
Improving AI in Skat through Human Imitation and
Policy Based Inference

by

Douglas Rebstock

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Douglas Rebstock, 2019

Abstract

Creating strong AI systems for trick-taking card games is challenging. This is

mostly due to the long action sequences and extremely large information sets

common in this type of game. Thus far, search-based methods have shown to

be most effective in this domain.

In this thesis, I explore learning model-free policies for Skat, a popular

three player German trick-taking card game. The policies are parametrized

using deep neural networks (DNNs) trained from human game data. I produce

a new state-of-the-art system for bidding and game declaration by introducing

methods to a) directly vary the aggressiveness of the bidder and b) declare

games based on expected value while mitigating issues with rarely observed

state-action pairs. While bidding and declaration were improved, the cardplay

policy performs marginally worse than the search-based method, but runs

orders of magnitude faster.

I also introduce the Policy Based Inference (PI) algorithm that uses the

resultant model-free policies to estimate the reach probability of a given state.

I show that this method vastly improves the inference as compared to previ-

ous work, and improves the performance of the current state-of-the-art search

based method for cardplay.

ii

Preface

This thesis is based on joint work of which I was the first author. Chapters 3

and 4 are based on joint work with Chris Solinas and Michael Buro [RSB19].

Chapters 5 and 6 are based on joint work with Chris Solinas, Michael Buro and

Nathan R. Sturtevant [Reb+19]. The remaining chapters include work from

these papers. Both papers will appear in the proceedings of IEEE Conference

on Games (CoG) 2019.

iii

Education without values, as useful as it is, seems rather to make man a

more clever devil.

– C.S. Lewis

iv

Acknowledgements

I would like to thank Dr. Michael Buro for his supervision and mentorship, and

of course, for introducing me to the beautiful game of Skat. I am thankful for

the friendship and support from my peers Ian, Michael, Marius, Nicolas, Arta,

Shuyi, and especially Chris. In addition, I would like to thank Dr. Nathan

Sturtevant for his guidance.

And I would like to recognize Dr. Andrew Martin for his support in my

early research career to which I am forever grateful. I have been very fortunate

over the years as a student at the University of Alberta, and I am thankful for

all the investments the institution has made in me. I specifically acknowledge

the NSERC funding I received to produce the central research of this thesis.

While this funding may not seem like much, it is absolutely critical in allowing

individuals like me to pursue our passions and hopefully enrich society as a

whole. And of course, none of this would be possible or worth it without my

friends and family.

Thank you.

v

Contents

1 Introduction 1

2 Background and Related Work 5
2.1 Background Material . 5

2.1.1 Imperfect Information Games 5
2.1.2 Trick-taking Card Games 7
2.1.3 Skat . 7

2.2 Related Work . 10
2.2.1 Determinized Search Techniques 10
2.2.2 Inference in Search . 12
2.2.3 Counter Factual Regret (CFR) 14
2.2.4 Supervised and Reinforcement Learning 14
2.2.5 State-of-the-Art in Skat 15

3 Imitation Based Policies for Pre-Cardplay in Skat 17
3.1 Pre-cardplay Method . 17
3.2 Bidding Experiments . 23

4 Learning Policies from Human Data For Cardplay in Skat 28
4.1 Cardplay Method . 28
4.2 Cardplay Experiments . 30

5 Policy Based Inference in Skat 34
5.1 Inference Method . 34
5.2 Direct Inference Evaluation 37

6 Applying Policy Based Inference in Determinized Search 41
6.1 Cardplay Tournament . 41

7 Conclusion 46
7.1 Future Work . 47

References 49

vi

List of Tables

2.1 Game Type Description . 9
2.2 Game Type Modifiers . 9

3.1 Network input features . 19
3.2 Corresponding actions to Network Outputs 19
3.3 Pre-cardplay training set sizes and imitation accuracies 19
3.4 Player configurations in a single match consisting of six hands

(K=Kermit, NW=Network Player) 24
3.5 Game type breakdown by percentage for each player, over their

5,000 match tournament. Soloist games are broken down into
types. Defense games (Def) and games that were skipped due
to all players passing (Pass) are also included. The K vs X
entries list breakdowns of Kermit playing against player(s) X
with identical bidding behavior. 27

3.6 Tournament results over 5,000 matches between learned pre-
cardplay polices and the baseline player (Kermit). All play-
ers use Kermit’s cardplay. Rows are sorted by score differ-
ence (TP/G=tournament points per game, S=soloist percent-
age) Starred TP/G diff. values were not found to be significant
at p=0.01. 27

4.1 Network input features . 29
4.2 Cardplay train/test set sizes 30
4.3 Cardplay tournament results over 5,000 matches between bots

using pre-cardplay policies from the previous section and the
learned cardplay policies. All variants were played against the
baseline, Kermit (TP/G=tournament points per game, S=soloist
percentage). All difference values ∆ were found to be statisti-
cally significant. 31

4.4 Cardplay tournament results over 5,000 matches between bots
using pre-cardplay policies from the previous section and the
learned cardplay policies. All variants were played against the
baseline, Kermit (TP/G=tournament points per game, S=soloist
percentage). Difference values ∆ not found to be statistically
significant at p=0.01 have been starred. 33

4.5 Mirrored cardplay tournament results over 5,000 matches be-
tween Kermit and hybridized bots. DefX indicates that the
hybridized bot used the Kermit card player starting at trick
X for defense and the learned policy prior. SolX indicates the
same thing, except in the soloist context. All values are how
many TP/G the hybridized bot outperformed Kermit. All pre-
cardplay done using Kermit. 33

vii

6.1 Tournament results for each game type. Shown are average
tournament scores per game for players NI (No Inference), CLI
(Card-Location Inference), PI (Policy Inference), and KI (Ker-
mit’s Inference) which were obtained by playing 5,000 matches
against each other, each consisting of two games with soloist/defender
roles reversed. The component of ∆TP attributed to Def and
Sol is also indicated . 43

6.2 Tournament results for each game type. Shown are average
tournament scores per game for players CLI (Card-Location
Inference), PI20 (Policy Inference with 20,000 card configura-
tions sampled), PIF20 (Policy Inference with 20,000 states sam-
pled), PI20 (Policy Inference with 100,000 card configurations
sampled), and C (Cheating Inference) which were obtained by
playing 5,000 matches against each other, each consisting of two
games with soloist/defender roles reversed. 44

6.3 Tournament results for each game type in the 6-way match be-
tween CLI and PI20. 5,000 matches were played for each game
type. 45

viii

List of Figures

2.1 Simple Game tree for perfect information game. 6
2.2 An example of an imperfect information game. Tree is similar

to Figure 2.1, but now P2 cannot distinguish between states
inside the information set (dotted rectangle) since they could
not observe the private move made by P1. 7

3.1 Network architecture used across all game types for both soloist
and defenders. 20

5.1 Average TSSR after Card Number cards have been played. Data
is separated by game type and whether the player to move is
the soloist (left) or a defender (right). 39

ix

Chapter 1

Introduction

Since the early days of computing, there has been a strong fascination with

games. While settling for a Tic-Tac-Toe solver, Charles Babbage had aims of

creating a Chess player back in the 1840s, while Alan Turing hand simulated

the first game of computer Chess in the early 1950s [CHH02]. The fascination

with applying computers to games has only grown since these early days of

computing, and it is an important factor in the field of Artificial Intelligence

(AI). Games are the perfect testbed for intelligent systems, since they can be

arbitrarily complex and have the power to capture the imagination.

Perfect information games are ones in which all the information is public.

Chess is an example of a perfect information game, since the player knows the

exact state they are in simply by observing the board. Over the years, there

has been great success in creating super-human AI systems for games of this

type. Super-human AI systems have been created in games that once were

seen as quintessentially human: Logistello for Othello [Bur97], Deep Blue for

Chess [CHH02], Chinook for Checkers [Sch+07], and most recently AlphaGo

for Go [Sil+16]. Imperfect information games feature private information, so

the players do not necessarily know which state they are in. The techniques

used for perfect information games are very well understood, but creating

strong AI systems becomes much more difficult in the imperfect information

domain.

In this thesis, I demonstrate novel methods to improve upon the state-of-

the-art AI system for Skat, a popular 3 player trick-taking card game. Like

1

most card games, it is an imperfect information game since the players keep

their hands private. Like Contract Bridge, Skat features a bidding and decla-

ration phase, followed by card play. The winner of the bidding becomes the

soloist and plays against the other two players who form a team. Skat is a

large game in terms of both the size of the information sets, and the number

of histories. Informally, an information set is a set of game states that a player

cannot tell apart given his observations and histories are the sequence of states

and actions. At the beginning of cardplay, the size of an information set can

be as large as ≈ 2.8 · 109. Overall, there are ≈ 4.4 · 1019 terminal histories

in the pre-cardplay portion alone and many more when taking cardplay into

account.

Recent advances in Poker [BS18; Mor+17] demonstrate that techniques

based on counterfactual regret minimization (CFR) [Zin+08] can be effective

in large imperfect information games. For these large games, the general ap-

proach for using CFR methods is to first abstract the game into a smaller

version of itself, solve that, and then map those strategies back to the original

game. This process implies a game-specific tradeoff between abstraction size

and how well the strategies computed on the abstraction translate to the real

game. In Skat, however, the size of the game makes this prohibitively difficult.

For example, in Poker where CFR has shown to be effective, before the flop

(when the first three cards are revealed) there are 1326 possible combinations

of public and private cards from the point of view of one of the players [Joh13].

In Skat, there can be 225,792,840 such combinations from the point of view

of the soloist, when only looking at games in which the player picked up the

skat. The sheer size difference makes it difficult to construct abstractions that

are small enough to use with CFR methods, but expressive enough to capture

the per-card dependencies that are vital to success in the full game.

The characteristics in Skat that prevent the application of CFR techniques

are common to other popular trick-taking-card games, like Spades, Hearts,

and Contract Bridge. The most common approach for these games is to use

determinized search algorithms. Determinized search algorithms allow for the

application of perfect information algorithms to imperfect information games.

2

These algorithms are composed of two steps: sampling and evaluation. First,

a state is sampled from the player’s current information set. The state is then

evaluated using a perfect information algorithm such as minimax. While this

has been quite successful, open-handed simulations have been criticized across

the literature [FB98; RN16] because they assume that a strategy can take

different actions in different states that are part of the same information set.

Also, with the large size of the games, determinized search algorithms can be

very computationally expensive.

Inspired by the recent success in AlphaGo, I explored the use of supervised

learning on human data to create neural network parametrized policies for

Skat. With these networks, I present a method for varying the aggressiveness

of the bidder by viewing the output of the imitation network as a distribution

of the aggressiveness of the humans and selecting the action that maps to

the desired percentile of bidder aggression. I improve upon the declaration

policy performance by accounting for rarely-seen state-action pairs without

generating new experience. These contributions lead to a new state-of-the-art

bidding system for Skat, and a reasonably strong card player that performs

orders of magnitude faster than search based methods.

While these policies can be used directly, they can also be used for inference.

Inference is a central concept in imperfect information games. It involves using

a model of the opponent’s play to determine their private information based

on the actions taken in the game so far. Because the states that constitute

the player’s information set are not always equally likely, inference plays a key

role in the performance of determinized search algorithms.

In this thesis, I present an algorithm for performing inference in trick-

taking card games called Policy Inference (PI). It works by using models of

the opponents policy to estimate the reach probability of a given state by

taking the product of all transition probabilities. I use the previously discussed

learned policies as my models for the other players, and apply the algorithm to

Skat. This leads to improvements over the previous state-of-the-art techniques

for inference in Skat, and improved performance of the determinized search

based cardplay method.

3

The rest of this thesis is organized as follows. Firstly, I provide relevant

background information and related work. In the next chapter, I present my

work on learned pre-cardplay policies in Skat, followed by a chapter on learning

cardplay policies. I then present the PI algorithm, and directly demonstrate

its effectiveness in inference and how it improves the current-best search based

method for cardplay in Skat. I finish the thesis with conclusions and possible

future work.

4

Chapter 2

Background and Related Work

2.1 Background Material

2.1.1 Imperfect Information Games

Perfect information games feature only public information. In these games,

all players know the exact state, s, they are in, so they can directly evaluate

their position. Chess is an example of a perfect information game, since the

position of all pieces are always visible. It is not necessary, however, for all

game information to be visible at all times. As long as all decisions and states

are visible and the players move sequentially, it is perfect information. For

instance, a card game in which the initial deal is known and all actions are

public is a perfect information game, since with perfect recall, all information

is public. Recall is the ability to retain information from previous states.

Tree search is commonly used in solving perfect information games. In tree

search, the player evaluates different sequences of moves that follow from the

current state, and selects an action based on the result of this search. Figure

2.1 shows a very simple game that consists of two actions, one taken by Player

1 (P1) and then the second by Player 2 (P2). The value of the outcomes are

shown at the leaf nodes. For instance, the leftmost leaf node has a value of

(10,0) which means P1 would get a reward of 10 while P2 would get nothing.

Before deciding to choose A or B, P1 can reason what would P2 do if they

were to choose either action. This game is trivial, since P2 would choose Right

if P1 chose A and Left if P1 chose B. Thus, P1 can look ahead and see the

5

P1

P2

(10, 0)

Left

(0, 1)

Right

A

P2

(1, 0)

Left

(0,−100)

Right

B

Figure 2.1: Simple Game tree for perfect information game.

only positive outcome happens if they choose B, resulting in a reward of 1.

This is a trivial example of lookahead search.

Imperfect information games feature private information. Due to this pri-

vate information, a player does not always know which state they are in, but

only which set of states they could be in which is termed the information set,

I. This causes problems with traditional search techniques, since the player

cannot directly perform search on the current state if they do not know what

the state is. Within this context, a player must infer the probability that they

are in a given state. When viewed from the start of the game, this is called

the reach probability, η.

Figure 2.2 shows an example of an imperfect information game tree. The

only difference in this game is that P2 does not observe the action of P1, so P2

does not know which of the two states they are in. These two states make up

an information set for P2 and it is demarcated with a dashed box in the tree.

Suppose you were P2, and you wanted to do a look ahead search. They only

problem is that you do not know what the next state will be, since you don’t

know where you are. While this problem can be solved using game theory, it

would suffice to say that it would be trivial to solve if P2 knew the probability

that they are in any given state. With this knowledge, they could simply find

the expected value of moving left or right and select the one with the greater

value.

6

P1

(10, 0)

Left

(0, 1)

Right

A

(1, 0)

Left

(0,−100)

Right

B

P2

Figure 2.2: An example of an imperfect information game. Tree is similar to
Figure 2.1, but now P2 cannot distinguish between states inside the information
set (dotted rectangle) since they could not observe the private move made by
P1.

2.1.2 Trick-taking Card Games

Card games are a prominent example of imperfect information games. Typi-

cally, players hold private information in the form of their hands, the hidden

cards they hold. Trick-taking card games like Contract Bridge, Skat, and

Hearts are card games in which players sequentially play cards to win tricks.

A trick leader plays a card, and the remaining players play a card in turn.

As the game progresses, information set sizes shrink rapidly due to hidden

information being revealed by player actions.

2.1.3 Skat

In this section I provide the reader with the necessary background related

to the three player trick-taking card game of Skat. Originating in Germany

in the 1800s, Skat is played competitively in clubs around the world. The

following is a shortened explanation that includes the necessary information

to understand the work presented here. For more in-depth explanation about

the rules of Skat, interested readers should refer to https://www.pagat.com/

schafk/skat.html.

Skat is played using a 32-card deck which is built from a standard 52-card

by removing 2,3,4,5,6 in each suit. A hand consists of each of the three players

being dealt 10 cards with the remaining two kept face down in the so-called

skat.

7

https://www.pagat.com/schafk/skat.html
https://www.pagat.com/schafk/skat.html

Games start with the bidding phase. In the cardplay phase, the winner of

the bidding phase plays as the soloist against the team formed by the other two

players. of the game. Upon winning the bidding, the soloist decides whether

or not to pickup the skat followed by discarding two cards face down, and

then declares what type of game will be played during cardplay. The game

type declaration determines both the rules of the cardplay phase and also the

score for each player depending on the outcome of the cardplay phase. Players

typically play a sequence of 36 of such hands and keep a tally of the score over

all hands to determine the overall winner.

The game value, which is the number of points the soloist can win, is the

product of a base value (determined by the game type, see Table 2.1) and

a multiplier. The multiplier is determined by the soloist having certain con-

figurations of Jacks and other high-valued trumps in their hand and possibly

many game type modifiers explained in Table 2.2. An additional multiplier is

applied to the game value for every modifier.

After dealing cards, the player to the right of the dealer starts bidding by

declaring a value that must be less than or equal to the value of the game he

intends to play — or simply passing. If the soloist declares a game whose value

ends up lower than the highest bid, the game is lost automatically. Next, the

player to the dealer’s left decides whether to accept the bid or pass. If the

player accepts the bid, the initial bidder must proceed by either passing or

bidding a higher value than before. This continues until one of the player’s

decides to pass. Finally, the dealer repeats this process by bidding to the player

who has not passed. Once two players have passed, the remaining player has

won the bidding phase and becomes the soloist. At this point, the soloist

decides whether or not to pick up the skat and replace up to two of the cards

in his hand and finally declares a game type.

Cardplay consists of 10 tricks in which the trick leader (either the player

who won the previous trick or the player to the left of the dealer in the first

trick) plays the first card. Play continues clockwise around the table until

each player has played. Passing is not permitted and players must play a card

of the same suit as the leader if they have one — otherwise any card can be

8

Table 2.1: Game Type Description

Base Soloist Win
Type Value Trumps Condition

Diamonds 9 Jacks and Diamonds ≥ 61 card points
Hearts 10 Jacks and Hearts ≥ 61 card points
Spades 11 Jacks and Spades ≥ 61 card points
Clubs 12 Jacks and Clubs ≥ 61 card points
Grand 24 Jacks ≥ 61 card points
Null 23 No trump losing all tricks

Table 2.2: Game Type Modifiers

Modifier Description
Schneider ≥90 card points for soloist
Schwarz soloist wins all tricks

Schneider Announced soloist loses if card points < 90
Schwarz Announced soloist loses if opponents win a trick

Hand soloist does not pick up the skat
Ouvert soloist plays with hand exposed

played. The winner of the trick is the player who played the highest card in

the led suit or the highest trump card.

In suit and grand games, both parties collect tricks which contain point

cards (Jack:2, Queen:3,King:4,Ten:10,Ace:11) and non-point cards (7,8,9). Un-

less certain modifiers apply, the soloist must get 61 points or more out of the

possible 120 card points in the cardplay phase to win the game. In null games

the soloist wins if he loses all tricks.

Comparison to Contract Bridge

While Skat is a popular trick-taking card game, more research has been done

in Contract Bridge, a game with many similarities to Skat. For this reason,

I present a lot of related work in the domain of Contract Bridge. Both are

trick-based games featuring bidding and cardplay phases. The numerical Skat

bidding seems simpler than Bridge bidding because no bidding conventions

have to be followed and there is not much room (and incentive) in Skat to

convey hand information to other players. However, Skat adds uncertainty in

form of unknown Skat cards in the bidding phase. Other notable differences

include cardplay for points in Skat rather than achieving a certain number of

9

tricks, Skat’s hidden discard move, and changing coalitions versus fixed 2 vs. 2

team play in Contract Bridge.

2.2 Related Work

In this section, I will present prior work on trick-taking card games, use of su-

pervised learning from human data, inference in search, and finally the specifics

of the current state-of-the art computer Skat program.

One WBridge5 [WBr19] and Jack [Sof19] have had recent success in the

World Computer Bridge Championship [Fed19], but due to the commercial

natures of these AI systems, their implementation details are not readily avail-

able.

2.2.1 Determinized Search Techniques

Determinized search techniques seek to apply perfect information algorithms

to imperfect information games. In a perfect information game, a player always

know which state they are in, so they can perform a tree search rooted at the

current state. For an imperfect information game, the player only knows which

set of states they could possibly be in, the information set. As seen earlier,

this makes the naive application of the search impossible. Determinized search

techniques sidestep this issue by assuming a given s within I is the current

state (determinizing), and performing search rooted at this state. These search

techniques are split into two main parts, sampling and evaluation. Sampling is

the repeated determinization of the state, and evaluation is the determination

of the values of the possible actions through the use of search.

Long et al. [Lon+10] explain why trick-taking card games are an ap-

propriate setting for determinized search algorithms. These algorithms are

considered state-of-the-art in several trick-taking card games.

Perfect Information Monte Carlo Tree Search (PIMC)

PIMC [Lev89] is a form of determinized search in which all possible actions are

evaluated by sampling states from the current information state, and averaging

10

PIMC(InfoSet I, int n)
for a ∈ A(I) do

v[a] = 0
end
for i ∈ {1..n} do

s← Sample(I, p)
for a ∈ A(I) do

v[a]← v[a] + PerfectInfoVal(s, a)
end

end
return argmaxav[a]

Algorithm 1: vanilla PIMC. In the algorithm, a is action, p is probability,
and v is value.

the values over the states which were determined using perfect information

algorithms. Algorithm 1 is a basic version of PIMC.

The first successful application of determinized search in a trick-taking card

game was GIB [Gin01] in Contract Bridge with the of PIMC. PIMC has shown

great success in other trick-taking card games including Skat [Bur+09], and

Hearts [Stu08]. The current state-of-the-art for cardplay in Skat uses PIMC

[SRB19].

Monte Carlo Tree Search (MCTS)

MCTS [Cou06; KS06] has shown to be a very strong search algorithm for

perfect information games, as demonstrated by the strength of the AlphaGo

architecture in Go [Sil+16], Chess and Shogi [Sil+17]. Broadly speaking, it

works by maintaining search statistics for each node of the tree based upon

rollouts that passed through that node. UCT [KS06], a form of MCTS, chooses

actions in the rollouts by treating each decision as a bandit problem.

Determinized UCT applies UCT in the imperfect information domain by

determinizing the state for each rollout. Determinized UCT was applied to

Skat [SBH08] with little success. ISMCTS [CPW12] is the application of

MCTS to imperfect information games by maintaining nodes for information

sets as opposed to states as is normally seen in MCTS. ISMCTS still relies on

determinization of the state for each rollout. Singe Observer(SO)-ISMCTS is

11

the single observer variant, and works under the assumption that all moves are

fully observable. Multiple Observer(MO)-ISMCTS takes into account partially

observable moves, and maintains separate tree for each distinct observer.

Imperfect Information Monte Carlo Tree Search (IIMC)

Later, Imperfect Information Monte-Carlo Search [FB13] was introduced. This

replaces the perfect information evaluation, with an imperfect information

evaluation. For example, PIMC could be used for the the evaluation. This

was shown to be very effective in Skat [FB13], and is still the strongest card

player for Skat. The biggest issue with this method though is that its extremely

computationally expensive. Currently, it is not a feasible solution when time is

of importance, which is typically the case in an online decision making setting.

Issues with Determinized Search

In perfect information game trees, the values of nodes depend only on the

values of their children, but in imperfect information games, a node’s value

can depend on other parts of the tree. This issue, called non-locality, is one

of the main reasons why determinized search has been heavily criticized in

prior work [FB98; RN16]. The other main issue identified is strategy fusion.

The strategy for an information set should be the same for any state within

that set since they are indistinguishable by definition. However, during the

determinized rollouts the strategy is now specific to the state. Fusing these

strategies together does not necessarily provide a good overall strategy, and

clearly does not take into account the roll of hidden information.

2.2.2 Inference in Search

In the context of imperfect information games, inference is the reasoning that

leads to the beliefs held on other players’ private information. Inference helps

with non-locality by biasing state samples so that they are more probable with

respect to the actions that the opponent has made. This seems to improve the

overall performance of determinized algorithms. However, the gains provided

by inference come at the cost of increasing the player’s exploitability. If the

12

inference model is incorrect or has been deceived by a clever opponent, using

it can result in low-quality play against specific opponents.

Previous applications of determinized search in trick-taking card games

acknowledge the relationship between inference and playing performance. In

Skat, Kermit [Bur+09; FB13] used a table-based technique to bias state sam-

pling based on opponent bids and declarations. This approach only accounts

for a limited amount of the available state information and neglects important

inference opportunities that occur when opponents play specific cards. Solinas

et al. [SRB19] extend this process by using a neural network to make predic-

tions about individual card locations. By assuming independence between

these predictions, the probability of a given configuration was calculated by

multiplying the probabilities corresponding to card locations in the configura-

tion. This enables information from the cardplay phase to bias state sampling.

While this method is shown to be effective, the independence assumption does

not align with the fact that for a given configuration, the probability that a

given card is present is highly dependent on the presence of other cards. For

instance, their approach cannot capture situations in which a player’s actions

indicate that their hand likely contains either the clubs Jack or the spades

Jack, but not both.

While not providing the likelihood of states, rule based policies can be

used to bias the sampling of states in determinized algorithms. Ginsberg

[Gin01] uses rule based bidding in GIB to sample states that are consistent with

the assumed bidding policy of the other players within the PIMC algorithm.

Likewise, Amit and Markovitch [AM06] use a rule based policy for bidding

in Bridge to limit the number of inconsistencies in sampled worlds in their

proposed determinized search algorithm.

In other domains, Richards and Amir [RA07] model the opponent’s policy

using a static evaluation technique and then perform inference on the oppo-

nent’s remaining tiles given their most recent move in Scrabble.

Sturtevant and Bowling [SB06] build a generalized model of the opponent

from a set of candidate player strategies. My use of aggregated human data

could be viewed as a general model that captures common action preferences

13

from a large, diverse player base.

2.2.3 Counter Factual Regret (CFR)

CFR techniques [Zin+08] work by minimizing counterfactual regret. The coun-

terfactual value, vσ(I) is the expected payoff for a player if they took actions

to reach I multiplied by the reach probability η, given the strategy profiles σ

of all players. vσ(I, a) is the same, except that the player takes a at I. The

instantaneous regret is the difference of these two values, basically how much

the player regrets making the decision to choose a. The counterfactual regret

is the sum over these regrets. Regret matching [HM00] is typically used for

minimizing regret. CFR is shown to able to find an ϵ-Nash equilibrium for two

player zero sum games [Zin+08].

These techniques have proven to be very successful in Poker [BS18; Mor+17].

For larger games, the general approach for using CFR methods is to first ab-

stract the game into a smaller version of itself, solve that, and then map those

strategies back to the original game. This was the case for the Poker appli-

cations. This is problematic for trick-taking card games, such as Skat. With

the vast amount of possible holdings and the highly interactive nature of these

hands, creating good abstractions is very difficult. For example, for a given

game type, Skat has 225,792,840 possible holdings from the point of view of the

soloist after picking up the skat, much larger than the 1326 possible holdings

that a player has in Poker. Recent advances in Regression CFR [Wau+15] may

provide a means of using functional representation within the CFR framework

for Skat, but it is not clear how this would be effectively applied to a game of

this size.

2.2.4 Supervised and Reinforcement Learning

With the recent success in machine learning, directly applying supervised and

reinforcement learning to games has shown great promise. Within the domain

of perfect information games, the foundation of AlphaGo [Sil+16] was built

upon policy and value networks trained on expert human data. One prominent

14

use of learning in the context of trick-taking card games is for bidding, with

great success demonstrated in Contract Bridge.

Yeh et al. [YHL18] directly use reinforcement learning algorithms to learn

a value network for bidding in Bridge, however, this was limited to the case

where the opposing team always passes. While this greatly simplifies the

problem, it ignores key elements of the game. Rong et al. [RQA19] train

a network to predict the individual card locations and use this as an input

into the policy network. Both the inference network and the policy network

were trained using expert human data, but like [Sil+16], both the networks

are refined using reinforcement learning. While showing positive results, both

these contributions are evaluated on the double dummy results, a heuristic for

actual cardplay strength. This is done to avoid using search based algorithms

that are too costly to produce game play.

In the cardplay setting, Baier et al. [Bai+18] leverage policies trained from

supervised human data to bias MCTS results in the trick-taking card game

Factory Spades. This is similar to our approach in that it uses human data

to train an opponent model, but different because their model is not used to

infer opponent hidden information.

In the domain of Hanabi, Foerster et al. present Bayesian Auto Decoder

(BAD) a method of inference for cooperative multi-agent reinforcement learn-

ing problems [Foe+18]. Hanabi is a cooperative card game that features private

information, although interestingly enough a player’s hand is only kept from

themselves. By maintaining a public belief and shared policies, players are

able to better infer their holdings and the beliefs of others. While this line of

research seems promising, it is not obvious how to apply it to the adversarial

setting in Skat and Bridge.

2.2.5 State-of-the-Art in Skat

Previous work on Skat AI has applied separate solutions for decision-making

in the pre-cardplay and cardplay phases. The cardplay phase has received the

most attention — probably due to its similarity to cardplay in other trick-

taking card games.
15

The current state-of-the-art for the pre-cardplay phase [Bur+09] uses PIMC

and evaluates the leaf nodes after the discard phase using the GLEM frame-

work [Bur98]. The evaluation function is based on a generalized linear model

over table-based features indexed by abstracted state properties. These tables

are computed using human game play data. Evaluations take the player’s

hand, the game type, the skat, and the player’s choice of discard into account

to predict the player’s winning probability. The maximum over all player

choices of discard and game type is taken and then averaged over all possible

skats. Finally, the program bids if the such estimated winning probability is

higher than some constant threshold.

Despite its shortcomings, PIMC Search [Lev89] continues be the state-of-

the-art cardplay method for Skat, with the determinized states solved using

minimax search. Inference is done using the card location method described

earlier [SRB19] and is used to bias the sampling of the states in the search

algorithm, so that the likelihood of sampling the state is proportional to the

estimated probability the player is in that state. When time for decision

making is not a factor,the current strongest computer Skat player uses IIMC

with PIMC used for the evaluation [FB13], however, I do not examine this

implementation in my thesis since I find it to be too computationally expensive

for an online player.

Together, the described solutions make up Kermit, the current strongest

Skat AI that has shown to play at expert human level strength [Bur+09].

16

Chapter 3

Imitation Based Policies for
Pre-Cardplay in Skat

It was the goal of the work in this chapter to produce strong and fast policies

for Skat using supervised learning on data from Skat games played between

humans. First, I describe the training of imitation networks using the data,

and how I use those networks to create pre-cardplay policies for Skat. Then,

I present a simple policy that selects the maximum output from the imitation

network that corresponds to a legal action. Next, I study the issue of overly

conservative bidding that comes as a result of the simple aforementioned policy,

and how I can remedy the issue. Finally, I explore using a value network in

conjunction with the imitation network for creating the declaration/pickup

phases’ policies, in order to perform better than using either separately.

3.1 Pre-cardplay Method

The pre-cardplay phase has 5 decision points: max bid for the Bid/Answer

Phase, max bid for the Continue/Answer Phase, the decision whether to pickup

the skat or declare a hand game, the game declaration and the discard. The

bidding phases feature sequential bids between two players, but further bids

can only be made if the other player has not already passed. This allows

a player to effectively pre-determine what their max bid will be. This ap-

plies to both the Bid/Answer and Continue/Answer phases. However, in the

Continue/Answer phase remaining players must consider which bid caused a

17

player to pass in the first bidding phase. The Declaration and Discard phases

happen simultaneously and could be modelled as a single decision point, but

for simplicity’s sake I separate them.

For each decision point, a separate DNN was trained using human data

from a popular Skat server, DOSKV [DOS18]. The server is open to the public,

thus the spread of skill levels is quite large. For discard, separate networks

were trained for each game type except for Null and Null Ouvert. These were

combined because of their similarity and the low frequency of Ouvert games

in the dataset.

The features for each network are one-hot encoded. The features and the

number of bits for each are listed in Table 3.1. The Bid/Answer network uses

the Player Hand, and Player Position features. The Continue/Answer network

uses the same features as Bid/Answer, plus the Bid/Answer Pass Bid, which

is the pass bid from the Bid/Answer phase. The Hand/Pickup network uses

the same features as Continue/Answer, plus the Winning Bid. The Declare

network uses the Player Hand + Skat feature in place of the Player Hand

feature, as the skat is part of their hand at this point. The Discard networks

use the same features as the Declare network, with the addition of the Ouvert

feature, which indicates whether the game is played with the soloist’s hand

revealed.

Note that the game type is not included in the feature set of the Discard

networks because they are split into different networks based on that context.

Assuming no skip bids (not normally seen in Skat) these features represent the

raw information needed to reconstruct the game state as observed from the

player. Thus, abstraction and feature engineering in this approach is limited.

The outputs for each network correspond to any of the possible actions

in the game at that phase. The legality of the actions depend on the state.

Table 3.2 lists the actions that correspond to the outputs of each network,

accompanied by the number of possible actions.

The networks all have identical structure, except for the input and output

layers. Each network has 5 fully connected hidden layers and use rectified linear

units (ReLU) [NH10]. The network structure can be seen in Figure 3.1. The

18

Table 3.1: Network input features

Features Width
Player Hand 32

Player Position 3
Bid/Answer Pass Bid 67

Winning Bid 67
Player Hand + Skat 32

Ouvert 1

Table 3.2: Corresponding actions to Network Outputs

Phase Action Width
Bid/Answer MaxBid 67

Continue/Answer MaxBid 67
Hand/Pickup Game Type or Pickup 13

Declare Game Type 7
Discard Pair of Cards 496

Table 3.3: Pre-cardplay training set sizes and imitation accuracies
Train Size Train Test

Phase (millions) Acc.% Acc.%
Bid/Answer 23.2 83.5 83.2

Continue/Answer 23.2 79.7 80.1
Pickup/Hand 23.2 97.3 97.3

Declare 21.8 85.6 85.1
Discard Diamonds 2.47 76.3 75.7
Discard Hearts 3.13 76.5 75.0
Discard Spades 3.89 76.5 75.5
Discard Clubs 5.07 76.6 75.8
Discard Grand 6.21 72.1 70.3
Discard Null 1.46 84.5 83.2

largest of the pre-cardplay networks consists of just over 2.3 million weights.

Tensorflow [Aba+16] was used for the entire training pipeline. Networks are

trained using the ADAM optimizer [KB14] to optimize cross-entropy loss with

a constant learning rate set to 10−4. The middle 3 hidden layers incorporate

Dropout [Sri+14], with keep probabilities set to 0.6. Dropout is only used for

learning on the training set. Each network was trained with early stopping

[Pre98] for at most 20 epochs. The size of the training sets, and accuracies

after the final epoch are listed for each network in Table 3.3. These accuracies

appear to be reasonable, given the number of options available at each decision

point. The test dataset sizes were set to 10,000. Training was done using a

19

OUTPUT

dropout

dropout dropout

FC
-R

EL
U

 1
02

4

FC
-R

EL
U

 1
02

4

FC
-R

EL
U

 2
56

FC
-R

EL
U

 5
12

FC
-R

EL
U

 5
12

k-
SO

FT
M

AX

ST
AT

E
FE

AT
U

R
ES

Figure 3.1: Network architecture used across all game types for both soloist
and defenders.

single GPU (Nvidia GTX 1080 Ti) and took around 8 hours for the training

of all pre-cardplay finalized networks.

These networks are optimized to predict what action a player from this

dataset would choose given a representation of the game context as an input,

which is done with the goal of using the networks to produce a policy that

is representative of the human players. For this reason, I refer to them as

imitation networks. One issue is that while the exact actions during the bid-

ding phase are captured, the intent of how high the player would have bid is

not. The intent is based largely on the strength of the hand, but how high

the player bids is dependent on the what point the other player passed. For

example, if a player decided their maximum bid was 48 but both other players

passed at 18, the maximum bid reached is 18. For this reason, the max bid

data was limited to the two players who passed in the bidding phase. The max

bid for these players is known since they either passed at that bid (if they are

the player to bid) or at the next bid (if they are the player to answer).

In the approach I chose, the output of the bidding networks corresponds to

the maxbid a player reached. The data is only representative of players who

20

passed in the bidding phase, and does not use the data of the bidding winner

since the maxbid they intended to reach is not available to train on. The

argmax on the outputs provides the most likely maxbid as predicted by the

network, but it would not utilize the sequential structure of the bids. What I

propose is to take the bid that corresponds to a given percentile, termed A. In

this way, the distribution of players aggressiveness in the human population

can be utilized directly to alter the aggressiveness of the player. Let B be the

ordered set of possible bids, with bi being the ith bid, with b0 corresponding

to passing without bidding. The maxbid is determined using

maxbid(s, A) = min(bi) s.t. Σi
j=0p(bj; θ|I) ≥ A (3.1)

where p(bj) is the output of the trained network, which is interpreted as the

probability of selecting bj as the maxbid for the given Information Set I and

parameters θ in the trained network. Given the returned maxbid bi and the

current highest bid in the game bcurr, the policy for the bidding player is

πbid(bi, bcurr) =

{
bcurrent+1 if bi > bcurrent
pass otherwise (3.2)

while the policy for the answer player is

πans(bi, bcurr) =

{
yes if bi ≥ bcurrent
pass otherwise (3.3)

Another limiting factor in the strength of direct imitation is that the policy

is trained to best copy humans, regardless of the strength of the move. While

the rational player would always play on expectation, it appears there is a

tendency for risk aversion in the human data set. For example, the average

human seems to play far fewer Grands than Kermit. Since Grands are high

risk / high reward, they are a good indication of how aggressive a player is.

To improve the pre-cardplay policy in the Hand/Pickup and Declare phases,

one can instead select actions based on learned values for each possible game

type. Formally, this policy is

πMV (I, a; θ) = argmax(v(I, a; θ)) (3.4)

21

where v is the output of the trained network for the given Information Set I,

action a, and parameters θ, and is interpreted as the predicted value of the

game.

Two additional networks were trained, one for the Hand/Pickup phase and

one for the Declare phase. These networks were identical to the previous

ones, except linear activation units are used for the outputs. The network

was trained to approximate the value of the actions. The value labels are

simply the endgame value of the game to the soloist, using the TP system.

For winning, the value is simply the TP awarded, but for losing the value is

the TP lost plus an additional negative 40 points in order to take into account

the defenders’ bonus for winning.

The loss was the mean squared error of prediction on the actual action

taken. For the Hand/Pickup network, the train and test loss were 607 and

623 respectively. For the Declare network, the values were 855 and 898. These

values seem quite large, but with the high variance and large scores in Skat,

they are in the reasonable range. For instance, the lowest base value for a

game is 18. If a player were to win this game, they would be awarded 68 TP.

If they were to lose, they would lose 108 TP and both their opponents would

gain 40 TP. Altogether, the smallest point swing in terms of relative standings

from a win to a loss is 208 points, which creates a potential for high values for

the squared error loss.

The πMV seen in Equation 3.4 is problematic. The reason for this is that

many of the actions, while legal, are never seen in the training data within a

given context. This leads to action values that are meaningless, which can be

higher than the other meaningful values. For example, Null Ouvert is rarely

played, has high game value and is most often won. Thus the network will

predict a high value for the Null Ouvert action in unfamiliar situations which

in turn are not appropriate situations to play Null Ouvert. This results in an

overly optimistic player in the face of uncertainty, which can be catastrophic.

This is demonstrated in the results section.

To remedy this issue, I decided to use the supervised policy network in

tandem with the value network. The probability of an action from the policy

22

network is indicative of how often the move is expected to be played given the

observation. The higher this probability is, the more likely the network has

seen a sufficient number of “relevant” situations in which the action was taken.

With a large enough dataset, I assume that probabilities above a threshold in-

dicate that there is enough representative data to be confident in the predicted

action value. 0.1 was chosen as the threshold. There is no theoretical reason

for this exact threshold, other than it is low enough that it guarantees that

there will always be a value we are confident in. Furthermore, the probability

used is normalized after excluding all illegal actions.

The policy for the Hand/Pickup and Declare phases using the method

described above is

πMLV (I, a; θ) = argmax(vL(I, a; θ)) (3.5)

where
vL(I, a; θ) =

{
v(I, a; θ) if plegal(a; θ|I) ≥ λ
−∞ otherwise (3.6)

in which plegal is the probability normalized over all legal actions and λ is a

constant set to 0.1 in our case.

3.2 Bidding Experiments

Since Kermit is the current strongest Skat AI system [Bur+09] [SRB19], it is

used as the baseline for the rest of this paper. Since the network-based player

learned off of human data, it is assumed that defeating Kermit is indicative

of the overall strength of the method, and not based on exploiting it’s specific

policy.

Because Skat is a 3-player game, each match in the tournament is broken

into six games. In a match, all player configurations are considered, with the

exception of all three being the same bot, resulting in six games (see Table 3.4).

In each game, once the pre-cardplay phase is finished, the rest of the game

is played out using Kermit cardplay, an expert level player based on PIMC

search which samples 160 worlds — a typical setting. The results for each bot

is the resultant average over all the games played. Each tournament was ran

23

Table 3.4: Player configurations in a single match consisting of six hands
(K=Kermit, NW=Network Player)

Game Number Seat1 Seat2 Seat3
1 K K NW
2 K NW K
3 K NW NW
4 NW NW K
5 NW K NW
6 NW K K

for 5,000 matches. All tournaments featured the same identical deals in order

to decrease variance.

Different variations of the pre-cardplay policies were tested against the

Kermit baseline. Unless otherwise stated, the policies use the aggressiveness

transformation discussed in the previous section, with the A value following

the policies prefix. The variations are:

• Direct Imitation Max (DI.M): selects the action deemed most probable

from the imitation networks

• Direct Imitation Sample (DI.S): like DI.M, but samples instead of taking

the argmax

• Aggressive Bidding (AB): like DI.M, but uses the aggressiveness trans-

formation in bidding

• Maximum Value (MV): like AB, but selects the maximum value action

in the Hand/Pickup and Declare phases

• Maximum Likely Value (MLV): like AB but uses the maximum likely

value policy, πMLV , in the Hand/Pickup and Declare phases

While the intuition behind the aggressiveness transformation is rooted in in-

creasing the aggressiveness of the bidder, the choice for A is not obvious. MLV

and AB were investigated with A values of 0.85, 0.89, 0.925. Through limited

trial and error, these values were chosen to approximately result in the player

being slightly less aggressive, similarly aggressive, and more aggressive than

24

Kermit’s bidding, as measured by share of soloist games played in the tourna-

ment setting. MV was only tested with A of 0.89 since it was clear that the

issue of overoptimism was catastrophic.

An overview of the game type selection breakdown is presented in Ta-

ble 3.5, while an overview on the performance is presented in Table 3.6. To

measure game playing performance I use the Fabian-Seeger tournament point

(TP) scoring system which awards the soloist (50 + game value) points if they

win. In the case of a loss, the soloist loses (50 + 2· game value) points and the

defenders are awarded 40 points. All tournament points per game (TP/G)

difference values reported were found to be significant, unless otherwise stated.

These tests were done using Wilcon signed-rank test [WKW70], with a signif-

icance level set to p=0.01. This test is valid for paired data that is on a ratio

scale and it does not assume a normal distribution. The data is paired since

the deal is the same for all games within a match and a ratio scale is used for

the scoring, thus the test is appropriate.

Clearly, naively selecting the max value (MV) in the Hand/Pickup and

Declare phases causes the bot to perform very poorly as demonstrated by it

performing -75.6 TP/G worse than the Kermit baseline. It plays 96% of its

suit games as hand games, which is extremely high to the point of absurdity.

In the previous section, I explained how actions that are not representative of

normal play in the dataset provide values that are overly optimistic, and these

results align with this explanation.

Direct Imitation Argmax (DI.M) performed much better, but still per-

formed slightly worse than the baseline by 2.1 TP/G. Direct Imitation Sample

(DI.S) performed 4.2 TP/G worse than baseline and slightly worse than DI.M.

The issue with being overly conservative is borne out for both these players

with the player being soloist approximately half as often as Kermit.

The direct imitation with the aggressiveness transformation (AB) per-

formed better than Kermit for the lower values, but slightly worse for AB.925.

None of these values were statistically significant. The best value for A was

0.85 (AB.85) which leads to +0.4 TP/G against Kermit. The advantage de-

creases with increasing A values. At the 0.85 A value, the player is soloist

25

a fewer of 1.81 times per 100 games played, indicating it is a less aggressive

bidder than Kermit.

The players selecting the max value declarations within a confidence thresh-

old (MLV) performed the best overall, outperforming the AB players at each

A value level. The best overall player against Kermit is the MLV.85 player. It

outperforms Kermit by 1.2 TP/G, 0.8 TP/G more than the best AB player.

The actual breakdown of games is quite interesting, as it shows that the

AB and MLV players are markedly different in their declarations. Across the

board, AB is more conservative as it plays more Suit games and less Grand

games (worth more and typically more risky) than the corresponding MLV

player.

These results indicate that the MLV method that utilizes the networks

trained on human data provides the new state-of-the-art for Skat bots in pre-

cardplay.

26

Table 3.5: Game type breakdown by percentage for each player, over their
5,000 match tournament. Soloist games are broken down into types. Defense
games (Def) and games that were skipped due to all players passing (Pass) are
also included. The K vs X entries list breakdowns of Kermit playing against
player(s) X with identical bidding behavior.

Match Grand Suit Null NO Def Pass
DI.S 6.8 17.1 1.2 0.8 68.9 5.2
DI.M 6.6 16.0 0.9 0.9 69.3 6.3
MV.89 8.2 25.4 0.0 0.3 64.8 1.4
MLV.85 10.6 19.0 1.6 1.3 65.6 1.9
MLV.89 11.0 19.8 1.7 1.4 64.8 1.4
MLV.925 11.6 20.5 1.8 1.5 63.6 1.1
AB.85 8.7 21.5 1.1 1.2 65.6 1.9
AB.89 9.2 22.3 1.1 1.2 64.8 1.4
AB.925 9.7 23.1 1.2 1.3 63.6 1.1
K vs DI.S 10.7 21.0 3.8 2.0 57.1 5.5
K vs DI.M 10.7 21.6 3.8 2.0 55.5 6.4
K vs *.85 11.0 17.5 2.5 1.8 64.9 2.4
K vs *.89 10.9 16.8 2.2 1.8 66.4 1.9
K vs *.925 11.0 15.8 2.0 1.7 68.0 1.5

Table 3.6: Tournament results over 5,000 matches between learned pre-
cardplay polices and the baseline player (Kermit). All players use Kermit’s
cardplay. Rows are sorted by score difference (TP/G=tournament points per
game, S=soloist percentage) Starred TP/G diff. values were not found to be
significant at p=0.01.

Player (P) TP/G(P) TP/G(K) diff. S(P) S(K) diff.
MV.89 -41.3 34.3 -75.6 33.8 31.7 2.1
DI.S 19.2 23.3 -4.1 25.9 37.2 -11.3
DI.M 20.6 22.7 -2.1 24.3 38.1 -13.8
AB.925 22.4 22.6 -0.2∗ 35.3 30.5 4.9
AB.89 22.9 22.5 0.4∗ 33.8 31.7 2.1
AB.85 23.0 22.6 0.4∗ 32.5 32.8 -0.3
MLV.925 23.0 22.3 0.8∗ 35.3 30.5 4.9
MLV.89 23.3 22.3 1.0∗ 33.8 31.7 2.1
MLV.85 23.6 22.4 1.2 32.5 32.8 -0.3

27

Chapter 4

Learning Policies from Human
Data For Cardplay in Skat

4.1 Cardplay Method

With improved pre-cardplay policies, the next step was to create a strong

and fast cardplay policy using the human data. To do this, a collection of

networks were trained to predict the human play in the dataset using the

same network architecture used for the pre-cardplay imitation networks. Six

networks were trained in all; defender and soloist versions of Grand, Suit, and

Null. The networks take the game context encoded into features as the input,

and predicts the action the player would take as the output.

To capture the intricacies of the cardplay phase, handcrafted features were

used — they are listed in Table 4.1. Player Hand represents all the cards in the

players hand. Hand Value is the sum of the point values of all cards in a hand

(scaled to the maximum possible value). Lead cards represents all the cards the

player led (first card in the trick). Sloughed cards indicate all the non-Trump

cards that the player played that did not follow the suit. Void suits indicate the

suits which a player cannot have based on past moves. Trick Value provides

the point value of all cards in the trick (scaled to the max possible value).

Max Bid Type indicates the suit bid multipliers that match the maximum

bid of the opponents. For example, a maximum bid of 36 matches with both

the Diamond multiplier, 9, and the Clubs multiplier, 12. The special soloist

declarations are encoded in Hand Game, Ouvert Game, Schneider Announced,

28

Table 4.1: Network input features

Common Features Width
Player Hand 32
Hand Value 1

Played Cards (Player, Opponent 1&2) 32*3
Lead Cards (Opponent 1&2) 32*2

Sloughed Cards (Opponent 1&2) 32*2
Void Suits (Opponent 1&2) 5*2

Current Trick 32
Trick Value 1

Max Bid Type (Opponent 1&2) 6*2
Soloist Points 1

Defender Points 1
Hand Game 1
Ouvert Game 1

Schneider Announced 1
Schwarz Announced 1

Soloist Only Features Width
Skat 32

Needs Schneider 1

Defender Only Features Width
Winning Current Trick 1

Declarer Position 2
Declarer Ouvert 32

Suit/Grand Features Width
Trump Remaining 32

Suit Only Features Width
Suit Declaration 4

and Schwartz announced. Skat encodes the cards placed in the skat by the

soloist, and Needs Schneider indicates whether the extra multiplier is needed

to win the game. Both of these are specific to the soloist networks. Specific to

the defenders are the Winning Current Trick and the Declarer Ouvert features.

Winning Current Trick encodes whether the current highest card in the trick

was played by the defense partner. Declarer Ouvert represents the soloist’s

hand if the soloist declared Ouvert. Trump remaining encodes all the trump

cards that the soloist does not possess and have not been played, and is used in

the Suit and Grand networks. Suit Declaration indicates which suit is trump

29

Table 4.2: Cardplay train/test set sizes

Train Size Train Test
Phase (millions) Acc.% Acc.%

Grand Soloist 53.7 80.3 79.7
Grand Defender 105.4 83.4 83.1

Suit Soloist 145.8 77.5 77.2
Suit Defender 289.1 82.3 82.2
Null Soloist 5.4 87.3 86.3

Null Defender 10.7 72.9 71.6

based on the soloist’s declaration, and is only used in the Suit networks. These

features are one-hot encoded, except for Trick Value, Hand Value, Soloist and

Defender points, which are floats scaled between 0 and 1. The network has 32

outputs — each corresponding to a given card.

The resultant data set sizes, and accuracies after the final epoch are listed

in Table 4.2. The test set had a size of 100,000 for all networks. The accuracies

are quite high, however, this doesn’t mean much in isolation as actions can be

forced, and the number of reasonable actions is often low in the later tricks.

Training was done using a single GPU (Nvidia GTX 1080 Ti) and took around

16 hours for the training of the finalized cardplay networks. The largest of the

cardplay networks consists of just under 2.4 million weights.

4.2 Cardplay Experiments

Bidding policies from the previous chapter, as well as original Kermit bidding,

were used in conjunction with the learned cardplay networks. The cardplay

policy (C) takes the argmax over the legal moves of the game specific network’s

output, and plays the corresponding card. AB and MLV bidding policies were

tested at all three bidding aggressiveness levels. I also tried sampling of the

policy network (CS), to see how it affected the play. The sampling was only

done for Kermit bidding as it performed worse than the argmax policy.

Each variant played against Kermit in the same tournament setup from

the previous section. Again, all TP/G difference reported were found to be

significant. Results are reported in Table 4.3. Again, the Wilcoxon signed-

30

Table 4.3: Cardplay tournament results over 5,000 matches between bots
using pre-cardplay policies from the previous section and the learned card-
play policies. All variants were played against the baseline, Kermit
(TP/G=tournament points per game, S=soloist percentage). All difference
values ∆ were found to be statistically significant.

Player (P) TP/G(P) TP/G(K) ∆ S(P) S(K) ∆

K+C 21.9 24.6 -2.6 31.9 31.9 0.0
K+CS 21.1 26.0 -4.9 31.9 31.9 0.0
AB.89+C 22.4 24.5 -2.1 33.8 31.7 2.1
AB.925+C 22.3 24.2 -1.9 35.3 30.5 4.9
AB.85+C 22.6 24.4 -1.8 32.5 32.8 -0.3
MLV.925+C 22.8 24.1 -1.3 35.3 30.5 4.9
MLV.89+C 23.1 24.4 -1.3 33.8 31.7 2.1
MLV.85+C 23.4 22.4 1.0 32.5 32.8 -0.3

rank test is used for all TP/G difference values reported with a significance

level of 0.01.

The strongest full network player was MLV.85+C, and it outperformed

Kermit by 1.0 TP/G. All the rest of the cardplay network players performed

worse than Kermit. Like the bidding results, all MLV players performed bet-

ter than all AB players. Kermit’s search based cardplay is quite strong, and

it appears to be stronger than the imitation cardplay, as demonstrated by it

outperforming K+C by 2.6 TP/G. The sampling variant K+CS performed 4.9

TP/G worse than the search based method. I propose two main explanations

for why argmax performs better than sampling; keeping the trajectory within

a space closer to the training set and avoiding mistakes. The trajectory ex-

planation comes from the idea that by choosing a more likely action given

a world, we have a greater chance of transitioning to a state that resembles

worlds that we have seen. The mistake avoidance argument rests on the idea

that if human players randomly make mistakes, these mistakes would appear

as a noisy training signal. By taking the most likely action, we are effectively

filtering out this noise. The overall poorer performance of the cardplay pol-

icy is probably due to the effectiveness of search to play near perfectly in the

later half of the game when a lot is known about the hands of the players.

While these results are compelling, it should be noted that further investiga-

31

tion into the interplay between the bidding and cardplay policies is required

to get a better understanding of their strengths. One advantage the imitation

network cardplay has is that its much faster, taking turns at a constant rate

of around 2.5 ms, as compared to Kermit which takes multiple seconds on the

first trick, and an average time of around 650 ms (both using a single thread

on consumer-level CPU).

To investigate the assumption that the search based method is stronger

in the later stages of the game, I performed experiments using hybridized

players. These players used the learned cardplay policy up to a given trick,

and the Kermit cardplay after that. Unlike the previous experiments, I used

the mirrored adversarial tournament setup. Two games are played per match;

player A plays as soloist against two clones of player B and the reverse of that.

All matches start at cardplay, and feature the same starting positions that

have been created using Kermit pre-cardplay policies. 9 tournaments were

ran, with the Kermit policy taking over after varying trick numbers. This

ranged from the starting at the first trick, to not starting at all. The results

are shown in Table 4.4. Hybrid-1 performs the strongest, with a +0.7 TP/G

over Kermit. It is not significant at p = 0.01, however the p value is still quite

small at 0.028. As the cardplay policy is used further along into the game

past the first trick, the performance decreases. This fits with the theory that

search based methods are stronger in later stages of the game.

Since I used the mirrored setup, I could separate the defense and soloist

play. In this way, I could see how the combination of different hybridizations

for soloist and defense would perform. The difference in TP/G for each combi-

nation is shown in Table 4.5, with positive values indicating that the hybridized

combination outperforms Kermit. Def0-Sol0 is actually pure Kermit since Ker-

mit takes over prior to the first trick for both soloist and defense. The reason

why it performs worse than it’s identical counterpart can be attributed to the

randomness in the sampling of worlds. The strongest cardplayer combination

is Def1-Sol3 which outperforms Kermit by 0.9 TP/G.

32

Table 4.4: Cardplay tournament results over 5,000 matches between bots
using pre-cardplay policies from the previous section and the learned card-
play policies. All variants were played against the baseline, Kermit
(TP/G=tournament points per game, S=soloist percentage). Difference values
∆ not found to be statistically significant at p=0.01 have been starred.

Player (P) TP/G (P) TP/G (K) ∆ TP/G
Hybrid-0 22.1 22.1 -0.1∗

Hybrid-1 22.3 21.5 0.7∗

Hybrid-2 22.1 21.7 0.3∗

Hybrid-3 22.2 21.9 0.3∗

Hybrid-4 21.8 22.4 -0.5∗

Hybrid-5 21.5 23.0 -1.5
Hybrid-6 20.6 23.8 -3.1
Hybrid-7 20.0 24.8 -4.7
Hybrid-8 20.0 25.1 -5.2
Hybrid-9 19.8 25.3 -5.5

Table 4.5: Mirrored cardplay tournament results over 5,000 matches between
Kermit and hybridized bots. DefX indicates that the hybridized bot used the
Kermit card player starting at trick X for defense and the learned policy prior.
SolX indicates the same thing, except in the soloist context. All values are
how many TP/G the hybridized bot outperformed Kermit. All pre-cardplay
done using Kermit.

Def0 Def1 Def2 Def3 Def4 Def5 Def6 Def7 Def8 Def9
Sol0 -0.1 0.7 0.5 0.2 -0.4 -1.2 -2.1 -3.3 -3.7 -4.0
Sol1 -0.1 0.7 0.5 0.2 -0.4 -1.2 -2.1 -3.3 -3.7 -4.0
Sol2 -0.3 0.5 0.3 -0.1 -0.6 -1.4 -2.3 -3.5 -3.9 -4.2
Sol3 0.1 0.9 0.6 0.3 -0.3 -1.1 -1.9 -3.2 -3.6 -3.9
Sol4 -0.2 0.6 0.4 0.0 -0.5 -1.3 -2.2 -3.4 -3.8 -4.1
Sol5 -0.4 0.4 0.2 -0.2 -0.8 -1.5 -2.4 -3.6 -4.0 -4.3
Sol6 -1.1 -0.3 -0.5 -0.9 -1.5 -2.3 -3.1 -4.4 -4.8 -5.1
Sol7 -1.5 -0.7 -0.9 -1.3 -1.9 -2.7 -3.5 -4.7 -5.2 -5.4
Sol8 -1.5 -0.7 -0.9 -1.3 -1.9 -2.6 -3.5 -4.7 -5.2 -5.4
Sol9 -1.6 -0.8 -1.0 -1.4 -2.0 -2.8 -3.6 -4.8 -5.3 -5.5

33

Chapter 5

Policy Based Inference in Skat

In the previous two chapters I have demonstrated that neural networks trained

off of human data can be used to create strong policies for the game of Skat.

While these policies can be used directly, the search based method proves to

be stronger in the cardplay portion of Skat. It is the goal of the work in

the chapter to improve the strength of the inference used in the search based

method. In this section, I present an algorithm that uses these policies to

improve inference in these games. As explained earlier, inference is a key part

of determinized search and specifically, in the search based cardplay in Kermit.

5.1 Inference Method

To determine the probability of a given state s in an information set I, we

need to calculate its reach probability η. If we can perfectly determine the

probability of each action that leads to this state, we can simply multiply all

the probabilities together and get η. Each s in I has a unique history h, the

sequence of all previous s and a that lead to it. h · a represents the history

appended with the action action taken at that state. Thus, there is a subset

of h, containing all the h · a for a given s. Formally:

η(s|I) =
∏
h·a⊑s

π(h, a) (5.1)

For trick-taking card games, the actions are either taken by the world

(chance nodes in dealing), other players’ actions, and our actions. Transition

34

EstimateDist(InfoSet I, int k, OppModel π)
S ← SampleSubset(I, k)
for s ∈ S do

η(s)← 1
for h, a ∈ StateActionHistory(s) do

η(s)← η(s) ∗ π(h, a)
end

end
return Normalize(η)

Algorithm 2: Estimate the state distribution of an information set given
an opponent model and the actions taken so far.

probabilities of chance nodes can be directly computed since these are only

related to dealing, and the probability of our actions can be taken as 1 since we

chose actions that lead to the given state with full knowledge of our own policy.

This leaves us with determining the move probability of the other players. If we

have access to the other players’ policies, we can use Equation (5.1) to perfectly

determine the probability we are in a given state within the information set. If

we repeat this process for all states within the information set, we can calculate

the probability distribution across states. If we can perfectly evaluate the

value of all the state-action pairs, we can select the action that maximizes this

expected value which provides an optimal solution.

There are two main issues with this approach. The first is that we either

do not have access to the other players’ policies, or they are expensive to

compute. This makes opponent/partner modelling necessary, in which we

assume a computationally inexpensive model of the other players, and use

them to estimate the reach probability of the state. The second problem is

that the number of states in the information set can be quite large. To get

around this, one can sample the worlds and normalize the distribution over the

subset of states. Because in Skat the information set size for a player prior to

card-play can consist of up to 281 billion states, we employed sampling. I use

Algorithm 2 to estimate a state’s relative reach probability. When sampling

is not needed, this becomes an estimate of the states true reach probability.

While I have access to the policy of the current strongest Skat bot, using

35

its policy directly would be computationally intractable because it uses an

expensive search based method that also performs inference. Also, it is the

goal of this research to develop robust inference that is not based upon the

play of a single player. Thus, I decided to use policies learned directly from

a large pool of human players. These policies are parameterized by the deep

neural networks trained on human games seen in the previous chapters. The

features for the pre-cardplay networks are a lossless one-hot encoding of the

game state while considerable feature engineering was necessitated for the

cardplay networks. Separate networks were trained for each distinct decision

point in the pre-cardplay section, and for each game type for the cardplay

networks. More details on the training and the dataset can be found in the

previous chapters.

The decision points in pre-cardplay are bidding, picking up or declaring a

hand game, choosing the discard, and declaring the game. The decision points

in the cardplay section are every time a player chooses what card to play. While

inference would be useful for decision-making in the pre-cardplay section, we

are only applying it to cardplay in this paper. As such, one can abstract

the bidding decisions into the maximum bids of the bidder and answerer in

the bid/answer phase, and the maximum bids of bidder and answerer in the

continue/answer phase. For these maximum bid decision points, the maximum

bid is only observable if the player passes. For the cases in which the intent of

maximum bid is hidden, the probability attached to that decision point is the

sum of all actions that would have resulted in the same observation, namely

the probability of all maximum bids greater than the pass bid. The remaining

player decision points are pickup or declare a hand game, discard and declare,

and which card to play. As these are not abstracted actions, the probability

of the move given the state can be determined directly from the appropriate

imitation network detailed in the previous section.

The current state-of-the-art Skat bot, Kermit, uses search-based evaluation

that samples card configurations. A card configuration is the exact location

of all cards, and thus doesn’t take into account which cards where originally

present in the soloist’s hand prior to picking up the skat. Depending on the

36

game context, there are either 1 or 66 (12 choose 2) states that correspond to

a card configuration during the cardplay phase. Two variants of inference were

explored. The first variant samples card configurations. Decision points are

ignored for inference if there are multiple states with the same card configura-

tion but different features (input to the network). The second variant samples

states directly, thus avoiding this issue. For this implementation, the need to

distinguish states that share a configuration only occurs when a player does

inference on the soloists actions prior to picking up the two hidden cards in

the skat. Sampling card configurations will be treated as the default approach

for PI. When states are sampled instead, the inference will be labelled PIF,

for Policy Inference Full.

5.2 Direct Inference Evaluation

In this section, I test the quality of the inference directly. These inference mod-

ules are the original Kermit Inference (KI) [Bur+09], card-location inference

(CLI) [SRB19], and no inference (NI).

To measure the inference quality directly, I measured the True State Sam-

pling Ratio (TSSR) [SRB19] for each main game type, separately for defender

and soloist. TSSR measures how many times more likely the true state will

be selected than uniform random.

TSSR = η(s∗|I) / (1/|I|) = η(s∗|I) · |I| (5.2)

η(s∗|I) is the probability that the true state is selected given the information

set I, and |I| is the number of possible states. Since the state evaluator of

Kermit does not distinguish between states within the same card configuration,

I will slightly change the definition to measure how many times more likely

the card configuration (world) will be sampled than uniform random.

Since the players tested use a sampling procedure when the number of

worlds is too large, the TSSR value cannot easily be directly computed as

this would require all the world probabilities to be determined. I therefore

estimate it empirically. Since sampling was performed without replacement,

37

I use the given inference method to evaluate η given that the true world was

sampled k times. The resulting values can combined to get the combined

probability that the true world is selected:

TSSR = |I| · ΣkBinDist(k, p) · k · η(s∗|I, k) (5.3)

where BinDist is the probability mass of the binomial distribution with k

successes and probability of sampling the true world p which is 1/|I|. Terms of

the summation were only evaluated if the BinDist(k, p) value were significant,

which I cautiously thresholded at 10−7.

When the number of worlds is less than the set threshold parameter specific

to the player, all the worlds are sampled directly to compute the value. For

the sake of the TSSR experiments, null games were further subdivided into

the two main variants, null and null ouvert. Null ouvert is played with an

open hand for the soloist, thus making the inference quite different from that

of regular null games from the perspective of the defenders. For each game in

the respective test set, the TSSR value was calculated for each move for the

soloist, and one of the defenders. The test set was taken from the human data,

and was not used in training. The number of games in the test sets were 4,000

for grand and suit, 3,800 for null, and 13,000 for null ouvert.

Figure 5.1 shows the average TSSR metric after varying number of cards

have been revealed. The inference variants tested are PI20, PIF20, PI100,

CLI, and KI. NI was not tested because it will always have a value of 1. PI20

and PI100 sample 20,000 and 100,000 card configurations respectively, while

PIF20 samples 20,000 states. CLI samples 500,000 card configurations, and KI

samples 3200 card configurations in soloist, and a varying number in defense.

CLI inference was not implemented for null ouvert.

TSSR is higher on defense, with the exception of null ouvert. This is likely

due to there being many more possible worlds in the defenders information

set because of the hidden cards in the skat. Also, the defender can use the

declaration of the soloist for inference, which is a powerful indicator of the

soloist’s hidden cards. Null ouvert does not follow this trend because there

are only 66 possible worlds at most in defense while there are 184,756 for the
38

Soloist Defender

(a) Grand

(b) Suit

(c) Null

(d) Null Ouvert

Figure 5.1: Average TSSR after Card Number cards have been played. Data
is separated by game type and whether the player to move is the soloist (left)
or a defender (right). 39

soloist. This allows for higher TSSR values for the soloist.

PI20, PIF20, and PI100 all achieve significantly higher TSSR values than

the other methods, across all game-types and roles. KI performs better than

CLI at the beginning of games, but surpasses KI once more cards are played.

PI100 appears to consistently perform better in defense than the other

Policy Inference variants, while PIF20 appears to perform slightly better than

PI20 in the first half of defender games, but not significantly so. All TSSR

values trend down to 1 at the endgame, as the number of possible worlds

approaches 1.

One common feature across all games is the spiking of TSSR values, which

is best exemplified in suit games. The spiking is consistent between players

within the same game type and role graph. However, between graphs it is

not consistently occurring at the same number of cards played. I do not see

an obvious reason for this. However, these tests were done on human games

and thus I am not controlling for inherent biases in the distribution. Further

investigation is needed to determine why these spikes occur.

It is clear from these results that the Policy Inference approach provides

larger TSSR values, since the error envelopes are completely separated in the

figure. It also should be noted that perfect inference would not result in the

upper bound TSSR value which is equal to the number of worlds. Even with

perfect knowledge of the opponents’ policies, uncertainty is inherent and thus

a player with perfect TSSR value is not possible.

40

Chapter 6

Applying Policy Based Inference
in Determinized Search

With the vastly improved inference from the previous chapter, I investigate the

effect of applying the PI algorithm in the PIMC search that had already been

implemented in the Kermit AI system. It is the goal of this work to improve the

state-of-the art cardplay system by improving the inference in that system. As

explained earlier, the inference can be used to bias the sampling of the states

in the determinizing step of PIMC.

6.1 Cardplay Tournament

To test the performance of PI in cardplay, we played 5,000 matches for each

of suit, grand, and null games between the baseline players and the PI based

player in a pairwise setup. Only the cardplay phase of the game is played, while

the bidding and declaration is taken directly from the human data-set. These

games were held out from the policy training set. In a match, each player

will play as soloist against two copies of the opponent, as well as against two

copies of itself. The baseline players are all versions of Kermit, with the only

difference being the inference module used. These inference modules are KI,

CLI, with the addition of no inference (NI). This experiment is designed to see

if (a) the performance of the player improves as measured by its play against

opponents and (b) to determine the extent to which the defender and soloist

performance is responsible for this difference.

41

For each match-up I report the average tournament points per game (TP/G)

for the games in which the players played against each-other. The games in

which the player played against a copy of itself were used to determine the

difference in the effectiveness of the defenders and soloists.

AvBB denotes a match-up in which the soloist is of type A while the

defenders are both of type B. The value of the game AvBB is in terms of the

soloist score, therefore it is the sum of the soloist’s score and the negation of

the defenders’ score. In this notation, the performance of player A relative to

player B is given as

∆TP/G = [AvBB − BvAA]/3 (6.1)

The value is divided by 3 since it is enforced that a player is soloist 1/3

the time in the tournament setup. To directly compare the performance of

the defenders, one can measure the performance difference between scenarios

where the only difference is the change in defenders.

∆Def/G = [(AvBB +BvBB)− (AvAA+BvAA)]/6 (6.2)

A negative value for ∆Def/G indicates A performs better than B in defense.

The same concept can also be applied to directly compare the efficacy of the

soloist.

∆Sol/G = [(AvAA− BvAA) + (AvBB − BvBB)]/6 (6.3)

A positive value for ∆Sol/G indicates A performs better than B as the soloist.

The results for the tournament match-ups are shown in Table 6.1. All ∆

values reported have a ∗ attached if they are not found to be significant at a

p value of 0.01 when a Wilcoxon signed-rank [WKW70] test was performed.

This test is valid for paired data that is on a ratio scale and does not assume

a normal distribution. The data is paired since the pre-cardplay is the same

for all games within a match and a ratio scale is used for the scoring, thus the

test is appropriate.

The general trend is that PI performs the best, followed by CLI, then

KI, then NI. This fits with the expectation that better TSSR values seen in

42

Table 6.1: Tournament results for each game type. Shown are average tourna-
ment scores per game for players NI (No Inference), CLI (Card-Location Infer-
ence), PI (Policy Inference), and KI (Kermit’s Inference) which were obtained
by playing 5,000 matches against each other, each consisting of two games with
soloist/defender roles reversed. The component of ∆TP attributed to Def and
Sol is also indicated

Matchup Game Type TP ∆ TP ∆ Def ∆ Sol

KI : CLI
Suit 17.6 : 20.8 -3.2 -2.8 -0.4∗

Grand 37.0 : 39.0 -2.0 -1.8 -0.1∗

Null 17.2 : 19.8 -2.6 -2.7 0.1∗

KI : PI
Suit 16.5 : 21.6 -5.1 -4.2 -0.9

Grand 36.4 : 39.6 -3.1 -2.3 -0.8∗

Null 17.3 : 19.7 -2.4 -2.9 0.6∗

NI : CLI
Suit 16.1 : 24.1 -8.0 -7.4 -0.6∗

Grand 36.6 : 40.5 -3.9 -3.4 -0.5∗

Null 16.0 : 22.5 -6.5 -6.6 0.1∗

PI : CLI
Suit 19.5 : 17.2 2.3 1.6∗ 0.7∗

Grand 37.9 : 37.2 0.6∗ 0.2∗ 0.5∗

Null 18.8 : 17.3 1.6 1.1 0.4∗

KI : NI
Suit 23.3 : 18.6 4.6 4.5 0.1∗

Grand 39.7 : 38.4 1.3 1.3 0.1∗

Null 21.6 : 17.8 3.8 3.9 -0.0∗

NI : PI
Suit 14.6 : 25.0 -10.4 -9.1 -1.4

Grand 36.5 : 40.0 -3.6 -3.1 -0.4∗

Null 15.8 : 22.1 -6.3 -6.8 0.5

Figure 5.1 would translate into stronger game performance. Another inter-

esting result is that the majority of the performance gain seems to be from

the defenders, as demonstrated by the ∆Def values being consistently larger

than the ∆Sol values. The most interesting match-up is PI : CLI since it

roots the previous state-of-the-art skat inference against the new policy-based

method. PI outperforms CLI by 2.3, 0.6, and 1.6 TP/G in suit, grand, and

null, respectively. The grand result did not provide statistical significance.

The major drawback of the PI inference is the runtime. When combined

with evaluation, PI20 takes roughly 5 times longer to make a move than CLI.

43

Table 6.2: Tournament results for each game type. Shown are average tour-
nament scores per game for players CLI (Card-Location Inference), PI20 (Pol-
icy Inference with 20,000 card configurations sampled), PIF20 (Policy Infer-
ence with 20,000 states sampled), PI20 (Policy Inference with 100,000 card
configurations sampled), and C (Cheating Inference) which were obtained by
playing 5,000 matches against each other, each consisting of two games with
soloist/defender roles reversed.

Game Type Suit Grand Null
Matchup TP ∆ TP TP ∆ TP TP ∆ TP

PI : CLI 19.5 : 17.2 2.3 37.9 : 37.2 0.6∗ 18.8 : 17.3 1.6
PIF20 : CLI 19.3 : 17.7 1.6 37.7 : 37.2 0.5∗ 18.0 : 17.7 0.3∗

PI100 : CLI 19.5 : 16.7 2.9 38.2 : 36.1 2.1 18.1 : 17.1 1.0∗

C : CLI 14.7 : 18.0 -3.3 30.0 : 38.5 -8.5 20.8 : 11.0 9.8
PI : CLI (6way) 19.1 : 17.8 1.2 37.6 : 37.3 0.4∗ 18.3 : 17.7 0.6

Further experiments were conducted to test the effect of increasing the

number of sampled worlds to 100,000 (PI100) and sampling states instead

of card configurations (PIF20). In addition, a cheating version of Kermit was

introduced (C) in which it places all probability on the true state. All programs

were tested against CLI with only the mirrored adversarial setup used. The

rest of the experimental setup was identical.

The results in Table 6.2 indicate that PI100 performs stronger than the

other PI variants in suit and grand, when playing against CLI, however, only

the grand result is significantly better. The opposite is true for null, in which

PI20 performs strongest out of the PI variants. This result contradicts the

idea that a higher TSSR value necessarily corresponds to better cardplay per-

formance. Cheating inference performs worse than CLI in all but null games.

This is interesting because it puts all the probability mass on the true world,

but still plays worse than a player that is not cheating. This result in con-

junction with the worse null game score for PI100 indicates that further inves-

tigation into the exact role inference quality has within the context of PIMC

is required. Also, PI20 outperforms PIF20 over all game types, showing that

there can be benefits to sampling card configurations instead of states when

44

Table 6.3: Tournament results for each game type in the 6-way match between
CLI and PI20. 5,000 matches were played for each game type.

Game Type ∆Sol ∆DefCLI ∆DefPI

Suit 1.0 -1.1 0.6*
Grand 0.4* 0.0* 0.2*
Null 0.2* -0.6* 0.5*

there is a limited sampling budget.

One further experiment was performed to determine whether performance

gains would be present with mixed defenders. This is interesting since it is pos-

sible the gain would only be present if the partner’s inference was compatible

with their own. For the sake of time, this was only done for the CLI and PI20

matchup. The added arrangements are AvAB, AvBA, BvAB, and BvBA.

With these added, we now have six games for each tournament match. The

results for this match-up are included in Table 6.2. PI is consistently stronger

than CLI (the grand result is not significant), but the effect size is smaller.

This is expected because PI is now defending against PI in the mixed setup

games. To further analyze the the relative effectiveness of the players as soloist

against only the mixed team defenders, we can calculate:

∆Sol = [(AvAB − BvAB) + (AvBA− BvBA)]/6 (6.4)

A positive value for ∆Sol means that PI is more effective than CLI as soloist in

the mixed setting. ∆DefB measures the difference in effectiveness of a mixed

defense (A and B) and a pure defense of A’s. It is calculated by averaging the

effect of swapping in player B into defense for all match-ups that included two

A’s on defense. The reverse can be done to find the effect of swapping in A to

form a mixed defense. A positive value for ∆DefPI means defense improved

when it was added, and same for ∆DefCLI .

While all the values in Table 6.3 show the same trends of PI performing

better on defense and soloist across all game types, the effect is only statisti-

cally significant for ∆Sol and ∆DefCLI in the suit games.

45

Chapter 7

Conclusion

In this thesis I have demonstrated that pre-cardplay policies for Skat can be

learned from human game data and that it performs better than Kermit’s

pre-cardplay — the prior state-of-the-art. Naively imitating all aspects of

the pre-cardplay by taking the argmax over the legal actions (DI-M) resulted

in a bidding policy that performed an average of 2.1 TP/G worse than the

Kermit baseline. The same procedure but with sampling (DI-S) resulted in the

player performing 4.1 TP/G worse than baseline. Using the novel method to

increase the aggressiveness of the bidder led to it performing 0.4 TP/G better

than the baseline, with A set to 0.85 (AB.85). Using this in conjunction with

game declaration based on the predicted values and probabilities of actions

(MLV.85), resulted in the best overall pre-cardplay policy, beating the baseline

by 1.2 TP/G. Also, the time for pre-cardplay decisions are much faster, as it

does not rely on search.

The direct imitation cardplay policy decreases the strength of the overall

player, performing 2.8 TP/G worse than the Kermit player when utilizing the

Kermit bidder. The best overall full network based player was MLV.925+C,

which outperformed Kermit by 1.0 TP/G. This full network player is order

of magnitudes faster than the search based player, and in this tournament

setup, performs better. One drawback is that while more computation can

be done to improve the search (improving the number of worlds sampled for

example), the same cannot be done for the network player. While the learned

cardplay policy was shown to be weaker overall than the search based method,

46

the hybrid player that uses the policy then switches over to search after a few

moves is shown to be stronger than the search based policy alone.

Policy Inference (PI) appears to provide much stronger inference than its

predecessors, namely Kermit Inference (KI) and Card Location Inference (CLI)

as demonstrated by the TSSR value figures. Across the board, the higher

TSSR values translate into stronger game-play as demonstrated in card-play

tournament settings. PI20 outperforms CLI by 2.3, 0.6, and 1.6 TP/G in

suit, grand, and null games, respectively. Also, it seems that increasing the

number of states sampled increases the performance of PI, however, this did

not translate into the null game type. Further investigation into this null

game result is needed. I would expect that when substantially increasing the

sampling threshold, the state sampling employed by PIF20 would be more ef-

fective. But under this limited sampling regimen, sampling card configurations

is more effective than sampling states.

7.1 Future Work

Now that success has been established for training model-free policies from

human data in Skat, the next logical step is to improve these policies di-

rectly through experience similar to the process shown in the original AlphaGo

[Sil+16]. In [Sri+18] regret minimization techniques often used to solve im-

perfect information games are related to model-free multi-agent reinforcement

learning. The resulting actor-critic style agent showed fast convergence to ap-

proximate Nash equilibria during self-play in small variants of Poker. Applying

the same approach may be difficult because of Skat’s size and the fact that it

is not zero-sum, but starting with learning a best response to the full imitation

player discussed in this work should be feasible and may yield a new state-of-

the-art player for all phases of the game. The next step would be to create a

fully-fledged self-play regime for Skat. Learning policies through self-play has

shown to yield strategies that are “qualitatively different to human play” in

other games [Sil+17]. This could be problematic because Skat involves coop-

eration on defense during the card play phase. Human players use conventions

47

and signals to coordinate and give themselves the best chance of defeating

the soloist. In order to play well with humans, policies need to account for

these signals from their partner and send their own. Continually incorporating

labelled data from human games may help alleviate this problem.

Also, with a strong and fast network based policy, the IIMC Skat player

[FB13] can be sped up by using the network player for the lower level imperfect

information algorithm. The policy can also be used for move ordering and

pruning in the existing search based methods.

Future work related to inference in trick-taking card games should focus on

the relationship between opponent modelling and exploitability. In particular,

measuring the exploitability of our current policy trained from human data

to see how our algorithm would fare against the worst-case opponent could

lead to insight regarding the robustness of our approach. Likewise, adjusting

player models online could enable us to better exploit our opponents and

cooperate with team-mates. Another direction is to experiment with heuristics

that allow our algorithm to prune states that are highly unlikely and stop

considering them altogether. This could help us sample more of the states

that are shown to be realistic given our set of human games and possibly

improve the performance of the search.

And finally, testing the current iteration of Kermit against human players

would be illuminating, as the strength has dramatically improved since the

last time it was measured against human experts [Bur+09].

48

References

[Aba+16] Martn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. “Tensorflow: A System for Large-scale
Machine Learning.” In: OSDI. Vol. 16. 2016, pp. 265–283. 19

[AM06] Asaf Amit and Shaul Markovitch. “Learning to Bid in Bridge.” In:
Machine Learning 63.3 (2006), pp. 287–327. 13

[Bai+18] Hendrik Baier, Adam Sattaur, Edward Powley, Sam Devlin, Jeff
Rollason, and Peter Cowling. “Emulating Human Play in a Lead-
ing Mobile Card Game.” In: IEEE Transactions on Games (2018).

15

[BS18] Noam Brown and Tuomas Sandholm. “Superhuman AI for Heads-
up No-limit Poker: Libratus Beats Top Professionals.” In: Science
359.6374 (2018), pp. 418–424. 2, 14

[Bur97] Michael Buro. “The Othello Match of the Year: Takeshi Murakami
vs. Logistello.” In: ICGA Journal 20.3 (1997), pp. 189–193. 1

[Bur98] Michael Buro. “From Simple Features to Sophisticated Evalua-
tion Functions.” In: International Conference on Computers and
Games. Springer. 1998, pp. 126–145. 16

[Bur+09] Michael Buro, Jeffrey Richard Long, Timothy Furtak, and Nathan
R Sturtevant. “Improving State Evaluation, Inference, and Search
in Trick-Based Card Games.” In: IJCAI. 2009, pp. 1407–1413. 11, 13, 16, 23, 37, 48

[CHH02] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu.
“Deep Blue.” In: Artificial intelligence 134.1-2 (2002), pp. 57–83. 1

[Cou06] Rémi Coulom. “Efficient Selectivity and Backup Operators in
Monte-Carlo Tree Search.” In: International conference on com-
puters and games. Springer. 2006, pp. 72–83. 11

[CPW12] Peter I Cowling, Edward J Powley, and Daniel Whitehouse. “Infor-
mation Set Monte Carlo Tree Search.” In: IEEE Transactions on
Computational Intelligence and AI in Games 4.2 (2012), pp. 120–
143. 11

49

[DOS18] DOSKV. DOSKV: Deutcher Online Skatverband. https://www.
doskv.de/skat-spielen.htm. 2018. url: https://www.doskv.
de/skat-spielen.htm. 18

[Fed19] World Bridge Federation. World Computer Bridge Championship.
https://bridgebotchampionship.com/. 2019. url: https://
bridgebotchampionship.com/. 10

[Foe+18] Jakob N Foerster, Francis Song, Edward Hughes, Neil Burch, Iain
Dunning, Shimon Whiteson, Matthew Botvinick, and Michael
Bowling. “Bayesian Action Decoder for Deep Multi-agent Rein-
forcement Learning.” In: arXiv preprint arXiv:1811.01458 (2018).

15

[FB98] Ian Frank and David Basin. “Search in Games with Incomplete
Information: A Case Study Using Bridge Card Play.” In: Artificial
Intelligence 100.1-2 (1998), pp. 87–123. 3, 12

[FB13] Timothy Furtak and Michael Buro. “Recursive Monte Carlo
Search for Imperfect Information Games.” In: Computational In-
telligence in Games (CIG), 2013 IEEE Conference on. IEEE.
2013, pp. 1–8. 12, 13, 16, 48

[Gin01] Matthew L Ginsberg. “GIB: Imperfect Information in a Computa-
tionally Challenging Game.” In: Journal of Artificial Intelligence
Research 14 (2001), pp. 303–358. 11, 13

[HM00] Sergiu Hart and Andreu Mas-Colell. “A Simple Adaptive Proce-
dure Leading to Correlated Equilibrium.” In: Econometrica 68.5
(2000), pp. 1127–1150. 14

[Joh13] Michael Johanson. “Measuring the size of large no-limit poker
games.” In: arXiv preprint arXiv:1302.7008 (2013). 2

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: AMethod for Stochas-
tic Optimization.” In: arXiv preprint arXiv:1412.6980 (2014). 19

[KS06] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo
Planning.” In: European conference on machine learning. Springer.
2006, pp. 282–293. 11

[Lev89] David NL Levy. “The Million Pound Bridge program.” In: Heuris-
tic Programming in Artificial Intelligence (1989). 10, 16

[Lon+10] Jeffrey Richard Long, Nathan R Sturtevant, Michael Buro, and
Timothy Furtak. “Understanding the Success of Perfect Informa-
tion Monte Carlo Sampling in Game Tree Search.” In: Twenty-
Fourth AAAI Conference on Artificial Intelligence. 2010. 10

50

https://www.doskv.de/skat-spielen.htm
https://www.doskv.de/skat-spielen.htm
https://www.doskv.de/skat-spielen.htm
https://www.doskv.de/skat-spielen.htm
https://bridgebotchampionship.com/
https://bridgebotchampionship.com/
https://bridgebotchampionship.com/

[Mor+17] Matej Moravk, Martin Schmid, Neil Burch, Viliam Lis, Dustin
Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Jo-
hanson, and Michael Bowling. “Deepstack: Expert-level Artificial
Intelligence in Heads-up No-limit Poker.” In: Science 356.6337
(2017), pp. 508–513. 2, 14

[NH10] Vinod Nair and Geoffrey E Hinton. “Rectified Linear Units Im-
prove Restricted Boltzmann Machines.” In: Proceedings of the 27th
international conference on machine learning (ICML-10). 2010,
pp. 807–814. 18

[Pre98] Lutz Prechelt. “Automatic Early Stopping Using Cross Valida-
tion: Quantifying the Criteria.” In: Neural Networks 11.4 (1998),
pp. 761–767. 19

[RSB19] Douglas Rebstock, Christopher Solinas, and Michael Buro.
“Learning Policies from Human Data for Skat.” In: arXiv preprint
arXiv:1905.10907 (2019). iii

[Reb+19] Douglas Rebstock, Christopher Solinas, Michael Buro, and
Nathan R Sturtevant. “Policy Based Inference in Trick-Taking
Card Games.” In: arXiv preprint arXiv:1905.10911 (2019). iii

[RA07] Mark Richards and Eyal Amir. “Opponent Modeling in Scrabble.”
In: IJCAI. 2007, pp. 1482–1487. 13

[RQA19] Jiang Rong, Tao Qin, and Bo An. “Competitive Bridge Bidding
with Deep Neural Networks.” In: arXiv preprint arXiv:1903.00900
(2019). 15

[RN16] Stuart J Russell and Peter Norvig. Artificial Intelligence: A Mod-
ern Approach. Malaysia; Pearson Education Limited, 2016. 3, 12

[Sch+07] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishi-
moto, Martin Müller, Robert Lake, Paul Lu, and Steve Sutphen.
“Checkers is Solved.” In: science 317.5844 (2007), pp. 1518–1522. 1

[SBH08] Jan Schäfer, Michael Buro, and Knut Hartmann. “The UCT
Algorithm Applied to Games with Imperfect Information.” In:
Diploma, Otto-Von-Guericke Univ. Magdeburg, Magdeburg, Ger-
many (2008). 11

[Sil+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. “Master-
ing the Game of Go with Deep Neural Networks and Tree Search.”
In: nature 529.7587 (2016), p. 484. 1, 11, 14, 15, 47

51

[Sil+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, et al. “Mastering the Game
of Go Without Human Knowledge.” In: Nature 550.7676 (2017),
p. 354. 11, 47

[Sof19] Kuijf & Kuijf Software. Jack. http://www.jackbridge.com/
eindex.htm. 2019. url: http://www.jackbridge.com/eindex.
htm. 10

[SRB19] Christopher Solinas, Douglas Rebstock, and Michael Buro. Im-
proving Search with Supervised Learning in Trick-Based Card
Games. 2019. eprint: arXiv:1903.09604. 11, 13, 16, 23, 37

[Sri+18] Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Péro-
lat, Karl Tuyls, Rémi Munos, and Michael Bowling. “Actor-critic
Policy Optimization in Partially Observable Multiagent Environ-
ments.” In: Advances in Neural Information Processing Systems.
2018, pp. 3426–3439. 47

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. “Dropout: a Simple Way
to Prevent Neural Networks from Overfitting.” In: The Journal of
Machine Learning Research 15.1 (2014), pp. 1929–1958. 19

[SB06] N. Sturtevant and M. Bowling. “Robust Game Play Against Un-
known Opponents.” In: Autonomous Agents and Multiagent Sys-
tems (AAMAS). ACM. 2006, pp. 713–719. url: http://www.cs.
du.edu/~sturtevant/papers/softmaxn.pdf. 13

[Stu08] Nathan Sturtevant. “An Analysis of UCT in Multi-player Games.”
In: ICGA Journal 31.4 (2008), pp. 195–208. 11

[Wau+15] Kevin Waugh, Dustin Morrill, James Andrew Bagnell, and
Michael Bowling. “Solving Games with Functional Regret Esti-
mation.” In: AAAI. Vol. 15. 2015, pp. 2138–2144. 14

[WBr19] WBridge5. WBridge5. http://www.wbridge5.com/. 2019. url:
http://www.wbridge5.com/. 10

[WKW70] Frank Wilcoxon, SK Katti, and Roberta A Wilcox. “Critical Val-
ues and Probability Levels for the Wilcoxon Rank Sum Test and
the Wilcoxon Signed Rank Test.” In: Selected tables in mathemat-
ical statistics 1 (1970), pp. 171–259. 25, 42

[YHL18] Chih-Kuan Yeh, Cheng-Yu Hsieh, and Hsuan-Tien Lin. “Auto-
matic Bridge Bidding Using Deep Reinforcement Learning.” In:
IEEE Transactions on Games 10.4 (2018), pp. 365–377. 15

52

http://www.jackbridge.com/eindex.htm
http://www.jackbridge.com/eindex.htm
http://www.jackbridge.com/eindex.htm
http://www.jackbridge.com/eindex.htm
arXiv:1903.09604
http://www.cs.du.edu/~sturtevant/papers/softmaxn.pdf
http://www.cs.du.edu/~sturtevant/papers/softmaxn.pdf
http://www.wbridge5.com/
http://www.wbridge5.com/

[Zin+08] Martin Zinkevich, Michael Johanson, Michael Bowling, and
Carmelo Piccione. “Regret Minimization in Games with Incom-
plete Information.” In: Advances in neural information processing
systems. 2008, pp. 1729–1736. 2, 14

53

	Introduction
	Background and Related Work
	Background Material
	Imperfect Information Games
	Trick-taking Card Games
	Skat

	Related Work
	Determinized Search Techniques
	Inference in Search
	Counter Factual Regret (CFR)
	Supervised and Reinforcement Learning
	State-of-the-Art in Skat

	Imitation Based Policies for Pre-Cardplay in Skat
	Pre-cardplay Method
	Bidding Experiments

	Learning Policies from Human Data For Cardplay in Skat
	Cardplay Method
	Cardplay Experiments

	Policy Based Inference in Skat
	Inference Method
	Direct Inference Evaluation

	Applying Policy Based Inference in Determinized Search
	Cardplay Tournament

	Conclusion
	Future Work

	References

