 0.20 0.11 0.37 <0.001 

Season** 1.390 1.770 1.009 0.25 0.17 0.36 <0.001 

Relative 

abundance (λ) 
cond(Intercept)*** -3.076 -3.466 -2.687 0.05 0.03 0.07 <0.001 

Ecological connectivity* -0.457 -0.855 -0.060 0.63 0.43 0.94 0.024 

Season*** 0.641 0.559 0.723 1.90 1.75 2.06 <0.001 

Ecological connectivity x        

Season*** 
0.359 0.261 0.457 1.43 1.30 1.58 <0.001 

Coyote Occurrence (ψ) zi(Intercept)*** 4.632 4.238 5.026 0.01 0.01 0.01 <0.001 

Season*** 0.761 0.438 1.085 0.47 0.34 0.65 <0.001 

Relative 

abundance (λ) 
zi(Intercept)*** -2.060 -2.304 -1.816 0.13 0.10 0.16 <0.001 

Biodiversity potential -0.112 -0.351 0.127 0.89 0.70 1.14 0.358 

Ecological connectivity  0.221 -0.022 0.464 1.25 0.98 1.59 0.074 

Season*** 0.523 0.472 0.573 1.69 1.60 1.77 <0.001 

Biodiversity potential x           

Ecological connectivity* 
-0.290 -0.548 -0.032 0.75 0.58 0.97 0.027 

Biodiversity potential x 

Season*** 
-0.144 -0.199 -0.088 0.87 0.82 0.92 <0.001 

Large EDG Occurrence (ψ) zi(Intercept)*** 3.622 4.514 2.729 0.03 0.01 0.07 <0.001 

  Biodiversity potential** 1.311 2.099 0.523 0.27 0.12 0.59 0.001 

  Season*** -1.080 -0.678 -1.482 2.94 1.97 4.40 <0.001 

 Relative 

abundance (λ) 
cond(Intercept)*** -2.296 -2.732 -1.861 0.10 0.07 0.16 <0.001 
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White-tailed 

deer 

  

  

  

  

  

  

  

Occurrence (ψ) zi(Intercept)*** 5.633 8.478 2.788 0.00 0.00 0.06 <0.001 

Season*** -1.014 -0.789 -1.239 2.76 2.20 3.45 <0.001 

Relative 

abundance (λ) 
cond(Intercept)*** -4.993 -5.715 -4.271 0.01 0.00 0.01 <0.001 

Biodiversity potential*** 1.542 0.820 2.264 4.68 2.27 9.62 <0.001 

Ecological connectivity* -0.857 -1.594 -0.120 0.42 0.20 0.89 0.023 

Season*** 0.249 0.170 0.328 1.28 1.19 1.39 <0.001 

Biodiversity potential x 

Ecological connectivity* 
0.843 0.074 1.612 2.32 1.08 5.01 0.032 

Ecological connectivity x 

Season*** 
0.145 0.080 0.210 1.16 1.08 1.23 <0.001 

Notes: Shown are odds ratios (OR) from zero-inflation model-part / risk ratios (RR) from conditional model-part, 

lower and upper (LCL and UCL) 95% confidence limits. The level of significance (p < 0.05) is indicated with 

asterisks for parameters and bolded coefficients (α/β). n = 1,520 for all species groups and individual species. 

† γ = Inversely transformed coefficients from zero-inflation models (probability of occurrence; ψ; logit link); β = 

coefficients from conditional models (relative abundance; λ; log link). 

§ Seasons defined as winter: Nov. – Mar and summer: Apr. – Oct. 
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Table 3.5 Most parsimonious top models from zero-inflated Poisson (ZIP) mixed regression models and 

linear mixed models (LMMs) evaluating predictors of the occurrence and relative abundance of three 

ecological design groups City of Edmonton (2010, 2014a) and five individual species from 89 camera 

traps and 48 track tube arrays in Edmonton, Alberta. 

  Most parsimonious top model Global model 

Species/ 

group 
Top model 

BIC/ 

AICc† 
LL df ĉ‡ p§ R2

Cond R2
Marg ĉ p R2

Cond R2
Marg 

Small EDG 

(track tube)¶ 

λ#(Site.Connected + 

Site.%Treed + 

Site.%CWD) 

-371.6 192.1 6 - - 0.34 0.2 - - - - 

Small EDG 

(camera 

trap) 

ψ||(Site.%Grass/forbe + 

Site.%Shrub + Domestic 

dog), λ(%Modified veg. + 

Human + Domestic dog + 

Season [winter]††) 

4779.4 -2348.5 11 0.22 0.536 0.56 0.09 0.13 0.636 0.54 0.24 

Red squirrel 

ψ(Site.%Grass/forbe + 

Site.%Shrub + Domestic 

dog), λ(%Modified veg. + 

Human + Domestic dog + 

Season) 

3618.6 -1775.6 9 0.01 0.624 0.46 0.04 0.35 0.460 0.40 0.31 

Medium 

EDG 

ψ(Site.% Treed + 

Domestic dog + Season + 

Lure), λ(Domestic dog + 

Season + Lure) 

14232.5 -7075.1 11 0.22 0.536 0.66 0.08 1.79 0.152 1 0.39 

Snowshoe 

hare 

ψ(%Maint. grass + 

Season), λ(Pred. 

abundance + Season) 

4803.1 -2371.6 8 0.87 0.260 0.59 0.03 2.48 0.144 0.67 0.54 

Porcupine ψ(%Urban + Season), λ(.) 1516.1 -731.9 7 1.24 0.196 0.43 0.00 0.56 0.888 - 0.92 

Coyote 

ψ(%Urban + Prey 

abundance (CT) + Season 

+ Lure), λ(Nat./mod. + 

Prey abundance (CT) + 

Domestic dog + Season + 

Lure) 

10600.9 -5251.8 13 2.05 0.064 0.63 0.11 1.25 0.432 0.63 0.24 

Large EDG 

ψ(%Natural forest + 

%Modified veg. + 

Human + Season), λ(Off-

leash area) 

7758.0 -3845.3 9 0.22 0.536 0.75 0.42 0.88 0.496 0.19 0.17 

Mule deer 

ψ(%Modified veg. + 

Season), λ(Site.Forest 

structure + %Urban) 

1542.2 -737.4 9 1.12 0.280 0.37 0.21 0.74 0.624 - 0.88 

Notes: Shown are Bayesian Information Criterion (BIC; top as within 2 ΔBIC) or Akaike’s Information Criterion for 

small sample sizes (AICc; top as within 2 ΔAICc), log-likelihood (LL), degrees of freedom (df), dispersion 

parameter (ĉ) of global and best-fit models and associated p-values, and conditional (R2
Cond) and marginal (R2

Marg) 

Nakagawa's R2 for mixed models. 

† BIC was used in ZIP mixed models for camera trap data; AICc was used for LMMs for data from track tubes. 
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‡ Dispersion parameters from comparisons of observed to simulated residuals. 

§ Test statistics from simulation-based tests for overdispersion. 

¶ LMMs used for data from track tubes (n = 130); ZIP mixed models used elsewhere (n = 1,783). 

# λ = relative abundance (λ) modelled from proportional relative abundance in LMMs (track tubes) or as counts 

conditional on occurrence in ZIP mixed models (log link; camera traps). 

|| ψ = probability of occurrence (ψ; logit link) modelled as zero-inflation and inversely transformed. 

†† Seasons were defined as winter: Nov. – Mar and summer: Apr. – Oct.  
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Table 3.6 Estimated coefficients (γ/β) and lower and upper (LCL and UCL) 95% confidence limits from 

the most parsimonious top zero-inflated Poisson mixed (ZIP) and linear mixed models (LMMs) 

evaluating predictors of occurrence and relative abundance of three ecological design groups (City of 

Edmonton 2010b, 2014a) and five mammal species from 89 camera traps and 48 track tube arrays in 

Edmonton, Alberta. 

Species Measure Parameter γ/β† 
95% 

LCL 

95% 

UCL 

OR/ 

RR 

OR 

95% 

LCL 

OR 

95% 

UCL 

p 

Small EDG 

(track tubes)‡ 

Relative 

abundance (λ)§  

(Intercept)*** 0.127 0.113 0.141 - - - <0.001 

Connected habitat** 0.038 0.013 0.062 - - - 0.003 

Site.%Treed* 0.012 0.001 0.023 - - - 0.040 

Site.%CWD* 0.014 0.002 0.026 - - - 0.026 

Small EDG 

(camera traps) 

  

  

  

  

  

  

Occurrence (ψ) zi(Intercept)*** 3.222 3.525 2.918 25.07 1.19 1.40 <0.001 

  Site.%Grass/forbe* -0.441 -0.105 -0.776 0.64 1.19 1.45 0.010 

  Site.%Shrub** -0.419 -0.130 -0.709 0.66 0.09 0.26 0.005 

  Domestic dog 0.381 0.810 -0.048 1.46 2.00 4.89 0.082 

Relative 

abundance (λ) 

cond(Intercept)*** -3.622 -4.058 -3.185 0.03 0.31 0.64 <0.001 

% Modified veg.** -0.531 -0.930 -0.131 0.59 0.02 0.06 0.009 

Human*** -0.402 -0.571 -0.233 0.67 0.60 0.89 <0.001 

Domestic dog*** 0.255 0.175 0.335 1.29 1.23 1.46 <0.001 

Season (winter)#*** 0.274 0.178 0.370 1.31 1.24 1.55 <0.001 

Red squirrel 

  

 

  

  

  

Occurrence (ψ) zi(Intercept)*** 1.865 2.383 1.348 6.46 0.03 0.05 <0.001 

  % Modified veg.*** -1.141 -0.694 -1.588 0.32 1.11 2.17 <0.001 

  Season*** 0.817 1.183 0.451 2.26 1.14 2.03 <0.001 

Relative 

abundance (λ) 

cond(Intercept)*** -3.393 -3.926 -2.860 0.03 0.44 1.05 <0.001 

Human** -0.317 -0.515 -0.119 0.73 0.02 0.04 0.002 

Domestic dog*** 0.294 0.206 0.381 1.34 0.39 0.88 <0.001 

Season*** 0.326 0.213 0.439 1.39 0.56 0.79 <0.001 

Medium EDG 

  

  

  

  

  

  

  

Occurrence (ψ) cond(Intercept)*** 5.148 5.633 4.663 172.10 0.47 0.88 <0.001 

  Site.% Treed* -0.453 -0.080 -0.827 0.64 0.20 0.61 0.017 

  Domestic dog** 1.280 2.109 0.450 3.60 0.42 0.80 0.002 

  Season*** 1.121 1.468 0.773 3.07 0.68 0.96 <0.001 

  Lure** 0.262 0.447 0.078 1.30 0.03 0.07 0.005 

Relative 

abundance (λ) 

   

zi(Intercept)*** -1.786 -1.967 -1.606 0.17 1.58 4.63 <0.001 

Domestic dog*** 0.100 0.078 0.123 1.11 1.11 1.15 <0.001 

Season*** 0.534 0.497 0.571 1.71 1.05 1.13 <0.001 

Lure*** 0.125 0.105 0.145 1.13 1.57 1.74 <0.001 

Snowshoe hare 

  

  

  

Occurrence (ψ) zi(Intercept)*** 1.409 2.025 0.792 4.09 0.00 0.01 <0.001 

  % Maint. grass*** -0.988 -0.466 -1.510 0.37 1.08 2.29 <0.001 

  Season*** 1.543 1.915 1.170 4.68 0.12 0.64 <0.001 

Relative 

abundance (λ) 

  

cond(Intercept)*** -3.198 -3.699 -2.697 0.04 0.23 0.46 <0.001 

Pred. abundance*** 0.105 0.087 0. 4 1.11 0.64 0.92 <0.001 

Season*** 0.451 0.367 0.535 1.57 0.14 0.20 <0.001 
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Porcupine Occurrence (ψ) zi(Intercept)*** 2.430 3.010 1.851 11.36 1.08 1.13 <0.001 

    % Urban*** -1.013 -0.571 -1.454 0.36 1.64 1.77 <0.001 

    Season*** -1.216 -0.726 -1.706 0.30 1.11 1.16 <0.001 

  Relative 

abundance (λ) 
cond(Intercept)*** -4.687 -5.421 -3.953 0.01 0.13 0.45 <0.001 

Coyote Occurrence (ψ) zi(Intercept)*** 4.769 5.126 4.413 117.81 1.59 4.53 <0.001 

    % Urban** -0.439 -0.129 -0.748 0.64 0.15 0.31 0.005 

    Prey abundance*** 1.052 1.616 0.489 2.86 0.02 0.07 <0.001 

    Season*** 0.550 0.875 0.225 1.73 1.09 1.13 0.001 

    Lure* 0.216 0.393 0.038 1.24 1.44 1.71 0.017 

  

Relative 

abundance (λ) 

 

  

cond(Intercept)*** -3.190 -3.678 -2.702 0.04 0.05 0.16 <0.001 

  Natural vs. 

modified*** 
0.994 0.457 1.532 2.70 0.23 0.56 <0.001 

  Prey abundance*** 0.124 0.106 0.142 1.13 2.07 5.51 <0.001 

  Domestic dog*** 0.083 0.046 0.121 1.09 0.00 0.02 <0.001 

  Season*** 0.503 0.454 0.552 1.65 0.01 0.01 <0.001 

Large EDG Occurrence (ψ) zi(Intercept)*** 3.574 4.143 3.004 35.64 0.09 0.19 <0.001 

 

  % Natural forest*** 1.518 2.073 0.963 4.56 0.02 0.14 <0.001 

  % Modified veg.*** 1.150 1.663 0.637 3.16 0.06 0.52 <0.001 

  Human** -1.517 -0.596 -2.438 0.22 0.32 0.98 0.001 

  Season*** -0.956 -0.579 -1.333 0.38 1.56 4.17 <0.001 

Relative 

abundance (λ) 

cond(Intercept)*** -2.049 -2.425 -1.673 0.13 0.00 0.03 <0.001 

Off-leash area*** -2.919 -3.862 -1.976 0.05 0.24 0.66 <0.001 

Mule deer 

 

Occurrence (ψ) zi(Intercept)** 1.733 2.806 0.659 5.65 1.13 1.19 0.002 

% Modified veg.* 0.572 1.125 0.019 1.77 0.02 0.05 0.043 

Season*** -0.935 -0.442 -1.428 0.39 0.13 0.38 <0.001 

Relative 

abundance (λ) 

cond(Intercept)*** -4.511 -5.595 -3.427 0.01 0.19 0.53 <0.001 

Site. Forest 

structure*** 
-0.915 -1.414 -0.416 0.40 1.81 11.44 <0.001 

% Urban*** -1.112 -1.658 -0.566 0.33 1.78 3.79 <0.001 

Notes: Shown are odds ratios (OR) from zero-inflation model-part / risk ratios (RR) from conditional model-part, 

lower and upper (LCL and UCL) 95% confidence limits. The level of significance (p < 0.05) is indicated with 

asterisks for parameters and bolded coefficients (α/β). 

† γ = Inversely transformed coefficients from zero-inflation models (probability of occurrence; logit link; ψ); β = 

coefficients from conditional models (relative abundance; log link; λ). 

‡ LMMs used for data from track tubes (n = 130); ZIP mixed models used elsewhere (n = 1,783). 

§ Seasons defined as winter: Nov. – Mar and summer: Apr. – Oct.  
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3.6 FIGURES 

Fig. 3.1 Study area in Edmonton, Alberta and 89 site locations (89 camera traps; 47 track tube arrays) 

deployed between May 2018 and September 2018. Where overlap of features occurs (e.g., parks occuring 

in vegetated areas), rarer features are shown as the most forward layers. The inset map shows the study 

area location in Alberta, Canada. 
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Fig. 3.2 Log-transformed number of detections for three ecological design groups (small, medium, and 

large terrestrial mammals; [City of Edmonton 2010b, 2014a]) and 23 individual species (including “sp.” 

abbreviated identified to genus) from 89 camera traps placed in natural and semi-natural parks in 

Edmonton, Alberta from May 2018 to September 2021. The purpose of the colouration is to highlight the 

variation in detections. 
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Fig. 3.3 Model coefficients from zero-inflated Poisson (ZIP) mixed models comparing the occurrence and 

relative abundance of two ecological design groups (EDG [City of Edmonton 2010b, 2014a]) and three 

species from 69 camera traps (n = 1,520) placed in natural areas in Edmonton, Alberta to two ecological 

indices used by the City of Edmonton (2014a) along with season (winter: Nov. - Mar and summer: Apr. - 

Oct.), with top model predictor variables, corresponding coefficients, and 95% confidence intervals. 
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Fig. 3.4 Model coefficients for zero-inflated Poisson (ZIP) mixed and linear mixed models (LMM) that 

were used to evaluate the predictors of the occurrence and relative abundance of red squirrel and the small 

mammal ecological design groups (EDG [City of Edmonton 2010b, 2014a]) from 89 camera traps (n = 

1,783) and 48 track tube arrays (n = 130) placed in natural and semi-natural parks in Edmonton, Alberta, 

with top model predictor variables, corresponding coefficients, and 95% confidence intervals. 
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Fig. 3.5 Model coefficients for zero-inflated Poisson (ZIP) mixed models that were used to evaluate the 

predictors of the occurrence and relative abundance of coyote, porcupine, snowshoe hare, and the medium 

mammal ecological design groups (EDG [City of Edmonton 2010b, 2014a]) from 89 camera traps (n = 

1,783) placed in natural areas in Edmonton, Alberta, with top model predictor variables, corresponding 

coefficients, and 95% confidence intervals. 
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Fig. 3.6 Model coefficients for zero-inflated Poisson (ZIP) mixed models that were used to evaluate the 

predictors of the occurrence and relative abundance of mule deer and the large mammal ecological design 

group (EDG [City of Edmonton 2010b, 2014a]) from 89 camera traps (n = 1,783) placed in natural areas 

in Edmonton, Alberta, with top model predictor variables, corresponding coefficients, and 95% 

confidence intervals. 
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CHAPTER 4 - Conclusion 

Urbanization reduces, fragments, and degrades natural areas (Grimm et al. 2008), resulting in 

habitat loss, diminished natural connectivity, and ultimately species loss and homogenization in 

the remaining natural areas of cities (McKinney 2006; Beninde, Veith, and Hochkirch 2015; 

Newbold et al. 2018). Rapid urban growth and sprawl increase the challenge of conserving 

adequate connectivity and habitat quality to support biodiversity in many cities (Angel et al. 

2011; Pickett et al. 2011). Mitigating the loss of urban biodiversity requires conserving adequate 

habitat connectivity and quality to accommodate the needs of diverse species, which urban 

planners sometimes predict using GIS-based estimates of habitat value.  

In Edmonton, AB, urban ecological planners use two methods to consider wildlife habitat 

in land use planning to conserve biodiversity and mitigate adverse effects of development (City 

of Edmonton 2020b). The first of these tools was a commissioned estimate of connectivity 

created as two seasonal circuit-based simulation models using the movement of coyotes as a 

representative terrestrial mammal (City of Edmonton 2017b). Two other indices, biodiversity 

potential and ecological connectivity, were developed to predict the ecological value of natural 

areas based on characteristics of natural areas (City of Edmonton 2014a) and remain in use to 

support planning in the vicinity of natural areas. 

In my thesis, I addressed two broad goals; 1) I advanced information about the predictors 

of habitat selection of urban coyotes and of the occurrence and relative abundance of three 

groups of terrestrial mammals and individual species, and 2) I supported the use of connectivity 

models and ecological indices used by ecological planners in Edmonton by testing their fit with 

measures of urban wildlife habitat use, occurrence, and relative abundance obtained from 

detection data in Edmonton, Alberta. In each of the two data chapters, I combined these two 

goals by using empirical data from animal detections to test the predictions of models or indices 

used by the City of Edmonton (hereafter City) as planning tools to protect biodiversity.  

In Chapter 2, I used data from GPS collars fitted urban coyotes to a) understand how 

sarcoptic mange, season, and remotely-sensed metrics influenced habitat selection of urban 

coyotes, (b) generate a habitat suitability index (HSI) for areas throughout the City, and c) 

compare the HSI values to the predicted permeability estimates that were used to create the 

circuit-based models previously developed by the City (City of Edmonton 2016b, 2017b). To 

achieve these objectives, I obtained selection estimates for 10 broad categories of land cover as 
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log-ratios from seasonal compositional analyses (winter and summer), and compared these 

feature-specific estimates to the expert-derived permeability ratings used to parameterize the 

permeability layers used in the circuit-based models. I also evaluated habitat selection by coyotes 

with predictor variables of mange, season, and 13 finer-scale land cover features by constructing 

a RSF model using GPS collar data, and used this model to derive HSI values, which I compared 

with cumulative landscape permeability values used to create the circuit-based models. 

The results from the habitat selection models in Chapter 2 suggested that resource use by 

coyotes was driven by natural land use types and human development, with the largest responses 

to natural (positive association) and developed areas (negative association) relative to land 

covers of natural grass/shrub, modified forest or grass/shrub, maintained grass, residential, roads, 

and buildings. From compositional analyses, habitat use by coyotes was similar between seasons, 

but in winter, they were more likely to use natural forests, natural shrubs, modified grass/shrubs, 

and residential areas. The RSF model revealed that coyotes selected natural areas most strongly, 

followed by avoidance of developed areas, but they also selected steeper slopes and areas closer 

to modified forests, modified grass/shrubland, and residential areas. These results supported 

work by others showing that urban coyotes preferred areas with more natural land covers 

(Poessel, Breck, and Gese 2016; Franckowiak, Perdicas, and Smith 2019). Coyotes may be 

attracted to forests (Atwood, Weeks, and Gehring 2004; Greenspan, Nielsen, and Cassel 2018) to 

access prey and cover (Gosselink et al. 2003; Richer et al. 2016). Additional to the preference for 

modified grass/shrubland, coyotes were attracted to residential areas, perhaps because of the 

congregated anthropogenic food subsidies (Murray and St. Clair 2017). However, coyotes used 

modified forests and grass/shrubland more than developed types. Modified areas with little 

development may provide natural prey (Morey, Gese, and Ghert 2007; Ofori et al. 2018), a 

separation from humans (e.g., golf courses with relatively lower activity [Gallo et al. 2017; 

Wurth, Ellington, and Gehrt 2020]), and facilitate movement (Lynch 2018). 

Urban coyotes used land use features differently as a function of season, infection with 

mange, and when certain other features were nearby. Coyotes used both modified 

grass/shrubland and residential areas less in winter, perhaps because fewer attractants were 

present then. Coyotes used modified grass/shrubs and developed areas more often when natural 

areas were nearby, and they used modified grass/shrublands more when developed areas were 

nearby, which suggested that coyotes may tolerate development provided it is close to high-
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quality habitat (Reddell et al. 2021). It is also possible that some modified vegetation types can 

buffer impacts of development, but the effect sizes were small. The results from the RSF model 

also showed that health and season were highly influential to resource use by coyotes. Mainly, 

mange-infected coyotes were more likely to use human-dominated areas (e.g., modified forests, 

residential, and developed), and were less reliant on natural areas, especially in winter. It seemed 

likely that the reduced body condition caused by mange-infection (Bornstein, Mörner, and 

William 2001) resulted in coyotes using residential areas to access anthropogenic food (Murray 

et al. 2016; Murray and St. Clair 2017). Such food sources may encourage dispersal from natural 

areas, especially in winter when mange infection can reduce internal fat stores (Bornstein, 

Mörner, and William 2001). 

I addressed a second objective in Chapter 2 by comparing detection-based using the RSF 

model to derive a habitat suitability index (HSI) using various types of land cover in Edmonton 

and comparing it to the expert-derived estimates of landscape permeability used in circuit-based 

models. I found that the feature-specific ratings used to create the permeability layers 

underestimated the permeability of residential and developed areas in both seasons, and of 

maintained grass in summer. The permeability estimates also overestimated the value of most 

vegetated land cover types, albeit with some seasonal variation, and the North Saskatchewan 

River in winter. My results suggested that the North Saskatchewan River does not act as a 

conduit for movement in winter as expected (Harrison 1992; City of Edmonton 2017b), although 

this result could have occurred from GPS error (Conner, Smith, and Burger 2003; Ganskopp and 

Johnson 2007). The landscape permeability values predicted the HSI based on coyote detections, 

but less so in winter and when coyotes had mange. Additionally, the model fit was poor, which 

may be partly attributed to the low estimated permeability of residential and developed areas.  

Overall, my results from Chapter 2 could help urban planners in a variety of ways. First, 

my models of habitat selection by coyotes supported the cumulative landscape permeability used 

in prior circuit-based models, suggesting that these may be a cost-effective tool for estimating 

urban connectivity. However, the RSF model also suggested that such expert-derived estimates 

are less precise than habitat suitability models based on animal occurrence data and lack the 

capacity to incorporate individual variation owing to health and other unmeasured variables. 

Using expert opinion is sometimes the best available option when the required data is 

unavailable or not feasible to obtain (Clevenger et al. 2002). In these cases, validation using 
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occurrence data, as I presented in Chapter 2, is especially important to address such uncertainty 

(Johnson and Gillingham 2004; Pullinger and Johnson 2010). Perhaps the most important result 

of this comparison was to demonstrate the extensive use of residential and developed areas by 

coyotes relative to the predictions of the circuit-based model. There may be other uses of my 

results, such as using the RSF model to weigh trade-offs of retaining certain landscape features, 

create predictive maps for occurrence or movement, meet the City’s objective of identifying 

pinch points using other modelling methods, or increase the accuracy of their circuit-based 

models.  

In Chapter 3, I used data from camera traps and small mammal track tube arrays to test a) 

the predicted habitat value of two ecological indices used by the City, and b) various other 

remotely-sensed and site-based variables as explanatory variables for the occurrence and relative 

abundance of terrestrial mammals detected between 2018 and 2021.  I used the camera traps to 

derive monthly detection rates of three groups of mammals (City of Edmonton 2010b, 2014a) 

and 13 individual species, expressed these as binary occurrences and counts for relative 

abundance and compared both response variables to the indices of biodiversity potential and 

ecological connectivity, simultaneously using zero-inflated Poisson (ZIP) mixed models (camera 

trap data). I used proportion occupied/deployment/day from the track tube data and generalized 

linear mixed models (LMMs) to assess relative abundance using data from sites in natural areas. 

I subsequently modelled the occurrence and relative abundance of the three species groups and 

five individual species using a combination of remotely-sensed and site-based variables in a 

similar analytical approach, additionally using data from semi-natural parks. 

The City’s indices rarely predicted greater occurrence or relative abundance of the 13 

species I tested, but the indices had some predictive value for the small and medium groups, and 

snowshoe hare, coyote, and white-tailed deer. Biodiversity potential performed better than 

ecological connectivity, which occurred as positive correlations only for larger mammals; as 

biodiversity potential increased, large mammals were more likely to occur, and white-tailed deer 

were more abundant. I speculated that this was due to their reliance on larger, rounder, more 

diverse patches owing to their body size (Kie et al. 2002), but also to the preferences of white-

tailed deer (Miller, Muller, and Demarais 2003; Quinn, Williams, and Porter 2013). Biodiversity 

potential predicted a lower relative abundance of small mammals, likely due to the group 

containing mainly tree squirrels, which generally prefer forested areas (Yahner 2003). Because 
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biodiversity potential was scored for each entire natural area, this scale may have been too large 

to reflect high-quality habitat for smaller species that may be detected over smaller spatial scales 

(Fisher, Anholt, and Volpe 2011). Although ecological connectivity was positively related to the 

relative abundance of small mammals, it was negatively associated with the relative abundance 

of snowshoe hare and white-tailed deer. This may have resulted from the sensitivity of these 

species to edge habitat (Lewis et al. 2011; Quinn, Williams, and Porter 2013; Uchida et al. 

2016). Similarly, the lack of fit for beaver with ecological connectivity, in particular, suggested 

that the score for wetland habitat was weighted too highly, at least for the species in this study. It 

could also be that the scale used for this index is too small to reflect connective habitat for the 

larger species (Cushman and Landguth 2012). My results suggested that helpful adjustments 

might be made to the scale used to calculate both scores, specifically, by using a smaller scale to 

calculate biodiversity potential, a larger buffer width to calculate ecological connectivity, and 

reconsidering the weighting of wetland habitat. 

I addressed a second objective of Chapter 3 by using data from natural and semi-natural 

areas to model the occurrence and relative abundance of three species groups and five individual 

species. Among the remotely sensed variables I tested, species occurrence or relative abundance 

typically increased with the naturalness of vegetated land cover, where ungulates responded 

positively to forested areas. Some of the habitat preferences I detected for reduced cover or 

structure likely stemmed from imperfect detection (Iknayan et al. 2014; Hofmeester et al. 2019) 

because dense habitat reduces the detection distances of remote cameras (Burton et al. 2015). I 

found that the response to modified vegetation types was variable, wherein larger species 

responded positively to those areas, but smaller species responded negatively. This variability 

may have been related to dispersal ability because larger species rely more on modified areas as 

connected habitats (Cushman and Landguth 2012). Conversely, both the negative responses of 

smaller species and positive responses of larger species could have resulted from the higher 

abundance of particular species, such as the prevalence of tree squirrels in the small mammal 

group, or because these features may also increase opportunities for grazing or browsing that are 

favoured by deer (Miller, Muller, and Demarais 2003; Berry et al. 2019). I found negative 

impacts of increasing urban development for porcupine, coyote, and mule deer and some 

seemingly nuanced negative effects of other human disturbances, such as humans and off-leash 

areas, for red squirrel, and small and large mammals, but some positive associations with 
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domestic dogs. A positive correlation between wildlife and domestic dog detections may have 

occurred because dogs were attracted to sites with scents from wildlife (Weston et al. 2014). It 

may be that city parks are preferred by both wildlife and dog-walkers as the most natural spaces 

in residential areas (Bijker and Sijtsma 2017), or that wildlife and dogs may both use game trails 

(e.g., 99% of domestic dogs in natural areas [Parsons et al. 2016]). It could also be that both 

wildlife and dogs were attracted to anthropogenic attractants (e.g., bird feed that attracts small 

mammals [Jokimäki et al. 2017]). Two more reasons for the positive association with dogs is that 

many species may use locations where domestic dogs occur (Parsons et al. 2019), but reduce 

temporal overlap by being more active at night (Parsons et al. 2016). Lastly, wildlife may prefer 

areas closer to humans, because they provide shields from predators (Suraci et al. 2019). 

By completing this work, my thesis advanced two broader goals that I expressed in 

Chapter 1 and above to (1) advance information about the predictors of habitat selection of urban 

coyotes and of the occurrence and relative abundance of three groups of terrestrial mammals and 

individual species, and 2) support the use of connectivity models and ecological indices used by 

ecological planners in Edmonton by testing their fit with measures of urban wildlife habitat use, 

occurrence, and relative abundance obtained from detection data in Edmonton, Alberta. I 

addressed the first goal in Chapter 1 by showing how infection with mange and season altered 

habitat use by coyotes, along with many other environmental variables. In Chapter 2, I identified 

and determined the best predictors of occurrence and relative abundance of mammal species, as 

groups of similarly sized species and five individual species varied with land cover 

characteristics across an urban gradient. I addressed the second goal in these two chapters by 

testing and suggesting refinements to planning tools used by the City to integrate wildlife into 

land use planning. I did so in Chapter 1 by exploring the similarity between estimators of 

permeability and habitat suitability for coyotes, and in Chapter 2, by comparing measures of 

animal occurrence and abundance to indices of predicted habitat value. Together, this 

information tangibly contributes to proactive ecological planning in the City of Edmonton and 

other cities to mitigate the adverse effects of urban development on biodiversity.  
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APPENDICES 

4.1 APPENDIX 2.1 

Appendix 2.1 - Table 1 Average used and available proportions of 10 habitat types by season, with data 

ranges, used in compositional analyses to derive feature-specific selection estimates for 19 coyotes in 

Edmonton, Alberta, to compare with feature-specific permeability ratings used to parameterize 

permeability layers (used in circuit-based models) by the City of Edmonton (2016b, 2017b). 

Season† Land cover 
Mean used 

proportion‡  

Mean available 

proportion§  

Used proportion data 

range  

Available proportion 

data range  

Winter 
Natural forest 

0.42 0.15 0.04 - 0.81 0.05 - 0.28 

Summer 0.41 0.14 0.12 - 0.76 0.03 - 0.27 

Winter 
Natural shrub 

0.08 0.02 0 - 0.22 0.01 - 0.04 

Summer 0.10 0.02 0.01 - 0.31 0 - 0.1 

Winter 
Natural grass 

0.01 0.01 0 - 0.03 0 - 0.03 

Summer 0.01 0.01 0 - 0.04 0 - 0.02 

Winter 
Modified forest 

0.01 0.01 0 - 0.05 0 - 0.01 

Summer 0.01 0.01 0 - 0.05 0 - 0.02 

Winter Modified 

grass/shrub  

0.19 0.15 0.01 - 0.93 0.01 - 0.66 

Summer 0.23 0.17 0.03 - 0.74 0.01 - 0.45 

Winter 
Maintained grass 

0.04 0.10 0 - 0.12 0 - 0.18 

Summer 0.05 0.10 0 - 0.11 0.03 - 0.2 

Winter 
Residential 

0.15 0.32 0 - 0.53 0 - 0.5 

Summer 0.08 0.29 0 - 0.27 0.01 - 0.42 

Winter 
Developed 

0.08 0.15 0 - 0.36 0.01 - 0.52 

Summer 0.08 0.17 0 - 0.23 0.01 - 0.66 

Winter 
Transp. Surface 

0.02 0.05 0 - 0.08 0.03 - 0.08 

Summer 0.01 0.06 0 - 0.06 0.01 - 0.1 

Winter 

North Sask. River 

0.00 0.08 0 - 0.01 0 - 0.26 

Summer 0.00 0.08 0 - 0.01 0.01 - 0.24 

Winter 
Other 

0.01 0.01 0 - 0.03 0 - 0.03 

Summer 0.02 0.02 0 - 0.08 0 - 0.04 

† Seasons defined as winter: Dec.1 – Mar. 31 (n = 14) and summer: Apr. 1 – Nov. 31 (n = 15). 

‡ Average proportion of radio locations for individual coyotes occurring in each habitat type. 

§ Average percentage of each habitat type within 95% fixed kernel seasonal home ranges. 

† Evaluated in "urban" PCA metrics. 

‡ Included in "urban" PCA metric for analyses.  
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Appendix 2.1 - Table 2 Combined simplified ranking matrix illustrating pairwise comparisons of 

selection between habitat types, along with ranks based on randomization tests from compositional 

analyses of 3rd -order selection in two seasons of 19 urban coyotes in Edmonton, Alberta. 

Season† Land cover 

Nat 

forest 

Nat 

shrub 

Nat 

grass 

Mod 

forest 

Mod. 

grass/ 

shrub 

Maint 

grass Resid Develop 

Transp

Surf 

North 

Sask 

River Other Rank 

Winter 
Nat forest 

  + +++ +++ +++ +++ +++ +++ +++ +++ +++ 1 

Summer   - +++ +++ +++ +++ +++ +++ +++ +++ +++ 2 

Winter 
Nat shrub 

    +++ +++ + +++ +++ + +++ +++ + 2 

Summer     +++ +++ +++ +++ +++ +++ +++ +++ +++ 1 

Winter 
Nat grass 

      + --- + - - + +++ - 7 

Summer       + --- - + - + +++ - 7 

Winter 
Mod forest 

        --- - --- - + + - 9 

Summer         --- - + - + +++ - 8 

Winter Mod grass/ 

shrub 

          +++ +++ +++ +++ +++ + 3 

Summer           +++ +++ +++ +++ +++ + 3 

Winter 
Maint grass 

            - - + + - 8 

Summer             +++ + +++ +++ - 5 

Winter 
Resid 

              - +++ +++ + 5 

Summer               - - +++ --- 10 

Winter 
Develop 

                +++ +++ + 4 

Summer                 + +++ - 6 

Winter Transport 

Surf 

                  + --- 10 

Summer                   +++ --- 9 

Winter North Sask 

River 

                    --- 11 

Summer                     --- 11 

Winter 
Other 

                      6 

Summer                       4 

Notes: Each sign replaces each mean element; a single sign represents that the habitat type in the row was used more 

than the habitat type in the column; a triple sign represents a significant deviation from random (p < 0.05). 

Redundant values excluded (reciprocal relationship). Abbreviations: Nat., natural; Mod., Modified; Maint., 

Maintained; Resid., Residential; Transp. Surf., Transportation Surface; North Sask, North Saskatchewan. 

† Seasons defined as winter: Dec.1 – Mar. 31 (n = 14) and summer: Apr. 1 – Nov. 31 (n = 15). 
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Appendix 2.1 - Table 3 The top 5 generalized linear mixed models (logistic GLMM) used as a resource 

selection function (RSF) for 14 healthy and five mange-infected urban coyotes in Edmonton, Alberta. 

Parameter Coefficients 

Intercept -1.072 -1.068 -1.071 -1.081 -1.115 

Slope 0.473 0.458 0.458 0.457 0.453 

Natural areas 0.995 1.018 1.017 1.025 1.019 

Modified forest 0.565 0.520 0.522 0.523 0.520 

Modified grass/shrub 0.112 0.201 0.203 0.204 0.240 

Residential 0.437 0.444 0.445 0.440 0.515 

Developed -0.774 -0.700 -0.694 -0.676 -0.729 

Natural areas x Modified forest 0.027 0.084 0.082 0.080 - 

Natural areas x Modified grass/shrub 0.205 - - - - 

Natural areas x Residential -0.040 -0.082 -0.078 -0.079 -0.071 

Natural areas x Developed 0.051 - -0.010 -0.020 0.088 

Modified forest x Modified grass/shrub 0.011 0.010 0.010 0.013 0.016 

Modified forest x Residential 0.253 0.256 0.256 0.253 0.286 

Modified forest x Developed -0.422 -0.421 -0.425 -0.415 -0.413 

Modified grass/shrub x Residential 0.178 0.184 0.182 0.195 - 

Modified grass/shrub x Developed 0.068 - - -0.051 - 

Residential x Developed -0.425 -0.424 -0.424 -0.430 -0.458 

Season (winter)† x Natural areas 0.066 0.039 0.041 0.042 0.042 

Season (winter) x Modified forest 0.131 0.144 0.144 0.144 0.145 

Season (winter) x Modified grass/shrub -0.345 -0.322 -0.323 -0.321 -0.326 

Season (winter) x Residential -0.311 -0.295 -0.295 -0.294 -0.321 

Season (winter) x Developed 0.039 0.047 0.049 0.046 0.053 

Mange x Natural areas -0.660 -0.656 -0.655 -0.655 -0.658 

Mange x Modified forest -0.277 -0.227 -0.227 -0.229 -0.243 

Mange x Modified grass/shrub 0.080 -0.069 -0.069 -0.058 -0.018 

Mange x Residential 0.479 0.452 0.453 0.455 0.444 

Mange x Developed 0.290 0.279 0.275 0.281 0.308 

Season (winter) x Mange x Natural areas -0.283 -0.308 -0.308 -0.309 -0.307 

Season (winter) x Mange x Modified forest 0.271 0.279 0.279 0.277 0.284 

Season (winter) x Mange x Modified grass/shrub -0.002 -0.077 -0.077 -0.076 -0.064 

Season (winter) x Mange x Residential 0.379 0.386 0.385 0.385 0.384 

Season (winter) x Mange x Developed 0.015 -0.032 -0.030 -0.028 -0.029 

Model Rank 1 2 3 4 5 

df 33 30 31 32 29 

LL -15336.73 -15437.9 -15437.8 -15436.0 -15461.6 

BIC 31018.97 31189.95 31189.95 31207 31226.9 

ΔBIC 0.00 170.98 181.15 188.07 207.89 

Wtc 1 0 0 0 0 

R2
c 0.54 0.54 0.54 0.54 0.53 

R2
m 0.51 0.51 0.51 0.51 0.51 

Notes: The models are shown in decreasing rank order (left to right), with the degrees of freedom (df), log-

likelihood (LL), Bayesian Information Criterion (BIC), BIC difference (∆BICc), and BIC weight (Wtc). The level of 

significance (p < 0.05) is indicated using bolded coefficients (β). 

† Seasons were defined as winter: Dec.1 – Mar. 31 and summer: Apr. 1 – Nov. 31. 

‡ Conditional (R2
Cond) and marginal (R2

Marg) R2 for mixed models (Nakagawa, Johnson, and Schielzeth 2017). 
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Appendix 2.1 - Table 4 The top 5 generalized linear models (GLMs) comparing habitat suitability index 

(HSI) derived from a resource selection function (RSF) model equation with expert-derived permeability 

values used in circuit-based models but the City of Edmonton (2016b, 2017b), season, and health-status 

for GPS locations for 19 urban coyotes in Edmonton, Alberta. 

Parameter Coefficients (β) 

Intercept 1.025 1.025 1.025 1.025 1.025 1.029 1.021 1.016 1.021 

Permeability est.† 0.012 0.011 0.010 0.009 0.008 0.009 - 0.010 0.008 

Season (winter)‡ 0.008 0.010 0.010 0.010 0.010 -0.023 - 0.013 - 

Mange§ -0.023 -0.021 -0.021 -0.021 -0.021 - - - - 

Permeability est.  

x Season (winter) 
-0.004 -0.003 - -0.002 - - - -0.002 - 

Permeability est.  

x Mange 
-0.006 -0.005 -0.005 - - -0.004 - - - 

Season (winter)    

x Mange 
0.005 - - - - - - - - 

Permeability est.  

x Season (winter)  

x Mange 

0.005 - - - - - - - - 

Model Rank 1 2 3 4 5 6 7 8 9 

df 11740 11742 11743 11743 11744 11744 11747 11744 11746 

LL -35127.6 -35123.2 -35119.0 -35100.1 -35099.9 -35029.8 -34718.3 -34700.5 -34541 

AIC 0.00 4.42 8.58 27.49 27.76 97.83 409.30 427.10 586.63 

ΔAIC 1 0 0 0 0 0 0 0 0 

Wtc 17801.4 17797.15 17794.1 17785 17783 17748 17361 17583.8 17502 

R2 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 - -0.002 -0.001 

Notes: The models are shown in decreasing rank order (left to right), with the degrees of freedom (df), log-

likelihood (LL), Akaike Information Criterion (AIC), AIC difference (∆AICc), AIC weight (Wtc), and Nagelkerke’s 

Pseudo R2. The habitat suitability index (HSI) tested was derived from a resource selection function (RSF) model 

equation modelled using 19 urban coyotes (n = 11,748 “used” radiotelemetry locations) and logarithmically 

transformed.  

† Estimated permeability obtained from expert-derived permeability layers (cumulative) used to create circuit-based 

models by the City of Edmonton (2016b, 2017b) and square-root transformed. 

‡ Seasons were defined as winter: Dec.1 – Mar. 31 and summer: Apr. 1 – Nov. 31.  

§ Using 14 healthy and five mange-infected coyotes. 
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4.2 APPENDIX 3.1 

Appendix 3.1 - Table 1 Part A of the City of Edmonton’s Phase II Ecological Network Report (ENRII 

[City of Edmonton 2014a]) natural area scoring system, with factor, variable, metric, scoring criteria, 

score, variable score, and factor score calculations used to derive estimates of ecological value for natural 

areas via two indices, biodiversity potential and ecological connectivity, for 69 camera traps and 38 small 

mammal track tube arrays in Edmonton, Alberta. 

Factor Variable Metric Criteria Score 
Variable Score 

Calculation 

Factor Score 

Calculation 

Biodiversity 

Potential 

Size Area (ha) 

<0.5 0 

Score out of 15 

Add variable 

scores = 

score out of 

35 

0.5 – 1 1 

>1– 3 2 

>3 – 6 5 

>6 – 9 8 

>9– 12 11 

>12 15 

Shape Shape 

Simple round/square shape 0 

Score down to -

8 

A few linear/narrow areas -2 

Mix of linear/narrow areas 

and rounder/wider areas 
-4 

Linear/narrow throughout -8 

Habitat 

diversity 

Number of different 

habitat types (> 0.5 

ha) present within 

the natural area 

Open water 3 

Add all that 

apply = score 

out of 20 

Marsh wetland 3 

Shrub wetland 2 

Peatland (bog or fen) 4 

Deciduous upland 2 

Coniferous upland 2 

Mixedwood upland 3 

Meadow/naturalized field 1 

Ecological 

connectivity 

Presence of 

nearby 

upland 

habitat 

Area (ha) of wooded, 

meadow, or 

naturalized field 

habitat within 100 m 

buffer 

0 – 0.5 0 

Score out of 10 

Add variable 

scores = 

score out of 

20 

>0.5 – 1 1 

>1 – 2 3 

>2 – 3 5 

>3 – 5 7 

>5 10 

Presence of 

nearby 

wetland 

habitat 

Area (ha) of wetland 

habitat within 100 m 

buffer 

0-1 0 

Score out of 10 
>1-3 3 

>3 – 5 5 

>5 10 
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Appendix 3.1 - Table 2 Number of camera trap months, independent detections, species diversity of 

terrestrial mammal species, and percentage of total detections from three ecological design groups (City 

of Edmonton 2010b, 2014a) from 89 camera traps located throughout Edmonton, Alberta, from May 2018 

to September 2021, with an asterisk indicating the 69 sites in natural sites used to evaluate the predictive 

accuracy of two ecological indices (City of Edmonton 2014a). 

Site name Latitude Longitude 

Num. of 

camera 

months 

Num. of 

detections 

Species 

richness 
% of detections† 

Total 
Avg. / 

month 
Total 

Avg. / 

month 
Small Medium Large 

Abbottsfield§ 53.5696 -113.3776 4 46 11.5 4 1.5 7 93 0 

Airport¶ 53.5783 -113.5090 24 540 22.5 5 1.5 0 63 36 

Anthony Henday Bridge§ 53.4603 -113.6173 15 791 52.7 6 2.5 0 7 93 

Bannerman§ 53.6091 -113.3632 41 218 5.3 6 1.4 25 75 0 

Belgravia¶ 53.5149 -113.5300 8 353 44.1 9 3.1 75 25 0 

Belgravia Dog Park¶ 53.5060 -113.5420 16 82 5.1 5 1.9 41 59 0 

Belvedere¶ 53.5929 -113.4350 8 40 5.0 2 1.4 0 100 0 

Big Island§ 53.4281 -113.6650 40 703 17.6 9 3.5 4 61 34 

Blackmud Creek Ravine§ 53.4448 -113.5159 41 524 12.8 10 1.9 3 23 74 

Blue Quill¶ 53.4617 -113.5180 33 196 5.9 6 1.2 2 98 1 

Brookside§ 53.4984 -113.5650 40 524 13.1 8 2.3 8 88 3 

Buena Vista§ 53.5132 -113.5442 28 437 15.6 5 2.0 16 84 0 

Callingwood§ 53.5069 -113.6200 40 21 0.5 4 0.3 5 76 19 

Canon Ridge§ 53.5849 -113.3800 5 25 5.0 2 1.4 0 100 0 

Cashman§ 53.4237 -113.5000 4 9 2.3 2 0.8 0 33 67 

City Center¶ 53.5414 -113.5004 2 0 0.0 0 0.0 - - - 

Cloverdale§ 53.5384 -113.4790 5 56 11.2 4 0.8 5 57 38 

Davies Industrial West§ 53.5019 -113.4470 4 5 1.3 1 0.8 0 100 0 

Decoteau 2§ 53.4172 -113.3980 4 34 8.5 2 1.3 0 12 88 

Decoteau 3§ 53.4157 -113.4040 38 989 26.0 12 3.0 2 25 73 

Dovercourt¶ 53.5759 -113.5600 6 6 1.0 2 0.3 33 67 0 

Edgemont§ 53.4661 -113.6670 40 178 4.5 8 1.6 15 70 15 

Goodridge Corner§ 53.6413 -113.5530 38 1117 29.4 10 3.7 3 39 58 

Graydon Hill§ 53.4263 -113.5630 33 215 6.5 8 1.2 0 23 76 

Hairsine¶ 53.6044 -113.3910 2 3 1.5 2 1.0 0 100 0 

Hawrelak Park 1§ 53.5246 -113.5480 5 17 3.4 6 2.0 29 71 0 

Hawrelak Park 2§ 53.5231 -113.5450 32 100 3.1 8 1.6 13 84 3 

Horse Hill 1§ 53.6718 -113.3330 4 31 7.8 5 2.0 3 58 39 

Horse Hill 2§ 53.6721 -113.3360 34 195 5.7 9 1.8 1 55 45 

Humane Society§ 53.5968 -113.6046 40 196 4.9 8 1.4 12 85 3 

Inglewood¶ 53.5645 -113.5310 17 28 1.6 4 0.7 4 96 0 

Kennedale Ravine 1§ 53.5888 -113.3950 7 78 11.1 4 1.9 17 81 3 

Kennedale Ravine 2§ 53.5910 -113.4038 34 224 6.6 7 1.3 14 84 2 

Kiniski Gardens§ 53.4763 -113.4140 40 131 3.3 4 0.8 15 85 0 

Laurier Heights Park¶ 53.5164 -113.5700 2 3 1.5 3 1.0 33 67 0 

Leger¶ 53.4613 -113.5840 11 55 5.0 4 1.7 0 76 24 
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MacKinnon Ravine 1§ 53.5399 -113.5460 2 10 5.0 3 1.5 0 100 0 

MacKinnon Ravine 2§ 53.5389 -113.5501 4 15 3.8 3 0.8 7 87 7 

MacKinnon Ravine 3§ 53.5354 -113.5580 4 55 13.8 3 2.0 55 45 0 

MacKinnon Ravine 4§ 53.5381 -113.5640 7 1 0.1 1 0.1 100 0 0 

MacKinnon Ravine 5§ 53.5380 -113.5639 23 133 5.8 4 1.4 5 93 2 

Magrath Heights§ 53.4512 -113.5410 41 364 8.9 8 1.7 4 41 55 

Marquis Two§ 53.6337 -113.3430 12 151 12.6 6 2.2 12 56 32 

McCauley§ 53.5549 -113.4671 2 46 23.0 3 2.0 0 98 2 

Meadows¶ 53.4718 -113.3910 24 51 2.1 4 0.8 12 88 0 

Millwoods Golf Course§ 53.4861 -113.4280 37 146 3.9 6 1.0 3 93 3 

Muttart 2§ 53.5294 -113.4770 37 316 8.5 6 1.5 1 92 7 

Parkallen¶ 53.5024 -113.5180 6 7 1.2 3 0.5 71 29 0 

Prince Charles¶ 53.5743 -113.5370 3 24 8.0 4 1.7 13 83 4 

Pylypow Industrial§ 53.4994 -113.4040 39 676 17.3 9 2.2 3 92 5 

Quarry Ridge§ 53.6226 -113.3340 28 538 19.2 8 2.3 0 24 76 

Queen Mary Park¶ 53.5523 -113.5277 16 191 11.9 3 1.9 46 54 0 

R.V. Aspen Gardens§ 53.4821 -113.5548 41 873 21.3 6 2.3 1 32 68 

R.V. Cameron 1§ 53.4705 -113.6082 4 57 14.3 2 1.0 0 2 98 

R.V. Cameron 2§ 53.4761 -113.6217 20 395 19.8 8 2.5 0 35 64 

R.V. Highlands§ 53.5565 -113.4400 41 246 6.0 6 1.0 0 99 0 

R.V. Mayfair 1§ 53.5362 -113.5410 11 59 5.4 6 2.1 17 81 2 

R.V. Mayfair 2§ 53.5365 -113.5431 28 449 16.0 9 2.6 24 71 4 

R.V. Oleskiw§ 53.4856 -113.5920 14 89 6.4 3 1.2 3 15 82 

R.V. Rundle§ 53.5574 -113.4040 41 1217 29.7 9 2.8 35 65 0 

R.V. Terwillegar§ 53.4865 -113.6130 40 244 6.1 4 1.6 30 69 1 

R.V. Victoria§ 53.5329 -113.5250 23 373 16.2 10 2.4 25 70 5 

R.V. Walterdale§ 53.5287 -113.5059 5 10 2.0 3 1.0 0 60 40 

Rampart Industrial§ 53.6072 -113.5769 11 189 17.2 6 2.2 0 69 31 

Rapperswill§ 53.6355 -113.5330 22 1125 51.1 6 2.5 5 93 2 

Rio Terrace§ 53.5023 -113.5920 2 28 14.0 4 2.0 57 39 4 

Ritchie§ 53.5195 -113.4730 2 2 1.0 1 0.5 0 100 0 

Riverview Area 1§ 53.4128 -113.6851 41 500 12.2 11 2.1 1 13 86 

Roper Road§ 53.4957 -113.4340 39 284 7.3 6 1.3 27 65 8 

Rossdale§ 53.5297 -113.4911 5 139 27.8 6 3.2 88 12 0 

Rural Sturgeon§ 53.6496 -113.3024 19 335 17.6 7 2.5 1 18 81 

Silver Berry§ 53.4644 -113.3905 17 170 10.0 5 2.2 40 60 0 

South Campus§ 53.5021 -113.5374 2 6 3.0 2 1.5 0 83 17 

South Sturgeon 1§ 53.6714 -113.2960 3 27 9.0 4 2.3 0 74 26 

South Sturgeon 2§ 53.6700 -113.2910 35 900 25.7 10 3.1 2 12 86 

Star Blanket Park§ 53.4573 -113.4009 5 56 11.2 1 0.4 100 0 0 

Sturgeon County§ 53.6076 -113.3380 4 24 6.0 3 1.8 0 83 17 

Tamarack§ 53.4582 -113.3590 38 186 4.9 6 0.8 0 96 4 

Terrace Heights§ 53.5458 -113.4380 40 265 6.6 6 1.5 35 63 2 

University Farm§ 53.4969 -113.5427 36 396 11.0 6 1.7 2 57 41 

Virginia Park¶ 53.5623 -113.4590 8 14 1.8 3 1.0 7 93 0 

Walterdale§ 53.5242 -113.5060 7 28 4.0 4 1.4 11 39 50 
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Wedgewood Heights¶ 53.4803 -113.6447 37 504 13.6 6 2.1 0 87 13 

Wellington 1¶ 53.5937 -113.5557 7 72 10.3 2 0.9 0 100 0 

Wellington 2¶ 53.5925 -113.5616 9 52 5.8 3 0.7 0 100 0 

Wolf Willow Ravine§ 53.5026 -113.6020 33 152 4.6 5 1.6 28 50 22 

Woodcroft¶ 53.5622 -113.5640 24 249 10.4 5 1.7 53 47 0 

Zoo 1§ 53.5088 -113.5622 5 170 34.0 3 2.0 1 99 0 

Zoo 2§ 53.5084 -113.5610 34 1218 35.8 6 2.1 3 95 3 

† Percentage of the total detections from species within three ecological design groups used by the City of 

Edmonton (see Fig. 3.2 and Table 3.1 for species within groups [City of Edmonton 2010b, 2014b]).  

‡ The total number of detections from each site; temporal coverage variable as "Num. of camera months"; study 

occurred from May 2018 to September 2021. 

§ From 69 sites in natural areas used to test two ecological indices (City of Edmonton 2014a). 

¶ From 89 sites in both natural and semi-natural parks used to model occurrence and relative abundance using 

remotely-sensed and site-based variables. 

  



117 

 

Appendix 3.1 - Table 3 List of uncorrelated and most-explanatory variables for zero-inflated Poisson 

(ZIP) mixed models and linear mixed models (LMM) modelling predictors of occurrence and relative 

abundance of three ecological design groups (EDG [City of Edmonton 2010b, 2014a]) and five individual 

species from 89 camera traps and 48 track tube arrays placed in natural and semi-natural parks in 

Edmonton, Alberta. 

Species/ 

group 
Model-part† Variables assessed in combined models‡ 

Small EDG 

(track tube)§ 

Relative 

abundance (λ) 

Natural/modified, Site.Connected, %Natural grass/shrub, Site.%Treed, Site.%Shrub, 

Site.%Grass/forbe, Site.%CWD, Site.#Game.trail, Urban 

Small EDG 

(camera trap) 

Occurrence 

(ψ) 

Connective.hab.area, Prox.Riv/rav, Site.#Game.trail, %Modified.veg., Site.%Shrub, 

Site.%Water, Site.%Bare, Domestic.dog, Pred.abundance, Season, Lure 

Relative 

abundance (λ) 

Veg.type, %Maint.grass, Site.#Human.trail, Human, Domestic.dog, Pred.abundance, 

Season, Lure 

Red squirrel 

Occurrence 

(ψ) 

%Modified.veg., Site.%Shrub, Veg.type, Prox.Riv/rav, Patch.size, Site.%CWD, 

Site.#Human.trail, Site.#Game.trail, Domestic.dog, Urban, Pred.abundance, Season 

Relative 

abundance (λ) 

Site.%Canopy, Vegetation.type, %Modified.veg., Site.#Human.trail, Human, 

Domestic.dog, Season 

Medium EDG 

Occurrence 

(ψ) 

Connective.hab.area, Site.Forest.structure, Site.%CWD, Human, Domestic.dog, Off-

leash.area, Urban, Season, Lure 

Relative 

abundance (λ) 
Connective.hab.area, Site.Grass.structure, Domestic.dog, Off-leash.area, Season, Lure 

Snowshoe 

hare 

Occurrence 

(ψ) 

Natural/modified, %Maint.grass, Site.%Shrub, Site.%Grass/forbe, Site.Grass.structure, 

Site.Anthro.dist., Site.#Human.trail, Site.#Game.trail, Human, Domestic.dog, Urban, 

Pred.abundance, Season 

Relative 

abundance (λ) 

Natural/modified, %Natural.forest, Site.%Shrub, Site.%Grass/forbe, %Maint. grass, 

Site.%Water, Site.%Bare, Domestic.dog, Pred.abundance, Season 

Porcupine 

Occurrence 

(ψ) 

Natural/modified, %Natural.forest, Site.%Shrub, Site.Grass.structure, Prox.Riv/rav, 

Site.#Game.trail, Site.%CWD, Site.%Water, Urban, Season, Lure 

Relative 

abundance (λ) 

Natural/modified, Prox.Riv/rav, Site.%Canopy, Site.#Game.trail, Site.%CWD, Urban, 

Season 

Coyote 

Occurrence 

(ψ) 

Natural/modified, Connective.hab.area, Site.Forest.structure, Site.Veg.diversity, 

Site.#Game.trail, Site.%CWD, Site.%Water, Human, Domestic.dog, Off-leash.area, 

Urban, Prey.abundance(CT), Season, Lure 

Relative 

abundance (λ) 

Natural/modified, Site.%Shrub, Site.Grass.structure, Shape.index, Domestic.dog, Urban, 

Prey abundance(CT), Season, Lure 

Large EDG 

Occurrence 

(ψ) 

Natural/modified, Connective.hab.area, %Natural.forest, Site.Veg.diversity, 

%Modified.veg., %Maint.grass, Site.%Bare, Site.Anthro.dist., Site.#Human.trail, 

Site.#Game.trail, Human, Domestic.dog, Off-leash.area, Urban, Season 

Relative 

abundance (λ) 

Patch.size, Natural/modified, %Natural.forest, Site.%Shrub, Site.Veg. diversity, 

Site.#Game.trail, %Modified.veg., Site.#Human.trail, Off-leash.area, Urban, Season 

Mule deer 

Occurrence 

(ψ) 

Natural/modified, Connective.hab.area, %Natural.forest, Site.Forest.structure, 

Site.%Shrub, %Modified.veg., Site.Anthro.dist., Human, Domestic.dog, Off-leash.area, 

Urban, Season, Lure 

Relative 

abundance (λ) 

Connective.hab.area, %Natural.forest, Site.Forest.structure, Site.#Game.trail, 

%Modified.veg., %Maint.grass, Site.%Bare, Domestic.dog, Off-leash.area, Urban, 

Season, Lure 
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† From camera traps in ZIP mixed models (§): zero-inflation model-part (inversely, probability of occurrence; logit 

link; ψ), conditional model-part (relative abundance; log link; λ); from track tubes in LMMs (‡): conditional model 

(relative abundance; λ). 

‡ Liberally significant (p < 0.25 [Hosmer and Lemeshow 1989]) and the most explanatory defined as best-fit using 

for Bayesian Information Criterion (BIC; Schwarz 1978) for ZIP mixed models and Akaike’s Information Criterion 

for small sample sizes (AICc; Akaike 1978) for LMMs. 

§ LMMs used for data from track tubes (n = 130); ZIP mixed models used elsewhere (n = 1,783). 


