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ABSTRACT

The purpose cf this thesis is to examine current
sorting teckniques and consider how information can be used
to increase their efficiency. A survey and classification of
sorting algorithms is presented. Formal analysis criteria
are applied to the algorithnms, tﬁereby obtaining relative
efficiencies. The efficiency of algorithms as applied to
partially sorted data or data containing redundant items is
discussed. Also considered are means for utilizing kﬁown
information about the data to increase sorting efficiency.
In addition, it is shown that the theoretical lower bound on
the number of comparisons required to sort a list containing
redundancies is less than that for the same number of

elements, but without redundancies.
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Chapter 1

Introduction

The purpose of sorting is to lend organization to a
data base so that it is easy to extract the desired
information, mechanically or visually. The great variety in
data bases and in the orgaﬂization required warrants the
development of many approaches to sorting. Generally, these
algorithms were designed under the assunption that there is
no known information about the data base. However, for many
sorting applications there is some such information
available and it seems reasonable that, by making use of it,
more efficient sortin§ can be achieved. The gquestions of
interest, then, are what forms this informatioﬁ can take and
how current techniques can be modified to gain more
efficient sorting. To date, there has been very little
published which concerns the problem of the use of

information in sorting.

Before discussing individual sorting techniques, a
number of terms which will be used throughout will be
defined. Given a vector X of order N and a function K
defined on each component, the problem of sorting is to

deternine the permuted vector Y such that [10]



K(Y (i+1)) 2 K(¥()), (i=1,2,...,N-1). The vector Y is said
to be in ascending order on the key K. A descending order

sort can be defined similarly.

The terms data items and items are used synocnomously

and indicate components of the vector to be sorted. The
terms data item value and key value both refer to the vaiue
of the key function for a component of the input vector. A
set of items is unique if their key values are all different
and any two items are equivalent if their key values are the
same. An item is a duplicate of another item if the two
items are equivalent. N will be used to specify the number
of items to be sorted. Whenever a log is used without
specifying the base, it will mean base two. The symbol
pairs; lx] and [x] , are the greatest integer fuﬁction
and least integer function respectively;

i.e., Ilx] satisfies |x] < x < |x] +1

and, [x] satisfies [x] - 1< x £ [x] .

In order to provide background for the discussion of
information use in sorting, the current scrting algorithms
are classified and explained in Chapter 2. Analysis of these
algorithms is discussed in Chapter 3 along with the results
about the efficiency of specific algorithms. After examining
the current 'state of the art', the problem of sorting
efficiently by making use of known information is discussed

in Chapter 4.



Chapter 2

A Survey

Sorting algorithms can be distinguished by the
different types of file access required, and can be further
classified by differences in methodology. Such a
Classification is presented, along with an explanation of

spécific algorithas.

Algorithms are classified as serial or random-access
[2] depending upon whether or not serial-access files can be
used throughout the process. Random~access algorithms are
intended for use in the internal, rather than peripheral,
memory of a computer and therefore are often referred to as
internal sorts. Serial algorithms are generally performed on
card, tape and disk files. Random-access techniques could be
carried out with disk files, but, since random-access time

for a disk is much greater than serial-access time, serial

techniques are commonly used for such files {2].

2.1 Serial Sorts

There are four tyves of operations that can be

carried out on serial-access files. They are differentiated



by the number of input and output files used and are defined

{2] in Table 1.

Table 1. Serial Processes

Process iInput Output
duplication single single
classification ‘single multiple
merge multiple single
revision multiple multiple

Classification is the distribution of items from one file
onto several files, while simple classification is a special
case involving the allocation, to each output file, of a
vector of consecutive items from the input fiie. Similarly,
a simple merge is defined as a merge process after which

each input file occurs as a vector of consecutive items in

the output file.

With these definitioms, two important subclasses of
serial sorting methods--merge sorting and column sorting--
can be described. Merge sorts comsist of repeated
applications of the pair of processes--simple classification
and merge [10].lgg;ggg sorts are those algorithms consisting
of repeated applications of the pair of processes--—
classification and simple merge [10]. In each case there is
a pair of processes which, by repetition, produces a sorted

output file. This pair of processes is called a stage [10]



of the algorithm. A phase is the smallest process which
looks at each item of the original imput file [10].vThe
basic merge sort, for example, consists of two phases:

simple classification and merge.

Partial pass algorithms are those which do not
necessarily look at every item of the original input file at
each stage [{2]. The classification of serial sorting
algorithms is shown in Figure 1. The methodology associated
with each of these subclasses will ncw be considered and

examples given.

Serial Sorts
i

[ l [
Merge Colunrn Partial pass

{ | l l l | |
double single double single repeated merge column

phase phase phase phase block

Figure 1. Serial Sorts

2.1.1 lerge Sorting

Given two files, each containing one string ( string
refers to a sorted list of items), a 2-way merge may be
realized by first comparing the first item from each of the

files and placing the smaller on the output file, thus



rendering this item 'unavailable'. Continuing in a like
manner, the next two items available from the input files
are cbmpafed and the smaller is placed on the output file.
The merge is complete when no available items appear on the
input files. If the input files each contain S strings then
the process can be generalized to produce S output strings,
each of which contains one string from both the input files.
An m-way merge is a simple extension of a 2-way merge, using
m input files. The process consists of repeatedly selecting
the smallest of the m items next available (one from each

file) for placement on the output file.

A double phase merge sort consists of repeated
applications of simple classification and@ merge [10]. The
input file is considered to be a set of strings, which may
all be of length 1 if the file is in reverse order. A simple
classification process places these strings oanto m output
files. If there are S strings, then no more than [S/m]
strings should be placed on any one output file in order to
minimize the number of stages required. The m output files
are then used as input to the merge phase. An example of a
double phase 3-way merge is given on the following page. In
this example, and others following, the input file is listed

first.



16 72 { 19 30 85 | 49 75 | 13 | 12 63 | 21 45 | 17 90 | 35
46 77 |

simple classification : -

16 72 | 19 30 85 | 49 75 |
13 | 12 63 | 21 45 |

17 90 | 35 46 77 |

nerge :

13 16 17 72 90 | 12 19 30 35 46 63 77 85 | 21 45 49 75 |
simple clagsification :

13 16 17 72 90 |

12 19 30 35 46 63 77 85 |

21 45 49 75 |

merge :

12 13 16 17 19 21 30 35 45 46 49 63 72 75 77 85 90 |

In double phase merging, usingvstrings occurring
naturally within the input list results in variable length
strings throughout the sort. There is a procedure called
string doubling { 10] whereby strings of length one are used
tor the initial classification. This results in strings of
length n,mp2,m3,... after the 1-st, 2-nd, 3-rd, ... merge

phases. Because the lengths of strings are known, 'end-of-

string! markers need not be used.

input files and m output files at each stage. This sort
varies from the double phase sort in that successive merged
strings are placed on the successive output files in cyclic

sequence. This classification process [10] is called



string classification and, along with the fact that each
stage uses m inputs and m outputs, allows the classification
and merge phases to be combined in one revision phase. Am

example of this process, using four files, is as follo¥s:

16 72 | 19 85 | 49 75 | 65 | 12 63 | 50 { 17 90 35 77 |

string classification :
16 72 | 49 75 | 12 63 | 17 90 |
19 85 | 65 | 50 | 35 77 |

merge and string classification

2 85 | 12 50 63 |
5§ 17 35 77 90 |

merge and string classification

e —

16 19 49 65 72 75 85 ¢
12 17 35 50 63 77 90 |
and string classification :

12 16 17 19 35 49 50 63 65 72 75 77 85 90 |

2.1.2 Column Sorting

Recall that column sorting is achieved by repetition
of the pair of processes: classification and simple merge.
Each classification phase uses one of the digits of the iten
key to distribute items onto different output files. Each
digit is used once and successive digits are used in
successive classifications--starting at the low order digit

for the double phase column sort.



If the digital representation of the key is in base
b, then b-way classification and b-way merge is used. Thus
the process can be generalized to any vector key. An example
of a double phase column sort on a 3 digit vector key in
base 3 is as follows:
200,012,120,221,000,002,102,210,011
classification :

200,120,000,210
221,011

012,002,102

sipple merge :
200,120,000,210,221,011,012,002,102

classification :

200,000,002, 102
210,011,012
120,221

simple merge :
200,000,002,102,210,011,012,120,221

classification :

e e e R e

000,002,011,012
102,120
200,210,221
sipple merge :

000,002,011,012,102,120,200,210,221

The single phase column sort is a modification of
the double phase column sort [10]. At each stage, b input
files and b output files are used. The explicit merge phase

is eliminated by using, in turn, the b output files of the
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previous classification as input to the present

classification.

For both the double and single phase column sort,
classification is carried out starting with the low order
digit of the vector key. The repeated block column sort
classifies the items first on the high order digit. Ome such
classification produces b blocks of items which can be
sorted separately and then combined in a simple merge to
produce a sorted list. This method can be used to distribute

the work load among a number of independent sorters [2].

The process could also be continued, working with
successively lower order digits, to produce a sorted file
[2]. There exists a serial sorting algorithm of this type
which does not look at every item of the original imput file
at every stage and therefore will be discussed along with

other partial pass algorithums.

2.1.3 Partial Pass Sorting

The two approaches to serial sorting just described
have been modified to produce partial pass algorithms. The
amphisbaenic sort and the partial pass column sort are both
derivatives of column sorting techniques whereas the
cascade, polyphase, and oscillating sorts result from

modification of merge techniques.
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Column sorting

The partial pass column sort is an algorithm that
achieves the effect of one stage of a colunn sort for a base
b key but uses fewer than b+1 files [10]. This aléorithm,
then, could be repeated q times for a vector key of length g
to achieve a complete column sort. A series of partial
passes is used, for each of which there is one input and one
or more output files. After each partial pass, only the

previous and next input files are rewound.

A zero-origin matrix, M, is used to describe the
process [10]. M has one column for each partial pass and b+1
rows--one for each possible digit value and one to specify
the input file at.each pass. Eatry M(i,j), i<b, indicates
the output file to which keys with digit i, in the digit
position being considered, are sent on the j-th partial
pass. M is defined so as to minimize the pass fraction which
is the total of the number of items looked at over all

passes divided by the number of items.

An example of a partial pass column sort with 4
files for a decimal key is defined by M as shown in Table 2
[10]. The pass fraction in this example is:
2.8 = 1+ .4+ .5¢ .5+ .3+ .1,

Each of the six terms in this sum indicates, for one of the
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partial passes, the fraction of the possible input values

that are looked at.

Table 2. Partial Pass Column Sort Matrix

Digit 01 1) 901 | I | |
1121 I 01 | | |
2111210 l | I
3131 l I 0| l |
4 11 31 | 0 { | {
5121 it 31 0| { {
6 | 2 { 11 1 0 { i
T8 2¢ 11 01 |
8 | 31 { I 11 0| {
91 31 { I 21 { 0}

Input 10 1 1 24131 1} 2

The amphisbéenic sort is an example of a repeated
block column sort using partial passes [10]. There are b+1
files requireq for a base b key. The algorithm uses a series
of classifications (high to low order), and after each
classification on a low order column, a simple merge of the
last b sublists produced is performed. Classification from
file i allocates:

digits 0,1,...,i-1 to files 0,1,...,i-1

digits i,i+1,...,b-1 to files i+1,i+2,...,b.
Files are written forward and read backward--except the
initial input file, which is read forward. An example of

this sort on a 2 digit, base 3 key is given on the next

page.



Input:
file 0 22,01,12,21,02,00,10,11, 20
Output: '
file 1 01,02,00
2 12,10,11
: 3 22,21,20
Classification
Input:
file 1 01,02,00
Output:
file 00

(12,10, 11) 01
(22,21,20) 02

Input:
file (12,10,11) 01
(22,21,20) 02
Output:
file 0 00,01,02
Classification
Input:
file 2 12,10,11
Output:
file © (00,01,02) 10
1 11
3 (22,21,20) 12

Simple Merge
Input:
file 1 11
3 (22,21,20) 12
Output:
file 0 (00,01,02) 10,11,12
Classification

———— o s S e s - S o

Input:
file 3 22,21,20
Output:
file 0 (00,01,02) (10,11,12) 20
1 21
Z 22
Simple Merge
Input:
file 1 21
z 22
Output:

file 0 (00,01,02) (10,11,12) 20,21,22
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Merge sorting

The cascade sort, a partial pass merge algorithm,
uses m+1 files and initially distributes the strings onto nm
files of unequal length [ 15]. Each stage consists of a
series of merges, starting with an m-way merge until omne of
the files becomes empty. Then an (m-1)-way merge is carried
out on the files still containing strings, with the output
going to the file just emptied. When another file becones
empty, an (m-2)-way merge is carried out. A 2-way merge
completes the stage. Files are rewound after being emptied,
and strings of variable length or of length one may be used

initially.

If 4 files are used and the input tape consists of
31 strings, the distribution of strings on the files

throughout the process is as follows [15]:

F1  F2 F3  F4
31 0 0 0
0 14 11 6
6 8 5 0
6 3 0 5
3 0 3 2
1 2 3 0
0 1 2 1
1 0 1 1
0 1 0 0

A slight modification of the cascade sort produces
the polyphase sort {15]. This algorithm always uses merges

of the highest possible order.



The string distribution throughout a polyphase sort

with 31 initial strings and 4 files is as follows {11]:

El E2 E3 E4
31 0 0 0
0 13 11 7
7 6 4 0
3 2 0 4
1 0 2 2
0 1 1 1
1 0 0 0

The final partial pass merge sort to be considered
is the oscillating sort [11]. This algorithm, while
employing simple classification and merge phases, does not
consist of repeated stages to produce a sorted file. Using
m+2 tapes, m-way merges are carried out and it is assumed
that the number of items in the initial file is a power of
m. Unit length strings are used initially. In the first step
of the process, unit strings are distributed onto m tapes
and an m-way merge is carried out. This process is repeated
until there are m strings of length m, at which point an
m-way merge is used to produce a string of length m2.
Continuing in a like manner, m strings of length m2? are
produced and merged to form a string of length m3. Files are
written forward and read backward. The process is complete
wher all items are in one string. An example of this process
with m=2 is found in Figure 2. Underscores are placed after %

strings resulting from a merge.
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Note that the merged strings are in ascending or
descending order according to whether their length is equal
to an even or odd power of m. The merge process, therefore,

must be able to merge in both directions.

2.2 Random-access Sorts

With large internal memory and virtual memory
capabilities, in theory, few applications require eiternal
sorting, and even if external sorting is used, internal
sorting of blocks of data is often used to produce long
initial strings [ 16]. Algorithms designed for sorting data
in internal memory will be dealt with in the following

sections.

Internal sorting may be carried out on the actual
of a file X(1 : N) is a data structure [ 16] that uniquely
identifies each item of X. Sorting by surrogate is used when
it is inconvenient to sort the items themselves. This may
occur because the original items are long or of variable
length, or the calculation of the key is difficult [16]. In
the latter case, the key may be calculated once for each
item and stored in the surrogate. The use of the actual file
or a surrogate of the file is a difference in implementation
rather than a distinction betwéen algorithms. Random-access

sorting algorithms are classified as shown in Figure 3.
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In this classification scheme, algorithms are
distinguished first on the basis of whether or not they are

distributive. A distributive algorithm is one in which an

‘estimate of the final position of each item is made by an
examination of the item key itself. The item is placed in
the estimated final position unless this location cannot
accomodate the item, in which case an adjustment must be
made. The adjustment is ordered or unordered depending upon
whether or not the resultant list is necessarily in sorted
order. Howevef, the initial estimate is made solely on the

value of the item key. A non-distributive algorithm is one

in which the final position of each item is determined by

comparison of that item with others in the list.

A possible characteristic of algorithms which may be

important in certain applications is sequence preservation,

appear in the same order in the sorted list as they occurred

in the input list.

With this classification in mind, different
methodologies associated with various classes of randonm-
access sorts will now be discussed. The algorithes used for

internal sorting will be explained and examples given.
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2.2.1 Distributive Sorting

Inherent to the technique of sending an item to an

estimated final location on the basis of its key value is
the concept of coﬁsidering availabié memory as a set of
buckets, or bins, with items being assigned to one of these
. bins. There are several ways of imﬁlementing this concept

[16].

Since it is possible that all N items could have the
same key value, tﬁe case of all N items being sent to the
same bin must be dealt with. One possible bin technique,
then, is to allow for several blocks of memory; each block
representing one bin and having a size equal to the length
of N items [15]. This technique is extremely expensive in
terms of storage space. A similar bin technique is the use
of M blocks of core, each having the size to accomodate Q
items, such that M x Q 2 N [16]. In this case, an adjustment

must be made if more than Q items are sent to the same bin.

Linear arrays, with each item position representing
a bin, may be used to implement the bin technique [15]. With
bins of size one, an adjustment algorithm is again needed to
handle the case in which more than one item is sent to any
bin. Such an algorithm may simply involve placing the iten
in the nearest vacant bin, or may involve a scan (linear or

binary) for the proper position of the item and a shift of



21

items to accommodate the new item [16]. Adjustment may
involve only shifts in one direction, or shifting in either
direction may be allowed for, choosing the one which
involves fewer items. When a linear array is used, a
decision as to the size of the array must be made. The
larger the array size, the smaller is the possibility of =

conflicf.

The final bin technique to be discussed is the use
of linked lists, one for each bin [15]. The first item in
each linked list is simply a pointer to a list. As each iten
is sent to a bin, it is inserted at the end of the linked
list associated with that bin. A final sorting of items

within each linked list may be necessary.

The choice of a bin technigqe is dependent upon such
factors as the storage space available and the distribution
of values expected. The following descriptions of address
and radix sorting are given without further consideration of

the choice of bin technique.

Address sorting

Address (or address calculation) sorting involves
the use of a function which maps key values into bin
locations [ 16]. For each input item, the function is
calculated and the item is sent to the corresponding bin. An

adjustment algorithm may be necessary as well as a final
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collection process to produce a sorted list. The
effectiveness of address sorting is largely determined by

the suitability of the mapping used.

Radix sorting

Radix sorting is analagous to column sorting [16].
For each item, the key is considered as a g digit vector in
base b. There are q distributions of the items carried out
on the basis of successive digits of the key and b bins are

used.

Upward radix sorting starts with the lowest order
digit, using successively higher order digits on successive
distributions [16]. Effectively, a simple merge is carried
out on the bins between each classification. An example of
upward radix sorting on 2 digit keys in base 3 is as
followus:
21,22,02,12,11,01,22,02,11,20,12
stage

1 (20) (21,11,01,11) (22,02,12,22,02,12)
2 (01,02,02) (11,11,12,12) (20,21,22,22)

Two distributions produce a sorted list.

Downward radix sorting distributes on the ¢ digits
successively from highest to lowest order [16]. Each bin of

items produced on the i-th distribution is dealt with
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separately on the (i+1)st distribution (0<i<qg) . An example
of such a sort on 3 digit keys in base 3 is as follows:
212,220,102,121,112,022,202,021,111,220,122
Stage

1 (022,021)(102,121,112,111,122)(212,220,202,220)

>2 (022,021)(102)(112,111)(121,122)(202)(212)(220,220)

3 (021) (022) (102) (111) (112) (121) (122) (202) (212) (220,220)

For both address and radix sorting, an estimate of
the final position of each item is made by examination of
the item value. Item comparisons may be necessary for

address sorts but are not used for radix sorting.

"2.2.2 Non-distributive Sorting

Recall that non-distributive algorithms are those
which derive the final sorted position of an item by
comparison of items. Non-distributive algorithms are

classified as merge sorts, tree structure sorts or

comparative sorts depending upon whether merge technigues,

tree structure techniques, or neither of these are used.

Merge sorting

Internal merge sorting is essentially the sane
process as serial merging and is generally restricted to
2-way merging [2]. The method of choosing the initial

strings differentiates the three types of internal merge



24

algorithms--natural, straight and chain merging [ 1o].

The éggggg; merging algorithm uses as initial
strings the set of maximal ordered sublists in the input
list [16]. If there are p such strings, them [log p] stages
are required to produce an ordered list. At each stage,
pairs of adjacent strings are merged. Because the initial
and subsequent strings are of variable length, pointers or

end-of-string markers are required.

The straight merging algorithm uses initial strings
of length one [ 16]. The merging process is as described for
natural merging. This procedure has the advantage of largely
obviating the necessity for pointers or end-of-string
markers since all strings, with the possible exception of
the last, are of the same length. In place of these markers,

counting can be used.

The chain merging algorithm uses, as initial input
strings, maximal ordered subsequences (called chains)
occurring in the input list [16]. The relative positioning
of items in a subsequence is the same as in the initial
list, but adjacent items of the subsequence need not be
adjacent in the input 1list. For examgle, the input list
2,1,4,3,6,5,8,7 contains two maximal subsequences, 2,4,6,8
and 1,3,5,7. The chains from an input list are found as

follows. The first item starts the first chain. If the
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second item is larger than or equal to the first, it is
added to the first chain: if not, then it is used to start a
second chain. Each new item is placed on the first chain
possible, but if it is less than the last item of every
chain then a new chain is started. Since the sequence of
largest items of each of the chains is monotone increasing,
items can be placed using a binary scan. Having derived the
initial input strings, a series of Z-Héy merges is carried
out. The two consecutive strings of smallest total lemngth
are always merged. The algorithm is complete when only one

string remains.

Tree structure sorting

Throughout the discussion of tree structure and
comparative sorting algorithms, the term iteration will be
used to indicate a process that, upon repetition, produces a
sorted list. Sorting algorithms utilize tree structures for
insertion, selection, and transposition techniques.
Insertion is a technique whereby items of the input list are
inserted; one at a time, in sorted position in a partial
sorted list. A selection sorting process invblves selecting

from the 1list, at the i-th iteration, the smallest of the

remaining N-i+1 items. Iransposition is a technique whereby

pairs of items are exchanged in the list to produce a sorted

list.
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The ancestral sorting algorithm uses a binary tree

structure for an insertion technigue [16]. Each non-terminal
node contains an item as well as a left and/or right pointef
tc a ncde whose item key is correspondingly less than or
greater than the item key of the node concerned. The first
item received forms the item value of the first node. For
cach new item, a search is made of the tree for its proper
position by comparison of the item key with keys of node
items and following the tree along the left or right pointer
depending upon the result of the comparison. When a terminal
node, T, is reached, the new item forms a new node and a

pointer (left or right) to this new node is placed in T.

The set of tree structure selection algorithms are
referred to as p—th degree selection sorts [2]. The general
descripticn of the tree for a p-th degree selection sort is
as follows. The tree consists of p+1 levels (0 to p). level
0 is the root node and level p consists of N leaf nodes; one
for each item in the list to be sorted. Ideally, the tree
has a branching factor of m, Wwhere P = N. The tree is
constructed, from level p-1 to level 0, by associating with

cach node the minimal valued item of its m successor nodes.

Thus, the least item value is associated with the root node.

At each iteration of the algorithm, the item value,
X, associated with the root node, is placed in an output

iist. At the p-th level, X is replaced by an infinite key so
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as to remove the item from further consideration. X must
also be replaced at levels p-1,p-2,...,0. In each case, a
nev minimum is selected from the m filial nodes previously
represented by X. In N iterations the algorithm produces the

output of a sorted list.

Specific cases of the general p-th degree selection
sort are the quad:atic sort, the cubic sort, and the
tournament sort. The guadratic sort [2],‘a second degree
selection sort, uses a tree with a branching factor of b,
where b2= N. The cubic sort is a third degree selection sort
[2] and uses a tree with a branching factor of b, where b3 =
" N. The tourmament sort [2] uses a binary tree and thus is a
p-th degree selection sort, where p = [log N] [2]. An
example of the first three iterations of a tournament sort,
with N = 8, will éerve to demonstrate the p-th degree

selection technique. The letter z is used to indicate an

infinite key value.

Iteration 1

Figure 4. Tournament Sort
..s./continued on page 28
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Iteration 2
3 8 4 2 7 6 z 5
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Iteration 3

Figure 4. Tournament Sort (continued)

The treesort algorithm [16] is a transposition sort
using a tree structure. Rather than building a tree, the
linear input array X(1 : N) is considered as a binary tree.
The root node of the tree is X(1), and for i £ N/2, X (i) is
considered as the predecessor of X(2i) and X (2i+1).
Initially, exchanges are made along the paths of the tree so
defined until every non-terminal node, P, except the root
node, roots a subtree containing no item with key value
greater than the key value of P. Having established this
descending tree, a series of N-1 iterations is made. At the

i-th iteration, the largest of the N-i+1 remaining items is
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brought to the root node. The descending property is
maintained. The root item is then exchanged with the
(N-i+1) th item of X(1 : N). After N-1 iterations the list is

in sorted order.

Comparative sorting

Throughout the discussion of comparative sorts, the
term pass is used to indicate a sequence of comparisons
involving some or all of the data items. An iteration may
involve one or more pass. The first class of comparative
sorts, i.e., those which use a count vector of lengih N
[163. This vector is initialized to 1 and a series of K-1
sets of comparisons is made. In the i-th set of comparisons
( 1<i < N), item i is compared in turn with items
1,2,...,i-1. For each comparison, the count vector iten
corresponding to the larger item is increased by 1. After
all comparisons are made, the count vector indicates the
sorted order positioning of items. The items may then be
ordered in place by transposition, or may be copied to an

output file in proper sequence.

[15]. The first item in the list is inserted into a new list

and considered as a sorted partial list of length one. When
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the (i+1)st item is to be inserted, a search of the sorted
partial list of size i determines its proper position. Iteams
of the partial list are then shifted to accomodate the
(i+1) st item. The search technique may be linear or binary
and the size of the list used for insertion may be N or

larger.

The final class of comparative non-distributive
sorting algorithms consists of the set of transposition
sorts [16], i.e., those which order the list by a sequence
of comparisons and exchanges. These algorithms all employ
several passes over all, or some of, the data. The‘term
'comparison and exchange'! is used to mean that if items in
positions i and i+j (for j>0) are compared and the key value
of the latter is less than that of the former, an exchange

is made.

The normal transposition sort consists of several
iterations, each consisting of one pass over the entire list
[16]. During each pass, a series of comparisons and
exchanges are made between items in positions
(1,2) (2,3)«+. (N=1,N), in that order. When an iteration
yields no exchanges, the list is in sorted order. A slight
variation of this is the bubble sort which takes advantage
of the fact that, after i iterations, the largest i items
are in place and need not be considered [16]. Thus, for the

i-th iteration, a pass consists of the series of comparisons
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between item pairs (1,2) (2,3)...(N-i,N-i+1). Again, an

iteration with no exchanges halts the process.

For the alternating transposition sort [16], each

iteration involves two passes, each over the entire list but
in alternating directions. The first pass is the same as
" normal transposition; the second pass is defined by the
sequence of comparisons (N-1,N) , (N=2,8-1) ... (1,2). The
transposition sort, uses the fact that, after i passes, the
[i/2] largest items and the |i/2] smallest items are in
sorted position. These items are therefore not considered in

further passes.

The even-odd transposition sort [16] again uses
iterations consisting of two passes over the data. The two
passes are defined, for N even, by the series of
comparisons:

(1,2) (3,4) ... (N=1,N) and
(2,3) (4,5) +.. (N=2,N-1).

A pass with no exchanges halts the process.

The successive minima algorithm [16] is a

transposition sort requiring N-1 iterations. On the i-th
iteration, the minimum of items in positions i, i+1,...,N is

found and exchanged with the item in position i.
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The ranking sort [16] is an insertion sort carried
out by transposition. This algorithm consists of N-1
iterations. At the i-th iteration, the first i items are
considered as a sorted .partial list and the (i+1)st item is
inserted into sorted position within this list. The |
insertion is achieved by a sequence of comparisons and
exchanges of item pairs (i,i+1) (i-1,i) ... (1,2) in that
order. When a comparison in this sequence yields no
necessary exchange, the (it+1)st item has been properly

inserted and the next iteration is begun.

The Shell sort consists of a series of iterations,
where, during the i-th iteration, a ranking sort is carried
out on 4(i) lists, headed by items in positions 1,2,...,d (i)
and consisting of items a distance d (i) apart [16]. The
cémmon choice for the set of d(i), Hibbard's modification,
is defined as follows:

if 2%n<o®?

then a(1) = 25-1 ana d(i+1) = (@(i)-1)/2.
This choice of d(i) generally results in fewer comparisons
than Shell's initial choice of d(i) which was:

d(1) = N/2

d(i+1) = d4(i)/2.
Another scheme [16] for choosing d (i) has also been

suggested. The first distance used is the nearest odd

integer greater than N/4, if N is greater than 15, and N/2
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i
otherwise. The choice of d(it+1) is determined in the same

manner, using d(i) instead of N.

The final comparative technique to be ccnsidered is

partitioning which is the process of dividing each list into

sublists { 15] during every iteration. Two such algorithms
are the base 2 radix exchange sort and quicksort, of which

there are several modifications.

——— i

The base 2 radix exchange sort [ 15] requires ¢
iterations to sort a list of g digit binary numbers. The
process is analagous to a downward radix sort but, since
each bin is distributed into only 2 bins, an exchange
technique is employed for the partitioning process. At the
i-th iteration, each non-trivial, i.e., non-unit length,
sublist is partitioned into a sublist of items with 0 in the
i-th digit followed by a sublist of items with 1 in the i-th
digit. Partitioning is carried out with two pointers, called
front and back, which are initially positioned at the
beginning and endvof a sublist and move towards each other.
When the froat pointer finds an item with 1 in the i-th
digit, the back pointer looks for an item with a 0 in that
digit. The two items are then exchanged. The partitiom is
complete when the pointers cross. After q iterations the

list is sorted.

The gquicksort algorithm {16] and modifications

thereof, also partition each non-trivial sublist using
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pointers as does the radix-exchange sort. A median estimate,
M, is chosen randomly from eaéh sublist. A scan and exchange
process divides.each sublist into 3 sublists containing only
items <M, =M, 2M respectively. The middle sublist contains
items in sorted position and is not dealt with further. The
process is iterative and the shorter of the two sublists is
always dealt with first to save on storage space required
for segment delimiters. A sublist of size two is ordered by

comparison and exchange.

The variations of quicksort stem from the different

methods of choosing a median estimate. Quickersort uses the

middle item of a sublist as the median estimate [16].

of items drawn from the sublist [16]. The sample may be
chosen randomly or may consist of items at regularly spaced
intervals. A sample may be chosen from each sublist or one
samnple from the initial list may be taken and used to
provide median estimates. If a bound on the key values is
known, say Zk, the general radix exchange sort [15] may be
used. This is a modification of quicksort using the median,
the quartiles, etc., of the range 0 to 2k as median
estimates. Van Emden's modification [ 16] starts with an
upper and lower bound on the median estimate and alters
these as necessary to ensure that no item in. the segment has

a key value between them.
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Sorting algorithms are distinguished first on thel
basis of whether they are intended for implementation using
serial or random-access files. Serial algorithms are further
classified as merge, column or partial pass by differences
in methodology. The classification of random-access
algorithms as distributive or non-distributive is based on
whether or not the item value itself is used to obtain an
estimate of the final location. The merge, tree structure
and strictly comparative approaches to non-distributive
sorting have been explained. Throughout this discussion,
specific algorithms were examined and related to this

classification.
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Chapter 3

An Analysis

In this chapter sorting algorithms are analyzed and
compared. Because of the wide variety of applications of
sorting, it is impossible to state that one algorithm is
best. For example, the oscillating sort and polyphase sort
may not be directiy compared if the computer, on which they
are to be run, does not have tape devices that read
backward. Nevertheless, the commonly accepted measures of
performance for the different classes of algorithms are
considered and known results are tabulated in this chapter.
When possible, the best within classes of algorithms are

selected.

3.1 Measures of Analysis

Analysis of serial sorting algorithms is based on
two measures [10]:
1. the number of files required, and
2. the execution time.
In comparing efficiency the number of files is to be
éohsidered fixed. It is commonly assumed that the execution

time of a serial process is spent mainly in reading and
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writing of files and therefore time is directly proportional
to the required number of passes of the file { 16]. The
relationship between the number of passes and the actual
execution time is determined [10] by factors such as the
average length of the items, the reading and writing rate of
serial files, the rewinding time and, possibly, overhead in
going from a forward to a backward operation or vice versa.
The number of passes can be used as a measure of efficiency

for this type of algorithnm.

On the other hand, for random-access algorithms
there are three measureé of analysis used [10]:
1. the number of comparisons necessary,
2. the number of data moves or transpositions needed,
3. the storage ratio, C/N, where:
C denotes the storage space, measured in number of
items, allowed for data or pointer space to sort N
items.
Sometimes a measure called the Scan length {10], which is
the total number of items examined throughout the sort
process, is used instead of the number of comparisons. Scan
length is of value when analyzing distributive algorithms
but, for non-distributive algorithms, a constant of
proportionality, depending on the algorithm but not on the
number of items relates the scan length and the number of

comparisons. Thus, only the latter need be considered.



2 theoretical lower bound of N log N has been
established [ 12] for the maximum number of comparisons.
reguired to sort N non-redundant data items. The 'possible
outcomes' argument, used to establish this lower bound,
states that, for N numbers, there are N! different
permutations that may result fronm the application of any
sorting algorithm. These may be considered as the leaves of
a computation tree, which is a theoretical model used to
represent the procedure for finding the solution for some
problem [ 12]. Each non-terminal node of the tree represents
a computation and has as many branches leaving it as there
are results to the computation. Each terminal node
represents a possible solution and, thus, each root-to-leaf
path represents a sequence of computations for arriving at a
solution. The minimum depth of such a tree is the
theoretical lower bound on the number of computations
required to always produce a solution. Generally, the
computation tree for the sorting problem is binary, each
node representing a comparison of two items. Since such a
tree must have N! leaves, it must be of depth log N!. Using
stirling's approximation, log N! = N log N. This, then, is
the theoretical lower bound on the number of comparisons

required to sort any N non-redundant items.
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In addition to the quantitative measures used in
analyzing algorithms the following qualitative factors must
be considered:

1. Is the algorithm sequence preserving?

2. Does the algdrithm take advantage of any sorted order
present in the initial list?

3. Does the algorithm require fewer comparisons and data
moves when duplicate values are present in the
list?

4. Can the algorithm accept parameters regarding initial
ordering or duplications and use the information

to sort more efficiently?

3.2 Analysis of Serial Algorithams

In analyzing serial algorithms there are some
considerations with respect to the efficient use of tapes
that should be discussed. An in depth analysis of these
factors is available [11] and only those of major importance

will be mentioned here.

Tape device characteristics influencing sorting time
are the data transfer rate and the rewind speed. The
backward read capability is assumed for some algorithms and,
if available, can be incorporated into other algorithms to

increase sorting speed.
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When implememting serial sorts using tapes, a large
block size is desirable in that less waste space results.
However, internal memory restrictions on the buffer size is
a limiting factor. The use of tape devices on different
channels and the overlapping of tape rewinds with other

processes both result in greater sorting efficiency.

Merge Sorting Algorithms

Neither normal nor partial pass merge sorts are
sequence preserving. Merge techniques make use of inherent
sorted order in the initial list if natural strings are used
but not if string doubling is used. The expected number of
maximal strings (a maximal string is a string not contained
in any larger string) within a list is [2]:

(N + 1 - E(D))/2
where E(D) is the expected number of duplications.

Thus, duplicate items increase the expected string length.

Letting S signify the number of initial strings and
considering the case in which there are 2m files, where m>1,
the double and single phase merge sorts require respectively
2 Flome_lS] and flogms1 passes [10]. It is because the
number of passes is dependent upon S that merge sorts can be
considered to take advantage of inherent order and of

duplicate items. Note that the ratio :

(2 [log,, _;S1) / [log 5]
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assymptotically approaches 2 as S becomes large, indicating
that single phase merge sorting is more efficient than

double phase [10].

Column Sorting Algorithms

Column sorting algorithms, normal or partial pass,
require the same number of passes whether or not duplicate
items are present. No use is made of inherent order within
the initial list, nor can such information, if made
available, be used. In general, coiumn sorts are sequence

preserving.

Letting g signify the largest key value, if there
are>2b files then the double and single phase column sorts
require 2 rloga_lg1 and [logbg1 passes respectively. As in
the case of merge sorting, the ratio of these approaches 2
[10], making single phase column sorting preferred to double
phase. The effect that the base chosen has on the number of
passes is given by the following. A vector key of maximum
value g can be considered as 9, digits in base bl or g,
digits in base b2. A single phase column sort would then
require either g, or g, passes and 2hl or 2b2 files. The
relationship between the number of passes is as follows
[10]:

9, - logblg _ loggb2

9, 1°gb29 loggbl
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Partial Pass Sorting Algorithms

The partial pass column sort described in Chapter 2
used 4 files to sort a base 10 vector key. If g is the range
of the key, then there are flog1091 digits and, since the
vpass fraction for the method described was 2.8, the total
number of passes required is 2.8 FloglOgW. This compares
favorably with both the base three double phase column sort
and the base two single phase column sort which could also

be performed with 4 files [10].

The amphisbaenic sort is sequence preserving if gq,
the number of digits, is odd, but for g even, reverses the
initial sequence of equal valued items. Each item is
. classified g times and is merged at mcst once. Therefore
less than g+1 passes are used in total [10]. There are b+1

files required for a base b key.

The cascade sort requires that initial strings be
distributed onto tapes using a 'perfect distribution'. An
algorithm for calculating perfect distributions is available
[11]. Table 3 gives a set of perfect distributions for six

tapes.
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Table 3. Perfect Distributions for Cascade Sort

Number Number
of strings E1 E2 E3 F4 F5 of Passes

1 1 0 0 0 0 0

5 1 1 1 1 1 1

15 S 4 3 2 1 2

55 15 14 12 9 5 3

190 55 50 41 29 15 4
671 190 175 146 105 55 5

a b c d e n

atbtctd+e a+b+c+d atbtc a+hb a n+1

If the number of strings, S, does not equal the sum of a
perfect distribution, then dummy strings are used to
increase S to the next acceptable total. For 671 strings,
the double phase merge would require 2 logs6711 = 10 passes
rather than 5 and the single phase merge would require

Flog36711 = 6 passes.

The polyphase sort also requires a !perfect
distribution' of initial strings, although it is somewhat
different than that of the cascade sort. The distribution
method is illustrated in Table 4 for the case where there

are 4 files [11].
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Table 4. Perfect Distributions Eor Polyphase Sort

Number Number
of Strings E1 E2 E3 E4 of Passes

1 0 0 1 0 0

3 1 1 0 1 1

5 2 0 1 2 2

9 0 2 3 4 3

17 4 6 7 0 4
31 1 13 0 7 5
57 24 0 13 20 6
105 0 24 37 4y 7
193 44 68 81 0 8

The polyphase differs from the cascade sort in that initial
strings are processed an unegqual number of times. Some
results with regard to the average number of times strings
are processed, i.e., the number of passes, are shown in

Table 5 [ 11].

Table 5. Pass Fraction for Polyphase Sort

Number of Strings Number of Tapes Passes
100 3 7.2
100 6 3.3
1000 3 10.8
1000 6 7.2
5000 3 13
5000 6 6.6

The double phase merge requires 2 Flogs10007 = 10 passes to
sort 1000 strings using 6 tapes as opposed to approximately
7.2 passes for the polyphase sort. The single phase merge

requires [log;10001 = 7 passes.
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In analyzing the oscilléting sort it is apparent
that any item in a merged string of length m, m2, m3 has
been processed 2, 3, 4 times respectively. Thus, if x =
[log N] , then x+1 passés are requifed for the oscillating

sort using m+2 files.

The analysis of serial sorting algorithms indicates
that, for column sorting, single phase is more efficient
than double phase for any fixed number of files. The partial
pass column sort is less efficient than single phase sorting
in that more passes are required, but it may be used to save
on files. The amphisbaenic sort uses fewer files, ahd
approximately the same number of passes as single phase
column sorting and thus is the most efficient. However, both
forward and backward read capabilities are necessary to

implement this algorithnm.

Sihgle phase merge sorting is more efficient than
double phase. The partial pass merge algorithms are
generally more efficient than single phase merge sorting. Of
these, the oscillating sort is the most efficient [11] but
it reguires forward and backward reading. The cascade and
polyphase algorithms do not require backward read. The
polyphase sort is the more efficient for fewer than seven
files, but for more than six files the cascade sort is more

efficient {11].
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The choice between column and merge sorting is j
dependent upon the form of the key value and the expect;d
distribution and ordering of these values. It is the base
chosen to represent key values that determines the number of
files, and to a certaim extent, the efficiency of a colunmn
sort. If base conversion is necessary, but complex, in order
to implement a column sort then merge sorting should
probably be used. As the likelihood of redundancies and
sorted order within the input list increases, the
desirability of merge sorting becomes pronounced. Herge
algorithms also offer a greater choice in the ﬁumher of
files to be used and this may be advantageous if there is

nuch variance in the number of files that may be availbble

at any tine.

3.3 Analysis of Random-access Algorithms

As was stated im Chapter 2, virtual memory
capabilities have tended to reduce the necessity for serial
sorting. Due to the ccmmon usage of internal sorting
algorithms, the analysis and comparison of their efficiency

is well studied.

Distributive

For distributive sorting algorithms, scan length is

a more meaningful measure than the number of comparisons
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because, while the scan length must be at least N, the
number of comparisons can be 0. The efficiency of address
sorting is dependent on both the address calculation
functioﬁ and the storage ratio. As the storage ratio
increases, the expected number of data moves decreases but
the compaction time increases. Experimental results ([16]
have indicated that optimum storage ratios are approximately
2.4 and 1.8 for ordered and unordered adjustment algorithms

respectively. Address sorting is Sequence preserving.

The other distributive algorithms, upward and
downward radix sorts, are sequence preserving and not
sequence preserving respectively. In both cases, the storage
ratio is approximately 2. For upward and downward radix
sorting, the scan length and the number of transfers are

both Nq (where g is the number of digits).

Initial ordering present within the input list does
not increase the efficiency of distributive algorithms. For
address calculation sorts, a non-uniform distribution of
redundancies can result in a great increase in the number of
comparisons. However, information regarding the distribution
of redundancies can be used to determine a good address

function and bin allocation scheme.



48

Merge algorithms

Internal algorithms are segquence preserving and the
natural and chain sorts both operate more efficiently when
there is some ordering of the input list because this
reduces the number of initial strings. Merge sorting
algorithms usually use 2-way merging and a storage ratio of
2 [2]. Analysis results for the three merge techniques,

assuming unique items [16], are found in Table 6.

Table 6. Analysis of Merge Sorts

Scan Length Iten Transfers
Expected Max Min Expected Max Min
Natural Nlog {(N/2) ©NlogN N Nlog (N/2) NlogN N
Straight NlogNh NlogN NlogNh NlogN NlogN NlogN
Chain *NlogN NlogN N *NlogN Niogh N

# - experimental result

Duplicéte items increase the expected string size
for natural and chain merging and, thus, lead to an increase
in sorting efficiency. Merge algorithms cannot readiiy
utilize information regarding initial ordering or the

distribution of duplicate itenms.

Tree Structure Algorithms

The tree structure sorting algorithms do not take
advantage of initial ordering. Ancestral sorting is least

efficient for a sorted input list. Redundancies do not
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increase the efficiency of the ancestral and p-th degree
selection sorts which are sequence preserving while treesort
is not. Duplications tend to make the treesort more
efficient in that the descending characteristic is more
easily achieved. None of these algorithms can utilize
information regarding initial ordering or the distribution
of duplications. Analysis results for these algorithms are

found in Table 7 {16].

Table 7. Analysis of Tree Structure Sorts

Comparisons Data Moves S.R.
Expected Max Min Ex Max Min
Ancestral O(NlogN) N(N-1)/2 O(NlogN) N N N 4
p-th
Degree (m-1) pN (m—1) pN (n-1) pN pN pN pN (Nm-1)/
Selection N (n-1)
Treesort *0(Nlogl) *0 (NlogN) 1

* - experimental result (further results not available)

Counting

Counting sort algorithms are sequence preserving.
The storage ratio is 2 or 3, depending upon whether 1 or 2
copies of the file are used. Gemerally, two copies are used
and, thus, N data moves are required [16]. If one copy is
used, from 0 to N exchanges are required. Note that an

exchange generally requires three data moves. In either



50

case, N(N-1)/2 comparisons are used to determine the count
vector. Neither redundant values nor sorted order simplify
the counting process. If it is expected that few items will
be out of sorted position then the use of one file with

ordering by exchanging is preferred.

e e e e i e

Ranking by insertion is a sorting technique that
takes advantage of imitial ordering but does not necessarily
perform better when redundancies are present. Parameters
regarding order or distribution of duplications cannot be
used to increase the efficiency. Generally, the list used
for insertion is of length N or 2N and thus the storage
‘ratio is 2 or 3 [15]. Ranking by insertion is sequence
preserving. If an jnsertion vector of length N is used, then
the average number of data moves is 0(N2). For a vector of
length 2N, about one half as many data moves are required. A
jinear scan and a binary scan result respectively in 0(N2)

and O(NlogN) comparisons.

All of the transposition sorts except the Shell and
partitioning algorithms are sequence preserving. Generally,
inherent sorted order in the input list results in fewer

transpositions and, for those algorithums which do not have a
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predetermined number of passes, can result in the use of
fewer than the maximum number of passes. The efficiency of
transposition sorts can be expected to increase slightly
when duplicate values are present--largely because fewer
trahspositions are necessary. For example, the even-odd
tfansposition sort requires, on the average, 5.5 comparisons
- and 3 transpositions for a list of 4 non-redundant itens.
The same algorithm, operating on a list of 4 items of which
2 are unique and appear twice, requires an average of 5.1
comparisons and 2 transpositions. Knowledge of the
distribution of data values can be used to provide good

median estimates for the gquicksort algorithm.

The storage ratio for non-partitioning transposition
sorts is 1. For quicksort, the storage ratio is (N+logN)/N.
- For radix exchange, the storage ratio depends upon g, the

range of the item keys, and is (N + log g)/N {16].

It has been shown [11] that the Shell sort is an
0(N3/?) Process if the Hibbard modification is used, and
that both radix exchange and quicksort are O(NlogN). These
results take into account both comparisons and item
transfers. The other transposition sorts are all O(N2) as

can be seen from Table 8 [16].
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Table 8. Analysis of Transposition Sorts

Comparisons Iranspositions

Max Hin Bax Bip
Normal (N—-1)2 N-1 N(N-1) /2 0
Bubble N(N=-1)/2 N=1 N (N=-1) /2 0
Alternating {(8=1)2 N-1 N{(N-1) /2 0
Funnel N(N-1)}/2 N-1 N(N-1)/2 0
Even-odd (N-1)2 N-1 N(N-1) /2 0
Successive N(N-1)/2 N(N=1}/ N 0

Minima

Ranking N(N~-1)/2 N—-1 ‘ N(N-1) /2 0

There are available [10] results as to the expected
nunmber of comparisons and transpositions, assuming unique
data items, for some of these aigorithms. For the bubble,
funnel, and even-odd transpositions sorts, the expected
number of comparisons is approximately:

((N2-N-2) /2) + (N+1) z(N+1) - N z(N)
wvhere z (N) is approximately:
(mny2) /2
The expected number of comparisons for the ranking sort ié:
((N2+7N)/4) - 1.6 - log N - (1/2N)
For all the algorithms in Table 8 except the successive
minima sort, the expected number of transpositions is:

N (N-1) /4.

This completes the analysis of sorting algorithms.
The criteria of analysis have been explained and results
presented. In deciding upon an algorithm for a particular
application, characteristics of the application--including

the type and amount of data, the amount of core memory
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available and the characteristics and number of serial files
available--must be considered as well as the relative
efficiency of algorithms. The ability of sorting algorithnms
to make use of information regarding the input data has been
discussed. In‘the following chapter, the problem of using
available information about the data to achieve more

efficient sorting will be examined.
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Chapter &4

Some Improvements

Huch of the bublished literature dealing with
sorting techniques and their analysis is restricted to one
particular frame of reference, that is, the problem of
sorting lists of items which are non-redundant and randomly
distributed in value. When the sorting pfoblem is approached
from this perspective, resultant algorithms are not limited
in terms of the types of data which can be successfully
sorted. Such generality is a desirable characteristic and
algorithms which operate efficiently within this framework
have been developed. If one limits the class of problenms

then more efficient algorithms can be developed.

one of the processes done in sorting is the
gathering of information about the data. It would appear
reasonable that if a priori information is known, it could
be used to simplify the process of information gathering,

and hence achieve more efficient sorting.

The purpose of this chapter is to consider the
sorting problem with respect to data about which there is

some known information. This will involve first a definition
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of the different forms of information which may be
available. Secondly, methods will be presented for using the

different types of information for more efficient sorting.

4.1 Types of Information

Information about data to be sorted may be of two
general forms. The first to be considered is 'a priori!
information, or that which is available at the outset of the
sort procedure. The second is information gained during the
sorting process. Specifically of interest is that which is

gained through comparisons.

4.1.1 A Priori Information

Generally, there may be a priori information about
the distribution of the values found in the data list or
about partial orderings present in this list. Consider first.
the case of a priori information regarding distribution.
This may take the form of knowledge of the existenée of
redundant items. Two cases in this category which will be
considered are a knowledge only of the number of unique
items and the stronger case im which not only is the number
ofbunique items known, but also, there is some information
as to how the redundancies may be distributed. In addition,

a priori information about the probability distribution of
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the population from which the items in the list are drawn is

considered.

Three types of a priori information regarding
partial orderings will be considered. The first is the
knowledge of the existence of sublists of ordered items.
second is knowledge of the existence of sublists such that,'
for every pair, all items in one sublist bear a given
relaticn to all items in the other sublist. The third type
of a priori information regarding partial ordering is the
knowledge of a bound on the distance any item may be from

its final position.

4.1.2 information Gained Through Comparisons

Even though it may be that no a priori information
regarding the distribution or positioning of data values is
available, it is obvious that, for lists of size greater
than three, every jtem need not be compared with every other
jtem in order to gain enough jnformation to place the itenms
in sorted order. This is largely due to the fact that the
jnformation gained through, say. X comparisons can extend
beyond simply a new found knowledge of the order
relationships between x pairs of items. This is so because
of the transitivity of the ordering relation. This

characteristic is discussed in section 4.3.
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4.2 Use of a Priori Information

4.2.1 Knowledge of Redundancies

In considering the problem of sorting lists
containing redundancies, first to be discussed will be the
lower bound on the number of comparisoﬂs required.
Henceforth in this discussion it will be assumed that
sequence preservation is not required. The theoretical lower
bound of N log N comparisons required to sort N items was
derived under the assumption that all N items are unique.
If, however, there are M < N unique items, this lower bound

is too high.

In order to determine the lower bound for data lists
with redundancies, the number of unique output strings that
could result from the application of a sorting procedure
must first be established. For N unique data items there are
obviously N! unique permutations of the output string.
However, if there are N items in total, of which only M < N
are unique, then scme of these N! permutations are

equivalent.

One possible, but incorrect, argument as to the
number of unigue output permutations that may result fronm
sorting N items of which M are unique is as follows. Assume

that with each unique item, i, there is associated a
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‘replication factor®, ri, such that ri is the number of
times the i-th item appears in the list. Observe that if the
value x occurs 3 times, then for any given arrangement of
the N-3 other items, there are 3! different ways of placing
the three x values in the remaining three positions.
However, all 3! ways will produce identical output
orderings. From this observation it is easily argued that
the number of unique output permutations that may result
from application of a sorting procedure is
N!/(c1'r2f...rM!). This argument, while it does indicate the
number of unigue permutations of N items of which M are
unique, is incorrect since they cannot all be possible

results of a sorting procedure.

In order to understand why these cannot all be
possible output permutations, one should note that any set
of identical input values must always be permuted to »
adjacent final positions. There are N! possible permutations
only if any pair of input items can be permuted to non-
adjacent output locations and therefore, when redundancies

are present, there are not N! possible output orderings.

At this point, note should be made of two relevant
facts. The first is that, given any set of items in which
there are redundancies, all equivaleat items can be
considered as one item for the purpose of calculating the

number of unique and possible output permutations. There are
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two reasons for this..These items will always be permuted to
adjacent output locations. The permuations that vary only in
the order in which these items are placed in a particular
set of adjacent output locations all result in the sanme
output string. Secondly, the order of appearance of items in
the output string is dependent upon the relationships
between the unique values. There are H! possible orders of

appearance, or output permutations, of the M unigque items.

Given a knowledge of only N and M, there are many
ways in which the redundancies can be distributed. Let R be
a vector of length M such that each component is 2 1 and
their sum is N. When R is associated with a vector of H

unigue objects, it specifies a redundancy distribution.

Consider a vector X of M unique objects and some R,
associated with X. Let Y be a permuted vector of X and
associate R with Y also. Both the sets of objects defined by
X and R and by ¥ and R have M! possible unique sorted
permutations. But it is clear that they are isomorphic.
Therefore only one of the sets need be considered when
computing the number of unique and possible output
permutations. This isomorphism exists whenever two
redundancy vectors, which are equal as ordered partitiomns of
N, are applied to the same set of unique objects. Note that
if the redundancy vectors, R1 and R2, are unique ordered

partitions of N, this isomorphism between sets of MH!
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permutations does not exist. Therefore, if ¥ = £(N,M) is the
number of ordered partitions of N into M parts, there are

M!xW unique and possible output permutations.

For example, consider the case in which N=7 and H=4.
There are W=3 distinct (in an unordered sehse) wvays of
distributing the redundancies. The possibilities are:
1) 1 item appears 4 times
3 items appear 1 tire
2) 1 item aprears 3 times
1 item appears 2 times
2 items appear 1 time
3) 3 items appear 2 times
1 item appears 1 time
For each of these there are M!=4! possible and unique output
permutations. So, in total, there are 3x4!=72, as opposed to

71=5040, possible and unigue output orderings.

Given this information regarding the number of
outputs that need be considered, the lower bound on the
number of comparisons required can be established. It is
reasonable to use here a tertiary rather than a binary
computation tree due to the fact that equality of itens is
being considered as well as simply < and >. This implies
that a comparison can yield a result of &, =, or >. For such
a tree, with M! x W leaves, the depth of the tree must be at

least log (M! x W) and therefore at least that many tertiary
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comparisons are required to be able to sort any N numbers of
which_u are .unique. However, since log3 x < 1log x and for
the sake cf comparison, throughout the rest of this

discussion a binary computation tree will be assumed.

It is interesting to consider the behaviour of W
with respect to N and M. Note that W is equal to the number
of ordered partitions of N-M into at most M parts. For N>>H,
a reasonable estimate of W is [5]:

(N-M-1)! / ((M-1)1 (N-2M) 1N!).
Thus, using a binary computation tree, the theoretical lower
bound on the number of comparisons required is:
log (N-M=1)! - log (M-1)! - log (N-2M)!

Since M<<N, this lower bound is much less than log N!.

Results as to the value of W are also available (5]
for thelcase in which M £ N < 2M. For this case, the number
of ordered partitions of N-M into at most M parts is equal
to the number of ordered partitions of N-H. It has been
shown that log W approaches
m(2 (N-4) 73)L/2
asymptotically. Exact values of W for 0 < N-M < 100 are also

32. The

available [5]. Consider the case in which N-HM
value of W is 8,349 and the ratio of:

(log (WzM!)) / (log N!)
for different values of N and H, assuming a binary

computation tree, are given on the next page.
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u N Ratio
32 64 44
50 82 .56
60 92 .60
68 100 .65

It has been established that the theoretical lowver
bound on the number cf comparisons required to sort N itenms
with redundancies is less than that for sorting N non-
redundant items.]Because such a difference in the
theoretical lower bound exists and because sorting is often
carried out on lists which contain redundancies, the problen
of deriving sorting algorithms which operate efficiently on

such lists is now considered.

First consider the quicksort algorithm. Recall that
this is a partitioning algorithm in that, at each iteration,
lists are divided into 3 sublists. The iteration procedes
until a list of length 2 occurs. These items are compared.
and placed in sorted order. If there is a sublist of length
k>2 in which all items are the same value, and if the normal
iteration.procedures were carried out, there would be k-2
more subdivisions of this sublist, requiring
(k+1) (k-2)/2 comparisons. However, none of these comparisons
is necessary as the sublist of size k is in place and
sorted. Therefore the iteration procedure should have been
halted for this sublist. The problem, then, is to recognize

at which point the normal iteration should be halted. This
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is simply a problem of determining when a sublist contains

only equivalent data items.

Generally it is not desirable to check every
sublist, before dividing it into two sublists, to see if all
items are equivalent. The a priori knowledge of redundancies
bmay be used to determine an optimum sublist size at which to
start checking for equivalent values. If, for instance, it
is known that most of the duplicated items will appear
between 3 and 5 times, it then is reasonable to check all
sublists of size 5 to see if all items are equal. Note that
if only 2 unique values are found in a sublist then, at the
next iteration, all items will be in place if the minimum
valued item is used as a median estimate (assuming 'less

than or equal to' and ‘greater than' comparisons).

If the checking of sublists is done for lists of
size k or less then k must be such that the number of
comparisons required to determine equality of all items in
" the sublist (i.e., k-1 comparisons) is significantly less
than the number of comparisons required to complete the
iteration process (i.e., (k+1) (k-2)/2). On the average, if
the sublist contains items of different values, then k/2

comparisons have been wasted.

A second class of sorting algorithms that may be

modified to operate more efficiently are the address
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calculation sorts. The major difference lies in the fact
that the address calculation function need only distribute
items M-ways rather than N-ways. If a linked list structure
is used, then information about the redundancies could be
used to determine when items which were distributed into the
same bucket should undergo another distribution phase andi
when they should be checked for equivalence. Information
regarding the distribution of redundancies is also useful in
deriving a bin technique suitable to the data to be sorted

and thus requiring less adjustment.

In both these cases, the more information that is
available about the possible distribution of redundancies,
the easier it is to produce a more efficient algorithm. If
it is known precisely how the redundancies will occur then
an address calculation sort can be used to sort the list in
one distribution phase. However, an extension of what has
been discussed in this section is the case in which the
probability distribution of the population from which the
items in the list are drawn is known or cam be well

estimated.

4,2.2 Knowledge of Probability Distribution

A knowledge of the probability distribution of the
data values can easily be used to achieve efficient sorting.

For example, with such information, an address sort for
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which the expected number of data moves is very small could
be derived. This, however, implies a storage ratio of at
least 2 and, if the redundancies are not distributed
uniformly, many comparisons may be necessary. 2 method is
now proposed for sorting large data lists containing much
redundancy. This method has a storage ratio of approximately

(N + 2M)/N, where M is the number of unique items.

Assume that the list to be sorted consists of items
coded in a Huffman code, so that the items appearing most
frequently have the shortest code words. Basically, a
downward radix exchange sort is used to place all equivalent
items into groups. After the i-th iteration, all code words
of length i are in place and need not be considered further.
Upon completion of the sort, groups of items could then be

output in the desired order.

The important variables, subroutines and conventions

used in the algorithm are as follows:

Variables

1. STRING
- STRING is a linked list of variable length with
the maximum number of entries equal to the number
of code words.
- Entries in STRING are of the form:
INDEX ,REP,POINTER
where:
INDEX—-is an index into the list to be sorted.
REP--is used for two purposes:
a) to indicate when the items in the sublist
pointed to by INDEX are in sorted
position, and
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b) when the items are in sorted position, REP is
incremented at each iteration for
the purpose of proper indexing into STRING.
- 1Initially STRING contains one entry, vwhich is
given as input:

1,0,blank
2. START
~ START is a pointer to the first entry of STRING.
3. s .

- S is used to indicate the number of entries in
STRING.

- Initially s=1

4, STP
- STP is used as a pointer into STRING.
- 1Initially STP=0
5. I
- I is the iteration counter.
- Initially I=0
6. TABLE

-~ TARLE contains as entries all code words arranged
in ascending order with respect to length. Those
code words of equal length are in ascending order
on value.

- The entries are of uniform length and a non-binary
character indicates the end of each word.

7. T
- T is a pointer into TABLE.
- Initially T=1

8. LIST

- LIST is the list of N items to be sorted.

~ TItems are stored in =ntries of uniform length,
which is determined by the length of the longest
code word.

Subroutines
1. SPLIT

-~ SPLIT has input parameters I, Q, R and output
parameter L.

- does a binary radix exchange on items fronm
positions Q to R in LIST, on the I-th bit (high to
low order).

- Q<L £ R+1 is the position in LIST of the start
of the 1's sublist.

2. GETSPACE

- GETSPACE creates a new record of the same format
as an entry in STRING. The record returned is
temporarily named NEWENT.
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Algorith

A(x) refers to the address of x.

INDEX (J), KEP(J), POINTER(J) refer to the INDEX, REP,
or EOINTER field, respectively, of the J-th entry in
STRING.

The symbol *=' is used for assignment.
.GE.,.NE.,.EQ.,.LE., and .GT. are logical tests for
'greater than or egqual', 'not equal', ‘equal', 'less
than or equal', and '‘greater than®.

In order to eliminate needless detail, STRING is
indexed as a table, rather than as a llnked list.

Given the variables as described, the proposed

algorithm is as follows:

1.

Initialize
- I=1
- S=1
STP=0
- T=1
START=2 (INDEX (1))
If STP.GE.S
THEN go to 13
ELSE STP=STP+1
If REP(STP).NE.O
THEN REP (STP)=2xREP (STP)
go to 2
If INDEX (STP).NE.blank
THEN J=0
go to 7
GETSPACE
NEWENT (1) =INDEX (STP)
NEHENT (2) =REP (STP)
NEWENT (3) =POINTER (STP)
POINTER (STP) =A (NEWENT)
S=S+1
STP=STP+1
go to 2
If POINTER(STP+J) .EQ.blank
THEN R=N
go to 9
ELSE J=J+1
If INDEX(STP+J).EQ. blank
THEN go to 7
ELSE R"INDEX(STP+J)-1



10.

1.

12.

3.
14,

15.

16.

17.

18.

19.

Q=INDEX (STP)

SPLIT (1,Q,R,L)

GETSPACE

If L.NE.Q

THEN go to 12

ELSE NEWENT (1) =blank
NEWENT (2) =0
NEWENT (3) =A (INDEX (STP))

If STP.EQ.1

THEN START=A(NEWENT)
go to 6

ELSE POINTER (STP-1)=A (NEWENT)
go to 6

If L.EQ.R+#1

THEN NEWENT (1) =blank
NEWENT (2) =0
NEWENT (3) =POINTER (STP)
POINTER (STP)=A (NEWENT)
go to 6 .

ELSE NEWENT (1) =L
NEWENT (2) =0
NEWENT (3) =POINTER (STP)
POINTER (STP) =A (NEWENT)
go to 6

J=0

If TABLE(T) of length I

THEN J=J+1 :

PNTR (J) =TABLE(T) +1
T=T+1
go to 14

If J.EQ.0

THEN go to 19

ELSE SUN=0
K=1
P=1

If REP(K).EQ.0

THEN SUM=SUN+1

ELSE SUM=SUN+REP (K)

If PNTR(P) .EQ.SUM

THEN REP (K) =1

P=P+1
ELSE K=K+1
go to 16
If P.LE.J
THEN K=K+1
go to 16

J=1

68
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21.

~

69

If REP(J) .NE.O
THEN J=Jd+1
ELSE I=I+1.
STP=0
go to 2
If J.GT.S
THEN STOP
ELSE go to 20

The major loop in this algorithm is from statements

2 to 21. Each time this loop is started, I is incremented.

This loop contains four loops of importance. The loop from

statements 2 to 12 check the following for all entries,

J=1'2'o ce 'S' in STRING:

1)

2)

3)

if, in statement 3, REP(J).NE.O

then the items ip the sublist pointed to by INDEX(J)
are in sorted position and need not be split.

if, in statement 4, INDEX(J).EQ.blank

then some code word or words are missing and the entry
is maintained only for indexing purposes.

if neither 1) nor 2) is true

then the sublist pointed to by INDEX(J) is split and a
new entry is added to STRING so that there is an entry

for the 0 and for the 1's sublist.

The loop in statement 14 checks TABLE for code words of

length I and, for each, stores its value+1 in PNTR. The loop

from 16 to 18 finds entries in STRING pointing to the code

words of length I and sets REP for these entries to 1,

indicating that the sublist is sorted. The last loop, from
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20 to 21, checks if REP is non-zero for all entries in

STRING. If so, the list is sorted.

A brief description of the Huffman coding scheme [9]
will further clarify the algorithm. The Huffman coding
system results in a set of»variaﬁle length code words such
that, for any two items to be coded, say X,Y¥. where
p(x)<p(y) (where p(x) is the probability of x), the length
of the code word for y is less than or equal to the'length
of the code word for x. In other words, the more probable
the item, the shorter is its code word. In the case to be
considered here, the code words are binary strings. Another
important characteristic of the code words derived is that
they are comma free. In other words, if 10 is a code word,
no other code word starts with 10. Thus, after I iterations,
all equal code words of length I are grouped together and no
code woerd of greater length can be in the group. A
characteristic of minor importance is that, if the length of
the longest code word is,.say, 7 then every binary number
p<26, is either a code word or the first part of a code
word. For such a code to be derived it is necessary, of
course, that the probabilities of the values to be coded be

known.

Before discussing the advantages of a sorting
procedure as has just been described, it should be noted

that this procedure is not suggested for general use in any
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sorting problem. An underlying assumption is that the
probability distribution of the population from which the
items are drawn is known or can be closely‘approximated.
Note also that this procedure is suggested for use in cases
for which the number of unique items is relatively stable

and much less than N.

One advantage of such a procedure is generality.
That is, no matter what the population distribution, ihe
algorithm is applicable and need not be altered for
different distributions. This is due to the fact that the
code itself contains much information regarding the

distribution of values.

Perhaps the most important advantage of this
procedure is the fact that the most probable values are
placed in sorted position earliest. This is because the most
probable values have the shortest codes. Once placed in
scrted position, these items are not dealt with in
subsequent iteraticns. Therefore, only a small number of

items, the least probable, are handled in all iterations.

Also to be noted is the fact that complete sets of
items with identical values are placed in sorted position at
the samé iteration, for any size of set. Not only are they
placed in sorted position but it is easily recognized when

they are in position and need not be considered further.
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This is different than many of the commonly used sorting
algorithms for which items are positioned one at a time and
for which it is difficult to detect if, in fact, a group of
items are all of eéuivalent value and all in sorted

position.

Finally, this procedure has the advantage of a
constant bound on the number of iterations. If there are N
items to be sorted and M code words, as the size of N grows,
with M constant, the upper bound on the number of iterations

required remains constant.

Another possible advantage of this procedure is the
fact that single bit comparisons are used. At each
iteration, binary splitting of sublists is done on the basis
of the value of a single bit, rather than on the value of an
entire item. The characteristics of the computer used

determine whether single bit operations are faster.

One question to be considered is whether or not
existing algorithms can be as efficient as the proposed
algorithm, given the same amount of information about the
distribution of values. In many cases, the algorithms cannot
be altered to take advantage of this information, as was
discussed in Chapter 3. One algorithm which could make use

of such information is quicksort.
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Given a priori information regarding the probaflify
distribution of the population from which the items in the
list were chosen, near perfect median estimates could be
derived for use in the quicksort algorithm. Theralgotithmv
would then require approximately log N itérations to sort N
items. At each iteration, comparisons of entire items,
rather fhan of single bits, are made. As N grows, the number

of iterations required will grow.

Consider the problem of sorting 64 items, of which
13 are unique with probabilities of occurrence as shown in

Table 9 [9].

Table 9. Example of Huffman Code

Item Probability Code # of Occurrences
A .20 10 13
B .18 000 11
o .10 110 6
D .10 111 6
E .10 011 6
F .06 0101 4
G .06 00100 4
H .04 00101 4
I .04 01000 3
J .0l 01001 2
K .04 00110 2
L .03 001110 2
M .01 001111 1

Quicksort would require approximately log 64 = 6 iterations.
The number ofcomparisons required at each iteration are

approximately as shown on the following page.



T4

327

Because the size of the longest code word is 6; the
proposed algorithm would require 6 iteratiomns as well.
However, the number of comparisons required for each
iteration with the proposed algorithm are as follous:

Iteration Comparisons

S e i ——— —

1 64
2 - 6l
3 51
4 22
5 18
6 3

T222
Therefore, the total number of comparisons required for the
proposed algorithm is 222 as opposed to 327 for quicksort.
Note also that these are bit-wise comparisons rather than
full item comparisons. If the number of unique items were to
remain constant while the number of items in the list became
128, the proposed algorithm would still require 6 iterations
and quicksort would require 7. Approximately 444 comparisons

would be required for the proposed algorithm, while

guicksort would require 786.
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4.2.3 Knowiedge.of Ordered Sublists

Another possible form of a priori information £hat
may be available regarding the data is the knowledge of the
existence of sorted sublists within the list. If it is known
that such sublists do exist, then certainly it is ﬁore
efficient to make use of the information by choosing an
algorithm that will not 'waste time' with ordering groups of

items that are already in sorted order.

Given a knowledge that the list contains sorted
sublists, certain gquestions must be considered. For
instance, are thevsublists of approximately equal length or
is there a great variation in the size of the sublists? If
the sublists vary greatly in lemgth, is it only because
there are some very small sublists while the rest are of
approximately equal length? Another question to be
considered is whether or not the delimiting points of the
list into sublists are known. Finally to be considered is

vhether or not sorting is to be done in core.

Most random-access sorting algorithms cannot be
ecasily adapted to make use of the fact that the list to be
sorted contains ordered sublists. The natural merge sort,
however, is well adapted~to this type of data. Merge sorting
is most efficient when all lists at the same level of the

merge are of approximately the sane length [ 15]. Therefore,
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if it is known that there is a great variation in the
lengths of the ordered sublists, then the shorter lists
should be merged until all lists are of approximately the
same length. Note that the sequence preserving
characteristic is lost. If delimiting points of the sublists
are not known, N-1 comparisons will yield this information.
If all the sublists, except tﬁose which are very small, are
of approximately the same length, then the small sublists
may either be placed into a non-trivial sublist or may
themselves be sorted to form a larger sublist. Which of
these two approaches is the more efficient depends upon the
nunber of single items and the size of the average non-
trivial sublist. Aésume there are r single items and the
average size of a non-trivial sublist is s. To place the
items into sorted position in non-trivial sublists would
require approximately r log s comparisons. To order the
single items would require approximately r log r

_comparisons.

If a serial merge sort is used for such data, and if
it is expected that there will be great variation in the
‘sizes of the strings, then a replacement sort procedure is
recommended. This will serve to produce longer strings [15]
and should tend to minimize the number of very short

strings.
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4.2.4 Groups Ordered with Respect to Each Other

It may be known that the data list consists of
groups of contiguous items, L(1),L(2),...,L(r) such that,
for any i,j, all items in group L(i) bear a certain relation
(e.g., S, 2) to all items in group‘L(j). In such a case, it
would appear inefficient to sort the list of N items paying
no attention to the known relationships between items that
exist. If, for instance, the list consists of r groups of
size p then, for every item, its relationship with (r-1)p
other items is known. A reasonable approach, then, would be
to sort separately the groups of unordered items in proper
order. To sort these groups would require approximately
rxp log p = N log p = N (log N - log r) = N log N - N logr
comparisons. To sort the list as a whole would require
approximately N log N comparisons. Since the groups were
sorted one at a time, the extra storage space required would
be the same as that required for a list of size p, rather
than for a list of size N. Therefore a saving in storage is

also achieved in this way.

This saving in the number of comparisons required
and in storage space required is less when the number of
groups is small. Also, if the size of the groups is variable
then, the closer that the size of the largest group is to N,
the smaller is the saving in time and space. However, the

savings in comparisons and storage space can be extremely
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significant in certain cases and the programming effort

required to effect a more efficient algorithm are minimal.

4.2.5 A Bound on Distance

Iﬁ this section, consideration will be paid to the
case in which the-known information about the data to be
sorted is in the form of a bound on the distance an item can
be from its sorted position. An algorithm that can be easily
adapted to make use of this type of information is the Shell
sort. This algorithm is efficient largely because, with the
initial choice of a large increment, an item can be moved a
large distance towards its final position with only one

comparison.

If there is a bound on the distance an itenm can be
from its final position then this bound may be used to
decrease the size of the initial increment as was explained
previously. The choice of a smaller initial increment
results in the saving of one or more pass. It has been shown
[11] that, for the Shell sort, the saving of one pass is as

desirable as saving (10/9)N data moves.

If the known bound on the distance that an item can
be from its final position is r and if the natural sequence
of increments is d(1),d4(2),...,1 then this series can be

modified to start at d (i) such that d(i+1) is less than r
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and d(i) is greater than or equal to r. Such a mohification
results in a saving of both comparisons, and Qerhaps, data
moves. By simply using one less pass, up to N/2 comparisons
can be saved. Any data moves that may have resulted from the
passes which are deleted from the sort procedure are
unnnecessary since it is known that an item is not a
distance greater than r from its final position. These

unnecessary data moves are also thereby avoided.

The first pass made with such a choice of initial
increment need not follow the normal bubbling procedure. For
instance, if two items a,b are compared and interchanged
then neither a nor b need be involved in another comparison
in the initial pass as both have been moved a distance
greater than or equal to the bound on which an item may be
from its final position. The subsequent passes will be as
for the normal Shell sort procedure. Therefore this
algorithm is easily modified to make use of such information
and to effect savings in both comparisons and, in sonme

cases, data moves.

4,3 Use of Information Gained Through Comparisons

One aspect of the problem of using information to
gain more efficient sorting that has been discussed [1] is
that of making the most of information gained through

comparisons. Given N data items, there are N!/(N-2)!2!
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possible binary comparisons [1]. However, in the course of
sorting it will probably be decided that some of these-
‘Ccomparisons are not necessary. A comparison is unnecessiry
if it is possible to calculate in advance the result of the
comparison, i.e., the algorithm must make use of the
transitivity of the order relation to determine the result

of the comparison [1].

In studying the phenomenon of applying tke
‘transitivity relation in order to decrease the number of
comparisons required, there have been [ 1] some definitions
specified. Given that an algorithm can be defined as a
series of compariscns of the form (a,b) where a and b are
two items being compared, a prediction is defined as a
series of 3 comparisons of the form (a,b); (b,c); (a,c). If it
is found that a<b, b<c or that a>b, b>c then the result of
the comparison (a,c) is known and the comparison need not be
made. Therefore, a prediction is defined as active over a
set of data if either of these cases holds. It should be
noted that, while previous analysis [ 1] assumes that these
comparisons are consecutive, it is possible to consider a
set of 3 comparisons as a prediction, whether or not this
comparison series is interspersed with other comparisons. If

a(i) denotes the i-th of n data items, then a general form
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of a prediction can be defined. This generalized form is the
series of comparisons:

@M.,a(2);@(2,a3)) -.. @k=1),ak));al),alk))
and the comparison (a(1),a(k)) is actively predicted if
either:

a(<a(2)<...<ak-1)<a (k) or

a(1)>a(2)>...>a(k-1)>a (k).
Note that equality can be included in the definition of

active prediction.

A set of predictive algorithms has been defined [ 1]
and comparison made of their relative efficiency (the
average number of comparisons made). This analysis is not
relevant here as most commonly used sorting algorithms are
not included in the set of predictive algorithms. The
important point is that the ability of én algorithm to
recognize predictions and to alter the comparison series

when they are active, can result in greater efficiency.

Two cases of specific interest indicated by the
analysis previously described will now be coansidered. The.
first concerns sorting lists containing redundancies. If,
during the series cof comparisons, it is found that A=B then
any comparisons later called for between B and an item with
which A has been compared or vice versa need not be carried
out, as the results of such comparisons have been actively

predicted. Thus, an algorithm making such comparisons is
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less.éfficient that an algorithm in whicn such unnecessary
comparisons are not made. While this is an obvious
Conclusion, many algorithms do not ntilize information
coiicerning equality of iteuns. Non-partitioning transposition
sorts and the ranking sorts are algorithms which do not

incorporate prediction of this type.

The second case to Le coasidered is an example of an
algorithm in which best use was not made of the information
gained in previous comparisons. The Shell sort, as
originally defiﬁed, used a series of increments,
a(1),d(2) yee.,1, where d(1) = N/2 and d(i+1) = 4(i)/2. In
the first iteration a(1) was compared with a (N/2+1). Assume
it was found that a(1) < a(N/2+1). In the second iteration
a(1) is compared with a(N/4+1). Assume that a(1) > a(N/u+1).
The next comparison called for was a(1) with a (N/2+1) which
is needless. Similar cases can be found throughout the
original Shell sort algorithm. It was for this reason that
the Shell sort was modified with respect to the choice of
increments and, thus modified, the algorithm proved to be

more efficient.

The concept of predictions has been introduced and
it has been pointed out that efficiency with respect to the
utilization of information is important in achieving
efficient sorting. While inefficiencies may be 'hidden' in

the algorithm, it is worthwhile to examine algorithms for
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the purposes of determining if inefficiency in the
comgarison procedure is present. This may be due to
reglecting to make use of the transitivity of the ordering
relation or it may simply, as with the Shell sort, be a
problem of making comparisons that have already been made.
In any case, inefficiency is due to failure to recognize

when a comparison need not be made.

In this chapter the problem of making use of
information to achieve more efficient sorting has been
discussed. This information may either be a priori or may
simply be that which is gained through comparisons. In
either case, it has been shown that more efficient sorting
éan be achieved by méking full use of the information

available.
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Chapter 5

Conclusion

The primary classification of sorting algorithms is
on the basis of whether or not serial-access files can be
used throughout the procedure. Those algorithms intended for
implementation hsing serial-access files are referred to as
serial sorts and can be further classified as merge, column
or paftial pass algorithms. Those algorithms intended for
implementation using random-access files are referred to as
random-access or internal sorts and can be further
classified as distributive, merge, tree structure, or

strictly comparative techniques.

The efficiency of serial sorts is evaluated in teras
of the number of passes over the input 1list required for a
fixed number of files. It has been shown that single phase
techniques are more efficient than double phase techniques,
and that partial pass techniques are often the most
efficient. While merge sorts can take advaﬂtage of sorted
ofder in the input list, no serial algorithms can be readily
adapted to utilize information regarding such order or the

distribution of key values.
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Random-access sorts are evaluated with respect to
the number of comparisons and data moves required and to the
storage ratio. Tree structure and nerge techniques cannot be
easily modified to make use of information regarding
ordering or duplications. Neither of these classes include
algorithms whose efficiency increases significantly when
duplications are present. The class of strictly comparative
algorithms includes algorithms that take advantage of the
sorted order of the input list. Some strictly comparative
algorithms can be modified to utilize information regarding
distribution of values. Distributive algorithms do not take
advantage of sorted order. While radix sorts cannot utilize
information regarding the distribution of key values,
‘address calculation sorts are easily modified to achieve

more efficient sorting when such information is available.

Information regarding the data to be sorted may be
available at the outset or may be gained, fhroughout the
sorting procedure, by means of comparisons. A priori
information regarding the distribution of data values or
regarding ordering present within the list may be available.
It has been shown that the number of comparisoms required to
sort a list of items with redundancies is less than for a
list of non-redundant values. The problem of utilizing
intformation about the data to gain more efficient sorting
has been discussed and some solutions presented. Since, for

many sorting applications there is some known information
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about the data, the problem of utilizing information to
achieve more efficient sorting is worthy of future study.
The most importanf problen is that of developing techniques
for efficiently sorting data lists containing redundancies.
This involves the problem of altering the comparison series
to avoid repetitious comparisons when two items are found to
be equal. Such 'set oriented' algorithms would be of great
value for many sorting applications. The development of
algorithms specifically for defined fcrms of input data is
also of value, in that, with such tailored algorithus, gains

in sorting efficiency can be made.
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