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An examination of five spatial disease clustering

methodologies for the identification of childhood cancer

clusters in Alberta, Canada

Abstract

Cluster detection is an important part of spatial epidemiology because it
may help suggest potential factors associated with disease and thus, guide
further investigation of the nature of diseases. Many different methods have
been proposed to test for disease clusters. In this paper, we study five
popular methods for detecting spatial clusters. These methods are Besag-
Newell (BN), circular spatial scan statistic (CSS), flexible spatial scan statis-
tic (FSS), Tango’s maximized excess events test (MEET), and Bayesian dis-
ease mapping (BYM). We study these five different methods by analyzing a
data set of malignant cancer diagnoses in children in the province of Alberta,
Canada during 1983-2004. Our results show that the potential clusters are
located in the south-central part of the province. Although, all methods per-
formed very well to detect clusters, the BN and MEET methods identified
local as well as general clusters.

Keywords: Bayesian statistic; Cancer cases; Geographic epidemiology;
Spatial cluster detection

1. Introduction

Childhood cancers differ from adult cancers in terms of type and distri-
bution. Leukemias, brain and other nervous system tumours, lymphomas
(lymph node cancers), bone cancers, soft tissue sarcomas, kidney cancers,
eye cancers, and adrenal gland cancers, are the most common types of can-
cer in children, while skin, prostate, breast, lung, and colorectal cancers are
the most common cancers in adults [1]. Childhood cancers also differ from
adult cancers based on biological, clinical and environmental features, growth
rates, and treatment responses. While in most cases the causes of childhood
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cancers are unknown, the causes of adult cancers are environmental, occu-
pational and lifestyle factors such as diet, alcohol and smoking [2, 3].

In North America, childhood cancer is the most common cause of death
from disease in the pediatric population (one year of age through adolescence)
[4, 5]; more deaths than asthma, diabetes, cystic fibrosis and AIDS combined
in Canada [4]. With such an impact, it is important to identify regions, in
childhood malignant cancer diagnoses, with high ratio of cancer diagnoses.
The focus of our paper is to examine geographical variations of the number
of childhood cancer diagnoses during 1983 to 2004 in the western Canadian
province of Alberta.

A limited region within the study regions with a high ratio of disease cases
is defined as a spatial cluster [6]. The identification of a cluster of disease can
help to find potential factors associated with disease and lead to improved
understanding of etiology. Moreover, identification of clusters may lead to
more detailed investigations to find out the association between exposures
and disease interventions [7].

Statistical cluster detection methods are generally classified into two main
categories, focused and general (also called as non-focused). Methods for
focused cluster detection are designed to identify regions with excess number
of cases in the vicinity of potential causes (e.g., toxic waste site) [8, 9]. On
the other hand, methods for general clusters are designed to identify regions
with excess number of cases. Typically, these models adopt extra-Poisson
variability in different ways [10, 11, 12].

Methods for focused cluster detection include, but are not limited to, cir-
cular spatial scan statistic (CSS)[13], flexible spatial scan statistic (FSS)[14],
and Bayesian disease mapping (BYM)[12]. The methods for general cluster
detection include the Besag and Newell (BN)[15] test and the maximizing
excess events test (MEET)[16]. The aim of focused tests is to test the null
hypothesis of no local spatial cluster, while, the general tests are used to de-
tect the potential clusters in the study region. In other words, for the focused
tests (CSS, FSS, and BYM), the goal is to find a cluster for a specific region
of interest, and consequently the test statistics are designed to capture the
potential cluster. For the general tests (BN and MEET), the goal is to find
any significant cluster in the study region without specifying any region of
interest.
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Since multiple tests with different assumptions have been proposed in the
literature, it is important to compare and contrast methods to examine their
performance on a particular data set. The similar and diverse results provide
insights on the features that the different methods can detect. In this paper,
we study five different and popular methods (BN, CSS, FSS, MEET, and
BYM) to detect clusters with high ratio of childhood malignant cancer cases
in the province of Alberta, Canada during 1983-2004. These methods were
chosen based on their popularity in the literature [17, 18]. Moreover, the
relationship between the shape of clusters and the methods used to detect
spatial clusters are also investigated.

2. Materials and methods

2.1. Study subjects

The study was based on a yearly data set of malignant cancer diagnoses in
children (age ≤ 19) in the western Canadian province of Alberta during the
1983-2004 fiscal years (see http://atlas.nrcan.gc.ca/site/english/maps
/reference/national/can political e/map.pdf for a map of Canada). During
the study period, the population of Alberta increased from 2.4 million in
1983 to 3.2 million in 2004 and the average population of children numbered
around 800,000. During the last study year, the province consisted of nine
Regional Health Authorities that were responsible for the delivery of health
care services. These regions were further sub-divided into 70 areas (called
sRHAs). These non-overlapping sRHAs are the geographic unit used in our
analysis and all data were linked to these geographic boundaries. In addition,
a population-based centroid was provided for each sRHA and these centroids
were not necessarily geographic centres. For simplicity, we call these regions
1, 2, ..., 70. The data was aggregated over the study period 1983-2004.

The number of malignant cancer cases totaled 2,728 over the study period.
The median number of yearly cases per sRHA was 1 (range 0 to 12). The
distribution of gender was 45% females and 55% males and most of malignant
cancer cases were in the age groups 0-4 (32%) and 15-19 years (33%). The
percentages of cancer cases for other two categories, 5-9 and 10-14 years,
were 16% and 19%, respectively.
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The key data requirements for the following methods are the number of
cases and the number of expected cases or the population size for each region.
When the expected number of disease cases varies by important strata, such
as year, age group and gender, adjustments can be made. The expected
number of disease cases is then adjusted by year (1-22), age group (0-4, 5-9,
10-14, 15-19 years) and gender (male, female). Some counts are suppressed
to ensure confidentiality.

2.2. Besag-Newell’s R statistic (BN)

Besag and Newell (BN)[15] proposed a test for each region based on the num-
ber of neighbours that must be combined to contain a minimum number of
cases (cluster size). The spatial relationship among the regions is character-
ized by calculating pairwise distances between region centroids. Denote ij as
the j-th closest region to region i, (j = 1, ..., m− 1),i0 = i and m is the num-
ber of regions. Let Ni be the population at region i and Ni:k(=

∑k
j=1Nij ) be

the total population of the k−nearest neighbours of region i. Denote Ci as
the number of cases in region i and Ci:k(=

∑k
j=1Cij ) is the number of cases

in the k-th nearest neighbours of region i. The total population in study
region is N(=

∑m
i=1Ni) and the total number of cases is C(=

∑m
i=1Ci). In

this method, the cluster size (called l) is pre-specified. The test statistic for
region i is the number of regions that must be combined with region i, to
include the nearest l cases. This test statistic for region i is given by

Ti = min

{

J : l ≤

J
∑

j=1

Cij

}

. (1)

Under the null hypothesis, Ci:k has Poisson distribution with mean λi:k =
Ni:kC/N, where under null hypothesis, every individual is equally likely to
be a case independent of other individuals and the location of residence. For
region i, the significance level becomes

P (Ti ≤ t) = 1−

l−1
∑

z=0

λz
i:ke

−λi:k/z!. (2)

A region is identified as cluster when the significance level is equal or less
than 0.05. For calculations, we used the corresponding observed quantities
(i.e., replace C with the total number of observed cases in the study region).
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This method mainly relies on a pre-determined cluster size for each test and
Le et al. [19] provided a testing algorithm for the automatic selection of
cluster sizes. We implement this method using R [20] code.

2.3. Circular spatial scan statistic (CSS)

The spatial scan statistic has been used in a wide range of applications within
the field of epidemiology [21]. The circular spatial scan statistic imposes a
circular window S on each region, and for any of those regions, the radius
of the circle varies from zero to a pre-specified maximum distance d or a
pre-specified maximum number of regions K to be included in the cluster.
Let Si:j(j = 1, ..., J) denote the window composed by the (j-1)-th nearest
neighbours to region i. The set of all windows to be scanned by the circular

spatial scan statistic is S1 =
{

Si:j; i = 1, ..., m; j = 1, ..., J
}

. For each circle,

a likelihood ratio statistic is computed based on the number of observed and
expected cases within and outside the circle. Let L0 and Li(i = 1, ..., m)
be likelihood under the null and alternative hypothesis, where the null hy-
pothesis is no cluster in region i and the alternative hypothesis is a cluster
in region i based on its j-th nearest neighbours. Then the likelihood ratio
statistic is given by

max
i

Li

L0
=

(Ci

Ei

)Ci
(N − Ci

N −Ei

)N−Ci

I(Ci > Ei), (3)

where Ci and Ei denote the observed and expected number of cases in a circle,
respectively, and (N − Ci) and (N − Ei) denote the observed and expected
number of cases outside the circle, respectively. Note that the indicator
function I(·) is equal to one when Ci > Ei and 0 elsewhere.

The circles with the highest likelihood ratio values are identified as poten-
tial clusters. We can implement this method using SaTScan [22] or FleXScan
[23] software. In general, the K is chosen to include at most 50% of popula-
tion at risk. We used K = 15, the FleXScan default, and since our example
uses aggregate data, the region centroid had to be included in the radius of
the circle for the region to be part of the circle.
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2.4. Flexible spatial scan statistic (FSS)

This method is similar to the method of CSS; however, the detected cluster
is allowed to be flexible in shape while at the same time the cluster is con-
fined to a relatively small neighbourhood of each region. The flexible scan
statistic imposes an irregularly shaped window S on each region by con-
necting its adjacent regions. For each region i, the set of irregularly shaped
windows with length j, the j connected regions including i, can move from
1 to the pre-specified maximum J. The connected regions are restricted to
the subsets of the set of regions i and (J-1)-th nearest neighbours to the
region i, where J is a pre-specified maximum length of cluster. The set
of all windows to be scanned by the flexible spatial scan statistic is then

S2 =
{

Si:j(k); i = 1, ..., m; j = 1, ..., J ; k = 1, ..., kij

}

. Note that the circu-

lar spatial scan statistic considers J circles for a given region i; however,
the flexible spatial scan statistics considers J circles in addition to the all
sets of connected regions whose centroids are located within the J-th largest
concentric circle. As a consequence, the size of S2 is much larger than S1

which is at most mJ. Under the Poisson assumption, the test statistic for the
flexible spatial scan statistic based on the likelihood ratio test is obtained
by (3), where the circle defined in (3) now refers to the S2 rather than S1.
We implement this method with the FleXScan software, using the default
setting J = 15. Similar to the circular spatial scan statistic, the circles with
the highest likelihood ratio values are identified as potential clusters.

2.5. Tango’s maximized excess events test (MEET)

For a given parameter k, the Excess Events Test statistic [24] is defined as

T0(k) =
∑

i

Ui(k) =
∑

i

∑

j

e−4d2ij/k
2

(Ci −NiC/N)(Cj −NjC/N),

where dij is the distance between region i and j. However, the choice of
k refers to the geographical scale of clustering. A large k makes the test
sensitive to geographically large clusters, while a small k makes the test
more sensitive to small clusters. To detect clustering irrespectively of its
geographical scale, Tango [16] proposed the Maximized Excess Events Test
(MEET) as

T = min
0≤k≤K

P{T0(k) > t0(k)|H0, k}, (4)

6
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where t0(k) is the observed value of the Excess Events Test statistic for a
given k, and K is upper bound on k. In practice, the test uses a line search
by discretization of k, and the MEET statistic is evaluated by Monte Carlo
hypothesis testing. The null hypothesis of no clustering, H0, is rejected
when the test statistic is small. Given k and under the null hypothesis, the
test statistic T0(k) has an asymptotically chi-square distribution. If the null
hypothesis of no clustering is rejected, the most likely centres of clusters may
be identified by the region with maximum of Ui(k). In practice, the regions
with high outlying percentages will likely be the locations of clusters.

2.6. Bayesian disease mapping (BYM)

A Bayesian approach using Markov chain Monte Carlo (MCMC) can also be
used for cluster detection [10, 11, 25, 26]. This approach was first used by
Besag et al. (BYM) [10] and the model consists of two parts. In the first
part, the cases are assumed to follow a Poisson distribution with an area
specific parameter θiEi :

Ci ∼ Poisson(θiEi),

where Ci and Ei are the observed and expected number of cases in region i,
respectively. The second part of the model is obtained by

log(θi) = µ+ ηi + φi,

where θi is the relative risk (RRi) in region i, µ is an overall mean, ηi repre-
sents specified features of region i which accommodates spatial structure, and
φi denotes unspecified features of region i which does not incorporate spatial
structure. The uncorrelated component φi is assumed to follow a Gaus-
sian distribution with zero mean and a common variance σ2

φ. The correlated
component ηi is assumed to follow an intrinsic conditionally autoregressive
(ICAR) distribution depending on their neighbouring values. In particular,

η = (η1, ..., ηm)
′ ∼ N(0,Ση),

where Ση = σ2
ηD

−1, and σ2
η is the spatial dispersion parameter. The neigh-

bourhood matrix D has its i-th diagonal element equal to the number of
neighbours of the corresponding region, and the off-diagonal elements in each
row equal -1 if the corresponding regions are neighbours and zero otherwise

7
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[27, 28]. The parameters can be then estimated within the Bayesian frame-
work (MCMC) using vague priors for the parameters. This produces the
posterior distributions for the parameters in the model.

A cluster is defined as a region where the estimated relative risk is signif-
icantly larger than 1 (in terms of their credibility sets) [29]. To implement
this method, we used WinBUGS software [30] to compute the relative risk
values.

These methods have different limitations and strengths. As a limitation,
we assume that the number of cases follows a Poisson distribution under the
null hypothesis of no cluster for the BN and BYM methods. We also need
to specify the number of regions to be included in the cluster for the CSS
and FSS methods. As a strength, the CSS, FSS, and MEET methods are
distribution free. Also, we do not need to specify the cluster size for the BYM
and BN methods (if using a testing algorithm [19] with the BN method).

2.7. Specific hypotheses

Although, the specific alternative hypotheses need to be specified only for the
methods CSS, FSS, and BYM, we may also want to specify the alternative
hypotheses for the methods BN and MEET as well. We consider multiple
alternatives that are tested separately. Further, let RRi indicate the relative
risk for the i-th region within clusters when compared with the region outside
clusters; the latter has RRi = 1. For example for cluster X , the RRi is given
by

RRi =

{

3 i ∈ X
1 otherwise.

3. Results

We have provided the comparison of the five methods (BN, CSS, FSS, MEET,
and BYM) to detect the potential clusters in our childhood malignant can-
cer cases for the period of 22 years (1983-2004) in the province of Alberta,
Canada.

Based on the 70 regions, six different clusters were tested: (1) 19 regions
from the urban south-central part of the province (called A), (2) 18 regions

8
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from the urban central part of the province (called B), (3) two clusters of
regions A and B (called AB), (4) four regions from the rural north part of the
province (called D), (5) nine regions from the mixed (urban and rural) south-
central part of the province (called F), and (6) a case of no clusters (called
G). For G, no region was specified as a potential cluster. More precisely, the
clusters are A = {8, 9, ..., 26}, B = {41, 42, ..., 58}, D = {59, 60, 61, 62}, and
F = {27, 28, ..., 35}.

In Figures 1 to 6, the areas that are statistically significant (potential
clusters) are shown for each cluster and each method separately. The sum-
mary of cluster F, an area of mixed urban and rural parts of the province,
is presented in Table 1. As shown, the order of significant regions of five
different methods is reported for cluster F. More precisely, the regions are
ordered based on which one is more significant to be as a cluster. For the BN
method for example, 1 means that the regions 27, 28, 30, and 35 are most
likely to constitute a significant cluster, while 8 means that the region 53 is
least likely to be a significant cluster. Hence, it is easy to see which region has
more contribution to constitute a cluster. For local (hot-spot) clusters (A,
B, AB, D, F), almost all methods detected these areas as potential clusters.

Figure 1: Subregional health authorities (HAs) identified as potential
clusters (shaded regions) for five methods (BN, CSS, FSS, MEET, and BYM)
for cluster A.

Figure 2: Subregional health authorities (HAs) identified as potential
clusters (shaded regions) for five methods (BN, CSS, FSS, MEET, and BYM)
for cluster B.

Figure 3: Subregional health authorities (HAs) identified as potential
clusters (shaded regions) for five methods (BN, CSS, FSS, MEET, and BYM)
for cluster AB.

Figure 4: Subregional health authorities (HAs) identified as potential
clusters (shaded regions) for five methods (BN, CSS, FSS, MEET, and BYM)
for cluster D.

Figure 5: Subregional health authorities (HAs) identified as potential
clusters (shaded regions) for five methods (BN, CSS, FSS, MEET, and BYM)
for cluster F.
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Figure 6: Subregional health authorities (HAs) identified as potential
clusters (shaded regions) for five methods (BN, CSS, FSS, MEET, and BYM)
for cluster G.

For example, for cluster AB, the CSS method detected the AB cluster
as a potential cluster except for regions {23, 25, 53, 55}. However, the FSS
method identified AB as a potential cluster except for regions {23, 55}. The
main reason for different results between CSS and FSS is due to non-circular
shape of regions {25, 53} in relation to cluster AB. Region 28 and cluster AB,
without region 53, constitute a potential cluster for the BN method, while
region 31 and cluster AB, without region 53, contain a potential cluster for
the BYM method. The cluster AB is a potential cluster for the MEET
method.

For the case of no cluster G (general test), CSS, FSS, and BYM did not
identify any potential clusters. However, BN and MEET methods identified
some regions as potential clusters. In BN method, the regions {12, 14, 15, 25,
31, 32, 51}were identified as potential clusters, while regions {9, 15, 21, 25, 31,
34, 47, 51} were potential clusters for MEET method. Note that for cluster
G, we have RRi = 1(i = 1, ..., 70).

The methods CSS, FSS, and BYM detected local clusters as potential
clusters. The FSS method also identified regions with a non-circular shape
as a potential cluster unlike CSS method. The BN and MEET methods
detected potential clusters in both scenarios (local and global clusters).

10
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Table 1. The order of significant regions of five different methods for
cluster F.

Methods

Region Ci Ei BN MEET CSS FSS BYM
12 67 64 5 - - - -
14 34 32 5 - - - -
15 64 43 6 9 - - 10
25 28 15 2 8 - - 11
27 19 6 1 4 3 - 5
28 17 6 1 6 3 1 8
29 38 13 4 2 1 1 3
30 17 6 1 6 1 1 6
31 38 13 4 2 1 1 2
32 104 35 3 1 1 1 1
33 * 3 5 7 1 1 9
34 35 12 3 3 2 1 4
35 18 6 1 5 2 - 7
51 58 44 - 10 - - -
53 * 8 8 - - - -
59 44 42 7 - - - -

“*” represents small count; “-” non-significant regions; Ci and Ei are ob-
served and expected number of cases in region i; BN, MEET, CSS, FSS, and
BYM are Besag-Newell’s R statistic, Tango’s maximized excess events test,
circular spatial scan statistic, flexible spatial scan statistic, and Bayesian
disease mapping methods, respectively.

4. Discussion

We have provided the comparison of five different methods (BN, CSS, FSS,
MEET, and BYM) with potential for detecting clusters with high ratio of
childhood malignant cancer cases in the province of Alberta, Canada. These
five methods have been extensively used in the literature and are relatively
comprehensive. These methods use different approaches (semi-parametric to
parametric as well as Bayesian) to test for significant clusters.

We considered six different alternative hypotheses, including local and
global clustering, to compare the results of different methods. The CSS,
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FSS, and BYM methods detected potential clusters in the scenarios of local
clusters as expected, but they did not detect the global cluster (cluster G).
In addition, the CSS method identified a lower number of regions combined
as a potential cluster compared to FSS method, due to non-circular shape of
some regions in the province of Alberta. The BN and MEET methods identi-
fied local clusters in addition to global clusters. It seems that the malignant
cancer diagnoses cases tend to constitute the local clusters, particularly in
south-central part of the province. Hence, we recommend using the meth-
ods of BN and MEET and particulary MEET, due to fewer assumptions
compared with the BN method.

In the BYM approach, we conservatively defined a region as a cluster if
the credibility set of the estimated relative risk was larger than one. One
may define different decision rule where the estimated relative risk would be
larger than one [31].

We adjusted our expected number of malignant cancer by three important
factors age, gender, and year. We did not include any covariates in the
model, since only the BN and BYM methods allow for the direct inclusion
of covariates. We also note that the methods have different settings and
assumptions, which motivate our comparisons. User-chosen settings are part
of all cluster tests and different choices could lead to different results. The
CSS, FSS, and BYM methods have been proposed for local clusters, while the
BN and MEET methods have been advocated for global clusters. Under the
null hypothesis, the number of cancer cases follows a Poisson distribution
for the BN and BYM methods, while the test statistic for the CSS, FSS,
and MEET methods has an asymptotically chi-square distribution. These
features motivated us to consider these important methods and apply them
to our malignant cancer cases.

In general, the potential clusters are located in the south-central part of
the province (cluster G). These findings may represent real clusters or may
represent different distributions of important factors that are unmeasured
and unadjusted for in our modeling. Our results highlight how different
methods can produce different results and further investigation may be war-
ranted to explore these findings.
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