
Effective Trajectory Imputation using Simple
Probabilistic Language Models

by

Hayat Sultan Mohammed

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Hayat Sultan Mohammed, 2024

Abstract

Trajectory data analysis refers to the systematic exploration of spatial and

temporal movement patterns in trajectory datasets. Missing trajectory points

pose a challenge as they affect downstream tasks that rely on these datasets,

such as public transportation management, wildlife monitoring, and urban

planning. Diverse approaches, from statistical methods to deep learning mod-

els, have been proposed to address the issue of missing data points in trajec-

tories. In this thesis, we explore two approaches based on relatively simple

probabilistic language models in order to address this problem, also known as

trajectory imputation. Using a grid-based representation, we assign tokens to

each point in a trajectory, representing each trajectory as a sequence of tokens

akin to a sentence in natural language. This allows the application of language

models for predicting missing points (tokens). Our experiments using a real

dataset of over 200,000 taxi trips show that we can fill gaps of up to 2km with

85% precision. Furthermore, compared to large language models, probabilistic

language models for imputing trajectory points offer a much simpler technique

and enhance the interpretability of the results.

ii

Acknowledgements

I am deeply grateful to my amazing supervisors Prof. Mario A. Nascimento and

Prof. Denilson Barbosa for their unparalleled support, guidance, and always

insightful input that never fails to bring a touch of humor. Thank you both

for believing in me, for showing me the way, and for making this journey far

more enjoyable than I thought possible.

Thank you to my wonderful parents Sultan M. Alya and Remla H. Alketa.

Through you both, I always had the perfect balance of motivation to reach

higher and support when things fell through. My siblings Nebiyu, Semir and

especially my sister Muna, thank you for always being there, and going through

all the highs and lows of the past few years with me.

Last but not least, I would like to thank Dr. Ildar Akhmetov for pushing

me to believe in myself when I could not find it in me to do so.

iii

Contents

1 Introduction 1
1.1 Trajectory Data and Natural Language 3
1.2 Problem Definition and Thesis Statement 3
1.3 Existing Solutions . 3
1.4 Our Approach . 4
1.5 Experiments . 5
1.6 Thesis Structure . 6

2 Background 8
2.1 Trajectory Imputation . 8
2.2 Language Models . 9

2.2.1 Probabilistic Language Models 10
2.2.2 Neural Network/Deep Learning Language Models . . . 13

2.3 Related Work . 16
2.3.1 Geometric Methods . 16
2.3.2 Probabilistic Methods 18
2.3.3 Classic Machine Learning Methods 19
2.3.4 Deep Learning Methods 19

3 Proposed Approaches 22
3.1 Trajectories as Sentences . 22
3.2 Imputation using N -grams . 24

3.2.1 PaLMTo-Generative 24
3.2.2 PaLMTo-Lookup . 30

4 Experiments 31
4.1 Datasets . 31

4.1.1 Porto . 31
4.1.2 San Francisco (synthetic) 32
4.1.3 Beijing . 33

4.2 N -gram Trends in Trajectory Data and Natural Language . . 35
4.3 Preprocessing . 37
4.4 Evaluation Metrics . 38
4.5 Experiments with Different Parameters 39

4.5.1 Grid Size . 40
4.5.2 Context Size . 43
4.5.3 Comparing PaLMTo-G-1-1, PaLMTo-G-3-1 and PaLMTo-

G-3-3 . 47
4.5.4 Dataset . 51
4.5.5 Gap Size . 55
4.5.6 PaLMTo-Lookup vs. PaLMTo-Generative method . . . 55

4.6 PaLMTo vs. TrImpute . 59

iv

5 Conclusion and Future Work 62
5.1 Summary . 62
5.2 Future work . 64

References 66

v

List of Tables

4.1 Comparison of the four datasets 34

vi

List of Figures

1.1 Examples of incomplete trajectories (“missing” information shown
with a dahsed line) (a) a trajectory with a significant gap be-
tween point p5 and p6 (b) a trajectory sampled at a low rate,
and (c) a trajectory with only origin and destination point. . . 1

1.2 (a) imputed points (shown in blue and orange) on (or very close
to) the actual road network (b) imputed points (shown in red)
in inaccessible areas . 2

1.3 Original path (green) and the path generated by PaLMTo (blue) 5

3.1 Converting trajectories to “sentences” 23
3.2 PaLMTo-G-1-1 - Imputation using Probability 26
3.3 PaLMTo-G-3-1 - Imputation using Probability and Distance . 27
3.4 PaLMTo-G-3-3 - Imputation using Probability, Distance and

Perplexity . 28

4.1 Porto city (top), selected dense area (bottom) 32
4.2 San Francisco . 33
4.3 Beijing . 34
4.4 N -gram trends in trajectory data 36
4.5 N -gram trends in natural language 36
4.6 (a) Precision - predicted points (orange) that are outside the

specified threshold from the actual path (green) are circled in
red. (b) - Recall - actual points (green) that failed to be re-
covered (are outside the specified threshold from the predicted
path) are circled in red. 39

4.7 Grid size vs. F1-score . 41
4.8 The impact of grid cell size on prediction quality. As cell size

increases, the distance between the actual point and the pre-
dicted point (center of the cell) may also increase, highlighting
the trade-off between grid granularity and prediction precision 41

4.9 Grid size vs. execution time (to fill a gap of 1km) 42
4.10 Grid size vs. N -gram count 43
4.11 Context size vs. F1-score . 44
4.12 (a) shows a context of one point (green), the objective is to pre-

dict the next point. (b) and (c) show the possible next points
(orange), with context sizes of one and two points, respectively.
(d) shows how the increase in context does not change the po-
tential next points. 45

4.13 Context size vs. memory . 46
4.14 Context size vs. time . 47
4.15 F1-Score of the 3 different methods of the PaLMTo-Generative

approach . 48

vii

4.16 Execution time of the 3 different methods of the PaLMTo-
Generative approach . 49

4.17 Real world examples of the 3 different methods - Original path
(magenta), PaLMTo-G-1-1 (red), PaLMTo-G-3-1 (orange), PaLMTo-
G-3-3 (blue) . 50

4.18 F1-score of predictions for the three datasets: Porto, San Fran-
cisco and Beijing . 51

4.19 The average gap between consecutive points for the three datasets:
Porto, San Francisco and Beijing 52

4.20 Path from the predicted points (blue), path from original points
(magenta) . 53

4.21 F1-score of predictions in dense region in Porto vs. the entire city 53
4.22 Minimal decline in F1-score when the size of the dataset decreases 54
4.23 The predicted path (blue) differs from the actual path (ma-

genta), but it is a viable route. 55
4.24 PaLMTo-Lookup vs. PaLMTo-Generative (F1-score) 56
4.25 PaLMTo-Lookup vs. PaLMTo-Generative (data size) 57
4.26 PaLMTo-Lookup vs. PaLMTo-Generative (memory) 58
4.27 PaLMTo-Lookup vs. PaLMTo-Generative (time) 58
4.28 PaLMTo vs. TrImpute (50m threshold) 59
4.29 PaLMTo vs. TrImpute (25m threshold) 60
4.30 Real world examples comparing the performance of PaLMTo

with TrImpute - Original path (magenta), PaLMTo (blue), TrIm-
pute (orange) . 61

viii

Chapter 1

Introduction

Trajectory data, consisting of ordered and often time-stamped positional records

such as GPS coordinates [31], plays a vital role in various domains, including

traffic analysis [25], public transportation management [27], wildlife monitor-

ing [1], and urban planning [10]. The effectiveness of these applications heavily

relies on the accuracy and completeness of the trajectories. However, trajec-

tories can sometimes be incomplete.

Incomplete trajectories may come in various forms. One of these is in-

stances where a significant gap appears within the trajectory (Figure 1.1a).

This gap might result from issues such as weak GPS signals or data being sam-

pled at a low rate, where the points in the trajectory are not close enough to

provide a complete and accurate information of the path (Figure 1.1b). Such

gaps may obscure critical portions of the journey. Another scenario involves

situations where only the starting and ending points of a trajectory are avail-

able such as in instances where individuals seek route suggestions based on

their origin point and desired destination (Figure 1.1c).

(a) (b) (c)

Figure 1.1: Examples of incomplete trajectories (“missing” information shown
with a dahsed line) (a) a trajectory with a significant gap between point p5
and p6 (b) a trajectory sampled at a low rate, and (c) a trajectory with only
origin and destination point.

1

Technically, only the first scenario, i.e., gaps caused by weak GPS signals

encountered during the trajectory (Figure 1.1a), can be strictly referred to as

an incomplete trajectory. However, we extend the definition to encompass all

the instances shown in Figure 1.1. We do so because the approach we use can

be effectively applied to address all these instances.

While these scenarios differ slightly, they all either require or stand to

benefit from the completion of the trajectories by inserting artificial (predicted)

points – a process often referred to as trajectory imputation. Of course, it is

crucial to ensure these imputed points are as close to “natural” points (i.e.,

points that were observed in previous trajectories) as possible (Figure 1.2a),

and that they are not placed in inaccessible areas, such as water bodies, parks

and residential areas in urban applications (Figure 1.2b), or obstacles like steep

rocks or holes in wildlife applications.

(a) (b)

Figure 1.2: (a) imputed points (shown in blue and orange) on (or very close
to) the actual road network (b) imputed points (shown in red) in inaccessible
areas

One can approach this trajectory completion problem from two angles:

using the existing road network map of the area, or not. While the former

simplifies the task, it brings its own set of challenges. It can be prone to

errors caused by factors such as inaccurate or outdated map data, or even be

infeasible due to the complete absence of map data. Hence, it is important to

be able to complete trajectories independently of road network information.

2

1.1 Trajectory Data and Natural Language

Trajectory data and natural language text share a similar attribute: an inher-

ent order and structure that can be leveraged to extract meaningful insights.

While trajectories are ordered sequences of points in space, text sentences are

ordered sequences of words. This similarity opens up opportunities for the

application of language modeling techniques to address challenges related to

trajectories.

However, before applying natural language techniques to trajectory data,

it is important to assess the challenges that prompted the advancements in

language modeling techniques, particularly when it comes to long-term depen-

dency, and determine if these challenges also hold in trajectory data. This

assessment should serve as the basis for selecting the appropriate language

modeling technique, rather than simply adopting the latest trend.

1.2 Problem Definition and Thesis Statement

A trajectory is an ordered sequence of points in space. We say that a trajectory

has a gap of length d if there are two consecutive points in the trajectory such

that their Euclidean distance is at least d. The trajectory imputation problem

is to augment the trajectory with artificial (predicted) points in a way that no

gaps are left.

In this thesis, we demonstrate the effectiveness of using relatively simple

language modeling techniques to trajectory data to address the trajectory

imputation problem.

1.3 Existing Solutions

The need to accurately impute points in incomplete trajectories has led to the

exploration of a wide range of solutions. Most of these approaches require

access to road network information [2][7][21][22].

Elsherif et al. [5] claim to be the first to perform imputation without re-

lying on road network information, using a geometry-based approach that

3

completes trajectories by considering factors such as angles and speed. While

their method, which adopts a “crowd wisdom” approach to avoid following

paths no one is taking, greatly outperforms linear interpolation, it often fails

to place imputed points accurately on the actual road network. In contrast,

our approach performs well in this regard, with most imputed points closely

aligning with the real road networks.

In recent years, the remarkable success of large language models, with

their widespread application across diverse domains, has naturally extended

to trajectory data, offering new paths for research. Musleh et al. [14], envision

a unified deep model for trajectory analysis, and in their subsequent work

introduce KAMEL [15], wherein they adopt BERT [3], a prominent example of

a large language model, for trajectory imputation. Their work has served as a

primary motivation for us to explore the use of language models for trajectory

imputation. However, in this thesis, we demonstrate that our simpler and

more explainable language model is just as effective for trajectory completion.

1.4 Our Approach

Our approach named Probabilistic Language Models for Trajectory Imputa-

tion (PaLMTo) begins by converting trajectories into sentences using a grid-

based approach. Following this, we generate N -grams from these sentences,

breaking the text into contiguous sequences of N words. We use these N -

grams to predict the most probable tokens for trajectory completion. In other

words, we use the N -grams to determine the most probable next token, given

the preceding N -1 tokens. We experiment with different N values to see how it

affects the quality of our predictions. To handle situations where we have not

seen certain N -grams before, we use a common language modeling smoothing

technique – backoff smoothing.

We explore two different approaches for choosing the next token. The first

approach, PaLMTo-Generative, follows the traditional use of N -grams, where

the sequence of N words is used to predict the next word. We also investigate

three alternative methods under this approach: PaLMTo-G-1-1 – making a

4

choice solely based on probability, PaLMTo-G-3-1 – integrating distance as a

factor along with probability, and PaLMTo-G-3-3 – using perplexity, which is a

language model evaluation technique, to pick the most likely path to complete

a gap.

The second approach, PaLMTo-Lookup, adopts N -grams as essentially

storage systems, where the missing data can be retrieved based on the informa-

tion preceding and following the gap. In this approach, instead of generating

points individually, we search our N -gram corpus to identify instances where

the first and last tokens of the N -gram correspond to the points preceding and

following the gap.

1.5 Experiments

We evaluated the effectiveness of our proposed method using two real-world

datasets from the cities of Porto and Beijing, and a third synthetic dataset

from San Francisco. To assess the performance of our approach, we created

gaps of up to 2 kilometers by removing points from complete trajectories. We

then compared our findings with TrImpute [5], the latest work that does not

rely on road network information for trajectory imputation.

Our results show that 85% of the imputed points fall within 50m of the

original trajectory when imputing a gap of 2km, as shown in Figure 1.3, which

was a noticeable improvement to the 69% accuracy achieved by TrImpute.

Figure 1.3: Original path (green) and the path generated by PaLMTo (blue)

5

The experiments in this thesis address the following research questions:

• Can PLMs solve the trajectory imputation problem?

• What are the trade-offs between grid size and quality of predictions?

• How does the choice of N -gram size affect the quality of predictions?

• What are the trade-offs betweenN -gram size and efficiency (memory/computation

time)?

• How do methods that rely solely on probability, those incorporating

probability with distance, and those incorporating probability with dis-

tance and perplexity compare with one another?

• How does the dataset (size, sparsity) affect the quality of the predictions?

• How does the gap size affect the quality of the predictions?

• Can a database-like “lookup” on previous trajectories be as effective as

generating points using PLMs “as usual”?

1.6 Thesis Structure

Chapter 2 provides a background on various trajectory imputation methods,

categorized based on their approaches. Additionally, that chapter will provide

a brief overview of the evolution of language models over time. This historical

context lays the foundation for understanding why simple language models

may prove to be just as effective, if not more, for trajectory data compared to

the large language models that dominate most recent works.

Chapter 3 provides a detailed explanation of the different approaches we

used to address the challenge of missing points in a trajectory. It will ex-

plain the PaLMTo–Generative and the PaLMTo–Lookup approach in detail.

Additionally, we explain the three different methods used within the PaLMTo–

Generative approach.

Chapter 4 starts with a brief analysis of the datasets used for the experi-

ments. The rest of the chapter focuses on the results of a series of experiments

6

performed to analyze the benefits and drawbacks of the different approaches.

Additionally, we will examine various parameters, such as grid size, N -gram

size, and data size, to provide an overall understanding of our approach’s per-

formance.

Lastly, Chapter 5 serves as the thesis’s conclusion, summarizing key in-

sights drawn from the experiments and discussing directions for future re-

search.

7

Chapter 2

Background

In this chapter, the main concepts behind the terms trajectory imputation and

language models are discussed, along with an exploration of previous research

conducted in the field of trajectory imputation.

2.1 Trajectory Imputation

A trajectory is a trace generated by a moving object within a certain spa-

tiotemporal context and is generally represented by a series of chronologically

ordered points. A single trajectory of n geographical points can be formally

described as T = (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn), where (xi, yi) represents

the latitude and longitude of the ith point, and ti represents the timestamp

associated with that specific observation, where ti > tj for i > j.

Trajectory imputation is the task of filling in missing data points in a

trajectory with predicted values, often using information from the available

observed points. This, in turn, enhances the usability of the dataset for vari-

ous downstream applications such as route planning, traffic management etc.

Trajectory interpolation, trajectory reconstruction, trajectory restoration and

trajectory completion are alternative terms that are often used interchangeably

or in a similar context to describe the process of trajectory imputation.

The term trajectory imputation encompasses two key dimensions: spatial

imputation and temporal imputation. Spatial imputation primarily deals with

predicting missing location data within trajectories, while temporal imputa-

tion focuses on restoring missing timestamps. For the scope of this thesis, we

8

focus on spatial imputation, specifically addressing the challenges associated

with completing location information within trajectories.

Incomplete trajectory can refer to two different scenarios. (1) It may refer

to an unusual gap observed between consecutive points when compared to

the rest of the dataset. In this case, the trajectory is considered incomplete

due to the missing data points. (2) It can describe a situation where the gap

between all points is excessively wide, rendering the trajectory unsuitable for

the subsequent task at hand.

Trajectory imputation can be applied to various types of trajectories, in-

cluding those that follow road networks, such as vehicle or pedestrian data,

as well as trajectories in free space, like flying birds, which do not adhere to

restricted paths. In Section 2.3, when discussing related works, we solely focus

on trajectories that follow road network paths. This encompasses approaches

that use road network information during the imputation process, as well as

those that do not rely on such information, like ours.

2.2 Language Models

A language model is a distribution of probabilities associated with words or

sequences of words. It is trained on large amounts of text like books, articles,

and websites to extract statistics from the data and use those statistics as

the basis for tasks like answering questions or generating text. It learns by

estimating how likely certain word combinations are, with more probable com-

binations having a higher chance of being considered feasible. This does not

mean grammatical or even factual correctness, but rather the model’s ability

to capture the patterns and style observed in the text used as its learning data.

Based on the underlying techniques and methodologies used to build and

train them, we categorize language models into probabilistic language models

and neural network language models.

9

2.2.1 Probabilistic Language Models

Probabilistic language models assign probabilities to words or sequences of

words based on statistical methods. These models estimate the likelihood of a

particular word or sequence of words occurring in a given context by analyzing

the frequency of their occurrence in the training data.

In formal terms, a probabilistic language model establishes a probability

distribution P (W) over word sequences W = w1, w2, ..., wn, where each word

wi belongs to a predefined vocabulary. The model calculates the conditional

probability of a word given its preceding context, i.e., P (wi|w1, w2, ..., wi−1).

These models are typically based on statistical methods, such as N -grams,

Hidden Markov Models [17], or Maximum Entropy models [19]. In the follow-

ing we will provide a detailed discussion on N -gram language models, which

is the basis of our main approach.

N-gram Language Models

An N -gram is a sequence of N contiguous tokens in a sentence from a cor-

pus. In the context of language modeling, an N -gram language model treats

sequences of N tokens using a Markov process. Markov models are statistical

models that assume we can predict the probability of some future unit without

looking too far into the past. In the case of N -gram language models, the past

refers to the last N -1 events in a given sequence, and the event being predicted

is the N -th token. For example, when using a trigram (N = 3) model to pre-

dict the next word, we only consider the last two words in the context rather

than the entire sequence leading up to that word. A general equation for this

N -gram approximation:

P (wn|w1:n−1) ≈ P (wn|wn−N+1:n−1)

An N -gram language model learned from a sufficiently large corpus can

be used to determine missing words in a phrase or sentence. For example,

consider completing the following sentence: “I took my 〈blank〉 for a walk.” A

model trained with sufficient data will yield a much higher probability for the

word “dog” completing the sentence than the word “lunch” for example. This

10

happens because people are much more likely to take their pets for walks as

opposed to their lunch. Therefore, sentences where the word “dog” is used are

much more likely to be observed within a given corpus. Note that while there

are many nouns that would frequently occur after the phrase “I took my”,

relatively few of them would also precede the phrase “for a walk”. As one can

see, a language model trained on a sufficiently large corpus will capture natural

dependencies between words and phrases that precede or follow them. We

leverage on that observation by drawing on the similarities between sequences

of words in a corpus of text and sequences of observed points in a corpus of

trajectories.

Smoothing Techniques

Smoothing techniques in N -gram language models are methods used to handle

the problem of unseen N -grams. These techniques assign a probability to

unseen N -grams by redistributing probabilities from observed N -grams, thus

improving the overall performance and generalization of the language model.

Although various smoothing techniques exist, our discussion will focus on the

specific ones used in our experiments.

• Interpolation Smoothing: is a technique used to estimate the proba-

bility of anN -gram by combining probabilities from lower-orderN -grams

and higher-order N -grams. For example, in a trigram model, instead of

using the probability of just the trigram, probabilities for trigrams, bi-

grams, and unigrams are computed and each is assigned a weight or

coefficient, These weights determine the contribution of each N -gram

order to the final probability estimate. Lower-order N -grams, such as

unigrams and bigrams, consider fewer preceding words and are more fo-

cused on capturing specific dependencies between adjacent words. On

the other hand, higher-order N -grams, such as trigrams or higher, take

into account a larger context of preceding words, which allows them

to capture general patterns. By combining the probabilities of lower-

order and higher-order N -grams through interpolation smoothing, the

11

language model benefits from both types of information.

• Back-Off Smoothing: estimates the probabilities of unseen or infre-

quent N -grams by relying on lower-order N -grams. i.e., when encounter-

ing an N -gram with zero frequency or insufficient evidence, the model

“backs off” to a lower-order N -gram. By using lower-order N -grams

when higher-order context is insufficient, Back-Off Smoothing allows for

smoother estimation of probabilities for unseen or sparse N -grams.

Evaluating Language Models

A common evaluation technique of N -gram language models is perplexity. Per-

plexity provides a quantitative measure of how well a language model predicts

a given sequence of words or a test set. Perplexity is calculated based on the

probability distribution of predicted words by the model. Formally, it can be

defined as the inverse of the probability of a given test set. For a sequence of

words W1W2...WN ,:

PP (W) = P (W1W2...WN)
−1/N

A lower perplexity value suggests that the language model is more certain in

its predictions. In other words, if a model assigns a high probability (i.e.,

low perplexity) to the test set, it means that it is not surprised (or is not

perplexed) by the model, indicating a higher level of confidence in generating

coherent text. Perplexity serves as a quantitative criterion to compare different

language models or variations of the same model.

Perplexity, which is an intrinsic evaluation, is only one type of evaluation

method. Another approach is extrinsic evaluation, which involves embedding

the model in applications and measuring its performance within a specific

task or context. However, extrinsic evaluation, while offering insights into a

model’s practical use, is very resource-intensive which makes it less practical

for researchers.

12

2.2.2 Neural Network/Deep Learning Language Models

The language models in this category use neural networks, which can be either

simple or deep, to learn representations of words and capture complex linguistic

patterns and dependencies. By leveraging large amounts of data and complex

architectures, neural networks have enabled breakthroughs in language under-

standing, which significantly advanced NLP tasks such as sentiment analysis,

machine translation, question answering, and text generation. Next, we will

provide an overview of the advancement of these models in the field of NLP

with an explanation for why one model was superseded by another.

Word Embeddings

Word embeddings, such as Word2Vec [12], marked a significant shift in NLP.

They represented words as dense vectors by analyzing large amounts of text

data, enabling them to capture semantic relationships between words. For

example, words like “king” and “queen” would have similar vector represen-

tations because they often appear in similar contexts.

However, word embeddings do not explicitly capture contextual informa-

tion within a specific sentence. Each word’s embedding is determined solely

based on its local context in the training data; when a word is used in dif-

ferent contexts, it may have different meanings or associations. For example,

the word “bank” can refer to the land beside a river or a financial institu-

tion depending on its context. Word embeddings alone cannot capture these

contextual nuances. This limitation led to the development of more advanced

models like RNNs and Transformers, which explicitly consider contextual in-

formation.

Recurrent Neural Networks (RNN)

RNN [20][8] have been widely adopted in NLP for their ability to process

sequential data, such as sentences. They introduced the concept of recurrent

connections. These connections enable the network to maintain a memory

or hidden state that carries information from previous steps, remembering

13

something about each element as it comes by, and influences the processing of

subsequent steps, allowing information to persist across different time steps.

Unlike N -grams which only take into account words within a fixed-size

window, RNNs, as they progress through sequential data, have the ability to

capture information from each time step by updating their hidden state using

the current input and the previous hidden states.

For example, consider the sentence “today she is reading about ⟨blank⟩”.

Given this sentence, almost any English word could appropriately complete the

sentence. However, if we provide more context, since the model has access to

the information stored in the hidden state, which includes knowledge of what

words have been encountered so far, it may be able to make a more informed

choice. For instance, consider the input, “She is interested in learning more

about language models. Today, she is reading about ⟨blank⟩”. In this example,

the model can reasonably discard most words and instead generate predictions

closely related to language modeling.

The above example underlines the significance of capturing textual infor-

mation when dealing with natural language. However, before we extend this

model to trajectory data, we must examine whether such a structure holds sim-

ilar importance in the domain of trajectory data. The experiments detailed in

section 4.5.2 aim to provide insight into this very question.

While RNNs somehow addressed the issue of capturing longer textual in-

formation, they faced difficulties in learning long-term dependencies due to

vanishing or exploding gradient problems. These issues limited their ability to

capture long-range dependencies in text data.

Long Short-Term Memory (LSTM)

LSTM [6] was introduced as a solution to the above-mentioned limitation of

RNN. LSTMs are a type of RNN architecture with an added memory cell,

which allows them to capture long-term dependencies more effectively. The

memory cell in LSTMs allows information to flow across multiple time steps,

making them better suited for tasks that require understanding and modeling

of longer-term dependencies, such as understanding complex sentence struc-

14

tures or maintaining context over long periods.

By selectively updating and retaining relevant information, through the

use of gates (input gate, forget gate, and output gate), LSTMs help prevent

the gradients from vanishing or exploding as they propagate through multiple

time steps, a challenge faced by traditional RNNs, leading to more stable and

effective learning.

While LSTMs were designed to capture long-term dependencies in sequen-

tial data, they can still struggle to effectively model dependencies across very

long sequences. The information flow in LSTMs occurs through hidden states,

and gradients need to propagate through multiple time steps. However, as the

sequence length increases, LSTMs may have difficulty retaining and utilizing

information from distant time steps.

Transformer Models

Transformers [23] introduced self-attention mechanisms that allow each posi-

tion to attend to all other positions in the input sequence. By attending to all

other positions in the sequence, each token can gather information from the

entire input sequence. This enables Transformer models such as BERT [3] to

model dependencies across the entire sequence and capture both short-range

and long-range dependencies more efficiently than LSTMs. However, Zeng et

al. [30] point out that self-attention is “anti-order” to some extent which re-

sults in temporal information loss even when using various types of positional

encoding techniques. The authors mention that although this is typically not a

significant concern for semantic-rich applications like NLP, it can be a problem

in data where there is lack of such semantic relationships.

Transformers also introduced the concept of pre-training on large-scale

unlabeled data, followed by fine-tuning on specific tasks. This pre-training

allows the system to train on a generic database and then specialize it on a

specific type of data. In the pre-training phase, the model might come across

sentences like: “The longest river in the world is the ⟨MASK⟩ river.” Here,

the ⟨MASK⟩ token indicates that the model needs to predict the missing word

based on the surrounding context. During training, the model is tasked with

15

predicting the missing words, which in this case is “Nile”. By encountering

numerous examples like this, the model learns that the Nile river holds a

special significance in terms of its length. Then, when fine-tuned on a question-

answering task, the model can effectively “reason about” river-related topics,

such as answering questions about the longest river.

The preceding explanations provide insights into the evolution of language

modeling techniques. It is important to consider which challenges faced by a

particular model when applied to natural language are also relevant to trajec-

tory data. For instance, the problem of disambiguating words with multiple

meanings is unlikely to surface in trajectory data, as each word corresponds

to a specific location on the ground. Moreover, our experiments will illus-

trate that issues related to long-term dependencies are also not relevant in the

context of trajectory data.

2.3 Related Work

In this section, we discuss trajectory imputation approaches, organizing them

into four groups: geometric methods, probabilistic methods, classic machine

learning methods, and neural network/deep learning methods. These cate-

gories are not mutually exclusive, and there can be an overlap or combinations

of methods within a single approach.

2.3.1 Geometric Methods

Geometric methods typically use interpolation to fill in missing values. These

methods can involve basic forms of interpolation, such as linear interpolation

that assumes a straight line trajectory between known points, or spline interpo-

lation that considers the curvature of the Earth. However, such an approach,

while straightforward, does not take into account changes in the direction of

a trajectory. Additionally, it will most often predict points that do not align

with actual roads as it lacks mechanisms to account for such geographical

constraints.

Elshrif et al. [5] propose TrImpute, a framework that “inserts artificial GPS

16

points between the real ones in a way that the imputed trajectories end up to

be very similar to the case if such trajectories were collected with a much higher

sampling rate.” The framework consists of three main components: prepro-

cessing, spatial imputation, and temporal imputation. Within the framework,

the spatial imputation component introduces the concept of candidate points

as the set of possible artificial points. The algorithm to generate these points

takes into account the direction of the trajectory, i.e., the points should not

significantly change the angle from the starting point of the gap towards the

direction of the endpoint. Additionally, these candidate points must be within

a certain distance from the starting point of the gap to be filled.

They evaluate their idea on a real dataset of taxi trajectories in the city of

Doha, Qatar. They compare their results to basic linear interpolation, employ-

ing metrics such as Fréchet Accuracy [4], which measures the distance between

the imputed segment and the ground truth obtained from raw trajectories, and

Open Street Map (OSM) accuracy, which involves matching imputed points

with the actual road network. The evaluation involved varying sparsification

lengths, ranging from 500m to 2000m. They achieved accuracy rates of over

90%+ for the 500m gaps and 60%+ for the longer 2000m gaps, outperform-

ing the linear interpolation method. In section 4.6, we conduct a comparison

between this method and our approach, demonstrating that our approach out-

performs it.

Other geometric methods attempt to model the positions of uncertain ob-

jects between two sampling points using bounds. These bounds can take the

form of geometric objects such as cylinders or beads, providing a representa-

tion of possible trajectories. Krumm [9] introduces the concepts of bridgelets,

which are “small, spatio-temporal, maximum entropy clouds that model spa-

tial uncertainty over small gaps.” To bridge the gap between adjacent cells

in both space and time, a “maximum entropy bridgelet” is inserted. This

bridgelet encompasses all possible paths between the two cells within the time

span, without making any assumptions about the specific paths. The trajec-

tory augmented with these bridgelets serves as a candidate bridge for any pair

of points that share the same start cell, end cell, and time span. It uses real

17

mobility data to mitigate uncertainty and capture observed behavior between

locations. The author points out the computational intensity of training in this

approach. In contrast, our approach involves a simpler process of calculating

word probabilities, eliminating this concern.

2.3.2 Probabilistic Methods

Probabilistic methods leverage statistical analysis to estimate the distribution

of possible outcomes based on historical data. One such method is the use of

Hidden Markov Models (HMMs).

Simmons et al. [21] use HMMs to predict a driver’s intended route and

destination based on observed data. The model represents states as pairs of

links and goals, and observations are derived from the GPS position, speed,

and heading. To reduce the model size, the transition probability function

is split into predicting the next link and then predicting the goal destination

based on that link. The system’s predictions can be used to generate routes

or estimate the most likely route based on given goals. This model makes the

basic assumption that most routes used by drivers are routines. The authors

acknowledge that in scenarios where this assumption is violated, such as in

cases where the drivers are delivery people, this approach is less applicable.

Unlike their model, which assumes routine driving patterns and requires a

comprehensive map database, our approach can handle more diverse driving

scenarios such as those by taxi drivers, without reliance on a pre-existing map

database.

Qu et al. [16] propose a missing data imputation method based on Proba-

bilistic Principal Component Analysis (PPCA) that combines two key compo-

nents: Principal Component Analysis (PCA) –to capture the main structure–

and Maximum Likelihood Estimation (MLE)– to estimate the missing value.

However, this approach applies a linear PCA which makes the assumption that

the relationships between variables can be represented by linear combinations,

which does not always hold in trajectory data.

18

2.3.3 Classic Machine Learning Methods

Classic machine-learning methods have also been applied to trajectory impu-

tation. Techniques such as association rules, k-nearest neighbors (kNN), and

linear regression, are commonly used to predict missing trajectory points based

on observed data patterns. These methods offer an alternative approach to

imputation by leveraging pattern recognition and rule-based inference.

Tak et.al. [22] propose a method for imputing missing data in road sections

based on the k-nearest neighbors (kNN) algorithm by defining road sections as

groups of links with shared traffic properties. The proposed method leverages

the strengths of the kNN algorithm, including its ability to capture detailed

traffic changes without approximation or smoothing. The algorithm divides

the road network into sections, locates missing values in historical and subject

data, calculates distances and similarity measures, and generates imputed val-

ues by integrating the k nearest neighbors with the highest weighted similarity

to the subject data. The authors suggest that a minimum of 400 historical

data points is necessary to ensure the quality of the proposed algorithm’s

imputations. This approach has an advantage over our method in terms of

requiring fewer data points. However, it relies on road information, which is

not a requirement in our approach.

2.3.4 Deep Learning Methods

In recent years, deep learning approaches have gained significant attention in

trajectory data analysis. These models use multi-layered architectures to learn

complex patterns and dependencies in the trajectory data.

Wang et al. [24] propose a model called Deep Hybrid Trajectory Recovery

model, whose key contribution is the integration of a subsequence-to-sequence

neural network model with the Kalman Filter [26] as a post-calibration com-

ponent, to derive more accurate estimations of cell-level predictions. This

detailed calibration step was necessary due to the coarse cell size they use.

However, in our case, we use much smaller cells which results in uncertainties

that are within acceptable limits.

19

Another deep learning model, Traj2Traj, proposed by Liao et al. [11], aims

at simplifying trajectory data restoration by eliminating the time-consuming

map-matching step of previous deep learning models [18]. Their model achieves

this by incorporating road network constraints and considering the entire tra-

jectory context, allowing for road-level trajectory point restoration. However,

this approach still relies on existing road network information, with an addi-

tional step of constructing a road network using data from OpenStreetMap.

Musleh et al. [14], the only work that uses language models, propose Tra-

jBERT, a framework for “an efficient and practical solution for almost all

fundamental trajectory analysis problems” by changing the core of the BERT

system itself to effectively handle trajectory data as primary data type. The

framework consists of three layers. The first layer called the Data Layer, pre-

processes input trajectories to handle challenges related to data quality and

availability. The second layer, which is the “BERT-Like” Layer, takes the

preprocessed training trajectories and learns a unified trajectory model. This

layer incorporates three components, Spatial Tokenization, Spatial Embedding

and Spatial Attention designed to “understand spatial characteristics during

the learning process”. The third Fine tuning layer tunes a simple model

according to the task at hand. To assess the framework’s performance, the

authors conducted a trajectory imputation experiment, achieving mean and

median distances of 37.9 and 38.9 meters, respectively, between the imputed

and actual points. However, the specific gap size for achieving this level of

accuracy was not disclosed in their paper.

Let us delve a little deeper into the spatial embedding and spatial attention

components of the BERT-Like layer of this approach. In BERT, these layers

convert tokens into vectors to capture semantic and contextual information

in text. This is particularly useful in tasks like Word Sense Disambiguation,

where words with multiple meanings can be distinguished based on the context

in which they occur. In the context of spatial data, the authors customize the

BERT-like layer to leverage unique spatial properties. They mention that

the embedding of spatial tokens considers factors like trajectories and spatial

attributes such as proximity to roads or other geospatial features. Yet, it

20

remains unclear how this benefits spatial tokens, as their meaning does not

change with context, i.e., a single token consistently represents one specific

location. Moreover, the problem of temporal loss information associated with

self-attention mechanisms as pointed out in [30] raises the question of whether

such a model is the best choice for trajectory data, where order plays a very

important role.

One of the main advantages of BERT is its pre-training on diverse types

of data, enabling it to generalize its knowledge to new data. In a subsequent

paper [15], the authors introduce KAMEL, a scalable BERT-based system

designed specifically for trajectory imputation. This system incorporates a

partitioning component that handles batches of trajectories during training.

It makes a decision based on the geographic location: if the model already

contains trajectories for that specific location, it enriches the existing model;

if the trajectories cover an entirely new geographic area, it creates a new

model. While this approach can create a comprehensive system for trajectories

across a large geographic area, since there are no inherent relationships between

trajectories in different cities, it is not clear how the model benefits from such

pre-training.

21

Chapter 3

Proposed Approaches

This chapter focuses on two key aspects: the conversion of trajectories into

sentences and the use of N -grams to complete trajectories.

3.1 Trajectories as Sentences

We use a grid-based representation of the (2D) space to convert trajectories

into sentences. We start by overlaying a 2-D grid to cover the entire area en-

compassing all trajectories in our dataset, as illustrated in Figure 3.1b. Within

this grid, each cell will have an identifier that can be likened to a unique word

or token in a finite vocabulary (Figure 3.1c). To represent individual points

within a trajectory, we use the identifiers of the cells in which the points fall.

This representation enables us to treat a full trajectory similar to a complete

“sentence,” where each word corresponds to a cell in the grid.

The two trajectories shown in Figure 3.1a can then be read as:

• Green trajectory: (0,1), (1,1), (3,1), (4,1), (5,2), (5,3), (5,4), (6,4), (8,4),

(9,4), (11,4), (12,4), (12,2), (13,3), (15,3)

• Blue trajectory: (15,0), (14,0), (13,0), (11,0), (10,1), (9,0), (8,0), (7,0),

(7,1), (6,2), (6,3), (5,3), (4,4), (3,5)

Much like how language modeling can be used to predict missing words

in incomplete sentences, we can apply a similar concept to incomplete trajec-

tories. When predicting these “missing words”, we are predicting the corre-

22

sponding grid cells within our trajectory grid. The centroids of these cells are

assigned to be the missing points in the trajectory.

(a)

(b)

(c)

(d)

Figure 3.1: Converting trajectories to “sentences”

23

A key parameter in this mapping is the grid size, as this will define the

precision of the approximation for the missing points. A finer-grained grid

provides a higher level of detail as well as a larger vocabulary and longer

sentences. On the other hand, a coarser grid may lead to loss of information

when multiple points in a trajectory are mapped to the same grid cell. There

is clearly a trade-off, which we will investigate later in Section 4.5.1.

3.2 Imputation using N-grams

In the same way that we can find the most probable words to complete a

sentence in natural language, we can use N -gram language models to ap-

proximate points to complete a trajectory. To achieve this, we can make use

of N -grams in two different ways. The first approach, PaLMTo-Generative,

which is more rooted in language modeling, involves generating missing points

between a gap, one by one, until the trajectory is complete. The second ap-

proach, PaLMTo-Lookup, directly searches through our N -grams to identify

those that can bridge the gap in our trajectories, effectively treating the col-

lection of N -grams as repositories. Following is a detailed explanation of each

method with a comparison of the two methods provided in section 4.5.6

3.2.1 PaLMTo-Generative

In this method, we follow the traditional use of language modeling and use

the N -grams to predict the next token given previous (N -1) tokens which we

refer to as context.

We create N -grams from sentences by dividing them into N -token groups.

As an example with English words for clarity, with N = 3 (trigrams), from the

sentence “my blue sweater is missing,” we get the trigrams “my blue sweater”,

“blue sweater is” and “sweater is missing”.

We then use these trigrams to predict the most likely tokens for trajectory

completion, relying on the two previous tokens to impute the next one. For

example, if we have “my” and “blue” as the previous tokens, we look for

trigrams starting with “my blue” and pick the third token according to their

24

probability. This process can be performed from both sides of a gap in a

trajectory.

Let us assume there is a gap that needs to be filled in a trajectory. PaLMTo-

Generative approach involves iteratively predicting a point from each side,

meaning that in each iteration, we predict one word from the left side and

another one from the right side. To achieve this, we need to create N -grams

from both our original trajectories and their reversed counterparts.

This process is repeated until the predicted points from both ends coincide

or are sufficiently close. The maximum number of iterations for each trajectory

is determined by the average gap between consecutive points in the complete

trajectories within our dataset. For example, if this average gap is 120m, with

each round of prediction generating two points (one from each side), we should

not require more than three iterations to bridge a gap of 500m.

Next, we will explore three different approaches under PaLMTo-Generative,

labeled as PaLMTo-G-1-1, PaLMTo-G-3-1, and PaLMTo-G-3-3 for differenti-

ation.

PaLMTo-G-1-1 - Imputation using Probability

In the first approach, we simply select the most probable next token based

on N -1 previous tokens from each side until the generated points are close

enough. This method lacks a mechanism to “steer” the imputed points from

each side towards one another. This may not have a significant impact on

short gaps or when there are limited path options (Figure 3.2a). However,

it becomes challenging when dealing with larger gaps or in situations where

there are multiple likely options for the path to take. (Figure 3.2b)

PaLMTo-G-3-1 - Imputation using Probability and Distance

In the second approach, rather than selecting the single most probable next

token from each side, we select the three most probable “next points” using

the previous points, for example, p5 and p6 from the left side and p7 and p8

from the right side on Figure 3.3a can be used as previous points.

We opt for three options because there can be more than one path the route

25

(a)

(b)

Figure 3.2: PaLMTo-G-1-1 - Imputation using Probability

can possibly take. Take Figure 3.3a as an example; it shows three possible next

points for each side. Some of these points, such as points pl1, pl2, pl3 are on

completely different paths. The most likely tokens here could be pl2 on the

left and pr1 on the right. But in the figure, one can see that these points head

in different directions and are not likely to come close enough to fill the gap.

If we instead generate multiple possible next tokens and then calculate the

distance between these points, we may get better candidates i.e. candidates

that are on paths likely to meet. Here, we are making the assumption that

points that are closer to one another are more likely to be heading toward

each other than those that are far apart. There may be exceptions, but for the

most part, this method gives us better choices than simply picking the most

likely token.

Let us assume the three most probable “next points” from the left and the

right side are pl1, pl2 and pl3, and pr1, pr2 and pr3, respectively (Figure 3.3a).

Next, we choose the closest pair between those points in either side, let us say

that that pair is pl1 and pr1 (connected by the dashed line in Figure 3.3a).

26

(a)

(b)

Figure 3.3: PaLMTo-G-3-1 - Imputation using Probability and Distance

Then, we repeat the same process using a trigram on the left side with p6 and

pl1 and a trigram on the right side with p7 and pr1 and find a new closest

pair. We do this process until the points from either side are sufficiently close,

and therefore completing the imputation process (Figure 3.3b)

27

(a) Initial points for 3 alternative options

(b) Option 1

(c) Option 2

(d) Option 3

Figure 3.4: PaLMTo-G-3-3 - Imputation using Probability, Distance and Per-
plexity

28

PaLMTo-G-3-3 - Imputation using Probability, Distance and Per-
plexity

The final approach is an extension of the preceding method, where instead of

selecting only the closest pair, we choose the three closest pairs, and for each

of these pairs, we apply PaLMTo-G-3-1. This results in three potential paths

for bridging the gap. From these three possibilities, we select the one with the

lowest perplexity (2.2.1).

Similar to PaLMTo-G-3-1, this is a way to explore the possibility of finding

better candidates. Using distance along with probability does result in better

predictions, i.e., points that move towards one another. However, it also has

the risk of ‘overshooting’ the next points. For example, in Figure 3.4a, points

pl3 − pr1 (shown in blue) are the closest pairs, but pr2 or pr3 clearly would

have been the better picks since they better capture the road network. Using

perplexity to pick the most likely route among multiple options is a way to

tie it all back to probability which language models rely on. By selecting the

option with the lowest perplexity, we are choosing the path that is deemed most

probable for successfully completing the trajectory. For instance, Figure 3.4b

and 3.4c follow similar paths but 3.4c aligns more closely with actual driving

paths, which makes it more likely to have a lower perplexity compared to 3.4b.

In all the methods discussed above, we use backoff smoothing i.e., when

higher N -grams are unable to find a match, we back off to lower N -grams

(section 2.2.1). Additionally, when we have a context size of C, it means that

we consider a range of contexts starting from the immediate preceding token

(context size 1) up to the C preceding tokens. For instance, if our context

size is set to 3, this means that we take into account the information from the

previous token (C = 1), the two tokens before the gap (C = 2), and the three

tokens before the gap (C = 3). We use linear interpolation (section 2.2.1) of

these ranges of contexts where different weights are assigned to each context

size. These weights are tuned using a separate dataset.

29

3.2.2 PaLMTo-Lookup

This method uses N -grams essentially as storage mechanisms, taking advan-

tage of the highly repetitive nature of trajectory data. For instance, in our

Porto dataset, we have 15.6M GPS points, in a city with a road network span-

ning 965 km. Estimating the required number of points to cover this entire

network based on the average gap between consecutive points at around 7800,

we find that there are approximately 2000 trajectories for each road segment.

With this many variations of trajectories for a single road segment, it is ex-

pected that there will be many similar N -grams, even as the N -gram size

grows.

In contrast to PaLMTo-Generative which only needs to store unigrams,

bigrams and trigrams, this approach requires storing a more extensive range

of N -grams. The size of N grows as the size of the gap to be completed

increases.

Using the same examples from Figure 3.4a in the previous section, to fill

the gap between points p5 and p6, we search through our entire N -gram corpus

for all N -grams that start with p5 and end with p6 and select the one with

the highest probability. The advantage here is that we are able to impute all

the points necessary to fill the gap at once, making this method significantly

faster.

However, this approach becomes increasingly memory-intensive as the gap

size to be completed increases. For instance, to complete a trajectory with

a 2km gap, we may need to create N -grams as large as 16-grams, and this

number further increases with larger gap sizes.

30

Chapter 4

Experiments

4.1 Datasets

This study uses three different datasets. Two of these are real-world taxi

datasets from the cities of Porto, Portugal [13] and Beijing, China [28][29].

The third dataset is synthetic and was generated within the city of San Fran-

cisco, United States1. The Porto dataset is used in two ways: one encompass-

ing the entire city and the other focusing on a small but dense (in terms of

roads) region within each city.

These datasets differ in terms of the density of the trajectories, their un-

derlying road structure, and city size. A detailed discussion of all the datasets

is presented in the subsequent sections providing insights into their respective

features. Additionally, a detailed comparison of all four datasets is presented

in table 4.1.

4.1.1 Porto

Porto is a small city covering an area of 41.4 sq km. The selected dense area

within the city (shown in square in Figure 4.1), spans an area of 3.5 sq km.

The roads have a maze-like layout with irregular intersections.

The dataset consists of data collected from 442 taxis over the course of a

year. Each data sample within the dataset represents one complete trip, with

1https://sfsp.mpi-inf.mpg.de/

31

the time stamp provided for the starting GPS coordinate of each trip, and

subsequent GPS points recorded at regular 15-second intervals.

Figure 4.1: Porto city (top), selected dense area (bottom)

4.1.2 San Francisco (synthetic)

The second dataset used in our experiments is a synthetic dataset created

using OpenStreetMap in the city of San Francisco (Figure 4.2). This dataset

is only spatial and does not include timestamps for the trajectories. San

Francisco is nearly three times larger than Porto, covering an area of 121.4

square kilometers. Its road network is characterized by a grid-like pattern

with perpendicular intersections.

32

Figure 4.2: San Francisco

4.1.3 Beijing

The third dataset is a real-world taxi trajectory dataset from the city of Bei-

jing, one of the largest urban centers in the world (Figure 4.3). Covering an

expansive area of 16,411 square kilometers, Beijing surpasses San Francisco’s

area by over 100 times and Porto’s size by nearly 400 times. The dataset

consists of data collected from 10,357 taxis over the course of one week. The

road network in Beijing exhibits a mix of both grid-like and maze-like charac-

teristics.

33

Figure 4.3: Beijing

Porto
(Full)

Porto
(Small)

San
Francisco

Beijing

Area 41.42 sq.km 3.5 sq.km 121.4 sq.km 16,411 sq.km
Number of
points

15,615,943 3,937,735 2,121,662 17,679,695

Points per
sq.km

370,925 1,125,067 12,554 914

Average
distance
between
points

118m 118m 85m 464m

Table 4.1: Comparison of the four datasets

We can analyze these datasets in terms of their size, density, and charac-

teristics of trajectories:

Size and Density: The Porto dataset contains a total of 15 million

points with about 4 million points located within the smaller selected region.

34

The smaller region has 3 times as many points per square kilometer compared

to the full city. The San Francisco dataset contains a total of 2 million

points spread across an area of 121.4 square kilometers. This translates to

an average density of approximately 38,000 points per square kilometer. On

the other hand, the Porto dataset consists of 15 million points covering an

area of 41.42 square kilometers. This results in a higher density of around

370,000 points per square kilometer making it significantly denser than the

San Francisco dataset, with a higher concentration of points in a smaller area.

The Beijing dataset is significantly less dense compared to both the Porto

and San Francisco datasets. It contains fewer than 1000 points per square

kilometer.

Average distance between points: When examining the average trajec-

tory length, we find that the San Francisco dataset has an average trajectory

length of 3.8 kilometers, and the Porto dataset is similar at 3.4 kilometers.

Although the trajectory lengths are comparable, the Porto dataset has nearly

four times the number of points per trajectory compared to the San Francisco

dataset. This indicates that the trajectories in Porto are more finely sampled

and have a higher level of detail. The Beijing dataset, on the other hand, has

an average of nearly 500m between consecutive points, making it significantly

more sparse than the Porto and San Francisco datasets.

Our objective in using datasets with varying characteristics is to gain in-

sight into their respective impacts on the quality of the predictions. Does

having a dense dataset (in terms of points per square kilometer) give better

results? Does the size of the city influence our choice of grid size? In the

following sections we aim to answer these and other similar questions.

4.2 N-gram Trends in Trajectory Data and

Natural Language

In this section, we compare how the number of N -grams behaves in trajectory

data and natural language data2.

2https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html

35

Figure 4.4: N -gram trends in trajectory data

Figure 4.5: N -gram trends in natural language

36

In both cases, we notice a similar trend (Figure 4.4 and 4.5). As we increase

the value of N , the number of unique N -grams initially goes up. However, as

N becomes very large, the number of unique N -grams starts to decline because

many of the longer sequences of tokens may not appear frequently enough in

the dataset to generate a significant number of unique N -grams.

The choice of grid size is one of the factors that affect these N -gram trends

in trajectory data. In Figure 4.4, we can observe that a smaller grid size of

25 meters results in the highest number of unique N -grams. This is because

smaller grids generally yield a larger vocabulary compared to larger grid sizes.

Moreover, the point at which the number of unique N -grams begins to

decline varies for different grid sizes. In larger grid sizes, N becomes much

larger due to the reduced vocabulary size, as even longer sequences tend to

repeat frequently in these settings. In simple terms, larger grids mean fewer

different movements to make, so longer sequences of movements start to repeat

more often.

This might be one factor to help us decide between the two methods:

PaLMTo-Lookup and PaLMTo-Generative. PaLMTo-Lookup relies on repe-

titions, and a flatter curve (a curve where the peak point occurs at a larger

N) is favorable for this approach because it signifies longer sequence repeti-

tions. However, this flatter curve is associated with larger grid sizes (100m

and 200m), which come with their own set of limitations, as we will explore in

section 4.5.1.

4.3 Preprocessing

The first step in the preprocessing is removing “excessively” incomplete trajec-

tories. Any trajectory with a gap exceeding a distance d between consecutive

points is considered incomplete and removed from the dataset. The value of d

varies depending on the specific dataset in use. For instance, in the case of the

Porto dataset, we set d to 500 meters. This choice is based on the data collec-

tion frequency (which was 15 seconds for this dataset), under the assumption

that it would be unlikely for any vehicle to travel a distance exceeding 500

37

meters during this 15-second interval.

Next, we process the converted trajectories (i.e., sentences). In the context

of trajectory dataset, conventional NLP preprocessing steps such as tokeniza-

tion and stemming are inapplicable. This is due to the fact that the sentences

in the dataset are created in tokenized forms, and the tokens which are sim-

ple tuples of numerics, do not have natural language characteristics such as

prefixes, root words, etc.

The only preprocessing we apply to the converted trajectories is removing

repeated consecutive tokens in each trajectory. The reason for removing this

repetition is to avoid imputed tokens from repeating previously used tokens.

By removing repetitions, we acknowledge the potential loss of the temporal

aspect of the data. However, at this stage, our primary objective is spatial

imputation, and the repeated tokens do not serve any purpose.

We initially divided the processed dataset into training and test data in a

90:10 ratio. Within this 10% allocated for testing, we randomly select 1000

test trajectories. In section 4.5.4, we conduct experiments to investigate how

reducing the training dataset size to a substantially smaller size affects the

results.

4.4 Evaluation Metrics

To evaluate the quality of the predictions, we use precision and recall metrics.

The precision measures the proximity of the imputed points to the original

line segment (created from the original points) (Figure 4.6a) and answers the

question “What is the percentage of imputed points that fall within a specific

threshold of the original line segment?”

Recall, on the other hand, measures the proximity of the original points

to the imputed segment (created from the imputed points) (Figure 4.6b) and

addresses the question “What is the percentage of the original points that are

within a specific threshold of the imputed line segment”?

In essence, precision helps us measure how many points we imputed cor-

rectly, while recall assesses how many points we successfully recovered. A value

38

(a) precision

(b) recall

Figure 4.6: (a) Precision - predicted points (orange) that are outside the
specified threshold from the actual path (green) are circled in red. (b) - Recall
- actual points (green) that failed to be recovered (are outside the specified
threshold from the predicted path) are circled in red.

closer to 100% in both cases indicates good results, signifying higher quality

in our predictions.

We report the F1-score for a threshold of 25m in all experiments, except

in section 4.6 where we provide results for both 50m, which is similar to the

threshold used in [5], and 25m thresholds.

In our experiments, we compare the computation times of the different

approaches discussed in Chapter 3. These experiments were conducted in

Google Colab using virtual machines with Intel(R) Xeon(R) CPU running at

2.20GHz. We calculated the average time based on 10 runs of each experiment.

4.5 Experiments with Different Parameters

In our experiments, we conducted tests with various parameter settings for

the N -gram size, the grid resolution, and the dataset size. The following

39

subsections present the outcomes of these different experiments along with a

rationale for the selection of each parameter.

4.5.1 Grid Size

In our first experiment, we focused on evaluating the performance of different

grid sizes, specifically, grid sizes of 25 meters, 50 meters, and 100 meters, using

data from downtown Porto.

There is a direct correlation between grid size and the quality of the pre-

dictions, where an increase in grid size corresponds to a decrease in F1-score.

Notably, this decline becomes more pronounced when transitioning from a

50m grid to a 100m grid compared to the shift from a 25m grid to a 50m

grid (Figure 4.7). This decrease occurs despite the larger grid sizes resulting

in more predictions that are within the same cell as the removed point. The

reason for this is the fact that what we predict is a cell, not a point, and the

centroid of the predicted cell is assigned as the prediction point. In cases of

larger grid sizes, this can result in a significant distance between the actual

point and the predicted point, which is less of an issue with smaller grid sizes

(Figure 4.8). In these cases, if the actual point and the predicted point fall

within the same cell, the maximum distance is at most 17.68 meters and 35.36

meters for the 25m and 50m grids, respectively. In contrast, the 100m grid

can result in distances of up to 70.71 meters.

40

Figure 4.7: Grid size vs. F1-score

Figure 4.8: The impact of grid cell size on prediction quality. As cell size in-
creases, the distance between the actual point and the predicted point (center
of the cell) may also increase, highlighting the trade-off between grid granu-
larity and prediction precision

In addition to the quality of the predictions, we also took into account the

41

execution time associated with these grid sizes. There is an inverse relationship

between grid size and execution time (Figure 4.9). Larger grid sizes resulted

in faster execution times, which can be attributed to the reduced number of

unique N -grams when using a larger grid size (Figure 4.10).

When it comes to selecting the optimal grid size, we face a trade-off between

quality and execution time. As we change the grid size from 25m to 50m,

and then from 50m to 100m, the execution time shows an approximate 30%

decrease in both transitions. It is important to note that this percentage is

based on the downtown Porto area, which is relatively small. The impact

could be even more significant when working with data from a larger region.

If we prioritize quality, the 25m grid appears to be the preferable choice.

However, the marginal F1-score improvement of less than 5% does not justify

the 30% increase in execution time. In contrast, the use of a 50m grid over a

100m one can be rationalized by the 26% boost in F1-score it offers.

Figure 4.9: Grid size vs. execution time (to fill a gap of 1km)

42

Figure 4.10: Grid size vs. N -gram count

Based on these results, we have decided to use a grid size of 50 meters for

the subsequent experiments.

4.5.2 Context Size

The second experiment focuses on investigating the impact of context size in

the task of predicting the next token. “Given the preceding N -1 tokens, i.e.,

context size of N -1, what is the most likely next token?”. We started by using

bigrams, which provide a context size of one token, aiming to predict the most

likely next token based on just the immediately preceding token. We increased

the N -gram size to up to 6-grams, which would provide a context size of five

tokens, to predict the next one. The main objective of this experiment was to

understand whether increasing the context size would lead to an improvement

in the quality of the predictions.

43

Figure 4.11: Context size vs. F1-score

The results of these experiments (Figure 4.11) show that using two previous

tokens instead of just one improves prediction quality. However, increasing

the context size beyond this point does not provide further improvements. For

instance, in the 2km gap, increasing the context from 1 to 2 results in a 7%

increase in F1-score. However, the additional context, up to a context size of

5, does not result in any improvement, in fact can slightly decrease it.

We can examine the reason for this outcome in Figure 4.12. Given a sin-

gle point, we lack the means to detect the direction from which the vehicle

is approaching. Therefore, given only p8, points p7, p9 and p10 will all be

considered as potential next points (Figure 4.12b), as there is no way of de-

termining the trajectory direction. However, based on the direction of the

trajectory shown on the diagram, it appears highly unlikely that p7 could be

the actual next point. By adding one more token to our context, i.e., using

p7 and p8 (Figure 4.12c), we gain a clearer understanding that the vehicle is

moving from right to left, narrowing the selection to p9 and p10 as possible

44

next points.

(a) (b)

(c) (d)

Figure 4.12: (a) shows a context of one point (green), the objective is to
predict the next point. (b) and (c) show the possible next points (orange),
with context sizes of one and two points, respectively. (d) shows how the
increase in context does not change the potential next points.

However, beyond this point, further expansion of the context size does not

provide us with any additional usable information. Even when we include

all points from p1 to p8 in the context (Figure 4.12d), the likely next points

remain p9 or p10. This explains why we do not observe any improvement in

prediction quality with an increase in context size.

This is an aspect that is worth paying attention to. In natural language, as

shown in the example within section 2.2.2, context plays a critical role in de-

termining the next word. Words that appeared several words or even sentences

ago can provide important information about what the next word should be.

However, in the domain of trajectory data, our expectations differ. The re-

sults of our experiments align with this expectation, showing that knowing the

complete trajectory of a vehicle does not provide any additional value to the

45

prediction of the next point compared to what can be provided by the last two

previous tokens.

Figure 4.13: Context size vs. memory

Expanding the context size beyond 2 not only fails to improve the quality

but it also significantly increases the memory required to store the N -grams

(Figure 4.13), which makes larger N -grams less appealing.

When it comes to the computation time of the different N -gram sizes, we

see that a context size of one, which has the lowest F1-score compared to the

larger context sizes, also consumes more time (Figure 4.14). This is primarily

because using bigrams (a context size of 1) generates a lot more possibilities for

the next points in comparison to using a larger context size, such as trigrams

or higher. Considering all these factors, opting for a context size of 2, (i.e.,

using trigrams), seems to provide a good compromise between effectiveness

and efficiency.

46

Figure 4.14: Context size vs. time

4.5.3 Comparing PaLMTo-G-1-1, PaLMTo-G-3-1 and
PaLMTo-G-3-3

In this section, we examine the performance of the three different methods

explained in Section 3.2.1 under PaLMTo-Generative approach. We analyze

these methods in terms of their effects on both quality of predictions and

execution time.

The first approach, which simply predicts the most probable next point by

alternating between each side of the gap, has the lowest F1-score—which is to

be expected (Figure 4.15). Under this approach, each side of the gap generates

paths that tend to follow the most frequently used routes, without taking into

account the destination or endpoint. Consequently, these two paths may never

meet, as is the case with the examples in Figure 4.17 – shown in red. (We use

linear interpolation to connect the gaps if they fail to meet.)

47

Figure 4.15: F1-Score of the 3 different methods of the PaLMTo-Generative
approach

48

Figure 4.16: Execution time of the 3 different methods of the PaLMTo-
Generative approach

The second method, which selects the three most probable tokens from

each side and keeps those closest to one another, shows an improved F1-score

compared to the initial approach.

49

(a)

(b)

(c)

Figure 4.17: Real world examples of the 3 different methods - Original path
(magenta), PaLMTo-G-1-1 (red), PaLMTo-G-3-1 (orange), PaLMTo-G-3-3
(blue)

The final method, which generates three potential paths and selects one

based on perplexity, achieves the highest F1-score, albeit with a marginal

difference from the second method. However, the computational time for this

50

approach is considerably longer (Figure 4.16). Given that the increase in F1-

score is minimal (Figure 4.15) and the execution time significantly longer,

opting for the second method seems more practical.

Nevertheless, when we consider real-world examples of these three meth-

ods, a different perspective emerges. For instance, in Figure 4.17a with the

PaLMTo-G-3-1 approach (shown in violet color), only a few points fall be-

yond the 25-meter threshold. While these few “wrong predictions” might not

substantially affect the overall F1-score, they result in a path that would be

impractical for real-world usage.

4.5.4 Dataset

In this section, we take a closer look at how the dataset impacts prediction

quality. We focus on two key factors: the size of the dataset and the sparsity

of the data.

Figure 4.18: F1-score of predictions for the three datasets: Porto, San Fran-
cisco and Beijing

51

We first check how sparsity affects the quality by comparing the results

obtained from the 3 different datasets. As previously detailed in Section 2,

Porto and San Francisco exhibit a similar level of sparsity, with only a 30m

difference between the two. In contrast, the dataset from Beijing is significantly

sparser, being approximately 5 times more sparse than the datasets from Porto

and San Francisco (Figure 4.19).

Porto and San Francisco datasets exhibit promising outcomes, whereas the

results for Beijing are less favorable (Figure 4.18).

Figure 4.19: The average gap between consecutive points for the three datasets:
Porto, San Francisco and Beijing

However, it is important to note that this decline in performance for the

Beijing dataset is not solely attributable to inaccuracies in the imputed points.

In fact, in some cases, the imputed trajectory may represent a more plausible

path than the original, highly sparse trajectory (Figure 4.20). Nonetheless,

since our evaluation is based on a comparison against the original trajectory,

the F1-score of the imputed path may appear to be less than optimal, overall

52

falling below 50%.

Figure 4.20: Path from the predicted points (blue), path from original points
(magenta)

Figure 4.21: F1-score of predictions in dense region in Porto vs. the entire city

Next, we examine how the size of the dataset impacts prediction quality.

To do this, we compare results from the smaller Porto region with those from

53

the entire city. In the smaller region, we have over three times more points per

square kilometer compared to the entire city. However, the results from these

two datasets are very similar (Figure 4.21). In other words, having a larger

dataset for the full Porto area does not seem to lead to an improved F1-score.

Figure 4.22: Minimal decline in F1-score when the size of the dataset decreases

To explore this further, we conducted tests on the small Porto area by

reducing the dataset size to 1/2, 1/4, 1/8 th, and so on, of the available data.

Figure 4.22 shows that there is only a marginal decline in F1-score with each

reduction in dataset size. Even when the dataset is as small as 1000 points

per square kilometer, compared to the over 1 million we have, the decrease in

F1-score remains relatively small.

This highlights another advantage of probabilistic language models: they

are not as data-intensive as larger language models.

54

4.5.5 Gap Size

In this section, we analyze how gap size influences prediction qualty. We

conducted experiments using gap sizes of 500m, 1000m, 1500m, and 2000m.

As expected, F1-score decreases as the gap size increases. However, this

decline in F1-score does not necessarily indicate a failure of the model to

handle larger gaps effectively. Instead, it reflects the challenges posed by

larger gaps. With larger gaps, there is a higher likelihood of multiple possible

routes connecting two points.

In such cases, our model identifies the most likely route, but there is a

chance that the test trajectory did not follow that specific route. Consequently,

even if the predicted route is a valid one, with all predicted points situated on

actual roads (Figure 4.23), it is still considered an incorrect prediction due to

the potential mismatch with the test trajectory. This difference is the primary

factor contributing to the drop in F1-score as the gap size increases.

Figure 4.23: The predicted path (blue) differs from the actual path (magenta),
but it is a viable route.

4.5.6 PaLMTo-Lookup vs. PaLMTo-Generative method

In this section, we analyze the performance of the two approaches, PaLMTo-

Lookup with PaLMTo-Generative, explained in Section 3.2. The experiment

aims to show the trade-off between time and memory required to achieve

55

similar results for both methods.

We already have results from PaLMTo-Generative, which only requires

storing unigrams, bigrams and trigrams. To achieve similar outcomes with

the PaLMTo-Lookup, we have to store larger N -grams, and these N -grams

get larger as the gap size increases. For instance, to bridge a 500m gap, we

need to store up to 6-grams, and for a 1km gap, this size increases to 12-

grams. As shown in Figure 4.26, the memory needed to store these N -grams

gets significantly larger as the gap size grows.

Figure 4.24: PaLMTo-Lookup vs. PaLMTo-Generative (F1-score)

The advantage of the PaLMTo-Lookup is that it fills the gap all at once,

making it much faster than PaLMTo-Generative. The execution time is a

fraction of that required by PaLMTo-Generative and remains constant for all

gap sizes. (Figure 4.27)

On the other hand, with PaLMTo-Generative, we only need to store N -

grams up to 3-grams, resulting in a significantly smaller and constant memory

requirement, irrespective of gap size.

56

Figure 4.25: PaLMTo-Lookup vs. PaLMTo-Generative (data size)

As explained in Section 3.2.2, PaLMTo-Lookup relies on the repetitive

nature of trajectory datasets. As a result, it requires a substantial amount of

data to yield satisfactory results.

Figure 4.25 shows how dataset size affects the performance of both meth-

ods. When using PaLMTo-Generative, even a significant reduction in data size

to just 1/20th of the complete dataset did not result in a substantial decrease

in F1-score. With as few as 1000 points per square kilometer, we were able to

achieve an F1-score above 70% in bridging a 1-kilometer gap.

However, when using PaLMTo-Lookup, reducing the dataset size led to a

sharper decline in F1-score. The score fell below 40% when the dataset con-

tained only 3.5k points per square kilometer whereas the PaLMTo-Generative

method had an F1-score of 75% for the same dataset size.

57

Figure 4.26: PaLMTo-Lookup vs. PaLMTo-Generative (memory)

Figure 4.27: PaLMTo-Lookup vs. PaLMTo-Generative (time)

58

4.6 PaLMTo vs. TrImpute

We compared the results of our experiments with TrImpute [5], an approach

discussed in section 2.3.1. TrImpute aims to address both spatial and temporal

imputation challenges, while our approach focuses solely on spatial imputation.

However, during our experiments, we observed that its temporal imputation

simply duplicates the data from the previous timestamp. Compared to our

approach, which requires less data than large language models, TrImpute re-

quires even less, which is a major advantage over our approach.

Our results show that when imputing a gap of 2km, our approach achieved

an F1-score of 85% (with a 50m threshold), which was a noticeable improve-

ment to the 69% achieved by TrImpute (Figure 4.28).

Figure 4.28: PaLMTo vs. TrImpute (50m threshold)

59

Figure 4.29: PaLMTo vs. TrImpute (25m threshold)

Furthermore, when we employed a stringent quality measure, checking how

many of the imputed points were within 25 meters of the original trajectory,

our approach achieved a 75% F1-score. In contrast, TrImpute’s fell below 50%

(Figure 4.29), showing the reliability of the Probabilistic Language Model

approach in accurately imputing trajectory data, especially in scenarios de-

manding a more precise spatial prediction.

Figure 4.30 provides real-world examples illustrating the performance of

PaLMTo and TrImpute. In cases where TrImpute encounters difficulty imput-

ing points, it resorts to linear interpolation, as can be seen in Figure 4.30, a

method that we also use if the generated points fail to get close enough to close

the gap. However, such situations occur less frequently in our method than in

TrImpute. Both approaches face the challenge of generating routes that are

viable yet different from the original trajectory. Lastly, even when the routes

generated by both methods closely resemble each other, PaLMTo’s output is

very close to the original trajectory, and by extension, the road network, in

comparison to TrImpute.

60

(a)

(b)

(c)

(d)

(e)

Figure 4.30: Real world examples comparing the performance of PaLMTo with
TrImpute - Original path (magenta), PaLMTo (blue), TrImpute (orange)

61

Chapter 5

Conclusion and Future Work

5.1 Summary

In conclusion, our research demonstrates the effectiveness of probabilistic lan-

guage models in trajectory imputation. We investigated the impact of cell

size within the grid system that is used to convert trajectories into sentences.

We explored different approaches, using language models both as a means to

generate points to complete gaps and as repositories for quick data retrieval,

to understand the benefits and drawbacks of each one. Our exploration of var-

ious N -gram sizes allowed us to understand how longer context sizes impact

trajectory completion. Additionally, we experimented with datasets of varying

density to understand how it affects the trajectory completion task.

The following are key summaries of the experiments discussed in the pre-

vious chapter.

a. Can PLMs solve the trajectory imputation problem?

As shown with the results in section 4.6, PLMs are a very effective

method to solve the trajectory imputation problem. They deliver good

results while avoiding the computational and data-intensive demands

associated with large language models. Moreover, the method can ad-

dress a range of trajectory completion scenarios, from filling small gaps

in trajectories to providing full route information.

b. What are the trade-offs between grid size and quality of pre-

dictions?

62

Smaller grid sizes offer better accuracy but the associated execution

time may not always justify their use, particularly in real-time applica-

tions. In contrast, due to their smaller vocabulary size, larger grid sizes

provide faster execution times, but they come at the cost of reduced

accuracy.

c. How does the choice of N-gram size affect the quality of pre-

dictions?

Accuracy improves with an increasing context size up to a certain

point (a context size of 2), beyond which further expansion provides no

additional benefit. Unlike natural language, a longer context does not

improve prediction accuracy in the domain of trajectory data.

d. What are the trade-offs between N-gram size and efficiency

(memory/computation time)?

As we increase the N -gram size, we do save computation time because

the number of possible next points we need to evaluate decreases. How-

ever, the trade-off is that the storage requirement grows rapidly as we

transition from lower N -grams to higher ones. It is also important to

note that, except for the transition from bigrams to trigrams, there is

no significant improvement in accuracy with larger N -grams. Therefore,

the minor time savings become irrelevant, and it appears that trigrams

offer the best balance between efficiency and accuracy.

e. How do methods that rely solely on probability, those incorpo-

rating probability with distance, and those incorporating prob-

ability with distance and perplexity compare with one another?

Among the three different methods explored, the one that uses per-

plexity to choose the best path among the three options achieved the

highest accuracy. However, the second method, which generates a single

path based on the distance between the predicted points, offers a more

efficient balance between accuracy and execution time. The method

63

that relies solely on probability, although the fastest, had the lowest

accuracy.

f. How does the dataset (size, sparsity) affect the quality of the

predictions?

Dataset sparsity significantly affects accuracy, with Beijing data hav-

ing lower accuracy due to greater sparsity. However, significantly reduc-

ing the dataset size had minimal impact on accuracy, highlighting the

efficiency of probabilistic language models for smaller datasets.

g. How does the gap size affect the quality of the predictions?

Larger gap sizes lead to reduced accuracy mainly due to multiple

potential routes between points, leading to predicted routes that are

plausible but differ from the actual test trajectories.

h. Can a database-like “lookup” on previous trajectories be as

effective as generating points using PLMs “as usual”?

Due to the repetitive nature of trajectory data, especially in large

datasets, it is possible to identify N -grams that can fill small gaps with-

out generating each point using the language model. While this approach

may save time, it incurs a substantial memory overhead. In contrast,

generating each point using the language model ensures the flexibility to

address gaps of any size while requiring only a fraction of the memory

required to store large N -grams.

5.2 Future work

While it is indisputable that large language models have made significant

strides in addressing long-term dependency issues inherent in natural lan-

guages, we raise the question of their relevance in trajectory data where such

issues are not applicable.

However, it is important to note that trajectory imputation represents

just a small facet of the broader spectrum of trajectory-related tasks. Future

64

research could explore the shared characteristics between natural language

and trajectory data that warrant the use of large language models in other

trajectory-related tasks.

Additionally, there are areas within our own model that need further in-

vestigation and improvement. One such challenge is the loss of accuracy when

working with larger grid sizes, which is needed to efficiently handle trajectory

data over extensive geographic areas. Our research has explored the effects of

grid size within the context of a rectangular grid. It is important to further

investigate how different grid shapes might influence accuracy. Furthermore,

the temporal aspect of spatio-temporal data remains a critical dimension that

our current work has yet to incorporate.

Another possible area of future work is investigating the application of this

approach for generating synthetic datasets. This could prove to be useful in

situations where detailed road network maps are not available.

65

References

[1] C. Calenge, S. Dray, and M. Royer-Carenzi, “The concept of animals’
trajectories from a data analysis perspective,” Ecological informatics,
vol. 4, no. 1, pp. 34–41, 2009.

[2] B. Y. Chen et al., “Map-matching algorithm for large-scale low-frequency
floating car data,” Intl. J. of Geographical Information Science, vol. 28,
no. 1, pp. 22–38, 2014.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in Pro-
ceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), Association for Computational
Linguistics, 2018, pp. 4171–4186.

[4] T. Eiter and H. Mannila, “Computing discrete fréchet distance,” Tech-
nische Universit at Wien, Tech. Rep. CD-TR 94/64, 1994.

[5] M. M. Elshrif, K. Isufaj, and M. F. Mokbel, “Network-less trajectory
imputation,” in Proceedings of the 30th International Conference on Ad-
vances in Geographic Information Systems (Seattle, Washington) (SIGSPA-
TIAL ’22), Association for Computing Machinery, New York, NY, USA,
2022, pp. 1–10.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] Y.-L. Hsueh et al., “Map matching for low-sampling-rate gps trajec-
tories by exploring real-time moving directions,” Information Sciences,
vol. 433, pp. 55–69, 2018.

[8] M. Jordan, “Serial order: A parallel distributed processing approach,”
California Univ., San Diego, La Jolla (USA). Inst. for Cognitive Science,
Tech. Rep. ICS 8604, 1986.

[9] J. Krumm, “Maximum entropy bridgelets for trajectory completion,” in
Proceedings of the 30th International Conference on Advances in Geo-
graphic Information Systems, 2022, pp. 1–8.

[10] M. Li, X. Ye, S. Zhang, X. Tang, and Z. Shen, “A framework of compar-
ative urban trajectory analysis,” Environment and Planning B: Urban
Analytics and City Science, vol. 45, no. 3, pp. 489–507, 2018.

66

[11] L. Liao, Y. Lin, W. Li, F. Zou, and L. Luo, “Traj2traj: A road net-
work constrained spatiotemporal interpolation model for traffic trajec-
tory restoration,” Transactions in GIS, 2023.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[13] W. K. moreiraMatias, Ecml/pkdd 15: Taxi trip time prediction (ii), 2015.
[Online]. Available: https://kaggle.com/competitions/pkdd-15-
taxi-trip-time-prediction-ii.

[14] M. Musleh, “Towards a unified deep model for trajectory analysis,” in
Proceedings of the 30th International Conference on Advances in Geo-
graphic Information Systems, 2022, pp. 1–2.

[15] M. Musleh and M. Mokbel, “A demonstration of kamel: A scalable bert-
based system for trajectory imputation,” in Companion of the 2023 In-
ternational Conference on Management of Data, 2023, pp. 191–194.

[16] L. Qu, L. Li, Y. Zhang, and J. Hu, “Ppca-based missing data imputation
for traffic flow volume: A systematical approach,” IEEE Transactions on
intelligent transportation systems, vol. 10, no. 3, pp. 512–522, 2009.

[17] L. Rabiner and B. Juang, “An introduction to hidden markov models,”
ieee assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[18] H. Ren, S. Ruan, Y. Li, et al., “Mtrajrec: Map-constrained trajectory re-
covery via seq2seq multi-task learning,” in Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, 2021,
pp. 1410–1419.

[19] R. Rosenfeld et al., “A maximum entropy approach to adaptive statisti-
cal language modelling,” Computer speech and language, vol. 10, no. 3,
p. 187, 1996.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep. ICS 8504, 1985.

[21] R. Simmons, B. Browning, Y. Zhang, and V. Sadekar, “Learning to
predict driver route and destination intent,” in 2006 IEEE intelligent
transportation systems conference, IEEE, 2006, pp. 127–132.

[22] S. Tak, S. Woo, and H. Yeo, “Data-driven imputation method for traffic
data in sectional units of road links,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 6, pp. 1762–1771, 2016.

[23] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
Advances in neural information processing systems, vol. 30, pp. 5998–
6008, 2017.

67

https://kaggle.com/competitions/pkdd-15-taxi-trip-time-prediction-ii
https://kaggle.com/competitions/pkdd-15-taxi-trip-time-prediction-ii

[24] J. Wang, N. Wu, X. Lu, W. X. Zhao, and K. Feng, “Deep trajectory
recovery with fine-grained calibration using kalman filter,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 33, no. 3, pp. 921–934,
2019.

[25] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2014,
pp. 25–34.

[26] G. Welch, G. Bishop, et al., An introduction to the kalman filter, Uni-
versity of North Carolina at Chapel Hill, 1995.

[27] Z. Xiao, Y. Wang, K. Fu, and F. Wu, “Identifying different transporta-
tion modes from trajectory data using tree-based ensemble classifiers,”
ISPRS International Journal of Geo-Information, vol. 6, no. 2, p. 57,
2017.

[28] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from the
physical world,” in Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2011, pp. 316–324.

[29] J. Yuan, Y. Zheng, C. Zhang, et al., “T-drive: Driving directions based on
taxi trajectories,” in Proceedings of the 18th SIGSPATIAL International
conference on advances in geographic information systems, 2010, pp. 99–
108.

[30] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective for
time series forecasting?” arXiv preprint arXiv:2205.13504, 2022.

[31] Y. Zheng, “Trajectory data mining: An overview,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 6, no. 3, pp. 1–41,
2015.

68

	Introduction
	Trajectory Data and Natural Language
	Problem Definition and Thesis Statement
	Existing Solutions
	Our Approach
	Experiments
	Thesis Structure

	Background
	Trajectory Imputation
	Language Models
	Probabilistic Language Models
	Neural Network/Deep Learning Language Models

	Related Work
	Geometric Methods
	Probabilistic Methods
	Classic Machine Learning Methods
	Deep Learning Methods

	Proposed Approaches
	Trajectories as Sentences
	Imputation using N-grams
	PaLMTo-Generative
	PaLMTo-Lookup

	Experiments
	Datasets
	Porto
	San Francisco (synthetic)
	Beijing

	N-gram Trends in Trajectory Data and Natural Language
	Preprocessing
	Evaluation Metrics
	Experiments with Different Parameters
	Grid Size
	Context Size
	Comparing PaLMTo-G-1-1, PaLMTo-G-3-1 and PaLMTo-G-3-3
	Dataset
	Gap Size
	PaLMTo-Lookup vs. PaLMTo-Generative method

	PaLMTo vs. TrImpute

	Conclusion and Future Work
	Summary
	Future work

	References

