
LINT: Assessing the Interpretability of Programmatic
Policies

by

Zahra Bashir

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Zahra Bashir, 2024

Abstract

Although the synthesis of programs encoding policies often carries the promise

of interpretability, systematic evaluations were never performed to assess the

interpretability of these policies, likely because of the complexity of such an

evaluation. In this dissertation, we introduce a novel metric that uses large-

language models (LLM) to assess the interpretability of programmatic policies.

For our metric, an LLM is given both a program and a description of its asso-

ciated programming language. The LLM then formulates a natural language

explanation of the program. This explanation is subsequently fed into a sec-

ond LLM, which tries to reconstruct the program from the natural-language

explanation. Our metric then measures the behavioral similarity between the

reconstructed program and the original. Our evaluation is based on the lit-

erature on program obfuscation, using it as a proxy for interpretability. We

validate our approach with synthesized and human-crafted programmatic poli-

cies for playing a real-time strategy game, comparing the interpretability scores

of these programmatic policies to obfuscated versions of the same programs.

Our LLM-based interpretability score consistently ranks less interpretable pro-

grams lower and more interpretable ones higher. These findings suggest that

our metric could serve as a reliable and inexpensive tool for evaluating the

interpretability of programmatic policies.

ii

Preface

The author of this dissertation, in partnership with Michael Bowling and Levi

Lelis, has produced original research. We are preparing to submit our findings

for potential publication. Throughout this dissertation, the term “we” is used

to acknowledge the collaborative aspect of this work. However, I take full

responsibility for any technical inaccuracies or errors in presentation.

iii

To my dad, who told me to dream big and shoot for the stars. Now, from up

there among them, I hope you’re smiling down on me.

And to my mom, the strongest person I’ve ever known!

iv

Nothing in life is to be feared, it is only to be understood. Now is the time to

understand more, so that we may fear less.

– Marie Curie.

v

Acknowledgements

I must start by extending my profound gratitude to my supervisor, Levi (Prof.

Levi Lelis), for his invaluable guidance throughout my studies. Joining his

group was a turning point in my academic journey, filled with endless sup-

port and opportunities for which I am deeply thankful. The most valuable

lesson Levi taught me is how to think like a researcher, to approach problems

critically, and to never give up early when challenges arise.

I’m really thankful for his positive attitude and the energy he shared, es-

pecially in moments of uncertainty. I’m indebted to him for always giving me

the freedom to explore my interests in our research and showing great trust

in me. His encouragement, regardless of the outcomes, has been a source of

motivation, reminding me that the journey is as important as the destination.

Developing the researcher within myself stands out as one of the most signif-

icant outcomes of working with him. To be honest, I think my path would

have diverged significantly if I hadn’t had the privilege of working with Levi.

I am also so grateful for the insights and advice provided by Mike (Prof.

Michael Bowling) throughout this research. His guidance in refining and pitch-

ing our idea was invaluable, and his advice has significantly shaped our project.

A big thanks to Rubens Morares for his quick and clear answers to my

questions on Slack. Also, an appretation to my lab mates, Zaheen, Ken, Quazi,

Paul, Thirupathy, Mahdieh, David, Mahdi, Tales, Parnian, Reza, Amirhosein,

Elham, Habib, and others. Our chats and brainstorming sessions enhanced

our research’s fun and productivity.

I really need to say a huge thank you to my wonderful mom. She’s always

believed in me and encouraged me to follow my heart, even though it’s tough

with us being so far apart. She showed me how to be a woman and be super

vi

strong. I owe everything I’ve achieved to her sacrifices and wisdom throughout

my life. Her love and energy propel me forward. And my lovely sister Zeinab,

she’s the best sister anyone could ever wish for. She’s always shown pride

in me, passionately engaging with my ideas and safeguarding my future and

mental well-being. I’m so thankful for her constant care, and so lucky to have

such a family.

I also want to honor my dad, who we lost too soon, whose wisdom and

vision inspire me. I admire his problem-solving and passion for science. People

say I resemble him in some ways, and I can only hope it’s true. He constantly

valued learning, igniting my love for research. Even though he’s not here, I’m

proudly his daughter, continuing on his path.

I want to give a big shoutout to my best friend, Alireza Bakhtiari, for

always being there for me mentally and emotionally. He’s not just a friend;

he’s my study buddy, gym-partner, confidant, and go-to person for meaningful

conversations. Our time together is incredibly precious to me, and I’m grateful

for his listening ear, and willingness to dive into ideas with me. He could easily

cheer me up after a tough working day with his funny jokes. Thanks for keeping

me smiling throughout my studies.

I also owe a big thanks to my friends who’ve been with me on this journey,

especially my lovely roommates, Hasti and Kimia. They’ve always had my

back and have been the best roomies anyone could ask for! Those long night

talks filled with joy and comfort meant the world to me. I’m equally grateful

to my other friends, both here and back in Iran—Fatemeh, Negin, Moein,

Parham, Omid, Mina, Arad, Ehsan, Nastaran, and so many more—who’ve

brought color into my life. Whether separated by distance or close by, their

presence has made my life warmer and always been a source of happiness.

vii

Contents

1 Introduction 1

2 Background 5
2.1 Program Interpertability . 5
2.2 Code Understandability . 7
2.3 Large Language Models . 7

2.3.1 Prompt Engineering 8
2.3.1.1 What is a prompt? 8
2.3.1.2 What is Prompt Engineering? 8
2.3.1.3 Chain of Thought Prompting 9

2.4 Code Obfuscation . 10
2.4.1 Code Obfuscation Techniques 11

2.5 Program Synthesis . 14
2.5.1 Synthesizing Programmatic Policies 15
2.5.2 A Two-Player Zero-sum Game Setting 17

2.5.2.1 Self-Play Algorithms 18
2.5.2.1.1 Iterated Best Response(IBR) 19
2.5.2.1.2 FP 19
2.5.2.1.3 Local Learner (2L) 20

3 LINT: LLM-based Interpretability Score 22
3.1 Set of Constraints for Explanation 23
3.2 Multiple Trials . 24
3.3 Caveats of LINT Score . 25

4 Empirical Methodology 26
4.1 Classical Programming Problems 26
4.2 Programmatic Policies . 28

4.2.1 Microlanguage . 29
4.2.2 Java . 29
4.2.3 Obfuscating Programmatic Policies 29
4.2.4 Set of Policies Evaluated 31
4.2.5 Behavior Metrics . 31

4.2.5.1 Action Metric 31
4.2.5.2 Outcome Metric 33
4.2.5.3 Feature Metric 34

4.2.6 Baselines for Reconstructed Programs 35
4.2.7 Baseline for the Reconstruction System 35

5 Empirical Results 37
5.1 Classical Programming Problems 37
5.2 Programmatic Policies . 39
5.3 Representative Sample . 41

viii

6 Discussion, Future Works, and Takeaways 44
6.1 Caveats of LLMs . 44

6.1.1 Data Contamination 44
6.1.1.1 Direct data Leakage 44
6.1.1.2 Indirect Data Leakage 45

6.1.2 Hallucination . 46
6.2 Limitations of Our Study Concerning Programming Problems 47
6.3 Future Directions for Research 47

7 Conclusion 49

References 50

Appendix A 55
A.1 An Overview of MicroRTS . 55

A.1.1 Units . 55
A.1.2 Gameplay . 56
A.1.3 MicroRTS’ DSL . 58

Appendix B 60
B.1 Overview . 60
B.2 MicroRTS Prompts . 61

B.2.1 Synthesized Set . 61
B.2.1.1 Explainer Prompt 61
B.2.1.2 Reconstructor Prompt 65
B.2.1.3 Verifier Prompt 70

B.2.2 Human-crafted Set . 75
B.2.2.1 Explainer Prompt 75
B.2.2.2 Reconstructor Prompt 79
B.2.2.3 Verfier Prompt 84

B.3 Computer Programming Prompts 87
B.3.1 Explainer Prompt . 87
B.3.2 Reconstructor Prompt 88
B.3.3 Verifier Prompt . 88

B.3.3.1 Verifier Examples 88
B.4 C Programs Pool . 90

B.4.1 Obfuscated C Programs 91
B.4.2 Non-obfuscated Equivalent Programs 113

B.5 Useless code snippets added for Obfuscation 134
B.5.1 Synthesized Set . 134

B.5.1.1 Level 1 . 134
B.5.1.2 Level 2 . 134

B.5.2 Human-crafted Set . 136
B.5.2.1 Level 1 . 136
B.5.2.2 Level 2 . 137
B.5.2.3 Justification 139

B.6 Set of MicroRTS Programs . 140
B.6.1 Synthesized Set . 140
B.6.2 Human-crafted Set . 175

ix

List of Tables

2.1 Iterated Best Response (IBR) Procedure in P&R Game. . . . 19
2.2 Fictitious Play (FP) Procedure in P&R Game. 20
2.3 Local Learner (2L) Iterative Process in P&R Game with n > 2

Gates. 21

5.1 Average value of the behavior metrics for synthesized program-
matic policies for LINT and other baselines. 39

5.2 Average LINT values of the behavior metrics for the original
synthesized program and for the two levels of obfuscation. . . 40

5.3 Average LINT values of the behavior metrics for the original
program in the human-crafted set and for the two levels of ob-
fuscation. 40

x

List of Figures

1.1 An example of a programmatic policy which is assumed to be
interpretable. 2

2.1 A non-interpretable program for computing the proper subset
of a set. 6

2.2 An interpretable program for computing the proper subset of a
set. 6

2.3 A basic prompt and its generated output. 9
2.4 A refined prompt and its corresponding output. 9
2.5 Comparison between Original and Obfuscated Code using Dead

Code Insertion. 12
2.6 Comparison between Original and Obfuscated Code using Name

Obfuscation. 13
2.7 Comparison between Original and Obfuscated Code using Con-

trol Flow Obfuscation. 13
2.8 Simplified Grammar of a Language in BNF Notation. 15
2.9 An example of a synthesized program using the grammar in

Figure 2.8. 15
2.10 Decision-making policu for playing “Can’t Stop”. 16
2.11 A illustration of P&R game with 5 gates. 18

3.1 General overview of LINT. 23

4.1 Non-obfuscated vs obfuscated code for computing proper subsets. 27
4.2 Policy written in the Microlanguage. 28
4.3 Policy written in Java by a human programmer. 29
4.4 Sample of useless code snippet used in level 1. 30
4.5 Action Metric Calculation . 33

5.1 Comparative analysis of different behaviour metrics. 41
5.2 Policy written in the Microlanguage. 41
5.3 Reconstruction of the program shown in Figure 4.2. 43

A.2 A sample strategy for playing MicroRTS for a 16x16 map. . . 56
A.1 A MicroRTS match. 57

xi

Chapter 1

Introduction

In the realm of sequential decision-making problems, a policy is a function that,

given a state (what the agent observes of the environment) outputs an action.

Specifically, we focus on deterministic policies, where the action output by the

policy is uniquely determined by the given state. In the literature, program-

matic policies are deemed as policies encoded in human-readable computer

programs. There is a growing interest in the use of programmatic representa-

tions of policies to solve sequential decision-making problems, both in single-

agent [40], [52] and multi-agent settings [29], [30]. In addition to programmatic

policies being assumed to be human-readable and thus interpretable, the in-

terest in their use is justified, as one can provide strong inductive bias to the

learning process through the domain-specific language defining the space of

programs. This bias can allow programmatic policies to generalize more easily

to unseen settings [20] and make them more amenable to verification [6].

Despite prior work on programmatic policies placing significant emphasis

on the interpretability aspect, no systematic studies were performed that as-

sessed the actual interpretability of these policies. A common method is to

present specific programs and claim their interpretability [2], [52]. For ex-

ample, Figure 1.1 illustrates a programmatic policy for controlling a car in a

racing domain. This program was automatically generated by the Neurally

Directed Program Search (NDPS) algorithm [52]. In the work, this program-

matic policy is considered interpretable and the authors provide an explanation

of it. The same anecdotal approach is taken in other works (e.g., [2]). We are

1

interested in having a tool that is able to automatically and systematically

evaluate the interpretability of such programmatic policies.

if (0.001− peek(hTrackPos,−1) > 0) and (0.001 + peek(hTrackPos,−1) > 0)

then

3.97 · peek(0.44− hRPM,−1)

+ 0.01 · fold(+, 0.44− hRPM)

+ 48.79 · (peek(hRPM,−2)− peek(hRPM,−1))

else

3.97 · peek(0.40− hRPM,−1)

+ 0.01 · fold(+, 0.40− hRPM)

+ 48.79 · (peek(hRPM,−2)− peek(hRPM,−1))

Figure 1.1: An example of a programmatic policy that is assumed to be in-
terpretable. The function peek(x, i) returns the observation from the i-th
time step from history x, where peek(x,−1) represents the most recent ob-
servation. The function fold(f, [e1, ..., ek], e) = f(ek, f(ek−1, . . . f(e1, e))) is a
higher-order combinator. These functions are used to simulate components of
Proportional–integral–derivative (PID) controllers.

The scarcity of comprehensive evaluations could be attributed to the fact

that such studies are time consuming and costly, mainly because they would

involve human programmers. This lack of a thorough analysis hinders our

understanding of what precisely makes a programmatic policy interpretable.

For instance, neural networks can be viewed as programs written in a domain-

specific language that allows the addition of layers and nodes to the neural

architecture—clearly, the programmatic framing for policies does not guaran-

tee interpretability. So, what are the properties that make a programmatic

policy interpretable?

Any viable approach to addressing this question is likely to involve eval-

uating the interpretability of programmatic policies. In this dissertation, we

introduce a simple and cost-effective methodology to assess program inter-

pretability and demonstrate its application to programmatic policies. Our

assumption is that if a program is interpretable, it can be reconstructed from

a natural language description. In other words, we use a natural language

bottleneck to verify the interpretability of the program. If we can successfully

2

reconstruct the program later, we consider it to be interpretable.

This natural language bottleneck is achieved with Large Language Models

(LLMs) [9]. Our methodology uses LLMs to assign an interpretability score

to a program. We call this score the LLM-based INTerpretability (LINT)

score. In our methodology, we use an instance of an LLM to generate a

natural-language explanation of a program. This explanation is given as input

to another instance of an LLM, which is asked to reconstruct the program de-

scribed in the explanation. A third instance of an LLM verifies that the expla-

nation is in natural language and does not provide step-by-step programming

instructions on how to write the program. The LINT score is the value of a

metric comparing the behavior of the original and reconstructed programs. We

introduce general behavior metrics for sequential decision-making problems.

The evaluation of our methodology is based on methods from the pro-

gram obfuscation literature [12]. Obfuscated programs are designed to be

non-interpretable, and some obfuscation techniques allow us to construct pro-

grams with different levels of obfuscation. Assuming that obfuscation can

be used as a proxy for interpretability, we hypothesize that the LINT scores

negatively correlate with the degree of obfuscation we apply to the programs.

Our methodology also includes the use of programmatic policies written by

humans. Our premise is that since these policies are human-written, they

should be inherently interpretable, and thus be scored as such in our metric.

This assumption is based on the fact that the programs used in our study were

written with the goal of being interpretable by others.

We test this hypothesis in two domains: classical programming problems

and programmatic policies for playing MicroRTS [35], a real-time strategy

game. Empirical results on these two domains show that the LINT scores

negatively correlate with the level of obfuscation of the programs evaluated.

Although user studies should still be the gold standard for evaluating inter-

pretability, our results suggest that LINT can be used as a reliable and inex-

pensive tool to help drive research in interpretable programmatic policies.

In conclusion, this dissertation evaluates the interpretability of program-

matic policies based on the hypothesis that if a program can be reconstructed

3

from a natural language description generated by an LLM—a natural language

bottleneck—then it would be considered interpretable to people.

This dissertation is organized as follows: Chapter 2 provides explanations

of key concepts such as program interpretability, code understandability, large

language models, code obfuscation, and program synthesis, which are essential

for understanding the subsequent discussions. Chapter 3 introduces the LINT

score, a novel metric for assessing the interpretability of programmatic poli-

cies using large language models. Chapter 4 describes the empirical method-

ology, detailing the procedures and introducing domains used for testing the

interpretability metric. Chapter 5 presents the results of the empirical tests,

analyzing the effectiveness of the LINT score in various settings. Chapter 6

discusses the implications of the findings, potential limitations of the study,

and future research directions. Chapter 7 concludes the dissertation by sum-

marizing our contributions in the context of programmatic policies and their

interpretability. The dissertation also includes a section on supplementary

materials (Chapters A and B), featuring an introduction to the domain used

in this dissertation, the prompts, examples, and set of programs from our

experiments.

4

Chapter 2

Background

In this chapter, we delve into the subjects of Program Interpertability, Code

Understandability, Large Language Models, Code Obfuscation, and Program

Synthesis, which constitute the essential background needed to navigate through

this dissertation.

2.1 Program Interpertability

Defining interpretability (also referred to as “explainability”) within the con-

text of mathematical frameworks presents a significant challenge. A compelling

non-mathematical definition proposed by Miller [32] offers a valuable perspec-

tive: “Interpretability is the degree to which a human can comprehend the

cause of a decision.”

In the context of programs, a program is deemed interpretable when in-

dividuals can fully comprehend its functionality and the manner in which it

interacts with its operational environment. This comprehensive understanding

enables users to accurately anticipate the program’s behavior and the outcomes

of its execution under various conditions.

The contrast between interpretable and non-interpretable programs is il-

lustrated through the examples provided below. Figure 2.1, written in C lan-

guage, is designed to compute a proper subset of a set of arguments passed to

it. However, its complexity and the manner in which it is coded make it a non-

interpretable program. This program is also called an “obfuscated program” in

the Software Engineering literature [12]. More details on “Code Obfuscation”

5

can be found in Section 2.4. In contrast, Figure 2.2, written in C language

as well, presents an equivalent program that maintains the same functionality

but is written in a manner that greatly enhances its interpretability.

1 main(Q,O)char**O;{if(--Q){main(Q,O);O[Q]
2 [0]^=0 X80;for(O[0][0]=0;O[++O[0][0]]!=0;)
3 if(O[O[0][0]][0] >0) puts(O[O[0][0]]);
4 puts("----------");main(Q,O);}}

Figure 2.1: A non-interpretable program that computes all the proper subset
of the set of arguments passed to it.

Another related concept is “Explainability”. Drawing from the work of

Kim et al.[23], we define an explainable model as a system capable of providing

explanations by documenting its prediction process. For instance, in a rule-

based system, this would involve detailing the sequence of rules activated by

a given input. Explainability focuses on the process of providing detailed

justifications for an inference or prediction made by a model, regardless of

whether the model is easily interpretable or only loosely interpretable. In

terms of explainability, our interest lies in explaining the decisions made by

the system. However, interpretability concerns our understanding of the model

itself. Within the scope of our research, we treat a program as a model.

1 void subsets(char *av[], int c, int n,
2 char *sbset[], int sz) {
3 if (c == n) {
4 if (sz < n) {
5 for (int i = 0; i < sz; i++)
6 printf(sbset[i]);
7 printf("----------");
8 }
9 return;

10 }
11 sbsets(av, c+1, n, sbset , sz);
12 sbset[sz] = av[c];
13 sbsets(av, c+1, n, sbset , sz+1);}

Figure 2.2: An interpretable program that computes all the proper subset of
the set of arguments passed to it.

6

2.2 Code Understandability

Code understandability has been extensively studied within the Software En-

gineering research community. Studies such as those by [10], [13], [34], [39],

[45] explore metrics for assessing code understandability, tackling a problem

closely related to program interpretability, which is the focus of this disserta-

tion. These issues can be considered analogous, though they involve different

inputs and contexts: code snippets within the realm of software engineer-

ing versus programmatic policies in this study. Code understandability refers

to the ease with which a developer can comprehend a codebase, crucial for

effectively fixing bugs or adding new features in a timely manner. A thor-

ough understanding of code helps estimate the effort required to modify code

components and guides developers in writing better, more maintainable code.

Unfortunately, despite extensive research, there are currently no definitive met-

rics[44] designed specifically to assess the understandability of code snippets,

leaving a gap in quantifiable standards for code clarity and readability. This

dissertation introduces a metric aimed at bridging this gap and providing a

unified way of measuring the interpretability of programs.

2.3 Large Language Models

Large language models (LLMs) are a class of artificial neural network op-

timized for natural language tasks, renowned for generating text that closely

mimics human writing. These models, which are large in scale, employ transformer-

based architectures as introduced by Vaswani et al. [51] in 2017. This archi-

tecture is pivotal for learning intricate data patterns, setting the stage for

breakthroughs like BERT [14] and GPT [41]. Over time, models have ad-

vanced significantly, with GPT-3 [8] emerging as a landmark for its extensive

scale and proficiency in various tasks without the need for specific training.

LLMs are used in a wide variety of tasks, including writing text, translating

languages, summarizing content, and generating computer code. Their flexi-

ble and all-purpose nature makes them essential tools in advancing artificial

7

intelligence’s ability to understand and interact with human language.

2.3.1 Prompt Engineering

2.3.1.1 What is a prompt?

A prompt is a set of instructions given in natural language to a generative AI

system, enabling it to create content such as stories [18], images [42], [43], or

music [16]. These instructions guide AI models, trained on extensive datasets,

to generate outputs based on the context provided. Although generative AI

models, especially large language models, can start creating from minimal

inputs, not all prompts yield useful results. Effective prompt engineering in-

volves crafting detailed prompts to produce precise and relevant responses,

refining these prompts to achieve desired outcomes.

2.3.1.2 What is Prompt Engineering?

Prompt engineering involves guiding AI systems designed to generate content

(known as generative AI) towards producing specific results. Although these

systems aim to replicate human-like output, they need clear instructions to

produce relevant and high-quality content. This process involves selecting the

best phrases, words, and symbols to help the model better engage with users.

Through a mix of creativity and experimentation, prompt engineers develop

a set of inputs that ensure the AI system operates as intended, enhancing its

interaction with applications [8].

Consider the task of generating a Python function to calculate the facto-

rial of a number. The initial prompt and its output are illustrated in Fig-

ure 2.3. Next, some refinement through prompt engineering is applied, which

can significantly affect the quality and specificity of the generated code il-

lustrated in Figure 2.4. The progression from a basic to a refined prompt

demonstrates the essence of prompt engineering. By adjusting the prompt to

specify an“efficient” and “iterative” approach, we guide the AI system to gen-

erate code that is more suited to our requirements, illustrating the practical

application of prompt engineering principles.

8

1 # Prompt: "Write a Python function to calculate factorial ."

2 def factorial(n):

3 if n == 0:

4 return 1

5 else:

6 return n * factorial(n-1)

Figure 2.3: A basic prompt and its generated output.

1 # Prompt: "Write an efficient Python function to calculate

factorial using an iterative approach to avoid stack

overflow with large inputs ."

2 def factorial_iterative(n):

3 result = 1

4 for i in range(2, n + 1):

5 result *= i

6 return result

Figure 2.4: A refined version of the prompt presented in Figure 2.3 and its
corresponding output.

2.3.1.3 Chain of Thought Prompting

Chain-of-thought prompting is a method in prompt engineering where a com-

plex query is divided into smaller, logical steps, mirroring human thought

processes. This technique allows the model to navigate through a problem

progressively, enhancing its reasoning capabilities. For instance, to determine

“What is the capital of Canada”, the model might explore various logical

paths, eventually leading to conclusions such as “Ottawa,” “The capital of

Canada is Ottawa,” and “Ottawa is the capital of Canada.” Given that all

paths arrive at the same endpoint, “Ottawa” would be affirmed as the correct

answer [53].

Illustrative Example: Calculating the Area of a Painted Wall

Consider you want to calculate the area of a wall that needs painting, but the

wall has a door that will not be painted. The wall’s dimensions are 10 feet

wide by 8 feet high, and the door measures 3 feet by 7 feet. A direct prompt

might ask, “What is the area of the wall that needs painting?” However, us-

9

ing chain of thought prompting, the query is broken down into smaller, logical

steps that lead to the final answer.

Prompt powered by Chain of Thought Prompting:

1. Calculate the area of the wall.

2. Calculate the area of the door.

3. Subtract the area of the door from the area of the wall to determine the

painting area.

AI Model’s Response:

1. The area of the wall is 10 feet * 8 feet = 80 square feet.

2. The area of the door is 3 feet * 7 feet = 21 square feet.

3. The painting area is 80 square feet - 21 square feet = 59 square feet.

Thus, the area that needs painting is calculated to be 59 square feet,

demonstrating how chain of thought prompting can effectively guide the model

through a series of reasoning steps to arrive at the correct answer.

2.4 Code Obfuscation

The empirical methodology of our study is grounded in the literature on code

obfuscation. This involves employing obfuscation as a means to assess in-

terpretability, underscoring its significance in our research framework. Given

this, we now proceed to define code obfuscation itself. Code obfuscation is a

technique used to make software code more difficult to understand or interpret

without affecting its functionality. The primary goal of code obfuscation is to

protect the code from unauthorized access, reverse engineering, or tamper-

ing, thereby securing intellectual property or sensitive data embedded within

the code. Obfuscation is widely used in software development, especially for

applications that are distributed or deployed in insecure environments [12].

Figure 2.1 represents an obfuscated C program.

10

2.4.1 Code Obfuscation Techniques

Here are some common techniques used for code obfuscation [12]:

• Name Obfuscation: This involves changing the names of variables, classes,

and methods to meaningless or misleading names. It makes it harder for

someone to understand the code’s purpose or functionality just by read-

ing it.

• Control Flow Obfuscation: This technique alters the execution path of

the program without changing its output. It introduces conditionals,

loops, and other control statements to make the flow of the program

difficult to trace.

• String Encryption: Sensitive information within the code, such as database

passwords or API keys, is encrypted. The code then decrypts this infor-

mation at runtime. This prevents easy extraction of sensitive data from

the code.

• Instruction Pattern Transformation: The code is transformed into an

equivalent but less obvious form. For example, simple operations might

be replaced by more complex, equivalent expressions, making the code

harder to analyze.

• Dead Code Insertion: Also known as “junk code insertion,” this involves

adding code that does not affect the program’s functionality. Its purpose

is to confuse anyone trying to reverse engineer or understand the code’s

purpose.

• Dynamic Obfuscation: This involves techniques that modify the code

at runtime. For example, a program might decrypt, execute, and then

re-encrypt a portion of its code while running, making static analysis

extremely difficult.

• Opaque Predicates: These are conditions added to the code that always

evaluate to true or false but in a way that is not obvious. This can

significantly complicate the control flow analysis.

11

• Code Virtualization: This technique involves converting portions of the

code into a virtual instruction set that is interpreted by a custom virtual

machine (VM) at runtime. This adds an additional layer of abstraction,

making the code harder to analyze directly.

• Anti-debugging Techniques: These are methods used to make debugging

the obfuscated code more difficult, either by detecting and interfering

with debuggers or by making the code behave differently under a debug-

ger.

Illustrative Examples

Below, you can see a list of codes and their obfuscated version with the tech-

nique used for their obfuscation:

Example 1: Dead Code Insertion

1 i n t Fa c t o r i a l (i n t n) {
2 i f (n <= 1) return 1 ;
3 e l s e re turn n ∗ Fac t o r i a l (n − 1) ;
4 }

Original factorial function in C.

1 i n t Fa c t o r i a l (i n t n) {
2 i n t r e s u l t = 1 ;
3 i f (n > 1) {
4 r e s u l t = n ∗ Fac t o r i a l (n − 1) ;
5 }
6 i n t deadCode = r e s u l t − r e s u l t ; // Dead code
7 re turn r e s u l t + deadCode ;
8 }

Obfuscated factorial function with Dead Code Insertion.

Figure 2.5: Comparison between Original and Obfuscated Code using Dead
Code Insertion.

Example 2: Name Obfuscation

12

1 i n t ca l cu la t eTota lExpense s (i n t p r i c e s [] , i n t count) {
2 i n t t o t a l = 0 ;
3 f o r (i n t i = 0 ; i < count ; i++) {
4 t o t a l += p r i c e s [i] ;
5 }
6 re turn t o t a l ;
7 }

Original code in C

1 i n t x82y (i n t a [] , i n t b) {
2 i n t c = 0 ;
3 f o r (i n t d = 0 ; d < b ; d++) {
4 c += a [d] ;
5 }
6 re turn c ;
7 }

Obfuscated version of the original code with Name Obfuscation.

Figure 2.6: Comparison between Original and Obfuscated Code using Name
Obfuscation.

Example 3: x Obfuscation [26]

1 whi le (1) {
2 break ;
3 }

Original code in C.

1 i n t swVar = 1 ;
2 whi le (swVar != 0) {
3 switch (swVar) {
4 case 1 :{
5 i f (1)
6 swVar= 2 ;
7 e l s e
8 swVar= 0 ;
9 break ;

10 }
11 case 2 :{
12 swVar= 0 ;
13 break ;
14 }
15 }
16 }

Equivalent logic implemented with a switch statement.

Figure 2.7: Comparison between Original and Obfuscated Code using Control
Flow Obfuscation.

13

2.5 Program Synthesis

Program synthesis is an active area of research in Artificial Intelligence and in

Programming Languages. According to Solar-Lezama [47], it corresponds to

a class of techniques that are able to generate a program from a collection of

artifacts that establish semantic and syntactic requirements for the generated

code. In other words, it can be considered as a search in the program space

that satisfy a specification λ.

In the context of program synthesis, λ typically represents a formal speci-

fication that the synthesized program must satisfy. This specification can take

various forms, including but not limited to logical expressions, input-output

examples, or higher-level descriptions of behavior. For instance, to synthesize

a function that identifies the maximum number in a list, λ could be specified

through input-output pairs like: for input [1, 5, 4] the output should be 5,

for [-2, -7, -3] it should be −2, and for [6] it should be 6.

The program space is defined by a Domain-Specific Language (DSL) [50].

There are different types of search algorithms for solving program synthesis

problems such as Bottom-Up Search [1], [3], [49], Top-Down Search [4], [27],

and Stochastic Local Search [19], [24].

A simplified grammar of a programming language is presented in Figure 2.8,

expressed in Backus-Naur Form (BNF). This grammar defines the syntactic

structure of a programming language, where a program consists of statements

that can either assign values to variables or execute conditional logic through

“IfThenElse” constructs. Expressions within this language allow for basic

arithmetic operations (addition) and comparisons. Variables are represented

by single lowercase letters, and integers are defined as non-negative numbers.

Using this grammar, a program synthesizer can generate code snippets

that follow the given syntactic rules. The synthesizer searches in the space of

possible programs that meet a specific condition or goal, as defined by a λ ex-

pression. This process involves exploring various combinations of statements,

expressions, and control structures until the generated program aligns with

the λ’s requirements. An example result based on the grammar, is shown in

14

Program ::= Statement

Statement ::= Assignment | IfThenElse
Assignment ::= Variable = Expression ;

IfThenElse ::= if (Condition) { Assignment }
else { Assignment }
Expression ::= Term | Expression + Term

Term ::= Integer | Variable
Condition ::= Expression == Expression |
Expression < Expression | Expression > Expression

Variable ::= x | y | z | . . . (single lowercase letters)

Integer ::= 0 | 1 | 2 | . . . (non-negative integers)

Figure 2.8: Simplified Grammar of a Language in BNF Notation.

Figure 2.9. The synthesized program demonstrates how variables x and y are

assigned integer values, followed by a conditional statement that evaluates the

sum of these variables. Depending on the result of the conditional evaluation,

variable z is assigned a corresponding integer value.

1 x = 5 ;
2 y = 7 ;
3 i f (x + y > 10) {
4 z = 1 ;
5 } e l s e {
6 z = 0 ;
7 }

Figure 2.9: An example of a synthesized program using the grammar in Fig-
ure 2.8.

2.5.1 Synthesizing Programmatic Policies

Initially, it is crucial to comprehend the concept of a policy. A policy is defined

as a function that receives a game’s state as input and outputs the action an

agent should execute in that state. Programmatic policies are policies encoded

in human-readable computer programs. This type of programmatic represen-

15

tation enables a deeper understanding of, as well as the ability to modify, the

encoded policy [33]. Figure 2.10 presents an example of a programmatic pol-

icy designed for playing the board game “Can’t Stop”. This policy includes

elements (Lines 4 and 15) that have been synthesized based on the method-

ology proposed by Medeiros et al. [31]. These lines were synthesized through

a technique known as “sketch-learning” [46], a program synthesis search al-

gorithm. The framework of the code builds upon the foundational strategy

developed by Glen and Aloi [17], which was considered the most effective pro-

grammatic approach until the publication of Medeiros et al.’s paper [31]. The

enhancements introduced by the newly synthesized code successfully outper-

form previous programmatic solutions, marking a significant advancement in

strategic game play for Can’t Stop. This showcases the application of pro-

gram synthesis techniques in game strategy development. Another example of

a synthesized programmatic policy can be found in Figure A.2.

1. def get_action(self, state):

2. actions = state.available_moves()

3. if actions == [’y’, ’n’]:

4. score = sum(map(lambda x: (f1 + 1) * l4, l2)) + f5

5. if win_after_n(state):

6. return ’n’

7. elif available_columns(state):

8. return ’y’

9. else:

10. if score >= 29:

11. return ’n’

12. else:

13. return ’y’

14. else:

15. index = argmax(map(lambda x:\

sum(map(lambda x: f2 * l5 - 6 * f6, l1)), l3))

16. return actions[index]

Figure 2.10: Decision-making policy for playing “Can’t Stop”, with codes on
lines 4 and 15 synthesized via program synthesis techniques to optimize moves.

Next, we will explore the framework and terminology of two-player zero-

sum games, including critical concepts such as “strategy” and “best response,”

16

to better grasp the foundational language of the field. The algorithms and

concepts that we will cover in the next section can be used to synthesize

programs similar to the one shown in Figure 2.10.

2.5.2 A Two-Player Zero-sum Game Setting

Sequential two-player zero-sum games are defined by a set S of states, a pair

of players {i,−i}, an initial state sinit within S, a function Ai(s) that, given

a state s, returns the set of actions available for player i at s, and a function

Ui(s) that provides the utility of player i at s. In the context of zero-sum

games, Ui(s) = −U−i(s). The policy for player i is represented by a function

σi : S → Ai, which maps a state s to an action a.

A programmatic policy encapsulates a policy σ within a computer program.

The value of the game for player i for a state s, assuming players i and −i

adhere to policies σi and σ−i respectively, is denoted as Ui(s, σi, σ−i). That is,

this is assuming that starting from state s, player i will follow the policy σi

and player −i will follow the policy σ−i until the end of the game.

The domain-specific language (DSL) [50] is utilized to describe the program

space, thereby defining the policy space for game play. D signifies a DSL, with

[[D]] representing the (potentially infinite) collection of programs that can be

written using D.

The best response of σ−i in [[D]] maximizes player i’s utility against σ−i,

denoted as

max
σi∈[[D]]

U(sinit, σi, σ−i). (2.1)

In two-player zero-sum games, a Nash equilibrium profile within the domain of

programmatic strategies consists of a pair of programs that mutually constitute

the best response, specifically, strategies σi and σ−i satisfying

max
σi∈[[D]]

min
σ−i∈[[D]]

U(sinit, σi, σ−i). (2.2)

The objective is to approximate a solution for Equation 2.2. Given that the

DSLs we consider in our work encode pure strategies, the existence of a pure-

strategy Nash equilibrium is assumed.

17

Consider the following example. Poachers & Rangers (P&R) is a game

played with simultaneous moves (illustrated in Figure 2.11), featuring two

participants: one as poachers and the other as rangers, in a setting that is

strictly competitive with no possibility for ties. The game’s essence revolves

around the rangers’ mission to protect the entry points of a national park

from poachers. Victory is secured by the rangers if they successfully defend

all targeted gates, earning them a score of +1; conversely, failure to protect

any gate from a poaching attempt results in a loss and a score of -1. While at

first glance, the rangers’ optimal strategy may appear straightforward—guard

every entrance—the challenge intensifies when this strategy is viewed as a

task of program synthesis, especially as the number of gates is large. Existing

program synthesizers may find it difficult to construct programs for a game

with a large number of gates. For instance, in a scenario with n gates, the

ideal programmed strategy would consist of a sequence of defensive commands:

defend[1], defend[2], . . . , defend[n]. This sequence is concisely denoted

as defend[1, 2, ..., n] for simplicity. This strategy is a Nash Equilibrium

profile [33].

Figure 2.11: A illustration of P&R game with 5 gates. In this specific instance,
the poacher launches an attack on gate 2, which is simultaneously defended
by the ranger.

2.5.2.1 Self-Play Algorithms

The synthesis of programmatic strategies requires one to search in large non-

differentiable spaces of computer programs. Current search methods use self-

18

play algorithms to guide this search. We briefly describe three self-play algo-

rithms.

2.5.2.1.1 Iterated Best Response(IBR) In a game scenario, in IBR,

one starts with an arbitrary strategy σi for player i and computes a best

response σ−i to σi. Then, in the next iteration of IBR, it computes a best

response to σ−i, and so on. This cycle of best responses continues for several

iterations, and the strategy developed in the final iteration is returned as an

approximate solution to Equation 2.2 [2], [33]. Consider an instance of a

Poachers & Rangers with 2 gates, below you can see how IBR works for this

instance of the game.

Iteration Poachers’
Response

Rangers’
Strategy

Note

1 - defend[2] Initial arbitrary strategy by
Rangers

2 attack[1] defend[1] -
3 attack[2] defend[2] Best response to attack[2],

loops back

Table 2.1: Iterated Best Response (IBR) Procedure in P&R Game.

Note that IBR can loop through a series of suboptimal strategies due to

its reliance on the last synthesized strategy, potentially delaying convergence

to the optimal strategy of defending all gates (defend[1, 2]).

2.5.2.1.2 FP Fictitious Play (FP) [7], like Iterated Best Response (IBR)

[25], begins with a random starting strategy σi for each player and calculates

the best response to it. Unlike IBR, FP keeps track of two sets of strategies for

each player: Σi and Σ−i, with all the best responses computed for each player.

In each round of FP, a best response is calculated against a mixed strategy

that includes all the strategies in Σi (or Σ−i). Over time, the mix of strategies

in these collections evolves towards a mixed-strategy Nash equilibrium for the

game. When focusing on purely programmed strategies, FP is run until a set

time limit is reached. At this point, the last best response noted for each set

19

is used as the algorithm’s estimate of a pure-strategy Nash equilibrium [2]. In

Table 2.2, you can see how FP works for an instance of P&R initiated with a

random strategy by the Rangers.

Iteration Cumulative Poachers’
Responses

Cumulative Rangers’
Strategies

1 - defend[1]

2 attack[1] defend[1]

3 attack[1, 2] defend[1, 2]

4 attack[1, 2, 3] defend[1, 2, 3]

Table 2.2: Fictitious Play (FP) Procedure in P&R Game.

Note that FP considers all previously synthesized strategies during the

learning process. Once it encounters the strategies to attack three gates (at-

tack[1, 2, 3]), the algorithm is guided to synthesize the optimal strategy of

defending all gates (defend[1, 2, 3]).

2.5.2.1.3 Local Learner (2L) 2L is a variant of FP designed to guide

algorithms searching for programmatic strategies. It leverages data from com-

puting best responses to select target strategies for future algorithm iterations,

optimizing the search signal. 2L establishes meta-strategies that bridge the gap

between IBR and FP by varying the number of strategies in the meta-strategy’s

support [25]. IBR’s meta-strategy only includes the last best response the al-

gorithm computed; FP’s meta-strategy includes all best responses computed.

2L utilizes more strategies than IBR for improved search signals, while aim-

ing to use fewer than FP to lower computational costs. 2L initially assumes

that all the strategies inserted in the meta-strategy are helpful in guiding the

search. While computing a best response to σ−i, it collects data on each strat-

egy in σ−i and removes from the support of the meta-strategies all redundant

best responses [33]. In Table 2.3, you can see how 2L works for the an instance

of P&R with n > 2 gates initiated with a random strategy by the Rangers.

20

Iteration Meta-Strategy for Rangers
(σi)

Meta-Strategy for Poachers
(σ−i)

1 - attack[2]

2 defend[2] attack[1]

3 defend[2] attack[1, 2]

4 defend[2], defend[1, 2] -
4 defend[1, 2] (defend[2] is

dropped)
...

Table 2.3: Local Learner (2L) Iterative Process in P&R Game with n > 2
Gates.

The iterative process in Table 2.3 initiates with an arbitrary starting strat-

egy for the Poachers, with the Rangers’ best response being to defend[2]. As

the iterations advance, both Rangers and Poachers adjust their meta-strategies

in response to the outcomes of previous rounds. This adaptation leads to the

inclusion of all possible strategies within the meta-strategies for both parties,

which facilitates the identification and elimination of redundant strategies.

Note that in this example, defend[2] is a best response to only attack[2],

while defend[1, 2] is a best response to both. So, defend[2] does not add

new information to the search and can be dropped.

Before delving into the chapters of the dissertation, it is important to

clarify that we will use the term “policy” instead of “strategy” throughout the

text. This is because the process of computing best responses can be framed

as a single agent problem, in which the opponent is considered a part of the

environment.

21

Chapter 3

LINT: LLM-based
Interpretability Score

We define the function B(π1, π2) as a similarity metric for the behavior of

two programs. We consider functions B that return a number between 0 and

1, where the value of 0 represents the most dissimilar behavior for the two

programs and 1 represents identical behavior for the programs.1 We denote

by Le(π,G,C) an LLM that receives a program π, a domain-specific language

(DSL) G, a set of constraints C, and returns a natural language explanation

of π. We refer to this LLM as explainer. We denote by Lr(e,G) an LLM

that receives a natural language explanation e of a program and a DSL G,

and returns a program accepted by the language G that exhibits the behavior

described in e. We refer to this LLM as the reconstructor. Both the ex-

plainer and the reconstructor receive a natural language description of G with

a context-free grammar that specifies the programs G accepts.

Given a set Π with n programs, a behavior metric B, a grammar G de-

scribing the DSL in which the programs n are written, and a set of constraints

C, the LINT score is computed as

LINT(Π, B,G,C) =
1

n

∑
π∈Π

B(π,Lr(Le(π,G,C), G)) . (3.1)

The LINT score of set Π is the average value of how similar the programs in

Π are from the reconstructed ones. We define the LINT score over a set of

1In our experiments, we also consider a dissimilarity metric, where 0 represents the most
similar and 1 the most dissimilar behavior.

22

C Explainer π

DSL

Verifier

Reconstructor π′
B

LINT

Figure 3.1: General overview of LINT. The Explainer receives a program π,
a set of constraints C, and a description of the DSL in which π was written; it
produces a natural language explanation of π, which is checked by the Verifier.
The explanation is provided as input, along with the description of the DSL,
to the Reconstructor, which attempts to reconstruct π from the explanation,
thus producing π′. B scores the similarity (or dissimilarity) of π and π′.

programs to measure the interpretability of the programs a system generates.

However, in our experiments we also consider the case where |Π| = 1.

Figure 3.1 shows a schematic view of how the LINT score is computed for a

program π. A suitable definition of Program Interpretability for the purposes

of this research could be articulated as: “Explainability with the goal of

Replicability”. In other words, if a program can be conveyed through the

natural language bottleneck of our system, explained clearly, and subsequently

reconstructed, we hypothesize that such a program is interpretable.

3.1 Set of Constraints for Explanation

The above formulation considers a set of constraints C to generate the expla-

nation of a program. C prevents the LLM from generating the explanation of

the program with non-interpretable elements that communicate the program

to the other LLM. The constraints are instructions in the LLM prompt. We

include the constraints shown in the list below.

1. Try to understand what is happening in the code and explain it in natural

language to someone who wants to learn about this program.

2. Write a high-level explanation and do not explain the code line-by-line,

but it is fine to include numbers in your natural language explanation.

23

3. You must not use programming language jargon as people not familiar

with programming might not understand the explanation.

Without these constraints, the LLM could generate line-by-line instructions

of how to reconstruct the program. For example, even if the program was

an implementation of the neural network, the LLM could provide instructions

on how to implement the architecture and copy the weights of the model.

Although this explanation could allow the second LLM to reconstruct the

program, the original program might not be interpretable. Even with these

constraints, the LLM occasionally generates explanations that use program-

ming instructions such as “[...] after a nested for-loop [...]”. We use a third

LLM, the verifier, to check for the constraints. Specifically, we ask it to verify

whether the explanation uses computer programming jargon and/or keywords

of the DSL. If the verifier answers ‘yes’ to the use of jargons, then we sample

another explanation from the explainer.

There is a concern about using an LLM as a “Verifier” in our system. The

issue comes from understanding that even the best language models might not

always get instructions right, which is why we thought we needed a Verifier in

the first place. The main job of this Verifier is to check the program for any

programming elements, jargons or hints that we do not want it to be there. So,

it stands to reason that the Verifier also cannot be trusted to perform its job

consistently. The concern raised is acknowledged, and to address it, we propose

a hierarchical verification strategy. Essentially, we can wrap our Verifier within

multiple layers of verification, creating a Verifier for the Verifier, and so on.

By implementing numerous levels of evaluation, we aim to significantly reduce

the probability of error through this layered approach.

3.2 Multiple Trials

Due to the stochastic nature of how the LLMs generate the explanations and

programs, we repeat k times the computation of B(π,Lr(Le(π,G,C), G)) in

Equation 3.1 and use in the summation the best B-value of the k trials. Trials

are carried out by generating one explanation for each program, and each

24

explanation is used to generate k programs. The value of k should be large

enough to account for the variance of the LLM generation and small enough to

prevent the LLM from reconstructing the original program by chance. Since

the program space is vast, as we evaluate empirically, it is safe to use a few

trials to compute the LINT score without allowing the LLM to reconstruct

the correct program by chance. For more information on why we need k trials,

please refer to Section 6.1.2 on hallucination.

3.3 Caveats of LINT Score

When assessing the interpretability of programs, we assume a level of knowl-

edge of the person interpreting them. LINT assumes the knowledge of an

LLM, which may not reflect reality due to a mismatch of knowledge between

the LLM and the target audience of the program. For example, if the goal of

having interpretable programs is to teach people strategies for playing a real-

time strategy game, then the LLM might have deeper knowledge of this genre

of game than rookie players trying to learn strategies from the programs. As

a result, a policy that is “interpretable” for the LLM is not necessarily inter-

pretable to the target audience. Conversely, if the program requires knowledge

that the LLM does not possess (e.g., π is written in a DSL different from the

languages with which the LLM is trained), LINT can produce false negatives.

Similarly to the BLEU score [38], LINT should not be used as an objective

function. Using LINT as such could cause the system to disregard C, and the

explainer could generate non-interpretable explanations. Instead of using it as

a target, LINT can be used as a tool to assess the interpretability of computer-

written programs, to bias design decisions made during the development cycle

of synthesizers.

25

Chapter 4

Empirical Methodology

The primary objective of our evaluation is to check whether the LINT scores

correlate with the interpretability of a given set of programs. We rely on

methods from the static obfuscation literature [12] to generate programs with

different levels of interpretability. Static obfuscation algorithms have the goal

of transforming a program before it starts running into less interpretable pro-

grams, with the goal of making it harder for adversarial agents to gain knowl-

edge of the program by reading its implementation. For that, we consider

semantics-preserving obfuscation transformations, where we can control the

degree to which a program is obfuscated. We hypothesize that LINT scores

correlate with the degree of obfuscation of a set of programs.

We consider two instances of LINT: one for evaluating the interpretability

of programs that encode solutions to programming tasks; and another for eval-

uating programmatic policies [29] for playing MicroRTS, a real-time strategy

game [35]. More information about the MicroRTS game can be found in the

Appendix A.

The complete set of prompts used in our experiments can be found in the

Appendix B (Sections B.2 and B.3). All experiments used GPT-4 [36]. We

use k = 5 in all our experiments.

4.1 Classical Programming Problems

We consider 10 programs written in C for solving the following problems:

computation of factorials, addition of two numbers, conversion of byte to bi-

26

1 void subsets(char *av[], int c, int n,
2 char *sbset[], int sz) {
3 if (c == n) {
4 if (sz < n) {
5 for (int i = 0; i < sz; i++)
6 printf(sbset[i]);
7 printf("----------");
8 }
9 return;

10 }
11 sbsets(av, c+1, n, sbset , sz);
12 sbset[sz] = av[c];
13 sbsets(av, c+1, n, sbset , sz+1);}
14
15 main(Q,O)char**O;{if(--Q){main(Q,O);O[Q]
16 [0]^=0 X80;for(O[0][0]=0;O[++O[0][0]]!=0;)
17 if(O[O[0][0]][0] >0) puts(O[O[0][0]]);
18 puts("----------");main(Q,O);}}

Figure 4.1: Non-obfuscated code for computing proper subsets (lines 1–13);
an obfuscated program for the same problem (line 15).

nary, computation of all proper subsets of a set of arguments, of the value

of π, of ln(n) for any n, of the smallest 100 prime numbers, of the square

root of a number, sorting elements, and a program to play tic-tac-toe. The

obfuscated versions of these programs were designed so that they would be as

non-interpretable as possible, since all obfuscated programs we use are win-

ning entries of the International Obfuscated C Code Contest [22]. The obfus-

cated programs were constructed using different techniques, such as replacing

sequences of instructions with equivalents that are less interpretable [11]. Fig-

ure 4.1 shows an example of the programs used in our experiment, where the

first function is a non-obfuscated implementation for computing the proper

subsets of a set of numbers, while the second is an obfuscated implementation

to solve the same problem. The proper subsets of a set I include all sub-

sets except I. The complete set of programs is provided in the Appendix B

(Sections B.6, B.4).

The function B we consider in this experiment measures the number of

input values that the reconstructed program correctly maps to their corre-

sponding output value. A B-value of 1.0 indicates that the reconstructed

program mapped all inputs to the correct output; a value of 0.0 indicates that

the reconstructed program failed on all inputs.

27

4.2 Programmatic Policies

We also used programmatic policies for playing MicroRTS. These programs

are categorized into two types: “synthesized” policies, written by a computer

program in the domain-specific language known as the Microlanguage [29],

and “human-crafted” policies, written in Java by human programmers. Both

types of programs receive a state of the game and return the action the agent

performs in that state.

We consider the two-player version of MicroRTS, where each player controls

a number of units to collect resources, build structures, and train other units

that will eventually battle the opponent. Programmatic policies are the current

state of the art in this domain, with programmatic policies winning the last

three competitions.1 MicroRTS has the following types of unit: Worker, Light,

Ranged, Heavy, Base, and Barracks. The first four types can move around a

gridded map where the game is played and attack opponent units; Workers can

collect resources and build Bases and Barracks; Bases can train more Worker

units and store resources, while Barracks can train non-Worker units. Units

differ in how much damage they can inflict on opponent units and in how much

damage they can suffer before being removed from the game. More details on

MicroRTS game and its DSL can be found in Section A.1.

1 for(Unit u)
2 for(Unit u)
3 u.train(Worker ,Up ,2)
4 u.attack_if_in_range ()
5 u.train(Heavy ,EnemyDir ,8)
6 for(Unit u)
7 u.train(Light ,Left ,100)
8 u.build(Barracks ,EnemyDir ,1)
9 u.harvest (25)

10 u.attack(Closest)

Figure 4.2: Policy written in the Microlanguage.

1https://sites.google.com/site/micrortsaicompetition

28

https://sites.google.com/site/micrortsaicompetition

4.2.1 Microlanguage

The Microlanguage in a DSL for MicroRTS that allows programs to iterate

through all units the player controls, so it assigns an action to each of the

units. The language also supports if-then-else structures. Figure 4.2 shows

an example of a program synthesized with Local Learner (2L) [33]. The loops

allow for an action prioritization scheme. This is because once an action is

assigned to a unit, it cannot be overwritten by another action, so the instruc-

tions in the earlier for-loops will be assigned first. In the program shown in

Figure 4.2, training Worker units has the highest priority because the instruc-

tion for training these units is in the first nested for-loop to be executed (lines

2 and 3), which iterates through all units until it eventually finds a Base that

will train them. Other actions that require the use of resources (e.g., con-

structing a Barracks in line 10), will be executed only if the player has enough

resources after training Worker units.

4.2.2 Java

The human-crafted policies are written in Java and follow standard Java pro-

gramming principles. This allows for the representation of more complex poli-

cies, but lacks the Microlanguage’s specialized domain-specific approach. Fig-

ure 4.3 shows an example.

1 for (Unit u : pgs.getUnits ())
2 if (u.getType () == barracks
3 && u.getPlayer ()== player
4 && gs.getActionAssignment(u) == null)
5 if (p.getResources () >= light.cost)
6 train(u, light);

Figure 4.3: Policy written in Java by a human programmer.

4.2.3 Obfuscating Programmatic Policies

In the experiment with programmatic policies, we modified the programs to

create different levels of interpretability, to verify whether the LINT scores

29

correlate with these levels. We achieve this using the obfuscation technique of

adding useless snippets to the programs, which is a known program obfusca-

tion technique [11]. We consider two levels of obfuscation: level 1, where we

add a few lines of code that do not change the behavior of policy, and level

2, where we add a greater number of such lines compared to level 1. For the

computer-synthesized set of policies, we add 10 and 23 lines for levels 1 and

2, respectively; for the human-crafted set, we add 38 and 71 lines for levels 1

and 2, respectively. Under the assumption that programs with longer useless

snippets are less interpretable than programs with shorter snippets, we hy-

pothesize that LINT assigns higher scores to non-obfuscated programs, lower

scores to level 1, and the lowest scores to level 2.

Figure 4.4 shows a sample of a snippet that we add to the synthesized

programmatic policies used in our experiments for level 1 of obfuscation; all

snippets are shown in the Appendix B (Section B.5), including level 2 snippets.

The snippet in Figure 4.4 does not change the behavior of the policy because

the only unit that can harvest resources is a builder, so line 6 does not change

the behavior of the policy. Additionally, if a unit is a worker, it is unable to

train any other units (lines 12 and 14).

1 if (u.canHarvest ()) then {
2 for (unit u){
3 if (u.isBuilder ()) then{
4 }
5 else{
6 u.harvest (50);
7 }
8 }
9 }

10 for (Unit u){
11 if (u.is_Type(Worker)) then{
12 u.train(Heavy , Enemydir ,10);
13 if (u.canAttack ()) then {
14 u.train(Ranged ,Up ,16)
15 }
16 }
17 }

Figure 4.4: Sample of useless code snippet used in level 1.

30

4.2.4 Set of Policies Evaluated

For the synthesized set Π, we selected a subset of 20 programs from the to-

tally ordered set with approximately 1, 000 programmatic best responses 2L

synthesized for the BaseWorkers-16×16A map. Two adjacent policies in the

ordered set are likely to be similar to each other due to the process in which 2L

synthesizes them. We select 20 uniformly spaced policies from the ordered set

to obtain a more diverse subset. That is, given that we have m policies in the

ordered set, we select the policies with indices
⌊ i×(m−1)

(19)

⌋
with i = 0, · · · , 19.

For the human-crafted set, we used 10 programs selected from a collection

available on GitHub2. We present all the programs used in our study in the

Appendix B, Sections B.6 and B.4.

4.2.5 Behavior Metrics

We used three behavior metrics B for programmatic policies. For all metrics,

we consider a set of 10 policies, which are chosen from a totally ordered set

of programmatic policies 2L synthesized; we refer to this set as the set of

opponents O. Although the policies evaluated and the set of opponents are

selected from the same pool of programs, there is no overlap between the two

sets. We ensure that our metric results are not skewed by having overly weak

or overly strong opponents. This is achieved by, while sampling policies for O,

rejecting those that win or lose all matches against the set of 20 policies we

evaluate in our experiment. Let Sπ,o be the set of states in which the policy π

is to act in a match played with the opponent o in O. Also, let Sπ =
⋃

o∈O Sπ,o

be the union of the states of all matches played with the opponents.

4.2.5.1 Action Metric

The first metric, which can be applied to any sequential decision-making prob-

lem with discrete action spaces, is the fraction in which the actions chosen by

the reconstructed program π′ match the actions chosen by the original program

π for states in the set Sπ. This metric computes |Sπ|−1×
∑

s∈Sπ
1[π(s) = π′(s)],

2https://github.com/rubensolv/SCV/tree/master/pvai

31

https://github.com/rubensolv/SCV/tree/master/pvai

where 1[·] is the indicator function that equals 1 if the condition within the

brackets is true, and 0 otherwise. We refer to this metric as the action met-

ric. If the reconstructed program is equivalent to the original, then the action

metric is 1.0.

Let us illustrate how to evaluate the action metric value between two pro-

grams, π and π′, in the setting of a real-time strategy game through a com-

parative analysis. The process begins by running program π into a controlled

game environment to face a predetermined opponent, labeled as o. We mark

the game’s initial state as s0
3, at which point π selects an action, a0. Following

the selection of a0, the game state for π transitions to s1. However, we ensure

to record state s0 before moving to s1. At this juncture, we introduce program

π′, allowing it to engage in the game from state s0 and make its own strategic

decision, resulting in action a′0. This methodology enables a straightforward

comparison of actions a0 and a′0 since both actions are based on the identical

initial game state, s0. The same evaluation process is replicated for subse-

quent states, such as s1. For this next stage, s1 is fixed and provided to both

programs, π and π′, enabling each to generate their respective actions, a1 and

a′1.

This procedure is repeated, advancing through the game states until π

and its opponent conclude the game. To obtain a comprehensive evaluation,

this methodology is applied against a variety of opponents, with the results

averaged to produce a mean action metric value.

To ensure a diverse comparison, an additional series of evaluations is ini-

tiated with program π′ as the starting point. We observe the reactions of π

within the states fixed by π′, calculating the action metric from this perspec-

tive. The final measure of how similar the actions of the two programs are is

calculated by taking the average of the action metric values from two sets of

evaluation: those that use states generated from program π’s gameplay and

those from program π′’s gameplay. You can see an illustrative image on this

procedure (fixing π states) in Figure 4.5.

3Previously known as sinit in Section 2.5.2, now s0 for more enumeration (e.g., s1)

32

s0

s0

s1

s1 s2

s2 sn

sn

……………

……………

a0 a1 a2 an

a0
’ a1

’ a2
’ an

’

𝝅

𝝅’

Figure 4.5: Computation of the Action Metric for Program Pair: This figure
demonstrates the process for calculating the action metric between two strate-
gies, π and π′. Actions denoted by ax and a′x represent the steps taken by
each strategy at their respective states, starting from S0 through Sn, with the
states of program π held constant for comparison.

To accurately formulate the action metric value, considering evaluations

starting from both programs π and π′, we define two sets of states, Sπ and Sπ′ ,

which represent the states encountered during the gameplay of π and π′, re-

spectively. The action metric value, denoted as AMVavg(π, π
′), is calculated as

the average of the action metric values obtained from both sets of evaluations:

AMVπ = |Sπ|−1
∑
s∈Sπ

1[π(s) = π′(s)] (4.1)

AMVπ′ = |Sπ′ |−1
∑
s∈Sπ′

1[π(s) = π′(s)] (4.2)

AMVavg(π, π
′) =

AMVπ + AMVπ′

2
(4.3)

4.2.5.2 Outcome Metric

The second metric, which can be applied to any zero-sum game, compares

the signature of wins, draws, and losses of the reconstructed policy with the

signature of the original policy. The signature aπ of a policy π is a vector of

size |O| where each entry i assumes the values of 1, 0, or −1, representing the

33

result of a win, draw, or loss, respectively, of a match played between π and the

i-th opponent in O. This metric computes |O|−1×
∑|O|

i=1 1[aπ[i] = aπ′ [i]], where

aπ[i] represents the i-th entry of aπ. We call this metric the outcome metric.

Similarly to the action metric, if π′ is equivalent to π, then the outcome metric

value is 1.0.

4.2.5.3 Feature Metric

The third metric compares the set of features observed in matches between the

reconstructed program and O with the features observed in matches between

the original program and O. Let F (π, o) be a vector of features observed in

a match between π and o. We use the seven features of Alexio et al. [2],

where each feature is the sum of the number of units of a given type that the

player trained (or built) in all states of the match; the types can be Worker,

Light, Heavy, Ranged, Base, or Barracks. A last feature sums up the amount of

resources collected in the match. This metric measures the average normalized

L1 norm between the feature vector of the original and reconstructed programs.

We refer to this metric as feature metric. If the reconstructed program is

equivalent to the original, then this metric is 0.0. While other metrics measure

similarity, the feature metric measures dissimilarity.

We use these three metrics because each of them individually has weak-

nesses; together, they offer a more reliable summary of the behavior of a policy.

Many of the actions in a MicroRTS match are related to Worker units collect-

ing resources, so while two policies might encode totally different strategies,

due to the large number of Worker units collecting resources, the policies could

have a action metric value close to 1.0. The outcome metric can also be mis-

leading if almost any policy defeats the set of opponents or is defeated by the

set of opponents (i.e., the opponents are too weak and/or too strong). Finally,

the feature metric simply counts the number of units and resources, without

measuring their behavior.

34

4.2.6 Baselines for Reconstructed Programs

We consider a number of programs as baselines for the programs LINT recon-

structs. Namely, for each program π in Π, we compare the behavior metric

values for the reconstructed program π′ of π with a randomly selected program

from Π that is different from π; we call this baseline Rand. In the experiment

with the synthesized set, since all programs in Π were generated in a single

run of 2L and for a fixed map, the programs Rand selects can be similar to π.

In another baseline, where we select a random program from the pool of

programs 2L synthesizes for a different map; we use programs synthesized for

the BaseWorkers-8×8 map with this baseline. Since the strategy for playing

the game can change drastically from map to map, this randomly selected

program is likely to be less similar to π than the programs Rand selects. We

call this baseline Rand-Other.

Another baseline we consider selects the policy from the set of evaluated

policies Π that is different from π but is most similar to π with respect to its

syntax. We treat each line of a program as an element of a set. The program

most similar to π is the one whose intersection with the syntax set of π is the

largest. We refer to this baseline as Closest-Syntax.

The last baseline we consider returns the policy in Π different from the

evaluated program π with the smallest L2 norm for the difference between

its feature vector and the feature vector of π. We refer to this baseline as

Closest-Feature.

4.2.7 Baseline for the Reconstruction System

The Reconstructor relies on the natural language explanation of the original

program that the Explainer provides. To ensure that the program cannot

be reconstructed by sampling programs without the explanation, we consider

a baseline where we ask an LLM to generate a program for playing on a

given map of MicroRTS. We provide a natural language description of the

BaseWorkers-16×16A map and ask the model to generate a program written

in the Microlanguage that can “play well” the game. We repeat this process k

35

times, exactly how it is implemented in the reconstruction system for LINT,

and we return the program with the best behavior score out of the k evalu-

ated. We refer to this baseline as the k-Shot LLM. This approach acts as an

ablation study for the explanation component.

We hypothesize that behavior scores for this baseline will be worse than the

ones obtained for the reconstructed program, since the reconstruction is more

accurate if conditioned on the natural language explanation the Explainer

provides.

36

Chapter 5

Empirical Results

In this chapter, we explore the empirical results from two domain: Classical

Programming Problems written in C language, and Programmatic

Policies. The discussion on Programmatic Policies is further branched into

two subsets: those generated by computer, known as the synthesized set,

and those manually created by individuals, referred to as the human-crafted

set.

5.1 Classical Programming Problems

The system was able to reconstruct all non-obfuscated programs to solve the

programming problems and achieved the score of 1.0. The system was unable

to reconstruct any of the obfuscated programs, resulting in a score of 0.0. As

a representative example, Explanation 1 shows the Explainer’s output for the

non-obfuscated program shown in Figure 2.1.

Explanation 1 (Proper Subset - Non-Obfuscated) Imagine you have a

list of items, and you want to figure out all the different ways you can select

some of these items without taking all of them at once. When the program

starts, it first checks if you’ve given it any items to work with. If not, it asks

for some. Once it has the list of items, it begins to explore all the possible

selections. It does this by starting with the first item and deciding whether to

include it in the current selection or not. If it decides not to include the first

item, it moves to the next item and makes the same decision. It continues

37

doing this until it has considered every item in the list. After considering all

the items, if it has left out at least one item from the current selection, it

displays that selection for you to see. Then, it goes back and tries a different

combination by including some items that it previously left out and leaving out

some that it previously included. It continues this process until it has explored

and shown you all possible selections of items from the list, always making sure

it never shows you a selection that includes all the items at once. In the end,

you’re left with a display of all the different ways you can select some of the

items without taking all of them.

The explanation of the program is high-level and makes an analogy with

a list of items, and the process of computing the proper subsets is described

as a process of “selecting” and “displaying” the items, where all possible com-

binations of subsets are selected: “It does this by starting with the first item

and deciding whether to include it in the current selection or not”. The Recon-

structor can produce a correct implementation of a program that computes the

proper subsets from this explanation. Explanation 2 shows the explanation

LINT generated for the obfuscated program in Figure 2.2.

Explanation 2 (Proper Subset - Obfuscated) Imagine you have a list of

items. Initially, all items are marked as “normal.” The program goes through

the following steps:

1. It starts at the end of the list and works its way to the beginning. For each

item, the program does two actions:First, it keeps the item as “normal”

and then displays all the items marked as “greater than normal.” After

displaying these items, it separates them with a line of dashes. Second,

it switches the item from “normal” to “greater than normal” and repeats

the display process.

2. After dealing with an item, the program moves to the next item closer to

the beginning of the list and repeats step 2.

This process continues until the program has considered all items in the list.

38

This explanation is well-structured and includes the steps that supposedly

need to be performed. However, the description is not clear in some parts. For

example, it is not clear what “greater than normal” means.

5.2 Programmatic Policies

Table 5.1 shows the average and 95% confidence interval values for the 20 pro-

grams used in our experiment with the synthesized set. The LINT row shows

the metric values computed for the original programs and their reconstruc-

tions. The baseline values represent the measurements between the original

programs and the baseline programs. The values of LINT are the best ac-

cording to all metrics, which shows that the reconstructed programs are more

similar to the original than any of the baselines. Table 5.1 also shows that the

baselines that obtain values closer to LINT are Rand, Closest-Syntax, and

Closest-Feature. This is because these baselines select a program from the

pool of programs 2L synthesized for the same map, and these programs tend

to be similar to each other. Rand-Other obtained lower Action and Outcome

values and a higher Feature value, demonstrating that the metrics can capture

the expected differences between policies synthesized for playing in different

maps. Finally, k-Shot LLM presents the lowest similarity values, demonstrat-

ing the importance of the explanation of the original program the Explainer

generates.

Metrics B

Action (↑) Outcome (↑) Feature (↓)

LINT 0.945± 0.010 0.840± 0.042 0.133± 0.020
Rand 0.733± 0.015 0.615± 0.057 0.418± 0.018
Rand-Other 0.564± 0.025 0.470± 0.058 0.486± 0.012
Closest-Syntax 0.799± 0.015 0.600± 0.056 0.403± 0.018
Closest-Feature 0.823± 0.013 0.770± 0.049 0.189± 0.014
k-Shot LLM 0.343± 0.010 0.420± 0.057 0.441± 0.009

Table 5.1: Average value of the behavior metrics for synthesized program-
matic policies for LINT and other baselines. Action and Outcome metrics are
similarity metrics, so higher values are better (↑), while Feature is a metric of
dissimilarity, so lower values are better (↓). The cells show the metric values
and the 95% confidence interval.

39

Table 5.2 presents the results that test our hypothesis that LINT corre-

lates with the degree of interpretability of the programs. The results indicate a

higher similarity between the original and reconstructed programs for the poli-

cies 2L synthesizes than between the original obfuscated programs and their

reconstructions. Also, LINT provides higher similarity scores and a lower dis-

similarity score for Level 1 than for Level 2 obfuscation.

Metric
Original
Program

Obfuscation Level

Level 1 Level 2

Action 0.945 ±0.010 0.866 ±0.014 0.732 ±0.012
Outcome 0.840 ±0.042 0.705 ±0.053 0.490 ±0.058
Feature 0.133 ±0.020 0.272 ±0.024 0.418 ±0.018

Table 5.2: Average LINT values of the behavior metrics for the original syn-
thesized program and for the two levels of obfuscation; the cells also show the
95% confidence interval. In this table, darker cells indicate that the recon-
structed program is more similar to the original one.

Table 5.3 presents the results for the human-crafted set. These results

align with those of the synthesized set, where the LINT-score decreases as we

increase the level of obfuscation. Under the assumption that higher degrees

of obfuscation result in less interpretable programs, the results support our

hypothesis.

Metric
Original
Program

Obfuscation Level

Level 1 Level 2

Action 0.98 ±0.003 0.92 ±0.017 0.85 ±0.031
Outcome 0.95 ±0.036 0.84 ±0.060 0.80 ±0.066
Feature 0.07 ±0.022 0.19 ±0.029 0.22 ±0.031

Table 5.3: Average LINT values of the behavior metrics for the original pro-
gram in the human-crafted set and for the two levels of obfuscation; the cells
also show the 95% confidence interval. In this table, darker cells indicate that
the reconstructed program is more similar to the original one.

Figure 5.1 offers a visual interpretation of the data presented in Table

5.1, showcasing the same data points in a distinct format. While they show

a similar trend, they’re not precisely correlated, highlighting the individual

40

weaknesses of the metrics. This variation emphasizes the importance of using

these metrics together for a thorough analysis of interpretability.

40 60 80 100

40

60

80

Action

O
u
tc

o
m

e

40 60 80 100
10

20

30

40

50

Action

F
e
a
tu

re

40 60 80
10

20

30

40

50

Outcome

F
e
a
tu

re

Figure 5.1: Comparative analysis of different metrics in relation to Action,
Outcome, and Feature. The plots showcase relationships between (a) Action
and Outcome, (b) Action and Feature, and (c) Outcome and Feature from
Table 5.1.

5.3 Representative Sample

In this section, we present the natural language explanation the Explainer

generated for the program in Figure 5.2 (Explanation 3). Then, we present

the program the Reconstructor generates from the explanation (Figure 5.3).

This is a representative example of the programs used in the experiments.

1 for(Unit u)
2 for(Unit u)
3 u.train(Worker ,Up ,2)
4 u.attack_if_in_range ()
5 u.train(Heavy ,EnemyDir ,8)
6 for(Unit u)
7 u.train(Light ,Left ,100)
8 u.build(Barracks ,EnemyDir ,1)
9 u.harvest (25)

10 u.attack(Closest)

Figure 5.2: Policy written in the Microlanguage.

Explanation 3 (Programmatic Policy) The script outlines a two-tiered

strategy in the game of MicroRTS. It focuses on the tactical management of

different types of units, ranging from Workers, to Heavy units, and finally

Light units. The first part of the strategy involves a layered assignment of

tasks. Every unit is asked to train two Worker units if possible. These Work-

ers can be seen as the backbone of your army since they are the only units that

41

can build structures, which in turn produce other units. At the same time, if

a unit can’t train a Worker, it is assigned to remain idle, thus serving as a

defensive guard to your base. In addition, every unit is asked to train up to

8 Heavy units, that typically are stronger and can inflict more damage, acting

as the frontline offensive unit. This phase essentially sets up your base with a

balance of productive Workers and Heavy units.

In the second part of the strategy, each unit is tasked with producing as

many Light units as possible, up to a whopping 100. Light units are generally

quicker and can swiftly react to the changes in the battlefield. Additionally,

every unit is tasked to build a Barracks near the enemy’s direction, effectively

establishing a forward base closer to the enemy territory. They are also asked

to harvest resources, up to 25 units, ensuring a steady supply for creating more

units and structures. Finally, units are directed to attack the closest enemy

units, marking an aggressive stance towards the opponent.

The overall goal of this strategy is to ensure a robust base with a mixture

of Worker and Heavy units, while also maintaining an aggressive stance with

a large army of Light units and Barracks near the enemy territory. It aims

at resource gathering for continued production of units and structures, and

pushing the opponent back through relentless attack.

Similarly to Explanation 1, the explanation describes the policy in a level

of detail that allows for the reconstruction of a program that behaves identi-

cally to the original program according to our metrics. Figure 5.3 shows the

reconstructed program. The reconstructed program is not identical in terms

of line-by-line syntax, since information regarding the syntax is lost in the pro-

cess of translating the program into a natural language explanation and back

to a program. A casual inspection might even suggest that the reconstructed

program does not behave as the original. This is because the original program

has an instruction for training Worker units inside a nested loop, thus giving

it the highest priority. The reconstructed program has training Worker units

instruction inside the main loop. This means that the program can use the

player’s resources to assign actions to other units (e.g., train Light units in

42

1 for(Unit u):
2 u.train(Worker , Up, 2)
3 u.attack_if_in_range ()
4 for(Unit u):
5 u.train(Heavy , EnemyDir , 8)
6 for(Unit u):
7 u.train(Light , Left , 100)
8 u.build(Barracks , EnemyDir , 1)
9 u.harvest (25)

10 u.attack(Closest)

Figure 5.3: Reconstruction of the program shown in Figure 4.2.

line 7) and by the time u is a Base in the outer loop, the player no longer has

resources for training Worker units. However, a more careful inspection of the

program reveals that, in the first states of the game, where the player trains

Worker units, none of the actions that use resources can be assigned to a unit:

the player cannot train Heavy and Light units (lines 5 and 7, respectively)

because the player does not have a Barracks yet; the player cannot build a

Barracks (line 8) because it does not have enough resources to do so. Thus,

similarly to the original program, the reconstructed one prioritizes the training

of Worker units.

43

Chapter 6

Discussion, Future Works, and
Takeaways

In this chapter, we will explore the limitations of LLMs, identify the constraints

of our current study, and consider potential avenues for future research related

to this work.

6.1 Caveats of LLMs

6.1.1 Data Contamination

Data contamination in LLMs refers to the phenomenon in which models are

inadvertently trained or influenced by the data they were tested on, possibly

compromising the integrity of the evaluation. Sources of contamination in-

clude direct training on benchmark datasets and indirect exposure via user

interactions, especially in closed-source models like ChatGPT [5].

6.1.1.1 Direct data Leakage

GPT-4’s training data includes information up until September 2021. This

means it encompasses a wide range of knowledge up to that point, but it does

not include information on events or developments occurring after September

2021.

Based on this information, it’s crucial to verify whether the data used in

our evaluations was part of GPT-4’s training material. We need to check if

explanations of policies and the reconstructed program were accessible online

44

before GPT-4’s training cutoff. To the best of our knowledge, no such in-

formation was available online before GPT-4 was trained. Additionally, our

paper was published on arXiv in October 2023 for the first time. Therefore,

if a new version of GPT is trained up to that date, we’ll need to be cautious

about the possibility of our results being compromised by direct data leakage.

However, for now, this concern does not apply.

6.1.1.2 Indirect Data Leakage

Indirect data leakage in LLMs, particularly highlighted in web interfaces like

ChatGPT occurs when models are continually updated with data stemming

from user interactions through RLHF (Reinforcement Learning from Human

Feedback) [37]. This process integrates new data into the model and the model

is fine-tuned based on this data just by virtue of its use, constituting a form

of data leakage not directly involving the training set. Therefore, believing

that “using benchmarks only accessible to authorized individuals, or datasets

developed after the release of ChatGPT, ensures they have not been leaked”

is a mistaken notion.

We refer to OpenAI’s data usage policy to confirm this. As you can see,

they explicitly mentioned the use of users’ data for model training:

OpenAI’s Data Usage Policy

“[...] when you use our services for individuals such as Chat-
GPT or DALL-E, we may use your content to train our mod-
els [...]”

They also explained that when users send data through API and business

services, this information isn’t used to train the model:

OpenAI’s Data Usage Policy

“[...] we don’t use content from our business offerings [...]
and our API Platform to train our models [...]”

Therefore, only interactions with the models through the web interface are

regarded as potential data leaks [5].

45

Returning to our work, we conducted initial experiments using the web

interface (ChatGPT) to validate our approach before scaling up with a larger

number of experiments via API. This means we may have been exposed to po-

tential indirect data leakage, although the extent of this exposure is uncertain.

Now, let us delve into where this leakage could occur within our work.

We have three components: the explainer, reconstructor, and verifier. In

the explainer, we input the DSL, program, and instructions to generate an

explanation. The reconstructor takes the DSL, explanation, and instructions

to regenerate the code. Notably, there is no direct link between the data and

the label we seek. However, in the verifier, we provide both the explanation

and the reconstructed program in a prompt, which could potentially expose

the data-label relationship to the LLM during a query.

Despite this, we found our initial prompts to be promising, and we did not

observe improved performance over time, which gives us some confidence that

leakage may not have significantly influenced our results.

For future work, we could explore downloading the weights of another LLM,

such as LLaMA [48], and running our system locally. We hypothesize that we

would achieve similar results, providing further validation of our approach.

6.1.2 Hallucination

Hallucination in the context of LLMs refers to instances where these models

generate information or data that is not grounded in the input provided or

factual reality. This means they might produce statements that are misleading,

incorrect, or completely made up. Hallucination poses significant challenges,

especially in applications requiring high accuracy and reliability, such as in the

fields of medicine, law, and news reporting.

Several techniques can be employed to minimize the occurrence of hal-

lucination in LLMs. These include techniques such as Prompt Engineering,

Retrieval Augmented Generation (RAG) [28], and Feedback and Reasoning

Mechanisms among others. In our approach, we focused on refining prompt

engineering techniques and conducted multiple iterations of our experiments.

By repeating the experiments several (k) times, we aimed to ensure that our

46

findings were robust and not the result of random chance or hallucinations by

the model.

6.2 Limitations of Our Study Concerning Pro-

gramming Problems

Our outcome metric for programming problems (the ones written in C) quan-

tifies the proportion of passed test cases, with results ranging from 0 to 1.

In our set of obfuscated and their original C problem sets, we only have

examples that are either highly obfuscated or not obfuscated at all, resulting

in LINT scores of 0 and 1, respectively. We need to include lightly-obfuscated

programs that can generate error-prone explanations. These programs would

yield near-correct outputs and likely pass some, but not all, test cases.

We also encounter scenarios where a program might seem interpretable,

like one that sorts numbers. A person reviewing the program might find it

interpretable and believe it deserves a high score for interpretability. However,

if a bug prevents it from passing any test cases, our system assigns it a 0, falsely

indicating poor interpretability.

Our study does not yet include such nuanced examples, but they should be

considered in future research to potentially develop a more nuanced similarity

metric specifically for non-MDP problems that rely solely on the outcome

metric.

6.3 Future Directions for Research

One promising avenue for extending this research involves conducting a user

study. While our research is grounded in both the literature on code obfusca-

tion and analysis of human-written code, affirming the validity of our claims

and the empirical support for our findings, we acknowledge the importance of

further validation through a user study. Our hypothesis suggests that there

will be a correlation between the LINT score and the outcomes derived from

user-study evaluations, indicating the reliability of the LINT score as an in-

terpretability measure.

47

Additionally, future research could explore using different LLMs aside from

GPT-4, by experimenting with various configurations, such as distinct LLM

types for explainer and reconstructor components. Another avenue for investi-

gation is the optimization of prompt design, aiming to identify the most concise

yet effective version of prompts that could maintain or enhance performance.

Finally, the issue highlighted in Section 6.2 deserves further exploration in

upcoming research.

48

Chapter 7

Conclusion

Programmatic policies are often synthesized with the expectation of inter-

pretability. However, to our knowledge, there has not been a systematic evalu-

ation of the interpretability of such policies, probably due to the cost associated

with such an evaluation. Especially because the evaluation of programmatic

policies might require human users proficient in computer programming. In

this dissertation, we presented an inexpensive methodology based on LLMs to

assess the interpretability of programmatic policies. Namely, we introduced the

LLM-based Interpretability (LINT) score for programs. The LINT score of a

program is computed by having an LLM generate a description of it in natural

language, which is provided as input to another LLM. This second LLM tries

to reconstruct the program from the natural language description. The LINT

score measures the similarity between the original and reconstructed programs.

Our empirical evaluation of LINT relied on the literature on program obfus-

cation and we assumed that obfuscated programs are less interpretable than

non-obfuscated ones. Empirical results on programming problems and pro-

grammatic policies showed that the LINT scores of the evaluated programs

correlate with their interpretability. Our results suggest that LINT can be

used as a tool to assess the interpretability of programmatic policies.

49

References

[1] A. Albarghouthi, S. Gulwani, and Z. Kincaid, “Recursive program syn-
thesis,” in Computer Aided Verification: 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings 25,
Springer, 2013, pp. 934–950.

[2] D. S. Aleixo and L. H. S. Lelis, “Show me the way! Bilevel search for
synthesizing programmatic strategies,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, AAAI Press, 2023.

[3] R. Alur, R. Bodik, G. Juniwal, et al., “Syntax-guided synthesis,” in
2013 Formal Methods in Computer-Aided Design, 2013, pp. 1–8. doi:
10.1109/FMCAD.2013.6679385.

[4] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative pro-
gram synthesis via divide and conquer,” in Tools and Algorithms for
the Construction and Analysis of Systems: 23rd International Confer-
ence, TACAS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, Part I 23, Springer, 2017, pp. 319–336.

[5] S. Balloccu, P. Schmidtová, M. Lango, and O. Dušek, “Leak, cheat,
repeat: Data contamination and evaluation malpractices in closed-source
llms,” arXiv preprint arXiv:2402.03927, 2024.

[6] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement learn-
ing via policy extraction,” in Proceedings of the International Conference
on Neural Information Processing Systems, Curran Associates Inc., 2018,
pp. 2499–2509.

[7] U. Berger, “Brown’s original fictitious play,” Journal of Economic The-
ory, vol. 135, no. 1, pp. 572–578, 2007, issn: 0022-0531. doi: https://
doi.org/10.1016/j.jet.2005.12.010. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0022053106000299.

[8] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot
learners,” Advances in neural information processing systems, vol. 33,
pp. 1877–1901, 2020.

[9] T. B. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot
learners,” arXiv preprint arXiv:2005.14165, 2020.

50

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/https://doi.org/10.1016/j.jet.2005.12.010
https://doi.org/https://doi.org/10.1016/j.jet.2005.12.010
https://www.sciencedirect.com/science/article/pii/S0022053106000299
https://www.sciencedirect.com/science/article/pii/S0022053106000299

[10] R. P. L. Buse and W. R. Weimer, “Learning a metric for code readabil-
ity,” IEEE Transactions on Software Engineering, vol. 36, pp. 546–558,
2010.

[11] F. B. Cohen, “Operating system protection through program evolution,”
Computer Security, vol. 12, no. 6, pp. 565–584, 1993.

[12] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Addison-Wesley
Professional, 2009.

[13] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling
readability to improve unit tests,” in Proceedings of the Joint Meeting
on Foundations of Software Engineering, Association for Computing Ma-
chinery, 2015, pp. 107–118, isbn: 9781450336758.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[15] Farama Foundation, Microrts game definition, 2023. [Online]. Available:
https://github.com/Farama-Foundation/MicroRTS/wiki/Game-

Definition.

[16] L. Ferreira, L. Lelis, and J. Whitehead, “Computer-generated music for
tabletop role-playing games,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, vol. 16,
2020, pp. 59–65.

[17] J. R. Glenn and C. J. Aloi, “A generalized heuristic for can’t stop,”
in The Florida AI Research Society, 2009. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:9192452.

[18] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case
of neural text degeneration,” arXiv preprint arXiv:1904.09751, 2019.

[19] I. Husien and S. Schewe, “Program generation using simulated annealing
and model checking,” in International Conference on Software Engineer-
ing and Formal Methods, Springer, 2016, pp. 155–171.

[20] J. P. Inala, O. Bastani, Z. Tavares, and A. Solar-Lezama, “Synthe-
sizing programmatic policies that inductively generalize,” in Interna-
tional Conference on Learning Representations, 2020. [Online]. Avail-
able: https://openreview.net/forum?id=S1l8oANFDH.

[21] Introduction to microrts ai competition, https://sites.google.com/
site/micrortsaicompetition/introduction?authuser=0, 2023.

[22] IOCCC. “International obfuscated c code contest.” Accessed: 2023-08-
11. (1984), [Online]. Available: https://www.ioccc.org/.

51

https://github.com/Farama-Foundation/MicroRTS/wiki/Game-Definition
https://github.com/Farama-Foundation/MicroRTS/wiki/Game-Definition
https://api.semanticscholar.org/CorpusID:9192452
https://api.semanticscholar.org/CorpusID:9192452
https://openreview.net/forum?id=S1l8oANFDH
https://sites.google.com/site/micrortsaicompetition/introduction?authuser=0
https://sites.google.com/site/micrortsaicompetition/introduction?authuser=0
https://www.ioccc.org/

[23] M.-Y. Kim, S. Atakishiyev, H. K. B. Babiker, et al., “A multi-component
framework for the analysis and design of explainable artificial intel-
ligence,” Machine Learning and Knowledge Extraction, vol. 3, no. 4,
pp. 900–921, 2021, issn: 2504-4990. doi: 10.3390/make3040045. [On-
line]. Available: https://www.mdpi.com/2504-4990/3/4/45.

[24] J. R. Koza, “Genetic programming as a means for programming comput-
ers by natural selection,” Statistics and computing, vol. 4, pp. 87–112,
1994.

[25] M. Lanctot, V. Zambaldi, A. Gruslys, et al., “A unified game-theoretic
approach to multiagent reinforcement learning,” Advances in neural in-
formation processing systems, vol. 30, 2017.

[26] T. László and A. Kiss, “Obfuscating c++ programs via control flow
flattening,” 2009. [Online]. Available: https://api.semanticscholar.
org/CorpusID:5061467.

[27] W. Lee, K. Heo, R. Alur, and M. Naik, “Accelerating search-based pro-
gram synthesis using learned probabilistic models,” ACM SIGPLAN No-
tices, vol. 53, pp. 436–449, Jun. 2018. doi: 10.1145/3296979.3192410.

[28] P. Lewis, E. Perez, A. Piktus, et al., “Retrieval-augmented generation
for knowledge-intensive nlp tasks,” Advances in Neural Information Pro-
cessing Systems, vol. 33, pp. 9459–9474, 2020.

[29] J. R. H. Mariño, R. O. Moraes, C. F. M. Toledo, and L. H. S. Lelis,
“Evolving action abstractionsfor real-time planning in extensive-form
games,” in Proceedings of the AAAI Conference on Artificial Intelligence,
2019.

[30] L. C. Medeiros, D. S. Aleixo, and L. H. S. Lelis, “What can we learn
even from the weakest? Learning sketches for programmatic strategies,”
in Proceedings of the AAAI Conference on Artificial Intelligence, AAAI
Press, 2022, pp. 7761–7769.

[31] L. C. Medeiros, D. S. Aleixo, and L. H. S. Lelis, What can we learn even
from the weakest? learning sketches for programmatic strategies, 2022.
arXiv: 2203.11912 [cs.AI].

[32] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial intelligence, vol. 267, pp. 1–38, 2019.

[33] R. O. Moraes, D. S. Aleixo, L. N. Ferreira, and L. H. S. Lelis, Choos-
ing well your opponents: How to guide the synthesis of programmatic
strategies, 2023. arXiv: 2307.04893 [cs.LG].

[34] D. Oliveira, R. Bruno, F. Madeiral, and F. Castor, “Evaluating code
readability and legibility: An examination of human-centric studies,”
in 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2020, pp. 348–359. doi: 10.1109/ICSME46990.
2020.00041.

52

https://doi.org/10.3390/make3040045
https://www.mdpi.com/2504-4990/3/4/45
https://api.semanticscholar.org/CorpusID:5061467
https://api.semanticscholar.org/CorpusID:5061467
https://doi.org/10.1145/3296979.3192410
https://arxiv.org/abs/2203.11912
https://arxiv.org/abs/2307.04893
https://doi.org/10.1109/ICSME46990.2020.00041
https://doi.org/10.1109/ICSME46990.2020.00041

[35] S. Ontañón, N. A. Barriga, C. R. Silva, R. O. Moraes, and L. H. S. Lelis,
“The first microrts artificial intelligence competition.,” AI Magazine,
vol. 39, no. 1, 2018.

[36] OpenAI, : J. Achiam, et al., Gpt-4 technical report, 2023. arXiv: 2303.
08774 [cs.CL].

[37] L. Ouyang, J. Wu, X. Jiang, et al., “Training language models to fol-
low instructions with human feedback,” Advances in Neural Information
Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

[38] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method
for automatic evaluation of machine translation,” in Proceedings of the
40th annual meeting of the Association for Computational Linguistics,
Association for Computational Linguistics, 2002, pp. 311–318.

[39] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of software
readability,” in Proceedings of the Working Conference on Mining Soft-
ware Repositories, Association for Computing Machinery, 2011, pp. 73–
82, isbn: 9781450305747.

[40] W. Qiu and H. Zhu, “Programmatic reinforcement learning without or-
acles,” in International Conference on Learning Representations, 2022.
[Online]. Available: https://openreview.net/forum?id=6Tk2noBdvxt.

[41] A. Radford and K. Narasimhan, “Improving language understanding
by generative pre-training,” 2018. [Online]. Available: https://api.
semanticscholar.org/CorpusID:49313245.

[42] A. Ramesh, M. Pavlov, G. Goh, et al., “Zero-shot text-to-image gen-
eration,” in International conference on machine learning, Pmlr, 2021,
pp. 8821–8831.

[43] A. Razavi, A. Van den Oord, and O. Vinyals, “Generating diverse high-
fidelity images with vq-vae-2,” Advances in neural information process-
ing systems, vol. 32, 2019.

[44] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshy-
vanyk, and R. Oliveto, “Automatically assessing code understandabil-
ity,” IEEE Transactions on Software Engineering, vol. 47, no. 3, pp. 595–
613, 2021. doi: 10.1109/TSE.2019.2901468.

[45] S. Scalabrino, M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto, “Im-
proving code readability models with textual features,” in IEEE Inter-
national Conference on Program Comprehension, 2016, pp. 1–10. doi:
10.1109/ICPC.2016.7503707.

[46] A. Solar-Lezama, “The sketching approach to program synthesis,” in
Asian symposium on programming languages and systems, Springer, 2009,
pp. 4–13.

53

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=6Tk2noBdvxt
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1109/ICPC.2016.7503707

[47] A. Solar-Lezama, Lecture 1: Introduction to program synthesis, https:
//people.csail.mit.edu/asolar/SynthesisCourse/Lecture1.htm,
Accessed: 2024-02-28, 2023.

[48] H. Touvron, T. Lavril, G. Izacard, et al., “Llama: Open and efficient
foundation language models,” arXiv preprint arXiv:2302.13971, 2023.

[49] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Mar-
tin, and R. Alur, “Transit: Specifying protocols with concolic snippets,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13, Seattle, Washing-
ton, USA: Association for Computing Machinery, 2013, pp. 287–296,
isbn: 9781450320146. doi: 10.1145/2491956.2462174. [Online]. Avail-
able: https://doi.org/10.1145/2491956.2462174.

[50] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An
annotated bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp. 26–36,
2000.

[51] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[52] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Program-
matically interpretable reinforcement learning,” in Proceedings of the
35th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 80, PMLR, 2018, pp. 5045–5054. [On-
line]. Available: https://proceedings.mlr.press/v80/verma18a.
html.

[53] J. Wei, X. Wang, D. Schuurmans, et al., “Chain-of-thought prompting
elicits reasoning in large language models,” Advances in Neural Infor-
mation Processing Systems, vol. 35, pp. 24 824–24 837, 2022.

54

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture1.htm
https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture1.htm
https://doi.org/10.1145/2491956.2462174
https://doi.org/10.1145/2491956.2462174
https://proceedings.mlr.press/v80/verma18a.html
https://proceedings.mlr.press/v80/verma18a.html

Appendix A

A.1 An Overview of MicroRTS

MicroRTS is an implementation of a real-time strategy game, played between

two players. Each player controls a set of units of different types.

A.1.1 Units

Units in MicroRTS can be categorized into several types, each with specific

roles and capabilities.

Worker Units

Worker units have the ability to:

• Collect resources

• Build structures (Barracks and Bases)

• Attack opponent units

Barracks and Bases

• Barracks can train combat units (they can produce Light, Heavy, or

Ranged units).

• Bases can train the Workers (they can only produce Workers).

• They can neither attack opponents’ units nor move.

55

Combat Units

Combat units can be of type Light, Heavy, or Ranged. These units differ in:

• How long they survive a battle

• How much damage they can inflict to opponent units

• How close they need to be from opponent units to attack them

Resource Units

Resource units are the source of resources and do not belong to any player.

These units cannot execute any actions. When the number of resources left

reaches 0, the unit disappears. It only has one parameter: resources left.

A.1.2 Gameplay

Actions in MicroRTS are deterministic and there is no hidden information. A

match is played on a map and each map might require a different strategy for

defeating the opponent.

Fig /refmicrorts shows an example of a MicroRTS game state: gray circle

units represent the Worker units, cyan circle units are the Ranged units and

yellow circle units represent Heavy units. Light green squares represent the

resources to be collected by the Workers, white squares are the Bases and gray

squares are the Barracks.

A sample strategy for playing this game, specifically tailored for the 16x16

map, is presented below.

de f Sketch−SA−O−16x16 (s t a t e s) :
f o r u in s :

u . t r a i n (Ranged , Right , 4)
u . harves t (9)
u . at tack (C lo s e s t)
u . t r a i n (Worker , Up, 1)

Figure A.2: A sample strategy for playing MicroRTS for a 16x16 map.

0Source: https://sites.google.com/site/micrortsaicompetition/microrts

56

https://sites.google.com/site/micrortsaicompetition/microrts

Figure A.1: A MicroRTS match. Different outline colors represent different
players.

The strategy accepts a state s and allocates an action to each unit u con-

tained in s. If a unit u is not assigned an action, it will not perform any action

in the following round of the game. Once an action is allocated to a unit u,

this decision is irreversible and the action cannot be changed.

Actions are designated based on the unit type. For instance, for a Base

unit, the only applicable action is u.train(Worker,Up, 1), indicating that Base

units are exclusively responsible for training workers.

Taking another example, for a worker unit, the applicable commands are

limited to u.harvest(9) and u.attack(Closest). It is important to note that

operations proceed in a sequential order, and a unit cannot be assigned more

than one action. Specifically, the u.harvest(9), command deploys 9 worker

units to gather resources. Once these 9 workers are allocated to harvesting, any

remaining workers are then assigned the u.attack(Closest) command, directing

them to engage the nearest enemy units. [2], [15], [21], [35]

57

A.1.3 MicroRTS’ DSL

The following describes a scripting language for playing the real-time strategy

game called Micro-RTS.

Command-Oriented Functions

Here is a list of command-oriented functions used in the Micro-RTS DSL:

(these instructions assign actions to units!)

• Build(T, D, N): Builds N units of type T on a cell located in the D

direction of the unit.

• Train(T, D, N): Trains N units of type T on a cell located in the D

direction of the structure responsible for training them.

• moveToUnit(T p, O p): Commands a unit to move towards the

player T p following a criterion O p.

• Attack(O p): Commands a unit to attack units of the opponent player

following a criterion O p.

• Harvest(N): Sends N Worker units to harvest resources.

• attackIfInRange(): Commands a unit to stay idle and attack if an

opponent unit comes within its attack range.

• MoveAway(): Commands a unit to move in the opposite direction of

the player’s base.

Boolean Expressions

And here is a list of Boolean expressions each evaluating something at a given

state:

• HasNumberOfUnits(T, N): Checks if the ally player has N units of

type T .

• OpponentHasNumberOfUnits(T, N): Checks if the opponent player

has N units of type T .

58

• HasLessNumberOfUnits(T, N): Checks if the ally player has less

than N units of type T .

• HaveQtdUnitsAttacking(N): Checks if the ally player has N units

attacking the opponent.

• HasUnitWithinDistanceFromOpponent(N): Checks if the ally player

has a unit within a distance N from an opponent’s unit.

• HasNumberOfWorkersHarvesting(N): Checks if the ally player has

N units of type Worker harvesting resources.

• is Type(T): Checks if a unit is an instance of Type T .

• IsBuilder(): Check if a unit is of type Worker.

• CanAttack(): Checks if a unit can attack.

• HasUnitThatKillsInOneAttack(): Checks if the ally player has a

unit that kills an opponent’s unit with one attack action.

• OpponentHasUnitThatKillsUnitInOneAttack(): Checks if the op-

ponent player has a unit that kills an ally’s unit with one attack action.

• HasUnitInOpponentRange(): Checks if a unit of the ally player is

within attack range of an opponent’s unit.

• OpponentHasUnitInPlayerRange(): Checks if a unit of the oppo-

nent player is within attack range of an ally’s unit.

• CanHarvest(): Checks if a unit can harvest resources.

59

Appendix B

B.1 Overview

The prompts for explanation, reconstruction, and verification of both C Pro-

gramming Problems and Programmatic Policies (either Synthesized or Human-

crafted) are detailed in the subsequent sections. The C Programming Problems

and Human-crafted set of policies are developed in C and Java, respectively,

whereas the Synthesized set is written in MicroLanguage

The distinction between the two groups is based on the language in which

they’re implemented. For C Programming Problems and Human-crafted Java

Policies, there’s no need to clarify any domain-specific language since the

programs are written in a language that the LLM is already acquainted with

its terminology. On the other hand, the Synthesized Policies utilize a language

unique to MicroRTS. As a result, it’s necessary to define this language and

its components to the LLM. Specifically, for the explanation prompt, we must

elucidate the DSL to ensure the LLM comprehends the program it’s about to

explain. Similarly, the DSL must be defined during reconstruction to ensure

the regenerated program follows the MicroRTS programming rules. The same

applies to the verifier.

60

B.2 MicroRTS Prompts

B.2.1 Synthesized Set

B.2.1.1 Explainer Prompt

MicroRTS (ONTANÓN, 2013) is an implementation of a real-time strategy
game, played between two players. Each player controls a set of units of
different types.

• Worker units can:

1. collect resources

2. build structures (Barracks and Bases)

3. attack opponent units

• Barracks and Bases:

1. Barracks can train combat units. (they can produce Light, Heavy
or Ranged units)

2. Bases can train the Workers. (they can only produce Workers)

3. They can neither attack opponents units nor move.

• Combat units:

1. can be of type Light, Heavy, or Ranged.

2. These units differ in:

– how long they survive a battle

– how much damage they can inflict to opponent units

– how close they need to be from opponent units to attack them.

3. They can attack the oppponent units.

• Resource units:

1. The source of resources, doesn’t belong to any player.

2. These units cannot execute any actions.

3. When the number of resources left reaches 0, the unit disappears.
(It only has one parameter: resources left.)

Actions are deterministic and there is no hidden information in MicroRTS. A
match is played on a map and each map might require a different strategy for
defeating the opponent.

61

This CFG allows nested loops and conditionals. It contains several Boolean
functions (B) and command-oriented functions (C) that provide either infor-
mation about the current state of the game or commands for the ally units.
The following describes a scripting language for playing MicroRTS.
The Boolean functions are described below:

1. u.hasNumberOfUnits(T, N): Checks if the ally player has N units of
type T.

2. u.opponentHasNumberOfUnits(T, N): Checks if the opponent player has
N units of type T.

3. u.hasLessNumberOfUnits(T, N): Checks if the ally player has less than
N units of type T.

4. u.haveQtdUnitsAttacking(N): Checks if the ally player has N units at-
tacking the opponent.

5. u.hasUnitWithinDistanceFromOpponent(N): Checks if the ally player
has a unit within a distance N from a opponent’s unit.

6. u.hasNumberOfWorkersHarvesting(N): Checks if the ally player has N
units of type Worker harvesting resources.

7. u.is Type(T): Checks if a unit is an instance of type T.

8. u.isBuilder(): Checks if a unit is of type Worker.

9. u.canAttack(): Checks if a unit can attack.

10. u.hasUnitThatKillsInOneAttack(): Checks if the ally player has a unit
that kills an opponent’s unit with one attack action.

11. u.opponentHasUnitThatKillsUnitInOneAttack(): Checks if the oppo-
nent player has a unit that kills an ally’s unit with one attack action.
v u.hasUnitInOpponentRange(): Checks if an unit of the ally player is
within attack range of an opponent’s unit.

12. u.opponentHasUnitInPlayerRange(): Checks if an unit of the opponent
player is within attack range of an ally’s unit.

13. u.canHarvest(): Checks if a unit can harvest resources.

The Command functions are described below. These functions assign actions
to units.

1. u.build(T, D, N): Builds N units of type T on a cell located on the D
direction of the unit.

62

2. u.train(T, D, N): Trains N units of type T on a cell located on the D
direction of the structure responsible for training them.

3. u.moveToUnit(T p, O p): Commands a unit to move towards the player
T p following a criterion O p.

4. u.attack(O p): Sends N Worker units to harvest resources.

5. u.harvest(N): Sends N Worker units to harvest resources.

6. u.idle(): Commands a unit to stay idle and attack if an opponent unit
comes within its attack range.

7. u.moveAway(): Commands a unit to move in the opposite direction of
the player’s base. ’T’ represents the types a unit can assume. ’N’ is
a set of integers. ’D’ represents the directions available used in action
functions. ’O p’ is a set of criteria to select an opponent unit based on
their current state. ’T p’ represents the set of target players. ’e’ is an
empty block which means doing nothing.

The for loops in this scripting language iterate over all units and the instruc-
tions inside the for loops attempt to assign actions to each of these units. For
example, for (Unit u) u.build(Barracks, EnemyDir, 8)
The snippet above will assign a build action to unit u. Note that the only unit
that can build is Worker. In the for loop above, if u is Ranged, for example,
then the instruction u.build(Barracks,EnemyDir,8) will be ignored. Once an
action is assigned to a unit, it cannot be changed. That is why the for loops
offer a priority scheme to the actions. The way that for loop are organized is
perhaps the most important feature of this language. The program always has
the form: for (Unit u) ... With the possibility of adding nested for-loops that
go through all units. The parameter in each instruction limits the amount of
the thing that is trained or build. For example, u.build(Barracks, EnemyDir,
8) limits to at most 8 Barracks. If the player already has 8 barracks, then
this instruction will be ignored. Now, you have the background you need to
know!
Now, given the above information, first try to understand the meanings of
all the boolean (B) and command (C) functions from above and try to relate
them in the context of microRTS playing strategies.
Alright, let’s take a look at program P in which I want you to write an
explanation for:

Program P

The following 7 are some guidelines for writing an explanation for this
strategy:

63

1. Please write a high-level explanation and do not explain the code line by
line but try to include numbers and unit names in your natural language
explanation.

2. Try to understand what is happening in the code and explain it in
natural language for someone who wants to know how to play MicroRTS
using this strategy.

3. Write the explanation inside ‘< explanation >< /explanation >’ tag.

4. DON’T USE any quotation marks in writing the explanation.

5. At the end of the explanation, write the overall goal of the strategy as
well. (include it inside the explanation tag)

6. Don’t forget to mention the numbers but in a natural language way.

7. The for-loops offer a hierarchy that determines the priority of the ac-
tions.

The list below specifies the different priorities for actions one can obtain with
the for-loops (from highest to lowest priority).

• Actions inserted in nested for-loops at the top of the program receives
the highest priority.

• Actions inserted in nested for-loops that appear later in the program
have higher priority than actions that appear outside a nested for loop.

• Actions outside the nested for-loops that appear earlier in the program
have higher priority than actions outside for-loops that appear later in
the program.

The most important part of the explanation is to be clear with respect to the
priority of the actions. That is, what is the action with highest priority, which
one follows that one, and so on. You MUST NOT talk in terms of for-loops
and programming language jargon as people not familiar with programming
will not understand the explanation. Also, you MUST not use any ‘nest’ or
‘nested’ words as they are related to programming elements. You should talk
in terms of priorities of the actions, as you would explain the strategy to a
gamer.
For example, if an action is within a nested for loop, then you need to say that
the priority to this action is the highest. If an action isn’t within a nested for
loop, then you must say that the priority isn’t the highest.
So, following the instructions, can you provide a high-level explanation of the
provided program that another instance of LLM can rewrite this program from
that summary? Remember to verify the priority of the actions, they should
be well explained in your text (e.g., this action has the highest priority, this
has the second highest and so on).

64

B.2.1.2 Reconstructor Prompt

MicroRTS (ONTANÓN, 2013) is an implementation of a real-time strategy
game, played between two players. Each player controls a set of units of
different types.

• Worker units can:

1. collect resources

2. build structures (Barracks and Bases)

3. attack opponent units

• Barracks and Bases:

1. Barracks can train combat units. (they can produce Light, Heavy
or Ranged units)

2. Bases can train the Workers. (they can only produce Workers)

3. They can neither attack opponents units nor move.

• Combat units:

1. can be of type Light, Heavy, or Ranged.

2. These units differ in:

– how long they survive a battle

– how much damage they can inflict to opponent units

– how close they need to be from opponent units to attack them.

3. They can attack the oppponent units.

• Resource units:

1. The source of resources, doesn’t belong to any player.

2. These units cannot execute any actions.

3. When the number of resources left reaches 0, the unit disappears.
(It only has one parameter: resources left.)

Actions are deterministic and there is no hidden information in MicroRTS. A
match is played on a map and each map might require a different strategy for
defeating the opponent.

65

Here, I provided a context free grammar (CFG) of microRTS playing strategy
inside the < CFG >< /CFG > tag written bellow:

< CFG >

S → SS | for(Unit u) S | if(B) then S

| if(B) then S else S | C | λ
B → u.hasNumberOfUnits(T,N)

| u.opponentHasNumberOfUnits(T,N)

| u.hasLessNumberOfUnits(T,N)

| u.haveQtdUnitsAttacking(N)

| u.hasUnitWithinDistanceFromOpponent(N)

| u.hasNumberOfWorkersHarvesting(N)

| u.canAttack()
| u.hasUnitThatKillsInOneAttack()

| u.opponentHasUnitThatKillsUnitInOneAttack()

| u.hasUnitInOpponentRange()

| u.opponentHasUnitInPlayerRange()
| u.canHarvest()

C → u.build(T,D,N) | u.train(T,D,N) | u.moveToUnit(Tp, Op)

| u.attack(Op) | u.harvest(N)

| u.idle() | u.moveAway()

T → Base | Barracks | Ranged | Heavy
| Light | Worker

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| 10 | 15 | 20 | 25 | 50 | 100

D → EnemyDir | Up | Down | Right | Left
Op → Strongest | Weakest | Closest | Farthest

| LessHealthy | MostHealthy | Random
Tp → Ally | Enemy

< /CFG >

This CFG allows nested loops and conditionals. It contains several Boolean
functions (B) and command-oriented functions (C) that provide either infor-
mation about the current state of the game or commands for the ally units.
The following describes a scripting language for playing MicroRTS.
The Boolean functions are described below:

1. u.hasNumberOfUnits(T, N): Checks if the ally player has N units of
type T.

66

2. u.opponentHasNumberOfUnits(T, N): Checks if the opponent player has
N units of type T.

3. u.hasLessNumberOfUnits(T, N): Checks if the ally player has less than
N units of type T.

4. u.haveQtdUnitsAttacking(N): Checks if the ally player has N units at-
tacking the opponent.

5. u.hasUnitWithinDistanceFromOpponent(N): Checks if the ally player
has a unit within a distance N from a opponent’s unit.

6. u.hasNumberOfWorkersHarvesting(N): Checks if the ally player has N
units of type Worker harvesting resources.

7. u.is Type(T): Checks if a unit is an instance of type T.

8. u.isBuilder(): Checks if a unit is of type Worker.

9. u.canAttack(): Checks if a unit can attack.

10. u.hasUnitThatKillsInOneAttack(): Checks if the ally player has a unit
that kills an opponent’s unit with one attack action.

11. u.opponentHasUnitThatKillsUnitInOneAttack(): Checks if the oppo-
nent player has a unit that kills an ally’s unit with one attack action.
v u.hasUnitInOpponentRange(): Checks if an unit of the ally player is
within attack range of an opponent’s unit.

12. u.opponentHasUnitInPlayerRange(): Checks if an unit of the opponent
player is within attack range of an ally’s unit.

13. u.canHarvest(): Checks if a unit can harvest resources.

The Command functions are described below. These functions assign actions
to units.

1. u.build(T, D, N): Builds N units of type T on a cell located on the D
direction of the unit.

2. u.train(T, D, N): Trains N units of type T on a cell located on the D
direction of the structure responsible for training them.

3. u.moveToUnit(T p, O p): Commands a unit to move towards the player
T p following a criterion O p.

4. u.attack(O p): Sends N Worker units to harvest resources.

5. u.harvest(N): Sends N Worker units to harvest resources.

67

6. u.idle(): Commands a unit to stay idle and attack if an opponent unit
comes within its attack range.

7. u.moveAway(): Commands a unit to move in the opposite direction of
the player’s base. ‘T’ represents the types a unit can assume. ‘N’ is
a set of integers. ‘D’ represents the directions available used in action
functions. ‘O p’ is a set of criteria to select an opponent unit based on
their current state. ‘T p’ represents the set of target players. ‘e’ is an
empty block which means doing nothing.

The for loops in this scripting language iterate over all units and the instruc-
tions inside the for loops attempt to assign actions to each of these units. For
example, for (Unit u) u.build(Barracks, EnemyDir, 8)
The snippet above will assign a build action to unit u. Note that the only unit
that can build is Worker. In the for loop above, if u is Ranged, for example,
then the instruction u.build(Barracks,EnemyDir,8) will be ignored. Once an
action is assigned to a unit, it cannot be changed. That is why the for loops
offer a priority scheme to the actions. The way that for loop are organized is
perhaps the most important feature of this language. The program always has
the form: for (Unit u) ... With the possibility of adding nested for-loops that
go through all units. The parameter in each instruction limits the amount of
the thing that is trained or build. For example, u.build(Barracks, EnemyDir,
8) limits to at most 8 Barracks. If the player already has 8 barracks, then
this instruction will be ignored. Now, you have the background you need to
know!
Here is a summary of a programmatic strategy generated by a large language
model. Let’s Call it ‘LLM-Explanation’ which was generated as an explana-
tion of a strategic program for playing MicroRTS.

Explanataion E

The following 7 are some guidelines for writing a program in MicroRTS:

1. There is NO NEED TO write classes, initiate objects such as Unit,
Worker, etc.

2. You should NOT WRITE any comments in the code. (A comment is
written in this format //comment, so avoid it!)

3. Use curly braces like C/C++/Java while writing any ‘for’ or ‘if’ or ‘if-
else’ block. Start the curly braces in the same line of the block.

4. Do not write ‘else if(B) {’ block. Write ‘else { if(B) {...}}’ instead.

5. The format of the generated code must be the same as the example
provided earlier. (not the content, the just the general structure)

68

6. Write only the pseudocode inside ‘< strategy >< /strategy >’ tag.

7. The strategy should be written inside one or several ‘for’ blocks.

Your tasks are the following 11:

1. Understand the meanings of all the boolean (B) and command (C) func-
tions from above and try to relate them in the context of microRTS
playing strategies.

2. Given the instructions on how to write a program and the explanation
from the large language model(’LLM-Explanation’) provided earlier, can
you write down the strategy encoded in the explanation and reconstruct
the program in the MicroRTS scripting language? (Please only use the
language provided)

3. You must not use any symbols (for example: &&, ||, etc.) outside
this given CFG. You have to strictly follow this CFG while writing the
pseudocode.

4. Look carefully, the methods of non-terminal symbols B and C have
prefixes ‘u.’ in the examples since they are methods of the object ‘Unit
u’. You also need to follow the patterns of the example provided earlier.

5. Write only the pseudocode inside ‘< strategy >< /strategy >’ tag.

6. Do not write unnecessary symbols of the CFG such as, ‘− >’, ‘− >’,
etc.

7. When you encounter parentheses in an expression or code, their opening
and closing positions are crucial as they indicate the inclusion of some
statements within others. The most important feature of this language
is how the nested for-loops work and where they start and finish. The
for-loops offer an hierarchy that determines the priority of the actions.
The list below specifies the different priorities for actions one can obtain
with the for-loops (from highest to lowest priority).

8. Actions inserted in nested for-loops at the top of the program receives
the highest priority.

9. Actions inserted in nested for-loops that appear later in the program
have higher priority than actions that appear outside a nested for loop.

10. Actions outside the nested for-loops that appear earlier in the program
have higher priority than actions outside for-loops that appear later in
the program.

69

11. Check the pseudocode and ensure it does not violate the rules of the
CFG or the guidelines of writing the strategy.

IMPORTANT:

• Conditional structures such as if-statements are rarely needed. Use an
if-statement only if you are sure that you need them to implement the
strategy. For example, you should NOT use if-statements to ensure that
a number of units is trained as these numbers are already handled by
the action functions.

• For efficiency reasons, your program should have at most 2 levels of
nested loops.

• Double check whether the priorities of the actions are matching with
the nested for-loop structure of your program.

• The instructions with highest priority should be placed in innermost
loops. If you aren’t sure about an action, then leave it in the main
for-loop.

B.2.1.3 Verifier Prompt

MicroRTS (ONTANÓN, 2013) is an implementation of a real-time strategy
game, played between two players. Each player controls a set of units of
different types.

• Worker units can:

1. collect resources

2. build structures (Barracks and Bases)

3. attack opponent units

• Barracks and Bases:

1. Barracks can train combat units. (they can produce Light, Heavy
or Ranged units)

2. Bases can train the Workers. (they can only produce Workers)

3. They can neither attack opponents units nor move.

• Combat units:

1. can be of type Light, Heavy, or Ranged.

2. These units differ in:

70

– how long they survive a battle

– how much damage they can inflict to opponent units

– how close they need to be from opponent units to attack them.

3. They can attack the oppponent units.

• Resource units:

1. The source of resources, doesn’t belong to any player.

2. These units cannot execute any actions.

3. When the number of resources left reaches 0, the unit disappears.
(It only has one parameter: resources left.)

Actions are deterministic and there is no hidden information in MicroRTS. A
match is played on a map and each map might require a different strategy for
defeating the opponent.
Here, I provided a context free grammar (CFG) of microRTS playing strategy
inside the < CFG >< /CFG > tag written bellow:

71

< CFG >

S → SS | for(Unit u) S | if(B) then S

| if(B) then S else S | C | λ
B → u.hasNumberOfUnits(T,N)

| u.opponentHasNumberOfUnits(T,N)

| u.hasLessNumberOfUnits(T,N)

| u.haveQtdUnitsAttacking(N)

| u.hasUnitWithinDistanceFromOpponent(N)

| u.hasNumberOfWorkersHarvesting(N)

| u.canAttack()
| u.hasUnitThatKillsInOneAttack()

| u.opponentHasUnitThatKillsUnitInOneAttack()

| u.hasUnitInOpponentRange()

| u.opponentHasUnitInPlayerRange()
| u.canHarvest()

C → u.build(T,D,N) | u.train(T,D,N) | u.moveToUnit(Tp, Op)

| u.attack(Op) | u.harvest(N)

| u.idle() | u.moveAway()

T → Base | Barracks | Ranged | Heavy
| Light | Worker

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| 10 | 15 | 20 | 25 | 50 | 100

D → EnemyDir | Up | Down | Right | Left
Op → Strongest | Weakest | Closest | Farthest

| LessHealthy | MostHealthy | Random
Tp → Ally | Enemy

< /CFG >

This CFG allows nested loops and conditionals. It contains several Boolean
functions (B) and command-oriented functions (C) that provide either infor-
mation about the current state of the game or commands for the ally units.
The following describes a scripting language for playing MicroRTS.
The Boolean functions are described below:

1. u.hasNumberOfUnits(T, N): Checks if the ally player has N units of
type T.

2. u.opponentHasNumberOfUnits(T, N): Checks if the opponent player has
N units of type T.

72

3. u.hasLessNumberOfUnits(T, N): Checks if the ally player has less than
N units of type T.

4. u.haveQtdUnitsAttacking(N): Checks if the ally player has N units at-
tacking the opponent.

5. u.hasUnitWithinDistanceFromOpponent(N): Checks if the ally player
has a unit within a distance N from a opponent’s unit.

6. u.hasNumberOfWorkersHarvesting(N): Checks if the ally player has N
units of type Worker harvesting resources.

7. u.is Type(T): Checks if a unit is an instance of type T.

8. u.isBuilder(): Checks if a unit is of type Worker.

9. u.canAttack(): Checks if a unit can attack.

10. u.hasUnitThatKillsInOneAttack(): Checks if the ally player has a unit
that kills an opponent’s unit with one attack action.

11. u.opponentHasUnitThatKillsUnitInOneAttack(): Checks if the oppo-
nent player has a unit that kills an ally’s unit with one attack action.
v u.hasUnitInOpponentRange(): Checks if an unit of the ally player is
within attack range of an opponent’s unit.

12. u.opponentHasUnitInPlayerRange(): Checks if an unit of the opponent
player is within attack range of an ally’s unit.

13. u.canHarvest(): Checks if a unit can harvest resources.

The Command functions are described below. These functions assign actions
to units.

1. u.build(T, D, N): Builds N units of type T on a cell located on the D
direction of the unit.

2. u.train(T, D, N): Trains N units of type T on a cell located on the D
direction of the structure responsible for training them.

3. u.moveToUnit(T p, O p): Commands a unit to move towards the player
T p following a criterion O p.

4. u.attack(O p): Sends N Worker units to harvest resources.

5. u.harvest(N): Sends N Worker units to harvest resources.

6. u.idle(): Commands a unit to stay idle and attack if an opponent unit
comes within its attack range.

73

7. u.moveAway(): Commands a unit to move in the opposite direction of
the player’s base. ‘T’ represents the types a unit can assume. ‘N’ is
a set of integers. ‘D’ represents the directions available used in action
functions. ‘O p’ is a set of criteria to select an opponent unit based on
their current state. ‘T p’ represents the set of target players. ‘e’ is an
empty block which means doing nothing.

The for loops in this scripting language iterate over all units and the instruc-
tions inside the for loops attempt to assign actions to each of these units. For
example, for (Unit u) u.build(Barracks, EnemyDir, 8)
The snippet above will assign a build action to unit u. Note that the only
unit that can build is Worker. In the for loop above, if u is Ranged, for
example, then the instruction u.build(Barracks,EnemyDir,8) will be ignored.
Once an action is assigned to a unit, it cannot be changed. That is why
the for loops offer a priority scheme to the actions. The way that for loop
are organized is perhaps the most important feature of this language. The
program always has the form: for (Unit u) ... With the possibility of adding
nested for-loops that go through all units. The parameter in each instruction
limits the amount of the thing that is trained or build. For example,
u.build(Barracks, EnemyDir, 8) limits to at most 8 Barracks. If the player
already has 8 barracks, then this instruction will be ignored. Now, you have
the background you need to know!

I have a program P which is written in MicroRTS language. It provides an
strategy for playing the real-time strategy game. Here is the program:
Program P

Then, I’m asking the first instance of an LLM for a high-level explanation
without any programming jargon about the program so that another instance
of LLM can regenerate the code using that explanation. The first LLM gave
me this:

Explanation E

Now, I want to know if the explanation is using any computer programming
jargon or provides step by step or line by line instructions to reconstruct the
program? (Answer with yes or no first and then explain why)

74

B.2.2 Human-crafted Set

B.2.2.1 Explainer Prompt

MicroRTS (ONTANÓN, 2013) is an implementation of a real-time strategy
game, played between two players. Each player controls a set of units of
different types.

• Worker units can:

1. collect resources

2. build structures (Barracks and Bases)

3. attack opponent units

• Barracks and Bases:

1. Barracks can train combat units. (they can produce Light, Heavy
or Ranged units)

2. Bases can train the Workers. (they can only produce Workers)

3. They can neither attack opponents units nor move.

• Combat units:

1. can be of type Light, Heavy, or Ranged.

2. These units differ in:

– how long they survive a battle

– how much damage they can inflict to opponent units

– how close they need to be from opponent units to attack them.

3. They can attack the oppponent units.

• Resource units:

1. The source of resources, doesn’t belong to any player.

2. These units cannot execute any actions.

3. When the number of resources left reaches 0, the unit disappears.
(It only has one parameter: resources left.)

Actions are deterministic and there is no hidden information in MicroRTS.
A match is played on a map and each map might require a different strategy
for defeating the opponent.

The code for playing this game is written in Java. Here is a list of classes,
functions, and attributes that you need to be familiar with:

75

• GameState Class functions:

1. gs: is the a gamestate object which contains all the information
about the state of the game in the MicroRTs game. (gs is the
notation that will be observed a lot)

2. getPhysicalGameState(): Returns the physical game state (the ac-
tual ’map’) of a microRTS game associated with this state.

3. getPlayer(int playerID): given a player ID, returns the player ob-
ject.

4. getActionAssignment(Unit u): It returns the action assigned to a
unit.

5. getResourceUsage(): It gets the resource usage for a games-
tate. It also has another function inside which is ge-
tResourcesUsed(player). If you want to see how much
resource is used for a player, you can use: resource-
sUsed=gs.getResourceUsage().getResourcesUsed(player).

• Unit Class functions:

1. getType(): Returns the type of the unit. If we want to check the
unit type, we should call this (e.g if u.getType()==...)

2. getX(): returns the x position of the unit on the board.

3. getY(): returns the y position of the unit on the board.

4. getPlayer(): returns the ID of the unit owner. The unit ownership
in the game is identified by specific IDs. Player1 is assigned the ID
of 0, while Player2 is given the ID of 2. Resources in the game are
neutral and do not belong to any side, so they are assigned a unit
owner ID of -1, indicating that they are unowned by any player.

• Player Class functions:

1. getID(): Returns the player ID.

2. getResources(): Returns the amount of resources owned by the
player.

• Harvest Class function:

1. This class is extending the AbstractAction class.

2. getTarget(): Returns the target for the harvest action.

3. getBase(): Returns the base for the harvest action.

• UnitType Class attributes:

76

1. cost: Cost to produce a unit of a type. It’s an attribute of the
Type class, not a function. (e.g -¿ workerType.cost)

2. isResource: Boolean that returns True if a unit is of type “re-
source”. This is used to check if the type of a unit is Resource or
not.

3. canHarvest: Boolean that returns True if a unit can harvest re-
sources (it should be a worker)

4. isStockpile :Boolean that returns True if resources can be returned
to this unit type.

5. canAttack: Boolean that returns True if a unit of this type can
attack.

6. canMove: Boolean that returns True if a unit of this type can move.

• Different UnitTypes:

1. workerType

2. baseType

3. barracksType

4. lightType

5. heavyType

6. rangedType

• Other Functions:

1. train(u, type): command unit u to train a unit of a type. Note that
base units can train workers and barrack units can train combat
units (light, heavy, ranged)

2. attack(u, targetUnit): command unit u to attack the target unit.
(if you need to say attack no where, you can use attack(u, null)).

3. buildIfNotAlreadyBuilding(u, type, u.getX(), u.getY(), reserved-
Positions ,p, pgs): it calls the build action after finding the position
that the new unit should be built. You don’t need to worry about
the reversedPositions variable. It will be defined as an empty list
of integar. (You can define it as: ’List¡Integer¿ reservedPositions
= new LinkedList¡¿()’ before using it)

4. harvest(u, targetUnit, baseUnit): command unit to harvest from
the resources and add to the base unit.

5. heavyType

6. rangedType

77

There are so many classes in this framework implementation, for instance,
Player, GameState, PhysicalGameState, etc are all classes as mentioned
above. You can also use libraries in python such as Math for calculation.

Now, given the above information, try to understand and relate the classes,
functions, and attributes explained above in the context of microRTS playing
strategies.

Alright, let’s take a look at program P in which I want you to write an
explanation for:

Program P

The following 9 are some guidelines for writing an explanation for this
strategy:

1. Please write a high-level explanation and do not explain the code line
by line but try to include numbers and unit names in your natural
language explanation.

2. Try to understand what is happening in the code and explain it in
natural language for someone who wants to know how to play MicroRTS
using this strategy.

3. Write the explanation inside ’¡explanation¿¡/explanation¿’ tag.

4. DON’T USE any quotation marks in writing the explanation.

5. At the end of the explanation, write the overall goal of the strategy as
well. (include it inside the explanation tag)

6. Don’t forget to mention the numbers but in a natural language way.

7. If there is a formula to calculate something, explain it in natural
language as well.

78

8. Pay attention to the nested ’for-loops’ and nested ’if statements’
becuase they determine the prority of action being called. Try to reflect
this order in your explanation.

9. You MUST NOT talk in terms of for-loops and programming language
jargon as people not familiar with programming will not understand the
explanation. Also, you MUST not use any ’nest’ or ’nested’ words as
they are related to programming elements. You should talk in terms of
priorities of the actions, as you would explain the strategy to a gamer.

So, following the instructions, can you provide a high-level explanation of the
provided program that another instance of LLM can rewrite this program
from that summary?

B.2.2.2 Reconstructor Prompt

MicroRTS (ONTANÓN, 2013) is an implementation of a real-time strategy
game, played between two players. Each player controls a set of units of
different types.

• Worker units can:

1. collect resources

2. build structures (Barracks and Bases)

3. attack opponent units

• Barracks and Bases:

1. Barracks can train combat units. (they can produce Light, Heavy
or Ranged units)

2. Bases can train the Workers. (they can only produce Workers)

3. They can neither attack opponents units nor move.

• Combat units:

1. can be of type Light, Heavy, or Ranged.

2. These units differ in:

– how long they survive a battle

– how much damage they can inflict to opponent units

79

– how close they need to be from opponent units to attack them.

3. They can attack the oppponent units.

• Resource units:

1. The source of resources, doesn’t belong to any player.

2. These units cannot execute any actions.

3. When the number of resources left reaches 0, the unit disappears.
(It only has one parameter: resources left.)

Actions are deterministic and there is no hidden information in MicroRTS.
A match is played on a map and each map might require a different strategy
for defeating the opponent.

The code for playing this game is written in Java. Here is a list of classes,
functions, and attributes that you need to be familiar with:

• GameState Class functions:

1. gs: is the a gamestate object which contains all the information
about the state of the game in the MicroRTs game. (gs is the
notation that will be observed a lot)

2. getPhysicalGameState(): Returns the physical game state (the ac-
tual ’map’) of a microRTS game associated with this state.

3. getPlayer(int playerID): given a player ID, returns the player ob-
ject.

4. getActionAssignment(Unit u): It returns the action assigned to a
unit.

5. getResourceUsage(): It gets the resource usage for a games-
tate. It also has another function inside which is ge-
tResourcesUsed(player). If you want to see how much
resource is used for a player, you can use: resource-
sUsed=gs.getResourceUsage().getResourcesUsed(player).

• Unit Class functions:

1. getType(): Returns the type of the unit. If we want to check the
unit type, we should call this (e.g if u.getType()==...)

2. getX(): returns the x position of the unit on the board.

3. getY(): returns the y position of the unit on the board.

80

4. getPlayer(): returns the ID of the unit owner. The unit ownership
in the game is identified by specific IDs. Player1 is assigned the ID
of 0, while Player2 is given the ID of 2. Resources in the game are
neutral and do not belong to any side, so they are assigned a unit
owner ID of -1, indicating that they are unowned by any player.

• Player Class functions:

1. getID(): Returns the player ID.

2. getResources(): Returns the amount of resources owned by the
player.

• Harvest Class function:

1. This class is extending the AbstractAction class.

2. getTarget(): Returns the target for the harvest action.

3. getBase(): Returns the base for the harvest action.

• UnitType Class attributes:

1. cost: Cost to produce a unit of a type. It’s an attribute of the
Type class, not a function. (e.g -¿ workerType.cost)

2. isResource: Boolean that returns True if a unit is of type “re-
source”. This is used to check if the type of a unit is Resource or
not.

3. canHarvest: Boolean that returns True if a unit can harvest re-
sources (it should be a worker)

4. isStockpile :Boolean that returns True if resources can be returned
to this unit type.

5. canAttack: Boolean that returns True if a unit of this type can
attack.

6. canMove: Boolean that returns True if a unit of this type can move.

• Different UnitTypes:

1. workerType

2. baseType

3. barracksType

4. lightType

5. heavyType

6. rangedType

81

• Other Functions:

1. train(u, type): command unit u to train a unit of a type. Note that
base units can train workers and barrack units can train combat
units (light, heavy, ranged)

2. attack(u, targetUnit): command unit u to attack the target unit.
(if you need to say attack no where, you can use attack(u, null)).

3. buildIfNotAlreadyBuilding(u, type, u.getX(), u.getY(), reserved-
Positions ,p, pgs): it calls the build action after finding the position
that the new unit should be built. You don’t need to worry about
the reversedPositions variable. It will be defined as an empty list
of integar. (You can define it as: ’List¡Integer¿ reservedPositions
= new LinkedList¡¿()’ before using it)

4. harvest(u, targetUnit, baseUnit): command unit to harvest from
the resources and add to the base unit.

5. heavyType

6. rangedType

There are so many classes in this framework implementation, for instance,
Player, GameState, PhysicalGameState, etc are all classes as mentioned
above. You can also use libraries in python such as Math for calculation.

Now, you have the background you need to know!
Now, given the above information, try to understand and relate the classes,
functions, and attributes explained above in the context of microRTS playing
strategies.

Here is a summary of a programmatic strategy generated by a large language
model. Let’s Call it ’LLM-Explanation’ which was generated as an explana-
tion of a strategic program for playing MicroRTS.

Explanation E

The following 7 are some guidelines for writing a program in MicroRTS:

1. There is NO NEED TO write classes, initiate objects such as Unit,
Worker, etc.

2. Write all the code in one section. Don’t write any functions. But don’t
leave any section non-implemented.

82

3. Write only the pseudocode inside ’¡strategy¿¡/strategy¿’ tag.

4. Suppose gs(GameState object), pgs(PhysicalGameState object),
p(Player object), and player(player ID, int) are defined and given.
Use the same syntax in your code. You don’t need to define them
beforehand.

5. Don’t use any external information from any resources. Just rely on
the explanation and the prompt provided to generate the code.

6. Only write the strategy code, I don’t need any explanations.

7. Once again, remember to implement everything. Don’t leave any helper
function unimplemented.

Your tasks are the following 5:

1. Understand the meaning of all functions and variables and try to relate
them in the context of microRTS playing strategies.

2. Given the instructions on how to write a program and the explanation
from the large language model(’LLM-Explanation’) provided earlier,
can you write down the strategy encoded in the explanation and
reconstruct the program in the MicroRTS scripting language? (Please
only write in Java)

3. Make sure you only use the functions, and attributes that I introduced
earlier. For instance, don’t call an object of a class with the function of
the other class. (e.g we don’t have gs.getID())

4. Check the generated code and make sure you are following Java syntax.
The code needs to be ready to get compiled right away.

5. Don’t use any assumptions of your own except for the ones that I noted
to write the code.

83

B.2.2.3 Verfier Prompt

MicroRTS (ONTANÓN, 2013) is an implementation of a real-time strategy
game, played between two players. Each player controls a set of units of
different types.

• Worker units can:

1. collect resources

2. build structures (Barracks and Bases)

3. attack opponent units

• Barracks and Bases:

1. Barracks can train combat units. (they can produce Light, Heavy
or Ranged units)

2. Bases can train the Workers. (they can only produce Workers)

3. They can neither attack opponents units nor move.

• Combat units:

1. can be of type Light, Heavy, or Ranged.

2. These units differ in:

– how long they survive a battle

– how much damage they can inflict to opponent units

– how close they need to be from opponent units to attack them.

3. They can attack the oppponent units.

• Resource units:

1. The source of resources, doesn’t belong to any player.

2. These units cannot execute any actions.

3. When the number of resources left reaches 0, the unit disappears.
(It only has one parameter: resources left.)

Actions are deterministic and there is no hidden information in MicroRTS.
A match is played on a map and each map might require a different strategy
for defeating the opponent.

The code for playing this game is written in Java. Here is a list of classes,
functions, and attributes that you need to be familiar with:

• GameState Class functions:

84

1. gs: is the a gamestate object which contains all the information
about the state of the game in the MicroRTs game. (gs is the
notation that will be observed a lot)

2. getPhysicalGameState(): Returns the physical game state (the ac-
tual ’map’) of a microRTS game associated with this state.

3. getPlayer(int playerID): given a player ID, returns the player ob-
ject.

4. getActionAssignment(Unit u): It returns the action assigned to a
unit.

5. getResourceUsage(): It gets the resource usage for a games-
tate. It also has another function inside which is ge-
tResourcesUsed(player). If you want to see how much
resource is used for a player, you can use: resource-
sUsed=gs.getResourceUsage().getResourcesUsed(player).

• Unit Class functions:

1. getType(): Returns the type of the unit. If we want to check the
unit type, we should call this (e.g if u.getType()==...)

2. getX(): returns the x position of the unit on the board.

3. getY(): returns the y position of the unit on the board.

4. getPlayer(): returns the ID of the unit owner. The unit ownership
in the game is identified by specific IDs. Player1 is assigned the ID
of 0, while Player2 is given the ID of 2. Resources in the game are
neutral and do not belong to any side, so they are assigned a unit
owner ID of -1, indicating that they are unowned by any player.

• Player Class functions:

1. getID(): Returns the player ID.

2. getResources(): Returns the amount of resources owned by the
player.

• Harvest Class function:

1. This class is extending the AbstractAction class.

2. getTarget(): Returns the target for the harvest action.

3. getBase(): Returns the base for the harvest action.

• UnitType Class attributes:

1. cost: Cost to produce a unit of a type. It’s an attribute of the
Type class, not a function. (e.g -¿ workerType.cost)

85

2. isResource: Boolean that returns True if a unit is of type “re-
source”. This is used to check if the type of a unit is Resource or
not.

3. canHarvest: Boolean that returns True if a unit can harvest re-
sources (it should be a worker)

4. isStockpile :Boolean that returns True if resources can be returned
to this unit type.

5. canAttack: Boolean that returns True if a unit of this type can
attack.

6. canMove: Boolean that returns True if a unit of this type can move.

• Different UnitTypes:

1. workerType

2. baseType

3. barracksType

4. lightType

5. heavyType

6. rangedType

• Other Functions:

1. train(u, type): command unit u to train a unit of a type. Note that
base units can train workers and barrack units can train combat
units (light, heavy, ranged)

2. attack(u, targetUnit): command unit u to attack the target unit.
(if you need to say attack no where, you can use attack(u, null)).

3. buildIfNotAlreadyBuilding(u, type, u.getX(), u.getY(), reserved-
Positions ,p, pgs): it calls the build action after finding the position
that the new unit should be built. You don’t need to worry about
the reversedPositions variable. It will be defined as an empty list
of integar. (You can define it as: ’List¡Integer¿ reservedPositions
= new LinkedList¡¿()’ before using it)

4. harvest(u, targetUnit, baseUnit): command unit to harvest from
the resources and add to the base unit.

5. heavyType

6. rangedType

There are so many classes in this framework implementation, for instance,
Player, GameState, PhysicalGameState, etc are all classes as mentioned

86

above. You can also use libraries in python such as Math for calculation.

Now, you have the background you need to know!
Then, given the above information, try to understand and relate the classes,
functions, and attributes explained above in the context of microRTS playing
strategies.

I have a program P which is written in Java language as a part of strategy
for playing MicroRTS. Here is the program:
Program P

Then, I’m asking the first instance of an LLM for a high-level explanation
without any programming jargon about the program so that another instance
of LLM can regenerate the code using that explanation. The first LLM gave
me this:

Explanation E

Now, I want to know if the explanation is using any computer programming
jargon or provides step by step or line by line instructions to reconstruct the
program? (Answer with yes or no first and then explain why)

B.3 Computer Programming Prompts

B.3.1 Explainer Prompt

Can you explain in plain English, without programming jargon, and without
saying what the algorithm does (that is you cannot just say it does something
(e.g. computes the proper subset of a set of arguments), what this program
does? It needs to be detailed enough so that another LLM is able to write
this program from your description.
Be careful to give me a high-level natural language explanation. I don’t want
to see any variable names and code elements in the text.
Also, write the explanation inside ‘<explanation></explanation>’ tag.
REMEMBER, don’t use any programming jargon!

87

B.3.2 Reconstructor Prompt

Can you write the encrypted strategy in the explanation below in C?

Explanation E

B.3.3 Verifier Prompt

I have a program P which that does something. Here is the program:

Program P

Then, I’m asking an LLM for a high-level explanation of the program without
any programming jargon so that another LLM can regenerate the code using
that explanation.
The first LLM gave me this:

Explanation E

Now, I want to know if the explanation uses any computer programming
jargon or provides step by step or line by line instructions to reconstruct the
program? (Answer with yes or no first and then explain why)

B.3.3.1 Verifier Examples

Here are two explanations for Program 2, produced by the LLM from the pool

of C programming problems that received distinct feedback from the Verifier.

P2:

#include <stdio.h>

#include <stdlib.h>

#define _ F-->00 || F-OO--;

long F=00,OO=00;

F_OO()

88

{

--_-_

--_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_

--_-_

}

main(){F_OO();printf("%1.3f\n", 4.*-F/OO/OO);}

Explanataion 1: The program consists of two main parts. The first part
sets up two long numbers with a value of zero. It then defines a pattern using
the two numbers in such a way that their values change according to the
defined pattern. The pattern looks like a triangle when visualized, starting
with a single instance at the top, expanding in width as it goes down, and
then contracting again towards the bottom. The process involves decreasing
the first number if certain conditions involving the two numbers are met,
while the second number keeps increasing. This operation goes on until the
first number reaches a certain condition.

The second part of the program uses the values of the two numbers
after the pattern operation and performs a calculation using them. This
calculation involves multiplying the negative of the first number by 4 and
then dividing by the square of the second number. The result of this
calculation is then displayed with three decimal places.

89

Verfier Response for Explanation 1: Yes.
The provided explanation contains programming jargon such as ”long num-
bers,” indicating data types, and references conditional and iterative opera-
tions through phrases like ”certain conditions” and “keeps increasing.” Fur-
thermore, specific mathematical operations are detailed, and the triangular
pattern visualization implies a specific code structure. These elements, to-
gether, give insights into the logic and operations of the program, potentially
aiding in its reconstruction.

Explanataion 2: Imagine you have two containers. One container is filled
up to a certain level, and the second one is empty. You start a process in
which you keep taking a little bit from the filled container and putting it into
the empty container. The process has two specific rules: 1. You only stop
transferring when the filled container is empty. 2. The rate at which you take
from the filled container decreases every time.
After the process is finished, you examine the amount you’ve moved compared
to the original amount in the filled container. Then, using this relationship,
you calculate a number and display it.

Verfier Response for Explanation 2: No.
The explanation does not use computer programming jargon, and it doesn’t
provide step-by-step instructions to reconstruct the program. The given de-
scription uses an analogy of two containers and a transfer process between
them, without referencing any specific programming constructs or operations.
It describes the behavior of the program at a high level, but it does not give
details about how the program implements that behavior.

B.4 C Programs Pool

In this section, we present the 10 C programs used in our experiments. The

first subsection features the obfuscated programs, accompanied by their ex-

planations and one sample of our k attempts at reconstructing the program.

As noted in the paper, none of these attempts successfully reconstructed the

program. Following that, the subsequent subsection shows the non-obfuscated

implementations alongside one sample from our k successful reconstructions,

reaffirming that each was accurately reconstructed as mentioned in the paper.

90

B.4.1 Obfuscated C Programs

P1: This program computes all proper subsets of the set of arguments passed
to it.
#include <stdio.h>

#include <stdlib.h>

main(Q,O)char**O;{

if(--Q){

main(Q,O);

O[Q][0]^=0X80;

for(O[0][0]=0;O[++O[0][0]]!=0;)

if(O[O[0][0]][0]>0)puts(O[O[0][0]]);

puts("----------");

main(Q,O);

}

}

Explanation:
Imagine you have a collection of phrases. The program performs a unique
action on this collection: Starting from the last phrase and moving towards
the first, for each phrase, it: Repeats the entire routine with the preceding
phrases. Alters the start of the current phrase in a special way. Goes through
the collection from the start. For every phrase that begins in a certain manner,
it shows it. Displays a line of dashes. Once more, carries out the entire routine
with the preceding phrases. It’s like a set of instructions that continuously
loops for each phrase, making a specific change and then showcasing certain
phrases based on a particular feature of their beginning
Reconstructed Program for P1:

#include <stdio.h>

#include <string.h>

#define MAX_PHRASES 10

#define MAX_LENGTH 100

char phrases[MAX_PHRASES][MAX_LENGTH];

void alter_phrase(char *phrase) {

// Example alteration: prepend "* " to the phrase.

char temp[MAX_LENGTH];

strcpy(temp, "* ");

strcat(temp, phrase);

strcpy(phrase, temp);

}

91

int begins_in_certain_manner(const char *phrase) {

// Example check: phrase begins with "* "

return strncmp(phrase, "* ", 2) == 0;

}

void perform_routine(int index) {

if (index < 0) return;

perform_routine(index - 1);

alter_phrase(phrases[index]);

for (int i = 0; i < MAX_PHRASES; i++) {

if (begins_in_certain_manner(phrases[i])) {

printf("%s\n", phrases[i]);

}

}

printf("-----------------\n");

perform_routine(index - 1);

}

int main() {

strcpy(phrases[0], "Hello");

strcpy(phrases[1], "World");

strcpy(phrases[2], "How");

strcpy(phrases[3], "Are");

strcpy(phrases[4], "You");

perform_routine(4);

return 0;

}

P2: This program calculates the value of π.
#include <stdio.h>

#include <stdlib.h>

#define _ F-->00 || F-OO--;

long F=00,OO=00;

F_OO()

{

--_-_

--_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_

92

--_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_

--_-_

}

main(){F_OO();printf("%1.3f\n", 4.*-F/OO/OO);}

Explanation:
Imagine a bookkeeper with two tallies, both starting at zero. Now, there’s
a curious poem-like structure which, when read, provides a series of actions
to follow. This poem is a mix of lines, with some lines repeated more times
than others. Every time a certain symbol is encountered in the poem, the
bookkeeper has to do two things:

Check if the first tally has reached a certain condition; if not, decrease it. If
the first tally has reached that condition, then check if the second tally meets
another condition; if not, decrease it.
After the bookkeeper completes reading through this poem and performs all
the actions, there’s a simple arithmetic task to be done. Multiply the negative
value of the first tally by four, then divide it by the square of the second tally.
The result of this arithmetic operation is then shared.
In essence, the poem drives the two tallies towards certain values, and then
an arithmetic operation is done using these tallies to give a final result.

Reconstructed Program for P2:

#include <stdio.h>

#include <string.h>

// Function to read the poem and adjust the tallies

void readPoemAndAdjustTallies(const char *poem,\

int *tally1, int *tally2) {

char symbol = ’#’;

for (int i = 0; i < strlen(poem); i++) {

if (poem[i] == symbol) {

93

if (*tally1 > -10) {

(*tally1)--;

} else if (*tally2 > -5) { necessary

(*tally2)--;

}

}

}

}

int main() {

char poem[] = "Roses are red,\n"

"#Violets are blue,\n"

"Every time I see a #,\n"

"I think of you.\n"

"#\n"

"Books and poems,\n"

"#Symbols and signs,\n"

"Every # is a moment,\n"

"That intertwines.\n";

int tally1 = 0, tally2 = 0;

readPoemAndAdjustTallies(poem, &tally1, &tally2);

if (tally2 == 0) {

printf("Cannot perform the arithmetic\

operation since the second tally is zero.\n");

return 1;

}

double result = (-4.0 * tally1) / (tally2 * tally2);

printf("The result is: %lf\n", result);

return 0;

}

P3: This program prints the input string sorted alphabetically.
#include "stdio.h"

main(argc, argv)

int argc;

char **argv;

{

while (*argv != argv[1] && (*argv = argv[1]) && (argc = 0) ||

(*++argv && (**argv && ((++argc)[*argv] && (**argv <= argc[*argv]

||(**argv += argc[*argv] -= **argv = argc[*argv] - **argv)) &&

--argv || putchar(**argv) && ++*argv--) || putchar(10))));

}

94

Explanation:
Imagine you have a line of people holding cards with numbers, and next to
them is another line of people holding cards with letters. We’re focusing on
the people holding letters, but they’ll sometimes peek at the numbers from
the first line.
For every person in the letter line:
Check the position of this person in their line and look at the number they’re
holding.
If their position in the line is greater than the number on their card: Take
the difference by subtracting the number from their position. Now, add this
difference to the number on their card. If their position in the line is less
than or equal to the number: Now, take the difference by subtracting their
position from the number. Add this difference to the number on their card.
After doing this, show the letter from that person’s card to the audience.
Once every person in the letter line has shown their card after the above
adjustments, there’s a big applause (or a break).

However, if there’s no one in the letter line, just proceed with the applause
(or break).

Reconstructed Program for P3:

#include <stdio.h>

int main() {

int n; // Number of people in the letter line

printf("Enter the number of people in the letter line: ");

scanf("%d", &n);

if (n == 0) {

printf("Applause (or break)!\n");

return 0;

}

int numbers[n];

char letters[n];

printf("Enter the numbers and letters for each person:\n");

for (int i = 0; i < n; i++) {

printf("Person %d - Number: ", i+1);

scanf("%d", &numbers[i]);

printf("Person %d - Letter: ", i+1);

scanf(" %c", &letters[i]);

}

95

for (int i = 0; i < n; i++) {

int position = i + 1;

if (position > numbers[i]) {

int difference = position - numbers[i];

numbers[i] += difference;

} else {

int difference = numbers[i] - position;

numbers[i] += difference;

}

printf("Showing letter: %c\n", letters[i]);

}

printf("Applause (or break)!\n");

return 0;

}

P4: This program prints the first 100 prime numbers.

#include <stdio.h>

#define f(f,g){z e=0;for(;e<f;e++)g;}

#define i(f,g)static z f(z a){return g;}

#define j(f,g)static void f(z*a,z*b,z*c){g}

#define h(f,g)static z f(z a,z b,z c){return g;}

#define g(f,g,h,i,j)static z f(z b){z a=g,c=h;for(;i)a=j;return a;}

typedef unsigned char y;typedef unsigned long long z;extern y*w;

static z b(z a,z b){return a>>b|a<<(64-b);}i(_,(a>>6)^b(a,61)

^b(a,19))i(_a,b(a,39)^b(a,28)^b(a,34))h(x,((a^b)&c)^(a&b))

i(u,b(a,41)^b(a,18)^b(a,14))h(t,(((((3*(a*c+b*b)>>9)+(3*b*c>>32))

*a>>21)+(3*a*a*b>>6)+((b>>4)*(b>>4)*b>>46))>>18)+a*a*a)

h(m,t((b<<16)|(c>>48),(c>>24)%(1<<24),

c%(1<<24))>>48<a)h(s,(a&b)^(~a&c))i(r,b(a,1)^b(a,8)^(a>>7))

g(o,0,0,c<8;c++,a*256+w[b*8+c])g(d,0,0,c<13;c++,a*31+w[b*13+c]-96)

g(p,0,4,c;c/=2,a|c*m(b,a|c,a)

)g(q,0,1ull<<63,c;c/=2,a|c*m(b,p(b),a|c))g(v,b>1,2,c<b;c++,a&&b%c)

g(l,b?l(b-1)+1:2,a,!v(c);c++,c+1)j(n,z d=a[7]+u(a[4])+s(a[4],a

[5],a[6])+q(l(*b))+c[*b%16];f(8,a[7-e]=e-3?e-7?a[6-e]:d+_a(a[0])+

x(a[1],a[2],a[3]):d+a[3])f(16*(*b%16>14),

c[e]+=c[(e+9)%16]+r(c[(e+1)%16])+_(c[(e+14)%16])))

j(k,f(8,b[e]=a[e])f(80,n(a,&e,c))f(8,a[e]+=b[e]))

int main(){z a[8],b[8],c[16];f(8,a[e]=d(e))

96

f(16,c[e]=e-15?o(e):d(8))k(a,b,c);

f(16,c[e]=e?e-15?0:11264:1ull<<63)k(a,b,c);

f(8,printf("%016llx%s",a[e],e-7?"":"\n"))

return!w;}y*w=(y*) "crsmyiajqhwy{unwa|

hjoi‘hlxhpxrzb~edko~rtr~ileqyjk‘znqgsuitvgqnfdfa||

wedvnmhozkpokootqzcexeld~oibqzpcsuw{ib{x‘m‘hsa‘jmn}wcfzpb";

Explanation:
Imagine you have a secret vault with 8 chambers. Initially, each chamber
has a unique piece of information. Now, alongside this vault, you also have
a special set of 16 cards. Some cards come with information pre-written on
them, while others are blank. Now, you perform a series of operations:
You make a duplicate vault and keep it next to the original one. Using
the original vault’s information and the special set of cards, you adjust the
information in the duplicate vault. You do this 80 times. After you’re done,
you take the adjusted values from the duplicate vault and add them back to
the original one. Next, you modify your set of 16 cards. Some of them are
reset to blank, and one specific card is marked with a very large number.
You repeat the same series of operations as before:
Make a duplicate of the original vault. Use the original vault and the modified
set of cards to adjust the duplicate vault. Merge the adjusted values from the
duplicate vault back into the original one. In the end, you read the information
from each chamber of the vault and display it.

Reconstructed Program for P4:

#include <stdio.h>

#define VAULT_SIZE 8

#define CARD_SET_SIZE 16

#define ADJUSTMENT_TIMES 80

void adjustDuplicateVault(int original[], int cards[],\

int duplicate[]) {

for (int i = 0; i < VAULT_SIZE; i++) {

duplicate[i] = original[i] + cards[i];

}

}

void mergeDuplicateBack(int original[], int duplicate[]) {

for (int i = 0; i < VAULT_SIZE; i++) {

original[i] += duplicate[i];

}

}

97

int main() {

int vault[VAULT_SIZE] = {1, 2, 3, 4, 5, 6, 7, 8};

int cards[CARD_SET_SIZE] = {10, 20, 30, 40, 50, 60,\

70, 80, 0, 0, 0, 0, 0, 0, 0, 0};

// First series of operations

for (int i = 0; i < ADJUSTMENT_TIMES; i++) {

int duplicateVault[VAULT_SIZE];

adjustDuplicateVault(vault, cards, duplicateVault);

mergeDuplicateBack(vault, duplicateVault);

}

// Modify the set of 16 cards

for (int i = 0; i < CARD_SET_SIZE; i++) {

cards[i] = 0; // Reset to blank

}

cards[0] = 1000; // Mark one card with a very large number

// Second series of operations

for (int i = 0; i < ADJUSTMENT_TIMES; i++) {

int duplicateVault[VAULT_SIZE];

adjustDuplicateVault(vault, cards, duplicateVault);

mergeDuplicateBack(vault, duplicateVault);

}

// Display the information from each chamber of the vault

printf("Final vault information:\n");

for (int i = 0; i < VAULT_SIZE; i++) {

printf("Chamber %d: %d\n", i + 1, vault[i]);

}

return 0;

}

P5: This program computes the factorial of a number.
#include <stdio.h>

#include <stdlib.h>

#define l11l 0xFFFF

#define ll1 for

#define ll111 if

#define l1l1 unsigned

98

#define l111 struct

#define lll11 short

#define ll11l long

#define ll1ll putchar

#define l1l1l(l) l=malloc(sizeof(l111 llll1));l->lll1l=1-1;

l->ll1l1=1-1;

#define l1ll1 *lllll++=l1ll%10000;l1ll/=10000;

#define l1lll ll111(!l1->lll1l){l1l1l(l1->lll1l);

l1->lll1l->ll1l1=l1;}\

lllll=(l1=l1->lll1l)->lll;ll=1-1;

#define llll 1000

l111 llll1 {

l111 llll1 *lll1l,*ll1l1;

l1l1 lll11 lll[llll];

};

int main(){

l111 llll1 *ll11,*l1l,*l1, *ll1l;

l1l1 ll11l l1ll;

ll11l l11,ll,l;

l1l1 lll11 *lll1,*lllll;

ll1(l=1-1 ;l< 14; ll1ll("\t\"8)>l\"9!.)>vl"[l]^’L’),++l);

scanf("%d",&l);

l1l1l(l1l)

l1l1l(ll11)

(l1=l1l)->lll[l1l->lll[1-1]=1]=l11l;

ll1(l11=1+1;l11<=l;++l11){

l1=ll11;

lll1 = (ll1l=(ll11=l1l))->lll;

lllll=(l1l=l1)->lll;

ll=(l1ll=1-1);

ll1(;ll1l->lll1l||l11l!=*lll1;){

l1ll+=l11**lll1++;

l1ll1 ll111 (++ll>llll){

l1lll

lll1=(ll1l =ll1l->lll1l)->lll;

}

}

ll1(;l1ll;){

l1ll1 ll111 (++ll>=llll) {

l1lll

99

}

}

*lllll=l11l;

}

ll1(l=(ll=1-1);(l<llll)&&(l1->lll[l]!=l11l);++l);

ll1(;l1;l1=l1->ll1l1,l=llll){

ll1(--l;l>=1-1;--l,++ll)

printf((ll)?((ll%19)?"%04d":(ll=19,"\n%04d")):\

"%4d",l1->lll[l]);

}

ll1ll(10);

return 0;

}

Explanation:

This program starts by showing a sequence of symbols on the screen.
After that, it waits for you to give it a number. Using this number, the
program goes through a series of steps, repeating them as many times as the
number you provided.
It keeps the outcomes of these steps in a series of containers. If one container
becomes full, it moves on to fill the next one.
After finishing all the steps, the program shows you the outcomes. It starts
by skipping some numbers in the first container that are the same as a certain
value. Then, it shows you numbers from each container, grouping them in
sets. After showing a certain number of sets, it moves to the next line and
keeps showing the numbers. This continues until it has shown you everything.
At the end, it shows a little gap and then stops.

Reconstructed Program for P5:

#include <stdio.h>

#define CONTAINER_SIZE 10

#define TOTAL_CONTAINERS 5

#define SKIP_VALUE -1

#define SET_SIZE 3

int containers[TOTAL_CONTAINERS][CONTAINER_SIZE];

void performSteps(int number) {

int currentContainer = 0;

int currentPosition = 0;

for (int i = 0; i < number; i++) {

if (currentPosition >= CONTAINER_SIZE) {

currentPosition = 0;

100

currentContainer++;

if (currentContainer >= TOTAL_CONTAINERS) {

printf("All containers are full!\n");

return;

}

}

containers[currentContainer][currentPosition] = i;

currentPosition++;

}

}

void showOutcomes() {

int shownCount = 0;

for (int i = 0; i < TOTAL_CONTAINERS; i++) {

for (int j = 0; j < CONTAINER_SIZE; j++) {

if (containers[i][j] != SKIP_VALUE) {

printf("%d ", containers[i][j]);

shownCount++;

if (shownCount % SET_SIZE == 0) {

printf("\n");

}

}

}

}

printf("\n\n"); // little gap at the end

}

int main() {

// Initialize all containers with SKIP_VALUE

for (int i = 0; i < TOTAL_CONTAINERS; i++) {

for (int j = 0; j < CONTAINER_SIZE; j++) {

containers[i][j] = SKIP_VALUE;

}

}

// Show the initial sequence of symbols

printf("#### SYMBOLS ####\n");

int number;

printf("Enter a number: ");

scanf("%d", &number);

101

performSteps(number);

showOutcomes();

return 0;

}

P6: This program computes a desired number of digits of e in any desired
base.
#include <stdio.h>

#include <stdlib.h>

unsigned char w,h,i,l,e,x,y=10,z=10,E[256];

#define whi1e(j,k) printf(j,k); fflush(stdout)

#define o E[w]

main (c,v) char *v[]; {

while (c>=2){z = atoi(v[1]),--c;

while (c>=2)y = atoi(v[2]),--c;}

whi1e ("%s" ,"2.");

while (--y) --x;

while (--x) --e,--y;

while (--z) --x;

while (--x) --e,--z;

while (--w) {

while (--x) --o;}

while (--z) {

while (--x) --w;

while (--o) ;

while (--w) ;

while (--e) --x;

while (--x) --w,--e;

while (--w) {

while (--l) ;

while (--i) --l;--l;

while (--h) ;

while (--y) --x;

while (--x) --h,--y;

while (--x) --h;

while (--h) {

while (--o) --x;

while (--x) --l,--o;

while (l>=w){--i;

while (--w) --l,--x;

102

while (--x) --w;--l;}}

while (--o) ;

while (--l) --x;

while (--x) --o;}

while (--i) --h;

whi1e ("%x" ,--h);--e;}

whi1e ("%s" ,"\n");}

Explanation:

The program starts by showing you a short message.
If you’ve told the program one or two numbers when you began, it keeps these
numbers in mind. If you told it only one number, it just remembers that one.
If you didn’t tell it any numbers, it uses some numbers it already knows.
Then, it does a lot of repetitive tasks, like a person moving beans between
bowls or sometimes just throwing beans away, following some specific rules.
During these tasks:
1. It occasionally shows you a unique number.
2. At the end, it gives a space.
After all this, the program finishes.

Reconstructed Program for P6:

#include <stdio.h>

#define DEFAULT_NUMBER_1 10

#define DEFAULT_NUMBER_2 20

#define REPETITIONS 100

int main() {

int inputCount, num1, num2;

printf("Welcome to the program!\n");

printf("Enter the number of inputs (0, 1, or 2): ");

scanf("%d", &inputCount);

switch (inputCount) {

case 2:

printf("Enter two numbers: ");

scanf("%d %d", &num1, &num2);

break;

case 1:

printf("Enter one number: ");

scanf("%d", &num1);

num2 = DEFAULT_NUMBER_2;

break;

default:

103

num1 = DEFAULT_NUMBER_1;

num2 = DEFAULT_NUMBER_2;

}

for (int i = 1; i <= REPETITIONS; i++) {

num1 += 2;

num2 -= 2;

if (i % 10 == 0) {

printf("Unique number: %d\n", i);

}

if (i % 20 == 0) {

num1 -= 5;

}

}

printf("\n");

return 0;

}

P7: This program converts byte to binary.
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int b,char**i){long long n=B,a=I^n,r=(a/b&a)>>4,y=atoi(*++i)

,_=(((a^n/b)*(y>>T)|y>>S)&r)|(a^r);printf("%.8s\n",(char*)&_);}

Explanation:

Imagine you have a machine that takes a number you give it. This
machine, using a secret formula and some hidden numbers it already knows,
changes your number in various ways. At the end of these changes, the
machine sees this result as a word made up of letters and symbols. The
machine then shows you only the first part of this word, which is made up of
eight characters.

Reconstructed Program for P7:

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#define MAX_CHARS 8

char predefinedSet[] = "abcdefghijklmnopqrstuvwxyz!@#$%^&*()-_+=";

104

uint32_t secretFormula(uint32_t input) {

// Using some arbitrary hidden numbers and operations

uint32_t hiddenNum1 = 13;

uint32_t hiddenNum2 = 7;

uint32_t result = input * hiddenNum1;

result += hiddenNum2;

result ^= (input << 3);

result -= (hiddenNum1 * hiddenNum2);

return result;

}

void generateWord(uint32_t result, char *output) {

size_t setLength = sizeof(predefinedSet) - 1;

for (int i = 0; i < MAX_CHARS; i++) {

output[i] = predefinedSet[result % setLength];

result /= setLength;

}

output[MAX_CHARS] = ’\0’;

}

int main() {

uint32_t inputNumber;

char outputWord[MAX_CHARS + 1];

printf("Enter a number: ");

scanf("%u", &inputNumber);

uint32_t result = secretFormula(inputNumber);

generateWord(result, outputWord);

printf("The first part of the word is: %s\n", outputWord);

return 0;

}

P8: This program adds two numbers.
include <stdio.h>

define MAin printf("%d\n"

105

define mAIN return 0

define MaiN {static

define mAlN) {if(

define MA1N char*

define MAiN (!!(

define mAiN atoi

define mAln &1<<

define MAlN !=3)

define MAln)&&

define MAIN int

define maln --,

define Maln <<

define MaIn ++

define MalN |=

define MA1n ||

define malN -1

define maIN *

define MaIN =

define ma1N)

define Ma1N (

define Main ;

define mA1n !

define MAIn }

define mA1N ,

MAIN mAIn

Ma1N MAIN

ma1N mA1N

mAiN Ma1N

MA1N ma1N mA1N maIn MaIN malN mA1N ma1n

mA1N maiN Main

MAIN main Ma1N MAIN Ma1n mA1N MA1N maIN

mAin mAlN Ma1n MAlN

mAIN Main maIn MaIn

mA1N Ma1n maln mAin MaIn Main maIn

MaIN mAiN Ma1N Ma1N

Ma1n maln maIN mAin

MaIn ma1N ma1N Main

ma1n MaIN mAiN Ma1N

Ma1N Ma1n maln maIN

mAin MaIn ma1N ma1N

Main mAIn Ma1N mAIn

Ma1N mAIn Ma1N mAIn

Ma1N mAIn Ma1N mAIn Ma1N mAIn

106

Ma1N mAIn Ma1N mAIn Ma1N mAIn

Ma1N mAIn Ma1N mAIn Ma1N mAIn

Ma1N mAIn Ma1N mAIn Ma1N mAIn

Ma1N Ma1n ma1N

ma1N ma1N ma1N

ma1N ma1N ma1N ma1N ma1N ma1N

ma1N ma1N ma1N ma1N

ma1N ma1N Main MAin

mA1N maiN ma1N Main mAIN Main MAIn MAIN

mAIn Ma1N MAIN mAin ma1N

MaiN MAIN main MaIN malN

Main main MaIn Main mAIN

mA1N maiN MalN Ma1N MAiN

maIn mAln main ma1N

MA1n Ma1N MAiN ma1n

mAln main ma1N MA1n

mAin MAln Ma1N

mA1n MAiN ma1n mAln

main MAln mAin ma1N

ma1N ma1N MAln Ma1N mA1n MAiN maIn

mAln main MAln

Ma1N MAiN ma1n

mAln main ma1N MA1n mAin MAln

Ma1N mA1n MAiN

ma1n mAln main

MAln mAin ma1N

ma1N ma1N ma1N

ma1N ma1N Maln

main mA1N MAiN

ma1n mAln main

MAln mAin ma1N

MA1n MAiN maIn

mAln main MAln

Ma1N MAiN ma1n

mAln main ma1N MA1n

mAin MAln

Ma1N mA1n

MAiN ma1n

mAln main

MAln mAin

ma1N ma1N

ma1N ma1N

Main MAIn

107

Explanation:

Imagine you have a box of unique toys. This program is like a child
playing with these toys, trying out different groups of them. The child takes
a few toys out, rearranges them in a specific way, and checks if they fit a
special rule. If they do, the child counts how many toys are in that group
and shares the number. The child does this for every possible grouping of
toys without using the same grouping twice.

Reconstructed Program for P8:

#include <stdio.h>

#define TOTAL_TOYS 5

int toys[TOTAL_TOYS] = {1, 2, 3, 4, 5};

int fitsRule(int combination[], int k) {

int sum = 0;

for (int i = 0; i < k; i++) {

sum += combination[i];

}

return sum % 2 == 0;

}

void generateCombinations(int start, int k, int combination[]) {

if (k == 0) {

if (fitsRule(combination, TOTAL_TOYS - start)) {

printf("Group of size %d fits the rule!\n",\

TOTAL_TOYS - start);

}

return;

}

for (int i = start; i <= TOTAL_TOYS - k; i++) {

combination[TOTAL_TOYS - k] = toys[i];

generateCombinations(i + 1, k - 1, combination);

}

}

int main() {

for (int i = 1; i <= TOTAL_TOYS; i++) {

int combination[TOTAL_TOYS];

generateCombinations(0, i, combination);

}

108

return 0;

}

P9: This program calculates the integer part of square root of the input
number.

#include <stdio.h>

int l;int f(int o,char **O,int I){char c,*D=O[1];

if(o>0){for(l=0;D[l];D[l++]-=10){D[l++]-=120;D[l]-

=110;while(!f(0,O,l))D[l]+=20;putchar((D[l]+1032)/20);}

putchar(10);}else{c=o+(D[I]+82)%10-(I>l/2)*(D[I-l+I]+72)/10-9;

D[I]+=I<0?0:!(o=f(c/10,O,I-1))*((c+999)%10-(D[I]+92)%10);}

return o;}int main(int argc,char **argv)

{return f(argc,argv,0);}

Explanation:

Imagine you have a sequence of special symbols. Each of these sym-
bols has a hidden number attached to it.
1. The program starts by slightly changing the hidden numbers of these
symbols based on a secret rule. 2. For every symbol in the sequence, it does
the following: - It changes the hidden number of the symbol, using a particular
method, until a specific situation occurs. - Once that situation happens, it
transforms the hidden number of this symbol into a letter and shows it to you.
3. After revealing the letters for all the symbols in the sequence, it displays
one more unique character.
Throughout this process, the program pays attention to the order of the sym-
bols. This is crucial because the middle of the sequence plays a special role.
The program uses where a symbol is, compared to the middle, to modify its
hidden number in a different way.
Reconstructed Program for P9:

#include <stdio.h>

#include <stdlib.h>

#define SEQ_LENGTH 7

int hidden_numbers[SEQ_LENGTH] = {3, 5, 7, 11, 13, 17, 19};

void secret_rule(int index) {

if (index % 2 == 0)

hidden_numbers[index]++;

else

hidden_numbers[index]--;

109

}

void modify_until_specific_situation(int index) {

int middle = SEQ_LENGTH / 2;

while (!(hidden_numbers[index] % 2 == 0\

&& hidden_numbers[index] < 10)) {

if (index < middle)

hidden_numbers[index] += 2;

else if (index > middle)

hidden_numbers[index] -= 2;

else

hidden_numbers[index]++;

}

}

char transform_to_letter(int number) {

return ’A’ + number;

}

int main() {

for (int i = 0; i < SEQ_LENGTH; i++) {

secret_rule(i);

}

for (int i = 0; i < SEQ_LENGTH; i++) {

modify_until_specific_situation(i);

printf("%c ", transform_to_letter(hidden_numbers[i]));

}

printf("\nUnique character: #\n");

return 0;

}

P10: A program that plays a two-player tic-tac-toe.

#include <stdio.h>

#define N(a) "%"#a"$hhn"

#define O(a,b) "%10$"#a"d"N(b)

#define U "%10$.*37$d"

#define G(a) "%"#a"$s"

110

#define H(a,b) G(a)G(b)

#define T(a) a a

#define s(a) T(a)T(a)

#define A(a) s(a)T(a)a

#define n(a) A(a)a

#define D(a) n(a)A(a)

#define C(a) D(a)a

#define R C(C(N(12)G(12)))

#define o(a,b,c) C(H(a,a))D(G(a))C(H(b,b)G(b))n(G(b))O(32,c)R

#define SS O(78,55)R "\n\033[2J\n%26$s";

#define E(a,b,c,d) H(a,b)G(c)O(253,11)R G(11)O(255,11)\

R H(11,d)N(d)O(253,35)R

#define S(a,b) O(254,11)H(a,b)N(68)R G(68)O(255,68)\

N(12)H(12,68)G(67)N(67)

char* fmt = O(10,39)N(40)N(41)N(42)N(43)N(66)N(69)N(24)O(22,65)

O(5,70)O(8,44)N(45)N(46)N (47)N(48)N(49)N(50)N(51)N(52)

N(53)O(28,54)O(5, 55) O(2, 56)O(3,57)O(4,58)

O(13, 73)O(4,71)N(72)O (20,59)N(60)N(61)N 62)N (63)

N (64)R RE(1,2, 3,13)E(4, 5,6,13)E(7,8,9 ,13)

E(1,4 ,7,13)E(2,5,8,13)E(3,6,9,13)E(1,5, 9,13)

E(3 ,5,7,13)E(14,15, 16,23) E(17,18,19,23)

E(20, 21, 22,23)E

(14,17,20,23)E(15, 18,21,23)E(16,19, 22 ,23)E(14, 18,

22,23)E(16,18,20, 23)R U O(255 ,38)R G (38)O(255,36)

R H(13,23)O(255, 11)R H(11,36) O(254 ,36) R G(36) O(

255,36)R S(1,14)S(2,15)S(3, 16)S(4, 17)S (5, 18)S(6,

19)S(7,20)S(8, 21)S(9 ,22)H(13,23)H(36, 67)N(11)R

G(11)""O(255, 25)R s(C(G(11)))n (G(11))G(

11)N(54)R C("aa") s(A(G(25)))T (G(25))N (69)R o

(14,1,26)o(15, 2, 27)o (16,3,28)o(17,4, 29)o(18

,5,30)o(19 ,6,31)o(20,7,32)o (21,8,33)o (22 ,9,

34)n(C(U))N(68)R H(36,13)G(23) N(11)R C(D(G(11)))

D(G(11))G(68)N(68)R G(68)O(49,35)R H(13,23)G(67)N(11)R C(H(11,11)G(

11))A(G(11))C(H(36,36)G(36))s(G(36))O(32,58)R C(D(G(36)))A(G(36))SS

#define arg d+6,d+8,d+10,d+12,d+14,d+16,d+18,d+20,d+22,\

0,d+46,d+52,d+48,d+24,d+26,d+28,d+30,d+32,d+34,d+36,d+38,d+40,d+50,

(scanf(d+126,d+4),d+(6-2)+18*(1-d[2]%2)+d[4]*2),d,d+66,d+68,d+70,

d+78,d+80,d+82,d+90,d+\

92,d+94,d+97,d+54,d[2],d+2,d+71,d+77,d+83,d+89,d+95,d+72,d+73,d+74\

,d+75,d+76,d+84,d+85,d+86,d+87,d+88,d+100,d+101,d+96,d+102,d+99,d+\

67,d+69,d+79,d+81,d+91,d+93,d+98,d+103,d+58,d+60,d+98,d+126,d+127,\

111

d+128,d+129

char d[538] = {1,0,10,0,10};

int main() {

while(*d) printf(fmt, arg);

}

Explanation:

Imagine you have a magical typewriter. This typewriter, instead of
typing out stories or letters as you’d expect, types out patterns when given
certain clues.
We start with a set of clues. These clues are just a mix of numbers and
symbols. The magical typewriter has a special way of reading these clues.
It looks at a mix of characters, numbers, and empty spaces, then uses the
clues to fill in those empty spaces and decide what to type out. There are
different patterns hidden within the clues. Depending on which clues are
used, the typewriter might print a star, a dash, or even a sequence of symbols.
Sometimes, the typewriter changes the clues a bit based on some rules. It’s like
changing the recipe slightly to get a slightly different cake. After preparing the
clues, the typewriter types out patterns, one after another, creating a series of
designs on the paper. So, the end result is a paper filled with unique patterns,
all determined by the initial clues and the magical typewriter’s special way of
reading them.

Reconstructed Program for P10:

#include <stdio.h>

#include <string.h>

void encrypt(char clues[]) {

int len = strlen(clues);

char result[len + 1]; // +1 for the null-terminator

result[len] = ’\0’;

for (int i = 0; i < len; i++) {

int value = (int)clues[i];

if (value % 3 == 0) {

result[i] = ’*’;

} else if (value % 5 == 0) {

result[i] = ’-’;

} else {

result[i] = ’+’;

112

}

}

for (int i = 0; i < len; i++) {

int value = (int)clues[i];

if (value % 2 == 0) {

for (int j = 0, k = i; j < k; j++, k--) {

char temp = result[j];

result[j] = result[k];

result[k] = temp;

}

}

}

printf("Encrypted Pattern: %s\n", result);

}

int main() {

char clues[100];

printf("Enter your clues (numbers & symbols): ");

scanf("%s", clues);

encrypt(clues);

return 0;

}

B.4.2 Non-obfuscated Equivalent Programs

P1: This program computes all proper subsets of the set of arguments
passed to it.

#include <stdio.h>

void generate_subsets(char *argv[], int current, int n, \

char *subset[], int subsetSize) {

if (current == n) {

if (subsetSize < n) {

for (int i = 0; i < subsetSize; i++) {

printf("%s ", subset[i]);

}

printf("\n");

}

return;

}

113

generate_subsets(argv, current + 1, n, subset, subsetSize);

subset[subsetSize] = argv[current];

generate_subsets(argv, current + 1, n, subset, subsetSize + 1);

}

int main(int argc, char *argv[]) {

if (argc <= 1) {

printf("Please provide some elements to generate subsets.");

return 1;

}

char *subset[argc-1]; // This will store the current subset

printf("Proper subsets:\n");

generate_subsets(argv+1, 0, argc-1, subset, 0);

return 0;

}

Explanation:

Imagine you have a magical box. You give this box several items, one
after the other. Once done, the box has the power to reveal all possible
groupings of the items you’ve given it, without ever showing every single
item together at once. For instance, if you give the box an apple, a banana,
and a cherry, the box can reveal groupings like:
Only the apple. Only the banana. Only the cherry. The apple with the
banana. The apple with the cherry. The banana with the cherry. But it will
never show you the apple, banana, and cherry all together since that’s exactly
what you gave it to start with.
If you approach the magical box and don’t give it any items, it will kindly tell
you to provide some items so it can show the groupings.

Reconstructed Program for non-obfuscated P1:

#include <stdio.h>

#include <stdbool.h>

#define MAX_ITEMS 10 // Assume a maximum of 10 items for simplicity

int itemCount;

char *items[MAX_ITEMS];

void displayGroupings(int idx, bool included[MAX_ITEMS],

int includedCount) {

if (idx == itemCount) {

if (includedCount > 0 && includedCount < itemCount) {

114

for (int i = 0; i < itemCount; i++) {

if (included[i]) {

printf("%s ", items[i]);

}

}

printf("\n");

}

return;

}

included[idx] = true;

displayGroupings(idx + 1, included, includedCount + 1);

included[idx] = false;

displayGroupings(idx + 1, included, includedCount);

}

int main() {

printf("Enter the number of items (max 10): ");

scanf("%d", &itemCount);

if (itemCount < 1 || itemCount > MAX_ITEMS) {

printf("Invalid number of items.\n");

return 1;

}

// Input each item name

printf("Provide the items:\n");

for (int i = 0; i < itemCount; i++) {

char *item = (char *)malloc(50 * sizeof(char));

scanf("%s", item);

items[i] = item;

}

bool included[MAX_ITEMS] = {false};

displayGroupings(0, included, 0);

// Free the allocated memory

for (int i = 0; i < itemCount; i++) {

free(items[i]);

}

return 0;

115

}

P2: This program calculates the value of π.

#include <stdio.h>

#include <stdlib.h>

long insideCircleCount = 0, totalPoints = 0;

void computePi() {

for (int i = 0; i < 10000; i++) {

double x = (double) rand() / RAND_MAX;

double y = (double) rand() / RAND_MAX;

if (x * x + y * y <= 1) {

insideCircleCount++;

}

totalPoints++;

}

}

int main() {

computePi();

printf("%1.3f\n", 4. * insideCircleCount / totalPoints);

return 0;

}

Explanation:

Imagine you have a square dartboard with a circle perfectly drawn in-
side it. The circle touches all four sides of the square. Now, you decide to
throw darts randomly onto this board 10,000 times. Each time you throw a
dart, you make a note of whether the dart landed inside the circle or outside
it but still inside the square. After all your throws, you count how many
darts landed inside the circle.
Using this information, you can then figure out a special number by taking
the count of darts that landed inside the circle, multiplying it by 4, and then
dividing it by the total number of darts you threw. The machine then displays
this special number up to three decimal places.

116

Reconstructed Program for non-obfuscated P2:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <stdbool.h>

#define TOTAL_DARTS 10000

bool isInsideCircle(double x, double y) {

return (x * x + y * y) <= 1.0;

}

int main() {

int countInsideCircle = 0;

double x, y;

// Seed the random number generator

srand(time(NULL));

for (int i = 0; i < TOTAL_DARTS; i++) {

x = (double)rand() / RAND_MAX * 2.0 - 1.0;

y = (double)rand() / RAND_MAX * 2.0 - 1.0;

if (isInsideCircle(x, y)) {

countInsideCircle++;

}

}

double estimatedPi = 4.0 * countInsideCircle / TOTAL_DARTS;

printf("Estimated value of pi: %.3f\n", estimatedPi);

return 0;

}

P3: This program prints the input string sorted alphabetically.

#include <stdio.h>

#include <string.h>

void sortStringAlphabetically(char str[]) {

int len = strlen(str);

117

char temp;

for (int i = 0; i < len - 1; i++) {

for (int j = 0; j < len - i - 1; j++) {

if (str[j] > str[j + 1]) {

// Swap characters if they are out of order

temp = str[j];

str[j] = str[j + 1];

str[j + 1] = temp;

}

}

}

}

int main() {

char inputString[100];

printf("Enter a string: ");

fgets(inputString, sizeof(inputString), stdin);

// Remove the newline character at the end of the string

if (inputString[strlen(inputString) - 1] == ’\n’) {

inputString[strlen(inputString) - 1] = ’\0’;

}

sortStringAlphabetically(inputString);

printf("Sorted string: %s\n", inputString);

return 0;

}

Explanation:

Imagine you have a collection of letters, and you’d like to rearrange
these letters in a specific order similar to how you would find them in a
dictionary. First, you’re asked to provide this collection of letters. After
entering them, the program will then work on rearranging them. It will
repeatedly compare two adjacent letters and swap them if they are not in the
desired order. This process of comparison and swapping is repeated multiple
times until all the letters are in their proper positions.
Once the letters are rearranged, the program will show you the new arrange-
ment.

Reconstructed Program for non-obfuscated P3:

118

#include <stdio.h>

#include <string.h>

void bubbleSort(char arr[], int n) {

for (int i = 0; i < n-1; i++) {

for (int j = 0; j < n-i-1; j++) {

if (arr[j] > arr[j+1]) {

// swap arr[j] and arr[j+1]

char temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

}

}

}

}

int main() {

char input[100];

printf("Enter the collection of letters: ");

scanf("%s", input);

int length = strlen(input);

bubbleSort(input, length);

printf("Sorted letters in dictionary order: %s\n", input);

return 0;

}

P4: This program prints the first 100 prime numbers.

#include <stdio.h>

#include <stdbool.h>

bool isPrime(int n) {

if (n <= 1) {

return false;

}

for (int i = 2; i * i <= n; i++) {

if (n % i == 0) {

return false;

}

119

}

return true;

}

int main() {

int count = 0; // Count of prime numbers found

int number = 2; // Starting number for the search

printf("The first 100 prime numbers are:\n");

while (count < 100) {

if (isPrime(number)) {

printf("%d ", number);

count++;

}

number++;

}

printf("\n");

return 0;

}

Explanation:

Imagine you have a machine that is searching for very special num-
bers. These numbers are unique because they cannot be divided evenly by
any number other than 1 and themselves.
When you start the machine, it begins its search with the first whole number
after 1. It checks to see if this number is special. If it is, the machine displays
it. The machine then continues to the next number and does the same check.
This machine is persistent and continues its search, showing you each special
number it finds. It will stop after it has shown you a hundred of these special
numbers.

Reconstructed Program for non-obfuscated P4:

#include <stdio.h>

#include <stdbool.h>

bool isPrime(int n) {

if (n <= 1) return false;

for (int i = 2; i * i <= n; i++) {

if (n % i == 0) return false;

}

120

return true;

}

int main() {

int count = 0;

int number = 2;

while (count < 100) {

if (isPrime(number)) {

printf("%d ", number);

count++;

}

number++;

}

printf("\n");

return 0;

}

P5: This program computes the factorial of a number.

#include<stdio.h>

int main()

{

int i,fact=1,number;

printf("Enter a number: ");

scanf("%d",&number);

for(i=1;i<=number;i++){

fact=fact*i;

}

printf("Factorial of %d is: %d",number,fact);

return 0;

}

Explanation:

Imagine a machine that helps you find the product of a series of counting
numbers up to a given number. When you approach this machine, it asks you
to tell it a specific number. Once you provide the number, the machine starts
multiplying all the counting numbers from 1 up to the number you provided.
For example, if you tell the machine the number 4, it will multiply 1 by 2,
then multiply the result by 3, and then multiply that result by 4.
After finishing the calculations, the machine displays a message that tells you

121

the result of multiplying all those counting numbers up to the number you
provided.

Reconstructed Program for non-obfuscated P5:

#include <stdio.h>

unsigned long long factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return n * factorial(n - 1);

}

}

int main() {

int number;

printf("Enter a number: ");

scanf("%d", &number);

if (number < 0) {

printf("Please enter a non-negative number.\n");

return 1;

}

unsigned long long result = factorial(number);

printf("Result", result);

return 0;

}

P6: This program computes a desired number of digits of e in any desired
base.

#include <stdio.h>

#define MAX_DIGITS 1000

int result[MAX_DIGITS];

int temp[MAX_DIGITS];

int factorial[MAX_DIGITS];

void add(int *a, int *b) {

for (int i = 0; i < MAX_DIGITS; i++) {

a[i] += b[i];

122

if (a[i] >= 10) {

a[i+1] += a[i] / 10;

a[i] %= 10;

}

}

}

void computeE(int digits) {

result[0] = 1;

factorial[0] = 1;

for (int i = 1; i <= digits; i++) {

for (int j = 0; j < MAX_DIGITS; j++) {

temp[j] = factorial[j] = factorial[j] * i;

}

for (int j = 0; j < MAX_DIGITS; j++) {

if (temp[j] >= 10) {

temp[j+1] += temp[j] / 10;

temp[j] %= 10;

}

}

add(result, temp);

}

}

void convertAndPrint(int base) {

int output[MAX_DIGITS] = {0};

int idx = 0;

while (idx < MAX_DIGITS) {

int remainder = 0;

for (int i = MAX_DIGITS - 1; i >= 0; i--) {

int temp = result[i] + remainder * 10;

result[i] = temp / base;

remainder = temp % base;

}

output[idx++] = remainder;

int sum = 0;

for (int i = 0; i < MAX_DIGITS; i++) {

sum += result[i];

}

if (sum == 0) break;

123

}

for (int i = idx - 1; i >= 0; i--) {

printf("%d ", output[i]);

}

printf("\n");

}

int main() {

int desired_digits, base;

printf("Enter the desired number of digits: ");

scanf("%d", &desired_digits);

printf("Enter the desired base (2 to 10): ");

scanf("%d", &base);

if (base < 2 || base > 10) {

printf("Base out of range.\n");

return 1;

}

computeE(desired_digits);

convertAndPrint(base);

return 0;

}

Explanation:

Imagine a machine that can tell you about a special number, much
like pi, which starts 2.71828... and goes on forever. The unique thing about
this machine is that it can show this special number using different number
systems, not just the one we usually use with numbers 0 to 9.
When you approach the machine, it asks you two things: 1. How many parts
of this special number do you want to know? You tell it a number. 2. In
which number system you’d like to see this special number? For this, you can
choose any system between the one that uses just 0 and 1 and the usual one
(that uses numbers 0 to 9).
Once you provide this information, the machine works its magic. It calculates
the value of this special number up to the number of parts you specified, in
the number system you chose. Then, it displays that special value for you.
However, if you choose a number system outside the allowed range, the ma-
chine will tell you that the choice is not acceptable and stop.

Reconstructed Program for non-obfuscated P6:

#include <stdio.h>

124

#include <stdlib.h>

#include <string.h>

#include <math.h>

double calculateE(int parts) {

double e = 1.0;

double factorial = 1.0;

for (int i = 1; i < parts; i++) {

factorial *= i;

e += 1.0 / factorial;

}

return e;

}

void displayInBase(double number, int base, int parts) {

printf("2."); // Display the integer part

for (int i = 0; i < parts; i++) {

number *= base;

int digit = (int) number;

printf("%d", digit);

number -= digit;

}

printf("\n");

}

int main() {

int parts, base;

printf("How many parts of e do you want to know? ");

scanf("%d", &parts);

printf("In which base system (between 2 and 9 inclusive)? ");

scanf("%d", &base);

if (base < 2 || base > 9) {

printf("The chosen number system is not acceptable.\n");

return 1;

}

double e = calculateE(parts + 5);

displayInBase(e - 2.0, base, parts);

return 0;

}

125

P7: This program converts byte to binary.

#include <stdio.h>

void byteToBinary(unsigned char byte) {

for (int i = 7; i >= 0; i--) {

printf("%d", (byte >> i) & 1);

}

printf("\n");

}

int main() {

unsigned char inputByte;

printf("Enter a byte value (0-255): ");

scanf("%hhu", &inputByte);

printf("Binary representation: ");

byteToBinary(inputByte);

return 0;

}

Explanation:

Imagine you have a line of 8 light bulbs, all turned off. These light
bulbs can either be on (showing a light) or off (no light). Now, imagine you
have a number between 0 and 255. Based on this number, some of these
light bulbs will turn on, while others will remain off. This program is like a
guidebook. First, it asks you for that number. Once you give the number,
the guidebook will show you a line indicating which light bulbs should be
turned on and which should remain off, using a sequence of 1s (for the bulbs
that are on) and 0s (for the bulbs that are off). By looking at this sequence,
you will be able to recreate the exact arrangement of lit and unlit light bulbs
for the number you provided.

Reconstructed Program for non-obfuscated P7:

#include <stdio.h>

int main() {

int number;

printf("Enter a number between 0 and 255: ");

scanf("%d", &number);

if (number < 0 || number > 255) {

printf("Invalid number.\

Please enter a number between 0 and 255.\n");

return 1;

}

126

printf("Light bulb sequence: ");

for (int i = 7; i >= 0; i--) {

if ((number & (1 << i)) != 0) {

printf("1");

} else {

printf("0");

}

}

printf("\n");

return 0;

}

P8: This program adds two numbers.

#include <stdio.h>

int main() {

int num1, num2, sum;

printf("Enter the first number: ");

scanf("%d", &num1);

printf("Enter the second number: ");

scanf("%d", &num2);

sum = num1 + num2;

printf("The sum of %d and %d is %d.\n", num1, num2, sum);

return 0;

}

Explanation:

Imagine you have a digital assistant with a screen. When you turn it
on, it first asks you to type in a number. After you’ve provided the first
number, it asks you for a second one. Once you’ve entered both numbers,
the assistant does a quick mental calculation and shows you the result of
adding these two numbers together. It displays a message like ”The sum of
the first number and the second number is the result.” With this message,
you immediately know how much the two numbers you provided add up to.

127

Reconstructed Program for non-obfuscated P8:

#include <stdio.h>

int main() {

int firstNumber, secondNumber, sum;

printf("Enter the first number: ");

scanf("%d", &firstNumber);

printf("Enter the second number: ");

scanf("%d", &secondNumber);

sum = firstNumber + secondNumber;

printf("The sum of the first number (%d) and \

the second number (%d)is %d.\n",\

firstNumber, secondNumber, sum);

return 0;

}

P9: This program calculates the integer part of square root of the input
number.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

int main() {

char number[100]; // buffer for input number

printf("Enter a number with even number of digits: ");

scanf("%s", number);

int len = strlen(number);

if (len % 2 != 0) {

printf("The number must have an even number of digits.\n");

return 1;

}

double value = atof(number);

double sqrtValue = sqrt(value);

printf("Square root: %d\n", (int)sqrtValue);

return 0;

128

}

Explanation:

Imagine a digital tool that helps you find the square root of numbers.
When you start it, it asks you to type in a special kind of number: one that
has an even count of digits. For example, if you have a number like ”1234”,
it’s okay because it has 4 digits. But a number like ”123” won’t work since
it has 3 digits. After you type in this number, the tool checks to make sure
it has the right amount of digits. If the number you typed doesn’t follow the
rule, the tool will tell you that you’ve made a mistake and need to type in a
number with an even count of digits.
However, if the number you typed is correct, the tool will quickly do some
calculations and then show you the square root of that number. But, it only
shows you the whole part of the square root, without any decimals.

Reconstructed Program for non-obfuscated P9:

#include <stdio.h>

#include <math.h>

#include <string.h>

int main() {

char numberString[100];

int isValid = 1;

printf("Enter a number with an even count of digits: ");

scanf("%s", numberString);

int length = strlen(numberString);

if (length % 2 != 0) {

printf("The number you entered has an odd count of digits.\

Please enter a number with an even count of digits.\n");

isValid = 0;

}

if (isValid) {

double num = atof(numberString);

int squareRootWholePart = (int)sqrt(num);

printf("The whole part of the square root\

of %s is %d.\n", numberString, squareRootWholePart);

}

return 0;

}

129

P10: A program that plays a two-player tic-tac-toe.

#include <stdio.h>

#define SIZE 3

// Function prototypes

void displayBoard(char board[SIZE][SIZE]);

int checkWinner(char board[SIZE][SIZE]);

void getPlayerMove(char board[SIZE][SIZE], char player);

int main() {

char board[SIZE][SIZE] = {{’ ’, ’ ’, ’ ’},\

{’ ’, ’ ’, ’ ’}, {’ ’, ’ ’, ’ ’}};

int moves = 0;

char currentPlayer = ’X’;

displayBoard(board);

while (moves < SIZE * SIZE) {

getPlayerMove(board, currentPlayer);

displayBoard(board);

if (checkWinner(board)) {

printf("Player %c wins!\n", currentPlayer);

return 0;

}

currentPlayer = (currentPlayer == ’X’) ? ’O’ : ’X’;

moves++;

}

printf("It’s a draw!\n");

return 0;

}

void displayBoard(char board[SIZE][SIZE]) {

for (int i = 0; i < SIZE; i++) {

for (int j = 0; j < SIZE; j++) {

printf("%c", board[i][j]);

if (j < SIZE - 1) printf(" | ");

}

printf("\n");

130

if (i < SIZE - 1) printf("---------\n");

}

}

void getPlayerMove(char board[SIZE][SIZE], char player) {

int x, y;

do {

printf("Player %c, enter your move \

(row [0-2] and column [0-2]): ", player);

scanf("%d%d", &x, &y);

} while (x < 0 || x >= SIZE || \

y < 0 || y >= SIZE || board[x][y] != ’ ’);

board[x][y] = player;

}

int checkWinner(char board[SIZE][SIZE]) {

// Check rows, columns and diagonals

for (int i = 0; i < SIZE; i++) {

if (board[i][0] != ’ ’ && board[i][0] == board[i][1] \

&& board[i][1] == board[i][2]) return 1;

if (board[0][i] != ’ ’ && board[0][i] == board[1][i] \

&& board[1][i] == board[2][i]) return 1;

}

if (board[0][0] != ’ ’ && board[0][0] == board[1][1] \

&& board[1][1] == board[2][2]) return 1;

if (board[0][2] != ’ ’ && board[0][2] == board[1][1] \

&& board[1][1] == board[2][0]) return 1;

return 0;

}

Explanation:

Imagine a classic game where two players take turns marking spaces
on a 3x3 grid. One player uses an ’X’ and the other uses an ’O’. The goal of
the game is to mark three spaces in a row, either horizontally, vertically, or
diagonally before the opponent does.
When the game starts, the grid is empty. The game tool displays the grid to
show both players the current state of the game. Each space in the grid can
be identified using two numbers: the row number and the column number,
both ranging from 0 to 2.
One player goes first, marking a space on the grid with their symbol. The

131

game tool then updates the grid to show this mark. After each turn, the tool
checks if there are any three matching symbols in a row. If there is a winning
line, it announces which player has won.
If all the spaces on the grid are marked, and no player has three of their
symbols in a row, then the game is declared a draw.
The game continues by allowing players to take turns marking spaces until
someone wins or all spaces are marked, resulting in a draw.

Reconstructed Program for non-obfuscated P10:

#include <stdio.h>

#include <stdbool.h>

char board[3][3] = {{’ ’, ’ ’, ’ ’},

{’ ’, ’ ’, ’ ’},

{’ ’, ’ ’, ’ ’}};

bool checkWin(char player) {

for (int i = 0; i < 3; i++) {

if (board[i][0] == player && board[i][1] == player &&\

board[i][2] == player) return true;

if (board[0][i] == player && board[1][i] == player &&\

board[2][i] == player) return true;

}

if (board[0][0] == player && board[1][1] == player &&\

board[2][2] == player) return true;

if (board[0][2] == player && board[1][1] == player &&\

board[2][0] == player) return true;

return false;

}

bool checkDraw() {

for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {

if (board[i][j] == ’ ’) return false;

}

}

return true;

}

void displayBoard() {

for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {

132

printf("%c", board[i][j]);

if (j < 2) printf(" | ");

}

printf("\n");

if (i < 2) printf("---------\n");

}

}

int main() {

char currentPlayer = ’X’;

int row, col;

while (true) {

displayBoard();

printf("Player %c, enter row (0-2)\

and column (0-2): ", currentPlayer);

scanf("%d %d", &row, &col);

if (row >= 0 && row < 3 && col >= 0 &&\

col < 3 && board[row][col] == ’ ’) {

board[row][col] = currentPlayer;

if (checkWin(currentPlayer)) {

displayBoard();

printf("Player %c wins!\n", currentPlayer);

break;

}

if (checkDraw()) {

displayBoard();

printf("It’s a draw!\n");

break;

}

currentPlayer = (currentPlayer == ’X’) ? ’O’ : ’X’;

} else {

printf("Invalid move, try again.\n");

}

}

return 0;

}

133

B.5 Useless code snippets added for Obfusca-

tion

B.5.1 Synthesized Set

B.5.1.1 Level 1

if (u.canHarvest()) then {

for (unit u){

if (u.isBuilder()) then{

}

else{

u.harvest(50);

}

}

}

for (Unit u){

if (u.is_Type(Worker)) then{

u.train(Heavy, Enemydir,10);

if (u.canAttack()) then {

u.train(Ranged,Up,16)

}

}

}

B.5.1.2 Level 2

if (u.canHarvest()) then {

for (unit u){

u.train(Heavy,Left, 9)

if (u.isBuilder()) then{

}

else{

u.harvest(50);

}

}

}

for (Unit u){

if (u.is_Type(Worker)) then{

134

u.train(Heavy, Enemydir,10);

if (u.canAttack()) then {

u.train(Ranged,Up,16)

if (u.canHarvest()) then {

u.train(Worker,Right, 9)

if (u.isBuilder()) then{

if (u.is_Type(Barracks)) then{

u.harvest(10);

u.train(Workers, Right, 2);

}

else{

u.train(Light,Down,5)

}

}

}

}

}

else{

u.harvest(1);

}

for(Unit u){

u.idle()

}

}

for (Unit u){

if(u.hasLessNumberOfUnits(Heavy, 2)){

if (u.isBuilder()) then{

u.train(Light, Farthest, 1);

}

else{

u.harvest(3);

}

}

if (hasNumberOfUnits(Base, 3)){

if (u.is_Type(Barracks)) then{

u.build(Base,EnemyDir,1);

u.moveToUnit(Ally, MostHealthy);

}

else{

u.train(Heavy, Random,10);

}

135

}

}

B.5.2 Human-crafted Set

B.5.2.1 Level 1

if (u.getType()==barracksType && u.getType().canHarvest &&\

p.getResources() <= heavyType.cost){

train(u, heavyType);

buildIfNotAlreadyBuilding(u,baseType,u.getX(),u.getY(),\

reservedPositions,p,pgs);

}

int nlight = 0;

for (Unit u4 : pgs.getUnits()) {

if (u4.getType() == lightType && u4.getPlayer() != p.getID()) {

nlight++;

}

}

if (nlight < 2 && u.getType().canMove) {

if (u.getType().canHarvest){

train(u, lightType);

}

}

Unit closestBase = null;

Unit closestResource = null;

int closestDistance = 0;

for (Unit u3 : pgs.getUnits()) {

if (u3.getType().isResource) {

int d = Math.abs(u3.getX() - u.getX()) +\

Math.abs(u3.getY() - u.getY());

if (closestResource == null || d < closestDistance) {

closestResource = u3;

closestDistance = d;

}

}

}

closestDistance = 0;

for (Unit u4 : pgs.getUnits()) {

if (u4.getType().isStockpile && u4.getPlayer()==p.getID()) {

int d = Math.abs(u4.getX() - u.getX()) +\

Math.abs(u4.getY() - u.getY());

if (closestBase == null || d < closestDistance) {

136

closestBase = u4;

closestDistance = d;

}

}

}

if (closestResource != null && closestBase != null &&\

u.getType().canHarvest) {

harvest(u, closestResource, closestBase);

}

if (u.getType().canMove == true &&\

p.getResources() >= workerType.cost) {

buildIfNotAlreadyBuilding(u,baseType,u.getX(),u.getY(),\

reservedPositions,p,pgs);

train(u, heavyType);

}

B.5.2.2 Level 2

Unit TargetEnemy = null;

int Distance = 0;

int Mybase = 0;

int Mybarrack = 0;

for (Unit u6 : pgs.getUnits()) {

if (u6.getPlayer() >= 0 && u6.getPlayer() != p.getID()) {

int d = Math.abs(u6.getX() - u.getX()) +\

Math.abs(u6.getY() - u.getY());

if (TargetEnemy == null || d > Distance) {

TargetEnemy = u6;

Distance = d;

}

}

else if(u6.getPlayer()==p.getID() &&\

u6.getType() == baseType){

Mybase = Math.abs(u6.getX() - u.getX()) +\

Math.abs(u6.getY() - u.getY());

}

else if(u6.getPlayer()==p.getID() &&\

u6.getType() == barracksType){

Mybarrack = Math.abs(u6.getX() - u.getX()) +\

Math.abs(u6.getY() - u.getY());

}

}

if (u.getType() == workerType && TargetEnemy!=null &&\

137

(Distance < pgs.getHeight()/2 || Mybase < pgs.getHeight()/2)) {

attack(u, TargetEnemy);

}

else if(u.getType() == workerType &&\

!(Distance < pgs.getHeight()/2 || Mybase < pgs.getHeight()/2)){

buildIfNotAlreadyBuilding(u, barracksType, u.getX(),u.getY(),\

reservedPositions,p,pgs);

}

else if(u.getType() == workerType &&\

!(Distance < pgs.getHeight()/2 || Mybase < pgs.getHeight()/2)){

buildIfNotAlreadyBuilding(u, baseType, u.getX(),u.getY(),\

reservedPositions,p,pgs);

}

for (Unit u5 : pgs.getUnits()) {

if (u5.getType() == baseType || u5.getType() == barracksType){

if (u5.getPlayer() == p.getID()){

if (TargetEnemy!=null && u.getType() == workerType &&(\

Distance>pgs.getHeight()/2 || Mybase>pgs.getHeight()/2))

{

attack(u5, TargetEnemy);

if (u5.getType()==workerType){

train(u, lightType);

}

}

}

}

}

if (u.getType()==barracksType && u.getType().canHarvest &&\

p.getResources() <= heavyType.cost){

train(u, heavyType);

buildIfNotAlreadyBuilding(u,baseType,u.getX(),u.getY(),\

reservedPositions,p,pgs);

}

int nlight = 0;

for (Unit u4 : pgs.getUnits()) {

if (u4.getType() == lightType && u4.getPlayer() != p.getID()) {

nlight++;

}

}

if (nlight < 2 && u.getType().canMove) {

if (u.getType().canHarvest){

train(u, lightType);

}

138

}

Unit closestBase = null;

Unit closestResource = null;

int closestDistance = 0;

for (Unit u3 : pgs.getUnits()) {

if (u3.getType().isResource) {

int d = Math.abs(u3.getX() - u.getX()) +\

Math.abs(u3.getY() - u.getY());

if (closestResource == null || d < closestDistance) {

closestResource = u3;

closestDistance = d;

}

}

}

closestDistance = 0;

for (Unit u4 : pgs.getUnits()) {

if (u4.getType().isStockpile && u4.getPlayer()==p.getID()) {

int d = Math.abs(u4.getX() - u.getX()) +\

Math.abs(u4.getY() - u.getY());

if (closestBase == null || d < closestDistance) {

closestBase = u4;

closestDistance = d;

}

}

}

if (closestResource != null && closestBase != null &&\

u.getType().canHarvest) {

harvest(u, closestResource, closestBase);

}

if (u.getType().canMove == true &&\

p.getResources() >= workerType.cost) {

buildIfNotAlreadyBuilding(u,baseType,u.getX(),u.getY(),\

reservedPositions,p,pgs);

train(u, heavyType);

}

B.5.2.3 Justification

The main reason we need more lines to break down programs in the human-

crafted set compared to the synthesized set, is due to the language they are

written in. The human-crafted set is written in Java, a language that the LLM

knows very well. This makes it difficult to confuse or mislead the LLM with

139

Java. We observed that GPT-4 is particularly good at reconstructing Java

code from explanations.The process of explaining is also more straightforward

with Java, as GPT-4 finds it easier to understand and translate Java into ex-

planations compared to a newly defined language. Consequently, we required

a greater number of lines to sufficiently obfuscate the programs.

B.6 Set of MicroRTS Programs

B.6.1 Synthesized Set

P1:

for(Unit u){

for(Unit u){

u.harvest(2)

u.idle()

}

u.train(Light,Up,25)

u.train(Worker,Right,4)

u.attack(Closest)

for(Unit u){

u.train(Heavy,Up,3)

}

for(Unit u){

u.build(Barracks,Up,1)

}

}

Explanation:

To get started, the very first action this strategy takes with topmost priority
involves sending each of our units to gather resources. Specifically, every
individual unit is assigned to harvest a maximum of two resources. After
that, these units are instructed to remain idle. The idle instruction is crucial
because it ensures that while these units are not engaged in harvesting, they
still remain vigilant, ready to attack any opponent unit that comes within
their attack range.
After the initial phase of resource harvesting, the next priority of this strategy
is to train new units. Initially, we aim to train up to 25 Light units in the
upward direction from their respective training structures. Following this, we
have a target to train up to 4 Worker units who would be placed on the right
side of their training structure.

140

The next action, which comes after the training of Light and Worker units,
is attacking the opponent units. Here, the strategy is to attack the closest
opponent unit. Hence, if there are several opponent units within the attack
range, the closest one will be targeted first.
Subsequently, we have two priorities that occur concurrently. On one hand,
we aim to train a limited number of Heavy units (up to 3 in number). On the
other hand, we look to construct Barracks with a maximum limit of 1 Bar-
racks. The placement for both these actions is towards the upward direction
from the current position.
In summary, the overall goal of this strategy is to maintain an equilibrium
between resource harvesting, unit training, and combating the enemy. By
prioritizing resource gathering initially, we ensure that there are enough
resources available for training new units and building structures. Following
that, we put a focus on training both combatant (Light and Heavy) and
resource gathering (Worker) units, thereby maintaining the balance in our
forces. Finally, the strategy underscores the importance of continuous attacks
on the closest enemy while simultaneously enhancing our forces through the
construction of Barracks and training of Heavy units.

Best Reconstructed Program for P1:

for(Unit u) {

u.harvest(10);

u.idle();

}

for(Unit u) {

u.train(Light, Up, 25);

}

for(Unit u) {

u.train(Worker, Right, 4);

u.attack(Closest);

}

for(Unit u) {

u.train(Heavy, Up, 3);

}

for(Unit u) {

u.build(Barracks, Up, 1);

}

P2:

for(Unit u){

u.build(Barracks,EnemyDir,7)

141

u.harvest(9)

for(Unit u){

u.train(Heavy,Left,20)

}

u.train(Worker,Right,3)

u.attack(Weakest)

for(Unit u){

u.idle()

}

u.moveToUnit(Ally,LessHealthy)

for(Unit u){

u.train(Light,Left,2)

}

}

Explanation:

The provided strategy for playing MicroRTS takes a structured approach,
prioritizing certain actions over others in an attempt to gain an advantage.
It is important to understand the priority of actions to follow and execute
this strategy properly. The initial and highest priority of this strategy is to
establish a strong defense by building Barracks towards the enemy’s direction.
The aim here is to construct 7 Barracks, which would serve as the primary base
for training combat units. At the same time, the strategy also assigns priority
to resource collection, instructing workers to harvest resources, targeting 9
resource units.
The next action with high priority is to train Heavy units from the units
within the Barracks. These units are positioned on the left of the Barracks.
The training aims to produce up to 20 Heavy units which would serve as the
main force in our offensive and defensive operations.
Subsequently, the strategy focuses on replenishing and expanding the work-
force. The Barracks are instructed to train more Workers on the right side,
targeting a total of 3 additional Workers. These additional workers would
serve to increase the efficiency of resource collection and building processes.
With the fortifications and army in place, the strategy now shifts towards
offense. The units are directed to attack the weakest of the opponent’s units.
This action is aimed at diminishing the opponent’s strength and defenses by
targeting their vulnerable units first.
After the attack command, the next action with priority is to direct units to
remain idle. This action ensures that the units conserve their energy and are
prepared for any sudden attacks from the opponent.
The strategy then focuses on ensuring the survival of ally units. Units are
instructed to move towards the least healthy ally unit. This action might

142

help in providing reinforcement or drawing away enemy units from the weaker
allies.
The final action in this strategy is to train Light units. Light units are quicker
to train and would serve as a rapid response force. The strategy aims to train
2 Light units on the left side of the Barracks.
In summary, the overall goal of this strategy is to build a strong defense by
quickly constructing Barracks and training Heavy units, maintain a steady
flow of resources, selectively target vulnerable enemy units while ensuring
the survival of ally units, and lastly, training a rapid response force of Light
units.

Best Reconstructed Program for P2:

for(Unit u){

for(Unit u){

u.build(Barracks, EnemyDir, 7)

u.harvest(9)

u.train(Heavy, Left, 20)

}

for(Unit u){

u.train(Worker, Right, 3)

u.attack(Weakest)

u.idle()

u.moveToUnit(Ally, LessHealthy)

u.train(Light, Left, 2)

}

}

P3:

for(Unit u){

for(Unit u){

u.idle()

}

u.moveToUnit(Enemy,Closest)

u.train(Worker,EnemyDir,2)

for(Unit u){

u.train(Heavy,EnemyDir,100)

u.train(Light,Left,8)

u.attack(Weakest)

if(u.OpponentHasUnitInPlayerRange()) then {

u.moveToUnit(Enemy,LessHealthy)

}

143

for(Unit u){

u.build(Barracks,EnemyDir,20)

u.harvest(6)

u.attack(LessHealthy)

u.moveToUnit(Ally,Weakest)

}

}

}

Explanation:

The strategic gameplay outlined in program P prioritizes actions to maximize
efficiency and tactical advantage in the MicroRTS game. The program begins
with the top priority action, instructing every unit in the player’s control to
stay idle. This implies that unless a unit is immediately threatened, it should
initially hold its position and avoid proactive movement or combat. After
this first instruction, the player’s units are instructed to relocate towards the
nearest enemy unit, in order to prepare for an impending confrontation. This
directive stands as the second priority in the strategy.
The third priority is to utilize the player’s bases to train two worker units in
the direction of the enemy. This is intended to increase the player’s resource
collection capability while also adding a mild defensive presence against in-
coming enemy units.
Next, for every unit, it prioritizes training a large army of heavy combat units
directed towards the enemy. If this is not feasible (e.g., the unit in question
is not a barracks), it then looks to train light combat units to the left. After
training these units, the next action prioritized is for them to target and
attack the weakest enemy units.
Within this framework, if the player’s unit detects an enemy unit within its
attack range, the unit will change its course and move towards the less healthy
enemy unit. This dynamic movement decision is prioritized after the initial
set of actions.
Further, for every unit, there is a subsequent set of priority actions. Here, the
units first build up to 20 barracks towards the enemy’s direction, if possible.
Then, it prioritizes the harvest of resources by sending out six worker units.
After resource collection, units then attack the less healthy enemy unit and
finally, if no other actions are feasible, the units move towards the weakest
ally unit for support or defense.
The overarching goal of this strategy is to bolster the player’s resources and
army strength before engaging in direct confrontation with the enemy. By
keeping units idle initially, then focusing on resource collection and building
a large army, the strategy aims to avoid premature engagement and instead
build up a strong base and military power. Lastly, with a substantial force,

144

the strategy then aims to engage the enemy by targeting their weakest units
first, utilizing the player’s strength in numbers and resource advantage.

Best Reconstructed Program for P3:

for(Unit u) {

u.idle();

u.moveToUnit(Enemy, Closest);

u.train(Worker, EnemyDir, 2);

u.train(Heavy, EnemyDir, 50);

u.train(Light, Left, 50);

u.attack(Weakest);

if(u.opponentHasUnitInPlayerRange()) {

u.moveToUnit(Enemy, LessHealthy);

}

for(Unit u) {

u.build(Barracks, EnemyDir, 20);

u.harvest(6);

u.attack(LessHealthy);

if(u.canAttack()) {

u.moveToUnit(Ally, Weakest);

}

}

}

P4:

for(Unit u){

if(u.HasUnitInOpponentRange()) then {

for(Unit u){

u.moveToUnit(Enemy,Strongest)

}

}

u.harvest(2)

for(Unit u){

for(Unit u){

u.train(Light,Up,1)

}

u.train(Ranged,Left,50)

u.idle()

}

u.build(Barracks,Down,20)

u.train(Worker,EnemyDir,20)

145

u.attack(Closest)

}

Explanation:

The strategy here revolves around specific actions prioritized to execute in
order, facilitating effective gameplay in MicroRTS. To start, the utmost pri-
ority is given to the condition where our units are within an opponent’s attack
range. In this scenario, all units are commanded to move towards the enemy’s
strongest unit. This move helps to concentrate the attack on the enemy’s most
powerful unit, potentially destabilizing their strategies.
Subsequently, the strategy allows a couple of units to harvest resources. This
step ensures we have a continuous supply of resources necessary for building
structures and training units.
Next in the line of action priority, the strategy instructs all units to train
a single Light unit upwards. This step is followed by training 50 Ranged
units towards the left and then keeping them idle until an opponent comes
within attack range. The idea here is to amass a significant number of Ranged
units to bolster defenses, while the Light unit acts as a quick response unit to
potential threats.
In the following step, the strategy commands to build up to 20 Barracks
downwards from our current position. Barracks serve as the crucial point
for training combat units. Hence, building Barracks broadens our ability
to train more combat units, therefore strengthening our defenses and attack
capabilities.
Subsequent to building Barracks, the strategy focuses on strengthening our
workforce by training up to 20 Worker units towards the enemy’s direction.
The workers play a pivotal role in collecting resources and building structures,
thus maintaining a strong workforce is vital to support our ongoing efforts in
the game.
Finally, with the least priority, all units are directed to attack the closest
opponent. This action ensures we maintain some pressure on the opponent
even as we build up our forces and defenses.
The overall goal of this strategy is to establish strong defensive structures,
maintain a robust workforce for resource collection and structure building,
while continually training combat units for offensive and defensive purposes.
All this is done while keeping an eye on the opponent’s actions, enabling us
to react swiftly to any potential threats.

Best Reconstructed Program for P4:

for(Unit u) {

if(u.hasUnitInOpponentRange()) {

146

u.moveToUnit(Enemy, Strongest)

}

for(Unit u) {

u.harvest(2)

}

for(Unit u) {

u.train(Light, Up, 1)

}

for(Unit u) {

u.train(Ranged, Left, 50)

u.idle()

}

for(Unit u) {

u.build(Barracks, Down, 20)

}

for(Unit u) {

u.train(Worker, EnemyDir, 20)

}

for(Unit u) {

u.attack(Closest)

}

}

P5:

for(Unit u){

for(Unit u){

u.train(Worker,EnemyDir,8)

u.idle()

for(Unit u){

u.train(Light,Left,20)

}

}

for(Unit u){

u.harvest(2)

}

u.build(Barracks,Down,6)

147

u.attack(Closest)

u.train(Worker,Down,20)

}

Explanation:

The strategy provided is meant to be aggressive and prioritizes building a
robust workforce first to support rapid unit production and resource gathering.
The first and most crucial aspect of the strategy is to consistently and actively
train workers and assign them to idle tasks. The idle state commands the
workers to stay put and only attack if an enemy unit comes within their
attack range. The strategy primarily focuses on training up to eight workers
in the direction of the enemy. This action has the highest priority in our
gameplay.
Simultaneously, there is also an emphasis on training up to 20 Light combat
units positioned towards the left of the base or barracks. This task is of
secondary importance in this strategy. Light units are typically fast and can
attack well but may not be as durable. Hence, they can provide a good
offensive line against the enemy.
Next, the strategy focuses on gathering resources by having units harvest
them. Up to two units are chosen for this task at any given time. Although
this action isn’t the highest priority, it is crucial to ensure a steady inflow of
resources for training more units and building more structures.
After the workforce and resources have been established, the next priority is
to build up to six Barracks downwards from the base. Barracks are essential
as they are the structures that train combat units, which are vital for both
defense and offense in the game.
At the same time, the strategy dictates that our units should engage in battle
with the closest enemy unit. This approach can ensure that any nearby threats
are dealt with quickly.
The final action of this strategy is to train an additional set of up to 20 workers
in the downward direction. While this action has the lowest priority, it ensures
that we have enough workers in the late game to maintain production and
resource gathering capabilities.
In summary, the overall goal of this strategy is to establish a robust workforce,
ensuring a steady flow of resources, and maintaining a steady line of defense
and offense against the enemy. The focus is on aggressive expansion and
keeping pressure on the enemy while maintaining a robust economy.

Best Reconstructed Program for P5:

for(Unit u) {

u.train(Worker, EnemyDir, 8)

148

u.train(Light, Left, 20)

u.harvest(2)

}

for(Unit u) {

u.build(Barracks, Down, 6)

u.attack(Closest)

}

for(Unit u) {

u.train(Worker, Down, 20)

}

P6:

for(Unit u){

for(Unit u){

u.idle()

u.harvest(2)

for(Unit u){

u.train(Light,Up,25)

}

for(Unit u){

u.train(Worker,Up,2)

}

u.build(Barracks,Up,7)

}

u.attack(Closest)

u.moveToUnit(Enemy,MostHealthy)

u.train(Worker,EnemyDir,9)

}

Explanation:

In the context of the MicroRTS game, the strategy implied by this program
prioritizes several actions in a specific order to achieve victory over the op-
ponent. At the very outset, the highest priority is given to maintaining a
defensive stance and gathering resources. So, the first thing all units, includ-
ing Workers, Combat units (Light, Heavy, Ranged) will do is adopt a passive
stance and wait for an enemy to approach them. In tandem, they will also
focus on collecting resources, but with a limit of collecting from at most 2
resource units.
Once this defensive and resource gathering operation is in place, the game

149

strategy shifts to training new units, with a higher emphasis on Light combat
units. Specifically, the next priority is to train as many as 25 Light units that
will serve as the primary fighting force of the player’s army. This action is
followed closely by training of Worker units, with a cap of 2 new Workers to
join the existing workforce for more efficient resource collection.
The next action in priority is to bolster the production capabilities by con-
structing Barracks, aiming to have up to 7 of them. This will allow faster
training of new combat units, ensuring a steady stream of reinforcements.
After these initial preparations are complete, the strategy moves to more
aggressive actions. Each unit in the player’s force will focus on attacking the
closest enemy unit. This proactive action is designed to minimize potential
damage by eliminating nearby threats.
Following the attack, the next priority action is to maneuver our units strate-
gically towards the healthiest enemy unit. This action can help in weakening
the enemy’s strong units and balancing the battlefield in favor of our army.
Lastly, and with the lowest priority in this strategy, the aim is to train addi-
tional Worker units, up to 9, near the enemy’s direction. These Workers can
help in speedy resource collection near enemy territory while also potentially
serving as distractions for enemy attacks.
The overall goal of this strategy is to create a strong defense by prioritizing
idle and resource collection actions, followed by expanding the army through
training and construction of barracks. Once a strong defense and robust
army are in place, the strategy switches to aggressive tactics by prioritizing
attack and movement towards the enemy’s healthiest units. The endgame
is to have a strong and well-equipped army that can tackle any challenge,
supported by an efficient workforce collecting resources close to the enemy
base.

Best Reconstructed Program for P6:

for(Unit u) {

u.idle()

u.harvest(2)

}

for(Unit u) {

u.train(Light, EnemyDir, 25)

u.train(Worker, EnemyDir, 2)

}

for(Unit u) {

u.build(Barracks, EnemyDir, 7)

}

150

for(Unit u) {

u.attack(Closest)

}

for(Unit u) {

u.moveToUnit(Enemy, MostHealthy)

}

for(Unit u) {

u.train(Worker, EnemyDir, 9)

}

P7:

for(Unit u){

u.attack(Closest)

u.train(Worker,Up,2)

for(Unit u){

u.idle()

u.harvest(2)

}

for(Unit u){

u.build(Barracks,Right,15)

u.moveToUnit(Enemy,MostHealthy)

u.train(Light,EnemyDir,8)

u.moveToUnit(Enemy,Closest)

for(Unit u){

u.train(Worker,EnemyDir,15)

}

}

}

Explanation:

The strategy is organized in a hierarchical way, according to the priority of
actions. The highest priority in this strategy is given to launching an attack
on the nearest opponent unit. This action is initiated as soon as the game
starts, suggesting an aggressive opening.
The second priority is to train two Worker units in the upward direction.
These Workers will play a crucial role in resource management and building
of structures.
The third priority is to command all the units to remain idle until an opponent
unit comes within their attack range. These idle units, thus, are primarily
defensive units.

151

In addition to this, two Workers are sent to harvest resources. These are
likely the same Workers that were trained in the upward direction earlier.
Harvesting resources is crucial in maintaining an economy and supporting the
build and training of units.
At the next level of priority, a significant part of the strategy is unfolded. Each
unit is given a sequence of tasks - building Barracks in the right direction,
with a cap of 15, moving towards the healthiest enemy unit, training 8 Light
units in the direction of the enemy, and moving again towards the closest
enemy unit.
The construction of Barracks ensures a regular supply of combat units. The
movement of units towards the healthiest and then the closest enemy units
suggests a strategy that focuses on taking down the strongest opponent units
first.
The training of Light units specifically points towards a preference for quicker,
lighter forces over slow, heavy ones. Light units are often used for quick
attacks and to keep the enemy’s attention away from the main actions.
The lowest priority action is training 15 additional Workers in the direction
of the enemy. This implies that there will be a late-game focus on building
and resource collection, possibly in preparation for a final massive assault or
to provide an economic edge over the opponent.
The overall goal of this strategy appears to be creating a powerful initial as-
sault with rapid unit training and attack on the enemy, while simultaneously
building up a steady resource income for future maneuvers. The later stages
of the game will focus on strengthening the economy and mass-producing
units for a final assault or a dominant economic victory.

Best Reconstructed Program for P7:

for (Unit u) {

u.attack(Closest);

u.train(Worker, Up, 2);

u.idle();

u.harvest(2);

u.build(Barracks, Right, 15);

u.moveToUnit(Enemy, MostHealthy);

for (Unit u) {

u.train(Light, EnemyDir, 8);

u.moveToUnit(Enemy, Closest);

u.train(Worker, EnemyDir, 15);

}

}

152

P8:

for(Unit u){

u.train(Ranged,Left,100)

if(u.canHarvest()) then {

u.attack(Strongest)

}

for(Unit u){

u.train(Worker,Right,7)

}

u.train(Worker,Up,15)

for(Unit u){

u.build(Barracks,EnemyDir,5)

}

for(Unit u){

u.idle()

u.harvest(4)

}

u.attack(Closest)

for(Unit u){

u.train(Heavy,EnemyDir,3)

}

u.moveToUnit(Ally,Strongest)

}

Explanation:

The strategy is organized in a hierarchical way, according to the priority of
actions. The highest priority in this strategy is given to launching an attack
on the nearest opponent unit. This action is initiated as soon as the game
starts, suggesting an aggressive opening.
The second priority is to train two Worker units in the upward direction.
These Workers will play a crucial role in resource management and building
of structures.
The third priority is to command all the units to remain idle until an opponent
unit comes within their attack range. These idle units, thus, are primarily
defensive units.
In addition to this, two Workers are sent to harvest resources. These are
likely the same Workers that were trained in the upward direction earlier.
Harvesting resources is crucial in maintaining an economy and supporting the
build and training of units.
At the next level of priority, a significant part of the strategy is unfolded. Each
unit is given a sequence of tasks - building Barracks in the right direction,

153

with a cap of 15, moving towards the healthiest enemy unit, training 8 Light
units in the direction of the enemy, and moving again towards the closest
enemy unit.
The construction of Barracks ensures a regular supply of combat units. The
movement of units towards the healthiest and then the closest enemy units
suggests a strategy that focuses on taking down the strongest opponent units
first.
The training of Light units specifically points towards a preference for quicker,
lighter forces over slow, heavy ones. Light units are often used for quick
attacks and to keep the enemy’s attention away from the main actions.
The lowest priority action is training 15 additional Workers in the direction
of the enemy. This implies that there will be a late-game focus on building
and resource collection, possibly in preparation for a final massive assault or
to provide an economic edge over the opponent.
The overall goal of this strategy appears to be creating a powerful initial as-
sault with rapid unit training and attack on the enemy, while simultaneously
building up a steady resource income for future maneuvers. The later stages
of the game will focus on strengthening the economy and mass-producing
units for a final assault or a dominant economic victory.

Best Reconstructed Program for P8:

for(Unit u) {

u.train(Ranged, Left, 100)

if(u.canHarvest()) then {

u.attack(Strongest)

}

for(Unit u) {

u.train(Worker, Right, 7)

u.train(Worker, Up, 15)

for(Unit u) {

if(u.canAttack()) then {

u.build(Barracks, EnemyDir, 5)

}

u.idle()

u.harvest(4)

u.attack(Closest)

u.train(Heavy, EnemyDir, 3)

u.moveToUnit(Ally, Strongest)

}

}

}

154

P9:

for(Unit u){

u.harvest(9)

u.idle()

u.moveToUnit(Enemy,LessHealthy)

u.train(Worker,EnemyDir,6)

for(Unit u){

u.harvest(2)

}

for(Unit u){

u.idle()

}

for(Unit u){

if(u.HasUnitInOpponentRange()) then {

u.attack(Weakest)

u.moveToUnit(Enemy,LessHealthy)

}

}

for(Unit u){

u.moveToUnit(Enemy,MostHealthy)

u.moveToUnit(Ally,MostHealthy)

for(Unit u){

u.build(Barracks,Left,7)

u.train(Light,EnemyDir,20)

}

}

}

Explanation:

This strategy is geared towards aggressive resource gathering and expansion,
while maintaining a robust defense. At the outset, our primary focus is on
harvesting resources, with an emphasis on up to nine units engaging in this
activity. As our units are engaged in resource gathering, they’re also prepared
to spring into action and defend our territory if required.
Simultaneously, we strategically move our units closer to the less healthy
units of our enemy, targeting the weaker ones first to maximize our offensive
capabilities. This isn’t the highest priority, but a consistent task that we aim
to achieve.
Along with these activities, we look to train six additional worker units, sta-
tioned towards the direction of the enemy. This serves dual purposes - enhanc-
ing our resource gathering capability and establishing a front line of defense
against the enemy.

155

As we continue to build our resources and defenses, we deploy two units for
more focused harvesting. This is more specific compared to the earlier broad
directive and enjoys a higher priority.
This is closely followed by an order to have all our units maintain a vigilant
stance, staying idle until there’s a direct threat. This is a key element of our
defense strategy.
A significant part of our strategy is to be proactively defensive. So, if any of
our units are within the attacking range of the enemy, we go on the offensive by
attacking the weakest units first, while strategically moving our units towards
the less healthy enemy units. This has a higher priority and occurs before any
other offensive or defensive moves.
The strategy also involves moving our units towards the most robust enemy
and ally units. The aim here is to provide support to our strong units while
simultaneously challenging the enemy’s strong units.
To bolster our offense and defense, we aim to construct up to seven Barracks
to the left of our existing base. Along with this, we train a massive force of
twenty light combat units stationed towards the enemy. The building of the
Barracks and the training of light units are part of our strategic expansion
and are given a higher priority, falling just short of the highest priority.
Overall, this strategy is a blend of aggressive resource gathering, strategic
defense, and tactical offense. Our goal is to build a strong resource base,
maintain a defensive posture to thwart enemy attacks, and go on the offensive
when the opportunity arises, aiming for a decisive victory.

Best Reconstructed Program for P9:

for (Unit u) {

u.harvest(9);

u.idle();

u.moveToUnit(Enemy, LessHealthy);

u.train(Worker, EnemyDir, 6);

for (Unit u) {

u.harvest(2);

u.idle();

if(u.hasUnitInOpponentRange()) {

u.attack(Weakest);

} else {

u.moveToUnit(Enemy, LessHealthy);

}

}

for (Unit u) {

156

u.moveToUnit(Enemy, MostHealthy);

u.moveToUnit(Ally, MostHealthy);

u.build(Barracks, Left, 7);

u.train(Light, EnemyDir, 20);

}

}

P10:

for(Unit u){

for(Unit u){

u.train(Worker,Up,2)

}

u.idle()

u.train(Heavy,EnemyDir,8)

}

for(Unit u){

u.train(Light,Left,100)

u.build(Barracks,EnemyDir,1)

u.harvest(25)

u.attack(Closest)

}

Explanation:

The provided strategy for playing MicroRTS consists of a series of prioritized
actions. In this strategy, the most crucial action, with the highest priority,
is to train worker units. Each of the controlled units is tasked with this
function, effectively expanding the player’s workforce as a first step. This
action is prioritized by having the units train additional worker units in the
upward direction, with the limit being up to 2 workers per unit. The second
priority, which is slightly lower than the first one, is to ensure that the units
stay idle when they are not training workers. In other words, until a unit has
another specific task, it is required to stay idle, being ready to attack if any
opponent comes within its attack range.
Next, there’s the task of training heavy units. The units are given this task
after they’ve finished training workers and become idle. Here, the strategy is
to train up to 8 heavy units in the direction of the enemy, providing robust
resistance against potential attacks.
Further down the priority list is the training of light units. Each unit is
instructed to train light units to the left direction with a high limit of up to
100 units. This helps in preparing a strong army capable of handling various
combat situations.

157

Building barracks in the enemy direction is also part of the strategy but
with a lower priority than training units. Each unit is tasked to build up to
one barracks in the direction of the enemy. This strategic placement could
potentially disrupt the enemy’s actions or serve as a forward base for our
attacks.
Another crucial, yet lower priority task, is resource gathering. The strategy
dictates that up to 25 workers are assigned to harvest resources. This provides
the necessary resources to support the construction of buildings and training
of additional units.
The last priority, with the lowest precedence, is to launch attacks on the
enemy. Specifically, the units are ordered to attack the closest enemy unit.
This offensive move is set with the lowest priority, implying that it should be
executed only after all other tasks have been accomplished.
In summary, the strategy aims to expand and strengthen the player’s forces
through the training of different unit types, build a strategic forward base by
erecting barracks near the enemy, manage resources by dedicating workers to
harvesting, and finally, carry out attacks on the closest enemy units.

Best Reconstructed Program for P10:

for(Unit u) {

u.train(Worker, Up, 2)

u.idle()

for(Unit u) {

u.train(Heavy, EnemyDir, 8)

u.train(Light, Left, 100)

u.build(Barracks, EnemyDir, 1)

u.harvest(25)

u.attack(Closest)

}

}

P11:

for(Unit u){

u.train(Worker,Up,4)

}

for(Unit u){

u.idle()

}

for(Unit u){

for(Unit u){

u.harvest(1)

158

}

u.train(Worker,Down,6)

for(Unit u){

u.train(Heavy,Left,10)

for(Unit u){

u.harvest(3)

}

u.build(Barracks,Left,15)

u.attack(Closest)

}

}

for(Unit u){

u.train(Light,Left,100)

}

Explanation:

The program dictates a strategy for playing MicroRTS that emphasizes unit
training and resource gathering. The action priorities are as follows: The
highest priority action is to train Worker units at the top of your base. The
game prioritizes the training of up to four Worker units. These units are
crucial as they are responsible for gathering resources, building structures
and even attacking opponent units.
Next in line, the strategy is to keep all units idle. This means that all units,
including the previously trained Workers, will not be carrying out any specific
task. They will only attack if an enemy unit comes within their attack range.
The next set of actions revolve around both training more Worker units and
collecting resources. With a high priority, every unit in the game will be
assigned to harvest resources, but only one resource per unit. Then, up to six
additional Worker units will be trained at the bottom of your base.
Following this, the strategy takes a more aggressive turn. The priority then
shifts to training up to ten Heavy units on the left of your base. Heavy
units, as the name suggests, are crucial in attacking and defending against the
opponent units due to their increased survivability and damage. Meanwhile,
within this training routine, there is a sub-priority to have each of these units
harvest three resources. After training these Heavy units and their brief stint
in resource gathering, up to fifteen Barracks will be constructed to the left of
your base. Barracks are important as they allow the training of more combat
units. This phase concludes with each unit attacking the closest enemy unit,
signifying the initiation of an offensive against the opponent.
Lastly, the game ends with training up to a whopping 100 Light units on the
left of your base. Light units, while weaker than Heavy units, can still provide
a strong force in numbers and this shows the game’s shift to a more aggressive
approach.

159

The overall goal of this strategy appears to be a balanced approach of
building up the base with Worker units and Barracks, collecting resources,
and eventually moving towards an aggressive offense using Heavy and Light
units.

Best Reconstructed Program for P11:

for(Unit u) {

u.train(Worker,Up,4)

u.idle()

for(Unit u) {

u.harvest(1)

u.train(Worker,Down,6)

}

for(Unit u) {

u.train(Heavy,Left,10)

u.harvest(3)

u.build(Barracks,Left,15)

u.attack(Closest)

}

for(Unit u) {

u.train(Light,Left,100)

}

}

P12:

for(Unit u){

u.train(Heavy,EnemyDir,6)

u.train(Light,EnemyDir,4)

u.build(Barracks,Down,3)

u.idle()

u.train(Worker,Left,3)

}

for(Unit u){

for(Unit u){

u.harvest(15)

}

for(Unit u){

u.moveToUnit(Enemy,Weakest)

}

}

160

Explanation:

In this MicroRTS strategy, the overall goal is to create a strong and sustainable
army while harvesting resources efficiently. This strategy involves training
and building activities along with harvesting and movement actions. In the
first stage of this strategy, every unit is given a specific task, which is crucial
to the early growth and power of our side. The highest priority is given to
training our Heavy units in the direction of the enemy, aiming to produce
six of them. After this, the strategy prioritizes training four Light units,
again in the direction of the enemy. These units will provide initial offensive
capabilities to confront any immediate enemy threat.
The third priority action is to build three Barracks in the downward direction,
creating a stronghold to prepare for future engagements. Next, our units are
commanded to idle, indicating they should hold their position and attack any
opponent units that enter their range. Finally, in the first stage, our strategy
ensures sustainability by training three Worker units in the left direction.
These workers will be vital for resource collection and base expansion.
In the second stage, the strategy focuses on resource gathering and unit move-
ment. The topmost priority at this stage is for every unit to harvest resources
until we have 15 resources. This sustains our army and ensures that we can
continue to build and train units.
Subsequently, each unit is instructed to move towards the weakest enemy
unit. This targeted approach allows our forces to systematically weaken the
enemy’s defense line by focusing on their most vulnerable points.
The execution of these tasks in the given order of priority ensures that
our army is well-prepared and resourceful, which is crucial for victory in
MicroRTS.

Best Reconstructed Program for P12:

for(Unit u) {

u.train(Heavy, EnemyDir, 6)

u.train(Light, EnemyDir, 4)

u.build(Barracks, Down, 3)

u.idle()

u.train(Worker, Left, 3)

}

for(Unit u) {

u.harvest(15)

u.moveToUnit(Enemy, Weakest)

}

161

P13:

for(Unit u){

if(u.HasUnitWithinDistanceFromOpponent(5)) then {

u.moveToUnit(Enemy,MostHealthy)

u.moveToUnit(Ally,Farthest)

u.attack(LessHealthy)

u.train(Worker,Up,7)

}

u.attack(Weakest)

for(Unit u){

for(Unit u){

u.harvest(1)

}

u.train(Light,Up,100)

u.build(Barracks,EnemyDir,5)

u.train(Worker,Left,4)

u.idle()

u.harvest(25)

}

}

Explanation:

The first priority of the strategy is to check if any of our units are within
5 cells of an enemy unit. If this condition is met, the unit in question will
carry out a set of actions. It will first move towards the healthiest enemy
unit, indicating that our strategy is to target the strongest of the enemy.
Immediately after that, the unit will also move towards our furthest ally
unit. It is then commanded to attack the enemy unit with the least health.
Following this, if the unit has the capability to train other units, it will train
up to 7 workers in the upward direction. In case none of our units are within 5
cells of an enemy unit, the units will target the weakest enemy unit, regardless
of its type or location. The second priority in the strategy is to instruct
each unit to perform a number of actions. This starts with each unit being
instructed to harvest one resource unit. This may be viewed as a micro-
management strategy, to ensure that resources are constantly being gathered.
Following this, each unit is instructed to train up to a maximum of 100 light
units in the upward direction. Then, they are tasked to build up to 5 Barracks
towards the enemy direction. If possible, the units are also instructed to train
up to 4 workers towards the left direction. If a unit is unable to perform any
of these tasks, it is ordered to remain idle and will only engage in combat if
an enemy unit comes within its attack range. In addition to this, each unit is
also tasked to harvest up to 25 resource units if possible.

162

In summary, the strategy seems to prioritize offensive actions towards
the enemy’s healthiest units while at the same time reinforcing our own
position by training new units and building new Barracks. The strategy also
emphasizes resource gathering by setting specific harvest actions for each
unit. Thus, the overall goal of this strategy is to wear down the enemy’s
strongest units while simultaneously growing our own forces and resource
pool.

Best Reconstructed Program for P13:

for(Unit u) {

if(u.hasUnitWithinDistanceFromOpponent(5)) {

u.moveToUnit(Enemy, MostHealthy);

u.moveToUnit(Ally, Farthest);

u.attack(LessHealthy);

if(u.hasNumberOfUnits(Base, 1)) {

u.train(Worker, Down, 7);

}

}

else {

u.attack(Weakest);

}

for(Unit u) {

if(u.canHarvest()) {

u.harvest(1);

}

else {

u.train(Light, Up, 100);

u.build(Barracks, EnemyDir, 5);

}

if(u.hasNumberOfUnits(Base, 1)) {

u.train(Worker, Left, 4);

u.idle();

}

else {

u.harvest(25);

}

}

}

163

P14:

for(Unit u){

u.idle()

u.train(Light,EnemyDir,4)

u.build(Barracks,Down,3)

u.train(Ranged,EnemyDir,8)

u.train(Worker,Left,3)

u.harvest(15)

}

for(Unit u){

for(Unit u){

for(Unit u){

u.attack(Closest)

}

}

}

Explanation:

In the strategy described, units initially take on an idle state, poised to attack
any opponent unit that comes within range. This marks the first course of
action. Following that, a total of four units are then trained for light combat,
oriented towards the enemy’s direction. This is the second action taken. After
preparing for combat, our focus shifts towards infrastructure development,
with the construction of three barracks in the downward direction. This is
the third action in line. Post the infrastructure setup, we further train eight
ranged combat units, pointing again towards enemy territory, forming the
fourth action.
In addition to training combat units, we also train three worker units, placed
on the left, which makes up the fifth action. These worker units are imme-
diately assigned to gather resources with a target of harvesting up to fifteen
resource units, and this is the sixth action our strategy involves.
The strategy then shifts gears and goes into an aggressive mode. All units,
regardless of their type, are assigned to attack the enemy’s closest unit. This
forms the most crucial and high-priority action in this plan, making it the top
priority. This order is repeated for every single one of our units, ensuring a
relentless wave of attacks aimed at the nearest enemy units.
Overall, this strategy involves starting with a defensive stance and resource
accumulation, followed by a massive, prioritized attack on the closest enemy
units, signifying an aggressive playstyle.

Best Reconstructed Program for P14:

164

for(Unit u) {

u.idle();

u.train(Light, EnemyDir, 4);

u.build(Barracks, Down, 3);

u.train(Ranged, EnemyDir, 8);

u.train(Worker, Left, 3);

u.harvest(15);

}

for(Unit u) {

u.attack(Closest);

}

P15:

for(Unit u){

u.train(Worker,EnemyDir,3)

u.build(Barracks,Up,1)

u.moveToUnit(Enemy,Closest)

u.attack(MostHealthy)

u.moveToUnit(Ally,MostHealthy)

for(Unit u){

u.idle()

}

for(Unit u){

u.train(Light,EnemyDir,15)

}

for(Unit u){

u.harvest(2)

}

}

Explanation:

In the strategy we’re discussing, there’s a clear order of priorities to the actions
our units will take. At the very top of our priority list, the main thing units
are encouraged to do is to stand their ground and defend their position. If
you see a unit doing nothing, that’s because they’ve been instructed to remain
idle as their highest priority.
Following that, units have a higher priority to train Light combat units in the
direction of the enemy. This means our main offensive strategy focuses on
producing as many as 15 Light units to apply pressure on the opponent.
The next action with a somewhat lower priority than training Light units
is resource gathering. Here, the directive is to send units out to harvest
resources. The goal is to send up to 2 Workers to gather resources at any

165

given time.
After those high-priority tasks, if none of those directives apply, our units
then proceed with the next set of actions. The first among these is to train
Workers, with an emphasis on training up to 3 of them in the direction of
the enemy. This ensures that our army has a steady supply of units that can
gather resources and build structures.
Once we have a sufficient number of Workers, the next objective is to build
a Barracks in the upward direction. However, we limit this construction to
just 1 Barracks. With a Barracks in place, we can then train combat units to
bolster our army’s strength.
With training and building out of the way, our units are then focused on
movement and engagement strategies. They are instructed to approach the
closest enemy unit and engage. Specifically, they will target the healthiest
opponent unit, aiming to take down the strongest threats first.
In situations where our units need support, they are encouraged to move
towards our most healthy ally unit. This could be a tactical move to bolster
defense or provide a more united front in our offensive maneuvers.
Overall, the central aim of this strategy seems to be a balanced approach
between defense, resource management, and offensive pressure. By prior-
itizing idle defense and the training of Light units, it suggests a reactive
posture that is ready to quickly switch to offense by amassing Light units
when the situation allows. The emphasis on resource gathering and Worker
training ensures that the army is well-supported and can sustain prolonged
engagements

Best Reconstructed Program for P16:

for(Unit u) {

u.train(Worker, EnemyDir, 3)

u.build(Barracks, Up, 1)

u.moveToUnit(Enemy, Closest)

u.attack(MostHealthy)

u.moveToUnit(Ally, MostHealthy)

for(Unit u) {

u.idle()

}

for(Unit u) {

u.train(Light, EnemyDir, 15)

u.harvest(2)

}

}

166

P16:

for(Unit u){

u.harvest(2)

u.idle()

u.train(Light,EnemyDir,7)

u.build(Barracks,EnemyDir,3)

u.train(Ranged,EnemyDir,8)

u.train(Worker,Left,3)

u.moveToUnit(Enemy,MostHealthy)

u.moveAway()

}

for(Unit u){

u.harvest(50)

u.attack(Strongest)

if(u.HasUnitWithinDistanceFromOpponent(3)) then {

u.train(Worker,Right,10)

}

}

Explanation:

In this MicroRTS strategy, our units prioritize their actions based on the
following order:
1. First and foremost, they’ll start by harvesting resources, but they will only
send two units for this task. 2. If they aren’t harvesting, they’ll stay idle and
defend if an opponent comes within their attack range. 3. If they haven’t been
assigned any of the above tasks, they’ll then look to train Light combat units,
specifically focusing on producing up to seven of them, directing them towards
the enemy. 4. As they look to fortify their position, they’ll then consider
constructing Barracks. The units will try to build up to three Barracks in
the direction of the enemy. 5. If their earlier training and building tasks are
satisfied, they’ll pivot to training Ranged units, aiming to have eight of these
units, and they’ll also be sent towards the enemy. 6. To ensure continuous
resource collection and building, they’ll train up to three Workers who will
be positioned on the left side. 7. After all these tasks, if none of them are
actionable for a unit, it will look for the healthiest opponent unit and move
towards it. 8. Finally, if a unit hasn’t been assigned any task till now, it’ll
choose to move away from the player’s base.
Once all units have gone through the above priorities, they’ll move to the next
set of actions:
1. An intense resource collection activity will ensue, with a large group of 50
units being sent out to harvest. 2. When not busy harvesting, they’ll go on

167

the offensive, targeting the strongest opponent units to attack. 3. A special
consideration is made for situations where they’re close to the enemy. If a
unit is within a distance of 3 from an opponent, it’ll train up to ten Workers,
positioning them on the right side.
The main goal of this strategy seems to be establishing a strong frontline with
trained combat units and Barracks, while also ensuring there’s a continuous
supply of resources by having a large number of Workers. Moreover, it places
a strong emphasis on being proactive in engagements by targeting stronger
and healthier opponent units.

Best Reconstructed Program for P16:

for(Unit u) {

for(Unit u) {

if(u.canHarvest()) {

u.harvest(2)

}

u.idle()

u.train(Light, EnemyDir, 7)

u.build(Barracks, EnemyDir, 3)

u.train(Ranged, EnemyDir, 8)

u.train(Worker, Left, 3)

u.moveToUnit(Enemy, MostHealthy)

u.moveAway()

}

for(Unit u) {

u.harvest(50)

u.attack(Strongest)

if(u.hasUnitWithinDistanceFromOpponent(3)) {

u.train(Worker, Right, 10)

}

}

}

P17:

for(Unit u){

for(Unit u){

u.idle()

}

u.train(Worker,EnemyDir,5)

u.harvest(3)

u.train(Heavy,Right,50)

168

u.moveToUnit(Enemy,MostHealthy)

u.moveAway()

if(u.OpponentHasUnitInPlayerRange()) then {

for(Unit u){

u.harvest(1)

u.attack(Strongest)

}

}

for(Unit u){

u.build(Barracks,EnemyDir,1)

}

}

Explanation:

The given strategy for playing MicroRTS presents a specific approach to han-
dling the game, primarily focusing on certain aspects of controlling units and
managing their actions.
The strategy commences with the highest priority action, where all units are
commanded to stay idle and attack if an opponent’s unit comes within attack
range. This will form the core of the defense and is a priority to ensure that
units are initially in a guarded state.
Next, the actions following that are of second-highest priority: - The player’s
unit trains up to 5 Worker units in the direction of the enemy. - 3 Worker
units are sent to harvest resources. - 50 Heavy combat units are trained to
the right. - Units are commanded to move towards the enemy’s most healthy
unit. - Units are commanded to move in the opposite direction of the player’s
base.
These actions create a balance between building resources, strengthening the
army, and engaging the enemy strategically.
The third-highest priority action is an immediate response mechanism. If
an opponent’s unit is within the attack range of an ally’s unit, the player’s
units are commanded to: - Harvest one resource each. - Attack the strongest
opponent unit.
This section forms a rapid reaction to an immediate threat, emphasizing at-
tack and gaining resources in parallel.
Lastly, the action with the lowest priority is to build a Barracks in the direction
of the enemy, limited to just one Barracks. This is the least urgent aspect of
the strategy, focusing on long-term building rather than immediate response
or unit training.
Overall, the strategy focuses on an immediate defensive stance with a sys-
tematic escalation in attacking, resource building, and strategic movement.
The ultimate goal is to prepare the units quickly for both defense and attack,

169

with a layered approach to handling threats, building resources, and then
extending the infrastructure by constructing a Barracks. The priority is
set in such a way that immediate defense and controlled aggression take
precedence over the long-term development of structures.

Best Reconstructed Program for P17:

for(Unit u) {

u.idle();

for(Unit u) {

u.train(Worker, EnemyDir, 5);

u.harvest(3);

u.train(Heavy, Right, 50);

u.moveToUnit(Enemy, MostHealthy);

u.moveAway();

}

for(Unit u) {

if(u.opponentHasUnitInPlayerRange()) {

u.harvest(1);

u.attack(Strongest);

}

}

u.build(Barracks, EnemyDir, 1);

}

P18:

for(Unit u){

u.idle()

u.train(Light,Right,10)

if(u.OpponentHasUnitInPlayerRange()) then {

u.moveToUnit(Ally,Strongest)

} else {

u.train(Worker,EnemyDir,7)

}

u.build(Barracks,Down,20)

u.moveToUnit(Enemy,Closest)

for(Unit u){

u.train(Worker,Right,5)

}

170

if(u.canAttack()) then {

u.attack(Weakest)

} else {

e

}

for(Unit u){

if(u.canHarvest()) then {

u.harvest(2)

}

u.build(Barracks,EnemyDir,8)

}

}

Explanation:

The given strategy for playing MicroRTS focuses on a balanced approach
to both defense and offense, prioritizing certain actions to achieve desired
outcomes. First, the strategy commands all units to stay idle, which is of
lower priority. If they are able to, they will then train 10 Light units to
the right. The strategy then assesses the battlefield: if an opponent unit is
in range of an ally unit, the priority is given to moving units towards the
strongest Ally unit; otherwise, the command to train 7 Worker units towards
the enemy direction is executed.
After assessing the battlefield, the priority shifts to building. Up to 20 Bar-
racks are built downwards. This is followed by a command to move towards
the closest enemy, which is of lower priority compared to previous actions.
Next, the strategy enters a phase where the priority is the highest, focusing
on training and preparing for the battles ahead. In this phase, up to 5 Worker
units are trained to the right.
Following this, the strategy again checks if the units can attack. If they can,
they are commanded to attack the weakest opponent unit. If not, no action
is taken.
In the final phase, which has the second-highest priority, the focus is on har-
vesting resources and further building. If units can harvest, they are instructed
to harvest 2 resources. Additionally, up to 8 Barracks are built towards the
enemy direction.
Overall, the strategy aims for a balanced approach. It prioritizes training
and preparing for battle through building Barracks and training various
types of units. It takes into account the positioning of both ally and enemy
units, emphasizing moving and attacking based on the enemy’s position
and strength. It also focuses on resource management by training Workers
and commanding them to harvest. The highest priority actions are training
Workers, followed by building Barracks, attacking or defending based on the
opponent’s positioning, and finally, commanding units to move, stay idle, or

171

train additional Light units.

Best Reconstructed Program for P18:

for (Unit u) {

u.idle()

if (u.canAttack()) {

u.attack(Weakest)

}

u.build(Barracks, EnemyDir, 8)

u.train(Worker, Right, 7)

u.train(Light, Right, 10)

if (u.opponentHasUnitInPlayerRange()) {

u.moveToUnit(Ally, Strongest)

} else {

u.train(Worker, EnemyDir, 7)

}

u.build(Barracks, Down, 20)

u.moveToUnit(Enemy, Closest)

for (Unit u) {

u.train(Worker, Right, 5)

if (u.canHarvest()) {

u.harvest(2)

}

u.build(Barracks, EnemyDir, 8)

}

}

P19:

for(Unit u){

for(Unit u){

u.idle()

u.train(Light,Down,4)

}

for(Unit u){

u.harvest(3)

for(Unit u){

u.train(Ranged,Down,20)

}

}

u.build(Barracks,EnemyDir,50)

u.attack(Closest)

172

u.train(Worker,Down,8)

}

Explanation:

In this MicroRTS strategy, players will initially prioritize having their units
stay idle and thereafter focus on training Light units. This action receives
the highest priority. Once that’s achieved, the player’s next focal point is
to ensure that up to 3 Worker units start harvesting resources. During this
harvesting phase, there’s also an emphasis on training up to 20 Ranged units.
This step is of the second highest priority.
As the player progresses further, constructing Barracks in the direction of
the enemy becomes a vital move. The game will aim to build up to 50 of
these structures, suggesting a major strategic emphasis on increasing military
capabilities. Following that, the units are directed to attack the closest enemy
units. However, these actions aren’t given as high a priority as the initial
actions.
Lastly, with a slightly lower priority, the strategy emphasizes training addi-
tional Worker units. The player will try to bring about 8 more Workers into
the game.
To sum it up, the overall goal of this strategy seems to be a balanced approach
between defense (having units stay idle initially) and offense (training Light
and Ranged units). Furthermore, there’s a strong emphasis on resource
gathering and expanding the military capacity by building Barracks near the
enemy. The balanced focus between offense, defense, and resource gathering
suggests a comprehensive approach to the game.

Best Reconstructed Program for P19:

for(Unit u) {

u.idle()

for(Unit u) {

u.train(Light, Down, 4)

}

for(Unit u) {

u.harvest(3)

u.train(Ranged, Down, 20)

}

for(Unit u) {

u.build(Barracks, EnemyDir, 50)

173

u.attack(Closest)

u.train(Worker, Down, 8)

}

}

P20:

for(Unit u){

for(Unit u){

u.train(Heavy,EnemyDir,3)

}

for(Unit u){

u.idle()

}

u.harvest(3)

u.build(Base,EnemyDir,1)

u.train(Light,Left,8)

u.build(Barracks,Right,1)

u.attack(Weakest)

for(Unit u){

u.train(Heavy,Up,10)

}

u.train(Worker,EnemyDir,4)

}

Explanation:

In this MicroRTS strategy, we initiate by placing the utmost importance on
training Heavy units. The prime focus is to create three Heavy units po-
sitioned towards the enemy direction. This is the most crucial step of the
strategy and receives the highest priority.
Following this, the units are instructed to maintain a stance of inaction, stand-
ing their ground. This takes precedence right after training the Heavy units.
As we move further down the list of priorities, the next action involves sending
three Worker units to gather resources. Then, there’s a directive to construct
a Base, positioning it towards the enemy’s direction. Only one Base will be
built under this directive.
Subsequent to these actions, the strategy emphasizes creating a considerable
force of Light units, specifically eight of them, positioned to the left. This is
then followed by the establishment of a Barracks to the right, but only one
will be erected.
The next phase of the strategy is to be more aggressive. Units are ordered to
target and attack the weakest of the opponent’s forces. This aggressive stance
is vital before moving on to the subsequent steps.

174

Delving deeper, there’s a strong inclination to further enhance our Heavy unit
troops. This time, the strategy pushes for the creation of ten Heavy units,
with their position being upwards.
Lastly, the strategy rounds off by emphasizing the training of four Worker
units, positioning them towards the enemy’s direction.
Overall, this strategy can be viewed as a balanced approach between
fortifying defenses, resource management, and mounting an offensive. The
primary goal is to strengthen the army by training a significant number of
Heavy and Light units while ensuring resource accumulation and strategic
positioning of bases and barracks.

Best Reconstructed Program for P20:

for (Unit u) {

for (Unit u) {

u.train(Heavy, EnemyDir, 3);

u.idle();

}

u.harvest(3);

u.build(Base, EnemyDir, 1);

u.train(Light, Left, 8);

u.build(Barracks, Right, 1);

u.attack(Weakest);

for (Unit u) {

u.train(Heavy, Up, 10);

}

u.train(Worker, EnemyDir, 4);

}

B.6.2 Human-crafted Set

P1:

for (Unit u : pgs.getUnits()) {

if (u.getType() == baseType && u.getPlayer() == player &&\

gs.getActionAssignment(u) == null) {

int nworkers = 0;

for (Unit u2 : pgs.getUnits()) {

if (u2.getType() == workerType &&\

u2.getPlayer() == p.getID()) {

nworkers++;

}

}

175

if (nworkers < 1 && p.getResources() >= workerType.cost) {

train(u, workerType);

}

}

}

Explanation:

In this strategy, the game checks for each unit on the game map. It focuses
on the units that are of base type and belong to the player who doesn’t have
any assigned action. Once it finds such a base, it looks for all the worker units
that belong to the player. It keeps a track of the number of such workers.
If the player has less than one worker and has enough resources to train a
worker, the base is commanded to train a worker unit. This strategy ensures
that the player always has at least one worker unit if resources permit. The
overall goal of this strategy is to maintain the number of worker units for the
player, which is crucial for collecting resources and building structures.

Best Reconstructed Program for P1:

for(Unit u : pgs.getUnits()) {

if (u.getType() == baseType && u.getPlayer() == player) {

if (gs.getActionAssignment(u) == null) {

int numWorkers = 0;

for(Unit u2 : pgs.getUnits()) {

if (u2.getType() == workerType &&\

u2.getPlayer() == player) {

numWorkers++;

}

}

if (numWorkers < 1 &&\\

p.getResources() >= workerType.cost) {

train(u, workerType);

}

}

}

}

P2:

for (Unit u : pgs.getUnits()) {

if (u.getType() == barracksType && u.getPlayer() == player &&\

gs.getActionAssignment(u) == null) {

176

if (p.getResources() >= lightType.cost) {

train(u, lightType);

}

}

}

Explanation:

This strategy focuses on training Light units from your Barracks. For every
unit on the game map, the strategy checks if the unit is a Barracks and
belongs to the player. The strategy then verifies if the Barracks is not
currently assigned any action to perform. If the Barracks is idle and belongs
to the player, the strategy looks at the amount of resources the player
currently possesses. If the player has enough resources to train a Light unit
(a Light unit’s cost is the benchmark here), the strategy directs the Barracks
to train a Light unit. The Light unit is a type of combat unit and can be
useful in attacking the opponent’s units. sThe overall goal of this strategy
is to continuously train Light units from the Barracks whenever there are
enough resources available and the Barracks is idle. This way, the player can
build a strong army of Light units to take on the opponent.

Best Reconstructed Program for P2:

List<Unit> units = pgs.getUnits();

for(Unit u : units) {

if(u.getType() == barracksType && u.getPlayer() == player) {

if(gs.getActionAssignment(u) == null) {

if(p.getResources() >= lightType.cost) {

train(u, lightType);

}

}

}

}

P3:

for (Unit u : pgs.getUnits()) {

if (u.getType().canAttack && !u.getType().canHarvest &&\

u.getPlayer() == player && gs.getActionAssignment(u) == null) {

PhysicalGameState pgs = gs.getPhysicalGameState();

Unit closestEnemy = null;

int closestDistance = 0;

int mybase = 0;

177

for (Unit u2 : pgs.getUnits()) {

if (u2.getPlayer() >= 0 && u2.getPlayer() != p.getID())

{

int d = Math.abs(u2.getX() - u.getX()) +\

Math.abs(u2.getY() - u.getY());

if (closestEnemy == null || d < closestDistance) {

closestEnemy = u2;

closestDistance = d;

}

}

else if(u2.getPlayer()==p.getID() &&\

u2.getType() == baseType){

mybase = Math.abs(u2.getX() - u.getX()) +\

Math.abs(u2.getY() - u.getY());

}

}

if (closestEnemy!=null &&\

(closestDistance < pgs.getHeight()/2 \

|| mybase < pgs.getHeight()/2)){

attack(u,closestEnemy);

}

else

{

attack(u, null);

}

}

}

Explanation:

In the given strategy, the player controls specific units that can attack but
cannot gather resources. The strategy involves these units seeking out and
attacking enemy units within a certain range. The first step is to identify all
units that can attack but not harvest, and are controlled by the player. For
each of these units, the strategy determines its closest enemy. This is done
by calculating the distance between the player’s unit and each enemy unit on
the game map, with distance being the sum of the differences in their X and
Y coordinates. Simultaneously, for each of these player’s units, the strategy
determines the distance to the player’s base. This is done by identifying all
units that belong to the player and are of the base type, and calculating the
distance between the player’s unit and the base. Once the closest enemy and
the distance to the base are determined, the player’s unit is commanded to
attack the enemy if the enemy is closer than half the height of the game map
or if the base is closer than half the height of the game map. If neither of

178

these conditions is met, the unit is commanded to stop attacking. Overall,
the goal of this strategy is to command units that can attack but cannot
harvest to engage in combat with enemy units that are close by or pose a
threat to the base. The strategy ensures that units are not sent too far from
the base and are able to protect the base if it comes under attack.

Best Reconstructed Program for P3:

int halfHeight = pgs.getHeight() / 2;

List<Unit> units = pgs.getUnits();

for(Unit u : units) {

if(u.getType().canAttack && !u.getType().canHarvest &&\

u.getPlayer() == player) {

Unit closestEnemy = null;

Unit base = null;

int closestDistance = Integer.MAX_VALUE;

int baseDistance = Integer.MAX_VALUE;

for(Unit u2 : units) {

int dx = u2.getX() - u.getX();

int dy = u2.getY() - u.getY();

if(u2.getPlayer() >= 0 && u2.getPlayer() != player) {

int distance = Math.abs(dx) + Math.abs(dy);

if(distance < closestDistance) {

closestEnemy = u2;

closestDistance = distance;

}

}

if(u2.getType() == baseType && u2.getPlayer() == player)

{

baseDistance = Math.abs(dx) + Math.abs(dy);

base = u2;

}

}

if(closestEnemy != null && \\

(closestDistance < halfHeight || baseDistance < halfHeight))

{

attack(u, closestEnemy);

}

else {

attack(u, null);

}

}

}

179

P4:

resourcesUsed=gs.getResourceUsage().getResourcesUsed(player);

for (Unit u : pgs.getUnits()) {

if (u.getType() == baseType && u.getPlayer() == player &&\

gs.getActionAssignment(u) == null) {

int nworkers = 0;

for (Unit u2 : pgs.getUnits()) {

if (u2.getType() == workerType

&& u2.getPlayer() == p.getID()) {

nworkers++;

}

}

int nBases = 0;

for (Unit u2 : pgs.getUnits()) {

if (u2.getType() == baseType

&& u2.getPlayer() == p.getID()) {

nBases++;

}

}

int qtdWorkLim = nWorkerBase * nBases;

if (nworkers < qtdWorkLim &&\

p.getResources() >= workerType.cost) {

train(u, workerType);

}

}

}

Explanation:

The strategy in this program is about managing the bases and workers in
the game. It first checks all units on the map. If it finds a base that belongs
to the player and is not currently assigned any action, it starts to execute
the strategy. The strategy begins by counting the number of workers that
the player currently has on the map. Then, it counts the number of bases
that the player owns. Next, it calculates the limit of workers that should be
assigned to each base. This limit is determined by the product of a predefined
constant (nWorkerBase) and the number of bases that the player owns. If
the number of workers is less than this limit and the player has enough
resources to train a new worker, the base is instructed to train a worker. The
overall goal of this strategy is to maintain an optimal number of workers for
each base that the player owns, given the resources available. This is done to
ensure that the player can collect resources efficiently in the game.

180

Best Reconstructed Program for P4:

List<Unit> units = pgs.getUnits();

for(Unit u : units) {

if(u.getType() == baseType && u.getPlayer() == player) {

if(gs.getActionAssignment(u) == null) {

int numWorkers = 0;

for(Unit u2 : units) {

if(u2.getType() == workerType &&\

u2.getPlayer() == player) {

numWorkers++;

}

}

int numBases = 0;

for(Unit u2 : units) {

if(u2.getType() == baseType &&\

u2.getPlayer() == player) {

numBases++;

}

}

int workerLimit = numBases * nWorkerBase;

if(numWorkers < workerLimit &&\

p.getResources() >= workerType.cost) {

// Instruct base to train a worker

train(u, workerType);

}

}

}

}

P5:

resourcesUsed=gs.getResourceUsage().getResourcesUsed(player);

for (Unit u : pgs.getUnits()) {

if (u.getType() == barracksType && u.getPlayer() == player &&\

gs.getActionAssignment(u) == null) {

int nLight = 0;

int nRanged = 0;

int nHeavy = 0;

for (Unit u2 : pgs.getUnits()) {

if (u2.getType() == lightType

&& u.getPlayer() == p.getID()) {

nLight++;

}

181

if (u2.getType() == rangedType

&& u.getPlayer() == p.getID()) {

nRanged++;

}

if (u2.getType() == heavyType

&& u.getPlayer() == p.getID()) {

nHeavy++;

}

}

if (nLight == 0 &&\

p.getResources() >= (lightType.cost + resourcesUsed)) {

train(u, lightType);

resourcesUsed += lightType.cost;

} else if (nRanged == 0 &&\

p.getResources() >= (rangedType.cost + resourcesUsed)) {

train(u, rangedType);

resourcesUsed += rangedType.cost;

} else if (nHeavy == 0 &&\

p.getResources() >= (heavyType.cost + resourcesUsed)) {

train(u, heavyType);

resourcesUsed += heavyType.cost;

}

if (p.getResources() >= baseType.cost &&\

nLight != 0 && nRanged != 0 && nHeavy != 0) {

int number = r.nextInt(3);

switch (number) {

case 0:

if (p.getResources() >=

(baseType.cost+lightType.cost)) {

train(u, lightType);

resourcesUsed += lightType.cost;

}

break;

case 1:

if (p.getResources() >=

(baseType.cost+rangedType.cost)) {

train(u, rangedType);

resourcesUsed += rangedType.cost;

}

break;

case 2:

if (p.getResources() >=

(baseType.cost+ heavyType.cost)) {

182

train(u, heavyType);

resourcesUsed += heavyType.cost;

}

break;

}

}

}

}

Explanation:

The strategy described in the program involves managing the use of Barracks
units and the resources of the player. The Barracks units are controlled by
the player and are used to train combat units which are Light, Heavy, or
Ranged. In the beginning, the program checks each unit within the player’s
control. If a unit is a Barracks unit, belongs to the player, and is not
currently assigned an action, it proceeds to the next step. The strategy then
counts the number of each type of combat unit (Light, Heavy, and Ranged)
that the player currently has. It does this by going through each unit the
player controls and checking if it’s a Light, Heavy, or Ranged unit. Once the
numbers of each type of combat unit are determined, the program checks if
the player has any Light units. If not, and the player has enough resources
to train a Light unit, it commands the Barracks to train a Light unit. If
the player already has a Light unit, it checks for a Ranged unit and repeats
the process. If the player has both Light and Ranged units, it checks for a
Heavy unit and repeats the process again. The above process ensures that
the player has at least one of each type of combat unit if they have enough
resources. However, if the player already has all types of units and still has
enough resources to train another unit plus build a base, it randomly selects
one type of unit (Light, Heavy, or Ranged) to train. The overall goal of the
strategy is to ensure the player has a balanced mix of combat units (Light,
Heavy, and Ranged) and to use the available resources efficiently for training
additional units or building a base.

Best Reconstructed Program for P5:

for(Unit u: pgs.getUnits()) {

if (u.getType() == barracksType && u.getPlayer() == player &&\

gs.getActionAssignment(u) == null) {

int numLight = 0;

int numHeavy = 0;

int numRanged = 0;

for(Unit u2: pgs.getUnits()) {

183

if (u2.getType() == lightType &&\

u2.getPlayer() == player) {

numLight++;

} else if (u2.getType() == heavyType &&\

u2.getPlayer() == player) {

numHeavy++;

} else if (u2.getType() == rangedType &&\

u2.getPlayer() == player) {

numRanged++;

}

}

if (numLight == 0 &&\

p.getResources() >= lightType.cost) {

train(u, lightType);

}

else if (numRanged == 0 &&\

p.getResources() >= rangedType.cost) {

train(u, rangedType);

}

else if (numHeavy == 0 &&\

p.getResources() >= heavyType.cost) {

train(u, heavyType);

}

else if (p.getResources() >= lightType.cost + baseType.cost)

{

int randomUnit = (int)(Math.random() * 3);

if (randomUnit == 0) {

train(u, lightType);

} else if (randomUnit == 1) {

train(u, heavyType);

} else {

train(u, rangedType);

}

}

}

}

P6:

for (Unit u : pgs.getUnits()) {

if (u.getType().canAttack && !u.getType().canHarvest &&\

u.getPlayer() == player && gs.getActionAssignment(u) == null) {

PhysicalGameState pgs = gs.getPhysicalGameState();

184

Unit closestEnemy = null;

int closestDistance = 0;

for (Unit u2 : pgs.getUnits()) {

if (u2.getPlayer() >= 0 && u2.getPlayer() != p.getID())

{

int d = Math.abs(u2.getX() - u.getX()) +\

Math.abs(u2.getY() - u.getY());

if (closestEnemy == null || d < closestDistance) {

closestEnemy = u2;

closestDistance = d;

}

}

}

if (closestEnemy != null) {

attack(u, closestEnemy);

}

}

}

Explanation:

This strategy is about using the combat units of the player for attacking
the enemy units. Initially, the strategy looks at each unit in the game. It
then considers those units which can attack, cannot harvest and belong to
the player. Moreover, it only considers those units which are currently not
assigned any other action. For each such combat unit, the strategy identifies
the closest enemy unit. It calculates the distance between the combat unit
and all units that belong to the opponent. The distance is calculated as the
sum of the absolute differences of the x and y coordinates of the two units.
The unit with the minimum distance is considered as the closest enemy.
Once the closest enemy is found for a combat unit, it commands the combat
unit to attack the closest enemy unit. The overall goal of the strategy is to
engage the player’s combat units in attacking the nearest enemy units, to
potentially eliminate the enemy forces.

Best Reconstructed Program for P6:

for(Unit u : pgs.getUnits()) {

if(u.getPlayer() == player && u.getType().canAttack &&\

!u.getType().canHarvest) {

if(gs.getActionAssignment(u) == null) {

int minDistance = Integer.MAX_VALUE;

Unit closestEnemy = null;

for(Unit u2 : pgs.getUnits()) {

185

if(u2.getPlayer() >= 0 &&\

u2.getPlayer() != player) {

int dx = u2.getX() - u.getX();

int dy = u2.getY() - u.getY();

int distance = Math.abs(dx) + Math.abs(dy);

if(distance < minDistance) {

minDistance = distance;

closestEnemy = u2;

}

}

}

if (closestEnemy != null) {

attack(u, closestEnemy);

}

}

}

}

P7:

List<Integer> reservedPositions = new LinkedList<>();

for (Unit u : pgs.getUnits()) {

if (u.getType() == baseType && u.getPlayer() == player &&\

gs.getActionAssignment(u) == null) {

int nworkers = 0;

for (Unit u2 : pgs.getUnits()) {

if (u2.getType() == workerType

&& u2.getPlayer() == p.getID()) {

nworkers++;

}

}

int nBases = 0;

int nBarracks = 0;

for (Unit u2 : pgs.getUnits()) {

if (u2.getType() == baseType

&& u2.getPlayer() == p.getID()) {

nBases++;

} else if (u2.getType() == barracksType

&& u2.getPlayer() == p.getID()) {

nBarracks++;

}

}

int qtdWorkLim;

186

if(nBarracks == 0){

qtdWorkLim = 4;

}else{

qtdWorkLim = nWorkerBase * nBases;

}

if (nworkers < qtdWorkLim &&\

p.getResources() >= workerType.cost) {

train(u, workerType);

}

}

}

Explanation:

In this strategy, the player controls units in the MicroRTS game. Initially,
the strategy checks if a base unit controlled by the player is not currently
assigned any action. This is important because a unit can only perform one
action at a time. Once it finds such a base, the strategy begins by counting
the number of worker units controlled by the player. Workers are essential
units that collect resources and build structures which are crucial for the
advancement of the game. After counting the workers, the strategy proceeds
to count the number of base and barracks units controlled by the player.
Bases are where workers are trained, while barracks are where combat units
are trained. Next, the strategy determines the limit of workers that can be
trained. If there are no barracks, the limit is set to 4. However, if there
are barracks, the limit is set to the number of workers per base times the
number of bases. This decision is made based on the fact that having more
barracks means the player is more likely to be in a combat-intensive situation
and would require more resources, thus needing more workers. Finally, if the
number of workers is less than the worker limit and the player has enough
resources to train a worker (workers come at a cost), the base is commanded
to train a worker. The overall goal of this strategy is to make sure that the
player has an optimal number of workers based on the current state of the
game. This is crucial because having an appropriate number of workers can
ensure a steady flow of resources, which can contribute to the player’s success
in the game.

Best Reconstructed Program for P7:

List<Unit> units = gs.getUnits();

int workers = 0;

int base = 0;

int barracks = 0;

for(Unit u : units) {

187

if(u.getPlayer() == player) {

if(u.getType() == workerType)

workers++;

else if(u.getType() == baseType &&\

gs.getActionAssignment(u) == null)

base++;

else if(u.getType() == barracksType)

barracks++;

}

}

int workerLimit = (barracks == 0) ? 4 : workers * base;

for(Unit u : units) {

if(u.getType() == baseType && u.getPlayer() == player &&\

gs.getActionAssignment(u) == null && workers < workerLimit &&\

p.getResources() >= workerType.cost) {

train(u, workerType);

break;

}

}

P8:

for (Unit u : pgs.getUnits()) {

if (u.getType() == barracksType && u.getPlayer() == player &&\

gs.getActionAssignment(u) == null) {

int nLight = 0;

int nRanged = 0;

int nHeavy = 0;

for (Unit u2 : pgs.getUnits()) {

if (u2.getType() == lightType

&& u.getPlayer() == p.getID()) {

nLight++;

}

if (u2.getType() == rangedType

&& u.getPlayer() == p.getID()) {

nRanged++;

}

if (u2.getType() == heavyType

&& u.getPlayer() == p.getID()) {

nHeavy++;

}

}

if (nLight == 0 && p.getResources() >= lightType.cost) {

188

train(u, lightType);

} else if (nRanged == 0 &&\

p.getResources() >= rangedType.cost) {

train(u, rangedType);

} else if (nHeavy == 0 &&\

p.getResources() >= heavyType.cost) {

train(u, heavyType);

}

if (nLight != 0 && nRanged != 0 && nHeavy != 0) {

int number = r.nextInt(3);

switch (number) {

case 0:

if (p.getResources() >= (lightType.cost)) {

train(u, lightType);

}

break;

case 1:

if (p.getResources() >= (rangedType.cost)) {

train(u, rangedType);

}

break;

case 2:

if (p.getResources() >= (heavyType.cost)) {

train(u, heavyType);

}

break;

}

}

}

}

Explanation:

This strategy for playing MicroRTS focuses on training units at the barracks
owned by the player. The process begins by checking each unit on the game
map. If the unit is a barracks owned by the player and it’s not currently
assigned any action, the strategy proceeds to the next step. The strategy
then counts the number of each type of combat units - Light, Ranged, and
Heavy - currently owned by the player. Following this, the strategy tries to
train one of each type of combat units, starting with the Light unit, then
Ranged unit, and finally the Heavy unit. However, this is only done if the
player has enough resources to train the unit and doesn’t already own a unit
of that type. In a situation where the player already owns at least one of

189

each type of combat units, the strategy randomly chooses between the three
types of units to train next. The strategy ensures that the player has enough
resources to train the chosen unit type before proceeding with the training.
The overall goal of this strategy is to ensure a balanced mix of combat units
for the player, while also taking into consideration the amount of resources
available to the player.

Best Reconstructed Program for P8:

List<Unit> units = gs.getPhysicalGameState().getUnits();

int numLight = 0, numRanged = 0, numHeavy = 0;

for(Unit u : units) {

if(u.getType() == barracksType && u.getPlayer() == player \

&& gs.getActionAssignment(u) == null) {

for(Unit u2 : units) {

if(u2.getPlayer() == player) {

if(u2.getType() == lightType) {

numLight++;

} else if(u2.getType() == rangedType) {

numRanged++;

} else if(u2.getType() == heavyType) {

numHeavy++;

}

}

}

if(numLight == 0 && p.getResources() >= lightType.cost)

{

train(u, lightType);

}

else if(numRanged == 0 &&\

p.getResources() >= rangedType.cost) {

train(u, rangedType);

}

else if(numHeavy == 0 &&\

p.getResources() >= heavyType.cost) {

train(u, heavyType);

}

else {

int r = new Random().nextInt(3);

if(r == 0 && p.getResources() >= lightType.cost) {

train(u, lightType);

} else if(r == 1 && \

p.getResources() >= rangedType.cost) {

190

train(u, rangedType);

} else if(r == 2 && \

p.getResources() >= heavyType.cost) {

train(u, heavyType);

}

}

}

}

P9:

for (Unit u : pgs.getUnits()) {

if (u.getType().canAttack && !u.getType().canHarvest &&\

u.getPlayer() == player && gs.getActionAssignment(u) == null) {

Unit closestEnemy = null;

int closestDistance = 0;

for (Unit u2 : pgs.getUnits()) {

if (u2.getPlayer() >= 0 && u2.getPlayer() != p.getID())

{

int d = Math.abs(u2.getX() - u.getX()) + \

Math.abs(u2.getY() - u.getY());

if (closestEnemy == null || d < closestDistance) {

closestEnemy = u2;

closestDistance = d;

}

}

}

if (closestEnemy != null) {

attack(u, closestEnemy);

}

}

}

Explanation:

In this MicroRTS strategy, the focus is on using your combat units effectively
to attack the enemy. The strategy begins by examining all the units on the
map. It is particularly interested in the combat units that belong to your
team and are not currently assigned any action. A combat unit is identified
as a unit that can attack but cannot harvest resources. Upon identifying such
a unit, the strategy shifts its focus to finding the closest enemy unit. This is
achieved by examining the location of all units on the map that belong to the
opposing team. The distance between your combat unit and each enemy unit
is calculated using their x and y coordinates on the game map. The enemy

191

unit with the smallest calculated distance is identified as the closest enemy.
Once the closest enemy is identified, your combat unit is instructed to attack
it. This sequence is repeated for all your available combat units that are not
currently assigned any action. In this way, this strategy ensures that your
combat units are always actively engaged in attacking the enemy and focuses
on the enemy units that are closest to your units for quick engagement. The
overall goal of this strategy is to maintain a high level of offensive pressure
on the opponent by continuously engaging the closest enemy units with your
available combat units. This approach keeps the opponent on the defensive
and could potentially overwhelm them if their defenses are not strong enough.

Best Reconstructed Program for P9:

for(Unit u: pgs.getUnits()) {

if(u.getPlayer() == player && u.getType().canAttack &&\

!u.getType().canHarvest) {

if(gs.getActionAssignment(u) == null) {

Unit closestEnemy = null;

int closestDistance = Integer.MAX_VALUE;

for(Unit u2: pgs.getUnits()) {

if(u2.getPlayer() >= 0 && u2.getPlayer() != player)

{

int dx = u2.getX() - u.getX();

int dy = u2.getY() - u.getY();

int distance = dx*dx + dy*dy;

if(closestEnemy == null || \

distance<closestDistance) {

closestEnemy = u2;

closestDistance = distance;

}

}

}

if(closestEnemy != null) {

attack(u, closestEnemy);

}

}

}

}

P10:

for(Unit u:pgs.getUnits()) {

if (u.getType()==baseType && u.getPlayer() == player &&\

192

gs.getActionAssignment(u)==null) {

if (p.getResources()>=workerType.cost) {

train(u, workerType);

}

}

}

Explanation:

In this strategy, the game goes through each unit on the game map. It looks
for any base units that belong to the player and is currently not performing
any actions. Once such a base is found, the strategy checks the player’s
resources. If the player has sufficient resources to train a worker, the base is
commanded to train a worker unit. The cost of training a worker is deducted
from the player’s resources. This strategy primarily focuses on constantly
producing workers as long as there’s enough resources and the base is idle.
The overall goal of this strategy is to maximize the number of worker units
the player has, as long as they can afford it.

Best Reconstructed Program for P10:

List<Unit> units = pgs.getUnits();

for(Unit u : units) {

if (u.getPlayer() == player) {

if (u.getType() == baseType &&\

gs.getActionAssignment(u) == null) {

if (p.getResources() >= workerType.cost) {

train(u, workerType);

}

}

}

}

193

	Introduction
	Background
	Program Interpertability
	Code Understandability
	Large Language Models
	Prompt Engineering
	What is a prompt?
	What is Prompt Engineering?
	Chain of Thought Prompting

	Code Obfuscation
	Code Obfuscation Techniques

	Program Synthesis
	Synthesizing Programmatic Policies
	A Two-Player Zero-sum Game Setting
	Self-Play Algorithms
	Iterated Best Response(IBR)
	FP
	Local Learner (2L)

	LINT: LLM-based Interpretability Score
	Set of Constraints for Explanation
	Multiple Trials
	Caveats of LINT Score

	Empirical Methodology
	Classical Programming Problems
	Programmatic Policies
	Microlanguage
	Java
	Obfuscating Programmatic Policies
	Set of Policies Evaluated
	Behavior Metrics
	Action Metric
	Outcome Metric
	Feature Metric

	Baselines for Reconstructed Programs
	Baseline for the Reconstruction System

	Empirical Results
	Classical Programming Problems
	Programmatic Policies
	Representative Sample

	Discussion, Future Works, and Takeaways
	Caveats of LLMs
	Data Contamination
	Direct data Leakage
	Indirect Data Leakage

	Hallucination

	Limitations of Our Study Concerning Programming Problems
	Future Directions for Research

	Conclusion
	References
	Appendix
	An Overview of MicroRTS
	Units
	Gameplay
	MicroRTS' DSL

	Appendix
	Overview
	MicroRTS Prompts
	Synthesized Set
	Explainer Prompt
	Reconstructor Prompt
	Verifier Prompt

	Human-crafted Set
	Explainer Prompt
	Reconstructor Prompt
	Verfier Prompt

	Computer Programming Prompts
	Explainer Prompt
	Reconstructor Prompt
	Verifier Prompt
	Verifier Examples

	C Programs Pool
	Obfuscated C Programs
	Non-obfuscated Equivalent Programs

	Useless code snippets added for Obfuscation
	Synthesized Set
	Level 1
	Level 2

	Human-crafted Set
	Level 1
	Level 2
	Justification

	Set of MicroRTS Programs
	Synthesized Set
	Human-crafted Set

