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Abstract

We begin with a survey of mathematical epidemic modelling from its in-

ception to present day. We present up-to-date research on the field of variable

susceptibility SIR (Susceptible-Infected-Removed system of di↵erential equa-

tions model), which takes the classic SIR model and adds another dimension:

susceptibility. The susceptible population here is grouped into categories ac-

cording to their likelihood to contract a disease upon exposure and each of

these is governed by di↵erential equations that are identical except for each

group’s susceptibility coe�cient, which appears in a product with the infectiv-

ity coe�cient �. This model is studied numerically, and the resultant course

of epidemic behaviour (cumulative infections) follows the pattern of the Gom-

pertz function of the form f(t) = Me�eb�at
. This function also fits closely with

observed historical epidemic data. The implications of changing factors such

as the number of groups and average susceptibility are studied extensively. A

few other connections to the literature regarding the variable susceptibility and

classic models are also explored numerically. Two proofs are provided that the

deterministic model can only generate one course of epidemic behaviour based

on a fixed set of initial conditions and parameters, one of which does not rely

on continuity of the solution functions. An algorithm is described which, in

theory, could retrieve these initial conditions from total or even early epidemic

behaviour. A short conclusion and discussion of future directions concludes

the thesis.
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Chapter 1

Introduction

1.1 Background

For countless centuries, humankind has applied a scientific approach to a com-

plex, unpredictable, and dangerous world in order to gain advantages from

understanding how things work. This has evolved over time from primitive

tool-making to discovering a method to create fire and eventually the wheel,

and so forth. In the last several centuries, every generation of humans has far

more tools, technology, and knowledge than the generation beforehand. Until

recently, survival and reproduction was a privilege reserved for the smartest,

strongest, and luckiest. Although there are limitations to what humans can

control, in times of peace and prosperity, we are safer and live much longer

than our ancestors from a few hundred years ago.

One area in which we as a human race have achieved very mixed results and

oftentimes very mediocre progress is the eradication of infectious diseases. This

is a big problem in modern society that we have every interest in addressing

if we wish to avoid the destruction and death caused by large-scale epidemics.

The bubonic plague killed more than 25 million people in the 1300s, long

before inoculation, mathematical models, and, as evidenced by the severity

and reach of the plague, without an adequate and feasible response strategy.

The first systematic formalization of infection and disease-induced death

records can be traced almost four hundred years ago to John Graunt [22].
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It would not be long before mathematics had caught up. In 1760 Daniel

Bernoulli, in front of an audience at the French Royal Academy of Sciences

in Paris, illustrated a set of ordinary di↵erential equations (hereafter referred

to as ODE) related to normal death rates, but which also model epidemic

growth between sets of never-infected people (susceptibles), currently infected

people (infectives), and recovered or removed individuals, where the former are

considered immune and the latter have died (or in extensions of this model,

migrated) [19]. The following ODE were introduced by Bernoulli. Here µ is

the death rate for all causes except the disease in question, S(t) is the number

of people yet to experience infection, and � is the infectivity rate.

Ṡ(t) = �(� + µ(t))S(t) (1.1)

And, with disease mortality rate ⌘, we have an ODE governing the total

surviving population n(t):

ṅ(t) = �⌘�S(t)� µ(t)n(t) (1.2)

Note that these ODE are quite di↵erent and therefore have di↵erent solu-

tions than those of current epidemiological models. These ODE have a solution

which can be expressed as the proportion of surviving individuals who still have

yet to contract the disease. This proportion is denoted z(t) ⌘ S(t)
n(t) :

z(t) =
e��t

1� ⌘ + ⌘e��t
(1.3)

Protection by means of inoculation can be easily and accurately incorpo-

rated into the model. This event is considered both the first mathematical

argument in favour of inoculation and one of the earliest if not the earliest

instance of the competing risks problem [11], which lends itself naturally to

pandemic management decisions. It was in the same time frame that the Law

of Mass Action was introduced. This law, which originated in chemistry, states

that the rate of a given reaction is determined by the product of the propor-

tions of the reactants. This law, when applied to susceptibles and infectives,

would later become an integral part of the most prevalent and useful epidemic
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models we have in present day.

It was over a century and a half after this that the (now universally ac-

cepted) germ theory of disease was formally introduced, and in 1906 W.H.

Hamer proposed that infection rates were reliant on the number (and there-

fore proportion) of susceptible and infective (and therefore of the recovered/re-

moved) groups [14]. Hamer characterized the rate of new infectives (�yt) as

the product of the number of susceptibles xt, the number of infectives yt, and

a constant � representing the infectiousness of the disease itself:

�yt = �xtyt (1.4)

A short time later, in 1926, Kermack and McKendrick, [29], introduced a

set of three ordinary di↵erential equations that has served as the basis and

origin of the Susceptible-Infected-Removed (SIR) model of epidemic growth

which, along with its many versions and variants, has been the major focus

of mathematical epidemic modelling ever since. This model allows epidemic

growth to be predicted, and scientists and o�cials can predict, with some

accuracy, how the epidemic will behave and ideally make more informed deci-

sions related to mitigating strategies, such as those used during the COVID-19

pandemic.

In general, in a similar fashion to epidemic control, attempts at forecasting

epidemics often do not yield acceptable results [28, 10]. There are numer-

ous reasons for this, including but not limited to natural limitations on the

complexity of tractable mathematical models, and a poor body of evidence

on the e↵ectiveness of virtually all of our available response strategies except

possibly vaccination, which was not available during and for some time after

the worldwide COVID-19 outbreak of March 2020. It can be argued that the

forecasting problem must be resolved in order to even understand what control

measures should be implemented. It seems evident that this belief is the driv-

ing force behind the recently accelerated research movement in mathematical

disease modelling. As a starting point, we return to the model of Kermack

and McKendrick, after a brief discussion of its background.

Some time before Kermack and McKendrick’s general epidemic model, Ver-
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hulst (1838) [4] introduced a simple epidemic. In this model, infectives are

considered to remain in that state forever, resulting in the following set of

equations:

Ṡ = ��xIS (1.5)

İ = �xIS (1.6)

Which, since I + S = N , can be solved completely by either of eq. (2.2),

eq. (2.3) and this solution is the commonly known logistic function:

I(t) =
I(0)

I(0) + S(0)e��t
(1.7)

This model yields long term cumulative infectivity as 100 %, which means

the model is overly simplistic. However, more complex variations of the logistic

model have been successfully applied to historical COVID-19 data [18]. Models

that have finite recovery/removal times apply to the vast majority of real-life

cases and will be the focus of the rest of this thesis.

1.2 The Classical SIR model

The SIR model, as introduced by Kermack and McKendrick, uses Hamer’s

idea that the rate of change of new infections are proportional to the prod-

uct of the number of infectives and the number of susceptibles. The model

predicts di↵ering levels of beginning-to-end epidemic behaviour based on this

product, a constant representing the infectiveness (contagiousness) of the dis-

ease in question, and another constant representative of the amount of time an

infected person remains contagious. In the following equations, �x can loosely

be considered the probability of an exposed person to catch the disease (in

the variable susceptibility model discussed later, this is refined slightly). To

quantify it more accurately would require more intimate knowledge or assump-

tions about population mixing behaviour, which is incorporated into stochastic

variants of the SIR model, the earliest of which can also be attributed to McK-
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endrick himself [19]. We take � to be the reciprocal of the average length of

time a person is infected. We take I(t) to be the number of infectives at

time t and S(t) to be the number of susceptibles at time t. We take R to be

the members of the population that have recovered with full and permanent

immunity, died, been placed into permanent isolation, or otherwise have no

chance of again becoming susceptible or infective. Notice this variable does

not factor into the equations for susceptibles and infectives, and thus can be

omitted when finding an expression for I(t) and S(t). This model assumes a

closed population with no net birth/death or migration, except possibly death

or migration of recovered individuals, which are irrelevant to the calculations:

Ṡ = ��xIS (1.8)

İ = �xIS � �I (1.9)

Ṙ = �I (1.10)

For ease of calculation, it is common practice (which we follow hereafter

with rare exceptions) to normalize the above set of ODE such that the total

population I(t) + S(t) +R(t) = N is set to 1.

A natural quantity of interest that stems from eqs. (1.8) to (1.10) is the

constant R0 := �x
� , known as the basic reproduction number, which is the

expected number of new infections resulting from an arbitrary infected indi-

vidual, excluding both subsequent generations of infections and assuming that

all contacts are susceptibles1 . In some cases calculations use the reciprocal

of this number, which is widely referred to as the relative removal rate ⇢.

Kermack and McKendrick a�rmed the logical assumption that an epidemic

will not grow at all if this relative removal rate is greater than the number of

initially susceptible people, (Threshold Theorem) [29].

1
R0 could be viewed as the initial reproduction number, when the number of infectives

is so small compared to the number of susceptibles that it can be neglected. It can then be
assumed with little consequence that an infective at the initial stages of the epidemic would
have close to 100% of contacts susceptible to the disease

5



The system of eqs. (1.8) to (1.10) can be solved for S(t):

S(t) = S(0)e��x
R t
0 I(⌧)d⌧ (1.11)

Similar expressions can also be found for I(t) and R(t). S(t) is usually the

desired closed-form function, and it is unfortunate that this solution function

for S(t) relies on the function I(t) for all times between 0 and t (and fur-

thermore the converse is also true). Indeed, there are a number of papers

that prove semi-analytic, approximate, and parameterized solutions for S(t)

(and I(t), R(t) as well), and furthermore many of these also report solutions

that involve the other populations of interest or their derivatives, or rely on

convenient modifications to the classic SIR model [13, 23, 30, 50]. It seems

evident that the most desired solutions for S(t), I(t), and R(t) (these being

functions depending only on t) are unknown as of the writing of this thesis.

That being said, modern numerical integration methods provide a su�ciently

accurate and fine discretization of S(t) that is extremely close to the unknown

solution of eq. (1.8). It is easy to see that according to the model and directly

from eq. (1.9), if the initial proportion of susceptibles is close to 1, then an

appropriate ✏ can be chosen such that �x < �� ✏ which implies d
dtI(t)

���
t=0

 0

and the epidemic will not grow. Kermack and McKendrick stated a simi-

lar and comparable theorem in 1927 for non-normalized populations where

S(0) + I(0) = N , with N � 1 [29]. Kermack and McKendrick here also in-

troduced the relative removal rate ⇢ := 1
R0

and stated that as this number

approaches the population size N , total epidemic growth from t = 0 to t = 1

is very small, (O(N � ⇢)), as would be expected for R0 ⌧ 1. This is a logical

assumption for which the evidence in the literature is ubiquitous.

The SIR model is a vast improvement upon the overly simplistic and inac-

curate exponential growth model, which makes the assumption that the rate

of change of new infections is directly proportional to current infections (see

eq. (1.12)). This results in the predicted number of susceptibles at the conclu-

sion of the epidemic to be zero, which has not been observed in historical data

for the vast majority of diseases observed in su�ciently large populations. Be-

haviour qualitatively close to exponential growth does occur at the beginning
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of an epidemic, to some extent in observed real-world data [17], and in the

solution to this ODE model, when the number of susceptibles is close to the

total population size and for a brief time far exceeds the number of infectives.

In this case, eq. (1.9) can be approximated by the following equation, which

is the ODE governing exponential growth:

İ ⇡ (�x� �)I (1.12)

Since S(t) ⇡ 1 for small t and I(0) close to 0.

This approximation quickly loses accuracy and, as would be predicted by

the SIR model, the rate of new infections ceases to grow exponentially and

eventually peaks (at the first instance when �xS  �) and then declines until

there are virtually no new infections. This qualitative congruence between the

real-world data and the epidemic behaviour is encouraging for those seeking

more accurate forecasting models and suggests that this model incorporates

the most consequential features of the epidemic.

With regards to the model, R0 is the biggest determinant of epidemic

growth, as very small R0 results in the epidemic declining and dying out as

soon as it appears, and large R0 resulting in an arbitrarily large proportion

of cumulative infections over the epidemic’s life cycle. This model has been

applied a posteriori to real world data on numerous occasions and in many

studies, R0 values have been calculated for a wide range of populations that

experienced a COVID-19 outbreak. Many of these results were assimilated in

at least two systematic review and meta-analyses published in 2022 [2] [20].

The authors of one study found a wide range (0.4, 12.58) in R0 [20], while

the other [2] found a much smaller range (2.32, 3.69) when looking at large

data sets grouped by continent. Statistical tests applied to the latter results

yield a high probability that the variation is due to chance and that there is

no suggestion that there is a significant di↵erence in true levels of R0 across

continents. As we will see later, even whenR0 = 2 the SIR model suggests 85%

long-term cumulative infections. The vast majority of R0 values in [20] and all

of the R0 values in [2] result in a very high proportion of people experiencing

infection over the course of the pandemic. This does happen on occasion in
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small communities and to a lesser extent, larger heterogenous populations.

By the authors’ own admission, higher R0 values tend to be inflated when

looking at preliminary data. Many of the references in this paper do involve

preliminary data. The limitations of the SIR model may be illustrated here

by the fact that in the early days of the pandemic, very few people have

recovered, especially before 1
� days have passed. This strengthens the closeness

of early epidemic behaviour to exponential growth, as well as exaggerating R0

values when applied to data. That being said, [2] does not provide evidence

against di↵erences between infectivity/susceptibility within populations. It

does, however, suggest that average susceptibility is relatively similar when

averaging data sets within continents, then comparing those averages. This

could be true for a variety of reasons. In regards to [20], the fact that this

quantity represents the rate of secondary infections, and that the data in

question all applies to the same disease and to groups of humans frequently

assumed to have homogenous susceptibility, suggests that expanding the model

to incorporate additional dimensions of the population may provide further

accuracy in some scenarios. It should be noted that [20] used many small data

sets which could have inflated the range of observed R0 values beyond that

caused by other confounding factors.

1.3 Variants of the Classical Deterministic SIR

Model

For various reasons, mathematicians have explored di↵erent variants of the

classical deterministic SIR model. While it is often tempting and sometimes

acceptable to ignore additional dimensions such as birth and death rates, there

is often an argument for incorporating these and other processes into the model

in the hopes that it improves accuracy. For certain categories of outbreaks,

additional dimensions must be considered due to the complex and nuanced

nature of infectious diseases. We explore many of these here.

We begin with birth and death rates. If we incorporate a constant death

rate µ and birth rate ⇤ we can easily revise eqs. (1.8) to (1.10) to the following

8



set of ODE:

Ṡ = ⇤� µS � �xIS (1.13)

İ = �xIS � �I � µI (1.14)

Ṙ = �I � µR (1.15)

The results of this model are often characterized by the total number of

susceptibles remaining after the end of the epidemic. When the epidemic has

completely died out, say, at time tF , then I(tF ) = I 0(tF ) = 0, and the above

equations simplify to

Ṡ = ⇤� µS (1.16)

Ṙ = �µR (1.17)

and the number of recovered individuals experiences exponential decay while

the number of susceptible individuals can, at least for finite time intervals be-

ginning at tF , follow sub-exponential decay, equilibrium, or growth, depending

on the birth-rate/death-rate ratio. The assumption here is that at some point

in time there will be no new infections and those that were infected will have

recovered. If we further assume that S(t) later reaches a critical point (where

S 0(t) = 0), this yields what is known as “Disease-free equilibrium”. The

disease-free equilibrium for the above sets of equations is

S(t) =
⇤

µ
(1.18)

It should be noted that this terminology is usually reserved for outbreaks with

significant reach (R0 � 1).

There is a type of modified SIR model that di↵erentiates between deceased

and recovered individuals. This model can be solved semi-analytically due

to the simplicity and number of di↵erential equations. This model is known

as SIRD (Susceptible-Infectious-Recovered-Deceased). As in the classical SIR

model, the di↵erential equations governing susceptible and removed individu-
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als involve only those variables and constant terms. It seems clear that the only

additional information provided by this model is the discrimination between

recovered and deceased individuals, which are classified as D(t):

Ṡ = ⇤� µS � �xIS (1.19)

İ = �xIS � �I � µI (1.20)

Ṙ = �I (1.21)

Ḋ = µI (1.22)

This model can itself be slightly modified to incorporate vaccination rates

v(t) and cumulative vaccinations (proportion of vaccinated individuals, since

vaccinations are considered to be permanent) V (t), which in practical terms,

should both not be considered to be constant. Consequently, in this model

infection and recovery rates are also considered to be a function of time, which

results in the following set of di↵erential equations:

Ṡ = ��(t)xIS � v(t)S (1.23)

İ = �(t)xIS � �(t)I (1.24)

Ṙ = �(t)I (1.25)

V̇ = v(t)S (1.26)

This adds additional complexity to the model and in general it can be

analytically intractable, but that issue can be addressed by fixing the following

ratios as constant:

10



�(t)

�(t)
= k (1.27)

v(t)

�(t)
= b (1.28)

Birth and death processes are omitted from this model in order to avoid

additional complexity.

Since immunity is an integral part of epidemic modelling, there are cases

where maternally-derived-immunity must be considered and incorporated into

the model. For diseases such as measles, babies can be born with maternal

antibodies if their mothers have been either vaccinated or have previously

become infected and recovered. These babies are often resistant if not immune

to the disease for the first few months of their life [32]. The model is similar to

the classical SIR model except that maternally immune infants are placed into

their own category M(t), and because of this, birth and death rates cannot be

ignored. Here � represents the rate at which this immunity dissipates:

Ṁ = ⇤� �M � µM (1.29)

021

Ṡ = �M � µS � �xIS (1.30)

İ = �xIS � �I � µI (1.31)

Ṙ = �I � µR (1.32)

Many diseases such as tuberculosis can spread by means of asymptomatic

transmission, where a person is infected but has no indication that they are,

and those people often spread the disease unknowingly. People who are asymp-

tomatic but are not disease-free and can infect others are classified as carri-

ers. There are studies that suggest that this happens with COVID-19 as well

[52, 21]. In the corresponding model, individuals can move back and forth

from the carrier state to the infectious state at any time, while the state of
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recovery is considered permanent.

Many models do not incorporate things such as carrier state, but one com-

partmental model that has received significant amounts of research attention

is the SEIR (Susceptible-Exposed-Infectious-Recovered) model. In this model

there is a latency period where exposed individuals carry the disease but are

not yet able to transmit infection to other people. Note that this is very dif-

ferent and in some ways opposite to models that incorporate asymptomatic

transmission.

This model introduces exposed individuals E(t) and includes the variable

↵ which is the reciprocal of the latency period. For the sake of simplicity the

birth rate is usually considered equal to the death rate, but in these cases the

death rate (not the birth rate) still appears explicitly in the set of ODE:

Ṡ = µ(1� S)� �xIS (1.33)

Ė = �xIS � (µ+ ↵)E (1.34)

İ = ↵E � (� + µ)E (1.35)

Ṙ = �I � µR (1.36)

There are also models explored in the literature where immunity beyond

the infectious period is either nonexistent or at least temporary. These are

known (respectively) as the SIS (susceptible-infective-susceptible), and the

SIRS (susceptible-infectious-recovered-susceptible) models. These models can

also incorporate other considerations such as those mentioned above. For ex-

ample, the MSEIRS (Maternally immune-susceptible-exposed-infectious-recovered-

susceptible) model allows for maternally derived immunity, a latency period

between infection and infectiousness, and reliably finite periods of immunity

following infection.

Another major consideration that can be incorporated into this model is

contact rates. The logical assumption that contact rates between individuals
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have a substantial impact on general epidemic behaviour is the basis for in-

cluding contact rates in mathematical models. This belief is also the primary

motivating factor for certain epidemic control measures such as quarantine,

lockdown, travel restrictions, and modifications to occupancy limits and busi-

nesses’ hours of operation. Contact rates are a↵ected by a wide variety of

factors including cold weather and school calendars.

Models can incorporate contact rates and still remain relatively simple.

Some of these models incorporate a seasonal contact rate where the force of

infection is a periodic function that depends entirely on the calendar date and

time. Other factors that a↵ect contact rates are ignored for simplicity. For

example, consider the following set of ODE with periodic force of infection

�(t) and constant death rate µ:

Ṡ = µ(1� S)� �(t)xIS (1.37)

İ = �(t)xIS � (� + µ)I (1.38)

Where the proportion of recovered individuals R(t) is still considered, but is

not needed in order to solve the above set of equations. Models where contacts

between individuals are assumed to completely govern epidemic behaviour are

best framed as graph theory problems. Epidemic models based on graphs are

closely related to the well-researched cops and robbers game [35] and to a

greater extent the firefighter problem (see [51]). Models such as these can also

incorporate the stochastic nature of transmission. There are a few examples of

this in the literature [37]. However, doing this adds complexity and generally

results in models that can only be analyzed by computer simulations.

We conclude this section with a discussion of another variant of the clas-

sic SIR model, known as the di↵erential susceptibility (DS) model. We first

describe a model that serves as an intermediate step.

In this modified SIR model, � is classified as the rate of recovery incidence,

and doubles as the infectivity rate as follows:

� := ↵�cI (1.39)
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Where ↵ represents susceptibility, � represents infectivity, and c = c(N)

is a constant describing the number (or proportion of the population) of con-

tacts a person has, and this depends only on the total population size. For

a normalized system this amounts to an arbitrary constant describing mix-

ing behaviour. Additionally, � and ⇠ are the disease-induced mortality rates

for infected and recovered individuals, respectively. In the classic SIR model,

infection rates are constant when �xS = �.

We now compare this with the previously mentioned SIR model incorpo-

rating constant birth and death rates:

Ṡ = ⇤� µS � �xIS (1.40)

İ = �xIS � �I � µI (1.41)

Ṙ = �I � µR (1.42)

with this model,

Ṡ = ⇤� µS � �S (1.43)

İ = �S � (µ+ � + �)I (1.44)

Ṙ = �I � (µ+ ⇠)R (1.45)

We see that one di↵erence here is the discrimination and inclusion of both

disease-induced and normal (all-other-causes) death rates between and within

the groups I, R, in addition to the incorporation of contact rates.

The di↵erential susceptibility model explored in [25] takes the above system

of ODE and divides the groups of susceptibles S(t) into groups Si(t) according

to their individual susceptibilities. Groups would, instead of having uniform

susceptibility ↵, would have individual susceptibilities ↵i, generating a unique

value �i for each group which generates this modified system of ODE which
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serves as the basis for the DS susceptibility model . The rationale here for

di↵erent susceptibilities could be attributed to di↵erences in contact rates,

immune function, or many other factors, which will be discussed in detail

later.

Ṡi = ⇤� µSi � �iSi (1.46)

İ =
kX

i=1

�iSi � (µ+ � + �)I (1.47)

Ṙ = �I � (µ+ ⇠)R (1.48)

The solutions to this set of ODE can be calculated using matrix algebra,

and should be computationally tractable for relatively modest values of k, for

much the same reasons that the numerical solutions to the models discussed

later are also tractable. Another paper by the same authors further refined

this model to discriminate between the mixing behaviour of newly-infected

versus, say, recently infected individuals [26].

There is one more variant to the SIR model that has not been explored in

this section. This variant also takes into account heterogeneity of susceptibility

but is still very di↵erent in terms of its solution functions due to nuanced

di↵erences between the models. This variant and the original progress on the

subject made by the author is the focal point of the remainder of this thesis.

We first address the rich body of scientific knowledge of the general and simple

stochastic epidemics, which preserve many features of the SIR model.

1.4 Stochastic Modelling

The SIR model introduced in the previous section is also referred to as a

deterministic model, as the model generates a single possible function for S(t)

based on the initial conditions and the values of �x and �. That is, the solution

to the model does not rely on random chance or any stochastic variables.

Some attention has been devoted to the study of epidemic models in which
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susceptibles are given probabilities that lie within the interval (0,1) of making

adequate contact with an infective and can thus (at least temporarily) avoid

infection. These models are referred to as stochastic epidemic models and

much research into these models continues to present day [44] [48] [27]. In

these models, t is either discretized into reasonably large time steps, or the time

steps are considered arbitrarily small (continuous stochastic epidemic) and the

general infectivity of the disease can be absorbed into these probabilities easily.

The solutions to these problems are sample paths of epidemic growth and are

most readily applied to the small populations for which the model is the most

useful.

In 1928, Lowel Reed and Wade Hampton Frost gave a series of unpub-

lished lectures on the stochastic model, where these probabilities are the only

components of the model, which results in a chain binomial model2. The

mathematics from these lectures was recorded in a paper published in 1952

[1]. Individuals can be classified (both susceptible and infectious) as points on

a graph of cardinality N = I +R+S, with an edge between two nodes occur-

ring independently with probability p 2 (0, 1) where p = 1 � e�R0 [15]. Any

such graph is a version of the Erdos-Renyi graph, as its defining feature is the

equal probability of an edge between all possible pairs of nodes. Since contact

between susceptibles and infectives is randomized at each step, if one is only

interested in cumulative infections and not the epidemic process, it turns out

that this problem can be reframed as an equivalent model that makes the sim-

plifying assumption, without further cost to the accuracy of the final epidemic

size, that all infections take place at the same time, at the end of the epidemic.

This quality raises natural questions about the e�cacy of the model, as this

simplifying assumption appears to be in defiance of many important known

qualities of epidemic spread. It should also be noted that this equivalency

does not spare the model from its large computational cost, as its solution is

defined recursively. It is only the contacts between individuals that follows

the structure of the Erdos-Renyi graph, not necessarily the infectivity at any

2These models generate multiple scenarios at each discrete time step based on whether
or not each susceptible becomes infected. This process is continued at each subsequent time
step and depends on the full history of the epidemic.
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time. This is due to the fact that edges represent contact between individuals,

where the nodes represent people. It is, however, easy to see that this char-

acterization gives a small amount of credence to the idea that in a population

with some stochastic element to contacts, there is no su�ciently large R0 that

guarantees a significant growth in infections, as any finite Erdos-Renyi graph

has a strictly positive probability of having no edges at all!

Nevertheless, over the years, the simple, small-scale model of Reed and

Frost has given rise to plentiful amounts of research on both the simple and gen-

eral stochastic epidemic, much of which relies on markov chains. Some defining

features of stochastic epidemics include the fact that, due to the probabilistic

nature of transmission, there is no su�ciently large R0 that will guarantee

cumulative infections close to 100%. That being said, the distribution of cu-

mulative infections of a given stochastic epidemic is normally distributed with

the same mean as the deterministic epidemic as long as the population and the

relative removal rate are su�ciently large [7]. Though there are limitations to

these models, including a reduction in model usefulness for extended epidemic

cycles [19], research on the topic has been accelerating since its inception, pos-

sibly fuelled by increasingly powerful computer simulation technology. The

interested reader may refer to the 2009 survey on stochastic epidemic models

by Britton [15]. We discuss the main results of this survey here.

In the survey, the author mentions the widely accepted and logical view

that the probabilistic nature of contact between infectives and susceptibles can

make a major di↵erence for small outbreaks and/or small communities, due

to the fact that with a small number of initial infectives, chance avoidance of

contact between those infected and those currently uninfected can make the

di↵erence between epidemic growth and epidemic termination. Small com-

munities are more likely to have smaller outbreaks, at least in terms of total

number of initial infectives (as opposed to the initial proportion of infectives),

but those small and often close-knit communities would possibly experience

fast and widespread epidemic growth if a su�ciently large proportion of a

small community becomes infected, and if so, this would generally happen re-

gardless of the e↵ects of migration. Indeed, there have been numerous reports

of certain communities that are hit harder by COVID-19 [42, 36], and many
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of these are small, close-knit communities [46, 47].

Many of these micro-level outbreaks of COVID-19 within closed or mostly

closed communities experience epidemic behaviour that does not parallel the

macroscopic infection trends. This may serve as an indication that the infec-

tion rate �x may not be the same for di↵erent groups of people, whether or

not these di↵erences are due to genetic di↵erences (presumably due to natu-

ral variations in immune system function and e�cacy), or to routine chance

di↵erences in contact rates, which could be less likely in closed communities

that have little time to impose mitigation measures before the epidemic grows

to a point where they would be ine↵ective.

Heterogeneity of immunity can be incorporated into the SIR model (or

any of its variations) by setting i subsets of susceptibles with their own rate of

susceptibility �xi. The stochastic nature of contact rates cannot be incorpo-

rated into this parameter in this way, and if model simulations are to produce

multiple scenarios based on the same set of initial conditions and assumptions,

then they must contain a stochastic element.

This stochastic element is useful due to the fact that it can provide valuable

(but oftentimes with unknown confidence) error estimation for deterministic

models, presumably if the variability in contact rates estimated by the model

is somewhat accurate and the model is somewhat suitable to describe the real-

life phenomenon. Epidemic behaviour and duration that cannot be explained

by the best available deterministic models could be justified by taking into

account the probabilistic nature of transmission, whether or not this is at-

tributed to contact rates or anything else that can impact transmission, such

as the probabilistic nature of airborne disease transmission itself, and environ-

mental or social factors that a↵ect immunity and behaviour.

As mentioned, the stochastic model seems most necessary for small popula-

tions. The stochastic general epidemic mentioned in [15] applies the stochastic

element to the length of the infectious period alone. This model describes a

Markovian process in which each individual’s infectious period is i.i.d and

a member of an exponential distribution. In this model, the final size of the

epidemic can be defined by a recursive formula, but there is no closed-form an-

alytic solution for the total beginning-to-end behaviour of the general stochas-
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tic epidemic, even if we are to relax the requirement that the distribution be

exponential.

In [6], which we will revisit later in the thesis, the author provides a recur-

sive formula for the distribution of the total epidemic impact, since a defining

quality of the stochastic epidemic is that the same initial conditions gener-

ally produce di↵erent outcomes due to chance variation, which is integral to

the model. Where the impact can be classified as the proportion or number of

people who eventually experience infection, or equivalently, (which is the quan-

tity used in each step of calculations), the proportion or number of people who

successfully escape infection. As this method (in essence) counts the number

of susceptibles (infectives) at each time step, it can be framed as a counting

problem with a stochastic element. As seen in many graph theory or counting

problems with a stochastic element, these stochastic formulas can easily be-

come computationally intractable. For problems such as this, approximations

with or without upper and lower bounds on the quantity in question are seen

as an acceptable substitute for closed form solutions or the usual proxy of rel-

atively precise computer-generated solutions. This is seen numerous times in

[51], and even these results in the literature from this particular combinatorics

problem are too plentiful to list here. In addition, there are further limitations

beyond the analytic and computational intractability of viewing epidemic be-

haviour as a branching process. There are other approximations which rely

on other methods. In [34], the authors use fluid and di↵usion approximations

to estimate results for the usual (general stochastic) Markov chain branching

model of epidemic spread.

It is worth mentioning that these recursive formulas can be computed for

very small-scale epidemics [19], which are the very epidemics in which the

stochastic models are considered the most valuable. That being said the re-

cursive nature of the stochastic processes and the implicit assumption that

probabilities of contact, which is a proxy for transmission and usually assumed

to be i.i.d, no longer provides a realistic description of epidemic behaviour once

a significant proportion of pairwise contacts are between infectives is reached.

If epidemic growth is viewed through the lens of contact between susceptibles

and infectives, contacts between two infectives do not have an impact on epi-
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demic growth, and this becomes significant in the calculations as the number of

infectives approaches
p
N . This value is seen countless times in similar prob-

lems in the literature [51]. It should be noted here that the stochastic general

epidemic relies on actual numbers of susceptibles and infectives, rather than

proportions, as the members of the population are treated as individual agents

whose infectivity status is used in calculations involving the branching process,

and this number N therefore cannot be normalized (which can be done rather

easily in the deterministic epidemic) if we are to preserve the essential features

of this model.

There are claims in the literature that the true value of R0 is more accu-

rately estimated using a stochastic model rather than a deterministic model

[39]. These claims are supported and echoed in other research articles as well

[16]. It is worth mentioning again that R0 is considered to be the intial re-

production number. The fact that, loosely speaking, stochastic models lose

their accuracy once the epidemic reaches a certain size, gives cause for doubt

that these models provide better estimates for what amounts to average ini-

tial transmissibility rates. That being said, it seems possibly unreasonable to

ignore the stochastic nature of transmission, which can be interpreted as justifi-

cation for the unpredictable behaviour of individual epidemics when compared

with the predictions stemming from the best available deterministic models.

This phenomena brings into question whether or not the complexity of the ex-

isting deterministic and stochastic epidemic models is su�cient to accurately

predict or explain epidemic behaviour. The countless examples that exist of

inadequate epidemic forecasting suggests this may be true. This author would

like to reserve judgment on such claims for the time being. These stochastic

models and similar models can be applied analogously to variants such as the

SIS model [40], [33] [12]. This is worth mentioning as the purpose of these

variant models is to provide further accuracy for situations not adequately

described by the SIR model. Variable susceptibility SIR, which this author

holds the be the most useful model when anticipating epidemic behaviour, is

the focal point for the remainder of this thesis. The e↵ects of mitigation mea-

sures such as lockdown and quarantine can easily be incorporated into both

the deterministic and stochastic version of SIR and most of its variants.
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The above are just a few examples of the rich body of research into stochas-

tic epidemic models. The most recent developments borne out of the COVID-

19 pandemic explore many facets and modifications of the general stochastic

epidemic. In [33], the authors present the classic SIR model with the addition

of stochastic uncertainty. While the deterministic SIR model produces one

possible value for S(t) for each t, this model allows for variation in S(t) for all

t > 0. This is accomplished by having an additional stochastic variable which

results in a range of possible values for S 0(t) at each time step t > 0. Note that

this is much di↵erent than the stochastic epidemic models mentioned in [19]

that are based around the stochastic nature of transmission involving individ-

ual infectives. These simulations can be run numerically and provide another

dimension to the uncertain nature of transmission captured by the model. It

is not hard to see how the impact of stochastic uncertainty on final epidemic

size can be accounted for or even negated by adjusting average transmission

probabilities by the requisite amount. The impact of incorporating stochastic

transmission to models that place importance on beginning-to-end epidemic

behaviour is likely a more complicated question. Exploring the intricacies

of contact behaviour and disease transmission lends itself naturally to game

theory [24].

Many current studies on COVID-19 data, both before and after the large-

scale rollout of the novel MRNA vaccines, focus on many factors such as

contact rates, vaccination rates, duration of infectivity, ethnicity proportions

within populations, and others [31], [3] [49]. These factors do not exist in isola-

tion and it is not hard to see how even cultural di↵erences should lead to some

di↵erences in, say, contact behaviour and vaccination compliance. This further

confounds any results that attempt to provide real evidence that di↵erences in

any one of these factors in isolation mitigates or worsens epidemic trajectory,

though there are still a large number of studies that claim to provide evidence

for the e�cacy of MRNA vaccination to reduce transmission (and to a lesser

extent, severity of the disease and therefore hospitalization and death rates for

infected individuals). This is in spite of the fact that the ability of large-scale

vaccination to prevent transmission has been called into question since shortly

after these programs were implemented. Indeed, as always with conclusions
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based on statistical studies that are inherently incapable of providing useful

100% confidence intervals, those conclusions are subject to revision, which

has been happening in all facets of the scientific community for generations.

Claims by medical o�cials in the United States and undoubtedly elsewhere

were constantly being revised throughout the course of the pandemic over the

last several years and continues to this day.

One aspect that suggests that even the most current epidemic models fail

to completely capture the relevant physical details, is the fact that trends in

COVID-19 and other airborne disease data suggest a strong seasonal (and

therefore periodic) influence on epidemic behaviour. These e↵ects can po-

tentially be ignored for short-lived outbreaks or outbreaks in which a small

proportion p ⌧ 1 of the population escapes infection. More research is needed

into the idea that observed COVID-19 outbreak behaviour may actually be

due to several overlapping outbreaks di↵erentiated by mutations in the virus,

for which immunity conferred by infection with previous mutations is thought

to be partial or nonexistent. This may be the reason that true vaccine e�cacy

levels were lower than originally predicted. This explanation was suggested in

a talk by Shadwick.

It has been established that stochastic epidemic models produce many dif-

fering scenarios stemming from identical sets of initial conditions, that their

usefulness and tractability is maximized for small communities, and further-

more that models applied a posteriori to evaluate e↵ectiveness of measures

such as vaccine programs cannot be separated from all possible confounding

factors. Indeed, under certain and common circumstances, epidemic behaviour

observed from beginning to end provides little more information about tran-

sition probabilities than the final epidemic size does [9]. It is interesting to

consider this combined with the fact that the deterministic epidemic’s final

size is entirely based on susceptibility or susceptibilities, if you ignore the ad-

ditional dimension of transmissibility, which is common practice. Since any

SIR model with homogenous or heterogenous susceptibility can have �x(i)

modified to produce any final epidemic size, it could be argued that the deter-

ministic model produces valuable information at a higher benefit-cost ratio.

For these reasons, deterministic models are the focal point of the remainder of
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this thesis.

Deterministic models such as the SIR model and (to a possibly greater

extent) the variable susceptibility SIR model explored by the author in part II

both produce solutions that can often be closely fitted to a wealth of previous

disease data. Endeavours to find closed-form functions that can be fitted to

real data but that are not required to be solutions of any ODE model have

produced promising results [17]. Functions known as “Gompertz functions”

seem to fit these demands very well, and are introduced in the next chapter.

COVID-19 behaviour in relatively closed populations from outbreak to en-

demicity (which tends to run its course within a year) often follows this trend

as well. Despite this, long-term COVID-19 data on large, open populations

that spans multiple years may indicate a rare exception to this rule [17]. More

investigation is needed into the idea that overlapping outbreaks involving mu-

tations can explain this departure from usual disease trends. If there exists a

model that can, with reasonable accuracy, reproduce historical data and also

predict future epidemic behaviour, we would be much better equipped as a

civilization to eventually understand the e↵ects of the seemingly countless list

of natural and artificially manipulated factors which a↵ect or are presumed to

a↵ect epidemic growth. Natural factors such as seasonal progression and ob-

served ethnically-based di↵erences in COVID-19 infection trends suggest that

immunity, which is a↵ected by such things, may be a factor. These beliefs are

the motivation for the remainder of this thesis.
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Chapter 2

Numerical Study

2.1 The Gompertz Function and Epidemic Data

Much research continues to this day in an attempt to find an adequate epidemic

forecasting model that can properly inform vital decisions regarding pandemic

management. Many preliminary models from the early days of COVID-19

resulted in doomsday scenarios that never came to fruition. Analyzing the

cost-benefit paradigm of individual decisions, as well as large-scale pandemic

management decisions made at the highest level of government and health-

care, is extremely di�cult to do when the cost cannot be properly estimated.

Taking a careful look at relevant preexisting data is important when creat-

ing or refining a mathematical model that is intended to predict analogous

future phenomena. In recent times, researchers into epidemic behaviour have

discovered that a function, itself discovered approximately 200 years ago, has

proven extremely useful in making sense of epidemic behaviour. The Gompertz

function:

G(t) = Me�eb�at
, (2.1)

Introduced by its namesake, British actuary Benjamin Gompertz, was pre-

sented as a function that can be used to determine (with reasonable accuracy)

the proportion (or number within a closed population) of people at given age

t who are still alive. Figure 2.1 provides a visual.
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Figure 2.1: g(t) = 1 �Me�eb�at
with M = 1, b = 1.61, a = 0.0531. This slightly

modified Gompertz function gives a simulated estimate of the surviving proportion
of an arbitrary cohort by member age.

It is easy to see how the behaviour of this function seems commensurate

with known mortality trends. However, perhaps less obvious is the relationship

between this function and the proportion of susceptible (never-infected) indi-

viduals within a population experiencing an outbreak. In [17], the Gompertz

function is introduced as a phenomenological model whereby the function is

applied to real-world data 3. The authors found that the error between the

data and the Gompertz curve of best fit4 was acceptably and in some cases

exceptionally low. This implies that the relationship between the function and

observed epidemic behaviour can be extracted from historical data and used

in an e↵ort to make projections about future epidemic behaviour, as stated

by the authors in the paper’s introduction. This phenomenological approach

makes no claims about the reasons behind the closeness-of-fit, and instead

3In the realm of epidemiology, test data will always have to serve as a proxy for true
case numbers, the suitability of which depends on numerous factors and can never truly
be known. Things such as hospital admissions are accurately documented and the data
referenced herein largely applies to metrics such as this as well.

4Common statistical methods such as least-squares regression can find the best possible
fit with no possibility of non-optimality between arbitrary data and a given function such
as the Gompertz function.
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emphasizes the utility of a function that can be applied to a vast and diverse

collection of epidemic data. Indeed, the underlying reasons that the function

fits so well for epidemic behaviour remain largely a mystery, and little progress

has been made by this author (or elsewhere to his knowledge) on uncovering

those reasons.

In [17], the authors apply Gompertz function fits to a variety of diseases

including cholera, spanish flu, influenza, and COVID-19, and also to multiple

data sets spanning countries and eras, within each disease category. Moreover,

fits applied to proxies for infection, such as ICU admissions and deaths also

yield encouraging results, which would be expected from infection data if one

assumes that death and severe illness rates for newly infected people remain

relatively constant. The data for historical diseases was taken over months

and years, and close fits with minimal error were produced. The authors claim

good “short-to-medium” term predictive power for both historical diseases and

COVID-19. The authors stopped short of claiming long-term predictive power

due to the fact that the best-fit Gompertz function g(t) for the early days

of the studied outbreaks in general has di↵erent parameter values than the

best-fit function g̃(t) applied to the same data extended well beyond the peak

of the disease.

In addition, the authors discuss an extension of a disease’s initial repro-

duction number R0 to an e↵ective reproduction number that depends on the

time elapsed t since the initial outbreak. This is denoted here as Rt. This

parameter again estimates the number of secondary infections produced by

one new infection, but in this case it is time specific as this quantity will de-

crease as the proportion of susceptibles declines as an epidemic progresses (Rt

is a non-increasing function of t). This is a much more refined parameter for

describing current and time-specific epidemic behaviour, so much so that the

authors found in empirical data, that the time t where the rate of new infec-

tions begins decreasing corresponds closely to the time t where Rt�1 becomes

negative.

Many diseases throughout history have essentially disappeared or been

eradicated. Measles and smallpox, as well as the bubonic plague are not a

cause for concern anymore. After the initial shock of the 2020 advent of
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a severe and serious worldwide pandemic had subsided, it is assumed that

many people throughout the world held out hope that COVID-19 would be

nothing more than a memory in the near future. Four years after the virus

began spreading globally, such an event does not seem likely to occur anytime

soon. However, due presumably to mutations into weaker viruses, hospitals

are no longer overwhelmed by COVID-19-related ICU admissions, testing and

mitigation measures have been deemed mostly unnecessary in many parts of

the world, and people are resuming their normal lives. What we seem to be

observing in present day is a classic example of endemicity, or “endemic be-

haviour”, where we are still getting significant and oftentimes very constant

rates of new infection, but without the explosion of infection that is usually

seen at the onset of a new outbreak. This e↵ectively corresponds to Rt ⇡ 1

for large time spans, which is, unfortunately, incompatible with the limit-

ing behaviour of Gompertz functions. In order to maintain the e�cacy of

the model, the authors allow for piecewise functions that alternate between

Gompertz function growth and linear growth. They showed that this was an

e↵ective refinement for long-term COVID-19 data, as well as multi-year data

for seasonally-a↵ected diseases such as Spanish flu. This alternating pattern

has been shown to go through multiple cycles in the course of a few years for a

selection from a group of seasonal diseases, of which COVID-19 is a member.

A visual for such a piecewise function is shown in Figure 2.2. Gompertz and

piecewise Gompertz functions applied to historical data are illustrated in nu-

merous plots in [17], and the invested reader is highly encouraged to view the

results and discussion of that paper for more information. In the next section

we will see that both the classic and variable susceptibility SIR model have

computer generated solutions that are very close (in terms of Lp) to Gompertz

functions, which by far are the only reasonable choice when it comes to mod-

elling typical large-scale epidemic behaviour, without resorting to piecewise

functions, splines, or similar methods. That being said these models are not

without their limitations, as, with regards to historical data, the best fitting

Gompertz function for, say, time until 20% of max infections is not necessarily

close (in terms of the values of the three constants in the function) to the best

fitting Gompertz function for the epidemic’s lifetime [17].
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Figure 2.2: Piecewise alternating Gompertz and linear function. The function is
linear for 35  t < 60.
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2.2 SIR

Consider again the set of ODE governing the SIR model, which together with

its variants dominates the study of epidemic forecasting to this day:

Ṡ = ��xIS (2.2)

İ = �xIS � �I (2.3)

We omit R(t) since it is irrelevant to the calculations. Since � and x always

occur as a product, the solution to these ODE is based solely on I(0) (since

R(0) = 0 and S(0) = 1� I(0)), �x, and �.

Possibly due to the reasons mentioned in Chapter 1, the above set of ODE

still has no known fully-analytic, nonparametric solutions depending only on

t. Numerical solutions to this set of equations can easily be generated and are

found in [45], [39], and elsewhere.

In this thesis, the author utilizes Python’s Julia package “Di↵erentialEqua-

tions.jl” [41] to solve this and modified systems of ODE corresponding to the

SIR model using a step method. When fitting our results to Gompertz func-

tions, we used Python’s SciPy curve fit package. The original model is also

the easiest to simulate. We first run the simulations and discuss the impact

of varying the initial conditions and R0 on the computer-generated results. A

short Python program generates plots of S(t) (and I(t) if desired). We set

� = 0.325, � = 0.13, consistent with the literature, and vary susceptibility

x randomly between 0.5 and 2.5 yielding 1.25  R0  6.25. We also set

I(0) = 0.05. A similarly short Python program invokes a di↵erent method

from its library and finds the curve of best fit. It is trivial to write a program

that measure the L1 error, or any commonly used measure of error.

Two figures appear below. Figures 2.4 and 2.5 show the numerical solution

in blue and the Gompertz function of best fit in red. The two curves are

indistinguishable in Figure 2.3.

These figures illustrate the fact that the model predicts widespread infec-

tion a↵ecting a large majority of the population with an R0 value of 2.0. The
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Figure 2.3: Green: x = 0.531, R0 = 1.3, L2-error: 0.0148, S1 ⇡ 0.45

Figure 2.4: Red/Blue: x = 0.814, R0 = 2.0, L2-error: 0.0313, S1 ⇡ 0.15
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L2 error is relatively low, and most of the discrepancy between the computer-

generated solution and the Gompertz function fit exists for small t.

This is consistent with observations about unique behaviour similar to

exponential growth at the very onset of epidemic outbreak. Even when cal-

culating error from t = 0 onward, expanding this model to handle multiple

susceptibilities results in a lower L2 error. Aside from the fact that R0 can

be manipulated to produce an arbitrarily large or small proportion of total

infections, finding a model that fits as closely as possible with the best known

closed-form modeling function seems like an important consideration. On an

empirical level, one should proceed with caution with a model that assumes

homogeneity of natural immunity, which seems to be reserved for the extreme

ends of the infectiousness spectrum based on the best available science for

diseases prior to COVID-19. Lastly, the highly referenced “best estimate”

of R0 = 2.5 produces the results of Figure 2.5, namely the often-predicted

(1 � S1) ⇡ 90% cumulative infection rate, generally not seen for individual

outbreaks in large populations. Due to the structure of the Gompertz func-

tion g(t) = Me�eb�at
, the fact that it has no known antiderivative, and the

qualities of the system of di↵erential equations governing S(t), I(t) and R(t),

there seems to be little hope of proving that these Gompertz functions that fit

the numerical solutions so closely are indeed the exact solutions of the system

of ODE.

31



Figure 2.5: Red/Blue: x = 1, R0 = 2.5, L2-error: 0.0429, S1 ⇡ 0.1
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2.3 Variable Susceptibility SIR

2.3.1 Background

For many centuries, humankind has been aware of individual variations of

immunity. Indeed, the observation that previous exposure and infection to a

disease drastically reduces or even negates the chances of re-infection by the

same disease can be traced back thousands of years. The idea that immunity

can be conferred by vaccination is much older than the first working vaccine,

and throughout history, transmission of a variety of illnesses have been thought

to be impacted by the qualities of the susceptible hosts themselves. Vitamins,

supplements, other health products, lifestyle choices including not only move-

ment and contact behaviour but also eating habits, have all been thought to

impact resistance to acquiring diseases and to recovery times. Immunology

generally considers two branches of the immune system. The “innate” im-

mune system which provides first-line defence against novel pathogens, and

the “adaptive” immune system which is invoked by contact with a pathogen

“recognized” by the host’s lymphocytes. The adaptive immune system is re-

quired for a vaccine to work, while the innate immune system is known to be

influenced by factors related to the host’s general health [8, 38].

If it is true that there are individual variations in the strength and e�cacy

of people’s innate immune systems, this is a major factor directly related

to large-scale epidemic behaviour that cannot be ignored. It can be argued

that any useful model must incorporate these discrepancies, as homogenous

susceptibility with variable exposure seems unable to account for the wide

variety and unpredictability of epidemic behaviours. This argument is only

strengthened by the lack of current and accurate epidemic forecasting models.

The roots of this expanded model can be traced back to [43], it appears in

numerous intermediate stages in a variety of papers, and appears as the model

we currently use in [5] and again in [39]. Particularly, in [39], the authors

provide numerous insights and parameterized solutions for this more complex,

expanded SIR model.
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2.3.2 The Model

Expanding the SIR model to incorporate heterogeneity of susceptibility presents

a host of advantages, as well as challenges. The basis of the model takes the

initial group of susceptibles S(0), and splits them up into k groups represented

by proportions si(0) such that

kX

i=1

si(0) = S(0) (2.4)

Furthermore,

kX

i=1

si(t) = S(t) (2.5)

Each group si has its own distinct susceptibility xi, and thus we have a

modified system of eqs. (2.2) and (2.3) as follows:

ṡi = ��xisiI (2.6)

İ = �x̄IS � �I (2.7)

S(t) =
kX

i=1

si(t) (2.8)

x̄(t) =
(
Pk

i=1 xisi(t))

S(t)
(2.9)

As before, � can be absorbed into susceptibility, (in this case multiple sus-

ceptibilities). This expansion also generates a new function x̄(t) corresponding

to average susceptibility. It takes only a moment’s reflection to conclude that

the relative representation of each susceptibility group changes in the model

(and presumably in the real world) as new infections a↵ect more susceptible

groups disproportionately. Note that x̄(t) appears explicitly as an independent

variable in eq. (2.7).

There is even less hope here of a fully analytic nonparametric solution for
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S(t), however, a psuedo-analytic solution for x̄(t) can be attempted. As we

will see shortly, Gompertz functions fit even closer for this set of ODE, and

if we ignore the error in the numerical approximation to a Gompertz function

to represent S(t), we can make the following argument:

1� S(t) = S1e�eb�at
(2.10)

also, from Equation eqs. (4.3) and (4.4)

I(t) = I(0)e
R t
0 �Sx�� d⌧ (2.11)

Ṡ = ��x̄I(0)e
R t
0 �Sx�� d⌧S (2.12)

whereas from eq. (4.7) we obtain

Ṡ = �ae�eb�at
(
1

S
� 1)S (2.13)

The eqs. (4.9) and (4.10) can be set as equals, and after many steps, which

are relegated to the appendices, we find a semi-analytic solution that necessi-

tates numerical computation once again:

x̄(t) =
e(��a)t( 1S � 1)

C � � e�b

a

R t

0 e
�⌧ Ṡ d⌧

(2.14)

And, substituting initial conditions, we have that

C = (
1

S(0)
� 1) ⌧ 1 (2.15)

Here we see a solution for x̄(t) that depends on S(t) and its first derivative.

These sorts of solutions abound in the literature for the SIR model and are

usually best explored using numerical tools.

As such, we turn to numerical approximations in the hopes that it can pro-

vide more information on the usefulness of the model. The Python program

used to simulate the classic SIR model can easily be modified to incorporate

an arbitrary number of susceptibility groups, and even 10 or 20 susceptibil-
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ity groups, which seems adequate to describe even diverse populations with

reasonable accuracy, runs in seconds on an average computer. For two suscep-

tibility groups, the system would be set up as such:

ṡ1(t) = ��x1s1(t)I(t) (2.16)

ṡ2(t) = ��x2s2(t)I(t) (2.17)

S(t) = s1(t) + s2(t) (2.18)

x̄(t) =
x1s1(t) + x2s2(t)

S(t)
(2.19)

İ(t) = �x̄(t)I(t)S(t)� �I(t) (2.20)

Where, for example,

� = 0.325, � = 0.13, x1 = 0.8, x2 = 1.6, s1(0) = 0.45, s2(0) = 0.5 (2.21)

Although the numerical solver demands initial conditions for the first deriva-

tives as well, these can be calculated by the given initial conditions and pa-

rameters (as seen above) and inputted into the program.

Python is certainly not the only program that can approximate such a

system, and we use a Matlab generated plot to illustrate the solution for

10 susceptibility groups. The scale in this example is non-normalized and

represents a population of N = 810 with I(0) = 10.

In order to gain intuition about the benefits and limitations of the model,

it is fitting to begin by making the most modest of transitions from one sus-

ceptibility group (classic SIR) to two. We denote the number of susceptibility

groups as k.
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Figure 2.6

2.3.3 k = 2

As mentioned before, for the classic SIR model, the solution to these ODE is

based entirely on what is essentially one initial condition I(0), and parameters

�x, and �. For two susceptibility groups we consider that now � cannot be

joined to xi anymore but can be neglected based on choices of xi, and we need

four initial conditions s1(0), s2(0), x1(0), x2(0), and one parameter �. We first

investigate the transition to k = 2 by comparing two cases, the first where

x1 ⇡ x2, but the proportion of the susceptible population in each group are

very unequal, and where s1(0) ⇡ s2(0) but x1 and x2 di↵er by a great amount.

We see here that even creating another, very small group, whose groups

have very similar susceptibility does not seem to decrease the L2-error by a

significant amount. Neither does increasing the size of that group but keeping

the susceptibilities relatively equal. However, setting two equally sized groups

with significantly di↵erent values for xi yields a closer approximation with

the L2-error decreasing from the order of 10�2 to the order of 10�3. This is
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Figure 2.7: Left: x = [0.500, 0.490], y = [0.940, 0.010], R0 ⇡ 1.25, L2-error:
0.0205, S1 ⇡ 0.5

Figure 2.8: Right: x = [0.405, 0.850], y = [0.500, 0.451], R0 ⇡ 1.5, L2-error:
0.00592, S1 ⇡ 0.4

in line with the idea that additional and significantly di↵erent susceptibility

dimensions incorporated into the model brings it slightly closer to emulating

the real state of a↵airs with regards to epidemic behaviour, which unfortu-

nately can never be fully accomplished. It can be argued here that even these

results are significant, as it was found in [17] that the Gompertz function pro-

vides a great-fitting approximation for numerous types of epidemics, including

COVID-19 restricted to the lifespan of single outbreaks. COVID-19 data over

the span of years is becoming increasingly readily available and this observed

behaviour may be influenced by mutations producing several outbreaks acting

concurrently at di↵erent phases of their life spans. The existence of distinct

mutations is a confounding factor and suggests the need for further expansion.

This may be achievable due to the fact that it is not di�cult to expand the

data-fitting function being set as the sum of multiple Gompertz functions with

di↵erent constant values.

2.3.4 k = 5

We expand now to 5 susceptibility groups, and make observations on the sim-

ulations. Intuitively speaking, it seems likely that if we do have heterogenous

susceptibility, a model incorporating 5 susceptibility groups should be more

realistic than a model with only two. It will be shown however that high
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accuracy is maintained but not generally improved upon by increases to the

size of k beyond k = 2. However, increased accuracy depends on values other

than k as well, and depending on the initial spread of susceptibilities and

their respective coe�cients, we find di↵erent levels of error. The following

figure shows three examples, the first where R0 ⇡ 2.5 and the second where

R0 ⇡ 1.25. These results seem discouraging as we once again have error on

the order of 10�2, however, adjusting for a more medium value of R0 = 1.9

yields the third figure which possesses a closer approximation. These results

indicate no significant improvement in error from k = 2 to k = 5. Notice

that the middle graph with R0 ⇡ 1.25 appears to behave in accordance with

exponential decay. This may not be surprising as for R0 close to 1, the epi-

demic’s peak is not long after its inception. Lastly, these figures describe

three arbitrary examples with a common distribution of si(0) and di↵erent

distributions of xi. Varying both initial susceptibility group distributions and

susceptibility coe�cients randomly allows us to observe both a variety of ap-

proximations to Gompertz functions without expanding the scope of the sim-

ulations to include modified values of the parameters � and �. Simulations

yielded another example with di↵erent distributions of susceptibilities and co-

e�cients from the simulation in the third figure, but that also results in error

< 0.01. These conditions were xi = [0.688, 0.950, 0.669, 0.352, 0.865], si(0) =

[0.087, 0.219, 0.169, 0.292, 0.182], R0 ⇡ 2.1, L2-error: 0.098, S1 ⇡ 0.75. We

move on to explore the relationship between the numerical results of our sim-

ulations, our qualitative intuition and observations, and the literature, before

concluding our discussion of the e↵ects of our manipulations on observed L2-

error.

2.3.5 Numerical and Theoretical Implications of the Model

We again increase the size of k, doubling it this time to 10 distinct susceptibility

groups. Before we discuss the impact of this change on numerical accuracy and

closeness-of-fit, we take an interlude to discuss the impact of manipulating the

variable corresponding to average susceptibility, which for the classic model,

when � and the initial conditions are fixed, corresponds directly to R0, final
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Figure 2.9: x = [0.915, 0.511, 0.686, 1.031, 0.768] y =
[0.186, 0.150, 0.188, 0.266, 0.209] R0 ⇡ 2.5, L2-error: 0.026, S1 ⇡ 0.85

Figure 2.10: x = [0.515, 0.111, 0.286, 0.631, 0.368] y =
[0.186, 0.150, 0.188, 0.266, 0.209] R0 ⇡ 1.25, L2-error: 0.023, S1 ⇡ 0.3

Figure 2.11: x = [0.686, 0.384, 0.515, 0.773, 0.576] y =
[0.186, 0.150, 0.188, 0.266, 0.209] R0 ⇡ 1.9, L2-error: 0.0065, S1 ⇡ 0.65
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Figure 2.12: Higher susceptibility groups: Red: x(t), Green: S(t), Orange (below):
I(t); Lower susceptibility groups: Orange: x(t), Blue: S(t), Teal (below): I(t). All
other variables represent si(t) for 1  i  20.

epidemic size, and entire epidemic behaviour over the course of its life span.

We also relate these findings to the literature.

We begin with a computer generated plot of two parallel setups for k = 10

in the figure. All parameters and initial conditions are the same except that

the set of susceptibilities (which we separate by “cohort”) is governed by the

following equation:

xi+10 = xi + 0.1, {1  i  10} (2.22)

Where the two cohorts are separated accordingly (1  i  10 and 11 

i  20).

According to this simulation, though the di↵erence in x̄(0) for the two co-

horts is exactly 0.1, this di↵erence is not maintained to the end of the epidemic

and the di↵erence for limiting values of t is closer to 0.8. This is an interest-

ing result, and suggests that with higher average susceptibilities (lower mean

immune health for population or community), the most susceptible groups

are actually more disproportionately a↵ected than the less susceptible groups.

This is an interesting result, given:
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x

y
>

x+ �

y + �
, {0 < y < x, � > 0} (2.23)

After running numerous simulations in this vein, the specifics of which are

not recorded here, the following qualitative observations were made:

• Increasing the value ofMin{xi} results in a lower final proportion of S(t).

Also, values of S(t) approach global minimum faster (in less time) as well

and we reach endemicity in a lower amount of time. This corresponds

to a Gompertz function with slightly larger values of a and S1

• Leaving minimum susceptibility low, even while increasing maximum

susceptibility results in a plot where near-maximum infection occurs

later, maximum infection is a smaller proportion of the population, and

corresponds to smaller values of the constant a.

• The individual functions si(t), as shown in the above figure, can also be

fit extremely closely to Gompertz functions, which is to be expected as

they can be viewed as individual microcosms of homogenous susceptibil-

ity within a heterogenous population.

• Finally, letting the initial values of xk and sk be an even and large spread

about the mean produces the same sort of plot of S(t) as an initial

distribution where the vast majority of the population has either low

or average susceptibility and xk is large for large k. This suggests that

diversity of susceptibility/immune strength is protective, even if average

susceptibility is fixed.

The final observation above suggests that high variability in susceptibility

is inherently protective against a high proportion of people eventually experi-

encing infection, even when controlling for average susceptibility. This is an

interesting idea that can be explored numerically by devising an appropriate

collection of simulations. The question of whether or not this is a logical neces-

sity based on the mathematics of the classic and variable susceptibility models

is an important one, and fortunately this question was explored nearly 30 years
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ago and was answered in the a�rmative, at least when directly comparing the

homogenous and heterogenous models.

In [5], the authors found a closed-form expression for R(t) based on the

variable susceptibility SIR model. We introduce it using that author’s termi-

nology:

X(t) =
kX

i=1

si(0)e
�↵iZ(t)

� (2.24)

Where X(t) is the number of susceptible individuals, N is the number of

initially susceptible individuals, Z(t) is the number of recovered individuals,

� represents the same quantity as our notation does, and ↵i is the infectivity

rate, which, according to page 5 of this paper, is equal to �xisi This directly

translates to:

S(t) =
kX

i=1

si(0)e
��

� xi(0)si(0)R(t) (2.25)

Compare with our function assumed to closely represent S(t):

S(t) = 1� S1e�eb�at
(2.26)

Perhaps a challenge in 1985, numerical explorations of these findings are

easy and give us insight into the e↵ects of expanding the role of variable

susceptibility in the model. We first explore the degree to which this finding

agrees with ours.

R(t) also produces very close Gompertz function fits, as expected, and

presents as a Gompertz function of the form R(t) = Me�eb�at
, shown in the

figure.

We apply a Gompertz function fit to the semi-numerical approximation

to eq. (2.28) which gives Figure 2.13. The DAE solver produces a numerical

solution for R(t), and this can be used to calculate a numerical solution to this

equation using obtained values of R(t) for each time t. Since Ball’s theorem is

sound, given the model from which it arises, it was important to check whether

or not the solution to S(t) provided by the DAE solver was consistent with
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Figure 2.13: R(t), Numerical result in green with Gompertz function curve-of-
best-fit in red.

the theorem’s representation of S(t). The two functions are plotted in Figure

2.14, and Figure 2.15 illustrates a Gompertz curve-of-best-fit applied to the

semi-numerical approximation to eq. (2.28).

It is interesting to note that the L2-error is higher in the second figure,

which could be due to the fact that there are two rounds of simulations re-

quired, one to provide the numerical solution for R(t) and another when Ball’s

S(t) is calculated numerically from those results. We will now, in a similar

fashion, explore a related theorem from the same paper. Ball’s formula for S(t)

for the variable susceptibility model, adjusted to use our notation and using

Ŝ(t) to distinguish the heterogenous susceptibility S(t) from its homogenous

counterpart is as follows:

Ŝ(t) =
kX

i=1

si(0)e
��

� xi(0)si(0)R(t) (2.27)

and a homogenous susceptibility analogue:

S(t) = S(0)e�
�x
� R(t) (2.28)
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Figure 2.14: Both plots are indistinguishable. L2-error ⇡ 0.00086

Figure 2.15: Ball’s function in blue (same as above) and the Gompertz function
approximation in red, L2-error ⇡ 0.037.
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Figure 2.16

and we also have the following theorem proved by Ball himself:

Theorem 2.1 For �, �, S(0), I(0), R(0) fixed, and for �x = R0 = R̂0 =
Pk

i=1 xi(0)si(0), and Ŝ(t), S(t) defined as above:

S(t)  Ŝ(t) for all times t.

Comparing them numerically yields the expected results, which are shown

in the above figure. It should be noted here that the spread of heterogenous

susceptibilities was large.

This presents a perfect opportunity to examine and compare the plots of the

classic and variable susceptibility SIR numerically in another fashion. In the

previous figure, the marked di↵erence between final epidemic size compared

between models is illustrated. To investigate the usefulness of each model,

adjusting �x for the classic SIR to closely match the final epidemic size pro-

duced by the variable susceptibility model provides us with some insight. As

could perhaps be deduced from the first figure, artificially adjusting R0 for the

homogenous susceptibility SIR results in slower early epidemic growth in the

classic model, which, with the same initial proportion of infectives as its ana-
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logue, corresponds to a more exaggerated departure from the near-exponential

growth than that observed in real-life outbreaks.

After some reflection, it seems self-evident that these results generalize

when comparing small variation in susceptibility versus large variation with

the same average value with perhaps also the same skew. Since final size is

decreased when increasing from 0 variance, and R0 can be manipulated to

yield any final epidemic size, it seems conclusive that a larger spread with

the same average and skew would result in a lower final proportion of total

infections. It could also be easy to determine whether there are any conditions

required on the skewness of the susceptibility distributions being compared.

A comparable claim related to the second observation would state that larger

uniform spreads of susceptibility coe�cients would result in plots more closely

resembling exponential growth in the very early stages of the epidemic than

those produced by smaller uniform spreads.

We return again to investigating the error for increased values of k, and

note that even the L2-error between S(t) determined by using Ball’s analytic

formula and the Gompertz function of best fit was close to 10�3, which suggests

that this value may be a natural ceiling related to this author’s computing

methods and choices of numerical schemes, as well as to current universal

limitations on computational tools.
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2.3.6 k = 10 and Additional Observations

We expand yet again to k = 10, and make observations.

Increasing k from 5 to 10, unfortunately, does not provide us with an

increased accuracy beyond that observed previously. The following figures

show the numerical solution for all variables, with x̄(t) in pea green, and si(0)

for all 1  i  10 located in the bottom quarter of the figure followed by a

plot of S(t) and its best-fit Gompertz function, which visually seems to fit

very closely. The L2-error here is on the order of 10�2, but ignoring only the

first data point and calculating from t � 1 gives us error on the order of 10�3.

This indicates a very close fit and perhaps also indicates close to the best-

possible result for numerical simulations ran in this fashion. The fact that the

number of steps the computer must perform grows quickly as a function of

the number of variables may be a contributing factor to the lack of substantial

improvement for increasingly large k. Whether or not it is feasible to further

improve the accuracy does not dictate whether or not this endeavour has any

utility, and for the time being we may decide to be satisfied with the level of

error produced. As seen at the end of the previous subsection, and hopefully in

the next section, the value of the variable susceptibility model is not limited

to an improvement in closeness-of-fit to an appropriately chosen Gompertz

function. In the final chapter, we examine some theoretical aspects of the

model and display some exciting results.
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Chapter 3

Theoretical Study of the Model

3.1 Theoretical Considerations

Consider once again the model for variable susceptibility SIR with k = 2,

which is in many respects the simplest example of the expanded model, and

is central to our explanation of the findings.

ṡ1(t) = ��x1s1(t)I(t) (3.1)

ṡ2(t) = ��x2s2(t)I(t) (3.2)

S(t) = s1(t) + s2(t) (3.3)

x̄(t) =
x1s1(t) + x2s2(t)

S(t)
(3.4)

İ(t) = �x̄(t)I(t)S(t)� �I(t) (3.5)

To this point in time we are not aware of any closed form functions that

perfectly represent solutions to this set of di↵erential and algebraic equations.

Whether that changes, and whatever the functions are, they are indeed con-

tinuous, which comes from general well-known ODE theory. Note here that
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all of the functions are functions of a single variable, as susceptibility and re-

covery times are parameters, and the representation of groups are the initial

conditions of the model. Since there are a limited number of types of disconti-

nuity for single-variable functions, it can easily be deduced from the equations

and the natural qualities of the dependent variables, that the equations and

their derivatives are continuous. We could deduce smoothness from the equa-

tions themselves and the induction method. The functions that we fit to the

numerical solutions are clearly C1 and are all monotone except for I(t).

Perhaps a more interesting question, one which is potentially related to

the question of whether or not the model fits the phenomena it intends to

describe, is whether or not distinct and fundamentally di↵erent sets of initial

conditions, values of the parameters, and number of groups could generate

100% identical solutions for S(t). We begin with a precise description of the

conditions required for our proof in the negative.

Consider first R0, which is equal to �x̄(0)
� for our model. This means that

it is equal to the product of average initial susceptibility and average recovery

time. Adjusting only �, say, in the positive direction would necessarily result

in lower virus reproductivity and result in a di↵erent function representing

S(t) throughout and especially at endemicity, which would be reached sooner

as well. Adjusting � accordingly, which is the simplest method of recovering

the cumulative total cases before adjusting �, would certainly have the same

net-zero result in the classic SIR model. It is possible to extend these results

to arbitrary values of k:

Since R0 must remain constant in any SIR model, that means that an

equivalent set of DAE can be generated by multiplying both � and � by the

same constant factor which we call m.

We then have:

ṡ1(t) = �m�x1s1(t)I(t) (3.6)

ṡ2(t) = �m�x2s2(t)I(t) (3.7)
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S(t) = s1(t) + s2(t) (3.8)

x̄(t) =
x1s1(t) + x2s2(t)

S(t)
(3.9)

İ(t) = m
⇣
�x1s1(t) + �x2s2(t)

⌘
I(t)�m�I(t) (3.10)

By replacing the last equation with an alternative version based on equa-

tions (3.8) and (3.9), we see that the solution to eqs. (3.6), (3.7) and (3.10) do

not rely on eqs. (3.8) and (3.9) but are the same functions as the solution to

the full set of DAE. eq. (3.10) follows from eqs. (3.8) and (3.9) as:

x̄(t)S(t) =
⇣x1s1(t) + x2s2(t)

S(t)

⌘
S(t) = x1s1(t) + x2s2(t) (3.11)

Multiplying each equation through by m should have little consequence, as

the initial conditions are fixed and each of the first derivatives is simply being

scaled by a constant factor. Since these are ordinary derivatives this can be

characterized as a substitution:

dfi
dt

!
1

m

dfi
dt

(3.12)

for each function fi. This can also be equivalently characterized by the sub-

stitution

t ! mt (3.13)

We state here that for the purposes of proving a one-to-one correspondence,

we ignore the fact that this system is subject to what amounts to arbitrary

horizontal stretches.

With these assumptions, we shall, in the next section, present a proof for

an arbitrary fixed k, and note that the proof does not rely on any of the groups

si(0) being non-empty, and thus could be used as evidence in favour of a claim

that any smooth solution to the above set of DAE is uniquely determined by

the complete set of initial conditions and parameters. We have from eqs. (3.6)
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and (3.7), the following representation of si(t) for arbitrary i.

si(t) = si(0)e
��xi

R t
0 I(⌧) d⌧ (3.14)

From

ṡ1(t) = ��x1s1(t)I(t) (3.15)

Which means

S(t) =
kX

i=1

si(0)e
��xi

R t
0 I(⌧) d⌧ (3.16)

3.2 Uniqueness

We now provide a proof of the injectivity of the following mapping:

⌘ : (�, si(0), xi(0)) ! S(t) (3.17)

Consider now there being two representations of S(t) that are identical

(they agree pointwise for all t). Let us denote them as S(t) and S̃(t). We ex-

tended this notation to the individual susceptibility groups s̃i(t), order them

monotonically by si(0) without loss of generality, and assume that at least one

of them di↵ers from its analogue. We then arrive at a contradiction which

concludes the proof. This proof relies on the smoothness of all of the func-

tions, but there is an alternative proof in the same vein, involving iterated

integration, which relies only on the integrability of these functions. Consider

the following characterization:

S̃(t) =
kX

i=1

s̃i(0)e
��x̃i

R t
0 I(⌧) d⌧ =

kX

i=1

si(0)e
��xi

R t
0 I(⌧) d⌧ = S(t) (3.18)

We make the following substitutions and relabel:
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n := n(t) :=

Z t

0

I(⌧) d⌧, (3.19)

Ci = e��xi , Di = si(0) (3.20)

kX

i=1

D̃iC̃
n
i =

kX

i=1

DiC
n
i (3.21)

Consider the following function:

f(n) :=
kX

i=1

D̃iC̃
n
i �

kX

i=1

DiC
n
i = S̃(t)� S(t) (3.22)

whose smoothness can be concluded from the smoothness of S(t), S̃(t).

This, coupled with the fact that f(n) ⌘ 0 implies

f 0(n) = f 00(n) = f 000(n) = ... = 0 (3.23)

for all n.

Suppose for the sake of contradiction that there is at least one C̃i 6= Ci,

and further assume that C̃1 is unique and has the largest value of all. For the

remainder of the proof, we make assumptions without loss of generality and

without making further explicit mention of such.

Let

ki =
log C̃i

logCi
so that C̃i = Cki

i , and let k1 > max(1,max
i>1

(ki)). (3.24)

We assume also that k1 >
1
ki

for all i.

We know that

f 0(n) =
kX

i=1

D̃iC̃
n
i log C̃i �

kX

i=1

DiC
n
i logCi (3.25)

and in general
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f (j)(n) =
kX

i=1

D̃iC̃
n
i (log C̃i)

j
�

kX

i=1

DiC
n
i (logCi)

j (3.26)

Now, we take the jth derivative of n and take the limit as n approaches 0

from the right.

Which means that

lim
n!0+

f (j)(n) =
kX

i=1

D̃i(log C̃i)
j
�

kX

i=1

Di(logCi)
j = 0 (3.27)

However, we can rewrite the above equation as follows:

lim
n!0+

f (j)(n) =
kX

i=1

D̃ik
j
i (logCi)

j
�

kX

i=1

Di(logCi)
j = 0 (3.28)

Now recall that k1 is the largest of all the ki’s and their reciprocals.

We can rewrite the above equation as follows:

D̃1k
j
1(logC1)

j = D1(logC1)
j
�

X

2ik

D̃ik
j
i (logCi)

j +
X

2ik

Di(logCi)
j (3.29)

However, since we assumed that k1 > max {ki,
1
ki
} for i 6= 1, we know that

the base term on the left hand side of eq. (3.29) is larger than any of the base

terms on the right hand side. The number of terms on the right hand side is

equal to 2k � 1.

We can rewrite eq. (3.29) as

aj =
X

2i2k

ci↵
j
ia

j (3.30)

By letting

a = k1(logC1),↵i =
ki(logCi)

a
for 2  i  k,↵i =

(logCi�k)

a
for k+1  i  2k

(3.31)

and,
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ci 2 {
±D̃i

D̃1

,
±Di�k

D̃1

} (3.32)

Rearranging again, we have

1 =
X

2i2k

ci↵
j
i (3.33)

and by assumption

↵i < 1, 2  i  2k (3.34)

but limn!1 cxn = 0, x < 1, which means the above equation is false when

j is large, representing f (j)(n) for n close to 0.

This means that our assumption that C̃1 > max{Ci} cannot be true, which

means without loss of generality that C̃1 = C1 and therefore k1 = 1.

Further, we can rewrite eq. (3.29) as

D̃1k
j
1(logC1)

j
�D1(logC1)

j = �

X

2ik

D̃ik
j
i (logCi)

j+
X

2ik

Di(logCi)
j (3.35)

and we know that k1 = 1, so we have

(D̃1 �D1)(logC1)
j = �

X

2ik

D̃i(logCi)
j +

X

2ik

Di(logCi)
j (3.36)

then,

(D̃1 �D1) =
X

2ik

(Di � D̃i)
⇣ (logCi)

(logC1)

⌘j
pj (3.37)

Where p 2 {1, ki}, and thus p  1

Also note that (logCi)
(logC1)

< 1

This means that as j approaches infinity, the right hand side approaches

0, and since the left hand side is a constant and this equation must hold for

all j, then D̃1 = D1
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We now rewrite eq. (3.38) after setting the left hand side as 0 and repeat

the argument for the remaining indices:

X

2ik

D̃iC̃
n
i =

X

2ik

DiC
n
i (3.38)

In conclusion, the function ⌘ : (�, sk(0), xk(0)) ! S(t) is one-to-one.

We now illustrate an alternative proof that does not rely on the smoothness

of the solution functions. Consider again the same setup as before:

kX

i=0

s̃i(0)e
��x̃i

R t
0 I(⌧) d⌧ =

kX

i=0

si(0)e
��xi

R t
0 I(⌧) d⌧ (3.39)

Which we relabel:

kX

i=0

D̃iC̃
n
i =

kX

i=0

DiC
n
i (3.40)

We can relax our requirements and claim only that I(t) is almost surely

continuous, which means that

n(t) =

Z t

0

I(⌧)d⌧ (3.41)

is a continuous function, which means that

Z n(T )

0

� kX

i=0

D̃iC̃
n
i �

kX

i=0

DiC
n
i

�
dn ⌘ 0 (3.42)

For time T being the exit phase of the epidemic.

The last equality must be true as the integrand itself is identically equal

to 0.

However the left hand side of eq. (3.42) is also equal to

� kX

i=0

D̃i

log C̃i

C̃n
i �

kX

i=0

Di

logCi
Cn

i

�
⌘ 0 (3.43)

Which by the same logic means that
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� kX

i=0

D̃i

(log C̃i)2
C̃n

i �

kX

i=0

Di

(logCi)2
Cn

i

�
=

Z n(T )

0

� kX

i=0

D̃i

log C̃i

C̃n
i �

kX

i=0

Di

logCi
Cn

i

�
⌘ 0

(3.44)

and in general, after m integrations we have:

� kX

i=0

D̃i

(log C̃i)m
C̃n

i �

kX

i=0

Di

(logCi)m
Cn

i

�
⌘ 0 (3.45)

for all m.

However, we again assume that there is an extreme nonzero value, this

time a minimum value, say, (log C̃1) := k̃1 which is smaller than (logC1) and

smaller than all other (log C̃i).

We can rewrite eq. (3.45) as follows:

� D̃1

(k̃1)m
C̃n

1 +
kX

i=2

D̃i

(log C̃i)m
C̃n

i �

kX

i=1

Di

(logCi)m
Cn

i

�
⌘ 0 (3.46)

and by assumption, k̃1
logCi

< 1 and k̃1
log C̃i

< 1 for i 6= 1

Allowing m to increase in magnitude (taking the limit as m approaches

infinity) and multiplying through by (k̃1)m we obtain:

D̃1C̃
n
1 ⌘ 0, 0  n  n(T ) (3.47)

This implies that C1 = 0, which violates our assumptions. Therefore all

Ci and C̃i’s are equivalent, up to a reordering of the indices. Since this must

hold for all n in an interval which includes 0, we know that the same is true

for the Di’s and our proof is complete. As in the original proof, the existence

of an exact correspondence between Ci and C̃i for all i comes from repeating

the process i times.

These results seem consequential in the search for a more accurate method

of predicting epidemic behaviour. To the extent to which historical epidemic

data follows the unknown solution to the mathematical model, one can at least

make the assumption that any given historical course of epidemic behaviour is
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a result of a small range of possible susceptibility landscapes, with R0 = �x̄(0)

being completely determined by the proportion of infectives at the end of the

epidemic’s life up to the level accuracy and precision of this proportion.

It is unfortunate that to this point in time, e↵orts to justify Gompertz

functions as a class of exact solutions to the variable susceptibility SIR model

have fallen short. Perhaps even more unfortunate is that we are not aware

whether this justification is possible or not. What is clear from the findings

here is that a well-suited Gompertz function is often very close to the solution

to the theoretical model, and bridging this gap may be the key to predicting

long-term epidemic behaviour from initial data. The combination of this close-

ness along with the uniqueness of initial conditions and parameters required

for an exact fit gives case for hope. In the final section of this chapter, we

explore an algorithm that can be used to retrieve the initial conditions for

susceptibilities and their relative representation in groups. We illustrate the

algorithm using k = 2 for simplicity and discuss its possibilities as well as its

limitations.
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3.3 The Algorithm

We now examine an algorithm, that, under certain conditions, could retrieve

the initial susceptibility scheme of susceptibilities as well as the representation

of each group. We hypothesize that the fit to the historical data by the Gom-

pertz function is an adequate approximation to the exact shape and scale of

the data which it fits and likewise that the result achieved by the algorithm is

an adequate approximation to the true spread of susceptibilities, which other-

wise seems hopeless to measure. Without marrying the algorithm to tangible

data we claim that any numerical method that can solve the algorithm can

retrieve the same initial conditions that generate the data, up to the grand

result of the numerical error combined with the error in approximating the un-

known solution functions with Gompertz functions, which presumably would

be a small range in possible values of �xi and si(0) for each 1  i  k.

We discuss the algorithm and its possibilities, followed by its current limi-

tations, after introducing a claim which forms the basis of our argument. We

also ignore the discrepancy between the numerical solutions to the system of

DAE and the Gompertz function fits and assume their equality to form the

basis of the algorithm. Python’s symbolic math package SymPy provides ease

of calculation.

Theorem 3.1 If I(0), S(0), X(0) are known, then so are I 0(0), I 00(0), ... S 0(0), S 00(0), ...

X 0(0), X 00(0), ...

Proof 3.1 Consider the following subset of equations that generate S(t):

ṡk = ��xkskI (3.48)

İ = �XIS � �I (3.49)

We also assume

S(0) = 1� S1e�eb =
kX

i=0

si(0) := D0 (3.50)
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S 0(0) = �aS1e�eb =
kX

i=0

�xisi(0)I(0) := D1 (3.51)

S 00(0) = a2(1� eb)S1e�eb =
kX

i=0

��xisi(0)I
0(0) + (�xi)

2I2(0) := D2 (3.52)

... (3.53)

and

x̄(t) =
kX

i=0

xisi(t) (3.54)

which means

d

dt
x̄(t) =

kX

i=0

xi
d

dt
si(t) =

kX

i=0

�(�xi)
2si(t)I(t) (3.55)

but,

I(0) = 1� S(0) = 1�D0 (3.56)

and, based on equation eq. (3.49)

I 0(0) = (�X(0)S(0)� �)I(0) (3.57)

Where each term in the above equation is known, including X(0) as

X(0) =
kX

i=0

��xisi(0) =
D1

I(0)
(3.58)

I 00(0) = �(X 0(0)S(0)I(0) +X(0)S 0(0)I(0) +X(0)S(0)I 0(0))� �I 0(t) (3.59)

In general:
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I(j)(0) = F (I(0), S(0), X(0), I 0(0), S 0(0), X 0(0), ...I(j�1)(0), S(j�1)(0), X(j�1)(0))

(3.60)

S(j)(0) = F (I(0), S(0), X(0), I 0(0), S 0(0), X 0(0), ...I(j�1)(0), S(j�1)(0), X(j�1)(0))

(3.61)

X(j)(0) = F (I(0), S(0), X(0), I 0(0), S 0(0), X 0(0), ...I(j�1)(0), S(j�1)(0), X(j�1)(0))

(3.62)

and since I(0), X(0), S(0) are all known, all of their derivatives are known

by the principle of strong induction. ⇤

Theorem 3.2 S(0), S 0(0), S 00(0), ... generates a system of nonlinear equations

with 2k variables with an invertible Jacobian

Proof 3.2 Recall:

S(0) = 1� S1e�eb =
kX

i=0

si(0) := D0 := E0 (3.63)

S 0(0) = �aS1e�eb =
kX

i=0

��xisi(0)I(0) := D1 := E1 (3.64)

S 00(0) = �aebS1e�eb =
kX

i=0

��xisi(0)I
0(0) + (�xi)

2I2(0) := D2 (3.65)

Let

kX

i=0

(�xi)
2I2(0) = �

I 0(0)

I(0)
D1 +D2 := E2 (3.66)

and in general, we have an infinite system of equations, one for each deriva-

tive of S(t) evaluated at 0. We can rewrite these equations as:
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f1(s1(0), ...sk(0), �x1, ...�xk),.. f2k(s1(0), ...sk(0), �x1, ...�xk) Where each

fi is equal to Ei � Ei = 0

We have the following vector F representing the set of equations f :

2

666666666664

s1(0) + ...+ sk(0)� E0

s1(0)�x1I(0) + ...+ sk(0)�xkI(0)� E1

s1(0)(�x1)2I2(0) + ...+ sk(0)(�xk)2I2(0)� E2

.

.

.

s1(0)(�x1)2kI2k(0) + ...+ sk(0)(�xk)2kI2k(0)� E2k

3

777777777775

and its Jacobian:

2

666666666664

1 ... 1 0 ... 0

�x1I(0) ... �xkI(0) s1(0) ... sk(0)

(�x1I(0))2 ... (�xkI(0))2 2�x1I(0)s1(0) ... 2�xkI(0)sk(0)

. . . . . .

. . . . . .

. . . . . .

(�x1I(0))2k ... (�xkI(0))2k 2k(�x1I(0))2k�1s1(0) ... 2k(�xkI(0))2k�1sk(0)

3

777777777775

This system can generally be solved numerically using newton’s method or

other appropriate numerical methods. One should take note that two identical

values of xi and xj with i 6= j which could yield an uninvertible Jacobian

would call for a regrouping. This is due to the fact that susceptibility groups

si, sj with the same susceptibility xi, xj should be considered parts of a larger

susceptibility group. We conclude this section with a short example of the

algorithm for k = 2. We take a trivially modified version of the above system

of equations by replacing E2 with D2.

We now show the following system of equations extrapolated from our

system of DAEs evaluated at t = 0:
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2

66664

s1(0) + ...+ sk(0)�D0

�s1(0)�x1I(0)� s2(0)�x2I(0)�D1

s1(0)(�x1)2I2(0)� s1(0)�x1I(0)I 0(0) + s2(0)(�x2)2I2(0)� s2(0)�x2I(0)I 0(0)�D2

�s1(0)(��x1)3I3(0)� ... ...� s2(0)�x2I(0)I 0(0)I 000(0)�D3.

3

77775

For testing purposes, the following initial conditions produced a plot of

S(t). Note that the initial conditions take the form of the above representation,

which can be calculated from the given values of si(0), �xi(0). It is of no

consequence that they are in their usual form when inputted into the DAE

solver.

D0 = S(0) = 0.95, D1 = �0.00926192516980103, D2 = �0.03352400468827454, D3 =

0.03257776930443156

These values, when applied to a numerical solver, can produce a vector

which we denote p that lists the variables in the following order for k = 2:

(s1(0), s2(0), �x1, �x2) The values corresponding to the above values of Di are:

(s1(0), s2(0), �x1, �x2) = (0.5828, 0.3672, 0.1463, 0.2764)

Unfortunately when applying the algorithm to values of Di generated only

by S(0) and I(0), where their derivatives are calculated using the techniques

illustrated earlier in the section, we get very di↵erent values for the above

vector, which are not listed here, and yield the following results:

(s1(0), s2(0), �x1, �x2) = (�4.806 ⇤ 10�11, 0.9500,�2.1957 ⇤ 105, 0.1950)

This is unfortunate as the algorithm puts the entire population into one

susceptibility group. It seems that this problem is caused by the discrepancy

between the vector produced by evaluating the derivatives of the Gompertz

functions modelling and representing I(t) and S(t) and the vector produced

by the true values used to generate the numerical data. At this time the result

of this discrepancy is a solution which (e↵ectively) does not take into account

the existence of more than one susceptibility group. Finding a way to bridge

this gap could be the key to producing an e↵ective forecasting algorithm that

necessitates only early data, if such a thing is possible.

For now we present psuedosolutions based on a modification to the calcula-

tion techniques that uses both known and calculated values. We calculate the
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initial value of vectors based on finite di↵erence coe�cients for I(0), I 0(0)... and

therefore S(0), S 0(0)... by combining them with the original values of the ini-

tial susceptibility conditions in the equations listed in the vector. The known

values

0.95,�0.00926192516980103,�0.03352400468827454, 0.03257776930443156

versus the psuedosolutions’ input values:

0.9500000000,�0.009333572087,�0.03177985912, 0.005279331335

Produces the two sets of initial conditions, the first of which was used to

generate the data representing (s1(0), s2(0), �x1�x2)

0.582815832789, 0.367184167210, 0.146250000005, 0.276250000008

0.58281583278, 0.367184167210, 0.146250000005, 0.276250000008

The fit is exact to 10 decimal places.

Attempts at solving these equations for higher values of k and/or without

resorting to using initial values the algorithm was designed to find would be

contingent on finding a pattern and a way of reconciling the di↵erence between

the true initial susceptibility scheme and that generated by the data. Alas,

the place of most disagreement between the solution to the DAE and the

Gompertz function fit is at t = 0.

3.4 Future Directions

Though these attempts at finding a nonparametric closed-form solution to the

variable susceptibility SIR model fell short, this author hopes that these dis-

coveries lay the groundwork for more precise and useful epidemic models. The

variable susceptibility model adds another dimension to the previous best-

available model, and the dimension of heterogenous susceptibility (or alterna-

tively, immunity) seems like it would be an integral factor in the true-to-life

dynamics of individual outbreaks, the intricacies of which we can never fully

decipher. Indeed, universal homogenous susceptibility seems unable to ac-

count for the wide variety in global epidemic behaviour, even when adjusting

for countless other factors such as vaccines, contact behaviour, and population

density. Immunity has, in recent centuries, been thought to be a complex, dy-

namic process influenced by a wide range of factors. If susceptibility, as well
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as transmissivity (which can generally be absorbed into one category in the

model) is the driving force behind the large observed variance in epidemic

outcome, then these results give us promise for the future.

The literature provides evidence that epidemic data follows Gompertz func-

tion behaviour closely, as do the numerical results of the model. Though

early-stage epidemic behaviour is the most di↵erent from Gompertz function

behaviour, an obvious key to predicting future outbreaks would be a pattern

in the relationship between the early-stage behaviour of an epidemic and the

grand total of epidemic behaviour from outbreak to extinction or into endemic-

ity. This could be explored numerically if nothing else.

The algorithm provided would work in an ideal world where models cap-

tured phenomenon completely. Due to the complex nature of epidemics and

the natural world in general, this is too much to hope for. If the relation-

ship between the Gompertz function fits and the initial conditions and early

behaviour that generated it can be decoded, then early behaviour could be

enough to predict the course of the epidemic, which is always the goal. In this

author’s and many other’s opinion, there is much room for improvement in our

best available models. It is incumbent on us as a species to work together to

come to an understanding of the true nature of things, while many expected

and unexpected stumbling blocks line our paths. We will never comprehend

the butterfly e↵ect of good people working together to conquer the challenges

to our livelihoods and survival, but nobody can deny what kind of a di↵erent

world we would have without that. It is this author’s sincere hope that the

results herein provide a starting point for a new approach to epidemic mod-

elling. Much disagreement has resulted from di↵ering opinions on pandemic

management in recent years. Division is only necessary until there is a resolu-

tion, and with the stakes of an epidemic outbreak, we must pay the piper and

put in the work to find ways to predict the paths of these diseases, or have

the correct response be a mere afterthought after the crisis has had its lasting

e↵ects.
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Chapter 4

Appendix

4.1 Appendix A: Characterization of x̄(t)

Here we provide detailed steps leading to the following characterization of x̄(t):

x̄(t) =
e(��a)t( 1S � 1)

C � � e�b

a

R t

0 e
�⌧ Ṡ d⌧

(4.1)

C = (
1

S(0)
� 1) ⌧ 1 (4.2)

Recall

ṡi = ��xisiI (4.3)

İ = �x̄IS � �I (4.4)

S(t) =
kX

i=1

si(t) (4.5)

x̄(t) =
(
Pk

i=1 xisi(t))

(
Pk

i=1 si(t))
(4.6)

Given this system, and the assumption that the solution is closely approxi-

mated by the equation S(t) = 1� S1ee
b�at

, we combine the two and proceed

as follows.

1� S(t) = S1e�eb�at
(4.7)
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And also, from Equation 4.4

I(t) = I(0)e
R t
0 �Sx�� d⌧ (4.8)

and from this and Equation 4.3

Ṡ = ��x̄I0e
R t
0 �Sx̄�� d⌧S (4.9)

Whereas from Equation 4.7 we obtain

Ṡ = �ae�eb�at
(
1

S
� 1)S (4.10)

Therefore

ae�eb�at
(
1

S
� 1)S = �x̄I0e

R t
0 �Sx̄�� d⌧S (4.11)

Which implies

aeb�at(
1

S
� 1) = �x̄I0e

R t
0 �Sx̄�� d⌧ (4.12)

Taking the natural log of both sides we obtain

log a� at+ b+ log(
1

S
� 1) = log �I0 + log x̄+

Z t

0

�Sx̄� � d⌧ (4.13)

Taking the derivative with respect to t of both sides

� a+
1

1
S � 1

�Ṡ

S2
=

˙̄x

x̄
+ �x̄S � � (4.14)

or

� a�
Ṡ

S � S2
=

˙̄x

x̄
+ �x̄S � � (4.15)

Rearranging

˙̄x

x̄
= (� � a)�

Ṡ

S � S2
� �x̄S (4.16)

˙̄x

x̄2
=

1

x̄

 
(� � a)�

Ṡ

S � S2

!
� �S (4.17)
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Let y = 1
x̄ ! ẏ = �

˙̄x
x̄2

� ẏ = y

 
(� � a)�

Ṡ

S � S2

!
� �S (4.18)

ẏ + y

 
(� � a)�

Ṡ

S � S2

!
= �S (4.19)

This is a linear first order ODE with �S = q(t), � � a �
Ṡ

S�S2 = p(t), with

integrating factor µ(t) as follows.

µ(t) = e
R t
0 (��a)� Ṡ

S�S2 ,d⌧ (4.20)

µ(t) = e(��a)t+log( 1
S�1) (4.21)

= (
1

S
� 1)e(��a)t (4.22)

we obtain that

µ(t)y � C = �

Z t

0

e(��a)⌧ (
1

S
� 1)Sd⌧ (4.23)

µ(t)y � C = ��
e�b

a

Z t

0

�ae(�⌧)e(�a⌧+b)(1� S)d⌧ (4.24)

Note from Equation 4.7 we have

Ṡ = (1� S)eb�at (4.25)

Therefore,

µ(t)y = ��
e�b

a

Z t

0

e(�⌧)Ṡd⌧ + C (4.26)

µ(t)
1

x̄
= ��

e�b

a

Z t

0

e(�⌧)Ṡd⌧ + C (4.27)

Finally

x̄(t) =
e(��a)t( 1S � 1)

C � � e�b

a

R t

0 e
�⌧ Ṡ d⌧

(4.28)
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And, substituting initial conditions, which produces numerous simplifications

at t = 0, we have that

C = (
1

S(0)
� 1) ⌧ 1 (4.29)

4.2 Appendix B: Computer Codes

All of the calculations that required numerical solutions to our systems of DAE

utilized Python’s Julia package “Di↵erentialEquations.jl” [41] to solve this and

modified systems of ODE corresponding to the SIR model using a step method.

When fitting our results to Gompertz functions, we used Python’s SciPy curve

fit package. The package has a default method (forward-di↵erence, backward-

di↵erence, netwon, etc.) corresponding to each type of equation or system,

but can e↵ortlessly be coded to be solved by di↵erent numerical methods, and

these generally produce very similar results. Logic dictates that the default

methods are considered to be best for each corresponding type of system.

For contrast, we display the code required to run the solver for a system

of ODE for k = 1, versus a system of DAE for k = 5, which has at least one

algebraic (non-di↵erential) equation, which is always the case for k � 2. The

last part of code displayed here includes an invocation of SciPy curve fit which

finds best-possible fits from a given arbitrary function to data points along

with code that calculates the L2 error and plots the solution along with its

curve-fitted approximation.

#k=1

b=1.5

#For now the program f i x e s ”b”

B = 0.325

N = 810

G = 0.13

S=0

x1=1⇤random . uniform ( low=0.5 , high =2.5 , s i z e=None )

y1=1
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def f (u , p , t ) :

x , y = u

return [�B⇤x1⇤x⇤y , B⇤x1⇤x⇤y�G⇤y ]

u0 = [800/N, 10/N]

tspan = (0 . 0 , 140 . 0 )

prob = de .ODEProblem( f , u0 , tspan )

s o l = de . s o l v e ( prob )

#k=5

x1=[0.09153548390291504 , 0 .21150608966123877 , 2 .68604797033284 , 1 .0305976694578645 , 2 .768285999426187 ]

y1=[0.18632752 , 0 .25007464 , 0 .08836813 , 0 .2664609 , 0 .20876882 ]

for i in range ( 0 , 5 ) :

y1 [ i ]=0.95⇤ y1 [ i ]

#Randomizes v e c t o r s x and s independen t l y each time the program runs .

B = 0.325

N = 810

G = 0.13

#Convenient va l u e s o f Beta , N, and Gamma. The system i s normal ized

def f (du , u , p , t ) :

r e s i d 1 = � B⇤x1 [ 0 ] ⇤ u [ 5 ] ⇤ u [ 0 ] � du [ 0 ]

r e s i d 2 = � B⇤x1 [ 1 ] ⇤ u [ 5 ] ⇤ u [ 1 ] � du [ 1 ]

r e s i d 3 = � B⇤x1 [ 2 ] ⇤ u [ 5 ] ⇤ u [ 2 ] � du [ 2 ]

r e s i d 4 = � B⇤x1 [ 3 ] ⇤ u [ 5 ] ⇤ u [ 3 ] � du [ 3 ]

r e s i d 5 = � B⇤x1 [ 4 ] ⇤ u [ 5 ] ⇤ u [ 4 ] � du [ 4 ]

r e s i d 6 = B⇤u [ 6 ] ⇤ u [ 7 ] ⇤ u[5]�G⇤u [ 5 ] � du [ 5 ]

r e s i d 7= u [1 ]+u [2 ]+u [3 ]+u [4 ]+u[0]�u [ 6 ]

r e s i d 8= ( x1 [ 0 ] ⇤ u [0 ]+ x1 [ 1 ] ⇤ u [1 ]+ x1 [ 2 ] ⇤ u [2 ]+ x1 [ 3 ] ⇤ u [3 ]+ x1 [ 4 ] ⇤ u [ 4 ] ) / u [6]�u [ 7 ]
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r e s i d 9= G⇤u [ 5 ] � du [ 8 ]

return [ r e s id1 , r e s id2 , r e s id3 , r e s id4 , r e s id5 , r e s id6 , r e s id7 , r e s id8 , r e s i d 9 ]

#I n i t i a l c ond i t i on s f o r R( t ) have changed to be in l i n e wi th the p h y s i c a l i n t u i t i o n here .

u0 = [ y1 [ 0 ] , y1 [ 1 ] , y1 [ 2 ] , y1 [ 3 ] , y1 [ 4 ] , 10/N, 800/N, 0 . 7 , 0 . 0 0 ]

du0 = [�y1 [ 0 ] /N, �y1 [ 1 ] /N, �y1 [ 2 ] /N, �y1 [ 3 ] /N, �y1 [ 4 ] /N, 2/N, �0.16 , �1/140 , 0 . 0 0 ]

tspan = ( 0 . 0 , 1 4 0 . 0 )

d i f f e r e n t i a l v a r s = [ True , True , True , True , True , True , False , False , True ]

prob = de .DAEProblem( f , du0 , u0 , tspan , d i f f e r e n t i a l v a r s=d i f f e r e n t i a l v a r s )

s o l = de . s o l v e ( prob )

u10 = [ s o l . u [ i ] [ 6 ] for i in range (0 , len ( s o l . u ) ) ]

p l t . p l o t ( s o l . t , u10 )

p l t . show ( )

def func ( z , a1 , d , Q) :

return Q⇤np . exp(�np . exp (d�c⇤z ) )

xdata = np . l i n s p a c e (0 , 138 , 139)

h=[ ]

for i in range (0 , 139 ) :

h . append (0)

for i in range ( 0 , 1 3 9 ) :

h [ i ]= s o l ( i ) [ 8 ]

y = func ( xdata , a , b , S )

ydata= h

#p l t . p l o t ( xdata , ydata , ’ b� ’ , l a b e l =’data ’ )

popt , pcov = c u r v e f i t ( func , xdata , ydata )

popt

Lone=0

for i in range (0 , 138 ) :

Lone+=(func ( xdata , ⇤popt ) [ i ]�h [ i ] )⇤⇤2
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Ltwo=math . s q r t ( Lone )

h=[ ]

for i in range (0 , 139 ) :

h . append (0)

for i in range ( 0 , 1 3 9 ) :

h [ i ]= s o l ( i ) [ 8 ]

p l t . p l o t ( xdata , func ( xdata , ⇤popt ) , ’ g ’ )

p l t . p l o t ( xdata , h , ’ r ’ )

p l t . s a v e f i g ( ’ ⇤⇤⇤⇤⇤ ’ )

p l t . show ( )
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We also here display the code used to generate the 2k ⇥ 2k matrix from

the algorithm. By using Python’s ”SymPy” symbolic math package, matrices

of arbitrary size can be generated and solving attempts can be made using

newton’s method with a fairly short, simple python program. It is this au-

thor’s opinion that the code can be condensed and streamlined even further if

necessary for large k. This example is for k = 5.

s1 , s2 , s3 , s4 , s5 = symbols ( ’ s1 s2 s3 s4 s5 ’ , c l s=Function )

k1 , k2 , k3 , k4 , k5 = symbols ( ’ k1 k2 k3 k4 k5 ’ )

r1 , r2 , r3 , r4 , r5 = symbols ( ’ r1 r2 r3 r4 r5 ’ )

g = symbols ( ’ g ’ , c l s=Function )

s1=r1 ⇤sympy . exp(�k1⇤g ( t ) )

s2=r2 ⇤sympy . exp(�k2⇤g ( t ) )

s3=r3 ⇤sympy . exp(�k3⇤g ( t ) )

s4=r4 ⇤sympy . exp(�k4⇤g ( t ) )

s5=r5 ⇤sympy . exp(�k5⇤g ( t ) )

s = symbols ( ’ s ’ , c l s=Function )

s=s1+s2+s3+s4+s5

f0 , f1 , f2 , f3 , f4 , f5 , f6 , f7 , f8 , f 9 =

symbols ( ’ f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 ’ , c l s=Function )

f 0=s

f1=f0 . d i f f ( t )
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f 2=f1 . d i f f ( t )

f 3=f2 . d i f f ( t )

f 4=f3 . d i f f ( t )

f 5=f4 . d i f f ( t )

f 6=f5 . d i f f ( t )

f 7=f6 . d i f f ( t )

f 8=f7 . d i f f ( t )

f 9=f8 . d i f f ( t )

E=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 = symbols ( ’ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ’ )

print ( ”TEST” )

E[0 ]= f0 . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) , ( k1 , x6 ) ,

( k2 , x7 ) , ( k3 , x8 ) , ( k4 , x9 ) , ( k5 , x10 ) , ( ( Der i va t i v e ( g ( t ) , t ) ) , C [ 0 ] ) , ( g ( 0 ) , 0 ) ] )

E[1 ]= f1 . subs ( Der iva t i ve ( g ( t ) , t ) , C [ 0 ] )

E[1 ]=E [ 1 ] . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) , ( k1 , x6 ) ,

( k2 , x7 ) , ( k3 , x8 ) , ( k4 , x9 ) , ( k5 , x10 ) , ( g ( 0 ) , 0 ) ] )

E[2 ]= f2 . subs ( [ ( Der iva t i v e ( g ( t ) , ( t , 2 ) ) , C [ 1 ] ) , ( Der i va t i ve ( g ( t ) , t ) , C [ 0 ] ) ] )

E[2 ]= E [ 2 ] . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) , ( k1 , x6 ) ,
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( k2 , x7 ) , ( k3 , x8 ) , ( k4 , x9 ) , ( k5 , x10 ) , ( g ( 0 ) , 0 ) ] )

E[3 ]= f3 . subs ( [ ( Der iva t i v e ( g ( t ) , ( t , 3 ) ) , C [ 2 ] ) , ( Der i va t i ve ( g ( t ) , ( t , 2 ) ) , C [ 1 ] ) ,

( Der iva t i v e ( g ( t ) , t ) , C [ 0 ] ) ] )

E[3 ]=E [ 3 ] . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) , ( k1 , x6 ) ,

( k2 , x7 ) , ( k3 , x8 ) , ( k4 , x9 ) , ( k5 , x10 ) , ( g ( 0 ) , 0 ) ] )

E[4 ]= f4 . subs ( [ ( Der iva t i v e ( g ( t ) , ( t , 11 ) ) , C[ 1 0 ] ) , ( Der iva t i ve ( g ( t ) , ( t , 10 ) ) , C [ 9 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 9 ) ) , C [ 8 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 8 ) ) , C [ 7 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 7 ) ) , C [ 6 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 6 ) ) , C [ 5 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 5 ) ) , C [ 4 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 4 ) ) , C [ 3 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 3 ) ) , C [ 2 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 2 ) ) , C [ 1 ] ) ,

( Der iva t i v e ( g ( t ) , t ) , C [ 0 ] ) ] )

E[4 ]=E [ 4 ] . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) ,

( k1 , x6 ) , ( k2 , x7 ) , ( k3 , x8 ) , ( k4 , x9 ) , ( k5 , x10 ) , ( g ( 0 ) , 0 ) ] )

E[5 ]= f5 . subs ( [ ( Der iva t i v e ( g ( t ) , ( t , 11 ) ) , C[ 1 0 ] ) , ( Der iva t i ve ( g ( t ) , ( t , 10 ) ) , C [ 9 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 9 ) ) , C [ 8 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 8 ) ) , C [ 7 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 7 ) ) , C [ 6 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 6 ) ) , C [ 5 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 5 ) ) , C [ 4 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 4 ) ) , C [ 3 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 3 ) ) , C [ 2 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 2 ) ) , C [ 1 ] ) ,

( Der iva t i v e ( g ( t ) , t ) , C [ 0 ] ) ] )

E[5 ]=E [ 5 ] . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) , ( k1 , x6 ) , ( k2 , x7 ) ,

( k3 , x8 ) , ( k4 , x9 ) , ( k5 , x10 ) , ( g ( 0 ) , 0 ) ] )

E[6 ]= f6 . subs ( [ ( Der iva t i v e ( g ( t ) , ( t , 11 ) ) , C[ 1 0 ] ) , ( Der iva t i ve ( g ( t ) , ( t , 10 ) ) , C [ 9 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 9 ) ) , C [ 8 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 8 ) ) , C [ 7 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 7 ) ) , C [ 6 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 6 ) ) , C [ 5 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 5 ) ) , C [ 4 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 4 ) ) , C [ 3 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 3 ) ) , C [ 2 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 2 ) ) , C [ 1 ] ) ,

( Der iva t i v e ( g ( t ) , t ) , C [ 0 ] ) ] )

E[6 ]=E [ 6 ] . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) , ( k1 , x6 ) , ( k2 , x7 ) , ( k3 , x8 ) ,

( k4 , x9 ) , ( k5 , x10 ) , ( g ( 0 ) , 0 ) ] )

E[7 ]= f7 . subs ( [ ( Der iva t i v e ( g ( t ) , ( t , 11 ) ) , C[ 1 0 ] ) , ( Der iva t i ve ( g ( t ) , ( t , 10 ) ) , C [ 9 ] ) ,
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( Der iva t i v e ( g ( t ) , ( t , 9 ) ) , C [ 8 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 8 ) ) , C [ 7 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 7 ) ) , C [ 6 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 6 ) ) , C [ 5 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 5 ) ) , C [ 4 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 4 ) ) , C [ 3 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 3 ) ) , C [ 2 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 2 ) ) , C [ 1 ] ) ,

( Der iva t i v e ( g ( t ) , t ) , C [ 0 ] ) ] )

E[7 ]=E [ 7 ] . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) , ( k1 , x6 ) , ( k2 , x7 ) ,

( k3 , x8 ) , ( k4 , x9 ) , ( k5 , x10 ) , ( g ( 0 ) , 0 ) ] )

E[8 ]= f8 . subs ( [ ( Der iva t i v e ( g ( t ) , ( t , 11 ) ) , C[ 1 0 ] ) , ( Der i va t i ve ( g ( t ) , ( t , 10 ) ) , C [ 9 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 9 ) ) , C [ 8 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 8 ) ) , C [ 7 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 7 ) ) , C [ 6 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 6 ) ) , C [ 5 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 5 ) ) , C [ 4 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 4 ) ) , C [ 3 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 3 ) ) , C [ 2 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 2 ) ) , C [ 1 ] ) ,

( Der iva t i v e ( g ( t ) , t ) , C [ 0 ] ) ] )

E[8 ]=E [ 8 ] . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) , ( k1 , x6 ) , ( k2 , x7 ) ,

( k3 , x8 ) , ( k4 , x9 ) , ( k5 , x10 ) , ( g ( 0 ) , 0 ) ] )

E[9 ]= f9 . subs ( [ ( Der iva t i v e ( g ( t ) , ( t , 11 ) ) , C[ 1 0 ] ) , ( Der iva t i ve ( g ( t ) , ( t , 10 ) ) , C [ 9 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 9 ) ) , C [ 8 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 8 ) ) , C [ 7 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 7 ) ) , C [ 6 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 6 ) ) , C [ 5 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 5 ) ) , C [ 4 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 4 ) ) , C [ 3 ] ) ,

( Der iva t i v e ( g ( t ) , ( t , 3 ) ) , C [ 2 ] ) , ( Der iva t i v e ( g ( t ) , ( t , 2 ) ) , C [ 1 ] ) ,

( Der iva t i v e ( g ( t ) , t ) , C [ 0 ] ) ] )

E[9 ]=E [ 9 ] . subs ( [ ( t , 0 ) , ( r1 , x1 ) , ( r2 , x2 ) , ( r3 , x3 ) , ( r4 , x4 ) , ( r5 , x5 ) , ( k1 , x6 ) , ( k2 , x7 ) ,

( k3 , x8 ) , ( k4 , x9 ) , ( k5 , x10 ) , ( g ( 0 ) , 0 ) ] )

for i in range ( 0 , 1 0 ) :

E [ i ]=E[ i ]�D[ i ]

Y = Matrix ( [ x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 ] )

F = Matrix (E)
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Ja=F. jacob ian (Y)

F=func t i on ( ’F ’ ) ( x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 )

#H=hess ian (F, ( x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 ) )

z =[0 .03 , 0 . 08 , 0 . 15 , 0 . 25 , 0 . 25 , 0 . 02 , 0 . 45 , 0 . 5 5 , 0 . 0 2 5 , 0 . 2 0 5 ]

p=z

G=F. subs ( [ ( x1 , z [ 0 ] ) , ( x2 , z [ 1 ] ) , ( x3 , z [ 2 ] ) , ( x4 , z [ 3 ] ) , ( x5 , z [ 4 ] ) , ( x6 , z [ 5 ] ) ,

( x7 , z [ 6 ] ) , ( x8 , z [ 7 ] ) , ( x9 , z [ 8 ] ) , ( x10 , z [ 9 ] ) ] )

J=Ja . subs ( [ ( x1 , z [ 0 ] ) , ( x2 , z [ 1 ] ) , ( x3 , z [ 2 ] ) , ( x4 , z [ 3 ] ) , ( x5 , z [ 4 ] ) , ( x6 , z [ 5 ] ) ,

( x7 , z [ 6 ] ) , ( x8 , z [ 7 ] ) , ( x9 , z [ 8 ] ) , ( x10 , z [ 9 ] ) ] )

K=J . inv ( )

L=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

for i in range ( 0 , 1 0 0 ) :

print ( ”Running at : ” +str ( i ) )

J=Ja . subs ( [ ( x1 , p [ 0 ] ) , ( x2 , p [ 1 ] ) , ( x3 , p [ 2 ] ) , ( x4 , p [ 3 ] ) , ( x5 , p [ 4 ] ) , ( x6 , p [ 5 ] ) ,

( x7 , p [ 6 ] ) , ( x8 , p [ 7 ] ) , ( x9 , p [ 8 ] ) , ( x10 , p [ 9 ] ) ] )

G=F. subs ( [ ( x1 , p [ 0 ] ) , ( x2 , p [ 1 ] ) , ( x3 , p [ 2 ] ) , ( x4 , p [ 3 ] ) , ( x5 , p [ 4 ] ) , ( x6 , p [ 5 ] ) ,

( x7 , p [ 6 ] ) , ( x8 , p [ 7 ] ) , ( x9 , p [ 8 ] ) , ( x10 , p [ 9 ] ) ] )

K=J . inv ( )

L=K⇤G

for j in range ( 0 , 1 0 ) :

p [ j ]=p [ j ]�L [ j ]
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