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Abstract

Cable and membrane structures have always been under consideration by
engineers as structural elements because of advantages like high strength to
weight ratio and low cost over other structures. But due to the highly non-
linear geometrical and material behavior of such structures, their design and
analysis is a difficult task. Also, treatments that consider both elements in
a structure and their interaction is rare to find. In this work, the equilib-
rium equations for the coupled finite deformations of perfectly flexible elastic
membranes and cables is established. In order to incorporate the necessary
conditions for stability of the equilibrium configuration, relazed strain energy
functions for cable and membrane are used which eliminate the possibility of
the existence of compressive stresses (which cannot be carried by cables and
membranes) in the structures and introduce wrinkles. The difference form
of the equations of equilibrium is derived using Green’s theorem and a nu-
merical method called dynamic relazation (which considers the problem as a
damped dynamic one) is used to obtain the equilibrium configuration as the

steady state response to the dynamical problem. Several examples are solved



using this method. Two interesting cases among them are neutral holes (el-
liptic and circular) and inclusion. It is seen that the cable reinforcement
reduces the sharp strain gradients specially at singular points. Qualitative

behavior of cable reinforcement is shown in an experiment.
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Chapter 1

Introduction

Membrane and cable structures have long been under consideration as struc-
tural elements because of advantages like high strength to weight ratio and
low cost. But what makes their design difficult is the inherent non-linearity
of the deformation and the material. These elements have been used to
model a wide variety of phenomena ranging from bioelasticity and fluid cap-
illarity to rubber elasticity and mechanics of structural networks. But a
treatment of both these elements and their interaction in a system under
three—dimensional large deformations is rarely found. In this work, we try
to establish such a framework. We use ideal models of perfectly flexible
one and two dimensional continua and solve boundary value problems that
normally involve cases in which compressive stresses appear in parts of the
structure. This stress state represents a localized buckling phenomenon and
it typically involves wrinkling under small compressive stress with most of the
tensile stress carried along the wrinkle trajectories. The shape of the wrin-
kles is mainly determined by the bending stiffness of the material. Since the
ideal model considered here neglects flexural stiffness, such a pattern of de-
formation cannot be described by this model. Moreover, the presence of the
compressive stresses in equilibrium solution generates instability (Steigmann,
1986). The use of theories for structures (such as rods and shells) that are
capable of describing these patterns has its own complications and entails
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substantial additional analytical and computational work. In this work, since
the flexural rigidity for both of these elements is neglected, cables are rep-
resented by straight lines and membranes are shown by flat surfaces in the
wrinkled regions and the details of deformation in the wrinkled region are
not given. However, in most cases, we are after the global behavior of the
structure and this is not affected by these local patterns. Therefore, we make
use of the relazed theories of perfectly flexible continua, in which we mod-
ify the constitutive equations in such a way that the compressive stresses
are automatically excluded for all strains. Atai and Steigmann (1997) and
Haseganu and Steigmann (1994a) have discussed this issue for cables and
membranes, respectively. A deformation that involves a state of strain that
would cause destabilizing compression according to the original theory can
now be viewed as resulting from a continuous distribution of wrinkles un-
der negligible compressive stress. Pipkin (1986) showed that states of strain
associated with unstable compressive stresses in conventional membrane the-
ory may instead be constructed as limits of energy-minimizing sequences of
deformations involving closely spaced wrinkles. He derived a relazed strain
energy that automatically accounts for such states.

We begin in Chapter 2 with a brief discussion of deformation of elastic
curves (cables) and surfaces (membranes) and their equilibrium. Chapter 3
deals with applications of variational theory to the potential energy for a sys-
tem of combined cables and membranes. Two different cable arrangements
(attached and shearless) are considered. And the equations of equilibrium
plus the coupling boundary conditions for both types of cables are discussed.
The possibility of having several disjoint pieces of membrane as the unde-
formed configuration and connecting them together (suturing) and analysing
the resultant structure is taken into account. This feature along with the
two cable-attachment models is a new aspect in this work and it allows for a
better modeling of practical structural design. The necessary conditions for
the equilibrium configuration to be the minimizer of the potential energy are
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also discussed. Several material models for the membrane are discussed and
their relaxed form is presented. This multiple definition of the strain energy
function automatically satisfies the conditions required for stability. The
materials are mostly isotropic but a very simple orthotropic material is also
considered. A linear elastic cable model is discussed and the stability condi-
tions for both types of cable attachments are presented. In Chapter 4, the
discretization of the domain of the membrane and the finite difference form
of the equations of equilibrium are presented. A numerical method that does
not need the calculation of stiffness matrix (and hence avoids ill-conditioning
due to lack of stiffness) and has the advantage of low memory requirements
is discussed and the procedure for implementing it in solving the discretized
equations of equilibrium is discussed. Chapter 5 shows some numerical exam-
ples of combinations of cable and membrane structures. Wherever possible,
the analytical results are also obtained and a comparison is made with the
numerical ones. Two very interesting examples of this case are circular and
elliptic neutral holes. Here we consider finite deformations as opposed to
small deformations considered by Mansfield (1953) but the condition on the
outer boundary and the shape of the original hole are as he suggested. The
significant effect of cable reinforcement on membrane structures is shown in
the stretch of a square sheet and it is seen there that the reinforcement tends
to bring down the sharp stretch gradients specially at singular points. A few
2 and 3 dimensional suturing examples are presented and the results seem to
be plausible. The 6-pole and single pole tent cases are interesting examples
of suturing. In the single-pole tent case, it is seen how a very rough attempt
to diminish the high strains at the pole tip is successful simply by having
an undeformed configuration that is stretched near the position of the pole.
An example that uses the orthotropic material is also discussed. In Chap-
ter 6, an experimental case is discussed and the results are compared with
the analytical and numerical ones. In Chapter 7 we discuss the conclusions
of this work and possible future extensions. Appendix A covers the pro-
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cedure for generating boundary-fitted orthogonal coordinate system which
helps generate meshes for numerical calculations that minimize the error in
approximations of equations of equilibrium.



Chapter 2

Elastic curves and surfaces

In this chapter, the equilibrium equations for perfectly flexible elastic curves
(cables) and surfaces (membranes) are briefly discussed. The reader is re-
ferred to Atai and Steigmann (1997) and Haseganu and Steigmann (1994a)
for more detail.

2.1 Elastic curves (cables)

Let’s consider a single cable with unstretched length L undergoing a general

deformation in 3D space (Figure 2.1). The cable is assumed to be unstretched

in the reference configuration so that the arclength measure s varies in the

range [0,L]. x(s) is the position vector of a point on the cable in the reference

configuration with respect to the fixed frame with orthonormal vectors e;, % €

{1,2,3} and r(s) is its corresponding vector in the deformed configuration.
The deformation gradient is given by

= At (2.1)

where S is the measure of arclength in the deformed configuration, A is the
stretch in the cable, and t is the unit tangent to the cable in the deformed
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Reference configuration Deformed configuration

S

X,

Figure 2-1: A single cable undergoing general deformation in 3D space
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configuration. From now on, prime denotes differentiation with respect to
the indicated argument. We can assume the existence of a strain energy
density, B, per unit arclength s, that depends in some way on the deformation
gradient r'(s). Although non-uniform materials can be considered allowing
B to depend explicitly on s, this dependency is suppressed in this work.

It is logical to assume that superposed rigid motions do not affect the
strain energy for a given deformation. This invariance results in the necessary
and sufficient condition of

B(f'(s)) =B();  As) =Ir'(s)l. (2.2)

The strain energy stored in an elastic cable with reference length L can be
written as

L L
/0 B(r'(s))ds = /0 B(A\(s))ds. (2.3)

The force exerted by the part (s, L] of the cable on the part [0, s] is (Atai
and Steigmann, 1997)

£(s) = f(r'(s)) = (3B/0r})e;, (2.4)

where r;(s) are the components of r(s) corresponding to e; and from now
on, summation rule applies on the repeated indices. Then from (2.2) we can

write

aB_aB_aBa_,\_@(r_;.)_a_B
rl ~ Brl T axort T AATAT T A

3 T

ti = f(A)t, (2.5)

where

fA) =B (2.6)
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is the magnitude of the force derived from the constitutive relation and the
relation

A% =rir! (2.7)

'

derived from (2.2), is used to get (2.5). Thus

£(s) = F(A(s))t(s)- (2.8)

Eqn (2.8) shows that the force is everywhere tangential to the curve defined
by r(-).

Now consider a cable under distributed force with density b(s) per unit
reference arclength (Figure 2.2). Then the equilibrium equation for the cable

will be (Atai and Steigmann, 1997)

f'(s) +b(s) =0, se]0,L], (2.9)

and if in addition, end forces f; and —fy are applied at s = L and s = 0,
respectively, then the boundary conditions result in

£(0) = fo and £(L) = f. (2.10)

In this case, fy, f; and b(s) must be chosen such that

£, =f— /0 " b(s)ds. 2.11)

Alternatively, if either of the ends of the curve is constrained against
movement then eqn (2.10) defines the reaction force at the end in question,
and eqn (2.11) is automatically satisfied in any equilibrium configuration.
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b(s)

<

Figure 2-2: A single cable under distributed and end forces
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2.2 Elastic surfaces

In this section, we discuss the analysis of perfectly flexible elastic surfaces.
This can be considered as the 2D generalization of the perfectly flexible cables
theory. In this work, we consider the reference configuration to be flat and
stress—free. We assume that the reference configuration occupies a bounded
region § in the (z;,z;) plane with piecewise smooth boundary 9 (Figure
2.3). Each point of the membrane in this configuration is identified by its
position vector x = z,e, where Greek indices range over {1, 2} and {e,, e}
is a fixed orthonormal basis that spans Q2.

A general 3D deformation maps the position vector x to the deformed
position vector y(x) = y;(x)e;, where Latin indices range over {1,2,3} and
e; = e; X ez. The deformation gradient F, that maps the element dx in the
reference plane onto dy(x) = Fdx tangent to the deformed surface can be
expressed by

F(x) = grady(x) = Fia(x)e; ® €a;  Fia = ¥ (2.12)

where (+) o = 3(+)/0z, and summation takes place over the repeated indices.
Then as in conventional continuum mechanics, the associated Cauchy-Green

strain tensor is

C=FTF =C,pea®ep; Cap= FiuFip. (2.13)

It can be easily seen that for every vector v € R, v- Cv = |Fv[? > 0.
So C is a positive semi—definite tensor and therefore, it can be represented

in the following spectral form

C=MNuyQu+ Au, ® uy, (2.14)
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configuration

Deformation

0Q

Reference configuration

!

Figure 2-3: A membrane in x;-x; plane undergoing general 3D deformation
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where u,, u, are the orthonormal principal vectors of strain and A, = [Fue| =
(4 - Cug)/? (> 0). These can be used to define the unit vectors

Uy = A Fu,. (2.15)

Since u; and u, are orthonormal vectors, the unit tensor A in 2D space
can be written as A = u, ® u,. Then

F=FA=E‘I.11®U.1 +Fu2®u2=A1U1®u1+A2U2®u2 (2.16)

and the Cauchy—Green strain tensor is

C = FTF=)Mu,Qu + Xu; ®u,
+A1 AU - Up(u; @ up + uz ® uy). (2.17)

Comparing (2.17) with (2.14) and noticing that u; - uz = 0, we see that
U, - U, = 0. In other words, U; and U, are orthonormal vectors that span
the plane tangent to the deformed surface and A; and A, are the stretches
along those directions.

Again as in the case of elastic curve, we assume the existence of a strain
energy W, per unit area of €, that responds only to changes in the local
intrinsic or metric geometry of the surface. This formalizes the intuitive
notion of a perfectly flexible surface (membrane). Thus, we assume that

W (F) = W(FTF) = W(C). (2.18)

It can be seen that W is invariant under superimposed rigid motion.
Non-uniform elastic properties may be taken into account letting W depend
explicitly on x.
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The surface analog of the 2nd Piola—Kirchhoff stress is (Haseganu and
Steigmann, 1994a):

S = Sop€a ® €s;  Sap = Spa = OW [3Cos + OW [0Csa, (2.19)

and the Piola stress is

T =FS =T,e; @ e,; Tia = FigSga = OW/0F;,. (2.20)

This furnishes the force per unit reference length, 7, exerted by the ma-
terial to the right of an embedded curve on the material to the left, according
to the formula

r=Tv (2.21)

where v = x/(s) X e3 is the rightward unit normal to the curve and x(s) is the
arclength parametrization of the curve on 2. If the surface is in equilibrium
under applied or reactive edge forces, and the distributed forces (e.g. weight,
pressure) are negligible, then the Piola stress must satisfy

divl =0; Tao.=0 inQ. (2.22)

For isotropic materials, the strain energy is expressible as a symmetric
function of the principal stretches (Naghdi and Tang, 1977; Haseganu and
Steigmann, 1994a):

W(F) = W(C) = w(\, A2) = w(A2, Ar) (2.23)

The 2nd Piola—Kirchhoff stress is then given by
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S= Al_l‘wllll Qdu; + /\;111)202 ® up (2.24)

where

we = Ow/0A,. (2.25)

Then the Piola stress can be calculated from (2.20) to be

T =wU; ® u; +wUs @ us. (226)

It should be noted that for orthotropic materials, u, and U, are the unit vec-
tors along the orthogonal fibers before and after the deformation respectively
and A\, are the stretches along them.



Chapter 3

Variational Theory

In this work we formulate conservative boundary value problems as mini-
mization problems for appropriately defined potential energies. The so—called
relazation of the associated variational theory furnishes a rationale for the
description and analysis of wrinkling in elastic surfaces and curves (Pipkin,
1986; Atai and Steigmann, 1997). Moreover, minimum energy states are rel-
evant to the study of stable equilibria [e.g. Knops and Wilkes (1973); Como
and Grimaldi (1995)].

The question of the existence of minimizers is not addressed here and
such matters have been studied extensively elsewhere (Ball, 1977; Dacarogna,
1989). Rather, we suppose that a given configuration minimizes a potential
energy functional to be defined, and investigate restrictions on the configu-
ration imposed by certain well known necessary conditions in the calculus of
variations. Chief among these are the Euler equations and certain inequali-
ties generated by the guasiconvezity condition (Dacarogna, 1989). We then
introduce a relazed version of the theory which is quasiconvex in all configura-
tions. The physical interpretation of the relaxed theory in terms of slackening
is indicated briefly. Such interpretations have been thoroughly discussed in
(Pipkin, 1986; Haseganu and Steigmann, 1994a; Atai and Steigmann, 1997).
In some cases the relaxed theory admits a dual variational formulation lead-
ing to a minimum complementary energy principle and a uniqueness theorem

15
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for the equilibrium stress distribution.
These issues are addressed here in the context of the potential energy
functional

Ely] = /n W (F)da + Uly] (3.1)

in which the integral represents the strain energy of the deformed elastic
surface and the functional U represents the energetic contribution of one or
more elastic curves (cables) interacting with the surface, and y is an arbitrary
but kinematically admissible configuration. This framework encompasses
a wide variety of applications involving coupled one- and two-dimensional
elastic elements [e.g. Steigmann and Li, 1995; Steigmann and Ogden, 1997].
The often striking features of such interactions have recently been illustrated
by Libai and Simmonds (1998).

In the applications considered here, the elastic cable is attached to a sub-
set P C 852 of the boundary of the membrane consisting of one or more arcs.
We consider two types of attachment: (1) the cable is fixed to the membrane
at each of its points and deforms with it as an embedded (material) curve
(Figure 3.1); and (2) the endpoints of P are fixed and the configurations of
the cable and the boundary of the membrane are congruent, but the interior
points of the cable do not maintain fixed correspondences with points of the
membrane (Figure 3.2). Thus, the cable and membrane may slide relative to
each other without separating. In the context of tension structure design, the
first alternative may be used to describe the stiffening effect of a seam-line
along which the membrane is folded to provide a finished edge or to prevent
fraying. The second alternative furnishes an idealized model of cables that
slide freely through hoops stationed at intervals along the membrane bound-
ary. In this application the stress in the membrane is controlled, at least to
some degree, by the tensile force in the cable.

The functionals U[y] associated with the two types of attachments are



CHAPTER 3. VARIATIONAL THEORY 17

(@)

(b)

Figure 3.1: Examples of attached cable reinforcement; (a) folded edge of the
membrane, (b) overlap of two pieces at the place of suture
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Figure 3.2: Examples of shearless cable reinforcement; (a) Cable passing through the
hem, (b) cable passing through the hoops



CHAPTER 3. VARIATIONAL THEORY 19

Uily] = /P B(y'(s))ds (3.2)

in the first instance, where B(:) is the cable strain energy function defined
in Chapter 2, and

{ly]
Uly] = Gly]) = /L f(z/L)dz (3.3)

in the second instance, where

Iy] = /P oy (Ndsi gy =1y (3.4)

is the total arclength of the image of P in a configuration y(P), f(-) is the
force—extension relation of the elastic cable, and L is the arclength of P in
the reference configuration. This can be thought of as the energy stored in
(or work done by) a uniform spring when its total length z varies from free
length L to a deformed length [[y] and the force in the spring (which is a
function of the change in length) is given by f(z/L). Another way of defining
U, is to integrate the strain energy function for the cable B(A(s)) [CE. (2.3)]
but since the cable is uniformly strained, A = Il[y]/L is constant along the
length of the cable and so is B()). So it can be taken out of the integral and
we can write

. R ilyl/L lyl/L
Uyl = BOL=BUYDL=L [ BN =L [ o

llyl/L

- L /1 f(z/L)d(z/L) (3.5)
i[y] {[y]

- L /L f(z/L)dz/L = /L f(z/L)dz
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which is the original definition of U,. It should be noted that for the strain
energies considered, P C 1 is taken to consist of a single connected arc but
more arcs can be considered by simply adding the strain energy for each arc
together.

The functional U, represents the strain energy stored in a homogeneously
strained cable. This form is used because the freely sliding cable is not sub-
ject to any tangential force distribution along its length. It then follows
from eqns (2.8) and (2.9) that an elastically uniform cable is homogeneously
strained in equilibrium configurations. The functional (3.3) is well defined
for configurations that are not in equilibrium, but it is then to be interpreted
as a potential rather than the total cable strain energy. In this respect U; is
similar to the potentials associated with pressure acting at the boundary of
a three—dimensional body (Fisher, 1988; Podio-Guidugli, 1988), or over the
domain of a two—dimensional body (Steigmann, 1991; Bufler and Schneider,
1994). The distribution of pressure used in the definition of the potential
is typically chosen to an equilibrium distribution for the fluid medium that
transmits the pressure to the body in question. The same potential is then
used to define a total potential energy functional for all kinematically ad-
missible configurations, not just for those that are statically admissible as
well. Apparently this subtle point has not been emphasized in the literature
on configuration-dependent conservative loading. Functionals of this kind
nevertheless furnish potentials for the problems considered.

3.1 Equilibrium

The equilibrium equations for the coupled response of the elastic membrane
and cable are obtained as a condition of minimization of the energy Efy].
Let y(x; €) be a one-parameter family of deformations with € € (—eo, €0) for
some €g > 0. Then (3.1) can be written as
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Eld = [n W (grady (€))da + Uly(e)] (3.6)

If the equlibrium configuration corresponds to € = 0, then the potential
energy functional E[e] is minimized at this point and we can write

dE[e] _ dW (grady(e) dU
de |, [./;; de da+ de | .o (3.7
but
dW _ W 0Fa _ ., Wie _ o (Wi
de = OF, de T de ~ T (de ),Q ) (3.8)

Substituting this into (3.7), the stationarity of E results in

/ T-.gradu da+U =0. (3.9)
Q

where the superposed dot indicates the value of the derivative at e = 0, T(x)
is the equilibrium Piola stress distribution, u(x) = y is the variation of y,
gradu is its gradient, and the notation A - B is used to denote the scalar
product, A;aBia, of tensors A, B.

For the type-1 cable attachment (U = U,) we can write from (3.2)

. _ 9B 0y; _ [9B,
o=0,= [z [ B0 =)o = [ ague o0

but from (2.5), 8B/8y: = f(A)t;. So it then follows that

U= / f- u'ds, (3.11)
P

where f = f(\)t is the force vector in the cable (cf. eqn (2.8)) and u(s) =
u(x(s)) is the variation of y(x) evaluated on P. In obtaining eqn (3.11),
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we used the fact that r(s) = y(x(s)) on P for the class of cable attachment
under consideration. The first term of (3.9) can be written as

/ Tiatinda = / [(Tiati) o — Tin,auilda = / TiaVou;ids
an
/ Tiactida = / Tv - uds — / - divTda (3.12)

in which the Green’s theorem (see the next chapter) is used to get the integral
over 0. From (3.11), the second term of (3.9) can be written as

U= /P fiuids = /P [(frw)' ~ (ffua)lds = D[ - ulop — /; f'-uds (3.13)

where f; = ft; and the notation [-]op is used to denote the difference of the
enclosed quantity at the endpoints of an arc of P and the sum extends over
the individual arcs that comprise P. Substituting these into (3.9) we can

write

/ Tv-uds+Z[f-u]ap+/(Tu—-f')-uds—

a0\P P

/ u - divITda = 0. (3.14)
Q

Following the standard procedure of calculus of variations, we can con-
clude that stationarity of E at € = 0 is realized only if eqn (2.22) is satisfied
in Q, only if

f =0 on Py, (3.15)

where P; is an endpoint of P where position is not prescribed, and only if

Tv=1(s)on P (3.16)
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and Tv = 0 on IQ\P (on part of the boundary which is traction free). Eqn
(3.16) also follows directly from eqn (2.9) on noting that the force per unit
reference length, b(s), transmitted o the cable, is opposite to the traction,
Tv, exerted by the cable on the surface (Libai and Simmonds, 1998). Al-
though it might be unusual in conventional elasticity, it is a common practice
in tension-structure design to allow the reference configuration €2 to consist
of disjoint subdomains. In practice, these sub-domains consist of pieces of
fabric cut from a roll. These pieces, or paiterns, are then fastened together, or
sutured, prior to the erection of the assembled tension structure. In principle
it is desirable to arrange the geometries of these patterns so as to achieve an
optimal design criteria such as minimum waste material, small stress or strain
in the loaded structure that does not cause the fabric to tear, or as close as
possible to a desired deformed configuration (which is usually eye pleasing).
The problem with these criteria is that they are not often expressed clearly
and precisely. Also the present methods of finding these patterns are much
more based on practice rather than being backed by science and theory. For
these reasons a definitive treatment of the patterning problem has yet to be
achieved, despite the considerable effort that has been devoted to its solution.
The work of Tabarrok and Qin (1992) is representative of current practice.

For illustrative purposes let’s suppose that 2 consists of just two regions
Q; and Q,. Let S; C 9Q; and S, C Jp be those parts of the boundaries
of Q, and ), that are to be sutured together (Figure 3.3). Also we suppose
that P C (89;\51)U(8:\S2). On any part 8Q, of 3Q;\S; or 3\ S, where
position is not assigned, the associated traction vanishes:

Tv = 0 on 9%Q;. (3.17)

The remaining content of eqn (3.14) is then expressed by the requirement:

Tv; - wds + Tovs - uads =0, (3.18)
St S1
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|

(®)

Figure 3.3: Two pieces of membrane sutured together; (a) initial configuration, (b) S2 is
deformed in such a way to coincide with Sy
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wherein the subscript 1 or 2 indicates evaluation on S; or S;, respectively.

Now let’s assume that S; is somehow deformed to coincide S2. So Sz can
be expressed as So = d(S;) (d(-) defines the mapping) with local gradient
a(s) defined on Si, i.e. (ds)s, = a(s)s,(ds)s,, (this mapping is a matter of
choice and before we attempt to solve a problem, we must specify how S
and S, are connected and in the numerical examples we’ll see that this is
done by having the same number of nodes on each edge of the suturing line
and there is a one two one relation between these nodes). We also assume
that the virtual displacement preserves the continuity of sutured structure,
so that uy(d(s)) = u;(s) = u(s). Then eqn (3.18) reduces to

(T1v1 + aTavs) - uds =0, (3.19)
St

which is true for all kinematically admissible u and we obtain

Tv, = —aTew, on Sj. (3.20)

As expected, this implies that for arbitrary arcs s; C S and sz = d(s;) C S,
the net force transmitted by €, to ; along the suture is opposite to that
transmitted by €; to Q:

/ Tvds = —/ Tovqds; 8y C Sy, 82 =d(s1) C Sa. (3.21)
81 82

If a(s) = 1, then we have continuity of traction as well as continuity of force
across the sutured edge. We see examples of both cases in Chapter 5.
For the case of the type—2 cable attachment, eqn (3.11) is replaced by

. R 1[y(e)]
U="0,= [ge- /L f(:z:/L)dz] _ (3.22)
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which can be written as

U = f/L), (3.23)

where

. . Fo) yf
l= / ds = / —=ujds = / tuids = / tiuids 3.24
Pg p 9yi p ¥ P (3.24)

or

i=fgds=/t -u'ds (3.25)
P P

where t is the unit tangent to y(P). Integrating eqn (3.25) by parts, recalling
that 8P is fixed for the present type of cable attachment and invoking the
necessary conditions already derived, we find that eqn (3.14) reduces to

/(Tu — ft')-uds =0. (3.26)
P

Thus, eqn (3.16) is replaced by

Tv = f(l/L)t'(s) on P. (3.27)

Since t - t’ = 0 it follows that the cable-membrane interaction is frictionless
in the sense that the cable transmits no tangential traction to the membrane.

We remark that if the conditions on 8P were relaxed to permit u to be
non-zero at one of its points, then the stationarity of E would require that
f vanish there, and hence everywhere in the cable. The alternative fixed—
end conditions imposed here do not lead to this conclusion. Moreover, they
correspond to the conditions that exist in actual tension structures, wherein
cable pre-tension is controlled by adjusting the length of cable between the
supports.
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3.2 Additional necessary conditions

We obtain certain algebraic inequalities that are satisfied by minimizers of
the functional (3.1). Among these is the quasiconvexity condition that plays
a fundamental role in Ball’s existence theorems for nonlinear elasticity (Ball,
1977). Steigmann and Ogden (1997) recently extended Ball’s proof of quasi-
convexity to account for the presence of surface stress in plane-strain defor-
mations of elastic solids. This extension generates restrictions analogous to
quasiconvexity that apply to an elastic boundary, in addition to the condition
previously known to apply to the bulk material. Following the perturbation
method discussed in Atai and Steigmann (1998), the well known rank-one
convexity condition (Ball, 1977) which takes the form

W(F +a®b) —W(F) > T(F)-a®b, (3.28)

for all a = a;e; and b = b,e, with F being the deformation gradient corre-
sponding to the equilibrium configuration. This is identical to the condition
that Graves suggests for the deformed configuration to be the a strong rel-
ative minimizer of the energy E[-] (Graves, 1939). In the limit of small |a|
with |b| fixed, Taylor expansion of the first term on the left hand side and
simplification yields the Legendre-Hadamard inequality:

Ciajpa,-baajbp >0, (3.29)

where

Ciejs(F) = Fw/ O0F;,0F};s (3.30)

An interesting consequence of eqn (3.29) is the non-negativity of the 2nd
Piola-Kirchhoff stress S furnished by F (Steigmann, 1986):
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b-Sb>0, Vb =bae,. (3.31)

For isotropic membranes, this is equivalent to [cf. eqn (2.25)]:

Wq > 0; a=12. (3.32)

From y(x) being the minimizer of the energy E, the inequality for the
type-2 cable attachment is found out to be (Atai and Steigmann, 1998)

fG/L)(ly' +al-1y'l —a-t) 20, Va, (3.33)

We decompose a in the form

a=(a-t)t+a1,, t-a_,_=0. (3.34)

Hence

Iy’ +a| =[(ly'l +a-t)2 + |a ]2 > || +a-t, (3.35)

with equality if and only ifa; = 0 and a-t > —[y’|- Thus, eqn (3.33) is equiv-
alent to the requirement that the cable force be tensile (non—compressive) in

a minimizing configuration:

f/L)=0. (3.36)

We note that application of the triangle inequality to eqn (3.33) yields no
information.

For the type—1 edge reinforcement problem, the equivalent of (3.33) is the
Weierstrass condition
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B(y'+a)-B(y')>f-a, Va, (3.37)

where £ = f(y’') (cf. eqn (2.3)). This is equivalent to the two inequalities
(Atai and Steigmann, 1997):

fA) >0,  B(p)-BM)=(@E—-Nf), Ve>0, (3.38)

where A = |y’| is the local curve stretch in a minimizing configuration. Thus,
the cable is under tension and the strain energy B(-) is convex at A. The
latter result requires that the tangent modulus be non-negative: f'(A) > 0.

3.3 Relaxed theory

Strain energy functions typically used in the theories of elastic curves and sur-
faces do not satisfy the necessary conditions (3.38a) or (3.31), respectively, at
all the values of strain. Thus, energy-minimizing configurations generally do
not exist for a large class of boundary value problems. Two main approaches
to restoring well-posedness have been discussed in the literature. The first,
known as regularization, is to replace the model by one having additional
structure, in which restrictions such as eqns (3.382) or (3.31) do not arise.
In the present context, regularization may be achieved by substituting shell
and rod models in place of the simpler membrane and cable theories. The
alternative to regularization, known as relazation, is to modify the constitu-
tive equations of the membrane and the cable so that restrictions like eqns
(3.31) and (3.38) are automatically satisfied. The task is then to relate the
relaxed model to the original model in a way that is physically meaningful.

For example, the relaxed minimization problem for the type-l cable—
membrane model is based on the modified energy functional (Dacarogna,

1989):
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Enly] = /n Wa(F)da + /P Br(y')ds, (3.39)

where Wg(F) is the quasiconvezification of W (F):

Wr(F) =S;Sp {¢: ¢(F) < W(F), and ¢ quasiconvex}, (3.40)

and Bgr(y') is the convezification of B(y'):

Ba(y) =¥ {¥:9(y) <B(y), and®convex}.  (3.41)

Granted suitable bounds on these functions, it is possible to show that
the minimization problem for Eg has a solution in an appropriate function

space, and that

min Eg[y] = inf Efy], (3.42)

even when El[y] fails to have a minimizer. In particular, if y(x) minimizes
Epg then it is typically possible to construct a minimizing sequence {yn}
for E, converging (weakly) to y(x), for which Efy,] — Eg[y]. We refer
to Acerbi and Fusco (1984) and Dacarogna (1989) for detailed discussion of
these concepts.

If the strain energies W(F) and B(y') are unequal to their relaxations,
then minimizing sequences typically exhibit finer and finer scale discontinu-
ities in the gradients of the y,(x) as n increases. In the limit the sequence
itself converges to a smooth function, but the limit of the sequence of the
gradients is discontinuous everywhere. In the context of membrane and cable
theories, this fine scale structure may be interpreted in terms of a continuous
distribution of wrinkles of infinitesimal amplitude, spaced an infinitesimal
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distance apart (Pipkin, 1986; Atai and Steigmann, 1997). In a real mem-
brane or cable small, but finite, flexural stiffness intervenes to prevent the
attainment of an infinitely fine distribution. It is in this sense that the relaxed
version of the theory entails a degree of idealization. Despite this limitation,
such an approach is far more tractable than regularization, and furnishes a
useful model for calculating global features of the response when the original
model fails to possess a solution.

We remark that minimizing sequences involving wrinkling have been con-
structed for membranes and cables separately, but not for the membrane-
cable combination considered here. Thus, the attainability of the relaxed
energy from the original energy remains an open question in the present
context.

3.3.1 Relaxed membrane energy

Kohn and Strang (1986) have observed that Wpg is bounded above and below
by the rank-one convezification and the convezification of W, respectively.
These are defined as in eqn (3.40), except that ¢ is rank-one or convex
as appropriate. The latter functions are defined by algebraic inequalities
rather than the integral inequality that defines quasiconvexity. Thus, they
are generally easier to compute that Wp.

In membrane theory there are many examples in which the two types of
convexification are not easy to compute, but actually coincide. In such cases
Wh, is obtained directly (Pipkin, 1986). The relaxed strain energy is then
convex as a function of F, i.e.

Wa(F + AF) — Wg(F) >T (F) - AF, (3.43)

where T (-) is the constitutive equation derived from Whg:

T (F) =T (Flei®ea;  Tia (F) = OWr/0F . (3.44)
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This property leads to global minimum principles for the potential energy
functional and a complementary energy functional to be specified in chapter
4.

Now any rank-one convex function necessarily satisfies the Legendre—
Hadamard inequality (3.29), and any convex function satisfies the condition
of local convexity obtained by substituting arbitrary Ai, in place of a;bs
in eqn (3.29). Pipkin (1986) has derived inequalities for isotropic elastic
membranes that are equivalent to two types of local convexity. In particular,
the Legendre-Hadamard inequality is equivalent to inequalities (3.32) and

wn Z 0: Wy 2 0) a 2 01 (3'45)

(wuwgg)llz — W2 > b— a, (11)11W22)1/2 + w2 > -b— a, (3.46)

where

a= (A1w1 - A2w2)/(/\% - /\g), b= (/\g‘wl - /\111)2)/(/\% - /\g) (3.47)

with we = Ow/d)s and weg = Pw/BA0Xg. For A; = A, the results
obtained by applying L’Hépital’s rule to eqns (3.45),(3.46), (3.47) remain
valid. Alternatively, the local convexity inequality is equivalent to eqns (3.32)
and (3.45), together with

Wi1Wee — ‘UJ%2 Z 0, |a| 2 b (3.48)

in place of eqn (3.46) (Pipkin, 1986).

It is frequently the case that inequalities (3.45),(3.46) and (3.48) are sat-
isfied by a given strain energy function w(A;, A2). The potential violation of
eqn (3.32) is then the only cause of the failure of quasiconvexity. In such
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circumstances the relaxed strain energy, expressed as a function of stretches,
is the symmetric composite function defined by (Pipkin, 1986):

wr(A, X2) = w(Ar, A2); A1 2> v(A2), A2 > v(Ar)
'lil(A]); /\1 > 1, Ag < ‘U(/\l)

502 >l h<o(h) (349)
0; ’\l S 11 ’\2 S 1
provided that w(l,1) = we(1,1) = 0. Here
w(z) = w(z,v(z)) = w(v(z), ) (3.50)
and v(z) is a solution of
wy(z,v(z)) = wi(v(z),z) = 0. (3.51)

We assume this solution to be unique.

In Pipkin’s terminology (Pipkin, 1986), v(z) is called the natural width
in simple tension. Physically, v(z) is the transverse stretch that nullifies the
transverse stress when the longitudinal stretch assumes some value > 1 in
uniaxial tension (the relaxed form of the strain energy is actually the model
for uniaxial behaviour of the material). Further reduction of the transverse
stretch at the same value of X is accomplished by fine scale wrinkling perpen-
dicular to the tensile axis. Wrinkling does not alter the strain energy, which
retains the value w(z) associated with uniaxial tension. This is the inter-
pretation of the second and third branches of eqn (3.49). The fourth branch
corresponds to slack states generated by simultaneous wrinkling along two
principal directions. We refer to (Pipkin, 1986) for detailed explanations of
these ideas.

The relaxed energy defined by eqn (3.49) is locally convex as a function
of F for all A, \; > 0, and thus in all of F—space. Since the latter region is
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convex, it follows that the global convexity inequality (3.43) is also satisfied,
as discussed previously (We remark that the unilateral constraint on the
determinant of the deformation gradient in conventional elasticity has no
counterpart here as the determinant of F in eqn (2.12) is not defined).

In this work we use several membrane strain energy functions whose re-
laxations meet the foregoing conditions. Each of these involves a material
constant p with dimensions of force/length (or energy/area). This constant
may be interpreted as the bulk shear modulus of the material at infinitesi-
mal strain, multiplied by the uniform initial thickness of the membrane. For
example, the relaxation of the neo—Hookian strain energy is defined by eqns
(3.49) and (3.50) with (Pipkin, 1986):

w(Ar, Az) = 320} + M + 272057 - 3),
w(z) = ip(z? + 2271 - 3), v(z) =z, (3.52)

and the relaxed form of the Varga strain energy (Varga, 1966) is given by
(Haseganu and Streigmann, 1994b):

w(A, A2) = 2u(A + A2 + )\;1/\2_1 - 3),
B(z) = 2u(z + 22712 - 3), wv(z)=z""2 (3.53)

We also study harmonic materials (Varley and Cumberbatch, 1980). For
these the (unrelaxed) strain energy is of the form

w(Ar, A2) = 2u[F(I) — JJ; I =21+ A, J = A2 (3.54)

for some function F(-). In this work, we consider two special cases. The first
one is the case of standard linear solid (Wu, 1979):

Ad2pp Ateg ), (3.55)

F() == ’
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where ) and p are the usual Lamé moduli times the membrane thickness, the
overbar being used so as not to confuse the modulus with the cable stretch.
The second case investigated by Varley and Comberbatch (1980) and Ru
(1998) shows interesting results (as we see in Chapter 5) and it’s given by

F(I) = ZIE(I + /T = 16a), (3.56)

where @ and § are material constants. On the first branch of eqn (3.49) where
wq > 0, it follows by adding the expression for w, obtained from eqn (3.54)
that F(I) > I/2. According to eqn (3.55) this corresponds to the region
defined by I > 2 in the (A;, A2)-plane. Elsewhere the remaining branches of
eqn (3.49) are used, with

(@) = 2ulF e+ (@) ~ @) o) = e -

z. (3.57)

We note that values of z for which v(z) < 0 lie outside the range in which
eqn (3.55) furnishes reasonable agreement with data on real materials. If we
exclude such values then it is straightforward to show that the relaxed energy
defined by eqns (3.49) and eqns (3.57), satisfies eqn (3.32) and the convexity
conditions (3.45) and (3.48) provide that

>0, A+p>0. (3.58)

Another material that is worth mentioning is based on Ogden’s three-
term strain energy function, which models rubber over a wide range of strains
(Ogden, 1984) as compared to neo-Hookian material which is a model for
rubber for a lower range of strains (we model the behaviour of a kind of rubber
for a strain range of 0 to 0.60 with the neo-Hookian model in Chapter 6).
Ogden material is behaving in such a way under large strains that existence
of solutions with finite energy even in the presence of strong singularities can
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be expected (see example 5.3). Li and Steigmann (1995) discuss examples
of this kind for which alternative strain energies yield non-existence. The
unrelaxed Ogden strain energy function is given by

3
w(, ) =) B + A5 + (Ar) ™ — 8/or, (3-59)

r=1

where

o = 1.3, a; =5.0, az = —2.0;
B = 1.491, B, = 0.003, B3 = —0.0237. (3.60)

Following the procedure described in Section 3.3, the relaxed form of this
strain energy will be (Li and Steigmann, 1995):

3
B(z) =Y Br(z™ +227%/% — 3) oy, v(z) =22 (3-61)

r=1
It should be noted that the solution for v(z) is not unique in this case but it
furnishes the optimal version of eqn (3.49) for the problems considered (Atai
and Steigmann, 1998).

Strain energies that were considered so far, are for isotropic materials.
But in a practical structure, the fabric is actually made of families of fibers
that carry the most part of the loading plus a cover—up material that is used
for protection and has some shear resistance. If we neglect the resistance of
the material to shear, a very simple model of such a material would be two
identical families of fibers which are perpendicular to each other. The fibers
behave linearly to strain and this model can also be thought of a cable net
made up of orthogonal grids with linear elastic cables. The strain energy for
such a material would be

w(hi, ) = 34l = 1) + O = 17 (3.62)
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It can be easily seen that

v@) =1, ()= -21-;1(:1: —1)2 (3.63)

Stability inequality (3.32) also holds for this kind of material but now
stretches are along the fibers (this is equivalent to having the force in the
cable to be non-negative if the material is thought of as a cable net). We
can easily see that the material shows a symmetric behaviour that repeats
itself every 90 degrees (see example 5.3). We could have selected two different
families of linear elastic behaviour in which case two different constants would
appear in front of parentheses in (3.62) and the material showed a symmetry
with a repetition of 180 degrees. Although this is a very basic model for
actual fabrics used in structures, but it shows a more realistic behaviour of
structure as compared to the isotropic ones.

3.3.2 Relaxed cable energy

The construction of the relaxed cable strain energy function is far simpler.
We assume that B(\) = B(y') is a convex function of the stretch with an
isolated minimum at A = 1. Then eqn (3.38b) is satisfied for all positive A
and f = B'()) violates eqn (3.38a) if and only if A < 1. The relaxed energy
Br(y') is the function of A = |y'| defined by (Atai and Steigmann, 1997):

0, 0<Xi<1 (3.64)

Here, too, the second branch may be interpreted in terms of a continuous
distribution of wrinkles. The associated constitutive relation is

f =f:(y') = fr(y')y'/l¥'l, (3.65)

where
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fa = fR), A1
0, 0<A<L (3.66)
The function Bg(y’) thus defined is convex, since it satisfies eqn (3.38a,b),
and hence eqn (3.37), for all values of its argument.
In this work we use a simple strain energy that conforms to the foregoing
requirements:

BO)=3E0-1%  f)=EQ-1), (3.67)

where E is a positive constant with dimensions of force.

For the type-2 cable-membrane problem, inequalities (3.38a,b) are re-
placed by the single inequality (3.36). Strictly speaking, this need only ap-
ply at stretches associated with minimizing configurations. Thus the function
G(-) in eqn (3.3) need not be convex. More precisely, our methods do not
yield convexity as a necessary condition in this case. However, it is natural
to impose the requirement that f({/L) be a non—decreasing function, in ac-
cordance with eqn (3.38b). Thus we assume that G(-) is convex on (0, 00)
with an isolated minimum at [ = L, and define its relaxation by

Gr(l) = G(), 2L

0, 0<i<lL, (3.68)

where L is the unstretched length of the cable. The associated force-extension
relation is fr(l/L) = G'(!). This is equivalent to eqn (3.66) with f(A) re-
placed by G’(l), and the relaxed potential energy is now given by

Erly] = / Wa(F)da + Gr(ly])- (3.69)

The remainder of this work is based on the relaxed energies (3.39) and
(3.69). Thus, we drop the subscript R in the subsequent development.



Chapter 4

Discretization and numerical
solution

Since it is not feasible for us to satisfy equilibrium equation (2.22) at every
point of Q, we discretize the domain as described below and use a numeri-
cal technique to solve equilibrium equations, which are the finite difference
approximates of the continuous ones, at some specific points.

4.1 Discretization

We discretize the region € into quadrilateral regions called zones that are
surrounded by 4 nodes (Figure 4.1). Nodes are identified by a pair of integer
superscripts like (7, j) while zone centers, shown by circles, are identified by a
pair of half integer ones, such as (i+ 1/2, j+ 1/2); z&7 are the coordinates of
the node (3, j) in the reference configuration and y}J are its coordinates in the
deformed configuration. We consider quantities such as displacements and
internal and external forces at the nodes while quantities like deformation
gradient, strain, stretches, and stress are averaged at the zone centers. One
useful theorem that helps us calculate the deformation gradient and internal
nodal forces by relating the derivatives of a quantity to its value is the Green’s
theorem. It states that

39
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Figure 4.1: Discretized regions for finite-difference approximation of equations of
equilibrium.



CHAPTER 4. DISCRETIZATION AND NUMERICAL SOLUTION 41

[ [ #ada=cas $ iz, (4.1)

where ¢(x) is any piecewise differentiable field in the plane, eqs is the unit
alternator (ej; = —ea; =1, e;; = ey =0), and 9 is the piecewise smooth
boundary of Q. Haseganu and Steigmann (1994a) have fully discussed the
application of Green's theorem to a membrane. Upon replacing ¢ with y;
in (4.1), the integrand on the left hand side becomes the ka component
of the deformation gradient. If we consider the quadrilateral with the zone
center (i+1/2, j+1/2) for example, and replace yi o With F“'l/ 2g+1/2 (which
is considered to be constant over the corresponding quadrilateral region),
replacing yx on the right hand side with the average value at the edges of the
quadrilateral results in the average deformation gradient components for the
shaded region in Figure 4.1 (Silling, 1988b)

F;:1/2J+1/2 (2A;+1/2,J+1/2)-le [(:L'"J+1 :+lg ) (y:+lg+1 yi,j) _
(ztﬁ-i-l,,]-i-l ;,J)(y:g+1 t+1,J)] (42)
where
Ai+1/2J+1/2 —_ _]_-_[(zi,j+1 z+1,3)( i+1g+1 sl,J) _
(.'E"J+1 x+1,_1)(zt+1._1+1 i,j)] (43)

is the area of the shaded region. We can then use (2.13) to calculate the
Cauchy-Green strain tensor and the Piola stress can be calculated from (2.20)
at the zone center. We do this for each zone center on the dashed contour
and using Green’s theorem replacing ¢ by Tk., the discretized equation of
equilibrium for the node at the center of the dashed contour can be written
as
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B :J = 2A‘-J(Tka.a)
- eaﬂ[T’::1/2J+l/2(zz,j+l _ z;+l.j) + T;;1/2J+1/2(z;"—ld - x;‘i*l)
+T,:;1/2,J—1/2 ( z;'gj-x _ z;-l,j)

+T':’+1/2J—1/2(z;+ld —zi =0 (4.4)

o4

where A% is half of the area of the dashed contour

49 =4 i syt ot -
(zi7 — 2 (T - Y. (4.5)

Once again, the average value of the Piola stress on the sides of the contour is
used on the right hand side of (4.1). Equation (4.4) gives the kth component
of the sum of the internal forces at the node (Z,5). The truncation errors
related to (4.4) and (4.2) are discussed in Silling (1988b) and Herrmann and
Bertholf (1983). They state that the error is of the order of mesh size times
the mesh distortion parameters. The distortion parameters are minimized if
the shape of the zone is as close to a rectangle as possible. This is the reason
why we try to use the orthogonal curvilinear coordinate system discussed in
Appendix A to generate the meshes for the examples in the next chapter.
In order to simulate traction-free boundaries, we still consider a dashed
contour surrounding each node on the boundary at a time by assuming ghost
quadrilateral regions exterior to the domain and we then set the Piola stress
corresponding to the zone centers of these ghost zones to zero in (4.4) and
collapse the zone—centers exterior to the boundary on to it (thus reducing
the area of the ghost zone to zero). A similar procedure may be used to
simulate suturing. Let’s consider two edges s, and s; of two pieces of mem-
brane that are to be sutured together (Fig. 4.2). We know that if we consider
each piece separately after the suturing is done, there is going to be a traction
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Figure 4.2: Green integration path for two pieces that are to be sutured.



CHAPTER 4. DISCRETIZATION AND NUMERICAL SOLUTION 4

distribution on the edge on one piece exerted by the other piece. Integration
of the traction distribution along each edge gives us the force exerted from
one piece to the other piece [Cf. (3.21)]. We approximate this force by
approximating the traction integration with the integration of traction on
those edges of the dashed contour that are exterior to the domain

/ Tvds = / Tvds + / Tvds, / Tvds =~ | Tvds+ | Tvds (4.6)
s 3 4 s2 3 Iy

where subscripts 3(3') and 4(4’) refer to the two dashed segments exterior to
the left— (right-)hand part of the membrane shown in the figure. Equation
(3.21) is approximated by requiring that the sum of the above two integrals
be zero. Considering this in mind and writing the equation of equilibrium
(4.4) point B and its matching point B’ and adding them together, We arrive
at

2 2
/ divTda + | divTda= z / Tvds + Z Tvds, (4.7)
L Qg i=1 /i #=1Y7
where ; and Qg are the regions enclosed by the left and right contours,
respectively. We then collapse the zone—centers exterior to the regions on to
the boundaries reducing 0z and Qg to the regions enclosed by the interior
dashed lines and the boundaries. This is the same as considering the regions
enclosed by the boundaries and the dashed interior segments that remain, as
the dashed contour for both points B and B’. The area-weighted average of
divT formed by the two contours is equal to the left hand side of eqn (4.7)
divided by A + Ag, the total area of the region Q7 UQg. This average value
is assigned to each member of the pair of opposing nodes along the two edges
to be sutured. The resulting difference formula is identical to (4.4) (apart
from labeling) with the stresses on the right-hand side of the second equality
evaluated at the interior zone—centered points along segments 1,2,1’ and 2’
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with 2A on the left-hand side of that equality replaced by Ay + Ap. With
this interpretation of divT, the first equality in eqn (4.4) furnishes the net
force on the common deformed node. To maintain displacement continuity
for the nodes on the sutured edges, we assign the same deformed position y
to each pair.

Cable-membrane interaction may be approximated in a similar manner.
Thus let’s assume that a cable is attached to the boundary of the left-hand
region in Figure 4.2. The net force on the boundary node B of the membrane
is again given by

4
P= [ divTda=) / Tvds. (4.8)
QL =1 Vi
The sum of the integrals over segments 3 and 4 approximates the integral of
the traction applied to the membrane from point A to point C along the edge.
According to the coupling condition (3.16) between cable and membrane, this
is equal to fc — f4, where f4(c) is the force in the part AB (resp. BC) of
the cable, evaluated at node A (resp. C). Therefore, the sum of the forces
at node B can be approximated by

2

Pr~)._ / Tvds + fc — fa. (4.9)
i=1 V3

The traction integrals over the segments 1,2 in the interior of the mem-
brane are estimated by replacing the stresses with their values at the zone—
centered points, as in eqn (4.4). It should be noted that for a cable reinforce-
ment in the interior, the force due to the cable fc — f4 is added to the right
hand side of (4.4). This can also be considered as having the suturing and
cable reinforcement along the same edge together. To obtain the cable forces
we consider the cable to be connected to the membrane only at the nodes (the
word connection means that at the nodes, the cable follows the displacement
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of the membrane. For the type—1 cable, a point of the cable is attached to
a point of membrane at the nodes at all time but for the type-2 one, it’s
not a fixed connection type and after equilibrium, a point on the cable coin-
cides with a point on the membrane at the nodes). The actual curve of the
cable is thus replaced by a connected sequence of cables. For a sufficiently
fine mesh, this approximates the continuous attachment condition. So the
local response of the cables can be considered as though the distributed loads
acting upon them vanished. Equations (2.8) and (2.9) then imply that the
deformed cables are straight and uniformly stressed between successive nodes
(the mass of the cable is neglected). For the type-1 problem, this leads to
the approximations

fc = f(Ac)tee, fa= f(AaB)tas (4.10)

where f() is the force-stretch relation of the actual cable, presumed to be
elastically uniform,

tge = (yc —¥8)/lyc —yBl and tag = (yB —ya)/lys — yal (4.11)

are the directions of the segments between the deformed nodes, y4,5,c are
the nodal positions, and

Asc = lyc —yBl/Ixc —x8l, Aas=I|ys—yal/lxs — x4l (4.12)

are the stretches. The type-2 problem is handled in the same way except
that the stretches are now taken to be equal to the total arclength of the
deformed cable divided by the total reference arclength:

Aag = Apc =1/L, (4.13)
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where [ and L are estimated as the sums of the straight-line distances between
successive nodes on the cable, in the deformed and reference configurations,
respectively. It might be interesting to note that we can model a cable
with variable modulus as a type-1 cable with each cable segment (between
two successive nodes) having a constant modulus but the same cable with
a type-2 attachment is very hard to model because the relative position of
cable and membrane is changing during the analysis. We’ll see an interesting
application of the first case when we talk about elliptic neutral holes in the
next chapter.

We remark that preliminary calculations for some examples discussed
in the next chapter exhibited zero—energy modes (the zones are distorted
severely without any change in the strain energy), or hourglassing , which
typically results in serious degradation of the solution. Special measures
to suppress hourglassing have been described by Flanagan and Belytschko
(1981) and Silling (1988b). Rather than adopting such measures here, we
have instead used hourglassing to assess the suitability of a particular mesh
topology for the problem under investigation. We'll see in the next chapter
how choosing a mesh that is not consistent with the geometry of the deforma-
tion can cause hourglassing and collapse of the mesh. We’ve then redesigned
the mesh and repeated the calculations and as we’ll see, the hourglassing
problem is eliminated.

4.2 Numerical method

Equilibrium of free node (i, ;) requires that P/ = 0 (by free nodes, we
mean nodes that are not fixed or under prescribed displacement). Let’s see
how the unknown position vector y*/ appears in this expression. It first
appears in the deformation gradient (4.2), then the Cauchy-Green strain
tensor (2.13) is calculated which is quadratic in unknown position vector
components. The principal stretches and principal vectors of this tensor will
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have a higher degree on nonlinearity in terms of y,';‘j . Then the material non—-
linearity comes into play and w,’s are calculated. Then the Piola stress is
calculated from (2.20). So as we see, the Piola stress components that enter
into discretized equilibrium equations (4.4) are highly non-linear in terms of
unknown nodal coordinates. So if we try to solve the equilibrium equations
by methods that directly depend on the stiffness matrix (or the Jacobian),
such as Newton-Raphson, first of all we are facing a big complication in
calculating the elements of that matrix in terms of unknown coordinates due
to the extremely high non-linearity present in the problem. Secondly, we
need a high computational time and a large memory storage for the stiffness
matrix. And thirdly, even if we can overcome those obstacles, we must invert
the stiffness matrix. This is not an easy task from the computational point of
view and other than this, a very important fact is when we are dealing with
problems that include slack and/or wrinkled regions, the stiffness matrix will
become ill-conditioned and the results obtained for these problems based on
these kinds of stiffness matrices is not the true numerical solution.

Here, we’re using a numerical method that does not make use of the stiff-
ness matrix (at least not directly), needs small memory storage because it
only deals with vector quantities instead of matrices, and no matrix inver-
sions are involved. This method is called dynamic relazation. The method
is similar to the artificial viscosity schemes used by Silling (1987; 1988a,b;
1989), Swart and Holmes (1992), and Klouéek and Luskin (1994). These
authors didn’t use relaxed strain energies in their computations since they
were mainly interested in simulating the dynamic evolution and asymptotic
behavior of fine scale features similar to those associated with minimizing se-
quences in the corresponding variational theories. Haseganu and Steigmann
(1994a, 1996) used this method in application to membrane theory as a tool
to overcome the ill-conditioning of conventional stiffness-based formulations
derived from eqn (3.49).

In this method, the equilibrium equations are replaced by the artificial
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dynamical problem

divT(x,t) = p(x)3v(x,t)/0t + cp(x)v(x,t); v(x,1) = By(x, )8t (4.14)

subject to the kinematically admissible initial conditions

v(x,0) = Y(x), v(x,0)=0. (4.15)

where p(x) is the mass per unit area of the reference plane, ¢ is a posi-
tive damping coefficient, ¢ is the time, and Y(x) is the initial guess for the
deformed configuration (which we usually take to be the undeformed config-
uration). If we choose the mass and damping properly, hopefully the velocity
and acceleration terms in (4.14) go to zero and the steady state response will
be the solution to the equilibrium equations (4.4). A 1D analog of this would
be the problem of finding the displacement at the end of a spring when a
force is applied to it. An alternative for solving this problem is to add ac-
celeration and velocity terms with proper mass and damping constants to
the equation of equilibrium and thus making it a dynamical problem. From
classical vibration, we know that the steady state response for the dynamic
problem is the solution of static one (what we were after from the beginning).
The discrete form of the dynamic equations of motion thus would be

MUghin 4 oM yidn = plin, (4.16)

where the subscript n identifies the time value ¢, (or the iteration number
with n=0 corresponding to the initiation of the process),

MY = 2A% p(x*) (4.17)

is the nodal mass, and superposed dot represents the time derivative. The
time derivatives are replaced by the central differences
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y" =32+ g1,
5'" — _,l:()-,n+1/2 _ }-,n-l/2), (4.18)
)',n-l/2 — %(yn _ yn-l),

where h is the time increment and the node label (%, /) has been suppressed.
These are accurate to order O(h). On substituting them into eqn (4.16) we
obtain the explicit decoupled system in terms of velocities at half time step
(Underwood, 1983; Haseganu and Steigmann, 1994a):

(h~! +c/2) MiWghintl/2 = (B~ _¢/2) Myiin-1/2 4 piin
yi,j,n+1 — yi,j,n + h}"i’j'n+l/2, (419)

which is used to advance the solution in time node by node. The first ex-
pression in the above equation holds for n > 0. For n = 0, since we have
y"0 = Y(x) and y*9° = 0 [Cf. (4.15)], it follows from eqns (4.19) and
(4.19) that

(2/R) M*y3/2 = pHas, (4.20)

wherein the right-hand side is determined by Y (x).

Although the automation of dynamic relaxation in order to calculate the
proper values for mass and damping is well documented (e.g. Papadrakakis,
1981: Underwood, 1983), we’ve made no attempt to optimize this method
and rather, in the algorithm described below, we pick the mass and damping
coefficients to be constant both in time and space. In the examples that
we've considered in the next chapter, the number of iterations for an error
tolerance of 10~5 for the equations of equilibrium haven’t exceeded 2000.

Here is the step by step description of the algorithm used to solve the
equations of equilibrium:
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o Pick an initial guess Y for the deformed configuration which is consis-
tent with prescribed displacements. Set initial velocities y**0 to zero.
Set n = 0. Pick the values for mass and damping.

e Calculate the deformation gradient at zone centers from (4.2).
o Calculate the Cauchy-Green strain tensor from (2.13).

¢ For isotropic materials, calculate the ppl. stretches A, as the square
root of the eigenvalues of C and the ppl. vectors u, as the eigenvectors.
For orthotropic materials, u, are the unit vectors along the two families
of the fibers and the stretches along them are calculated from A2 =

U, - Cu,.
e Calculate the Piola stress at the zone centers from (2.20) using (2.24).

e Calculate the total force at each free (unconstrained) node from: (4.4)
for ordinary nodes; (4.9) for nodes along cable reinforcements; (4.7) for
nodes along the sutured edge. We call this the residual.

e If residual is close enough to zero, stop. Otherwise, continue.

e Calculate the velocity at the free nodes at a half time step later from
(4.19); or (4.20), whichever applicable.

¢ Calculate the unknown position vectors at a time step later from (4.19).
e n=n+1

e Go To the second step.
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Numerical Examples

In this section, the results obtained by applying the dynamic relaxation pro-
cedure to some problems are discussed. Wherever possible (e.g. Carrol,
1988), analytical results are presented and comparison is made. We've tried
to cover the areas of suturing and cable reinforcement by providing different
examples. In all examples, trial of different initial guesses for the deformed
configuration has resulted in solutions that can not be distinguished.

5.1 Examples involving plane deformation of
membranes

For a general plane deformation, the deformation gradient is a square matrix
and its determinant is well defined. Applying the two-dimensional polar
decomposition theorem we obtain

F= /\1V1 ®u; + /\2V2 ® u,; (51)

where, for an isotropic material, A;, A7 are the principal stretches, u;, uz are
the orthonormal principal vectors of FTF [cf. eqn(2.14)], and v;, v are the
orthonormal principal vectors of FFT. The determinant of F is J = A ); [cf.
eqn(3.54)]. Then, from eqns (2.20) and (2.24) it follows that

52
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T= w1 vy @ U + wavy @ Us. (5.2)

Since the relations (3.54),,3 defining [ and J in terms of A; and A, are
invertible, the strain energy may be represented as W (I, J), and

w; = Wi+ AW, wy = Wi+ A\ W;. (5.3)

Substituting this into (5.2) we get

T = Wi+ W)vi®u +(Wr+MWi)va@u,
= W[(Vl Pu; +v2 ® ug) + WJ(/\QVI Qu;+Av2 ® llz). (5.4)

Setting

F* = /\QVI Qu; + /\1V2 Q@ up = JF—T (55)

as the adjugate of F, eqn (5.4) can be written as

T =I"'W(F +F*) + W,F". (5.6)

The identity divF* = 0 makes eqn (5.6) attractive for the analysis of
the equilibrium equation (this identity can be easily proved by writing the
deformation gradient F for a general 2D deformation in Cartesian coordinates
and calculating F* from the last expression in (5.5) and writing the divergence
vector components using (divF*), = F345).

Now let’s consider the class of axisymmetric radial plane deformations

x =rer () =y = p(r)e-(9), (5.7)
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where (r, #) are the polar coordinates in the plane and e, () is the unit vector
in radial direction. Thus

dx = dre,(0) + rdle,(0)] = dre, + rdfey,
dy = d[p(r)]le-(8) + p(r)d[er(0)] = p'dre, + pdOeg, (5.8)

and from dy = Fdx, the deformation gradient is

F=/p'(r)e.®e + (p/r)es @ ey. (5.9)

Comparing this with (5.1), the radial stretch is A; = p/(r) and the hoop
stretch is A\, = p/r and the requirement of J > 0 for a physical deformation
yields p’ > 0. The adjugate is

F* = (p/r)e,Qe, + o (r)es @ ey, (5.10)

and it can be easily seen that

F+F*=IA; I=p +p/r (5.11)

where A is the two—dimensional unit tensor. Then eqn (5.6) reduces to

T = W;A + W,F* (5.12)

for axisymmetric radial deformations. The equation of equilibrium thus is

divT = div(WrA + WiF*) = div(W;A) + div(W,F*)
= Agrad(W;) + F*grad(W;) = 0. (5.13)
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If in addition, an elastically uniform cable is attached to the membrane
along its inner edge r = r;, its stretch is A = Az(r;) and its direction is
t(s) = —eq(#), where 6 = —s/r; (the negative sign is there because s is
measured in accordance with Green’s theorem; it runs clockwise along the
inner boundary of the annulus). Therefore, the force transmitted by the
cable is

£(s) = —f(Qa(ri))es- (5.14)

Because of the symmetry in the deformation, the cable has no shear
interaction with the membrane and thus the above expression is true for both
types of cable attachment. Substituting (5.14) into (3.16) [or (3.27)] with
T = —e, and invoking eqns (5.10)-(5.12), the coupling condition between
membrane and cable would be

fIri= Wi+ (o/r)Wil=r: (5.15)

We also prescribe the displacement on the outer boundary r =1,

p(ro) = po(> To)- (5.16)

Then having the strain energy functions for membrane and cable, we can solve
the ordinary differential equation (5.13) with boundary conditions (5.15) and
(5.16) to obtain p(r) and hence the analytical solution to the equilibrium
equation. We consider a few material models here.

5.1.1 Varga material

We assume that the condition (5.16) generates biaxial tension everywhere
in the membrane and therefore the stretches belong to the first branch of
the relaxed Varga strain energy defined by eqns (3.49) and (3.53). We also
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[{4{9¢3

assume that the cable stretch is greater than zero and these assumptions

are verified when we obtain the solution. Based on the definition of Varga
strain energy [Cf. eqn (3.49)]

Wi = 2u(= const.), Wy = —2uJ 2 (5.17)

So the equilibrium equation (5.13) reduces to (Varga, 1966)

—4pJ3F*gradJ =0 — J= !_’fl_ = Const., (5.18)

which applying the boundary condition (5.16) y1e1ds

p(r) = [p? — J(r2 = A2 (5.19)

We use the coupling condition (5.15) to calculate J

FR2(r))/ri = 2u(1 — Ao(r:)/JT?) (5.20)

but from (5.19)

Aelrs) = (1:1) {(r‘)z_,}[(:—:)z—l]}m. (5.21)

Assuming a linear elastic force-stretch relation for the cable given by eqn
(3.67), we can solve eqn (5.20) to get Ax(r;) as

Ao(rs) = (1 + é—%) / (J‘2 + 2—%) . (5.22)

We can then equate this to (5.21) and get a non-linear equation in J which
can be solved by Newton’s method, for example. Knowing J, we have the

complete solution from (5.19).



CHAPTER 5. NUMERICAL EXAMPLES 57

In order to make a comparison between the analytical and numerical
solutions, we consider the case

r;/To = 0.5, Po/To =1.2. (5.23)

Figure 5.1 shows the meshed initial configuration used for computations.
It consists of 10 divisions radially and 72 equally spaced divisions circum-
ferentially. Without imposing any symmetry on the free nodes, the outer
boundary is displaced radially as specified and Figure 5.2 shows the deformed
configuration for the case of no cable (E = 0) along the inner boundary. As
we can see, there is axisymmetry in the solution as expected. Figure 5.3
shows the comparison of distribution of analytical and numerical radial and
hoop stretches versus radius for this case. The solid curves show the analyt-
ical results while the circles and triangles show the numerical values for the
hoop and radial stretch respectively. The numerical values for the stretches
are considered to be at zone centers. As it is seen, there is a very good match
between analytical and numerical results. Figure 5.4 shows the stretch dis-
tribution for the case of cable reinforcement along the inner boundary with a
cable stiffness of E/2ur; = 2.0. Again the numerical and analytical solutions
coincide and we can see by comparing this to the previous case that the pri-
mary effect of adding the cable reinforcement is to reduce the high stretch
gradients along the inner boundary. For both the above cases, the stretches
fall in in the range for which Varga material shows good agreement with
biaxial data on rubber (Varga, 1966). As it was said before, the assumptions
that were made about the stretches in the beginning are now verified.

5.1.2 Harmonic materials

Let’s consider the same boundary value problem for the class of Harmonic
materials. Making the same assumption about the stretches, we can use the
unrelaxed strain energy function for harmonic materials given by (3.55).
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Figure 5.1: Meshed reference configuration of an annular membrane with ri/1o=0.5



CHAPTER 5. NUMERICAL EXAMPLES 59

Figure 5.2: Deformed configuration with po=1.2ro. Varga material. No cable
reinforcement
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Figure 5.3: Distribution of stretches vs. radius for Varga material with no cable

reinforcement; (A) numerical hoop stretch, (O) numerical radial stretch. Solid lines show
the analytical results.
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Figure 5.4: Distribution of stretches vs. radius for Varga material. Cable reinforcement

with E/2ur;=2.0; (A) numerical hoop stretch, (O) numerical radial stretch. Solid and
dashed lines show the analytical results for this case and previous one respectively.
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Therefore

7 A 2 A -
Wi = 2uF"(I) = 2u(~+ 1~ By R+ 2m)] - 200+ p),

W, = —2u(= const.). (5.24)

and the equilibrium equation (5.13) reduces to

(A +2u)Agradl =0 - I =p +p/r = const. (5.25)

and when subjected to (5.16) it yields

p(r) = r = r2/r) + pura. (5.26)

The coupling condition (5.15) reduces to

(A +2m)] = 2(A +p) = 2p+ E/ri)do(rs) — B/, (5.27)

with

I
Ao(ri) = -2-(1 —12/r2) + poTo/TE. (5.28)

Substituting this into (5.27) and solving for I (this is a linear equation in
I), the solution (5.26) becomes

G+1)+ (L +55) e — 52
(2+2) = (L+55)A—r2/rd)

For illustrative purposes, we use the data in (5.23) and set A/p = 2.0.
Figure 5.5 shows the stretch distribution for the case of E = 0 (no cable) using
the mesh in Figure 5.1. The results for the case of a cable reinforcement with
E/2ur; = 2.0 is shown in Figure 5.6. Both figures show excellent agreement
between numerical and analytical results.

p(r) = (r —15/7) + PaTo/T. (5-29)
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Figure 5.5: Distribution of stretches vs. radius for standard harmonic m-:crial

(A/ i = 2.0) with no cable reinforcement; (A) numerical hoop stretch, (O) numerical radial
stretch. Solid lines show the analytical results.
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Figure 5.6: Distribution of stretches vs. radius for standard harmonic material
(A / L =2.0). Cable reinforcement with E/2ur;=2.0; (A) numerical hoop stretch, (O)
numerical radial stretch. Solid and dashed lines show the analytical results for this case and
previous one respectively.
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5.1.3 Neo-Hookian material

Using the relaxed strain energy function for this material defined by (3.52),
we get

W= ul, Wy=—pQ+J7?) (5.30)

and the equations of equilibrium are

pgrad/A + 3uJ ‘grad JF* = 0. (5.31)

Having the definitions for / and J and knowing that the stretches only
depend on r, we can write

gradl = grad(p/r + ¢) = (52 + p')er,
gradJ = grad(pp'/r) = (&z2p' + pp"[7)er, (5.32)
A=e Qe +e9® ey,
F*=p/re. @e, + ey ® ey.

Substituting these into (5.31) and simplifying we get

o — 1 ’ - ™ — P o
Tt 430 )y I e e o 1) =0, (539)

This is a non-linear ODE that has to be solved numerically subject to
boundary conditions (5.16) and the coupling condition between cable and
membrane which for a cable corresponding to (3.67) yields

E _ (p/ri+pl) — 2L+ (pipi/Ts) ]

LT & _1 (5:34)
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where p; = p(r;) and p! = g/(r;). We use the shooting method [see Press,
(1992) for example] to solve (5.33) numerically to get the analytical solution.
For the data set given in (5.23), Figures 5.7 and 5.8 show the distribution of
stretches for the cases of E = 0 (no cable) and E/ur; = 2.0 respectively. Once
again, we see a good agreement between numerical and analytical results.

Now let’s consider another axisymmetric problem with wrinkling involved.
We take the same annulus membrane made up of neo-Hookian material but
this time subject to the following boundary conditions

p(ro) = Po = To, Appﬁed traction t = —€r atr = Ti. (5'35)

With these conditions, we expect to have some wrinkling near the inner
boundary because of the shrinkage of membrane due to the applied inward
traction. Solving the numerical problem using the same mesh as before ver-
ifies our expectation. Figure 5.9 shows the deformed configuration for this
problem and as we can see, a ring around the inner boundary is wrinkled
(shown by the zones with straight lines at the center where these lines show
the tensile trajectories which are in the radial directions as expected). In
order to get the analytical solution, we first need to find out how the Pi-
ola stress T changes for a wrinkled region. Since we expect the membrane
to be tense radially and slack circumferentially in the wrinkled region, the
membrane strain energy for this case would be [Cf. (3.50)]

w(A1) = w(A,v(Ay)) (5.36)

and the Piola stress would be [Cf. (3.44)]

T =1 Qe, (5.37)

where 1; = d/d)\;. The equation of equilibrium in the wrinkled region then
is
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Figure 5.7: Distribution of stretches vs. radius for neo-Hookian material with no cable

reinforcement; (A) numerical hoop stretch, (O) numerical radial stretch. Solid lines show
the analytical results.
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Figure 5.8: Distribution of stretches vs. radius for neo-Hookian material. Cable
reinforcement with E/pr;=2.0; (A) numerical hoop stretch, (O) numerical radial stretch.
Solid and dashed lines show the analytical results for this case and previous one
respectively.
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Figure 5.9: Deformed configuration with po=To and applied radial traction of t=-e; on
the inner boundary. Neo-Hookian material. No cable reinforcement
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divT =0 — du, /dr + 1 /r = 0. (5.38)

Now let’s denote the radius in the undeformed configuration correspond-
ing to the boundary between wrinkled and tense region by ¥ with r; < 7 < 7.
Then the relation between principal stretches at that location would be [Cf.
(3.51)]

A2 = v(N) atr=+ or p(F)/T = p'(F). (5.39)

From eqn (2.21), the boundary condition at r = r; can be rewritten as

Tv=t=—e, 21w =1 atr=m;. (5.40)

So, in order to get the analytical solution for this problem, we must solve
the following differential equation system

eqn (5.13) forFr<r <o
eqn (5.38) forr; <r < T (5.41)

subject to boundary conditions (5.35) with ¥ derived from (5.39). It should
be noted that the solution for the interval ¥ < r < 7, is the same as the ones
obtained for (5.13) for different materials. Figure 5.10 shows the analytical
and numerical distribution of stretches vs. radius for neo-Hookian material.

5.2 Neutral holes

In this section, we discuss how the application of proper cable reinforcement
around the boundary of the hole in the membrane subject to biaxial stretch,
can produce such a stretch distribution inside the membrane as if the hole
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Figure 5.10: Distribution of stretches vs. radius for neo-Hookian material with no cable

reinforcement and applied radial traction ; (A) numerical hoop stretch, (O) numerical radial
stretch. Solid lines show the analytical results.
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wasn’t there at all(neutral hole effect). Mansfield (1953) has discussed this
issue for infinitesimal displacements in the class of linear elastic theory but
we present cases of finite displacements. We present two cases for which we
can formulate analytical solutions and compare with numerical ones.

5.2.1 Circular hole

Following the cases discussed in the previous section, one might have this
expectation that it is possible to choose the cable modulus such that the
hole behaves neutrally (for example, if we consider the limiting case of a
cable with modulus at infinity, the hole does not expand under deformation
and thus we have a hoop stretch of one at the hole boundary increasing to
a value greater than one at the outer boundary and increasing hoop stretch
corresponds to a decreasing radial stretch. But in the previous cases, we had
a decreasing hoop stretch and an increasing radial stretch. So there should
be a point that the curves corresponding to the stretches have crossed or even
lied on top of each other). Following the energy and stability discussions in
Atai and Steigmann (1998), we take the deformation gradient for the case of
applied equibiaxial stretch to be

F(x) =24;  A=p,/ro(> 1) (542)

Then from (5.5) F* = F and (5.12) reduces to

T=TM\A, TN =W+\W, (5.43)

with I = 2) and J = )2. Since A is constant, the equation of equilibrium
(5.13) is satisfied inside the domain and the boundary condition at the hole
is

FO /= T(A) = Wi + AW). (5.44)
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Having the strain energy function for the membrane and assuming a linear
elastic cable, this can be re—written as

E(A = 1)/r; = Wi + AWy. (5.45)

For example, for Varga material, W; = 2u and Wy = —2pJ 2 = —2ux~*
and the above boundary condition reduces to

Ef2uri=(1-A"Y)/(A—1)= (A +21+1)/A7% (5.46)

Following the same procedure, the boundary condition reduces to

Efuri = (A2 +1)(A+1)/X° (5.47)

for neo-Hookian material and

_ £

2(A + p)r;
for standard harmonic material. It is interesting to note that for the latter
case, the cable modulus for neutral hole case does not depend on the amount
of stretch A = p,/r, meaning that if we choose this value for the modulus, the
hole remains neutral no matter what is the value of the equibiaxial stretch
applied on the outer boundary which makes this more flexible and suitable
for applications as opposed to the other two cases where the cable modulus
depends on the amount of the stretch applied on the outer boundary. But
for small stretches (A = 1), we can always linearize the right hand side of
the above boundary conditions to get a cable modulus for the neutral hole
case that does the job for a small range of stretches close to 1. Figure 5.11
shows the comparison of numerical and analytical stretch distributions for
standard harmonic materials with A/u = 2.0 which yields E/2pr; = 3.0.

(5.48)
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Figure 5.11: Distribution of stretches vs. radius for standard harmonic material

(X /it = 2.0). Cable reinforcement with E/2ur;=3.0; (A) numerical hoop stretch, (O)
numerical radial stretch. Solid lines show the analytical results.
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5.2.2 Elliptic neutral hole

Let’s consider a membrane in z;-z; plane with an elliptic hole with axes along
71 and z, subject to a biaxial stretch along those axes with the deformation
gradient

F= Alel e + /\292 ® ey (5.49)

where A; > 1 and A, > 1 are the applied stretches (not to be confused with
principal stretches derived from Cauchy-Green strain tensor) along z; and
T, axes with unit vectors e; and e; respectively and the assumption is made
that the hole is neutralized with the use of proper cable reinforcement. The
Piola stress will then be

T=W;+Wyer®e+ Wi+ AWile2® e (5.50)

with [ = A; + Ay and J = A;\;. It can be readily seen that the equation
of equilibrium is satisfied inside the membrane. In order to examine the
boundary condition (3.16) at the hole, let’s consider the geometry of the hole
before and after deformation (Figure 5.12). So a and b are the semi—axes of
the ellipse before deformation and Aja and A2b are their deformed lengths.
From the geometry of the ellipse in the undeformed configuration, we can
write

asinfe; — bcosfe, bcosfe; + asin fe;
= (@snt0+ RPcos28)2’ U T " (a?sin? 0 + b2sin? 6)12
where t is the unit tangent to the boundary and v is the rightward normal to
it and 0 is the parametrization of the boundary that defines the coordinates
of each point on it as

t (5.51)

T = acosf, T2 = bsiné. (5.52)
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Figure 5.12: Geometry of the elliptic hole before and after deformation
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In order to write down the force vector in the cable, we need the unit
tangent vector to the deformed boundary. This can be derived by finding
the deformed state of t as

a) sin fe; — bAg cos Be;

r=Ft= 5.53
T (a2sin? @ + b2 cos? 9)1/2 (5:53)

and normalizing it to get
r=#/|F = al; sin fe; + b\, cosfe, (5.54)

(a2A2?sin? 0 + b2)\2 cos? 9)1/2°
The boundary condition at the hole is Tv = f’(s). From (5.50) and
(5.51), the left hand side of this can be written as

bCOS G(W[ + /\2"VJ)€1 + GSlIle(W[ + A WJ)

Tv= (a?sin® 0 + b2 cos? )12 (5-55)
For the right hand side we can write
df dr
£(s) = f(s)T = £'(s) = f'(s)T + fdr/ds = f'(s)T + a8 (5.56)
Substituting for 7 from (5.54) and for df/ds from
-1
— 2 2 =
ds = (dz} + dz3) — df/ds = (@Zm? 0 1 b2 cos? B) 112 (5.57)

into (5.56) and equating it with (5.55), we get expressions for f and f
which won’t be mentioned here because of complications. Upon taking the
arclength derivative of f and comparing it with f’, we arrive at the following
constraint (Atai, 1997)

a_ (/\Q(W[ + A Wy) 12 (5 58)
b M(Wr + M Wy) ’ )
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This condition states that having the elliptic hole geometry, the biaxial
stretches that must be applied as one of the necessary conditions to ob-
tain neutral hole state are not independent of each other. There might even
be cases that certain choices of A, or ), does not yield a real value for the
other stretch. It can be seen that setting @ = b (circular hole) results in
the equibiaxial stretch case of A\; = Ay = A as the trivial case. The other
necessary condition is the magnitude of the force f given by

A2 2 1/2
f = b(W; + A Wy) (A—gzi cos? § + sin? 0) . (5.59)
Since 6 is varying along the hole boundary, the modulus of the cable £
must also vary according to this expression. This might not be feasible for
practical purposes as opposed to the circular hole case where the modulus is
constant along the cable. The second point is that because of the symmetry
in the problem in the previous case, application of a type-1 or type-2 cable
reinforcement didn’t make any difference. However, for the present case,
since the modulus of the cable has to be a certain value at a certain point,
the cable and membrane cannot slide with respect to each other and hence
a type—1 cable reinforcement must be applied here. Setting @ =b =r; and
A1 = A2 = X reduces this to (5.15) for the circular hole case.

We present an example here discussed in Atai (1997). We use the mesh
shown in Figure 5.13 for computational purposes. We use a hole geometry
of a = 1.25b = 0.57, and specifying a stretch of A\ = 2.5 along the z» axis
and a Varga type material, the stretch along z; is calculated from (5.58)
to be A; = 1.4596. Although according to (5.59), the modulus of the cable
should vary continuously along the boundary, for numerical purposes we’ve
calculated the modulus for the center points of the edges of the zones around
the boundary and kept it constant for the length of that edge. Hence, instead
of being continuous, the modulus is jumping step by step along the boundary.
Figure 5.14 shows the distribution of stretches along the z, axis and the
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Figure 5.13: Elliptic hole with dimensions a=2.5b=1¢/2 inside a circular domain of
radius r,.
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Figure 5.14: Distribution of stretches vs. horizontal axis for an elliptic hole of a=2.5b=tp/2ina
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reinforcement corresponding to the neutral hole case
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numerical results correspond to the centers of the zones closest to the ; axis.
The distribution of stretches for the case of no cable reinforcement from the
numerical results are also presented to once again, emphasize on the stretch
gradient reduction effect of cable reinforcement. Although the modulus of
the cable is approximated for the numerical results, once again we see a good
agreement between analytical and numerical results.

5.3 Planar deformation of membrane with or-
thotropic material

We present an example here that shows the behaviour of the linear or-
thotropic material defined by (3.62). We take an annulus membrane as shown
in Figure 5.1 with the fibers parallel to horizontal and vertical directions. we
hold the outer boundary fixed while we twist the inner circle inside the plane
of mesh by 20 degrees counter—clockwise. Figure 5.15 shows the deformed
configuration. Because of the symmetry in the deformation and in the mate-
rial, we see a pattern that repeats itself every 90 degrees as it was suggested in
Chapter 3. Zones with the straight lines in them show the wrinkled regions.
They can be justified in this way: because of the twist of the inner boundary,
the horizontal fibers become loose in some places while the vertical fibers are
stretched and vice versa. It is interesting to know that the same deformation
with the same initial configuration but with an isotropic material shows a
wrinkled ring around the hole. Now let’s introduce a disturbance in the ini-
tial configuration by having a slit along the right-hand side horizontal radial
line and repeat the deformation. Figure 5.16 shows the deformed configura-
tion. It can be seen that in the area near the slit, the state of stress in the
zones has completely changed but far from the disturbance (opposite side of
the slit), the deformation is to a good extent similar to the previous case (St.
Venant principal). An isotropic material also shows a similar behaviour.



CHAPTER 5. NUMERICAL EXAMPLES 82

Figure 5.15: Deformed configuration of an annular membrane with rj/ro=0.5. Twist of
inner boundary by 20° ccw. Linear orthotropic material.
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Figure 5.16: Deformed configuration of an annular membrane with ri/r=0.5 with a slit

along the horizontal radial line. Twist of inner boundary by 20° ccw. Linear orthotropic
material.
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5.4 Plane deformation of a square sheet

In this section, we deal with an example that clearly shows the effect of
cable-reinforcement. The aim is to take a square sheet and move the cor-
ners diagonally out and compare the deformations with and without cable
reinforcement along the edges. Since we anticipate high stretch gradients at
the corners, we choose the Ogden’s three-term strain emergy function [Cf.
(3.59)]. But before we present the actual mesh and actual deformation we
intend, we use a very simple mesh with very small diagonal deformations at
the corners just to show that because of singularities at the corners, the mesh
will degenerate if it is not consistent with the deformation. Figure 5.17 shows
a 10 by 10 square mesh with side L that is used for this purpose. There are
no cable reinforcements and the deformation consists of moving the corners
diagonally out such that after deformation, each two neighboring corners are
1.05L apart. Figure 5.18 is found as the converged deformed configuration
and in order to show the zones edges clearly, we haven’t used any means to
distinguish between different stress states for the zones. As it is clearly seen,
the mesh is severely deteriorated due to unsuitable topology of the mesh even
though the deformation is small. As it was mentioned in the previous chap-
ter, we redesign the mesh such that it takes care of the singularities. In our
work, whenever a point load or displacement is encountered, we use a mesh
that fans out from that point. That's what we have done here as it is shown
in Figure 5.19 as the undeformed configuration. It consists of 861 nodes and
without imposing any symmetries, the mesh is deformed such that the corner
nodes are moved diagonally out and each two neighboring corners are 1.5L
apart with L being the side of the square. Figure 5.20 shows the deformed
configuration corresponding to the case of no cable reinforcement. We see
that the topology of the selected mesh is consistent with the deformation and
no degradation is happening. But what is significant is that the deformation
seems to be happening mostly at the corners and the inside has remained
almost undeformd. The stretches for this case go from a value as high as
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Figure 5.17: A 10 by 10 square mesh representing the initial configuration of a square
with side L.
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Figure 5.18: Spurious deformed configuration with corner nodes pulled out diagonally
by 0.025L. in the horizontal and vertical directions. Ogden material.
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Figure 5.19: Initial configuration of a square with side L.



CHAPTER 5. NUMERICAL EXAMPLES 88

Figure 5.20: Deformed configuration. Comner nodes pulled out diagonally by 0.25L
along horizontal and verical directions. Ogden material.



CHAPTER 5. NUMERICAL EXAMPLES 89

8.10 near the corners to a low of 1.04 near the center. Even though the
deformation is small, all zones are in a tense stress state. Now if we reinforce
the edges with a type-1 cable attachment with a modulus of E/uL = 10.0,
and apply the same deformation, we end up with a deformed configuration
that is shown in Figure 5.21. This figure shows that the deformation is now
distributed to all over the domain and it’s not just localized at the corners
and the numbers confirm that. The highest stretch is now 1.67 at the corners
and the lowest is 1.44 near the center. We see a significant drop in the sharp
gradient of stretch near the corners and that’s all because of the presence
of cable reinforcement. If we replace this cable with a type-2 one with the
same modulus, the highest and lowest values of stretch will be 2.47 and 1.42
respectively at the same locations. The reason for a larger highest stretch
for this case is that in this case, there is a weaker interaction between cable
and membrane. Figure 5.22 shows the deformed configuration for this case.
Although the stretches are somewhat different for cable reinforcement cases,
the deformed configurations look almost the same. All the zones for both
cases have a tense stress state.

5.5 Inclusion

Atai and Ru (1998) have shown that in the class of harmonic materials defined
by (3.54) and (3.56), if a region S, is embedded within another region S; (we
call the first region inclusion) with a perfect bound between the two regions
(so that the displacement and traction are continuous along the common
boundary) and the structure is subject to uniform remote stress (at infinity),
then the stress state inside the inclusion is uniform if the inclusion is an
ellipse. Other shapes of the inclusion do not show such an interesting result.
It can be shown (Atai and Ru, 1998) that the analytical values of the uniform
stretches inside the elliptic inclusion can be found from
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Figure 5.21: Deformed configuration. Comer nodes pulled out diagonally by 0.25L

along horizontal and verical directions. Attached cable on the edges with E/uL=10. Ogden
material.



CHAPTER 5. NUMERICAL EXAMPLES 91

LR T
Saay pases
SR T s
ST ESE
S .. . ‘ “ OO0 o
S XTI
mesN gl
—L 7 ST
7 S\
Eet ISR
AKX .95 5%
K| IS
7740 0“ “ .. ..0“‘“
s TR
o TR
S T

Figure 5.22: Deformed configuration. Comer nodes pulled out diagonally by 0.25L

along horizontal and verical directions. Shearless cable on the edges with E/uL=10. Ogden
material.
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T=A+X= 02C + 62
C
J =y = (@0 + 22 - 7 (5.60)

where

—b+ /6% — 465 3 A
c= il D=(A—ﬁC—dC—g)§'\7
5

2§
_t+VEHI6uB(—a) ;. €
4 4p(l — o) b-Ap+A
- <A A < A2
E=@+a)ardl-=)+z=]—mr  p=(a¥—-1)zZ, (5.61)
AT Ay Y
32
1= FeA(aa¥ —1)(1 - ;2-) ¢=pHA
. M2 . e . . s .. s a+b < a-b
umvluavazﬁ—'rﬁzz\—zz\—z

a and b are the semi— major and minor axes of the ellipse (the semi-major axis
is assumed to be along horizontal line), ¢ is the magnitude of the tensile stress
(or traction) at infinity,and u,a, B are the material constants with subscript
2 refering to the inclusion and subscript 1 to the surrounding media.

In this example, we try to investigate this result numerically. Figure 5.23
shows the grid corresponding to a square with side L and an elliptic region
embeded in that with dimensions a = 2b = 0.05L where a and b are semi-
major and minor axes of the ellipse respectively (we’ve tried to make the di-
mensions of ellipse as small as possible as compared to the size of the square
so that the concept of uniform stress at infinity is simulated to a good extent).
We've used the orthogonal grid mapping technique to generate the mesh for
the ellipse and for the square with the elliptic hole at the center. We consider
different material constants for the inclusion and the square (for simplicity,
we just use different p’s and « and 3 are taken to be 1/2 for both regions).
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Figure 5.23: Initial configuration of a square with Side L with an elliptic inclusion of
dimensions a=2b=0.05L (dotted lines show the boundary of the square and inclusion and
the lines of symmetry). The area near the inclusion is enlarged to show the details of the
mesh
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Next, we apply an equibiaxial traction of magnitude ¢ = /2 normal to the
sides of the square and we analyze the structure under such a loading. The
stretches inside the inclusion turn out to be uniform as suggested analytically.
Table 5.1 shows the comparison of the analytical and numerical values of the
stretches inside the inclusion for several cases of material constants. The
first column shows the ratio of the material constant in the inclusion to that
of the surrounding media. The next four columns show the maximum and
minimum values of the horizontal and vertical stretches inside the inclusion
resulted from the numerical computations and the last two columns show
the analytical values for those stretches. As it is seen, there is a very good
agreement between numerical and analytical results.

Numerical Analytical
2y ye

Mmin | Atmaz | A2min | A2maz AL Az
5.0 1.00525 | 1.00548 | 0.99774 | 0.99798 | 1.00511 | 0.99811
3.0 1.00895 | 1.00904 { 0.99958 | 0.99971 | 1.00900 | 0.99967
1/3 | 1.16509 | 1.17072 | 1.07803 | 1.08183 | 1.16411 1.07839
1/5 1.25287 | 1.25389 | 1.10126 | 1.10149 | 1.25238 | 1.10129

1/10 | 1.36139 | 1.36265 | 1.12467 | 1.12492 1.35985 | 1.12480

Table 5.1: Comparison of numerical and analytical stretches for elliptic in-
clusion

In order to investigate other shapes of the inclusion. We replace the ellipse
with an extended circle (a shape made up of two semicircles facing each other
and two lines parallel to the center lines joining the semicircles together).
Figure 5.24 shows the grid resulted from orthogonal mappinf technique for
this case. The size of the extended circle is [/2 = r = .025L where [ is the
length of the connecting lines and r is the radius of semicircles. Once again,
we apply an equibiaxial traction of magnitude ¢ = p;/2 normal to the edges
of square and analyze the structure. Table 5.2 shows the maximum and
minumum values of the principal stretches inside the inclusion. Although for



CHAPTER 5. NUMERICAL EXAMPLES 95

oooooooooooooooooooooooooooooooooooooooooooooo

R N S R R

R R R N Y T I N TR X
TP I I IIIIIIITIIIIVNIIIITIIIIIIVIIVISYTSIIDILEY
D N Y L XL A Y

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Figure 5.24: Initial configuration of a square with Side L with an extended circle

inclusion of dimensions r=1/2=0.025L (dotted lines show the boundary of the square and

inclusion and the lines of symmetry). The area near the inclusion is enlarged to show the
details of the mesh
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inclusions stiffer than the square the results might seem uniform, but that’s
because there hasn’t been much deformation inside the inclusion and cases
of softer inclusion clearly show that the state of stress is not uniform inside
the inclusion and that’s once again according to the analytical expectations.

Numerical
B2/

’\lmin ’\lma:l: ’\2min A2rruz;::
5.0 | 1.00376 | 1.00693 | 0.99636 | 0.99939
3.0 | 1.00695 | 1.01110 | 0.99762 | 1.00157
1/3 | 1.14112 | 1.17972 | 1.06555 | 1.09848
1/5 | 1.20682 | 1.28388 | 1.08095 | 1.13475

1/10 | 1.28673 | 1.41347 | 1.09531 | 1.17397

Table 5.2: Numerical stretches for extended circle inclusion

5.6 Suturing

In this section, we present some examples in which the undeformed config-
uration consists of two or more pieces that are to be sutured according to
the procedure described in the previous chapter. Due to the incompatibility
between the edges to be sutured, in general, we anticipate wrinkling to occur
as it will be seen in the following examples. The first example shows two
symmetric chevron-shaped pieces of membrane each consisting of 121 nodes
(Figure 5.25). The distance between vertical edges is 10L, horizontal edges
of each piece are 4L apart, and the distance between the vertex of each piece
and its vertical edge is 4L, where L is the length scale. The material is neo—
Hookian and without imposing any symmetry conditions, the deformation
consists of holding the vertical edges fixed while the facing oblique edges
are to be sutured together. As it was mentioned in the previous chapter,
because the edges to be sutured are of the same length and are connected
together such that each point matches its mirror image, we have continuity of
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Figure 5.25: Undeformed configuration of two chevron shaped pieces fixed at the
vertical edges. Facing edges are to be sutured.
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traction as well as continuity of force along the sutured edge. Figure 5.26
shows the deformed configuration. The straight lines in some zones show the
tensile trajectories in the wrinkled regions. As expected, the deformed con-
figuration is symmetric (both vertically and horizontally as is the undeformed
configuration and the applied deformation) and in the wrinkled regions, the
tense direction is almost parallel to the direction of stretching the two pieces
in order to suture them together. The maximum computed stretch is about
2.06 and it occurs near the top and bottom of sutured edges. As a second
example, we replace one of the above two pieces by a square of side 4L such
that the distance between the vertex of the other piece and the closest ver-
tical edge of the new piece is the same as the distance between the vertexes
of the old two pieces!!!! (Figure 5.27). Applying the same deformation as
before, we get figure 5.28 as the deformed configuration. This time, we see
only symmetry about the horizontal middle line and since the length of the
sutured edges are not identical, we only have continuity of force across the
sutured edge. Again we see some wrinkling with tensile trajectories almost
parallel to the stretch direction as expected. The largest stretch computed
is now about 1.61 at the zone centers of the regions at the upper and lower
right-hand corners of the square and the reason for decrease of the maximum
stretch is that in this case, the corresponding points on the top and bottom
of the suturing edges are closer as compared to the previous case.

5.7 Three dimensional tents

As a final set of examples, we present two practical analyzes of fabric tension
structures. In the first one, which is a six pole tent, 16 pieces of membrane
are sutured together to form the tent (Figure 5.29). The base of the tent is
60’ by 100’ and the height of the poles is 17'. The undeformed configuration
shows the pieces that are laid on top of each other and we can see pieces
overlapping. These 16 pieces actually consist of 4 sets of 4 different pieces;



CHAPTER 5. NUMERICAL EXAMPLES 99

1
L1

(1]

]
I=]=/=—F
’*E]:lgl_L—:L—JJj—- — =
L~

Figure 5.26: Deformed configuration of two chevron shaped pieces fixed at the vertical
edges. Facing edges are sutured. Neo-Hookian material
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Figure 5.27: Undeformed configuration of a chevron shaped piece and a square one
fixed at the outer vertical edges. Facing edges are to be sutured.
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Figure 5.28: Deformed configuration of a chevron shaped piece and a square one fixed at
the outer vertical edges. Facing edges are sutured. Neo-Hookian material.
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rougand

Figure 5.29: Undeformed configuration of a 6-pole tent. 16 pieces of membrane are to
be sutured together to form a tent with a base of 60 by 100 and a height of 17 at the pole
tips.
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one triangular piece at the corner, and three rectangular pieces surrounding
it. The middle pieces can be added to make the tent 8 pole, 10 pole, etc.
These pieces are derived from patterning a deformed membrane that was
initially rectangular and flat and was raised at 6 points where the poles are
and the method for patterning is the one described by Tabbarok and Qin
(1992). The mesh is then added to the pieces and it’s in such a way that
after suturing and erecting, mesh lines fan out from the pole points (singular
points). The deformation consists of holding the rectangular boundary fixed,
suturing the pieces together and raising the nodes at the position of the poles
which have a projected distance of 20’ from each other and the edges. The
material used is neo-Hookian. Figure 5.30 shows the deformed configuration
in an angle view and in order to keep things clear, we haven’t distinguished
between different states of stress for the zones but because the patterns are
obtained in a way to minimize the strain in the structure after the erection,
we anticipate some wrinkling and that is the case. The maximum stretch
is about 1.04 happening at the position of the poles. As the second and
final example, we consider a single pole tent that shows the effect of cable
reinforcement and patterning. If we take a square sheet and fix it at the
corners and raise the center point out of the plane of the sheet, we expect
a high stress gradient at the position of the pole (from computational data
and an Ogden material, raising the center point by half the side of the square
results in a high stretch of 3.0 at the point of raise). So if we divide the square
into 8 equal triangles with a common point at the center and extend them
near that point, we anticipate a lesser stretch at the center point (position of
the pole) and that’s what we are going to show here. Figure 5.31 shows the
undeformed configuration of two overlapping triangles (these are extension of
the triangles we talked about). The reference configuration actually consists
of repetition of these extended triangles by rotating each pair by 90 degrees
to get the next pair (as it is suggested by the dotted lines in Figure 5.31).
But because of the existing symmetry in the problem, we need to analyze
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Figure 5.30: Angle-view of the deformed configuration of the 6-pole tent. Ogden
material.
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Figure 5.31: Overlapping meshes of two extended triangles which are to be sutured and
form a quarter of a single-pole tent with a square base. Dots show the lines of symmetry.
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only the shown pair provided that symmetry constraints are observed at
the edges that are to be connected to the other pairs (edges along z; and
T;). These conditions are imposed by requiring the z; components of the
nodes on the edge along z, and the z; components of the nodes on the
edge along z, to remain constant throughout the numerical analysis. The
remaining components of the points on these two edges are obtained by
requiring the corresponding components of the force vector at those nodes to
vanish (If we had considered the whole reference configuration, the total force
components for these nodes was actually twice what we considered here due
to the symmetry but if f., vanishes for example, 2f;, vanishes too). Choosing
an Ogden material, the deformation consists of holding the common point of
the extended triangles (corner of the tent) fixed, suturing the triangles along
the oblique edge, and raising their vertices directly above the center of the
dotted square by half of the side of that, and thus creating a single pole tent.
Figure 5.32 shows the side view of the deformed configuration with traction
free edges. The white regions show the tense ones while the gray and black
ones show the wrinkled and slack ones respectively. The maximum stretch is
about 2.69 occurring near the corners. It is interesting to notice how a very
rough pattern could reduce the maximum stretch to this extent and it shows
the importance of the patterning issue. Figure 5.33 shows the side view of
the deformed configuration for a type-1 cable reinforcement with a modulus
of E/uL = 0.5 (L is the side of the square) applied at the edges. We can see
that the wrinkled region (shaded zones) has become smaller and slack regions
are eliminated. The maximum stretch is about 2.60 but it’s now happening
near the apex. If we replace this cable with a type-2 one with the same
modulus, we get a maximum stretch of 2.30 near the corners and the zones
around the corners are in a tense state but in the previous case they were
wrinkled. Figure 5.34 shows the side view of the deformed configuration for
this case. These two latter cases show the importance of application of cable
reinforcement and its role in eliminating the unwanted wrinkling.
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Figure 5.32: Side-view of the deformed configuration for single-pole tent with no cable
reinforcement. Ogden material.
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Figure 5.33: Side-view of the deformed configuration for single-pole tent with attached
cable reinforcement of E/uL.=0.5 on the edges. Ogden material.
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Figure 5.34: Side-view of the deformed configuration for single-pole tent with shearless
cable reinforcement of E/UL=0.5 on the edges. Ogden material.



Chapter 6

Experimental results

In this section, we intend to experiment with the axisymmetric annulus prob-
lem with and without cable reinforcement discussed in the previous chapter
and compare the results with numerical and analytical ones. We take a natu-
ral rubber sheet with a thickness of -1%" and the first step is to find out which
material model best describes the behavior of this rubber. Since the uniaxial
response of the material can be regarded as the relazed 2D response, we per-
form a uniaxial test on the rubber fitting the data with the relaxed form of
a material model, we can then use the unrelaxed strain energy as the model
for the response under biaxial stretch. To ensure isotropy of the rubber, we
cut two strips of rubber in two different directions and check to see if their
test results are more or less the same (isotropy) or not (anisotropy). We base
our testing procedure including the preparation of the specimens mainly on
the DIN standard for testing rubber (ASTM D412, 1997). The dimension
of strips is 11" x 0.56” and in order to measure the strain in the rubber in
an area where it is uniform to a good degree, we draw two parallel lines
(benchmarks) across the width of the strip and symmetric about the middle
line of the strip with a distance of 2. Figure 6.1 shows the setup for uniaxial
test schematically. One end of the strip is connected to a fixed load cell and
the other end to a movable grip which can be given a specific displacement
(although we are not using this specific displacement in our calculations).

110



CHAPTER 6. EXPERIMENTAL RESULTS 111

Load Cell

Marked lines for measuring
the stretch of the rubber

< N0

Ruler

Specimen under

Optical device cClI 1
uniaxial tension

Figure 6.1: Schematic of setup for the tensile test of the rubber
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To get a datapoint, we displace the grip and hold it there. Then we read
the signal from the load cell which is proportional to the force at the ends
of the strip and using an optic device, we measure the distance between the
benchmarks and from that the stretch (strain) in the rubber is calculated. We
repeat this procedure to cover a strain range of 0 to .60 which is sufficient
for the experiments that we want to perform. Figure 6.2 shows the non-
dimensionalized datapoint from this test (which turned out to be quite the
same for both strips). It also shows the uniaxial force-stretch relation for
the neo—Hookian material fitted to those points as the best model for the
behaviour of the rubber over the specified range of strain. The stress-stretch
relation for this material is given by

c=G( -1 (6.1)

where o is the stress, ) is the stretch and G is the shear modulus of the
rubber. This relation could also be derived by taking the derivative of the
relaxed strain energy for the neo-Hookian material [Cf. (3.53)2]. Doing so
and comparing it with (6.1), we can write 4 = Gh where h is the thickness of
the sheet and thus we can calculate the material constant for the rubber. The
load f in Figure 6.2 is divided by the shear modulus G, the rubber thickness
h, and the width of the strip w to make it nondimentional. Now that we have
the material strain energy and constants, we start the experiments. First of
all, we take the rubber sheet and draw a mesh on that as shown in Figure
6.3. It shows circles starting with a radius of 3.75” and ending with a radius
of 7.5" and with a radius increment of 0.75”. It also shows radial lines with
an angle of 45 degrees between them. This is the grid that we are using in
our calculation of experimental stretches. In order to apply the equibiaxial
stretches, we use two wooden frames (one on each side of the rubber sheet)
with a circular hole of radius 9.25” and stretch the sheet by hands gradually
so that the biggest circle of the grid coincides with the edge of the circular
hole on the frames and then we clamp the frames to hold the sheet stretched.
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Figure 6.2: Results of uniaxial tensile test on rubber; (4) datapoints,(——) fitted curve.
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Figure 6.3: Grid used for stretch calculations
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As a very simple experiment, we stretch the sheet without any holes or
reinforcements as described above. We expect to have a uniform stretch of
% ~ 1.233 everywhere. Figure 6.4 shows the distribution of the measured
stretches vs. radius in the undeformed configuration. It can be seen that
the hoop stretch very well matches the expected value but the radial stretch
fluctuates around that. The reason is that the hoop stretch is calculated
from A, = p/r and thus it’s just a matter of measuring the undeformed and
deformed radii at the nodes which is an easy and fairly accurate task, but
the radial stretch is calculated from A\; = ¢ and since the mesh drawn in
Figure 6.3 is very coarse, the value of the derivative which is approximated
by finite difference is not very accurate. We will see this inaccuracy in the
radial stretch for the rest of the experiments. Now we cut a hole with a
radius of 3.75" (along the smallest circle of the mesh on the rubber) and we
repeat the stretching experiment. Figures 6.5 and 6.6 show the deformed
configuration and distribution of stretches vs. radius respectively. As it can
be seen, there is a very good match between experimental, numerical and
analytical results for the hoop stretch. To simulate the cable reinforcement,
we cut a ring with an inner and outer radius of 3.75"” and 4.25" respectively
from another rubber sheet made up of the same material and using a rubber
contact cement, we glue it to the rubber sheet with the hole such that the
boundary of the hole and the inner boundary of the ring coincide (Figure
6.7). We stretch the reinforced rubber and measure the stretches. Figure
6.8 shows the comparison of stretches for the experimental, numerical and
analytical methods. It should be noted that a neo-Hookian cable model
is used for analytical and numerical data, so the force magnitude f used in
(5.14) is calculated from f = cwh where w is the width of the ring (0.5") and
o is calculated from (6.1) with A being the hoop stretch at the hole boundary.
Thus the non-dimensionalized cable modulus [Cf. (5.34)] would be E/ur; =
(Gwh)/(Ghr;) = w/r; = 0.5/3.75. It can be seen from the graph that the
hoop stretch (which is assumed to be more accurate than the radial stretch)
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Figure 6.4: Distribution of stretches vs. radius for the rubber; (x) experimental radial
stretch, (+) experimental hoop stretch, (——) analytical result
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Figure 6.5: Deformed configuration for the rubber sheet with a hole and no
reinforcement
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Figure 6.6: Distribution of stretches vs. radius for rubber; (A) numerical hoop stretch,
(O) numerical radial stretch, (+) experimental hoop stretch, (x) experimental radial stretch,
(—) analytical results
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Figure 6.7: Undeformed configuration for the rubber sheet with a hole and a
reinforcement ring around the hole
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(——) analytical results
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is higher in the experiment near the hole and it gets closer to the other two
results as the radius increases. The reason could be that in the analytical and
numerical cases, it is assumed that the reinforcement is concentrated at the
hole boundary but it is obvious from the experiment that the reinforcement
is actually distributed across the width of the ring. Since for the case of
no reinforcement, the hoop stretch is decreasing with the increase of the
radius, adding a distributed reinforcement along the hole boundary is almost
equivalent to having a less stiff cable concentrated at the hole boundary and
that’s why the experiment shows a higher hoop stretch near the hole. A
more accurate model for this case would be a rubber sheet which has a ring
in the center made up of a material twice as stiff as the rest of the sheet (the
analytical result for this case is hard to get). Finally, another ring with the
same dimensions is glued to the other side of the already reinforced rubber
sheet and the experiment is repeated. Figures 6.9 and 6.10 show the deformed
configuration and distribution of stretches respectively. Same behaviour of
stretches are seen as compared to the one-ring case. Although our goal was to
reproduce the neutral hole case experimentally, we couldn’t accomplish that
because it required having a stiffer rubber as the cable reinforcement, testing
it to get the material constants, calculating the required width of the ring
for reinforcement. And still the ring had to be narrow enough so that the
reinforcement could be regarded as concentrated along the hole boundary.
Despite all these, the present experiment showed a fairly good agreement
with analytical and numerical results and showed the behaviour of the cable
reinforcement qualitatively. The neutral hole case can be left as a future
work.
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Figure 6.9: Deformed configuration for the rubber sheet with a hole and two
reinforcement rings around the hole
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Chapter 7

Conclusion and Summary

In this work, a discussion of perfectly flexible elastic curves (cables) and
surfaces (membranes) based on earlier works is presented. The equations
of equilibrium for a cable-membrane system are derived using variational
theory. Two types of cable attachments which are practical are considered:
attached and shearless. The coupling conditions between membrane and each
type of cable attachment are discussed. These coupling conditions relate the
change of the force vector along the cable with the traction at the boundary.
To model a common practice in structural design, the undeformed configura-
tion is allowed to consist of several disjoint pieces and then these pieces are
sutured together and the resulting structure is analyzed under applied load-
ing. The relation between sutured pieces, which is derived as a consequence
of variational procedure, is interpreted as the continuity of force across the
sutured edge and as the continuity of traction if the mapping that puts one
edge on top of the other one has a deformation gradient of unit tensor. The
necessary conditions for stability of the equilibrium configuration are derived
for both membrane and the cable. For the membrane, these conditions state
that 8w/dAa = w, be non—negative. This is for an isotropic membrane but if
an orthotropic one is thought of as a cable network, the same conditions apply
to that but in that case, A,’s are the stretches along the fibers. For the type—
1 cable attachment, the cable force and its modulus should be non—negative
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but for the type—2 cable attachment, this only reduces to a non-negative
cable force. The strain energies for the membrane and cable are then relazed
to take those conditions into account automatically. The Green’s theorem is
used to find the finite difference form of the equations of equilibrium for a
discretized domain. A numerical method called dynemic relazation is used
to solve those equations. This method considers the problem as a damped
dynamic one and the solution to the equilibrium equation is the steady state
response of the dynamic system. The method has the advantage of not mak-
ing direct use of stiffness matrix and needs less memory requirement because
it only deals with vectors rather than matrices. These features makes it a
preferable choice over methods that need the calculation of in this case a
very complicated stiffness matrix such as Newton-Raphson. Since the errors
in the approximations are minimized if the zones are as close to rectangles as
possible, a boundary—fitted orthogonal coordinate generating method is used
to generate the mesh for numerical calculations. Wherever the analytical
results are available, the numerical ones show a very good agreement with
them. The circular and elliptic neutral holes are very interesting examples of
this case. The effect of cable reinforcement in reducing the sharp gradient of
stretches specially near the singularities is shown by some numerical exam-
ples. The qualitative behavior of the cable-membrane system is illustrated
by an experiment and the results show close agreement with analytical and
numerical results. Although it was intended to simulate the circular neutral
hole with the experiment, some difficulties didn’t allow for that and this part
can be done in the future. Also there is a need to model fabric materials
which are mostly orthotropic with shear resistance in order to investigate
the behavior of structures as close to the real case as possible. Another im-
portant issue that needs attention is patterning. Current methods are mainly
practical and lack the theoretical background and the clear definition of the
optimization criterion. This also could be a potential for future work.
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Appendix A

Boundary-Fitted Orthonormal
Grids

In this section, we discuss the procedure that leads to generation of orthonor-
mal grid for a domain with arbitrary boundary. As it was mentioned earlier,
having a mesh with orthogonal grids reduces the error in approximation of
the equilibrium equations. The method for grid generation discussed here is
developed by Ryskin and Leal (1983).

If we consider the Cartesian coordinates z, in the physical plane, it is
obvious that these coordinates are a linear function of position. Therefore,
their gradients are constant valued vector fields and we can write

div(grad(z,)) = V?z, =0, «€1,2 (A.1)

where V2 is the Laplacian operator. The above expression is true no matter
in which coordinate system the Laplacian is written. Now let us consider
a coordinate system (which is curvilinear in general) with components &,,
a € 1,2 (in a fictitious plane). We consider the boundary(s) in the physical
plane as a coordinate line in this new system and impose the orthogonality
conditions such that when a square grid in the £;—£; plane is mapped onto
the z;—z, plane, it generates a mesh with orthogonal grids. Let’s consider
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the metric tensor gos which defines the arclength element ds in the physical
plane in terms of the coordinate element sin the fictitious plane as

ds® = gaﬂdgadfﬁ- (A2)

The a8 component of the metric tensor can be obtained by the scalar product
of the unit vectors tangent to the coordinate lines &, and &g in the physical
plane (See any book on differential geometry). These unit vectors are de-
fined by e, = 8z5/0¢,e5. If the grid lines in the physical plane are to be
orthogonal, we must have gog = 0, a # B. The well-known formula for
covariant Laplace operator is given by (Ryskin and Leal, 1983)

L 0 ke, 0 hgd
he he, '9E " he, 067 02 “he, 86,

where hg, are called scale factors (representing how much the sides of a
rectangle of the grid in the physical plane have been scaled as compared to
the sides of the corresponding square in the fictitious plane which is 1) and
can be calculated from

V= )] (A.3)

3:1:1

0. 0
h =gy = (35 Z1y2 , 972

)+ g,

61:2

73 )2 (A.4)

)2

)l h§2~g22_(

So (A.1) can be written as

6:1:,,] 0 [ 1 Oz,
06" 0& f(&,&) 06

[f (&1, &) 1=0 (A.5)

or

Pzo  10°za , Of 0Ta 1 Of Oza
ol = A6
I o5& t 5738 Yo 06 o606 (A.6)
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where f(£1,&) = he, /he, (or f) is called the distortion function (it shows the
aspect ratio of a rectangular zone in the grid in the physical plane). Using a
central difference approximation, the derivatives in (A.6) can be written as

Oz, it — il

~ 9za ~ zi.j+l_zi.j-l
0€; 246 %o e
32$Q _ If;HJ —_ 2$f;j _{_z:’!—ld Bz, :“J""‘-z:',',‘jiz‘,‘.'j-l (A 7)
o€l 24¢,)? o~ Geal '
af N fi+1,j _ fi—l,j of . [utipid-t
96 286 o e

where i, j is the index of the ith vertical and jth horizontal grid line of the
square mesh in the £-& plane, i = 1,2,...,Imaz, j = 1,2,...,Jmaz (the
values of Imaz and Jmaz are a matter of choice) and A§; = A&, is the
distance between the grid lines and it’s taken to be 1 for simplifying the
calculations. Then the non-linear equations that result in the coordinates of
the points on the grid lines in the physical plane are given by

i = {[(fY?2(fF - ) -2 Y) -
(fia’+1 _ fij—l)(zi,j-i-l _ :z:f;"'l)]/4 + (fia')3(zi+la' + z:;‘lj)
+fH9 (@ + RIS + ) (A-8)

The form of the above non-linear equations is suitable for applying a Suc-
cessive Over-Relaxation method (SOR) to solve them. The only thing re-
maining to be explained is the boundary conditions. We discuss two common
cases. We could have a Dirichlet boundary condition where points on the
boundary in the physical domain have a one to one correspondence with the
points on the boundary of the uniform square grid in the fictitious plane.
Thus (A.8) is solved for the points inside the domain. But we could also
have the case in which points on the boundary(s) correspond to the points
on two parallel sides of the square and one of the coordinate lines that is
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perpendicular to the boundary(s) (and is to be found) is related to the other
two sides of the square thus the points corresponding to i = 1 and 7 = Imaz
for example, end up in the same place in the physical plane. Since the grid
lines related to the other coordinate are perpendicular to this common one,
the Neuman condition at these boundaries of the square can be written as

% =0, Vj, i=1,Imaz. (A.9)

If the sides j = 1 and j = Jmaz are mapped to the same coordinate line in
the physical plane, then (A.9) changes to

%% _¢ i, j=1,Jmaz. (A.10)

962

The annulus grid used for example 6.1 is a result of such a case. For that
grid, Imaz = 11 and Jmaz = 73. Points on the inner circle correspond to
i = 1 and points on the outer circle correspond to i = Imaz. Coordinate
lines corresponding to 7 = 1 and j = Jmaz are mapped to one of the radial
lines in the grid. In this case, it is obvious that hoops and radial lines
are the coordinate lines. Another example that is interesting to consider is
example 6.4. There, the grid for a quarter of the square is generated by this
method and the rest of the grid is produced by symmetry. For example, let’s
consider the upper-right quarter. For that grid Imaz = 11 and Jmaz = 20.
Points on the bottom and left sides are equally spaced and they correspond
to j = 1. Points on the other sides are spaced in such a way that they get
closer to eachother as we approach the upper-right corner of the square. The
right side corresponds to i = 1 and the top edge corresponds to i = Imaz.
Finally, the corner node (where) singularity occurs) corresponds to all the
points with j = Jmaz. Figure (A.1) shows a few other interesting grids that
are generated by this method.
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Figure A.1: A few grids generated by orthogonal mapping
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Source Code

noOonn

This pr
under a
displac
Cable r

Charact
Double
Double
Double
Double
Double
Double
Double
Integer
Integer
Integer
Integer
Integer
Integer
Integer
nschk=7

Asking

Write(*
Read (*
Write(*
Read (*
Write(*
Read (*
Write(~*
Read (*

ogram analyses a membrane (flat in unstreched config.)

variety of external loads like prescribed traction and
ement, point load and pressure, attached and shearless
einforcement.

er filein*12, fileout*12,txt*80
precision x(2,5605),r(3,5605),dx1(200),dx2(200),dx3(200)
precision G(l),usm,usc,pp,fx(ZOO),fy(200),fz(200),fn(lBOOO)
precision TE(3,2,5680),fp(lBOOO),ff(lBOOO),u(lBOOO),A(SGBO)
precision RR(lBOOO),udotp(lBOOO),udotc(lBOOO),P(lBOOO)
precision Gebl (10), Fcbl (18000) , Lebl (200) ,Ma(18000) ,ds
precision nn(3,5680),tx(500),ty(SOO),tz(SOO),ftrac(lBOOO)
precision Lnewj2(100,200),ch12(200),cstrn(ZOO),cstrnZ(ZOO)
cblcnmt(2,200),maticbl(ZOO),n2ttc(500),ncmax(200)
conmat(4,5680),matindx(SGBO),nfxd(ZOO),nprsc(ZOO)
nfre(SGOS),nodcirc(2,72,5605),nodelcom(72,5605)
nndelmax(SGOS),nfrc(200),nsw(2,200),nltrc(500)
nfretrel (500) , nfretre2 (500) ,nodpe (500}, ipdirid (500)
cblenmt2 (100,200) ,maticbl2 (200),nfcbl(2,200)
nfebl2 (100,200) ,nfrepc(500)
2

for the filenames and parameters

,*) 'Enter input file name :'

,*) filein

,*) ‘Enter output file name :°'
,*} fileout

,*) ‘Enter mass matrix entry :°
,*) usm

,*) 'Enter damping coefficient :°*
, ¥} usc

136
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20

30

(e e Mg

Reading data from input datafile

Open{l,File=filein)

Read (1, *)txt

Read (1, *)txt

Read (1, *)txt

Read (1, *)txt
Read(l,*)nnode,nmat,nelem,nfixed,nprscrbd,nforce.nsew,ncable
* ncable2,nmaxcbl, nmatcbl, nprstrac, npconst

call Indata(nnode, x,G,nelem,conmat,matindx,nfixed,nfxd
',nprscrbd,nprsc,dxl,dxz,de,pp,nforce,nfrc
*,fx,fy,fz,nsew,nsw,nmat,ncable,cblcnmt,nmatcbl,Gcbl,maticbl
*,nprstrac,nltrc,nztrc,tx.ty,tz,npconst,nodpc,ipdirid,ncablez
*,cblcnmtz,maticblz,nmaxcbl,ncmax,cstrn,cstrnZ)
nfree=nnode-nfixed-nprscrbd

Indexing the free nodes

ii=0
Do 10 i=1 , nnode
Do 20 j=1 , nfixed
If (i .EQ. nfxd(j)) Go To 10
Continue
Do 30 j=1 , nprscrbd
If (i .EQ. nprsc(j)) Go To 10
Continue
ii=ii+1
nfre(ii)=1
Continue

Forming matrices nodcirc and nodelcom and array nndelmax
which show which free node number is surrounded by how many
zones and which zone numbers, This makes things a lot easier
when calculating the Picla stress

nsmax=0
Do 40 i=1 , nfree
ii=0
Do 50 j=1 , nelem

If (conmat(l,j) .EQ. nfre(i)) Then
ii=ij+l
nodelcom(ii, i) =]
nodecire(l,ii, i) =conmat (2, j)
nodcirc(2,ii, i) =conmat (4, J)
Go To 50

Else if (conmat(2,j) .EQ. nfre(i)) Then
ii=1i+1
nodelcom(ii,i)=]
nodcire(l,ii, i) =conmat (3, 3j)
nodcirc(2,1ii, i) =conmat (1, J)
Go To 50

Else if (conmat(3,3) .EQ. nfre(i)) Then
ii=ii+1
nodelcom(ii,i)=]
nodeire(l,ii, i) =conmat (4, J)
nodcire(2,1ii, i) =conmat (2, j)
Go To 50

Else if (conmat(4,j) .EQ. nfre(i)) Then
ii=ii+l
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50

40

110

120

130

100

150
140

nodelcom(ii, i) =j
nodeirc(l,ii, i)=conmat (1, j)
nodeirc(2,ii, i) =conmat (3, J)
Endif
Continue
if (nsmax .LT. ii) Then
nsmax=ii
Endif
nndelmax (i) =ii
Continue
Do 100 i=1 , nsew
Do 110 j=1 , nfree
If (nfre(j) .EQ. nsw(l,i)) Then
i1=j
Endif
If (nfre(j) .EQ. nsw(2,i)) Then
j2=3
Endif
Continue
nnd3jl2=nndelmax(j1l) +nndelmax(j2)
if (nsmax .LT. nndjl2) Then
nsmax=nndjl2
Endif
Do 120 j=nndelmax(jl)+1 , nandjl2
nodelcom(j, j1) =nodelcom(j-nndelmax(jl), j2)
nodcirc(l,j,jl)anodcirc(l,j-nndelmax(jl),j2)
nodeire(2, j, 3j1)=nodcirc(2, j-nndelmax(3jl), j2)
Continue
Do 130 j=nndelmax(j2)+1 , nndjl2
nodelcom(j, j2) =nodelcom(j-nndelmax(j2),j1)
nodeire(1, j, j2)=nodcire(l, j-nndelmax(j2), j1)
nodecire (2, j, j2)=nodecirec (2, j-nndelmax(j2), j1)
Continue
nndelmax (j1)=nndjl2
nndelmax (j2)=nndjl2
Continue
If (nsmax .NE. nschk) Then
Write(*,*) '‘Maximum number of surrounding elements violated.'
Write(*, *) ‘Maximum allowed :',nschk
Write(*, *) *‘Maximum computed :',nsmax
Stop
End If

Calculating the force on the free nodes due to prescribed traction

Dec 140 i=1 , nprstrac
Do 150 j=1 , nfree
If (nfre(j).eq.nltrc(i)) Then
nfretrcl (i) =]
End If
If (nfre(j).eq.n2trc(i)) Then
nfretrc2 (i) =3
End If
Continue
Continue
Do 160 i=1 , nprstrac
dssSqrt((x(z,nltrc(i))—x(2,n2trc(i)))**200+(x(1,n1trc(i))-x(
1,n2trc(i))}) **2D0)
il=nfre(nfretrcl(i))



APPENDIX B. SOURCE CODE

139

160

190
180

60

70

30
80

i2=nfre(nfretrc2(i))

ftrac((i1-1)*3+1)=ftrac((i1-1)*3+1) +tx (i) *ds/2D0
ftrac((il-1) *3+2)=ftrac((il~1)*3+2})+ty(i)*ds/2D0
ftrac((il-1)*3+3)=ftrac((il-1)*3+3)+tz(i)*ds/2D0
ftrac((i2-1) *3+1)=ftrac((i2-1)*3+1) +tx (i) *ds/2D0
ftrac((i2-1)*3+2)=ftrac((i2-1)*3+2) +ty (i) *ds/2D0
ftrac((i2-1)*3+3)=ftrac((i2~1)*3+3)+tz(i)*ds/2D0

Continue

Calculating the free nodes index corresponding to partially
constrained nodes

Do 180 i=1 , npconst
Do 190 j=1 , nfree
If (nfre(3j) .eq. nodpc(i)) Then
nfrepc(i)=j
End If
Continue
Continue

Do 60 i=1 , nfixed
r(l,nfxd(i))=x(1,nfxd(i))
r(2,nfxd(i))=x(2,nfxd (1))
r(3,nfxd(i))=0D0

Continue

Do 70 i=1 , nprscrbd
r(1l,nprsc(i))=x(1,nprsc(i))+dxl (i)
r(2,nprsc(i))=x(2,nprsc(i)) +dx2 (i)
r(3,nprsc(i))=0D0+dx3 (i)

Continue

Do 80 j=1 , nforce
Do 90 i=1 , nfree

If (nfre(i) .NE. nfrc(j)) Go To 90
fn((i-1) *3+1)=£x(]j)
fn((i-1)*3+2)=£fy(J)
fn((i-1) *3+3)=£z2(J)

Continue
Continue

Calling the Dynamic Relaxation subroutine

Call DR(x,r,nfree,nfre,nodcirc,nodelcom,nndelmax,G,conmat,matindx
*,usm,usc,pp,fn,nsew,nsw,nelem,nnode,nmat,nsmax,A,TE,fp,ff,u,Ma,RR,
*udotp,udotc,P,ncable,cblcnmt,nmatcbl,Gcbl,Fcbl,chl,maticbl,nfcbl,
*nn,ftrac,npconst,nfrepc,ipditid,ncablez,cblcnmtz,maticblz,nmaxcbl
*,Lcbl2, ncmax, nfebl2, Lnewj2,cstrn, cstrnl)

generating the output datafile
Call Output(nnode,x,r,G,conmat,matindx,fileout,nelem,nmat,A)

Stop
End
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Subroutine

Fintext (x,r,nfre,nfree, nodcirc, nodelcom, nndelmax, P, co

*nmat,G,matindx,pp.fn,ff,nelem,nnode,nmat,nsmax,A,TE,fp,ncable
',cblcnmt,nmatcbl,Gcbl.Fcbl,chl,maticbl,nfcbl,nn,ncablez
*,cblcnmtz,chlz,maticblz,nfcblz,nmaxcbl,ncmax,Lnewjz)

[od This subroutine calculates the internal force vector at the nodes

(o4 due to the
(o4 vector due

piola stress. It also calculates the external nodal force
to pressure, point load and prescribed traction.

Double precision x(2,nnode), r(3,nnode) , T(3,2),G(nmat), sumpl
Double precision sump2,A(nelem), lambda,mu, TE (3,2, nelem)
Double precision sump3,P(nftee*3),pp,fn(nfree*3),ff(nfree*3)
Double precision sumfl, sumf2, sumf3, nn (3, nelem), fp (nfree*3)
Double precision Gebl (nmatcbl),Febl (nfree*3) , Lebl (ncable)
Double precision Lcbl2(ncable2), Lnewj2 (nmaxcbl,ncable2)

Integer
Integer
Integer
Integer
Integer
Integer

cblenmt (2, ncable) ,maticbl (ncable),nfcbl(2, ncable)
nodcirc(2,nsmax,nfree), nodelcom(nsmax, nfree)
nndelmax (nfree) ,mat indx (nelem) , conmat (4, nelem)
nfre(nfree),cblenmt2 (nmaxcbl, ncable2)

maticbl2 (ncable?),nfcbl2 (nmaxcbl, ncable2)

nemax (ncable2)

C Calculating Piola stress for all zones

Do 1005
Call

i=1 , nelem
Piola(x,r,i,T,conmat,G,matindx, A, lambda,mu, nn, nnode,
nelem, nmat)

Do 1007 j=1 ,3
Do 1009 k=1 , 2

TE(j.k,1)=T{3,. k)
1009 Continue
1007 Continue

1005 Continue

C Calculating internal force vector from Piola stress using

C Green's thm.

Do 1000

i=1 , nfree

sumpl=0DC

sump2=0D0

sump3=0D0

sumf1l=0D0

sumf2=0D0

sumf3=0D0

Do 1010 j=1 , nndelmax(i)
jelem=nodelcom(j, i)
sumpl-sumpl+(TE(1,1,jelem)'(x(z,nodcitc(z,j,i))—x(Z,nodci

* tc(l,j,i)))-(TB(I,Z,jelem)*(x(l,nodcirc(z,j,i))-x(l.nodci
* re(i, j,1))))) /200

sump2=sump2+(TB(2,1,jelem)*(x(z,nodcirc(z,j,i))-x(2,nodci
* rC(l,j.i)))—(TE(2,2,jelem)*(x(l,nodcirc(z,j,i))-x(l,nodci
* re(l, 3, 1))))) /200

sump3-sumpS+(TE(3,1,jelem)*(x(z,nodcirc(z,j,i))-x(Z,nodci
* rc(l,j,i)))-(TE(3,2,jelem)*(x(l,nodcirc(z,j.i))—x(l,nodci
* re(l,3.,1)))))/2D0
sumf1=sumf1+pp*nn(1,jelem)'lambda*mu*A(jelem)
sumf2=sumf2+pp*nn (2, jelem) *lambda*mu*A (jelem)
sumf3=sumf3+pp*nn (3, jelem) *lambda*mu*A (jelem)
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1010 Continue

C Forming the nodal internal force vector
P((i-1) *3+1)=sumpl
P({(i-1) *3+2) =sump2
P({i-1) *3+3) =sump3

C Forming the nodal force vector due to pressure
fp((i-1) *3+1)=sumfl/ (1DO*nndelmax (i)}

fp((i-1) *3+2)=sumf2/ (1D0*nndelmax(i))
fp((i-1) *3+3) =sumf3/ (1D0O*nndelmax(i))

1000 Continue
C Calculating the nodal force vector due to the pressence of
C cables (attached and shearless)

Call Fcable(r,nfree,nfre,nnode,ncable,cblcnmt,nmatcbl,Gcbl,Fcbl
,chl,maticbl,nfcbl,ncablez,cblcnth,chlz,maticblz
,nfcbl2, nmaxcbl, ncmax, Lnew32)

C Finalizing the nodal internal and external force vectors by
C adding forces due to cable, pressure, point load and prescribed
C traction.
Do 1020 i=1 , nfree*3
P(i)=P (i) +Fcbl (i)
ff(i)y=£fp (i) +fn(i)
1020 Continue
Return
End
Subroutine Piola(x,r,j,T,conmat,G,matindx,A,lambda,mu,nn,nnode,
* nelem, nmat)
o This subroutine calculates the piola stress for a specified
C zone.

Double precision F(3,2),x(2,nnode),r(3,nnode),T(3,2),C(2,2)
Double precision lambda,mu, L(2),M(2),11(3),mm(3),wmu, wlambda
Double precision wphatlambda,G(nmat),A(nelem),nn(3,nelem)
Integer conmat (4, nelem) ,matindx(nelem)

C cCalculating the deformation gradient F
Call Defgrad{x.,r, j,F,conmat, A, nnode,nelem)

C Calculating the Cauchy-Green strain tensor Cc

Call CGStrain(C,F)

C cCalculating the principal stretches from C
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Call Pplstrch(C, lambda, mu)

C Calculating the ppl vectors of C ,i.e. L & M, and
C their deformed configurations 1 & m

Call Cevector(C,F,L,M,11,mm, lambda, mu)
C Calculating the normal to the zone n=lxm
nn(l, ) =(11(2) *mm(3)}-11(3) *mm(2))
nn(2, 3)=(11(3) *mm(1)~11(1) *mm(3))
an(3, ) =(11(1) *mm(2)-11(2) *mm(1l))

C cCalculating the derivative of strain energy W with respect to the
C ppl stretches using the Neo-Hookian strain energy

Call Strnenrgy (wmu,wlambda,wphatlambda, lambda,mu, j,G,matindx,
* nelem, nmat)

C Calculating the Piola stress

If ((lambda .LE. 1DO) .AND. (mu. LE. 1DO)) Then
Do 2000 i=1 , 3
Do 2010 ia=1 , 2
T(i,ia)=0D0

2010 Continue
2000 Continue
Else if ((lambda .GT. 1DO) .AND. (mu .LE. 1D0/Sqrt(lambda)))
*Then

Do 2020 i=1 , 3
Do 2030 ia=1 , 2
T(i,ia)=wphatlambda*ll(i)=*L(ia)
2030 Continue
2020 Continue
Else if ((lambda .GT. 1DO/Sqrt(mu)) .AND. (mu .GT. 1DO/
*Sqrt (lambda))) Then
Do 2040 i=1 , 3
Do 2050 ia=1 , 2
T(i,ia)=wlambda*11l(i)*L(ia)+wmu*mm(i)*M(ia)
2050 Continue
2040 Continue
Endif
Return
End

Subroutine Defgrad(x,r, j,F,conmat, A, nnode, nelem)

(o] This subroutine calculates the deformatiocn gradient F
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Double precision x(2,nnode),r(3,nnode),F(3,2),A(nelem)
Integer conmat (4,nelem)
nl=conmat (1, })
n2=conmat (2, J)
n3=conmat (3, J)
n4=conmat (4, j)
Do 3020 i=1 , 3
F(i,1)=((x(2,n4)~x(2,n2))*(r(i,n3)-r(i,nl))-(x(2,n3)-x(2,nl)
*y*(r(i,nd4)-r(i,n2)))/(2D0*A(]))
F(i,2)==((x(1,n4)-x(1,n2))*(c{i,n3)-r(i,n1))-(x(1,n3)-x(1,nl
*))*(r(i,nq4)-r(i,n2)})/(2D0*A(]))
3020 Continue
Return
End

Subroutine CGStrain(C,F)
c This subroutine calculates the Cauchy-Green strain tensor

Double precision C(2,2),F(3,2)
Do 4000 ia=1 , 2
Do 4010 ib=1 , 2
C(ia,ib)-F(l,ia)'F(l.ib)+?(2,1a)*F(2,ib)+F(3,ia)*F(3,ib)
4010 Continue
4000 Continue
Return
End

Subroutine Pplstrch(C, lambda, mu)
c This subroutine calculates the ppl stretches from C

Double precision C(2,2),lambda,mu,x1,x2,trc,detc
tre=C(1,1)+C(2,2)
detc=C(1l,1)*C(2,2)-C(1,2)**2D0
x1=Abs (trc+Sqrt (Abs (trc**2D0-4D0*detc) ) ) /2DO
x2=Abs (trc-Sqrt (Abs (tre**2D0-4D0*detc) ) ) /2D0
If (x1 .GT. x2) Then
lambda=Sqrt (x1)
mu=Sqrt (x2)
Else
lambda=Sqrt (x2)
mu=Sqrt (x1)
Endif
Return
End
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Subroutine Cevector(C,F,L,M,11l,mm, lambda, mu)

c This subroutine calculates the ppl vectors of C and their deformed
Cc configuration

Double precision c(2,2),F(3,2),L(2),M(2),11(3) ,mm(3), lambda, mu
L(1)=Abs (C(1,2)) /Sqrt ( (lambda**2D0-C(1,1)) **2D0+C (1, 2) **2D0)
L(2) =Abs (C(1, 2) ) /Sqrt ((lambda**2D0-C(2,2)) **2D0+C(1, 2) **2D0)
M(1) =Abs (C(1,2))/Sqrt ((mu**2D0-C(1,1)) =*2D0+C(1, 2) **2D0)
M(2) =Abs (C(1, 2)) /Sqrt ( (mu**2D0~C (2,2)) **2D0+C(1, 2) **2D0)
If ((C(1,1)-lambda**2D0)*C(1,2) .LT. ODO) Then
M(1)=-M(1)
Else
L(2)=-L(2)
Endif
If (Abs(C(1,2)) .LE. 1D-14) Then
If (C(1,1) .GT. C(2,2)) Then
L(1)=1D0
L(2)=0D0
M(1)=0DO
M(2)=1D0
Else
L(1)=0D0
L(2)=1DO
M(1)=1DO
M(2)=0DO
Endif
Endif
Do 5000 i=1 , 3
11(i)=(F(i,1) *L(1)+F(i,2)*L(2)})/lambda
mm (L) =(F(i,1) *M(1) +F (i, 2) *M(2)) /mu
5000 Continue
Return
End

Subroutine Strnenrgy(wmu,wlambda,wphatlambda,lambda,mu,j,G,matind
*x,nelem, nmat)

(o This subroutine calculates the derivatives of the strain energy
c w.r.t. ppl stretches using the Neo-Hookian strain energy.

Double precision wmu,wlambda,wphatlambda, lambda,mu
Double precision G(nmat)

Integer matindx(nelem)

wmu= (mu—1D0/ (mu**3D0*Llambda**2D0) ) *G(matindx (}))
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wlambda=(lambda-1D0/ (mu**2D0*lambda**3D0) ) *G (matindx(J))
wphatlambda=(lambda—lDO/lambda**ZDO)'G(matindx(j))
Return
End

Subroutine DR(x,r,nfree,nfre,nodcire, nodelcom, nndelmax,G,conmat,ma
*tindx,usm,usc,pp,fn,nsew,nsw,nelem,nnode,nmat,nsmax,A,TE,fp,ff,u,
*Ma.RR,udotp,udotc,P,ncable,cblcnmt,nmatcbl,Gcbl,Fcbl,chl,maticbl
*,nfcbl,nn,ftrac,npconst,nfrepc,ipdirid,ncablez,cblcnmtz,maticblz
*, nmaxcbl, Lebl2, ncmax, nfcbl2, Lnewj2, cstrn, cstrn2)

c This subroutine solves the non-linear equations of equilibrium
C using Dynamic Relaxation

Double precision x (2, nnode) , r (3, nnode) ,udotp (nfree*3) ,Rmax
Double precision udotc(nfree*3),h,er,P(nfree*3) ,RR(nfree*3)
Double precision cc, ff(nfree*3),A(nelem) ,G(nmat) ,u(nfree*3)
Double precision Ma (nfree*3),usm, usc, fn(nfree*3),pp,rl,r2,r3
Double precision TE (3,2, nelem), fp(nfree*3),nn(3, nelem)
Double precision Gebl (nmatcbl) , Fcbl (nfree+*3) , Lebl (ncable)
Double precision ftrac(nfree*3), Lcbl2 (ncablel)

Double precision Lnewj2 (nmaxcbl, ncable2),cstrn(ncable)
Double precision cstrn2(ncable2)

Integer cblcnmt(z,ncable),maticbl(ncable),nfcbl(z,ncable)
Integer nodcire (2, nsmax, nfree), nodelcom(nsmax, nfree)
Integer nndelmax (nfree) ,conmat (4, nelem),nsw(2, nsew)

Integer nfre(nfree),matindx(nelem), nfrepc(npconst)

Integer ipdirid(npconst),cblcnmtz(nmaxcbl,ncableZ)

Integer maticbl2 (ncable2),ncmax({ncable2)

Integer nfcbl2 (nmaxcbl, ncable2)

character filetemp*l2

c Calculating the area of the zones, unstretched length of the
c cables, and indexing free nodes lying on the cables

Call CalcArea(x,nelem,A,conmat,nnode)
Call Calcl(x,nnode,ncable,cblcnmt,chl,ncableZ,cblcnth,chlz

* , ncmax,nmaxcbl,cstrn,cstrn2)
Call nfrecbl(nfre,nftee,cblcnmt,ncable,nfcbl,ncablez,cblcnmtz
* , ncmax,nmaxcbl, nfcbl2)
c Specifying time step and tolerance
h=1D0
er=1D~-5
n=0 s
cc=usc
c Initializing the displacement and mass vectors

Do 6000 i=1 , nfree*3
u(i)=0D0
Ma(i)=usm
6000 Continue
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(o4 Updating the position vectors

6010 Do 6020 i=1 , nfree
r(l,nfre(i))=x(1,nfre(i))+u((i-1)*3+1)
r(2,nfre(i))=x(2,nfre(i))+u((i-1)*3+2)
r(3,nfre(i))=u((i-1)*3+3)

6020 Continue

c Equating the nodal positions for nodes lying on the suturing seam

Do 6170 i=1 , nsew
rl=r(l,nsw(l,i))
r2=r(2,nswi(l,i))
r3=r(3,nsw(l,i))
r(l,nsw(2,1i))=rl
r(2,nsw(2,1i))=r2
r(3,nsw(2,1i))=r3

6170 Continue

C Calculating the external and internal nodal force vectors
Call Fintext(x,r,nfre,nfree,nodcirc, nodelcom,nndelmax,P,conma
*t,G,matindx,pp,fn,ff,nelem,nnode,nmat,nsmax,A,TE,fp,ncable.
tcblcnmt,nmatcbl,Gcbl,Fcbl,chl,maticbl,nfcbl,nn,ncablez,cblcnmtz
*, Lcbl2, maticbl2, nfcbl2, nmaxcbl, ncmax, Lnewj2)
[of Calculating the residual vector
Do 6030 i=1 , nfree*3
RR(1)=P (i) +££ (i) +ftrac(i)
6030 Continue

c Modifying the residual vector for partially constrained nodes

Do 6035 i=1 , npconst
RR((nfrepc(i)-1)*3+ipdirid(i))=0d0

6035 Continue
c Finding Maximum absoclute value of residual
Rmax=0DO0

Do 6040 i=1 , nfree*3
If (Abs{RR(i))} .GT. Rmax) Then
Rmax=Abs (RR (1))

Endif
6040 Continue
(o4 Check for convergence

If (Rmax .LT. er) Go To 6160
(o Calculating velocity at time step n+l/2

If (n .EQ. 0) Then
Do 6130 i=1 , nfree*3
udotc(i)=h*RR(i)/ (2D0*Ma (1))
6130 Continue
Else
Do 6140 i=1 , nfree*3
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udote (1) = (2D0-cc*h) *udotp (1) / (2D0+cc*h) +2D0*h*RR (1) / ((2DO+cc*
*h) *Ma (1))

6140 Continue
End if
c Calculate displacement at time step n+l

Do 6150 i=1 , nfree*3

u(i)=u (i) +h*udotc(i)
udotp(i)=udotc (i)
6150 Continue
n=n+1
Go To 6010
6160 Return

End

Subroutine CalcArea(x,nelem,A,conmat,nnode)

C This subroutine calculates the area of each zone to be used in
c calculating deformation gradient F

Double precision x(2,nnode),A(nelem)
Integer conmat (4, nelem)
Do 9000 i=1 , nelem
nl=conmat (1, 1)
n2=conmat (2, i)
n3=conmat (3, 1)
n4=conmat (4, 1)
A(i)=((x(2,n4)-x(2,n2))*(x(l,n3)-x(1,n1))-(x(l,nd)—x(l.nZ))*
* (x(2,n3)-x(2,n1)))/2D0
If (A(i) .LE. ODO) Then
Write(*,*)'nl,2,3,4=',n1,n2,n3,n4
Write(*,*) 'elem #=*,1
write(*,*)'a=*,A (1)
Stop
Endif
9000 Continue
Return
End

Subroutine nfrecbl(nfre,nfree,cblcnmt,ncable,nfcbl,ncablez,
* cblenmt2, ncmax, nmaxcbl,nfcbl2)

(of This subroutine indexes the free nodes lying on the cables

Integer nfre(nfree),cblcnmt(z.ncable),nfcbl(z,ncable)
Integer cblcnmt2 (nmaxcbl, ncable2), ncmax (ncable2)
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Integer nfcbl2 (nmaxcbl, ncable2)
Do 13000 i=1 , nfree
Do 13010 j=1 , ncable
If (nfre(i) .EQ. cblecamt(l, j)) Then
nfcbl (1, j) =1
Go To 13010
End If
If (nfre(i) .EQ. cblenmt(2,3j)) Then
nfcbl(2, ) =i
End If
13010 Continue
13000 Continue
Do 13020 i=1 , nfree
Do 13030 j=1 , ncable2
Do 13040 k=1 , ncmax(])
If (nfre(i).eq.cblcamt2(k, j))} Then
nfcbl2 (k, j) =1
End If
13040 Continue
13030 Continue
13020 Continue
Return
End

Subroutine Fcable(r,nfree, nfre,nnode,ncable,cblenmt, nmatcbl,Gebl
= Fcbl, Lcbl,maticbl,nfcbl, ncable2,cblenmt2, Lebl2, maticbl2, nfcbl2
* nmaxcbl,ncmax, Lnewj2)

(o4 This subroutine calculates the nodal force vector due to the cables

Double precision r(3,nnode),Gcbl (nmatcbl)
Double precision Fcbl(nfree*3),FF(3), Lcbl(ncable)
Double precision Lcbl2(ncable2),Lnewj2(nmaxcbl,ncable2)
Integer nfre(nfree),cblenmt (2,ncable) ,maticbl (ncable)
Integer nfcbl(2,ncable),cblcnmt2(nmaxcbl, ncable2)
Integer maticbl2(ncable2),nfcbl2(nmaxcbl,ncable2)
Integer ncmax(ncable2)
Do 10000 i=1 , nfree
Fcbl ((i-1) *3+1)=0D0
Fcbl ((i-1) *3+2) =0DO
Febl ((1i-1) *3+3)=0D0
10000 Continue
Do 10010 j=1 , ncable
If (nfcbl(l, j) .NE. 0) Then
Call Fcb(r,nnode,cblenmt, j, 1, Lebl, FF, ncable, Gebl,
* maticbl, nmatcbl)
Febl ({nfebl (1, j) -1) *3+1)=Fcbl ((nfcbl (1, j)-1) *3+1) +FF (1)
Fcbl ((nfebl (1, 3) -1) *3+2)=Fcbl ((nfcbl (1, j) -1) *3+2) +FF (2)
Fcbl ({nfebl (1, j) -1) *3+3)=Fcbl (({nfcbl (1, j)~-1) *3+3) +FF (3)
End If
If (nfcbl(2,3j) .NE. 0) Then
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Call Fcb(r.nnode,cblcnmt,j,Z,chl,FF,ncable,Gcbl,

* maticbl, nmatcbl)
Fcbl((nfcbl(Z,j)-l)'3+1)-Fcbl((nfcbl(2.j)-l)'3+1)+FF(1)
Fcbl((nfcbl(z,j)-1)'3+2)-FCbl((nbel(2,j)-l)'3+2)+FF(2)
Fcbl((nfcbl(z,j)-l)*3+3)-Fcb1((nfcbl(2,j)-l)'3+3)+FF(3)

End If
10010 Continue
Do 10020 i=1 , ncable2
Call Calclnewj(r,nnode,i,cblcnmtz,nmaxcbl,ncmax,Lnewjz,
* ncable2)
Do 10030 j=1 , ncmax(i)
If (nfcbl2(j,i) .NE.O) Then
Call FcbZ(r,nnode,cblcnth,i,j,chlZ,FF,ncableZ,Gcbl,

* maticbl2, nmatcbl, nmaxcbl, ncmax, Lnewj2)
Fcbl((nfcblZ(j,i)-l)*3+1)-Fcbl((nfcblZ(j.i)-l)*3+1)
* +FF (1)
Fcbl((nfcblZ(j.i)-l)'3+2)=Fcbl((nfcblZ(j,i)—l)*3+2)
* +FF(2)
Fcbl((nfcblZ(j,i)-l)*3+3)-Fcbl((nfcblZ(j.i)-l)'3+3)
* +FF (3)
End If
10030 Continue
10020 Continue
Return
End

Subroutine Fcb(r,nnode,cblcnmt,j,k,chl,FF,ncable,Gcbl,maticbl

* ,nmatcbl)
[of This subroutine calculates the force vector at each free node on the
Cc attached cable.

Double precision r(3,nnode),chl(ncable),FF(3),Lnewj,lam,eps
Double precision Gebl (nmatcbl) ,Fj
Integer cblenmt (2,ncable) ,maticbl (ncable)
FF(1)=0D0
FF (2)=0D0
FF (3} =0D0
Lnewj=((r(l,cblcnmt(2,j))—r(l,cblcnmt(l,j)))'*2DO+
* (r(2,cblenmt (2, 3))-r(2,cblenmt (1, J))) **2DO+
* (r(3,cblcnmt(2,j))—r(3,cblcnmt(1,j)))**ZDO)**SD-l
lam=Lnewj/Lcbl (J)
If (lam .GT. 1DO) Then
eps=lam-1D0
Fj=Gcbl (maticbl(])) *eps
If (k .EQ. 1) Then
FF(l)S(r(l,cblcnmt(Z,j))-r(l,cblcnmt(l,j)))'Fj/Lnewj
FF(Z)-(:(Z,cblcnmt(Z,j))-r(2,cblcnmt(l,j)))'Fj/Lnewj
FF(3)-(r(3,cblcnmt(2,j))-r(3,cblcnmt(1,j)))'Fj/Lnewj
Else
FF(l)-(r(l,cblcnmt(l.j))-r(l,cblcnmc(z,j)))*Fj/Lnewj
FF(Z)-(:(Z,cblcnmt(l,j))-r(2,cblcnmt(2,j)))*Fj/Lnewj
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C

15000

*

FF(3)=(r(3,cblcnmt (1, j))-r(3,cblcnmt (2, j))) *FJ/Lnew]
End If
End If
Return
End

Subroutine Fcb2(r,nnode,cblcnmt2, j,k,Lebl2, FF, ncable2, Gebl,
maticbl2, nmatcbl, nmaxcbl, ncmax, Lnewj2)

This subroutine calculates the force vector at each free node on
the shearless cable.

Double precision r(3,nnode),Lcbl2 (ncable2),FF(3),Lnew], lam, eps
Double precision Gebl (nmatcbl), Fj, Lnew32 (nmaxcbl, ncable)}, sum
Integer ncmax{(ncable2)
Integer cblenmt2 (nmaxcbl, ncable2) ,maticbl2 (ncable2)
FF (1) =0D0O
FF(2)=0D0
FF (3)=0D0
sum=0D0
Do 15000 i=1 , ncmax(j)-1
sum=sum+Lnewj2 (i, j)
Continue
Lnewj=sum
lam=Lnewj/Lcbl2 (J)
If (lam .GT. 1DO) Then
eps=lam-1DO
Fj=Gebl (maticbl2 (j)) *eps
If (k .EQ. 1) Then
FF(1)=(r(l,cblenmt2(2, j))-r(l,cblenmt2(1,j))) *F}/
Lnewj2(1, 3)
FF(2)=(r(2,cblcnmt2(2, }})-r(2,cblenmt2 (1, j))) *FJj/
Lnewj2(1, J)
FF(3)=(r(3,cblcnmt2(2,j))-r(3,cblcnmt2(l,j)))*Fj/
Lnew3j2(1, j)
Else If (k.eqg.ncmax(j)) Then
FF(1)=(r(1,cbICnmt2(k-1,j))-r(l,Cblcnmt2(k,j)))'Fj
/Lnew32 (k-1, J)
FF(2)=(r(2,cblcnmt2 (k-1, j)) -r(2,cblenmt2(k, J))) *FJ
/Lnewij2 (k-1, 3J)
FF(3)=(r (3, cblenmt2 (k-1, j) )} -r (3, cblecnmt2 (k, §) ) ) *F]
/Lnewij2 (k-1, j)
Else
FF(1)=(r (1, cbleamt2 (k-1, 3))-r(l,cblecamt2 (k, j)))*F]
/Lnewij2 (k-1, §) +(r (1, cblenmt2 (k+1, j))-r (1,
cblenmt2 (k, j))) *Fj/Lnewj2 (k, J)
FF(2)=(r(2,cblcnmt2(k-1, j))-r(2,cblenmt2(k, j}))*FJ
/Lnew3j2 (k-1, j) +(r(2,cblcnmt2 (k+1, j)) -r (2,
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* cblenmt2 (k, §))) *Fj/Lnewj2 (k, J)
FF(3) =(r(3,cblcnmt2 (k-1,3))-r(3,cblenmt2 (k, j))) *FJ
* /Lnew3j2 (k-1, §) +(r(3,cblenmt2 (k+1, 3)) -r (3,
* cblenmt2 (k, ) ) ) *Fi/Lnewj2 (k, J)
End If
End If
Return
End

Subroutine Calclnewj(r,nnode,i,cblcnmt2,nmaxcbl,ncmax,Lneij
* .ncable?)

c This subroutine calculates the deformed length of each piece of
c shearless cable

Double precision r(3,nnode),Lnewj2(nmaxcbl, ncable2)
Integer cblenmt2 (nmaxcbl, ncable2) , ncmax (ncable2)
Do 16000 j=1 , ncmax(i)-l
Lnewjz(j,i)ﬂ((r(l,cblcnth(j,i))-r(l,cblcnth(j+1,i)))**2DO+
* (r(2,cblenmt2 (3, i))~r(2,cblenmt2(j+1,1))) **2D0+
* (r(3,cbleamt2 (j,1))-r(3,cblenmt2(3+1,4))) **2D0) **5D-1
16000 Continue
Return
End

Subroutine Calcl(x,nnode.ncable,cblcnmt,chl,ncablez,cblcnmtz,

* Lcbl2, ncmax, nmaxcbl, cstrn, cstrn2)
c This subroutine calculates the unstretched length of each piece of
o shearless and attached cables.

Double precision x (2, nnode) , Lcbl (ncable) ,Lcbl2 (ncablel)
Double precision cstrn{ncable),cstrn2(ncable2)
Integer cblenmt (2, ncable) ,cblenmt2 (nmaxcbl, ncable2)
Integer ncmax{ncable2)
Do 12000 i=1 , ncable
Lebl (1) =(((x(1l,cblenmt(1,1))-x(1,cblenmt(2,1))) **2D0+
*(x(z,cblcnmt(l,i))-x(Z,cblcnmt(Z.i)))"ZDO)*'5D-l)/(100+cstrn(i))
12000 Continue
Do 12010 i=1 , ncable2
sum=0D0
Do 12020 3j=1 , ncmax(i)-1
sum=sum+ ( (x (1, cblenmt2 (3, 1)) -x(1,cblcamt2(3+1,41))) **2D0
* +(x(2,cblenmt2(j,1))-x(2,cblenmt2 (j+1,1)) ) **2D0) **5D-1
12020 Continue
Lebl2 (1) =sum/ (1DO+cstrn2(i))
12010 Continue
Return
End
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o

7000

7010

7020

7030

7040

7050

7060

Subroutine Indata(nnode, x,G,nelem,conmat,matindx,nfixed,nfxd
',nprscrbd,nprsc,dxl,dxz,dx3,pp,nforce,nfrc,fx,fy,fz,nsew,nsw

* nmat,ncabl
*n2trc,tXx,ty
*,maticbl2,n

This subrou

Double p
Double p
Double p
Double p
Double p
Integer
Integer
Integer
Integer
Integer
Integer
Read (1,
Do 7000
Read
Continue
Read (1,
Do 7010
Read
Continue
Read (1,
Do 7020

Read (1,*) ii,conmat(l,i),conmat(z,i),conmat(3,i),conmat(4,i),

*matindx (1)
Continue
Read (1,
Do 7030

Read
Continue
Read (1,
Do 7040

Read

e,cblcnmt, nmatcbl, Gebl, maticbl, nprstrac, nltrc,
.tz,npconst, nodpc, ipdirid, ncable2,cblenmt2
maxcbl, ncmax, cstrn,cstrn?)

tine reads the data from input datafile

recision x(2,nnode),dxl (nprscrbd),dx2 (nprscrbd)
recision dx3(nprscrbd), fx(nforce), fy(nforce)
recision G(nmat), fz(nforce),pp,Gcbl (nmatcbl})
recision tx(nprstrac),ty(nprstrac),tz(nprstrac)
recision cstrn(ncable),cstrn2(ncable2)

ecblenmt (2, ncable) ,maticbl (ncable), ipdirid(npconst)

conmat (4, nelem) ,matindx (nelem), nfxd (nfixed)
nprsc(nprscrbd),nfrc(nforce),nsw(Z,nsew)
nltrc(nprstrac),nZtrc(nprstrac),nodpc(npconst)
cblenmt2 (nmaxcbl, ncable2) ,maticbl2 (ncable2)
ncmax (ncable2)

*) nnnode

i=1 , nnode

(1,*) 1i,x(1,1),x(2,1)

*) nnmat
i=]1 , nmat
(1,*) ii,G(i)

*) nnelem
i=1 , nelem

*) nnfixed
i=1 , nfixed
(1,*) nfxd(i)

*) nnprscrbd
i=1 , nprscrbd
(1,*) ii,nprsc(i),dxl(i),dx2(i),dx3(1)

Continue

Read (1,
Do 7050
Read
Continue
Read (1,
Read (1,
Do 7060
Read
Continue
Read (1,
Do 7070

Read (1, *) ii,cblcnmt(l,i),cblcnmt(z,i),maticbl(i),cstrn(i)

*) nnforce
i=1 , nforce
(1,*) ii,nfrc(i),fx(i),fy(d),fz (i)

*) ppP

*) nnsew

i=1 , nsew

(1,*) ii,nsw(l,i),nsw(2,1i)

*) ncable
i=1 , ncable
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7070

7110

7080

7090

7100

C

8000

Continue
Read (1,*) ncable2
Do 7110 i=1 ,ncable2
Read (1, *)ii,ncmax (i), (cblenmt2 (3, 1), j=1,ncmax (1)),
maticbl2(i),cstrn2 (i)
If (ncmax(i).gt.nmaxcbl) Then
write(*, *) '"Maximum & of cables in the string is violated'
Stop
End If
Continue
Read (1, *) nmatcbl
Do 7080 i=1 , nmatcbl
Read(1,*) ii,Gcbl(i)
Continue
Read (1, *) nprstrac
Do 7090 i=1 , nprstrac
Read(l, *) ii,nltrc(i),n2trc(i),tx (i), tyd), cz (i)
Continue
Read (1, *) npconst
Do 7100 i=1 , npconst
Read (1, *)nodpc (i), ipdirid(i)
Continue
Close (1)

Return
End

Subroutine Output(nnode,x,r,G,conmat,matindx,fileout,nelem,nmat,A)

This subroutine generates the output datafile

Character fileout*12,date*30
Double precision x(2,nnode), r (3, nnode) ,G(nmat) ,F(3,2),C(2,2)
Double precision lambda,mu,L(2) ,M(2),11(3),mm(3),wmu
Double precision wlambda, wphatlambda, A (nelem), T(3,2)
Integer conmat (4, nelem),matindx(nelem),es
Open(l,File=fileout)
Do 8000 i=1 , nnode
Write(l,=)i,r(1,1i),r(2,1),r(3,1)
Continue
Do 8010 i=1 , nelem
call Defgrad(x,r,i,F,conmat, A, nnode, nelem)
Call CGStrain(C,F)
Call Pplstrch(C, lambda,mu,F)
Call Cevector(C,F,L,M,11,mm, lambda, mu)
Call Strnenrgy(wmu,wlambda,wphatlambda,lambda,mu,i,G,matind
X, nelem, nmat)
If ((lambda .LE. 1DO) .AND. (mu. LE. 1D0)) Then
Do 8020 ji=1 , 3
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8030
8020

8050
8040

8070
8060

8010

*Then

*sqrt (1

Con
Return
End

Do 8030 jia=1 , 2
T(ji,ia)=0DO
Continue
Continue
es=0
Else if ((lambda .GT. 1D0) .AND. (mu .LE. 1D0/Sqrt(lambda)))

Do 8040 3ji=1 , 3

Do 8050 ia=1 , 2

T(3ji,ia) =wphatlambda*ll (ji)*L(ia)

Continue
Continue

es=1
Else if ((lambda .GT. 1D0/Sqrt(mu)) .AND, (mu .GT. 1DO/
ambda))) Then

Do 8060 ji=1 , 3
Do 8070 ia=1 , 2
T(3i,ia)=wlambda*1l(ji)*L(ia)+wmu*mm(ji) *M(ia)
Continue
Continue
es=2
Endif
Write(l,*) i, lambda,mu,es,l1(1),11(2),11(3),mm(1l),mm(2),mm(3)
Write(1,*)T(1,1),T(1,2),T(2,1),T(2,2),T(3,1),T(3,2)
tinue
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