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ABSTRACT

Let m and n be infinite cardinals, then aWSpace X is said tof
be m-h compatt if and only if every open cover of cardinality m has a

ﬁsub—cover of cardinality strictly less than.n Thls concept covers

the ma1n three _compactness- like propertles, namely compactness count-
able compactness and Lindelof property.

In Chapter I, we_study-basic concepts about higher cardinals,

product spaces and compact spaces. In Chapter II, we study m-n compact
spaces -and thelr product properties in detail by’ obtalnlng generallza—‘

tlons of some known theorems about products of m-n compact spaces..  We

also;study;weak topological sums of n-compaCt'spaces and we prove that
arbitrary products of Lindelof, TS’ P-spaces are Lindelof,bprovided
the product is paracompact.

Our main tools are fllters but in Chapter IIT we study Max1mal-

filters and some of - thelr appllcatlons to compact 11ke spaces in a non-'

'-;detalled manner. This chapter is mainly to glvevan 1n1t1at1ve step to

beglng the work on Fllter Technlques and tompactness like Propertles

We also give an 1ntroductlon to weakly m-n' compact spaces since these

_spaces are generalizatioms of m-n_compact spaces.
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PREFACE

This thesis is designed to study m-n Compact Spaces using
Generalized filters. The material of thls the51s is d1v1gpd into

three chapters and our. maln goal is toastudy product1v1ty of \
compactness like properties in a general settlng . /5)
L
In Chapter I we 1nc1ude basic concepts of cardlnal arlthmetlc\\\
N
product spaces.and COmpact spaces. In Chapter II we study m-n compact ™

AN

‘spaces and their product properties in detail and in Chapter III we
study some applications of maximal filters‘to COmpact—like spaces.
The concept of m-n compactness andilts generallzatlons have been\
studled by J. E Vaughan, W.W. Comfort N. Noble, M. Ulmer and others
£ Chapter I is devoted to ba51c propertles of 1nf1n1te cardlnals,
generallzed products, compact spaces and. the Stone- Cech compactlflcatlon
In the study of cardlnals we pay more attention to regular and 51ngu1ar
propertles also we rely on the filter description of the‘Stone Cech
. compactificatlon and we_denote by BX. In the precedlng chapters
p01nts of BX and the correspondlng ultrafllters are used 1nterchangeab1y
In, Chapter 11 we malnly study product theorems about compact-
llke spaces in a general settlng and we extend some theorems in partlal
generality. The propertles which are stronger than m-n compactness
have been studled-by J.E. Yaughan,and others. The property 1 mon 15 in -
this‘nature and rt has interesting applications to products of compact4}
lihe,spaces.; We study thisvproperty’and itslappircations in the Sections
3.1 - 3.4, - EEREIRE R | /
In Chapter III we study some properties"ofdmaximum filters and we

use those properties tods_udy a hard example-about strongly a-compact



b

spaces. The concepp of F-compactneSS is defihed in terms cf.ultra- f
filters and it is stroﬁéer’tﬁcn_aountag}e compactness. The wcrk

in this nature can be considered as applicatioﬁs of maximal filters
to compactness-like properties.

The symbols m and n in this theéié denote infinite cardinals

unless otherwise stated and undefined terminology follows that of

.

Willard (23). The main spaces and main kéy words are listed for quick
S , : . ‘ ,

reference and for the convenience of the reader.

B We aﬁéo give a rcference list of examﬁlcs Which'ére“related tor

the maih‘spaces of this thesis.

Finally we wish to mention .that weakly'm-n compact spacés are

™~

generallzatlons of m-n compact spaces and this concept also covers
varieties of compact -like spaces such as H(i)-spaces, feebly compact

spaces, weakly—Llndelof spaces‘for suitable m and n.

vii
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Then we have the following: ' -

Let m and n be infinite cardinals.

Bicompact spaces (olden‘déys - Alexandroff and Uryshon)_

Compact spaces
~

.I'-compact spaces ﬁnew;céncéptffig70)p :

- Strongly m-n'cdmpéctASpaées;}-

- . . @
: n. \
(n = regular and m—~* m) ~ -
\} {
! LT

® - . L
’ R : . : . . “ h : M
. ke % . f S .

vt

Thfe'p“r‘_OPerty,ulm;;,'n ' SRR §

‘countably compact (Fechet-métrichpaéééj
spaces o L TR

 ;>_“ 'm—n compact spaces \;\\\\ IR » o SR ;
SR Lindelsf spaces (Siérprinski - 1921} ~

\

\

H(i)-spaces

} S //2/)( . (Scarborough»and R
N 5 . - \ V v .
weakly countably s Stoge‘. .

Weakly m-n compact spaces —
. ‘ \ compact epacps

e o e %ﬂw¢M®mf®““'
; o (present day 1nterest)
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12.
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4.

16.
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18.

~19.

|X|-cardinality of X o . ;
le+—Fﬁ§st cardinal strictlfriarger than |X|

2%-exp(a) _ ‘
b !

(GCH) -Generalized continuum hypothesis is.assumed without explicit

mention.
P(X)-Power set of *X .
d-empty set

U¥ - U{'F:’ F e %} ,?‘c P(X)

. ﬁ?-_ﬂ{F: Fe ¥}

G°-interior of G = Int%G, F -closure of F = Ci F.
F-rLFL Fe P )

?&QQeighboyrhood system at x € X .

7y

;neighbqﬁrhood sfgtem at‘ Ahe P(X) ..

C(X)-set ofvall.COntinuous'reél;valued functions on X .
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F5-{FCS: Fef). “ - :
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7,55 < P(X) ' o o

a5

fFH-1£(F): FeFt.

£ -1EF): Fe

Space X?Topological ébate.:X. e

Dﬁ—Se% of all positive"integérs of . X ;

Q-set of ali'rational'number%. ‘ ’, ' ’

"R -set of all reai_ﬁumbers

Y(igixi)_f—weak topological sum§'gf the spacesj {X.: iel}
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CHAPTER I

~

PRELIMINARIES

1. Higher Cardinals

’

&

in‘thié section we study some properties of higher cardinals which
will be.use? I in the Iatterychapters. We asSumeNelementary{faéts about'
Q, addition, multiplication énd exponentiation of cardinéi humber;‘and we
shall state standard thegrems abbut cardinal numbers witho%ﬁ proofs

[which can be found in H.B. ENDERTON - (6)].

1.1. Cardinal Arithemetic.

A... THEOREM. Let k and A be any two cardindl numbers such that

the la._er is infinite and the smaller is non-zero. - Then

k + X2 = ked = max-{¥,A).

-

This is'called the ABSORPTION LAW of Cardinal Ari;hmetié.

B. THEOREM. . Le- i be a collection of sets. Suppose each member

=

of A has cardinality e s than or equal to k, then |LWJ | < k-
where {d| denotes t  cardinality of . This is a generalization of
the result that the countable union of countablé sets 1s countable.

k

C. Notation. a =} {aY: Y <'k} where a,y and k  are

cardinal: numbers.



T

_/////%S/E/g;;éular cardinal.

-
R

Example. Let a be an infinite cardinal number. Then & ° = a.

»

D. LEMMA. Let X be an infinite set and 4 be the set of all.
finite subsets of X. Then the cardinality of A is [ X]

»

“Proof. Let :Jn = {A’s P(X) : |A] = n} for n = 1,2,00ee0eee,

\ Then ldnl < |Xn[ = |x|.We note that A = LJdn and hence
A 'S No -[X} = [X]. 1t is easy to see that |4] 2']XI.;\Hence
4 = |x]. |

S

1.2. Regular and Singular Cardinals.

. . {
A. - Definition. Let o be an infinite.cardinai. Then the small-

est cardinal g for which there is a family {ag : £ < g} of :;ardinais

such that a. <a for ¢ < g “and z:'ag = a is called‘the~cofinality
2 £ ‘ —
of « and denoted by Cf(a).

Let G be a set with cardinality a. Suppose S is a subset
of G such that Sup. S = a. Then S is saidto be cofinal in G. By

-the above definition cofinality of G = minimum {Is|: s 1is cofinal in G}.
Note.-‘G'/itself is‘cofinal-in G. “Hence for any cardinal «
T

o> Cf(a).

>

B. 'Definition. A cardinal o 1is said to be regular if and only

if Cf(a) = a. apd otherﬁise a 1s said to be a singular cardinal.

ExamEIe.'/Consider' NOQ Rl’,f"f': xm We know’that .,
Nooo R, R ... ; : = '
L Sup. { , 31 , _}.‘ It is easy to see that Cf(hb_) = N o

o
and Cf ( N@J = Ré . Therefore Ro is a regular cardinal and R w



. Note..'Let a bea ‘regular cardinal. Let %{au tnu-e I} bea

* family of géf@inalsusﬁéh};hatt.dufé o for all w e I. ‘Suppb$é' 1] < a.
Then Y, ‘a <a. - '
oW
el

»

. o 4 : . n
LEMMA. (GCH) Let n <m and m be regular, then m = mﬂ
proof. We note that m" = m for o < n and hence we have

5* =) ma'{u-<,n} =m.

C.‘”THEQREM} “EQr ény3infinife,cardinan.q'_we‘have fbé following:
(1) Cf(a) is regulaf;

(i1) agf(a)l>;; .

~ Proof. See (6] - 9S.

Example. Let 'a = X e Then :Cf(a) = E{O. Hence - &L> o, R
. R . ;
* but R.—_p,= R
S W W

J oj:,

D. " THEOREM.. Let o .be an infinite cardinal. Then the cofinality
of a 1is the least cardinal number B such that - o can be decomposed

into the union of B sets, each having cardinality less than a.

Proof. Seq [Endertbn - (6), 9T].

: [
1

Notei CECNy) = Ry

By Cantor’s Theorem we know that for anv cardinal «

exp (a) > a . This result has improved by KONIG; we shalf*staté'that

as- a theorem.

=, THEOREM. Let. a be an‘infinite'cardiﬁal, then the Cofinality
—_— ‘ _ , . ,

of .(exp o) > a..



i i i X = R inali 'f
Examples. {(i). Cofinality of - 5 and coflnallty 0

(By KONIG'S Theorem) . Therefore exp Ro'#' Rw; . (;i

e Fo)” Fo

- e . ' . a
(1£) Let a« . be an infinite cardinal, then ‘aa = 2.
(%ii) The number of continuous functions from R - R ' is

o]

LS N

cry| =

(iv) Let o be infinite and 2 < k < o, then K* = 2%

1.3. Inaccessibie Cardinals.

RS

A. Der nition. ‘A‘cardinalt'a is said to be strongly inaccessible

if and only!it satisfies the following conditionsx

“{¥#1) 2" < a for all B < a, : o S -
« (iii) a - is regular. .
BN Note: A cardinal which satisfiés (ii) is called a strong-limit
. cardinal. ' : \ .
_— ‘ . . . \\a
ExamEIe. Conslder | Ro" Rl’f'.’ Rw . By GCH.we have ‘*\:\

R : o : R o

2 M= R .  Therefore we have X >2 % for all n>= 0,1, ==--.
n+l : w o

-Hence R is a strong—limitSZardinali 

B. _Définition. A cardinal which satisfies- (ii) and (iii) ‘of (A)

is called an inaccessible cardinal.

C.. Definition. Let o and vy be cardinals, such that vy < a. Then

o 1s said to be stfongly y-inaccessible if Sk < a *for B <a and

k < vy. | P

THEOREM.  Let o .bé a.regular cardinal with a > vy 2 R - Then ¥

—_—



the foliowihg are equivalent: [sgg - ($)1 R ) SIRNT
A N _

(i) . o is strongly Y-inacc%%sible,‘

(ii) 'if k <y and «a <o for all w<k, then [Ia < a
U o : :
Y ' uek.

“(iii) g < a for all é'< a.

D. Definition. If a limif‘cardinal'is regular, then it is called

a weakly inaccessible card1nal

«

i

The ‘existence of these tvpe of cardlnals is not known.

Let n and' vy  be cardlnals, such>that n 2 vy. Let -

-

? = vy (y = regular), Y =y (y‘= singular). Supposelvn' is regular and
strongly y- 1nacce551b1e, then we have Yy £ n.
For. We note that if y s singular,.then since n 1is. regular

and strongly vy-inaccessible, -ny(Y)v<_nZ We élso know that by.Theorem

1.2%C, YC o > y and hence we have . n 2 Y+- w3 o

1

1.4. Lerge Cardinals.

A. TDefinitionsr (i) A {0,1}—valued measure on X 1is a countably'

additive function defined on the power set of X, P(X) assuming»only the

values 0,1.

-

(ii) If every non-zero, {O,l}-Valued measure’

assigns measure one to some one-element set of X, then-'lxl is said tc

be non-measurable.

We can’ show that there is a one to one correspondence between ™
'set of all Max1mal Fllters on X and non zero finitely additive

{O,l} valued set functlons deflned on  X.

Let’ M be.a max1ma1 filter on X and X  be the corresponding

. finitely additive set functlon. If % has countable 1ntersect10n property,



then X is a measure on X. !
74 o \

. . \

3 ; | _ \

,B-; éﬁi}gigigg;_‘Using.the‘notation in_the,seé@ion (A, %% is’

free or fixed according as § 1is free or fixed. \

S

\
1

THEOREM. Let: X be a set with cardinality «. Then a is non-

measurable if every {O,l}—valued.measure X on X is fixed.
‘ v . e , ‘ ! ,

e : S : : v
Note. Finding non-measurable cardinals is purely set-theoretic.

C. Some Properties of Non-Measurable Cardinals.

(i) Every‘tardinal smaller than a non-measurable'cardinal is
: nonimeaéuraﬁlé. |
 (ii) Every non-méasu;abie‘éum of non—méashrabie cardinals is
*nbﬁlmeasurablé;v. |
(iii) If m is non—measﬁrable, théh"exp(m) ‘is'non—measuréble!
By'the definition R()’ is a non-measurable cardinal and therefbre
the clésé\of all'non-meésurable cégdinals,is'verynextensive. The ekist-
ence of a measﬁrable Cardinal‘is not known, ‘but this willlnoé pfeVent'us

from étUdyihg these large cardinals.

~ D. Definition. A cardinal (://Z; said tJ be measurable if there
exists a {O,l}—valued measure u on a set X of cardinality o and

‘satiSfying‘the following conditions’:

) cu(ixhy =0V ;c'_e X,

(i1) w(X) =1, _
. N b x o
(iii)’If"{Xi;i'e I} is a family of disjofht shbsets»of X

. RN : ' o

with |I] < a, then. w ‘
SR iel - iel



The property (iii) 1is qéJled‘ < a-additivity of the measure .

The non-triviality of . follows from (ii). It is easy to see that
‘the sets of measure 1 form a maximal filter on X which is closed under
< a-intersections. Conversely each free (non-principal) maximal filter on

X which is closed under < a-intersections defines a-measure u with o

p :
~the following properties: | ‘ -

JRRNEY u‘.iv's {0,1}-valued,
~(11)  w({x}) =0 V x ¢ X,
(i) w0 =1,

(iv) ¥ is < a-additive.

We shall prove that every measurable cardinal is strongly inaccessible.

‘

THEOREM. Let:‘a be a measurable cardinal. Then « satisfies fhe

following properties:

(1) @ iR

. o)
(ii) o' is regular,. ~
e . - }"“ o ‘ R B )
" (iii) " o is a strong-limit ‘cardinal.
Proof. (1) Noliis.nonfmeasuréple and therefore a > RO.
%(ii) Let |X] = a. Then there exists a decomposition
‘{XY t Y eI}l of X where ‘1] = Cf(a) and [XYI < a. Since a is

measurable there exists a {O,f}evalued,_non;zero, < &—additive measure
u oon X. If a is singular, then u(X) = 0.  This is a contradiction.
Hence o is regular.

_(iii) Suppose B < a < 26. Then we can assume that

X Eé{{o,l}{vaiued B¥sequenées};. For each y < 8 define iY e {0,1} such

that  u{x € X:‘x(y) = iy} = 1. ' Let X, be definfd b¥§ xo(yj = iY

for all y < 8. .Let x ‘e X) and X(?) # iY :for'éémeﬂfk“< 8. Then

. . . ) B 4§ -
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x e X = {x e X x(#) £ i }. We note that uX =-0. Hence U ﬂJ X )
v Y S Y <8

This leads to a contradiction that u is trivial. Hence o 1is a strong-
limit cardinal.
Notes. 1. Let- I be a non-empty set and let {ai} ,{Bi} a

‘family of cardinals such that ai < 8. for i e I. Then :E: a. < I Bi'

o fel  iel
' ' This is called KONIG'S  Theorem according to (3)-1.19
and byvthis theorem we note that o < aCf(a). (o = :E: aE where aE < a).

= | £<Cf(a)
2. Let I be a set.with-cardihality a and let

P I} = {s e P :|s| <k}. Suppose o Sk R, then

. k L
1pk(1)l =& . [See (2) - 1.22.]

k : '
f a 22, then a =2 k. This follows from the fact

' 3. 1
. sk - - . .
- that a_'z_jzz ag and aB = :g: a[EI__ We also note that Igl =B
E<k - .. EeB -B . : . .

for all &£ ¢ S+—Bv*and we consider a cardinal a as a- least ordinal witﬁ
- cardinality a.
4. Let o bea cardinal,.then &+ is the least cardinal -
B such that o < 8. Sueﬁ cardinal exists, because o < 2% and the set
of cardinals less than or equal to 2% lis well-ordered.
Let &. be a cardinal and let a = 8" for some &8,
theﬁ a ‘is non-limit gnd every infinite:non—limit cardinal is!regular

because’ Cf(Za) > a .

2. Product Spaces.

In this section we shall study basic properties of products of
topologicalnspaces irn a more general setting. The main iﬁterestiis»qn

y-weak topological sums of the factor spaces of a product space.




2.1. Elementary Facts:

P

A. Definition. The product topology on X I Xa_ is the top-

ael

I U where
a
ael

ology genefated by basic open sets’ of the form U
(i) u, is open in X, for each a e I,

(ii) Ua = Xa- for all a except for finitely many -

B. Note. If Ua = Xa for all a ¢ I jexcept for finitely many
n -
. ) . -1
o = al,az,---°~~an,- cthen - I \Ua = Ha‘ (Uu.)" Hen;e
ael 1 1 1

21

1y , L o .
{n 1(U J :ael and U  is open in X } }s a-sub-base for the product
a a : o , o - ST ,

topology. Further more the sets Ua can bg’restricted to come from some

fixed sub-base 1in Xa. _*\—¥i/

C. Notation. Llet X = [l Xi be a prodjtt space with the product

. . ) 1el ] :
topology. For each non-empty set I C I, weset X, = [l 'Xi4 and
S : : . I iel
N : . i v
let T, @ X+ X[+ be the projection map. In the special case I = {al,
I ; . -
T = Ha" X +'Xa ~ is the usual projection map.-
I ,
D:. Definition. Let U= [ Uif where u; is a subset of ‘Xi for.

iel

each- i. The range,of U is defined as @(U)‘= {ie1: U; # Xi}

l B
‘Then |£(U)| is less than R .

. Example. Let U be a basic open .set in the product space X = I1 Xi..

iel

Note.' Let U = 1 Uif where Ui”\is a subset of Xi for each 1.
Codel

Then we have the following easy results:

(i) |&E@ ,u)] = ]R(U){;- :
I _

TR
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1) 2@ ) = 1E (v )]
} T I ) I

(1ii) If VD U, then T, V) = X, for ain i el - 2RwW. -

I U. and

LEMMA.' Let U .
©oe iel

\Y

I V where U.,V.  are subsets of X. for
fel i’1 o i

each i. Then the following are equivalent: ,f
. . - r-’
\
1) uNv=9,
(i1) fu. nv, =@ for some ie xU) NEN,

C(iii) L(U) FiL(V) # o) and T ,(U) f\H ,(V) =d. where

I I
12 I > A(U) ﬂfu(\’) ’ ;
\ . Proof. (i) = (ii): Trivial,
L : | o
N ‘ (i1) = (ii1): % Trivial,

(111) = (): Let iz X(U) NZV) and take 1' = (i},

\

2.2. -Generalized Products.

}

A. 'Definition.’' ‘The topology_generatedAby the basic %pen sets of

e

the form U”;' I1 U, where U, is opén'in' Xiv and [£(U)] < « is called
- iel : s v : '
~ the aQbox topology on the product X = ] Xi and is dénoted by
’ N . . - el .
, o . N "
(~H Xi)a where a = o
1<l S
- B.” Special (ases. Let o = N then. the a-box topology is the
_ v o
usual product topology on the ‘product =[] K Let o = |I|+. Then
N . ' [’/ . 1€I . » K
the a-box topology'is_the boxitopology on the product X =" [] Xi" This
iel

topology has large number of open sets compared to the product topology.

- 10



c. LA, Let T, : (I X,) + (m X)) . Then we have the '
—_— . i‘a , Va :
I iel Lk \
» : el o
following:
(i) n , is onto (assume the axiqm.choice),
I . ,
(ii) 10 , is cbntinuousA,
I > EORRTE
" (iii) m . - is open. ’ . : ' e

Proof. Follows from the definition "2.2-A and the note 2.1-D
of this chapter.

. 1 X . )
Note. Let I = {i}. Then Hi' is continuous, open and onto :

with respect to the a-Box topology on the product space x =1 Xi;
E v ' : iel

‘ ° . . t - . . " . f
D. LEMMA. Let X(I) = [x e X =TI Xy x5 =a; for i e I-1}.
) iel ‘ .-

[

o . | _ ,
: Then((X(I ))a _is homeomorphic toO (X ,)u.

: :._ . e . . . I ‘

proof. ~“We mnote that .v()((IJ),)(,JL is' a subspace of (1 X.) and -

It . is one to one. ‘Héﬁce by leﬁma 2.2-C of Chapter I, (X(I )
I'/X(I) > -e by e _ |

. D . j y i"' ' A‘.v'
;s_homeomorphlc to (XI,}a unde; the homepmorphlsm » HIV/X(I y

/

2.3. Y—Weak'T6p01ogical,Sums.
: . B

.
1 1

A. Definition. Let x = I X5 .and ‘a be a fixed point in
I . iel ‘ ‘ .
X. Then we define the y-weak topological sum of {Xifi e 1} _as follows:
y(mx) ={xex: I fier:x #ald eyl ‘
. i pt . : :
.;;I» _ L : SRR B
' : ) ~ ‘| ) ! i L )
;, B. Note. lLet I = {1 Cc1: [1]c< vy} and X(I) = {x e Xix,=a;

for all i« 1-1'}. Then _y([i_x.) = U {X(I'j .1 e 1.}
o iel ” .
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C. LEMMA. Let a be a fixed point in X = [I Xi; ~Then
e : - : iel ’ .
y( 71 Xi) is dense in (H' Xi)a where o < y. : :
ied ' iel ‘

- Proof.  Let U= I U, be a basic open set in (Iivxi)a. We
‘ iel . iel

define the point x ¢ X as follows: ' I Ce

, L ; -
x; = a; for all i e I - R{U) gn§ X; € Ui for

i € R(U). Then clearly. -xb € U and we shall prove \t\hat X e y( v xl]

. , ‘ N iel
We note that |{i e I.: x; # aiH < |RW],
. / Y
< v,

Hence x, e y( II Xi) . Therefore y{ I X.) is demse in- (I Xi]a .
iel . Cder ?t iel. T °
© D. Note. - Let ju =y = RO. "Then. by the previous lémmé
N j‘, ‘ o » N , - . - :
KO[ 1 Xi)' = weak topological sum of {Xi : i e I} is demse in I X, -
iel oo : E . — o iel

2.4. Density Character.

-

A. Definition. Let X be a topological spacé.) ‘Then the density

i

character.of X, denoted by d(X), is the least cardinal which 1is

equal to thercal_"di!inal‘number‘of a dense subset of X.

Examples. "Let ‘R = reals, X = discrete space, S = Indiscrete

 space, I = unit interval.

{i) d(R) = z\‘Ov, L : : - {;
. : : )
i) A = x|,
(ii1) d(S) = 1, ) | o
(iv) d(I) = X , e ‘ ‘
. . . ‘ ‘/—n{'
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:Huhés atleast 2‘ouhelements]bUt: [H]-=-2_o."Théféfbre d(H) =;2'°{

. h(1) = H;l(Ui) ND is one to one. For.

g
; ' 13
“B. fDéfiﬁitibh;“'Lét‘ A and ‘B be tWo sets:yith9order relations .
L gA;iaﬁd ;B' .We-definevéﬁ'Order relation < on A x B .as follows:
.41-*.bi < az-x 82 if a1 <A'32"9r 1f a, = a, and,‘§1<B b2.
o S . e B 1 T e
- This is called the dictionary order relation on A x B.

Examgle, Let H = I x I 'with dictionary ordqrqtopblogy. Then H -~

has uncountable number of disjoint open sets. Hence any:dense subset. of

X R N

T C. LEMMA. Let o be an infinité cardinal and X = I X, with %

-~

.inlvz 2 for i el and |I]| > 2% Then d(x) > a.

Proof. Let Ui3~and V; be disjoint npn—émpty dpenjsubsets ofi Xif” "

F2N

for i1 and let [D| =d(X). The function h : I » P(D) defined by

o

'(If i and j are different elements of I and x e'D'f}Hil(Ui)F]H;I(V

' fhen X € HilEUi)f)D and . x ¢ H}l(Uj)le).

o

Théreféfe ,P(D)lz’I ’> 2° and hence d(Xy = % D‘> a .

D. Definition! Let a ‘be anfinfinite cardinal number. The _

logarithm of o denoted by log a, 1is the least cgrdihal B such that
B . . . . . e N .

LEMMA. Let *o > R and let {X. : ie I} be a set of spaces.g
— 0 i v T

IA

such that d(Xi)'Sra for i.e I. .1If 'III 2® s 'then d( II 'Xi) < a.

iel



Proof. See [W.W. Comfort -(4)] - 2.2

TﬁEOREM. Let\/{Xi;; i« I} be a family of spaceé such that

in[ >2 for iel and '+ 2 X. Then a( I X, ] = max.‘{log | 1]
. : : iel '
sup. {d(Xi):i e 1}}.

Proof. Let X = 1 X, and
' jel
;

w
1

max. {16g 1|, Sup. {d(Xi); ie I}}.
Then d(X)) =8 for iel and 2.5 1. By the previous
lemma d(X) < B. Sﬂﬁpése d(X) = |D|. Let Ui bé‘an'Open subset of Xi'
Then U, mni(o)‘#cb Hence  d(X.) = |1, ()] = [D} = d(X) for i I.
We shall prove that 1og III d(X). Suppose ﬁot then iIl > Zd(x).

- Then by 1emma (C) of thlS sub-section d(X) > d(X3

Therefore d(X) 8. Hence d(X).—

3. FCompact Spaces.
This section is-devoted to a brief study of the notion of cqmpéctness
using filters. We shall give some important lemmas and theorems in this

" section which are useful in the latter chapters.

" 3.1. Elémentary Facts.

A. 'Defiqitioh.‘ A space X is compact if and only if éyery open
covef:éfv X has a finite sub-cover*andf X" is H(i) if and oﬁ)y if every
. open covervof X has a finite squfamily whose‘ciosure cover  X.
| Irivially, every COmpgct spaée,is H({1).

-B. Example. (ﬁarfiéular point topology)

v



o A

Let X bg an infinite set. We shall define a topology on .X as
/ .

/

follows: P

y f

Let 1 =G :d ¢ G} U {e} wheregd ¢ X. ‘Then (X,7)  1is a top-
ological space and the topology T 'is called the particular\point

topology on X.

It is easy to see that (i,r) is H({i) but not compatt. Hence

the property compactness is strictly stronger than H(1).

.

N : _ ,
C. THEOREM. Let X be a regular space. Then the following are
equivalent:
(1) X is compact, . ' T

(ii) X is H(1).

Proof. (i) =(ii) : Trivial.
(ii) = (i): Let % be an open cover of - X. Using the
regularity of the space X, we caﬁ find- an open cover X of X such

that v refines 4. Since -X is H(i), # has a finite sub-collection

whose closures cover X. Hence Y has a fi&ite sub-cover.
. o X :

<
L4

THEOREM. The property compactness and H(i) are preserved under

~ continuous images.

Proof. Follows from the definition (A).

3.2. Filter Characterization.

A."Definitioh.- A family ¥ of subset§'o€g X has the finite inter-

“

section ‘property if and only if the intersection of any finite sub-collection

ey

from "7 is non-empty. _ : .

Familie$ with the finite intersection property are called

1S

yo
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Filter Sub-bases. . o E CF
B. THEOREM. Let X ‘be ‘a topological space. Then the following
dre equivalent: .
(1) X 1is compact,f
(ii) Every family of closed subsets of X with the finite
intersection propérty has a non-empty intersection,
(i:i; Every filter in ’X has.an'adhérent point in X§
(iv) Every Maximal Filter in X converges in X.
'The above theorem is standard and well-known.
3.3. Compaét Sets.
A. Definition. A subset E of X is compact if and only if ' ' *

every cover of E by ‘open subsets of X has a finite sub-cover.

Y

Note. E is»coﬁpact in X if and only if E is compact with

respect to its subspace topology.

B. Some Pjoperties of Compact Sets.

1. _Every closed subset of a compact space is compact.
2. A ébmpaét sugset of a T, spacé is closed.
5. In a‘TZ ;bace.disjointvcompact,éubsets.can\be separated
:i» . by_disjpint open'sets:

4. A compact set and disjoint closed set in é regulaf space

can be sepérated by disjoint open sets. f
C;‘ THEOREM, - Let X = II? X; and K, be -a compact subset'of. X;
ie '

for i ¢ I. Let V be an open neighbourhood of K = II Ki' Then there
: iel ‘



. .
ex%st‘open neighbourhoods wi of Ki such that V > T[] Wi where

iel \(

Wi = Xi “for all i ¢ I, except for finitely many.

Proof. Since V is an open set in. X =[] X., there exists an .
; ; , 1el .
I C 1 such that’ Hi(V) =‘Xi for all i ¢ I -I and T is a finite
. ' ' . . . * ‘ -
set. Let I = {a YAy, o, } . and X < K for 1 =1,2,+++,n.
_ 1772 s ey :

n

Then, since Va is a neighbourhood of X, s there ‘exist open sets Qa

vi i '
4 o .n -n .
such that x e Q for i=1,2,-++,n and [ Q . o V. . Fix
Q. a. : . a. — . a.
1 1 v ‘ ‘ 1=1 "1 1=1 1
X ¢ K for 1 = 1,2,---,n—1' and véryU x € K .. Since K is
.o a. | a_ . a : a .
i i ! : n’ n n
| | ' o o(s) '
compact, there exists an open cover { I Qa s =1,2,44,q } of the
' ' 4 : : i=1 i X
product set {x Fxeseeex{x Ix x Let Q(n) h Q(s) ~ for
a a -~ i a.
' 1 n-1 n i s=l1 1
q .
i=1,2,++,n-1 and Q(n) = U b(s) Then
o - Pa
' n s=1 n
‘n (n) n : -
{x Jx -eex {x Ix x ¢ q 0"’ O v By repeating this process
a a a . a. = e C . s
1 n-1 n 1=1 1 i=1 1 o

. L n : - _ N
we get {Wa tio= 1;2,-¥-n} such that [ K < O W C. 1 v, -

i v i=1 i i=1 i. i=1" "1
n : , : .
Hence V D [] W, where W, = X; for i e TI.- 1. This completes the

i=1

proof of tht theorem.

Note. This is a trivial extension of Wallace's Theorem Qn the

v

Product of Two Compact Sets.

D. LEMMA. & Let K be a compact.subset'of X and F be a

filter base on X. . Suppose every neighbourhood of K ‘contains a member

of #, then N¥  will contain a point,of  K. - B -

: Proof. Sup-ose 7 does not contain a point of K. Then, since
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.

K 1s compact, there exists a finite number of open sets

n : ! e

{vi: 1=1,2, ’n} such that K < U Vi and ™ VlﬂFl= dsm}or
some  Fy e-F. We note that V =U v, and (1 F. are disjoint. There-
' | i=1 i=1 | |

fore 'V cannot contain a member of 7. This contradiction proves the

lemma.

From this section we can see that compact sets in a topologibal

space 'behave like points'.’

3.4. fParacompact Spaces. '

A. Definition. A collection 4 of subsets of X 'is said to be

locally finite if and only if each x ¢ X has a neighbourhood meeting

or vy finitely many u e i©. ’
LEMMA. (i) If {Ak DA e I}A is a locally finite system 6f_sets..

— \ AN -
in X, then {A, : X ¢ I} is locally finite.

A

t

(i1) If {Ax;:

re 1} is a locally finite 'system of sets
in X, then '_LJK%x ='.thlvi

B. Definition.. A TZ-Space X 1is said to be paracompact if and
nly if every open cover of X has 'an open locally finite refinement.
. rd . 1} . ) N N .

that covers X. - = . o §

It is clear that every compact Tz—Space'is paracompact.

THEOREM. * Let X be a TS#Space. . Then the following are equiﬁaleﬁt:
(1) X 1is paracompact,
{(ii) Every open Eover»of "X has an open o-locally finite

(countable union of locally finite collections)'refinemeni;



(iii) Every open cover of )X_ has a locally finite refinement,

(iv) Every open covier of X. hasja closed locelly finite

refinement.

' Proof. See [SW - (23)];' Page 146.

4.  Stone-Cech Compactification. -

Most of the hard examples in our work are based on subspaces of
the Stone4Cech Compactification of a discrete sﬁece X. Therefore
in this sectlon we shall give some’ 1mportant propertles of Stone- Cech

Compactlflcatlon of an arbltrary Tz%—Space X, 'which we denote by ﬁX.

4.1. Filter Description of 2X.

Let‘JX bbe,a TS%-Space. Then we know that[fiked qultra;
‘filters in X are in one to one correspondence with the poinfs of k
‘itself; We‘shall fix dil fhe free I- ultrafllters hy addlng points to
"X. Thls enlarged set is the Stone Cech Compactlflcatlon of X and we
'denote byf.3X ®Bx). |

: The points.of 23X -are in one to one correspondence with the
Z—ultrafilters on X and we write the points of BX as (Ap)ﬁ . Py

w1th ‘the understandlng that for P < X, AP converges to. p.

Y We write 7 = {p € uX VAN S Ap} ; BX is made into a

topologlcal space by Laklng the famllv of all sets Z as a base for the’

closed sets where Zvrls a zero set of X.

.4.2. Some Properties of . JX.

A. . LEMMA. Let Z be a zero set of X, then Z defined above is

19

TR
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@Xz
Proof. By the definition of the topology of DX, c£. ZE; Z.

Let 7& be a basic closed set containing 2. Then Z, = 7& AXD1Z
and hence rZi'D 7Z. Therefore C%BXZ}D Z. This.cgmpletes the proof of

the lemma.

B. Note. (i) - X =23X,

(ii)- <L X - Bx,
)

. (ii) pe cz% Z if and only if Z < AR,
. ) v HX C : P )

(iv) Let p € X. Then- Z(Mp) ;;A;_ where
, Mp ='{f e C(X) : f(p) = 0}, (We shall give ghé’following well-knowqé ,

theorem [sée - (3) ] which is useful in the latter chaptersJ

C. THEOREM. Every T33 spaee"x has‘a compactiéicgtipn ;@X’ with
the following equivalent prpperties; | \
(1) v Eyéfyfcontiﬁpous mapping T bfrom X into-anykcompact
- space Yy has a‘continuqué‘gxtensiSn T from 3BX into vy, |

. » Lo Y X
(ii) Every function t 1n ¢ (X) has a continuous extension:

to BX;

(iii);-por any:two zero éets Z, and 7, iﬁ X, g%BX(Zl f]Zz]
f C%3X21i lC%3XZ2f'

r(iy) DistihctA Z—ultrafilters>on X have distinct limits in‘

oX.
D. Note. If T 1is any other‘compactification of X which sat-

. o ’
‘isfies any one of (i)-(iv), then BX is homeomorphic T. Therefore
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BX of a sphce X is essentially unique.

: N
4.3. Some Applications.

A. THEOREM. Any product of compact T2-spaces is compact.

. ‘Proof. Let X = Xi and each Xi be a compact Tz—space.
. ijeI & )
The -projection mgpi Hi : X - Xi isqcontinuous and therefore there

, . .
~exists a continuous extension ﬁ; . Bx » Xi. Let h : BX » X where.

h(x) = (ﬁg(x)). Then "h is continuousvahd,onto. ‘Hence X 1s compact.

Note. This is the Tychonoff's product theorem for »Té-spaces.

SRERAWRT et T

B. Definition. Let S be a subspace of the tdpdlogidal space

X. Then § is "said toibé C-embedded in X 1if é&efx function in C(S)

s e e e

. o | . . L R .
can be extended to a function in C(X) and S 1is-said to be g - embed-
’ . ' - ',*‘  - v
ded in X 1if every function in g (S) can be extended to a function in
* ' ' .
g (X).

C. Note. If a function f in ‘¢ (S) has an extension g in

C(X), themr f also has a bounded extension.

D. LEMMA. Let X be ai‘TB%-spéce. Then we have the following:

- - ok : . ]
(1) A subspace S of X is § -embedded in X if and only

if ct S = gé[
' BX

_ %
(ii) Every compact set in X is & -embedded in X,

(iii1) if S 1is open and closed in X, the c¢2 S and

Bx

clq_(XQS) are compleméntary open sets in BX,
LHX o R : , : o
(iv): An isolated point of X is isolated in BX  and nX is

opénvin ﬁx if and only if X  is locally compact.' o : i



4.4. Some Examples.

A. ° The Space BN. (N = set of all positive integers) Lot

(1) Every point of N is an isolated point. Si‘r'xce N is
dense in PN, ‘N is the set of all isolated points of BN,

(ii) The space N is locally compact and therefore: N is v
an open subspace of An,

(iii) Let S be a subset of N. Then c& S is both open
and closed in BN s

(iv) . Let t be a mapping,fro'm N onto Q. Then there -

" exists a continuous extension ' T : BN -+ Bg. Since Q is dense in

A}

S : ok '
B, =T (BN) = BQ. It is trivial that N is & -embedded in R.

. -, * » . ' .
Therefore N 1is ¢ -embedded in Q and hence c& N = AN .
- | | B /
B. The Space BR. (R = set of all reals)

‘R is locally compact and hence R - is open BR. Let 1 be

a mapping from N onto R. Then there exists a continuous extension
T :,’B]N, +~ 3R . Then it follows tha_t,‘ TCB-]N) =BR. It is easy to see

that <cf N = AN. -
o D .
T wLoR

" C. Cardinals of the Spaces N, Bq and b‘fB]R . (Q = set of all
rationals)

In the sub-section '4.4- A- we proved that T(8N) = 30 and

cls N = BN . Hence we have BN 2 |BqQ| and mQ| > |[BN|. Therefore
Av/Q . N ‘ - N . .

AN  and f3_ have the same cardin_ality. From the sub-section 4.4-B,
we can see that - BIN and BR - have theﬁsame‘carvd‘inality. Hence all.

three spaces BN s .@Q and  BR have the same cardinality.

<

22



D. A Discrete Space X. = = <

‘ s . ” i
Let X be an infinite discrete space. Then we have the

following: - : - N
;_ (1) For VCX, ¢ V isgan open and closed subset of
B,

(ii) For SCX, c&_ S =3s,

. _ Bx

| , o IX]

(iii) |Bx] = 2 , J

o 218] : o
(iv) |c2ﬂ s| =2 where S C X . ' ' \

oX X

S : L Y o o |
As a special case of the above results we have_lﬂﬁﬂ‘= 27 where C = 2 and_hence

| - 1% = 18R] < C.  Moreover |BN-N| = [Bq - ol = |SR-R =2,

We shall begin Ou?.§£Udy of m-n compact spaces in the next’

chapter. 3‘ ' : .
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CHAPTER IT

' 'm-n COMPACT SPACES

1. Generalized Topological Notions

The property_compactness and other variations of this conéept
are special cases of th% more general form m-n compactness. In-this
section we give some basic definitions and study some basic properties

of m-n" compact spaces.

1.1. Compactness.

-~

A. Definition. Let X be a topological spaée. An m-Fold open

cover of X is a collection {u.1 :'i € I} of open subsets of X such

that X = U u, and |I| = m.
' iel ' ‘

B. Definition. Let m and n be infinite cardinals and m 2 n.
A spaée S is said to be m n compact if and only if every m-Fold open
cover of "X has a subcover of cardlnallty strictly less than n.

C. Definition! PA space X 1is said_to be n-compact if it is m‘n:
tompact fdf each m.

Some éuthors use the{terﬁinology, finally n-compact for n-.

compact and séme use the Symbol o for m Qhen‘there is ﬁo restrictig; on -
the cardinality of fée initial céﬁer.

D.. Special Cases.

,:(i) ’ 'Rofcompadt spaces = compact spaces,
(ii) X - X . compact spaces = Coun}ably compac- " 1ces,

(1ii) Rl- éompact spaces = = Lindelﬁf(spaces,




(iv) m - Ro compact spaces = initially m-compact spaces.

1.2. Character of a Space. °

—

. A. Definition. - A space is said to have character < m if every

int in the space has a neighbourhood base of cardinality less than or -

equdl to m.

B. Examples.

*

(1) A first countable space is a space with character < § -
: ‘ 0

\

(ii) A discrete space is a space with character 1.

note. Jgﬁe character of a space ‘is a local propefty. " In the
next sub-section We shall study the stability of the neighbourhood system

at a point.

.

1.3. Stable Local Bases-

"A. Definition. A collection Tt of non-empty Sets is said to be

— - . . ) S . e B S )

< m-stable’ if for each T'CT with |r'['< m, there exists a Ge T "~
such that (t'2 G.

B. Definition. A space X -is said to be < m-discrete if and

only:if every point of /X has a < m-stabi%' neighbourhood base.

C. Examples. . . ' v B
c 4 . o .
. : . \ : ] .
(1) Every discrete space is < m-discrete for any cardinal
number ‘m. \

o

. N o . . . .
(i) Let X be a < m-discrete space and <t1' be a‘collection

of Qpeﬁ subsets of X. If lr'| < m, .then t' 1is open.
Note.
(i) ~ Every §é—set in_én < m-disqfefe space is open where

m is an uncountable cardinal. . ' B e

7

25
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(11) Eveﬁzwfppological space is < f*deiscréte.
'D. Definition. A space X 1is said to be a P-space if every

prime.ideal in C(X) 1is maximal. «

"LEMMA: In a st-space, evéry g%—Set containing a compact set S con--
: 5 , B : : ,

tains a zero-set which contains S.
'/

i
!

Prodf.'.Straight forward.

- THEQOREM. Let X be a T31¥space. Then>the.following are equivalent:
¥ T : g o -

(1) X is a P-space,
(ii) - Every zero-set in X is open,
(iii) Every §6¥set in X is open,

S(Ev) X dis < R-l—discrete(

Proof.  Use thetLemma and the definition.

" 1.4. Some Basic Pfeoperties of m-n Compact. Spaces-

&

A. THEOREM. A continuous image of a - m-n compact s™ac: is m-n

~ compact.
. ’ o
B.- COROLLARY. - Let X = .II Xi be a' m-n compéct space. ' Then
: R o el S :
every sub-product XI' of" X is m-n compact. In particular every factor

‘space of X 1is m-n compact.

©C. THEOREM,
(i) LA closed subspace.Of m—n‘compécf space is m—n'éémpaét.
(ii) " Let ,{Xi ; i eI} be a collection of m-n éompacf sub-
spa¢e$'of a épage X;'.If; II[ <n énd n is regular, then LfXL

v iel
is m-n compact.



The above properties are similar to the propérties of compact

spaces.. We shall give a trivial generakifﬁtion of a well-known property
. | \ N . { :
» . . : N !
of a compact set.

. ‘ , - |
D. THEOREM Let X be a <in—discrete'T2-space and let. be

a m-n compact subset of X with ,|S| = m. Tﬁen, S is a closed sub-
set of X.
2. . Generalized Filters

{
i
i
i .7
|

Filters are convenient tools in the study of compactness and its.
_ b v : o

other variations. Therefore in this section our main aim is to charact-
/ : ‘ . . ) .
_erize m-n compact spaces using m-n Filters. Also some applications of
v s \ p

Generalized,Filtéfs are included in this section.

2.1, m-n Filters- S

—

.2 Defirfition. A collettion ?"Qf subsets of a set X 'has the

A

: . “ O o . : H )
< m-intersection property if for each I:C'fi with 'I?W <m, NF #&.

“ote. - Every < m-stable collection of non-empty subsets of

N

X has < m-intersection property.

B. Definition. A m-n Filter on a set X: is‘a filter on "X ~which

has- <_n-intéfsectioﬁ\ﬁfopefty énd has a base ?é of cardinality 1?550
than or éﬁuai té ‘m! : . v ' | LT \
| C. Examgies. A
| (1) : Let X = R = (set of all rea};) ana ?-= W* knéighborf
.ﬁood system at X ¢ Xj. Then ?T'is‘a m-n Filter oh X where m  and.

n are infinite cardinals..

27

A - r ’ u" .‘ '-', st )
" ‘We note that | F = tx} and therefore F 1is a fixed m-n filter..

W
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It 1s easj? to see that 7 is not < n-stable for n > R

(ii)  Let ¥ be an infinite set with |X| =.m and S be
an infinite s;bget Gf X with |S| =n. Let PRO(S) denhge'
{a < Psycfs-al < X} Then " P§°(s) is a filter base on X with
;[P/é'o(é)! = |S| = n. Suppose vn is regular, then 'PRO(S)l has the.

R

<Q—intersection»property. Let 7 be the filter generated by
‘Then 7 is an m-n filter. We note that () P ‘O(S)' = @ and therefore

¥ is a free m-n filter.

D. Definition. Anwm-n Stable Filter on a set X is a filter

on X which is < n-stable and has a base ?8 “of cardinality less. than

Y

or equal to m.

ExamElé. Let X be a <'n -discrete space .with character less than or

-

equal té m. Let: Wx be the neighbourhood system at x. -Then @'x is

‘a m-n stable filter.

. n
 LEMMA. ° Let J be an m-n filter on X. Suppose m =m and n is

regular, then there exists a m-n stable filter 7 on X such that

g D7F.

Proof. Let ?B denote the filter base for f and let

v 2 g g g ' ' . ‘wA~ < Lo .

= : J < = =
Jg {ny 7 C"}FB’ |7 | < n}. Then IJBI < aé/ﬂ m m m. (I?y
hypothes‘is) and since n 1is regular, gB - is < n:=stable. Let 75; “ be

L4

the filter generated by -58. Then 3 is’ggym;g.stable filter and it
’ A')'":;r,, - : .

is easy to see that J 3,7:\
Notation. For filter bases _.‘71 . and ?2, we write .7—1 >7%, if the
filter génerated by }—l " contains” the filter generated by ?2. ) Wef‘nbtta

that -in. the above Lemma - 58 >'FB' :«’ S M.

-

w5
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2.2. Filter Characterization of m-n Compaétness

\ : -

A. THEOREM. Let X be a topological space. Then the following

are equivalent:

(i) X - is m-n compact,

(ii) Every family of closed subsets of X with the < n-

intersection property also has the < m-intersection property,

(iii) Every m-n filter on X has an adherent point.

Proof.. (1) = (ii) Let {Fi} be a family of closed subsets of =X

with the < n-intersection property. -Then {X —Fi } does not contain

a m-fold open cover of X and hence {IE}’ has < m-intersection
property..

(ii) = (iii)  Let ?.vbe a m-n fil;er on X and let, ?é be

a filter base of '?: Then ?é = {A TA E‘?é} has < n-intersection

proberty and hence f\?é # &. Therefore 7 has an adherent point in

3

X, . . IS

(iii) = (i) -Suppose X is not m-n tdmpaét. Then there

*exists a m-fold open cover {Gi-: ie I} of X -with no sub-cover of

cardinality less than n. Hence {x :;Gi : 4 ¢ I} 'is a filter sub-base:

for some fiitervbase, ?ﬁ (say). The filter 7 generated'by ?gi'is a

m-n filter and ‘ru?'=.r?x - G.l =® . We have a contradiction and hence
S iel ‘ : . '

the space X 1s m-n compact.

¥ n e

B. COROLLARY. If n is regular and m = m, then a topological

space X is m-n compact if and only if every m-n stable filter on X ,

<

has an adheignt point. -

.
v . R 5/ o -




2.3. a- Stable Filters o >

A.. Definition. Let o be an infinite cardinal. A filter 7

<

on - X which is .d—stable is said to be an a-stable filter.

B. THEOREM. Let X be an infinite discrete space such that
[’Xl‘: [Xl 2 a2 *‘0 - .Then there is a family ba_ of oa-stable filters
on X suci that ‘ ' .‘ ’ t o e S

- 2])(, .
(1) lcbal = 2 ‘and

(i1) If fO’f-I € Cba and ?-O ,# fl’ the_n there is a

A P(X) such that A <7  and X - A « ?}‘. P | |

Proof. [W.W. Comfort - (3) - Page 146]

C "COROL‘LARY. Let. X 'be an infinite discrete ‘s'pace, then’
_ X ‘ v ; ’ ,
Beot <22 _ | .

Proof. We note that  BX and the set of all maximal filters on

X are in one to one correspondence. Bj? the above Theorem, there is a’
_ ) : r o
Py such that, . |
° | 2AxE - R -
(1) Py | =2 and |, . o . \
(i1) ‘ ?O’ ?1 € CD.& " are contained in different maximal

| x]

o v
filters if ?0 ‘# .71 By (ii), [Bx| = |& X ] and hence |BX| = 2°
. o) )

; olx] o i v : B '
", Therefore IBXI. = 2 . : . : ‘ v
D. Note: An \d—stable filter .-0"5 © - o Stable Filter in the
terminology of the sub-section 2.1'0f thés chapter. S yo
‘ . . ' 4 w‘—’l

2.4. . Some AEElications

A. "LEMMA. Let X -be a. <'n—diSCrete,,.\;T,;-'s;pace*\‘and let A be an
‘ , = 2 ‘

1
A




n-compact subset of X. Then A = [}W where W is an open neighbour-

’

hood of A.

Proof. Suppose x ¢ A. Then we note that there exist two open
 subsets U and V of X such that ACU, XeV and UV =0,
Hence x ¢ U'. This proves the Lemma.

B. THEOREM.' Let X bé an ﬁ-n compa;tfspace and let ¥ be an
m-n stable filterbbase wher¢ mE' and n is regular. Then the follow-
ing Hold: | .
(1) FQf any. open subset - V. of X containing ad;?; there
exiggs-a F < 7_sﬂch that 1V':)F,' | o

(i1i) If »adx ?i is n—CQmpact and X 'is a subspace of a-

< n-discrete ,TZ-Space Y, then adX ?'=.ady.?. .

Proof. (ij’ 'Suppose V does not contain aﬁy F<7. Thén
X-V(F#D,¥VF<eF. Hence {X-VQOF:FeF ) 'sanmn stable
filter base on X.v We note that fo -VMF ;'¢>, Hence we have a '
>conff;aicfion. : ) :
.
(1i) By Lemma ji, adx F-W whgre W is an gpen neighbour-

. hood ,of _adx?'in Y. By (i) each W contains a member of ¥ and

*hencé ad FCad F. Therefore ad fv:'ad 7. : N
v v : X X 4 -

C. Definition. A space X is said"tovbe strongly m4n'compact
if for every m-n stable filter base ¥ on X there exists a compact
set K of X such that ?VV is a m-n stable filter base.

. : : n . . S
Note. For regular n. and @ = m, the property strong m-n’

compactness is stronger than m-n compactness.’

o "




* \ R .
D. . Notation. £ = Family of spaces whose every infinite subset

meets some compact subset in an infiniteléet.
’ ‘LEMMA. (i) A space X belongs to 8* if and only if X is-
Sfrongly RO - Ro compact.

*

(ii) Every sequentially compact space belongs to & .

1 '

proof. (i) = Let ¥ bea X - R  filter base on X. Let
0. o]

n ; a

o ) n ?' . . ! s
s o= {Fn :F_ = QCH F» Fy© } and pick x froT F~ for every

n=1,2,+++. Then there exists a compact set S such that S containé‘

‘infinitely many efements of {xn}Q Hence Fn Ns#d for every
‘n = 1,2,+--. ' Therefore F/S 1is a filter base and l?YS] is less: then

or equal to- RO
' T

= Let A be an infinite subset of X. Take

{xﬁ +n = 1,2,..t } from A. Let Bk = {Xn : n‘z‘k}. Theg ¥ = {Bk}

is a NO —;Rg filter base»oh X. By hypothesis thege exists a

compact set S such that Bk Ns #® for all k = 1,2,°°". Hence

lans| 2 .

(ii) . Let X be a sequentially compact space and let A be

Y B

an infinite subset of X. Consider '{Xn}n-l in A. Then there exists

a convergent subsequence ,;{Xﬁ }n-l' Suppose X 7 X as k - =. Let

« 3

S ='{xn }w \L){x'};-’Then' A (S is infinite and 'S - is a compact 'sub-
k k=1 : . :

set of - X. Hence X € g .

Note. It is easy to see that.every compaét space is strongly

&O—xo ~compact and by the previouvaemma evefy sequentially compaét

e is s : N -R . co .
space 1s tIOQ§1y R mpact

(&3]

(3]




3. Productivity of m-n Compactness

+

We know that arbitrary products of compactvspaces are compact but
many propertles 51mllar to compactness are not preserved by even two
products. In this sectlon we " study suff1c1ent conditions for products

to have the generalized property m-n compactness.

t
t

3.1. ‘The Spaces Which Satisfy lm n

A. Definition. A topological space X said to satisfy the

property lm n’ if for every m-n filter base % ' on X there exists

] ' . \

a compact set K and an m-n.stable filter base ¥ such that 9> %
and I§>-VK where’ VK is the .open neighbourhood base of K.

' : : : : n
B. LEMMA. (i) Let n be a regular cardinal and m = m.

Suppose X is m-n compact, < n-discrete and has character = m, then

X satisfies 1 .
m,n

3

(ii) The property lm n is stronger than m-n compact-

o7

ness. ,
" (1ii) Let n  be regular and m = m. Then every
stronglyi’m—n compact. space satisfies lm 0 S )
‘ . ' : ’ .on
(iv) Let n be regular and m = m, then every local-

ly compact,m-n cdmpact space is strongly m—n'compact.

Proof. (1) }Let 7 be an m-n filter base on X. Then there exists
» ! : * U vc— ' !

an m-n stable filter base ¥ on X such that % >F. Let x e (1F

and let Vx be an open neighbourhood base at  x with ]V;T < m;‘-Then’

take 9 f .
Vs

(82}

(92
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(ii) This 1s easy
(iii) This is trivial. , SN

(iv) . Let 7 be a m-n stable filtex'baSevand,let x 7 (ﬁ?:_.

"Let V be a compact neighbourhood of x. Then F/V is a m-n-stable

. filter base and this'proves (iv). ' (:*
C. Note. Let n be regular and m = m.- Then we have the

'
)

following implications for the topblogi¢al‘space X:

X is compact — X is strongly m-n compact

X 1is m-n compact<— X has the property 1

D."LEMMA. '\IRO,RO is equivalent strongly\to No - No
compactness. »
'Proof Suppose X has the propérty .lR R . Let ?i be a filter
‘ 0’

base on X such that |?W Then there exists a. fllter base J
on X »and a compacf>subset K of X such that _ §>*J, §>'Vv - and

[4] < » where Vk is the open nelghbourhood base of K. Let

0
%= {6,,6,,*+++}, and 6 2 6 .y for mo=1,2,-eelet x - G for

1 . ~n n

3
1]

= 1 2 <+« . and ‘S_= {xn} U K. Then S is compact gnd_'?ys ,is a
e . ] |
filter base on X. ‘This proves the Lemma.

+

3.2.  Initially m-Compact Spaces.

-

A. THEOREM [ JEV -(18) ] .bet X = n X, where each X,
o : o T iel o .
satisfies Lox - Then we have the following: N _ ’
R o . ‘ » : .
(1) If |1} <m, then X satisfies 1
’ . m,R
o
(i1) If. 1] < m+, then X 1is initially m-compact.

m,n L=

]
P
B




This is one of the attractive and strong 'theorem in the section of
m-n compactness and it has beautiful ¢onsequences which are well known

and hard theorems.
¥

B. COROLLARY. (i) Y'Every product of at most Ri strongly -

Ré - RO compact spacés is countably>compact-

(ii) Eyery'product of at most Rl sequenfially compact

’

spaces is countably compact - S

e .

(iii) Every product -of at most m  initially m-compact

- spaces of character less than or equél to"m'-is initially m-compact -

¢(iv)  Strong RO - Nb compactness is countably productive.

Proof. (i) Follows from the Theorem A - (ii)
tii) Follon from (i)-
(iii) rFollo;s from the fact that if i is inifially m—comPéCt
and has éharacfér leés than or equéi to m, tﬁen X has the prdpértv

m, 8- °
20

. (iv) This follows'froﬁ 3.1-D.

3.3. m-n Compact Spaces.

rd

~A. THEOREM: 'Let X be a m-n cg%pact'space and Suppose. Y has
where n is regular and m = m. Then X x Y is m-n

the property }m,n

compact.

" Proof. Let ¥ be a m-n stable filter base on X x Y and let H2 be
- the prqjéction map on to Y. ‘Then HZC?) is a m-n stable filter base
.y there exist a m-n stable

~on Y and since Y has the property 1

2

- : !

filter .base Y on Y and a compact subset K of Y such that )

1
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N | | | |
5>—H ( }d and §>rV where .VK is thé cpen neighbourhood base of
K. We note that ?— ’ H-l(ﬁ) 'is a m-n stable filter base on . X x Y

v

and since X ~15 m-n compact F]H ( ?—) is non-empty where Hl is . ‘ .

the pro;ectlon map on to the snace X, Let X z{“|H1C?) and V be a

- neighbourhood of x. Then (V x F)F}F #® for every G <3 and F e 7. /
We know. that 5 > VK and since K is compact, ({x} x X) N({F) # &
and hence (7 #&

- -

B.. COROLLARY. (i) Let X be a space with the property 1m R
— v e s By

and suppose that Y 1is an initially m-compact space. Then .X x Y is

initially m-compact. | -
(ii) If each Xi -is.initially m;compact for all i eI

whcre -]IIAS m and ali but one have character < m, then X =1 X, ;5,

. o : iel

initially m-cempact.

| (iii) A"pfoduct of not more than m 1n1t1ally m- compact and .

allubct one locally compact spaces-ls 1n1t1a11y m-compact.
_(iv) Let ﬁ be’ reonl i, ;nd mn1=.m.4 Let X be a m-n compact

“space and Y be alstrcnglyc n-n Ccompzct space.. Theﬁ X.x Y is m;h

compact. | |

Proof. (i) Take n =,‘RO in fhe“Theorem'é.of this sﬁb—section.

" (ii) Follows from '3'.2.-.A(i) “and the“ (i) o; this Corollary.

(1ii) Follows from 3. 1 - B(1v) - B(iii) and 3.2‘— A(i).

. n : .
- (iv) -We note that for regular n .and m = m strongly m-n
'comﬁact spaces satisfy the‘property lm n _ ,
| C. LEMMA. Let £,: X +'Xa . Let F be a m-n stable filter

base on X andclet ga be a -m-n stable filter base on Xa' If
= 4 N .



[92]
~1

'  Fv f&l(Lga) is filter sub-base on X, then Fv f;l(;zg) is a  m-n

stable filter base on X.

Proof. Let Jcc:?V f*l(fa) with -Ud <mn. Let K e ¥, then
H = ijid ry(f;l(r1§h)) where ggccr?;_gﬁ(:-fa and |
l?;i < B l§§|.<.xq .

t
|

[
i

3 and

m

Let F =‘LJ£? :.H

H

: f'v f&l(g ) is < n-stable and'itzis easy to see that |F v fél(ga)[

= |#] x 1% | <m.  Hence the Lemma is proved.
We can now give a countable product Theorem using the condition

1m A which has a nice application to Lindelof, TSL,'P—Spaces.
> ~ . 14 %3

.D. THEOREM. If X, satisfies 1 o for i=12,+++ and if n

- . n - » s ‘ : » ,
is regular and m ='m, . then X ='H_{Xi Wi o= 1,2,--»} is m-n compact.
Proof. Let 7 - be a" m-n stable filter base on X and let

v o

Hk'; X - Xk for k=1,2,++<. Then 'HkCF) is a m-n stable filter base
o '

“on Xk/ and since X

satisfies lm 0’ ‘there exists a m-n- stable

k o0
filter base - §k and a compact set Sk such that gk >‘HkC?) and
‘§k>>aV%‘ “where \45 is the open neighbourhood base of Sk; We note "

that Fv Hil(gk) is a filter sub-base on X and by the Lemma (C) of
this section - Fv Hil(gk) is a m-n stable filter base on X. We shall

_prove by induction that g = ?-V (v _1(9 ) :"k=1,2,+++}) 1is < pn--
P et oW . |
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stable. Let X =JF v (v {Hil(gk): k=1,2,---2}) and suppose X is
< n-stable. It is easy to-see that [MJ < m and by the Lemma (C) of.

. . -1
this section X v Hk+l

\

(§k+l) is a m-n étable filter Base on X;_ There-
fore by induction 4 is < n-stable. Let S =fISi, 1=1,2,%-- -and |
it is clear that §>% and $‘>7Vg {the open’neighbonrhood-base of |

S). Hence fﬁhas a cluster point in S and therefore [Wég D . Hence -

-we have the theorenm.

-

Il

Note. In the above proof- |§[-S m and hence X satisfies *he ;

- ' : n .
property lm . Therefore for regular n and m = m the property .
1 is countably productive. 4
COROLLARY. If ‘Xi is 'm-n compact, < n discret and has char- o

acter less than or ecual to m -for ‘i = 1,2, «»+ n and if n is o
n ' : . : ' 3
-regular and m = m, then X =I1Xi, i=1,2,--- is m-n compact.

3.4, q - Compact Spaces.

JETR
R TR O

A.  THEOREM. bLet n  be regular and suppose Xi is n-compact,

il

e

< n-discrete for each 1 = 1,2,---, then IIXi, i=1,2,+-+ is n-compact.

Prgof. Follows.from the aboye Corollary. (Taking m - to be

Toot)
COROLLARY. A countable product of Lindelof; Tsl’ P-Spaces is-
— FU : 5
Lindelof.
Proof. Take n = Bll and note -that Ts,s P-Spaceé are
—_— : Y '

< R -discrete. : _ ,” '

¢

»  B. .Example. Let m be a sihgular cardinal which is a countéble

——
~—— .
T . Pad

—
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sum of smaller infinite cardinals mi. Let X' 'be,discrete spaces -of

cardinality m._for all i el where m= .} m. and l1] = R .
< ieT o 0 _
Let X =1 x 1 X ‘and g1ve dlscrete topology for I. We shall prove
iel '

_ that X is not h compact whlch shows that the regularlty cannot be

deleted from the ‘hypothesi§ of the Theorem A.
' -15. . . .
Let H : X~ 1 and V = Ha {1}. Then {Vi 1€ I} is a dis-
~.crete cover of X by sets whlch are ‘open_ and closed in X Let
V., _ = {i}.X'{x} x X where x ¢ x.. Then {V. : X e X, } is a
1,x d . R § o 1,X v
: v d#i " T
dlscrete clopen collectlon of subsets of X w1th cardlnalltv mL By
'taklng one element from each Vl < form. the set 'H.; th1s .HL"is.a
closed dlscrete subset of . X and has cardlnallty m, - Let - H = LJH
O . : . - . iel

“Then we note that

2 m, = m and H is a closed discrete ‘sub-

set of X. (By constructlon of H ‘s) Hence X  1is not a m-compact
space.:

.,dc, ‘LEMMA.* For a singular cardinal m every < m:disorete space

. . + .
is <m —dlscrete.

'
¢

Proof. Let X be a < m- dlscrete space’ and let g = {O.-: ie I} be
_ o ‘

a family of‘oben subsets of X with |Il = m. ’Let' be the coflnallty B
of m. Then there exists a partition. {Ii :ie A} of T sqch that

il o> lIil for all i ¢ A where |A| = a.  Hence we have

N%=n . (n{o, : i<I.}) and since J1.] <m, N0, :1c¢ I.} is
G i il i _ i i
ieA . ' v : . v

an open subset of X. Since m is singular, o < m and therefore ng.

PN

: . . ' . o .
_is open in X. This ‘proves that X 1is < m -discrete. Lo

'THEOREM. . If each X.l ls a Tl—space which is m-compact and < m-discrete
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‘and,if m -is a singular cardinal which is not a countable sum of
smaller cardinals, then X =IIXi’ i'=‘1,21!" iS"m~c6mpact.

'

Proof. If Y,C'xi "and |Y| 5‘@. Then, since Xi is Ti and

< m+;dis§rete, Y ’is a closed subset of Vi' It &s easy to see that
Y is discfete and hence X.1 is not m-compact. This is:not true

thereféré eachl Xi‘ has cardin&li;y‘less then: ﬁ;- Hence each Xi is
discrete and has‘g’base of'cardinality lei” We note that {Hil {x}

o ,

X €2 X5 i=1,2,---} “is a sub-base for I Xi, i =1,2,+++ and it has

éardinality:_z IXiI < m. ‘Therefore Xv'hés a base bf_éhfdinality <m
‘and hence X is’fm-Coﬁpaét. |

| This theoremvshQWS théy the example -B of 3.4 -works'énly
for particular kind of singular cardinals.

D. THEOREM. (i) If X; is m-compact for i = 1,2,-++ and 51;f -
© but oné are ' < m-discrete, then <X =11 X iv='1,2,--; is m-compact fof
regular cardinal ﬁumber‘ m.

» '(ii)n If Xi is m¥compéct for i 1,2,--- and all.but one

arei!locally compact, then for regular m, X =TI Xi’ i=1,2, «-+" is

m~¢ompact.

T R 4

Proof. - (i) Follows from the fact that 1 is éountably.productive;‘ 
and the theorem 3.3-A for regular m. .

-

(ii)  Follows from the fact that locally compact m-compact"™” «

-

spaces satisfy the property‘ 1; n and the-same'reason as in. (i).
, , ) . :

Note. . In the condition 1m 0’ if there is no restriction on the

- R . Le ’ . . . ’

A

. cardinalityrrm;5 we use the symbol lw‘n )

b



4. . More on Productivity.

In this sectlon we study the concept of m- Boundedness wh1ch is
stronger than strong m-n compgctness-and we use this property to

study m-n compactness on product spacges.

4{1,.'m—Bound Spaces.
N o =

ﬁ A; Definition} A space X ‘is said to be m-Boonded iflfor every
'sobset A .of; X with Ja] < m, there exists a”COmpacttsubSet‘/E).of
X such that AC K where m is an infinite cardinal. .

vB; _Examples. (1) Every‘compactpspace is;m—Bounded_for.anyn.m;
(i) R, Q;:IJ_ ére-not e?en {pNOYsBounded.

- C.- Some Properties.

:%;f: . Qi)x The property m- Boundedness is closed heredltary

4
ok

rlArbitrary product of m-Bounded spaces is m-Bounded.
: . o n ; '
‘For regular cardinal n ‘and m =m we have the

following relations:

m-Bounded ~—» st~ '1y~ m-n compact

}

m-n  compact

In particular every m-Bounded space'is initially m-compact.

- "

“ THEOREM. Let Y be a compact T;-space and let. XC Y. If
._h_-— - / . . N

'eachjpoint of Y-X has a sim—stable_neighbourhood base in *Y, then .

r . ~

If a space X is ‘m-Bounded, then X is n-Bounded for
- ',‘f




Proof. Let “A be a subset of X with Al = m. Let v =Y -X
and since ' Y is Tl’ for each a € A, there exists an'opén set

Ua in. Y such that v : Ua and - a ¢ Ua' Since Y has a < m-stable
, - . .

neighbourhood base.there is an or.. set Ug in Y such that Y« U

=and. Uy (TA=@. Let U= LJ{UV2Y€ Y-X }. The U is open in Y - -and

A €Y-U = X-U. Hence X-U is'compact and it contains A, ' as required.
We shall show that the concepts m-Bounded and m-n compact are

closely related.

4.2. * m-n. Bounded Spacés.

A. Definition. Let m and n.denote infinite cardinals. A
.Space X 1is said to be m-n Bounded if for every subset. A of X with

|A] < m, there:exists a n-compact subset G -of X such taht A.EQG.

Note. (i) The concept of m-n Bounded is weaker than m-Bounded
— n ,
‘but stronger than m-n compact for regular n and mo = m.

(ii) Every n-compact space is .m-n ﬁounded fqr any m and

the property 'm-n Boundedness is closéd hereditary.

N

B. ~THEOREM. Let Xi be i< n discrete.and m-n Bounded for

i=1,2,---. Then X = Ein i1s m-n Bounded. o
i }. ) "\].4: . N .
Proof. . Let A be a subset of X with rardinality _[AI < m.

Then ’Hi(A) is a subset of ‘Xi with in(A)I < m andisince Xi is

m-n Bounded, there exists a n-compac- set Gi of Xi such that
Hi{AJ - Gi.’ Then A é; I Gi_ and .ote that 5 =T1] Gi is nqcbmpact.

‘This proves the Theorem.
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C. LEMMA. Let X be a reéular space with lXI < m. Then X
is m-n compact if and only if every open- m-n filter base has a

cluster point.

' ' . : . 4 -
Proof. = This follows from the fact that every open m-n
" filter base is a m-n filter base. ,

1 1 . P
= Suppose X 1is not m-n compact. Then there exists

a m-n filter base % such that N7 = ®. Hence wr have
, » _ ' L
X=J{X-F:F« ?ﬁ} and we note that for every x : X there exists

an open set v, ‘such that X e V_ - V%<: X - F for some F =« F.

[ 4

Let J = {X.- Vx D X}i ‘Then &4 is an open m-n filter brse or.

X with empty adherencé. This contradicts the hypothesis. Hence X is

t

m-n compact.

o

‘COROLLARY. Let X be regular and < n-discrete. Then X is
n—combact if and only if every open filter base withsv< n-stable property

has a non-empty adherence.

D. THEOREM. Let X be a regular, < n-discrete space:andvsup—

n , ,
pose X 1is m-n compact for regular n and m =m theh X is w-n
Bounded for all w For which 2 £ n.-

Proof. ' Let A be a subset of X with |A] = w. e shall

prove that A 1s n-compact. Let ¥ be an open filterrbaée'oh_ A with
< n-stable Propefty. We note that ?VA is a filter base on,k A with
. i o, < 7(1) < ’ o ?‘ .
< n-stable property and |J/A{ < 27 < m. - Therefore /A 1S g4 Mm-N
. N : : : e,

stable filter base on X and since X 1is m-n ‘compact, '%% hdve

adx[?VA )#¢<b . Hence 7 has an adherent point'in A. This shows that



A is n-compact and therefore we have the Theorem.

g 'COROLLARY. ~ Let X be a regular, initially m-compact sﬁ%cef Let
s - .’ 3 ‘————- - ) . ’ .‘
“w Me a cardinal number such that 2% < m. Then X is w-Bounded.

4.35. Some Applications.

"A. LEMMA. Let m be a singular cardinal and suppose X is

| \

Proof. Let ¥ bea m-n filter base on 'X. We shall prove

w-n compact fgr all w < n. Then X~ is m-n compact.

1

that .fﬁyif ¢2. We éssume that |7 = m. Let | ?& :ie 1} be a

T é

partition of ?—whgre‘ 1| = cofinality of m  and !?&| <m for all
ie I. ‘Let G, = f)?g for all i ¢ I and we note that
{Gi I I} is a filter base on X with < n-intersection property.

It is easy to see that (|7 = f}ﬁ; ‘and |I| < m.  From this we get

El

fl@& # @ . Hence we have the result.

We usebthi% Lemma to obtain two product Theorems for m-n compact-

‘ness. g
B. THEOREM. Let'm and’'n be infinite cardinals such that m
- ' ' i , w n
"is singular and n is regular. Suppose 2 <m and @ = for all
w such that . m > w 2 n. . Let Xi be a régulary < n-disc. et~ m-n

r : . . .
compact-space for j.;wl,Z,---, then X =[] Xi’ i=1;2,++ 1is m-n
compact. . K

Proof.;¥ Let' 'm > w 2 n and then by Theorem D of the previous sub-
section, each X; is @M bounded. Hence . I Xy is w-n Bounded and

!

.therefoi‘e,l I Xi is w-n compact. for all < m. By the previous Lemma

the product X = [I X5 is m-n compact;

44
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C. THEOREM. ‘Let m be a singular chrdingl such that ZU <m

PR

.
-4

for all w < m. Let Xi be an initially m-cgmpatt, regular space for

all ie I. Then X = X, is initially m-compact.
' iel ™ L
Proof:‘ Froﬁithe Cofoliary g"of thefprevious secfion we hbte.
that each Xs ié w-Bounded and hgyge X =11 Xi is w-Bounded: Therefofe
X is initiaily l—compact for aiE 4w.< m. ffhen by the Lemma A of this

section we-have the Theorem.

D. the. ~ From the_above\Tﬁeorem we can settle down the question
~of productivity for initially m-compact spades5for certain type of

Cardinals m. S . _ & o

4.4. 'An Example. ['Folik' - Thro' (10)] o S N

We wish to construet a space which is strongly - RO - Ro compact

but not NO—Bounded. For this we need to note some 'elementary properties

which we shall state below: L .

o+

(i) Let ¢ be a one to oné mapplng from N onto Q. - For each

S ke el e

irrational number « select an 1ncrea51ng §équence (Sn) of rationals

;converging to d. Let 'Ed =‘{ (S )}_ and é bd}' Then
LO ’ ; n-- . .
= . \ 1 )
& = 2 and ]Ed MEy | < R :for a11 d #4d.
(ii) Every infinite T, spacechntains a discrete subset with , §
cardinality Rb.

N
~ N

oy . o o o : :
A. LEMMA. = Let E 'be a subset of BN such that for any infinite
subset D of ON-E  there is an infinite subset I of ‘D with-

! . . %
|E f.clﬂ I| <2 °. 'Then BN-E belongs to the Class &  (2.4-D).
AN S AR
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Proof. Let . I be a di/scre;{te subset of D with cardinality
X such that [E(N e I] <2 °.
= ~ . - ’
Let 9_{Id_1.|1d|_xo. and |1dmI.dn[<xo,forld;ed} |
e - | | |
and ]fgl =20 (Use the property (i).) We note that
& I =31 (JI+N) andlet I, = I, -1 for I, ¢ 4.
2N , - d B1 d d d

. ‘. ‘ R ' . ll - . ’ 1 ‘
Then since |IdﬂId'[ < o > .4Iand" ® for all d #d . Hence

' . _ . , v o
I NE=¢ fo§ some d. For suppose E ﬂId # $ for all d, then

: o . S - S . -
E contains 2 elements of & I which contradicts the hypothesis.
| \ - 3 BN | .
: - ‘ . . ' o .
Let d = d,» for which E N Id' = @, then - I, € BN - E and
, : : . ° . , o a
we know that 15 CHBN - E .for all d and hence ©2 I, C BN - E.
o ; B1 o

'~ From this it follows that any infinite subset of BN -'E contains an

infinite subset (I-d) of a compact subset (C% Id ).
N : . _O .

‘Hence BN - E
* ‘ : 21 % -

belongs to the class J

B. - Construction.
For each X ¢ BN - N, Ilet A =3BN - {x}. Then taking | -

* ’ . .
E={x}, A <4 forall xeBN - N. (By A). Hence A

M A is s;o‘ngly

X, - R compact . 'but we shall prove that A is not -NO-Bounde'd
for some X ¢ BN ~- ]N . Let S =1 {Ax X e'.@]N-N} and let

'S ={Y es:m (Y ) =ne N forever}fx'e.@]N-]N} where 1T : S—A ..
D n X °n e o , o © X X

We note that SD is a closed-countébly infinite, discrete subset of S

‘and hence S _‘is not No - No" compact. Therefore S is not . RO'-_‘

Bounded which proves that /S( (= Hx (S)) is not _ RO -Bounded for some
o o ;
is the candidate for our example.-

YX . BN-N. This A
fo} XO

Note. From the previous example we conclude that Rﬁ —‘Bounded
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and strongly MNOQ- Ro compact spaces cover distinct classes.
. & |
5. Project?%ﬁ‘Maps and Initially m-Compact Spaces.

In this section'.we study necessary and sufficient conditions for
.projections to be closed and = z-closed, using m—Ro compactness. In

the last ‘subsection we will give ste applications to m—Ro compact

spaces and products of sequentially compact spaces.

‘

5.1. Closed Projections.

A

"A. Definition. Let T, : X x Y > X. Then the projection map

X

HX s said to be élosed if T, maps closed sets to closed sets.

THEOREM. (1) Let HX : X.Q Y - X.. If X lis discretg, then HX
is clo;éd. | , \

(ii)Lét (HX : X x Y -+ X! and let Y be a discrefe spacev

with gardinality- p;_\Thgnb HX ‘is ciésed if and only if ‘X is
< n-discrete. |

Proof. | (}j is éasy and for Yiij we note that

: X x {y}+X

ne(H) = U HX-(CX xv{y}) M H) whére\ HKZ X(x Y and‘ HX :

X
yey o
is a homeomorphism.

B.. LEMMA. Let X

H“Xi with |I] = m and let HES X be
iel . ‘ :
H is open, then there exists a finite set

1%,

m. N compéct. If U
. o .

,>F‘§'I and an opén set v 2 HF(H).

]

¥ . .
[I X, where |I| =m and let H = IlH,
. 1 . i . . 1
iel. ‘ iel

C. THEOREM. Let X

e ) . : 3 .. . . ’ -
where each Hi__Xi. Each projection .H Hi X XI—B -+ XI-B is closed if
o ‘ - ' 1eB ‘
and only if H is m- R compact for each finite F C I and for

NTOS . ~




each B C‘F, the Proqectlon JEBHi X4XE—BT XF—B is closed.‘w-

'Proof;‘f[(Q)-Page 171] . W} V};ﬂ’

D. COROLLARY. Let X = TI % where |I| = m. Each projection
L : . iel . ;.
X - XI-{i} -is closed if and only if X 1is m—Ro compact and for
" each finité set F C I, each projection‘- XF - XF_{i}, is closed.
Proof. In Theorem (C), take Hi = Xi’ for-all i ¢ I and B = {i}. ;

.

*5.2. 'Z—Closedfprojections.

A.. Definition. Let My @ X x Y + X. Then the projection map

HX is said to be Z-closed if Hk: maps zero-sets to cloged sets.

‘\‘,._?;,;.‘& LS

‘

THEOREM. Let M : X x Y > X and let Y be a discrete space

with cardinality n. If X is‘cdmpletely regular, thén HX is Z-closed
if and only if "X _is s”n—discrete.’ ‘ 1

1 1

. |
Proof. = We note that n-Fold union of zero-sets of X 1is closed

and zero-sets form a base for the closed sets in X.

[ i :
= Easy. (zero-sets are closed sets)

B. Definition. A space X 1is said to t |seuodocompact if and

.

*
~only if C(X) = C (X)
LEMMA. Every countably compaét space 1s pseuddocompaét.

C.  THEOREM. Let X = [I X  be completely regular with infinite
' . ' o€l . : ‘
A.. Then every Ha ; X*-Xa for o ¢ A 1is z-closed if and iny if X

is pseuodocompact. -

Proof. [(9) - Page 169]

~

el



D. LEMMA. A projéction~on aw TS%” Space is. closed if and only

"if it is z-closed.
1 1
Proof. = Obvious”

= Let X x.Y be- a T -space and let Ty - X xY > X.

Let A be a closed subset of "X x Y. We shall Jprove thatq@*

a
closed. Suppose x £ 1 (A), then for each’ y ¢ ¥, there exist zero-

set Zv ih X x Y such that e\,:)A and X ¢ ﬁv; llence

c 73 i is z- = B i
HX(A) __VCL HXn(“y) and since ‘HX is z-closed, G N HX (Zy) is
closed in X. Therefore X-G 'is a neighbourhood of x and disjoint
from HK(A); which proves that HX(A) jagga closed subset of X.
4 *\ > .
Ag .

5.3, T4;Products.

A. LEMMA Let X = I X . where ‘IA] =m and.suﬁpose X is
: aeA ‘

m—Ro compact and each f1n1te subproduct of X -is T,. Then "X is

» 4

T4 pfov1ded each prOJect1on on X 1is closed
. 1 ) . . N e
Proof. Let H and ‘H be disjoint subsets of X. Then since
“H TS mfko compact by Lemma 5.1-B, there exist a finite set FCA

. - T
'and an open set v 2 Mg (H) such that vV x XA Ff; X - H . Hence

' H (H) and HF¢H ) are d15301nt closed subsets of the T4 space XF‘

-Therefore there ex1st d15301nt open sets

1’ 2 Fe
HC ! v,) and H "ozl (v)). Hence x = T X is T,.
: . F 1 F 2 . 4
_ o aeA ’
B. THEOREM. Let X = II 'Xaa where [A] =m and suppose each
’ oA ’ ) . »

finite sub-product of X 1is T, If X is m—RO' compact,- then X
is T4.

Proof. Let F be a fihite subset of A. Then X is T, and

in X, such that S

49
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. y .
all of its proJectlons s 2 - closed and hence each pro{ectlon on X

o F
is closed. By the Corollarv,% 1-D ﬁh 'o'ectlon% X ' is closed.

C. THEOREM. Let. T

of "DJ). Then T is. not normal

N [This is due to A.H. Stone §¥1i4).]

COROLLARY. Let X = T[ -Xa~ be a T4—spa§%. Then there exists a
' acA :
S C A such that-]A-S| < R and T X is countably compact.
; " ' ° - agS
.Proof. If the coﬁclusion is not true then X. contains a closed

subset homeomorphic to T. This contradicts the fact that T 1is not

normal. . _ ) ' : ‘

D. THEOREM. Let X = T[] K “where |A| = m and suppose X is

: o aeA
.’T4J Then there exists a S .with [A-S| <.® - such that 1 X is
‘ - o i . ( 0 aeS
m—Ro compact..
Proof. By Cofoliaryvgj there exisfs a S with,’|A—S| o

such that [l X is R -gRb ~compact and hence 1l X is pseudo-

‘aeS , ‘ aeS
compact. By Theorem 5.2-C each projection on I K is.z- closed and
' . aeS
hence by 5.2-D each projection on I X is closed and therefore by
' . X aeS :
the Corollary 5.1-D, [l X is m-X®  compact. R
' " aeS o ' ' ’

5.4. More On TA—Products;

A. THEOREM. Let X = [I X, bea T,-space and suppose each X_
‘ e acA : '
satisfies the condition .1m ® - Then X . is initially m-compact.
. 1

>



o

Proof. If |A] < RO , then we have tlie Theorem by Section
3.2 (A). Therefore we assume la] > RO . Then by Theorem 5.3 - D :
there exists a S with |A-S] $ Ro and I XOL 1s initially m-com--
, , ' aeS o
pact. %gf XA—S = 8! Xa’ then since [|A-S]| < Rd , XA~S -satisfies
aeA-S : : :
lm,xb . Hgnce ‘X = XS x XA-S 1s initially m-compact.

Note. " If thg product is T4 and each factor Space has character

< m, then m-RO compactness 1s arbitrarily productive.

B. THEOREM. If the product is Td, then arbitrary product of

sequentially compact space$§is countably compact. ‘ : {”
. _ . ¢ - . .

Proof. We note that sequentially compact spacés satisfy 1

Ry, %o

and hence taking m = RO in Theorem A we obtain this theorem.

6. y-Weak Topological Sums of n-Compact Spaces.

In this section we shall prove that under suitable conditions on
a family of spaces {Xi : i ¢ I}, their y-weak topological sums are
n-compact. As a particular case of this we have a simple application

to the products of Lindelof Spaces.

6.1. Some Terminology.

L4l

A. Some Notations.
(1) If I 1is a set we define the collection,
PY(I) ={J e pP(r) : |J]:<v}. , .

(i1) Throughout this section our y-weak (topological) sum

v (O Xi] ‘of the collection of spaces {Xi : i e I} is with respect to

: iel ' o _ o :

a fixed point P =(P) in X = 1 X, -
’ t iel
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B. Definition. Let B be a vasis for the topological space X. . ,;

Then X is said to be_ﬁ—n compact with respect to B if for every ?

cover LeprP® of X wifh % = m, there exists a ¥ c Pn(%j_ such ?
that X =UJ o | - R L / é i

€. Note. (i) Let B ‘bé a‘base’for the topological space X z

‘and suppose X is m-n comﬁagt in éhe usual sense’. Then X ‘is m-n :%

vcompact with respect to 3. z 2

(ii) Let .3 be a base for the topologicai Spéce X.

Then the concepts of n-compactness and n-compactness with respect to

4
& are equivalent. L : ' v*f/
: ; A |

. 11
[

D. Example. fet X be a discrete space with cardinality m.- \

Let B = (X} U {{a € X} ra < m} (Let W(m) = least ordinal with cardin-

ality m and then W(m) 'is isomorphic to X.) This X 1is not m-n E
compact but ''m-n compact’with respect to %. . This is -a partial i
justification for the reason to introduce the concept of m-n compactness N i
with. respect to a given base 3. o l
5.2. m-n Compact Spaces. _ S | o o o L

. o L S A

'A. LEMMA. Let m=2n 2cf(n) > |I]7 2 v 2 R ~oand oz X

E ) , C ' _\ 1 .

Let ( I rxi)a' ‘be m-n compact for all ‘I C I and [T | <y, then
iel » - :

(Y( I Xi))a is m-n compact.

iel
' ' : . '
" Proof. Let -X(I ) = {X € X. : X, =P, for all i « I-I }
: S : iel t * t . N
. : BN K v t NP
Then we note that y( I xi) =Ufx() : 1 C1, [ | <y} and @X(I)),

iel

~is homeomorphic to I X.]. . . Since . II < cf(n), 'we have the Lemma
. I' 1’a
ie

4

using the fact that %B'ni < n where n, <‘nAfor all 1i¢3
. i Ft// X >

P A
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e

and |B] < cf(n).

B. Note. | Thé sgts U‘=vi1"[lUi where Ui 'is‘opgn in _Xi‘ and
(R(U)l < o are elements of the ézionical basis‘fori (.HIxila . Le;
Y C _HIXi, thenvth§ cén6nica1 basis for ‘(Y)a consistieof all sets of
the ;;fm Y FYY (with- y és.ébove).v ‘ |
[

I

2

o

: B - : y _ .
C. LEMMA. Let m=2n 2cf(n) > |I| 2y2 R .and a2y .
: — _ o) o
Let ( 1 Xi)a be m-n compact with respect to its canonical basis.fér : i
. iel ) : ) ' , , *
all I'C I and |I | <y, then (y( 9 Xi))a' is m-n compact with
S . el : -

i

respect ‘to its cannonical basis. (This is a weaker version of A) : B
. . : ‘ - St

D. THEOREM. Let m2n2y >R  and n2a2X  with n

Y

regular andlétrdngly "v-inaccessible. Let {Xi T ie I} ‘be a family
of spaces sudh that [ |8t 'Xi)a' is m-n compact for all I =« PY(I),
’ 'ghen,,. (Y( I Xl)]a is m-n compact with respect to the canonical 7

o . iEI . B B v } ) 3

basis.

FE

e
EiR e i

" Proof. ”tw.w, Comfort - (4),-;Page 34]
. Note. - The above achigvement of (4) - in full generality is
—_ S : :
TN o X . ,~’ - . . :
“important to the study :0f m-n -compactness and it has ‘several 'by-

.

-
~%

products' which we will study in the next -subsections.

.6.3. n-Compact Spaces. .

x

A. THEOREM. Let n > Y 2 RO. _ana naqg 2 NO“‘ _with n,

regular and strongly y;inaccessible. ‘Let {Xi‘: 1« I} be a. family of
spaces such that ( H~,Xi)a is n-compact for all I ¢ Py(l), then _
Jiel T ' :

( Y(.H Xu])- is n-compact.
jer Y7 : v S . | , ;



_ proof. This follows from 6.2-D and 6.1-C.

B. Example. Let n>%®=vy2 ﬁo ' and let" B be an infinite
cardinal such that o 21 and 3 <

of discrete spaces such that 'lxi\ = q for all ie 1 and \Il =

We shall note the'following:

@ G (o X)), = (%),

1eI o iel ' =

(i1) (.H Xi)a _has a discrete topology
diel 70 '

. . N , '
has a base of,cardinali%y <a ||

) '
I P (Iﬁ
: This.examble‘shOWS'that strongly Y- 1nacce551ble property of

n cannot be deleted from the hypothesis of A_ and hence from the

> '*‘a‘

- orlg;nal yer51on D of the'previous section.
| V,ﬂ..}’ ’c.’ COROLLARY Lot n>yz2 R and nzaz R with n

»nu: o ’ 0 - o

regular and strongly Y- 1nacce551ble and let ,{Xi . ie I} Dbe a family

. of‘spaces such that “X;l < for all i e I. Then (v H,Xi))a
_— . : iel

n-compact.

Proof 'We note that \ H X. \ <n for all S € P (I) (Using an

1eS

o by

equivalent form of the deflnltlon of strong y—lnacce551b11rty;) Herice

\

way A we have the Corollary

D.b Note. (1) Every 1nf1n1te cardlnal is strongly

S -inacCessible.-

o . A 4 L ; )
(i1) - The direct-éum’(weak,SUm1~of the family of spaces

: . ) 4. ) I ) ) y .

X, 1 ie 1'}‘ is R (nx)

jiel ,f,

o. ‘Let {Xi : i e.I} be a family '
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COROLLARY. Let o be an uncountable regular cardinal ahd'let

{Xi T ie I} be a family of spaces such that IXilbs a  for eéch ie I.

ology.

2N

. Then the difect sum ‘of '{X{~'

4

ie I} is a-compact in the a-Box top-

o

. Proof.  This is an easy deduction of the"Corollary C by taking

n = = N
n = a and Y 5

In the next sub section We shaL& give an appllcatlon to the

products of n- compact spaces

6.4. An Application.

&7,

Rt~ 2N

A. THEOREM.  Let {x.

>

¥ . . Y

'i'e‘I} be a family of spaces such that’

each is n—comﬁact and <n- dlscrete ‘Let n be a regular cardinal

number, then ( I1 X ) 1S‘n-compaét.

iel

=N

Proof. We note that

Theorem A (3.4); (I X,)y
C ieS 7 o

o)

o i :
we hav?lghe Theorem.

n

¥

’
.

is strongly O{RO‘—inaccessible and- by

1

(usualvprdduct.topology) is n-compact for

0

all Se Ry (I). Hence by .A=(6.3), takipg 'y = R ‘and a= X 1 -

3

o

B. LEMMA. Lef X be a paracompact T Space w1th a dense n-

. compact subspace. Then X

is

-

n-compact.

Proof. Let S be a dense n-compact subspace of X. Let & be

an open cover of - X. Since

‘regularity of X and since

At

/A of %_such that l%"

X

S

< n.

is paracompact, there exists an Open-locally ‘

‘ ) v S . : ‘ T v
. finite refinement 4« of 4 such that X = UZ . Usifg the

is*dense in X, we can find a sub- cdver

Hence Z has a subcover of cardlnallty

less'thaﬁ n, " which proves-the Lemma.

NE
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- C. THEOREM. Let X = T[] Ximsbe a paracompact T2-Space and
, ' iel o ' “ .
suppose each X.1 is n-compact and < n-discrete for a regular cardinal

number n. Then X is n-compact.

e

g

Proof. We know by Theorem A, NO( I Xi) is n-compact and
- ‘ iel
it is trivial that Ro B Xi) is a dense subset of II X.. Hence

: iel ‘ : iel
by Lemma B we have the Theorem.

-~

D. COROLLARY: If the product is paracompact and T,, then an

e

arbitrary product of Lindelof P—Spaces is Lindelof.

Proof.  We note that for T, -Spaces the property of being a

34
P-Space and < Rl-discrete are quivalent. Hence by Theorem C, taking
n = R13 we have‘the'Corollary which extends the result that a countabie

product of Lindglof P-Spaces is Lindelof (3.4-A), parfially.

-7
7.- . Construction of Examples.
. 1
The main aim of this sectiqn is to prove the existence of a space
which is m—RO ‘compact but does notﬁsatisz’ 1 ~x- . Hence ve

2
. : : . 0
deduce that the property lm 1 is strictly stronger than m-n compactness.

7.1, A Sbace Which Does Not Satisfy lm &

0
A, Definitidn;-f Let m be an infinite cardinal then a filter S

base-_?—on4aA$et X is said to be of type m if 7] <m and |F| = m

_ N
for all F in 7.

ExamE;g. Let X = N, F={n-a: Al < R }. Then 7 is a

Filter base of type’ NO. _ ' R o
B. THEOREM. Let G be a subspace of BX which satisfies the

A



»

condition 1m'R . Let E be a dlscrete subspace of G

[E] =m and cf% E
B

{&-e BE : For eve;y QCE, if

such that
I

CE and suppose that 7  is a fllter%ase on,

o

F

of type m. Let uE X, rs“an
_ ; | ) n L v ;?,;
then [Q| = m}. Then |uE f]adG 7| ' ‘ X #"
. P : X . v B
Proof. [J.E. VAUGHAN - (19) - Page 184] e 3

C. #THEOREM. Let S be an initially m—compacf T,-Space which
: o . _ ‘ . LM :
contains a subspace Y such that Y| = m and kﬂgY{ - 2° . Then

there is a set B such that YCB S, |B] <2 and B is m-R
. ' : o

compact. ,

Proof. [Victor Saks - (11) - Page 285] e

L
e
N

D. LEMMA. The property lm'n is closed hereditary.
_ : , :

' Proof.- This is trivial from the fact that K (G is compact for
compact* K and a closed set G.
We shall now give the example to show that lm n is stfictiy

stronger than m-n compactneSs{

P

Let | Y be a discrete space of cardlnallty m. Let .S =”{O,l}2

then there’is a homeomgrphlsm;from 8Y into the product space S.

ST , . m
. . : L i s ' , ' 2
Hence cf& Y =3Y 1is coptained in c&.Y and therefore lcQSYI > 2
, o, » e 5T :
but since |S] = 27, ye»have ICQSY[y= 2. By Theorem C, there exists

a set B such that YC B CS, B is m—RO- compact ‘and |B| = 2"

m, 8-

We shall prove that B does not satisfy the propefty 1 o - Let
. , o

Gw B f\fh[ then 'G is a closed subset of B which contained in DX

[

{Y} , then 7 is a Filter base of type m

]

‘d_c'ontains Y. Let 7

IA

|ad fl < |G | < Igl 2", bTherefore by Theorem B, G does not

~ ' . ..



o]

-

satisfy the property lm X and hence by. Lemma D, G does not satisfy
. » o . - - N

the property lm, R
[ . o
Gy

7.7. A"Space Which is Ro‘_ RO Compéct but noff'Szrongiy Ro - X

0
Cohgact'.
‘A, THEOREM. Thefe exists a R - RO compact space P such

4 R 0
that NCPCBN with [Pl <2 © . .yhere wN is the set of all

positive integers.

Proof. [Frolik and others - (10)] Lo
. ’ . - \

: : , . |
We shall see that the Space which is of interest is P,

. B p ' * N 0
B." LEMMA. Every countable set in BN . is C -embedded. -
I Proof. Let E_ be a countable subset of AN then we note tﬁat

1ﬁ. EWU N is normal in ON and since E is closed'in ElJ‘DI, E is
*

. o . * .
C -embedded in EJ N. Hence E is C -embedded in BN . (Since

NCEUNCHAN and N is dense in EUN)

C. :COROLLARY., Every infinite closed set in SPJ has cardinality
TR : » s ' -
D 0 . S

Proof. Let G be an .infinite closed subset of fBIJ,» then G

contains a copy of Ii' and hence G contains a copy of AN, which
0

gives IG[ = 'fﬁN’= ég

D. Example. |I"e note that the space P in the Theorem "A does
not contain infinitejcompact sets. Hence - P is not in the class &
| . . " .
which proves our necksscity. Therefore P is the space which satisfies

S e |

the +itl1e ~Af +hn ~nl __ . .-



8. . Remarks.
' This section is.devoted to a study of the different definitions

available for m—n'compactness in the literature and their relations to

the one given in this chapter.
*

'8.1. The Variations of the Terminology.

»
A. Definition. A partially ordered set S of X 1is said to

be < ntdirected if each of its subsets of‘cardinality‘§trictly less

'

than n has an upper bound in S.
w

The term < n-directed is defined similarly.- In this terminology

a directed set is < &o -directed. .

ExamEIe.v Let T be any set and-let n be a regular‘cardinal. ‘

!

Then Sn(T)'= {H T : |H] <n} is a'<jn—di:ected éet:with_respect to

I -

the set inclusion.
Notation. We shall identify “n Qiﬁh the éhallest»ordinal of

cardinélity n. Then Sﬁ(m) . denotes the égplbf allfSubsetS,of m with

. cardinality less than n.
B. Definition. A m-n net in a squ~X "is a funcribn S+ X

where S.°'is < n-directed and [S| < m.’
. ‘ . ‘ o ° U . ‘ » )
C. 'Definition. A m-n sequence is a set-in X whose domain is,
' o " I ) '
Sn(m } for some m where n <m < m.

N

D.. Definition. Let X be a.topologicalvspace.'
(1) X is said to be m-n_ compact (G) 1if and only if every
m-n set in X has a cluster point.

(i1) ~ X is said to bé m-n compact (N) if and only if
‘ ' b
every m-n Sequence in X has a cluster point.
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(iii) X is said to.be m-ﬁ ‘compact ‘(S) if and oﬁly if -
'efer}lopen cover of X of regular cardlnallty less than or equal to m
has a sub-cover of Lardlnallty less than n.

(iv) - X 1is sald to be m-n compact (A) 4if and only if
for every open cover 4 of x with l%l regular and - n < [%l

There - is a sgb§c0$£r£ 4 of ¥ such that l% ] < [Ml

‘ P . fw *4.-
Key.® G.2 T8 gal

s
{

N. Noble
S - Smirnov

\
CIad v
’g.&
Togth. |

A - Alexandrov and Uryshon

8.2. The Corinection Betweeh -(i),(ii);(iii),(iv)"and The One We Used

[(JEV - (21)].
A. Definition A point' X in a topological space ;X is called
a complete accumulatlon DOlnt of a set SC X if for every neighbourk

0.

hood U,&:ofﬁ\ X wé haﬁé YU Sl = |s].

B. THEOREM. The following are equivalent for’a'toporogical space .

X:

3

(ij : - X 1s m-n compact (A),

(i1) B Let E be an 1nf1n1te subset of X with cardlnalltv

-

o where o is- regular and n < o < m. Then E has a complete

accumulatlon p01n; - B

(111)- ' Let A D A DR :>Aa D D,a <d bhe a detreasing
sequence of non-empty closed sets, well-ordered by inclusion with' ¢

regular and n < d £ m, TRen {Ai} hds a nonPempty intersection.

[This is @ﬁe tO'AlexandroV andlUrysohn - Thro"(20).]’



C. THEOREM. Let X be a topological space then we have fhe
following:
.(i) X is m-n compact‘h(G);vif.énd only if every m-n
stable filter base has an adherent poi%}, |

€

(ii) X 1s m-n compact (N) 1if and only if for evefy

§:

' 1 1 o
m-n' filter base ¥, N 7 7 « Sa(ffr)} #P , for n < a <m.
{(i1i) X 1is m-n compact (S) 1if and only if for every
- «.m-n filter base 7, with I?W regular,’ NF #d

“ ° \ [J.E. Vaughan - (21)]

>

D. A Diagramme. : ' - T

> m-n Compact (N) - ' ' v

h-n Compact <f—-—“—7

cftm) > n

n = N . . r————e> - m—n Compact (S)

S ——----—,—--| 'n = regular
n = regular ° » , ' ‘ mE = m
EPH m-n Compact (G) — |

l

m-n Compact +(A)

Note. (i) The above diagramme is a reaﬁetion of B and- 9._"

(1i) Theorem 35C shows these variations of the concept of

m-n compactness also have m-n filter 'characterizations.

(iii) For n = Ro‘l’ the (N), (S), (C), (A) coincide-

‘with the Vaughan's definition. ) _ _ .
(iv) For n-compactness Vaughaﬁ's definition coincides with

{(N), (8) and (G) for‘regular"ﬁ. - .
) . . ‘ ¢

3
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9. Main Spaces Considered in this Chapter.

We shall state the main spaces wh1ch are studled ‘in thlS chapter

with the1r relatlonshlp under certaln condltlons on the cardlnals:f'?

and n.
n

and m

m. Then we have the follow1ng

' Compact . o R
-—-—__-;i;;;h}ed . i -

Strongly m-n Compact R
\

The Property lm n ' : m-n Bounded i '13:

m-n Compact -

10.  -Notes.

62

Let m and n be infinite cardlnals such that hﬁ;is regulqrﬁ;>;

The theory of m-n Compactness dates back tg 1920's vAlexandrov's’

and Uryshon's work.

The main three concepts in the Theory of Compactness (Compact-

7

ness, Countable CoMpactness and Llndelof Property) are special -

cases of ‘the general concept m-n vcompactness

We' have seen that the part1a1 solutlons to the problems about

product1v1ty of compactness- llke ' properties have been

obtained through,the general concept m-n compactness and some

theorems about products have given in partial generallty

JWe w1sh to know whether an arbitrary product of 1n1t1allv

m- compact Spaces is initially m- Compact for regular cardinal

7
number m. and the p0551bility-of_deleting_the condition

\ ) IR ] . )
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m = m from the hypothesis of she Theorem 3.3 (A).

~
The H(i) property and the generalized notion .
weak m-n compactness are similar to m-n 'compactness and we wish to

mention that productivity of weak m-n compactness is-a current research

& ».

‘area. o

In the next chapter we shall give some

~

applications of maximal filters to compactness-like properties.

o

\

yh
2y
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CHAPTER III

oL

TOPICS OF INTEREST

1. Maximal Filters.

In this section we study basic properties of Maximal Filters on a
discrete space X by paying more attention to large cardinals which
“will be useful in the next section to prove“the existence of a strongly

a-compact space which is not a-Bounded.

1.1. Uniform Ultrafilters. . ].'- . ' Y

A. Definition. Let X be a &iscrete"space with cardinality a.

‘Let = be an ultrafilter on X, - then |[|z] = minimum of

. 4]G]:6 ez} and if Il >k, we say that = is k-uniform on X.
B. Definition. An ultrafilter I 1is said to-be uniform on X
if and only if "2" =vJXJ. .. : ' “ ,

C. Notation. 1Uk(X)-= set of all k-uniform ultrafilters on X

where |X| = k. -

A

D. LEMMA. 'Let I be an ultrafilter on X. Then 3 1is free if

and only if ”E” is infinite.
Proof. ‘'== ' Suppose ~“2”‘ is,finite,“then there exists a

G e T such that |G| is finite. Hence GN(NZ) # &.

64 | . : ' ;f




lpose weNS , then {w}e X . Hence 1=l is
finite.
(X) = {S ¢ P(X) : [X-S| < k} where
IXI =a 2k and k is infinite. Then any ultrafilter which contains

Pk(X) is k-uniform and by the lemma"g, they are free.

\

1.2, Genéralized Properties.

A. Definition. An ultrafilter T on X 1is said“to be k-stable

if ‘and only if for every s'c = with [»' « k, NzZ'ex.-

B. LEMMA. Let X be an ultrafilter on X and Suppose >
is - not k-stable. Then there exists a {Gi:i € 1}C 3 where

|I] <k and NG, = o,
e s
1€l

Proof. Let k' be the smallest cardinal for which there is

a family {Gi:i e I} where |I| <k' <k and N G, £Z. Then we
' 3 : iel
define 'é =X and G, = NG, - (M G,) and we note that N G, =
- 0 1 . L . 1 . 1 .
- <1 iel i€l

G, C G, for i, < i

i, i 1 , < K! ‘and G.eZ  forall i eI.

We shall use this property in the next section.

C.. Definition. Let T CP(X). Then ¥ is said to have

. k-uniform finite intersection property if % #® and hwzfl 2k

for all Z'CZ and |3'] is finite.

Every k-uniform ultrafilter on X has the k—uhiform‘finite
intersection property.

-

B
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1.

3.

. LEMMA.

().

(11)

(1ii1)

(iv)

Proof.

(1)

(i1)

"X-G e Pk(X)(: Z and theréfofe we have a contradiction.

(iii).

(iv)

Convergence.

Let £ CP(X) and X # . Suppose T has -uniform

finite intersection property, then Z LJP#(T is'a
filter sub;ﬁase én X.

Let |X| 2k and k is infinite and let X be én
ultrafilter on X. Tnén > is k-uniform if and oﬁly
i PX) C 2

The set UkCX)€E BX~-X is non-empty.

“Every X c P(X) with k-uniform finite intersection

property can be extended to a member of Uk(X).

Let 2,CZ and I,C PK()  with |z,| and Jz'zl .

are finite. Then |(3le > k and |X—ﬁf2 | < k and
hence we have (Z,) N (Z,) £ P.
'=p ' Let G ¢ Pk(X), then |X-G| < X . and therefore

X-G ¢ =.

"&=' Let - Ge £ and suppose |G| < k.. Then

-k U .
We note that P (X) has flngte intersection property

and hence Pk(X) is containéd in some ulfrafilter.

Follows from (i).

;A. Definition. An ultrafilter ¥ 1is said to be convergent at

X € X‘ if and only if the neighbourhood filter at x, VX i3 contained

in

>
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B. LEMMA. Let X be discrete space and let x ¢ BX. .Suppose
‘ \

Zx is an ultrafilter such that Z, X, then {CQXG : G e'Zx}- is a
neighbourhood base at x.
) | , ‘ '
Proof. Let U be an open neighbourhood of x in @X.
" Then pX-U 'is aichosed subset of BX and x ¢ BX-U and by the

definition of the base for BX,  there exists a B C X such that

X - U C:CZBXB and x ¢ ClBXB. Hence x ¢ CQBX(X 7 B)CfU and it is

easy to see that X - B ¢ Z, and CzBX(X—B) is open.

~

C. Notation. We dendte A =‘C£BXA F\Uk(X). considering 0, (X)

as a subspace of BX._

D. LEMMA. Let |X|> k "and k is infinite. Then we have the

following:
(1) Let A, B ¢P(X), then (ANB) =A (" B.
(ii)”wak(X)_ is a compact subspace.

= .

(iii) Let A€ P(Q, then [|A] <k if and only if A,
(iv) Let A,FB ¢ P(X), then Ak<: Bk if and only if
la-Bl < k. 1 |
Proof.
(i)  We note that, sincJ X 1is a discrete space,

- AN 4
Cagy (ANB)= CLg AN CigyB. | | |
. (ii) Let. x ¢ Uk(X),v'then the corresponding ultrafilter _
1 E% +x and Z& 4 Uk(X). Hence by lemma B and the

definition of k-uniform ultrafilters there exists a

Ge Z such that |G| < k and x e CEBXG (ope? o

T T R A Y T A 2 T e 2 AP
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neighbourhood of x) and CQB GNU (x)
Therefore- Uk(X) is compact.
(iii) '=>' Suppose |A| < k and let. X e czﬁxgﬁ _Then -
Ae X and hence “Ex" < k. Therefore x is not
: 1n. UKFX) a@d hen;e CQBXAEO Uk(x)-=}¢
i Suppose |A| > k, then by lemma 1.2-D,
’Uk(_A) ;écb‘. Let Exe Uk(A) - Uk(X?u and hence
x e CQBXA and}»x,e Uk(X). Therefore Ak_f(?'
(iv) ~ '=>' Suppose |A-B| 2k, then by (iii) -
(A A 1 Bez
€ (A B)kC: Ak C Bk 4and hgnce B‘e_dx »ou;
(A-B) e‘zx. Therefore we have the implicaJidh to the
“right. _
'<&=' Since |A-B| < k, we know (A:B)k is empty

~

! and therefore Ak =.tAr\B)k‘and hence Aij Bk‘

1.4. Selective Ultrafilters.

A. - Definitdion. Let-‘a be 1nf1n1te and X e U (X) where
|X] = a. Then an ultrafllter Z_ on X is said to be selective if
énd 6nly if for every partition {Xi f’i e I} of kX ‘where [Illﬁ'a,
either there is an i e I 'sﬁch that )(.l € Ex 'qr there is a G G.ZX
such that |G N Xil <1 for all i eI, r

B. LEMMA; Let {Xi D i evI} be a partition of X 'Qﬁéred
|I] < a. ‘Then z e U, (X)) is selectlve if and only if there is a

Ge> such that [{i e I [wax l > 1}] < 1.

Proof.. '=2' Let .:; € Ua(X) be a selective ultrafilter,
then if X, € Ex the result is-1givial otherwise there is a G e zZ,

o -
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which Satfsfies the'requiremept»(Trivial'too). .
_'<&=' Suppose [GN Xi’| >1 for some i = i' and
len Xil <1 for all i # i'. We note that .-

G= (U (GNXNU (G N X}) and since G e\zx either G N X,, € Z
i : - o DR

Cor U (6N X! e 5. but lu Gnx)| = § |6nXx.|< Il <a.
lfi' ) 1 - X i#l' 1 l#i' 1 ¥

H?nce G N X&,.e z and therefore Xi'e > .

uncountable discrete space with

Pasurable if and only if there is an

C. Definititn. A
|X1v= a. - Then a';is év
a-stable f?eelulfrafilfe

,In‘Chaﬁfér I; we ﬁave defined mea;;iable cayd;nals and we
nété that the aboveW&efinifion is éonvenientﬁto.work with in this
Chgpter.andjalso,it is easybté see that the new definition is

A

.equivalent to the old one. .

s> o . . -
D. THEOREM. Let « -be a measurable cardinal, then u, (X

contains a selective ultrafilter where |X| = a..

Proof. "See [(3) - Page 212].

-

2. Measurable Carainals.

In this section we wish to give a space which is strongly
a-compact but not a-Bounded, under tﬁe'QSSumpfion of existence of a
measurable cardinal 'a. This construction is due to JEV (22) and

. iy : . .

we believe that example is hard;‘ t “for the completion we outline

the method.
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~2.1. P, _-Points.

A. Definition, Let k be infinite and let x € X, then x is
’Séid‘td be a P —point”of X if and only if x has a < k-stable

nelghbohrhood base.

We note every point of a t0polog1ca1 space is P and

X
. o
Kl—p01n\§ are called P- p01nts in T%% -spaces.
| | "425 . | ! , B
'B. LEMMA. :Let "o be uncountable and x e Ua(X) where X is
a discrete space with [leﬁ a.: ThenAA{Ga R Ex}“ is ap open

neighbourhood base at :X . in Ua(X).

. Proof. »#e note that {C% xG : G e Zx} is an open neighbour-

hood base'at x 4n X and hence the lemmd.

 C. THEOREM. Let X be‘a di5crete°space with |X|‘= a. Let a

and - k bé infidite. Sup?@se xeX isa Pk polnt of U (X). Then we

~
o

:havé k > Cf(a) or Ex 1s k-stable

' Proof. Suppose zx' is noﬁ k-stable and k < Cf(a). Thén

there exists a {c; i € I} contained in Zx where |I| <k and

F\G =® (1.2-B). Since x' is a P,-point of Ua(X),f_thggpwéxi§ts a

161 S

G eEx. such that G n c and hence G C G, for all i ¢I.' We
w5 ‘ ' 1&1 ~ ' R

‘note that ',,IG—Gi'|‘ <a and G= U (G-G, ) By hypothesis, |I j CE(a)
- - o -

and hencé"]G|-<,d, Therefore z‘n2x” <a and hence we have a

contradiction which gives the. theorem.
‘ :

D.;-THE6REM.. Let X be a djscrete.SPace with *~ |X|—= a. Let
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a be infinite and 2& € Ua(X). Suppose. :& is selective, then x 1is

-a P -point.
o P

Proof. Let {GY ty e IIC z, where G, = X and ]IL <a.
Let G= N GY; ‘Suppose G ¢ Z. then x G CfGY for all vy ¢ I.
. vy I ' . ’ |

Suppose G ¢ Z&, then Zx is not a-stable and by lemma 1.2-B, we can

take G = ®. Let.‘Xov= X-Go' and = (NG) -G Then we note

X
dmf X ﬂ'X =® for v, # ¥y and Uy X =X -nNn G . Hence
2
12 ' v<p' v<p "

f{XY Yy € I} forms a partition for X and since Zx is selective and
XB ¢ 2 for 0 <B <a, there exists a H e¢=  such that

" lHNXL|€ 1 for all B< a. We note that HsN (U X.) 2 H-G, and
- L veg? B

héﬁ¢é le-G I < Z {Hfﬁ X |'< a for all pB< o. By lemma ll3§D
B v<8 oY | | B 2

A ~

H(:“%3 for all B < o and hence H C rWGY. Theorem follows from
: : Yl

4. LEMMA. Let X be a discrete‘sﬁacebwith  |X] ='Q.A Let: «a
be measﬁrdbie, then there existsgg a-stable, selective, free ultra-
:fllFer VZXQ in UQ(X).

~

' Proof;ffo 1.4-D, U&(X) éqntﬁins a sele tive ultrafilter

z .(say) and by the previous.lemﬁa,. x is a P&-ppi t. It is”%}ear o

shat Zx is free and we note that o is stroﬁgly inacceséible, see
(Chapter'I, 1.4-D) and herce « = Cf(a). Therefore by Z.i—g_'zx is

_g—étable.
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3. I-limit points. !
(Ultrafllters) The concept.of F-11m1t 1s deflned 1n terms of

3.1. Fundamental Facts. } :

/

/

/ :

B. 'LEMMA. Let Y be a compact‘T,-space having a dense subset
of cardiﬂélity o and let x be a non-isolated point of ' Y such that
no filter base o on Y-{x} - with lo] <« converges to x in Y,

Then the subspace Y-{x} is strongly a-compact but not a-béhnded.

Proof. See [JEV-(22), Page 360].,

C. LEMMA, ' Let z, be a a-stable, selective free ultrafilter in

Ua(X) where X 1s a discrete space withscardinality a. Then there

-is no filter base ¢ on BX-{x} with o] <« and ¢ +°x Ain "X,

Proof. ' See [JEV-(22), Page 360]. - /
D. Method. Let X be a discrete space with IX] =a. Let

= BX and let & be a measurable cardinal. Then we note that every

- - point of BX-X is non-isolated .and there exists a a-stable, selective,

free ultrafilter Z. in ‘U (X). By lewma C and lemma B, BX-{x} is

strongly a- compact but not a- bounded

/

The sequences were demand obJects in the theory of convergence in

topologlcal spaces -but a better obJect ts now avallable namely Fllters

L

ERys

ultrafilters F' 1n 6N N U51ng r- 11m1ts we can deflne the concept of

- I~compactness [see_f.(l)].

#

A. Definition. Let T be a non-principal ultrafilter on -N.

:



»

‘point  x e X is said to be a I-limit point of -(xn) if for every

) Laion e a0l Lo zwv:wv;dvywmw;wmh’
T
, !\\

\

Let X' be a topological space and (xn) be a sequence in X, then a

neighbourhood W of x, {n : X, € W} eT.
We know thatw. [IT| is countably infinits for every T in
BN - N and therefore if xn‘+ X, then x ‘is a P-1limit point of

(xn) ~for every. p in BN. - N.

B. Examples.
(1) Let X be the set of all non-negative integers as a
‘ “subspace of reals. _Then we define X, =1, n = even |
=0, n-= odd.
S ) .#é;, fE' be the séfqu“éli even positife integers.
.¢,1§ig§bn PRO(E) is a frée filter'bgse on N, Let T

‘ _ _ N .
be an ultrafilter containing P o(E) and we note

that ' ¢ BN - N and 1 is a I-1imit point of
° v i & . .
(Xﬂ) -but xn—¥*1. | |
. We restrict ourselves to non-principal ultrafilters

on. N to avoid trivialities.

(i) . 'Let X be an infinite set with particular point

. topo}ggy_ L {u DX e U}‘L)ﬁb} for some X, € X'-A
‘ : ‘ o . 5 - o o = .
“'We note’ that for &veéry x ¢ 'X, there exists ajfopen "
LA B ER " - R ’
" set. W suéh that x ¢ W and [WL’=*2. Thg%efpre
. : e ’ . . R “ . ) . '\\‘ .
Any sequence (xn) in X with distinct elemen§§ has
"no I'-limit points. = . SR
¥ o . e . \
It is easy to see that in general F-limits are not °,
unique and trivially non-principa{?ultrafilters are i\
. ] - L K . ‘:r)- e i 3
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o
dominating on N, which is the case always for ?
Z-ultra:filters . ' %

C. THEOREM. 3
(1) Let £ : x >y be a continuous function and let 2
(xn) be a sequence in X and let x € “X be a ] ‘
r-limit point of ();ﬁ). Then f(x) is a T-limit . }
* point of (£(x)). R g
(ii) Let x be a ’;I‘—limit point of "(x‘n). Then (x ) - g
cluste /at x. * o /,_.__\\ | %
Proof_/ \é
—_— P » 5
~(1)-  We note that {n : f(xn) e W} = {n : x, f-l(W)} %’
- Co FE " 3
| . for e\;ery W e Vf(xj and hence we have (i). | j
(lii)ﬁ, .SL}ppose x 1s not a cluster pqint of /‘(xnj . Then . . 4
for given né e N, ‘there'exists a W ‘. (neighbourhood \
of x) such that |{n : xne‘IW}| <ng, hence .
15 nvot a [-limit ‘ﬁoint.‘ TAhe;‘.reforé we Have "th‘e<t_h-eorem.‘- . . 5“
D. THEogEM.; ) - X . ‘
| (1) Let (x ) bea §eq1;ef1ce in- X ‘and let x be a _
;‘) . ‘cliujsvt‘éarv“ point ..‘,Of ‘(xn) - ’_[‘h‘e(n therelexi.s“ts-:‘,a‘ Lo ‘
' ) o m B_.NTFA N H'suc':’h;tha,\t._ X Tiga I‘—l imit pog.nt of (x ).
*(i/i)' "Let X be a. .TZA-”sdpac.:e ” "thren,'the I’-Iii.mi_ts-&i)n X'“‘ a.i1:e;
" . ‘ unique. ( o \ | | - ',-«- .

© Proof.

(1) We denote VX, the neighbourhood system at x and

-

let S(W) =-{n : X € W} where,w er. Then

£ - _ .
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== {sW) - {n} : W e’?x and n e.N} 'is a filter.’

sub-base on N. Let I be an ultrafilter containing: 1

>, then e BN - N .and since S(W)e I' for every

i

g
oy
i
i
4
%
3
B}
b

o
‘W e Vx’ x is a [-limit point of" (xn).

(i1) Suppose (xn)‘ has two F-limit points in the space X,

-

Egesip it e

say x and®y. If x # y, then there exist open

i

e

-ﬂgets U, u such that x e U_, y e U and
X y . X y

R . T
UxfW Uy =@. Hence T will contain an empty set, :

_ -
wh. ch glvesﬁ& contrapgg

o ko
{J’l

Note. -In. (i) I -depends on t} point x .
4. [-Compact Spaces. ’ ' ,f
S 8., ' .- ,.' ) N ‘ . 7
S ' Spbe . g {
» In this section we shaliagive an introduction to I'-compact-
_spaces and also we shall prove an easy product theorem for F—éompéct .
spaces—(1) ..
£ B | >
2® 4.1, Fundamental Facts.
: : , i
A. Definition. Let [ be a non-principal ultrafilter on N,
‘then a topological space X 1is said to'be [-compact if évery'sequence
in“X. has'aﬁE-limit point.  " S e . SRR o R
. ' s I ;. Co ‘ Lo N . : )
. . A space X 1is said to be ultracompact if X is [-compact
for every T in BN - N. o = ‘ o
B. Proposition. -Suppose X has the property that the closure ;
of any countable set in X 'is conﬁiﬁ@, then X is ultracompact. -E
:



Proof. Suppose X 1is not ﬁ;tracompact, then there exists
a T in BN - N such'that X 1is not [-compact. Hence there exists

a (xn) in X such that (xn) has nol-limit points. Let X e (E;?,
. : ' »"
_ then there exists an open set Ux such that - x e Ux and

{n:x € U} . Hence {n :x ¢ U eI . Since (x_) is compact,
n x “n x . on )

‘there exist x(l), XCZ), £ 3V M in'f(igj, such that

n o . n . -
(E;) c U Ux(i) Land’hence N {n Pxo ¢ Ux(i)} =d . Therefore we

=1 i=1

have a contradiction and hence X 1s ultracompact. )

C. THEOREM.

(1) The continuous image of a ['-compact space is ['-compact.

(ii) Eﬁgry closed subspace of a [-compact space is I'-compact. "

. Proof. _ . o O
(1) Let f : x - y be a cpntinﬁéus,»onto function.
_Suppésev X %s quompgst'and let ﬁyﬁ) be a sequence
“in y. Thén,.§incé £ 'is oﬁfo,,thgre exist xnf for
eacﬁ n such that ya =‘f(xn). Let x be a [-limit
of (xn);‘ then by tﬁeorem 3.3-C,° f(ki ‘isﬁa‘F—limit'
poiﬁt of .tyn) and henéew Y is FJCoﬁpéct.,
(ii) Let H. be a cloSedisubspacé of awf%?ompgét:spaéé"3x.
| T:L'et' (xn) ‘be ‘a seéuendb in  Hy tﬂ;n‘ (xn) has a *
;f}limit“éaiﬁt TX (say) iny X and it is easy to éee

that x"¢ H., Hence every sequence in H has a

A : [~1imit point in H. Therefore H is I'-compact.

(We shall prove that afbitrary products of [-compact spaces

!

is I'-compact.)
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D.' JHEOREM. Let X = II i
LT S N

Then X

each X.
1

. is I'-compact for some

is ['-compact.

X. where each

[ in BN - N

Xi 1s non-empty.

(or '8N) if and only if

Proof. 'amp + Follows from the fact that each ™ is

continuous and onto.

ie 1,
g )
let ]

non-triv

point of

, '&=' Let (xn
x . is a sequence in
(x5, 1) q
has a [-1limit point X;
be. a basic open set in

idl factors of U are

€ Ul}EF:5L= ,?2

%

(xn)" in the product space - X and hence we have the theofem.j

Notes.

) be a sequence in X, then for each

Xi and since

) .
(say) in Xi'

Xi' is I-compact,

Let x = (xi) and

Xi such that x ¢ U. Suppose the

u, , &=1, 2,

n, then

@;_ n and hence we note that

“

Compact

='U1tracbmpactﬁ - “l

:} 7, Therefore x 1is a P-limit

1 ]

[-compact for éome ["in fN - N

|

Countably compact

y

Limik-point compact
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. Well-known spaces. .

(i) compact spaces - A v

1

(ii) countably compact spaces

1

(iii) Lindelof sbaces , :

(iv) H(1i)-spaces

3. Spaces of interest. . g %
(i) .  weakly Lindeldf spaces
(ii) TI'-compact spaces ]

(iii) ultracompact spaces

(iv): feebly compact spaceé and weakly T-

AR Pk

- : : R
We shall give some basic but important ex#Mples in the

R

study of compéctness—like.properties.
S . , : N
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List gf_Examples

Do . . ﬁ ’
. o Al

1. Particular point topology on an iﬁfinigeu$¢t is an trivial: example

infinite set and let 4 be

e

but it is important. Let X be an

the particular point topolpgy on X .. Then (X,rd) ‘1s

(i) not-compact,
(ii) mnot F—cémpact but , ‘ _ ;
(iii) - H(1)
We see thaf A = {d} 1is compact and A= X; is not éémpact.
By selecting the cardinalify of X propefly, the above space can
be taken as an example for a weakly m-n cbmpact spéce which is not

m-n compact. [See Chabter‘ﬁ-S.l]

\

o

One of thg‘Basic examples in geheral Topology is the Sorgenfry line
‘E . (R withright open intgrvéfs as basic open éetsj. The space

- E "has the following‘properties:

_(i) Lindeiﬁf, non-compact, v» ' ' _ . 3
(i) Ty L‘
- (iii) Paracompagf, PR L BT : g ' R
' "(fv) ExE .is not Lindeidf. ' v '” . ; - _ b
- e} | | .
. i ; <
a . i:.
) 3
. . .
- E

(x.-X) N\ . _ —“A v : .
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'\ 3. Let S=1x1I with dictionary order topology. Then we have the i
following where I is the unit interval: ;
' R g ‘ . : |
(i) S* (S "with basic open sets [x,y)) is Lindeldf-, :
(ii) S~ (S with basic open sets (x,yl]) 1is Lindeiéf s 5
(ii1) d(S) = ¥ ;
(iv) S*xS- 1is‘not weakly Lindelsf. g
I [See 8]. ‘ i
’ i
T T - . o -
. . ‘ o J{
]
L 1 L dee 1 A ;I )-é
4. Let @ be the.set of all ordinals less than or equal to the first .
uncountable ordinal Wy - Let = Q - {ml} , then every countable :
"l.subsef A of QO haé an upper bound in Q We note the following: %
PR : (i) @ 1is compact, :
(ii) 2 is non-compact,
(i) QO is first cogntablé, o : %5.. ,
‘ ) .- ‘ :9
(iv)__Qo is sequentially compact. e
P We know that Q, is an open subspace of Q .
(SRS N . : .

EN

Let' T=N' where [A] 2% , then N°

is not normal. Let -

P T

'~”{?;ﬂ’{% n e*Df} ; then S < I and is homeomorphic‘to‘ﬁm.
oo .

- 4
See [143 .
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The space 1! where T - [0,1]
(1) II is compact and Hausdorff, i
: : \
. (ii)\ II contains a non-normal space SI ,
(iii) ;II is not sequentically compact for (Let. e I +1, - .
| and ay (x) = nth digit in the b1nary expansion of X . - ' }
?f, Then {a o has no convergent subsequence)
(ipapélI is not first countable. _ - S ‘gﬁ i
&%iIn‘addition to this we note that a x r* is,
| (1) ,countably compact, v o _ %
'. (ii) not compact ) f;
(iii) not sequentlally compact, ; ' i ";
\ _g
(i) - Examples of spaces which are countably compéct but not I‘—compact~ '3
(ii) Examples of ‘spaces" whlch are ultra -compact but not compact | xé
See [1] - . 3
i
Let. X be én_infinife discrete space Qith cafdinality‘ m . Let 'g.
= {0,1}2m ;lth;n there is a homeomofphism from ZX into {0,1}?m |
- and a set. B such that\\X(: BC S . The set. B io intially m-
compact but.does not satlsfy lm’ﬁ . See tChapter I1-7.1]
0]
S ;
Vo
Let X - R , then the nelghbourhood systeo W otv x is a fixed . I ?c
. . : § . R
m-n filter. See [Chapter 12,11 o _' 5
i

Let [X{ =g and § ¢ X with [S| = n where n is regular. Then

P o(S) is a free m-n filter filter bése. ‘See [(Chapter 1I-2.1]
; : pte

s B AT st i e

\
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11.

12,

y

e

»

Most of the hard examples in our work are based

Stone-Céch compactification of a discrete ‘space

: and,examples are studied in - [19]

Modern Applied Mathematics deal

v

&

Al

on subspaces of the

X . The techniques

with abstract topo-

logical spaces with some additional structure. In most of the work

in this nature we assume the ‘Tz-property of "the space. (Topological

Manifolds).

“Let JN*= {1/n: ne N} {0} and let X be the space obtain by

‘ ‘) *.
.adjoining an ideal point 'q' to NxIN .

The fopology_on X is’

determined byithe product topology on NN x " .together with basic

neighbourhoodé U, (@ = {qt U{(n,1/m): n > n,o, wme N}

] )
.(1)1‘) o . e O mmm e i o
e I ® »-—-_-"—v-—-

: : ¢ Ol e e —

U N ° 0! anmowan o

¢ hd ° | N [ —

: : ¢ | e ——-———

e e | memmm--—
a,ot L L vl
() X is T (n,0)

2

v(ii) The space».{(h,O): ne N} is a discrete closed subspace

of X..

(iii)"%et s = {1, 2, .

(iv) U, (@) U (SxN") =
o .

X .

We see that X is. (i) but.not compact.

\

. no}, then S x IN* is compact

A

o »~;-,\5,~.~w:~v§c) a2 LA AT '*("‘W" v':'gf:;'—‘ RN
. . ~

- 82
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13. Hilbert space is the set of ail sequences (xi) of Teal numbers such

: 2
that Xxi

converges and the topology is generated by the metric

\

d(x,y) = (Z(xi—y.)z)’i . This space is homeomorphic to RY, 1ml‘=

0

(1)

N
L

(ii)

The subspace 1¥ of the Hilbert space 1s called the Hilbert cube.

%

¥ is clearly compact and has. the follow1ng properties:

—

‘_m -
I is a metrlc spgge and hence it has all separation .

A

properties (T, T, T2,T ) _ ) E

1“ Vis separable and hence it has all cquntaBility properties}

.
’

N
v

(iii)

(iv) |

[N
-] -

_compact nor countably compact but it is,Lindelof};/

"Let D = XX Y , then D has the prbperty/that every 1nf1T1te

_but not’ X - R compact.

' Doub1e4p01nted countable complement topglogAi SLet X be an uncountéple

.;~set and the topology on X 1is generated by complements of countable

\J .
@ . ‘ ‘i | L
L - 1 l — L
. \ , : :
X 1is TO, T1 but not. TZ‘ ' ] 1
Slnce the subspgce topology on_a couﬁtable set is dlscrete;

[N

J

the'only'compact sets are finite and' hence X is ne;ther

. , / ,
Triwially X is <R -discrete . . : I

T

R variation of the space¢ X can be constructed /by doubling
each of its\points._'TechniCAYTy this doubling is\done by
taklng the ‘usual product with an 1ndlscrete space Y = {0,1}

I

set has a limit p01nt Thls property is called the 11m1t-,'
7 i

p01nt,compactness The or1g1na1 space X does not have

this property. K

D 1is an example of a space which is Limit-point compact
©- ) » : . ) L .

’

'

o

P VEROTIEENCRD PERTR A PRSI, 1S

EO VS

NoNiroae A
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v i | . - R \ ’ ‘

15. Let X be the Carte51an product fo ®khe real 11ne with usual product

topology and {O 1} with the 1ndlscrete topology. We shall shoM
v
that 1ntersect10n of ~ two compact sets need not to be compact.

el
Let A, = [a,b] x {0} ’

1 . .
B, = (asb) .",{1,}' — \
A, = [a;o] x {1} '

‘B, = (a,b) x {0} .
We note that every open set /that contains (a,0) contains (a,l)

‘and‘hence Sl = A1 UB and' S, = A2 L}Bz are compact but

S F\ = (a,b) x {0,1} is not cohpact.

';We know that. 1ntersect10n of any:collectlon of compact sets of-a
o ;ff' éfspaced¥§:;9mpacff:e: o ..vw  .’1‘ o "
16. The soace :EI“isaoofkcoahtaoie:comoact &ut;fﬂﬁs.is opeh-in ZINf;

Therefore TI-compactness is not hereditary.
N (‘F -

17. Let Q; =jﬂ - {ml} . Then’we know that closure of aﬁy codncable.set
is compact’aﬁd hence Qo' is ultracompact but QO is not a closed
subset of »Q . Therefore r- compact subspaces behave dlfferently
to compaCt—subsoaces in Tz—spaces. ‘See.EChapter‘III-4;13.

sl

N
~

18. Double Origin Topology. Let X ‘consists of p01nts of the plane ,m?’

tOgether with the additional _point. - 0* . The nelghbourhoods of p01nts '

other than 0 and - 0* are the usual open scots of R - {0} . The )

neighbourhoods of 0 and 0* are defined a. follows: . .
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This is T2 but not T2> “and hence not cdmpactr This space is
. . T , . .

. } e ’ Iy
clearly second countable and hence it is Lindel8f.. -~

Fpares.oe B e ety R I T £ TS A AR T T YA oty
85 .
3 §
' 2 2 2 .
Vn(O) = {(x,y): x" +y° <1/n y >0} U {0}
.y - . 2 2 1 w1
Va(0M) = {x,y): x" +y" < =y <0} U{0*}
e , n ' . |
e - RPN v
._/// FANE Yn(O)
/ N
Vi
Y, . R \
/ / v
N % \
! / « |
. Z .
/
, : \ ~ /
N /
\\: ) . \\ N y .
T A S >7 V(0%
N s n-
~ - _ -
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“Basic Notions. = /%
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WEAKLY m-n COMPACT SPACES -

Fundamental Facts.

The Property H(i) and weakly Llndelof are. special

‘.cases qf‘bhe general concept weak m~n compactnes§. This section

- . . . . . : -
4

N devoted to a study of basic properties of weakly m-n -compact

spaces. We shall begin the 'section by giving the basﬁc"

"definitiohs.

. .

sy
0

A. Definiticm. A topologlcal space X is sald to be weaklv m-n

comgact 1f every m—fold open cover of X has a sub- famlly of
, w
: cardlrallty stricfly 1ess than n with dense unlon.

B. Definition. -A tdpolcgicai space X is said;to be weakly n-

compact if it is weakly m-n coﬁpact.for eachm 2 n .

" C. Sgecial'Cascs.

\(;) vWéaklyvﬁgc% 8; compact spaccs‘E'weakly.countcbly .
‘compact spcces ;' ‘. _: o o ;\ ' |
(ii’ h ’:Weakly b%~com§cctispaceé é‘H (i)'spéces;
(iii) :_‘ﬁeaglﬁ : b&;compact spcces = wcakly—Lindclof.’A
R ' spacec -
(iv) Wcakly:m—tb%ccomgécc.spacés E'Initialiy weakly m-
L : ccmpact spaces. [

Note. In a Tzéspace H(i) is'équivéibnt to H-closed.

i

D. Definition. A subset E of X is said to.béﬁweakiy;m—n>ccmpact,
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it euery n-fold open cover Lof E by open subsets of X_baspa
sub—family %‘b(say) of\cardinality strictly less than n and
gc UL' | |

Note A subset‘. E of X is said to be weakl;' m-n compact if

and only if E is weakly m-n compact with respect to its sub-

space topology-

1.2 . Elementary Properti'es.

A

THEOREM (i) Let n be a regular cardinal number. Then k-
fold un:.on of weakly ‘m-n compact subspaces of a fixed space .,
is weak_ly m-n compact for all k < m.

(ii) A space which contains ‘a dense weakly m-Tt

- . compact is weakly m—n‘,compac't.'

Proof. 1) Let {A 1} be a k-fold collection of ‘weakly m-n

.compac'c subspaces oi the space X. Let § be a m—-fold open

- cover of UA, where \I\ k<n. Then there exist sub—families‘.

. of ?Z s {Zfi ie I} (say) such that A, C Ui and ‘Z' \ < ,f.or

N

all ieI. We note that U(UZ,)C U(UZ,) and !U%] <n

and hence - the (1)

SR

’ (il) e5 a. dense weakly m——n compact subspace
of X. Let 7 be a m—-fold open cover of X. . Then slnce“iﬁ. is

weakiy m-n compact there ex1sts a sub—famlly 9t 7' such that

;/A ECQX(U% and’ \ 7 \<n. Hence we have X = UZL whlch

Q proves (11)

B.

Definitlon A subset A of the space X is said -to be regular

‘ closed if and only if A = ¢l IntXA

e ERRSRPEt Shb b -
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THEOREM. (i) The continuous image of a weakly m-n compact

space is weakly m-n tiomp_act.

(ii) A regular closed subspace off a weakly m-n

, $
»
compart space is weakly m-n compact.
Proof. (1) Letf : X+ Y  continuous and onto. Suppose
X is weakly m-n compact and let ?'ve an m-fold opén cover. of
' —l " . - . ’
Y. Then {f P'(U):UE'ZL} is an m-fold open-covéer of X and

*henée there exisfs a sub-family ' of . such that

X= Uﬁf_l(U) Ue %'t and |I'] < n . Al;{e'nce we| have
Y= Ulu: ue L'} which_proves (i) .'

(ii) ‘'Let H be‘:—.';. regular cl._osed éubéet of the space X
which is weaklx m-n coxlz‘xpa'ct.. Let ?Z be a m—rfo_ld open cover
of H by open subsets of X. Tﬁ_en x = (U U (X-H) an‘d"-si‘nce X
is weakly n-n compact, there éxists‘a %' C ¥ such tha;
X=(U7) U(m anﬁ IZ:"|< a. ‘Hevr‘lce Int

XH CyZ' and since

H= clen_tXH, -‘we have BC U?L' Ther‘efore H is weai:ly m-h

compact.
We note that the property weak m-n

‘compactness is regular closed hereditary. ' N e

" Example. | Let X be a space with |X]= ‘m>n and particular point' .
topology T;l. Then T, = (7 4 —:.Z;'}:U {8} where d. e X. We‘ note that
‘X -{d?} is closed and discrete and hence X-{d} is Pﬂ;‘. weakly

m-n bcompact, but X is weakly m-n co_m\pact. ‘Thisll exampﬂle shows

that weak m-n -compactnesrs is not closed heredi’tar‘y.‘

Note . The space(X,t,) is not m*n compact.

e g on T £ e O T e 4 T S T S
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1.3 Special Properties- : | | . . i

N ,
A. Definition. A space X is Eﬁidﬂfbébe m-separable if X contains .
a dense subset of cardinality less than m.

In this tefminology separable
spaces’ are ‘bi - separable;

B. Note. Every n-separable space is weakly m-n compact.

C. LEMMA. Weak m-n compactness is a topological property.

J

Proof. TFollows from the- fact that. continuous maps presérve

. : o ) ’ kS
weak m=n compactness. : _ . '

P DRI

.D. Proposition Let n be a regulér cardinal. Then -the product

e

of a. weakly m-n compact space with a n—sebarable spadé is
weakly m-n compact. _ %

-
1

Proof. Let X be a weakly m-n compact space and let Y be a n~
separable space. Then Y contains a dense subset A with ‘A1<n.
. : o : A

We note that Xxg.is'weakly m~n compact and since. XxA = XxY, we

have the result. 1.2 -véj

1.4 Elementary Remarks. .
‘ =. - . . ' ) v . 1. . e
1. Let X iIGIIX’i énd ToE X_t—> ‘iI;_II’Xi where I' C 1. Then we know that LTI

is continuous in any product topology and hence if X»is‘weakly\

m—nfécmpact; théh_évery sdb¥ptoduct”of X is weakly m¥h“cqmpaé:. R ‘“

2. Let X be a paracbmpact Té— space. Then every opén7c6Ver of'.

X can be refined by a locally finite open cover such that
‘ : : B S B
closures of the memembers are contained in the members of the
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original cover. "Hence weakly,m—n’compaet, paracompact T2-
< < 4 t. ’

space i3 m-n compact, provided the space has cardinality

less than or equal to m.

+

3. Let X be a space and let A be a ‘weakly m-n engact subset of

! 2
X. Then A is weakly m-n compact. ,.“

-

-

' I
4. Let f X -~ Y be continuous and suppose X is wea&ly m-n compact.

Then we know that f(X) 'is weakly m—T compact and hence CQ f(X).

g o

There is a slmple questlon available Under the hypothe31s of

4, is it true that every subspace between f(&) and: c%bP(k) is

weakly m-n compact? Answer is yes.

“r

% .
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General Remark ‘ . ' ‘ o S

Topologlcally descrlptlve good notion of conygrgence s

‘available in terms of filters. We also know tha{ﬁkopologlcal concepts o rg
can be descrlbed convenlently in terms of f11ters and in particular S 3
since compactness-like propertles can be descrlbed u51ng intersection T
'pfopert;;s of families of sets, fil;ers play an 1mportant role in the_ :
theory of cj t spaces “ w‘ 3
, !

iIters-—a-cbmpacx spaces, .

Open Fllters-—a-H(l) spaces,

Z- FllterS--»Stone Cech compactlflcatlon (C osed Fllters—_x

e i e ook et s s Lk At et e A S0,

Wallman compactlflcatlon),

m-ﬁ Filters———m-n compact spaces
The;idea of this object!can be found in much earlier work but -
actual_usage'datés back to .1930-1940 (H. Cartan-Paris).!
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