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Abstract

Bit/symbol error rate and outage probability are commoifgoerance metrics used
to quantify the reliability of wireless communication systs. Error rates for a
broad class of digital modulation schemes and outage pilithatye expressed as
integrals, which often do not have closed-form solutionseréfore, accurate and
simple approximations to develop insight are desirableadi@eve this goal, clas-
sical Gaussian Chebyshev quadrature and rational GauSkeyshev quadrature
rules are studied in this thesis. These rules are used towterspmbol error rates
over multipath fading channels and outage caused by coaetharterference. The

accuracy and convergence rate of these rules are investigat
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Chapter 1

| ntroduction

1.1 WirelessCommunication

Due to the phenomenal growth of wireless communicationséemt decades, sev-
eral wireless network standards have been developed. Theoa ones are listed

as follows [3]:

1. Global System for Mobile Communications (GSM)

GSM, the most popular second-generation (2G) cellulardstah has dom-
inated over80% of the mobile phone standards by 2012 [4]. The GSM'’s
extensions include GSM-900, GSM-1800, and GSM-1900. Datasport
has been added via General Packet Radio Services (GPRS)ndnachded
Data rates for GSM Evolution (EDGE)I[5].

2. Code Division Multiple Access (CDMA)

The rival standard of GSM is CDMA, which is also referred agtim Stan-
dard 95 (IS-95). CDMA standard has achieved a consideratiiscsibers
base in the U.S.A. and South Korea. The CDMA family includ&sM&one,

CDMA2000, and CDMA2000 1xEV.

3. International Mobile Telecommunications 2000 (IMT-200

IMT-2000 refers mainly to a family of 3G standards, which é&deen ap-
proved by the International Telecommunication Union (ITte leading 3G
standards include CDMA2000 and Wideband CDMA (WCDMA). Tlagiv

ous customizations of IMT-2000 include Time Division Syrmtous Coded

1



Division Multiple Access (TD-SCDMA)[[6] and Freedom of Md®iMul-
timedia Access (FOMA) WCDMA[]7] used China and Japan, retysag.
Moreover, due to the high growth of wireless data servicesg-Term Evo-

lution (LTE) has been developed.

4. Institute of Electrical and Electronics Engineers (IBSE&ndards

These standards provide interoperability and thus haué dweonsensus in
the communications industry. IEEE 802.11 on Wireless Lécah Network
(WLAN) [8], IEEE 802.15 on Wireless Personal Area NetwoM&SAN) [9],
and IEEE 802.16 on Wireless Metropolitan Area Networks(WWIWN)A3] are

some of the most popular IEEE standards.

These wireless standards have gained widespread adapioa,than 6.8 bil-
lion mobile phone subscribers by 2013, about 96% of the ieddpulation [10].
This strong growth is facilitated and governed by the abamioned wireless stan-
dards. Bit error rate (BER) targets and modulation schemrethése standards are
listed in Tabld T.11.

Table 1.1: Typical wireless telecommunication standards

. Maximum
Group Standard Modulation Allowed BER
Gaussian Minimum Shift Keying (GMSK)/ _5
GSM GSM900/GSM1800/GSM1900 Quadrature Amplitude Modulation (QAM) 10
EDGE 8 Phase Shift Keying (8PSK)
CDMAone Quadrature Phase Shift Keying (QPSK)
CDMA/IMT-2000 CDMA2000 QPSK/8PSK/16QAM 10— [12]
TD-SCDMA QPSK/8PSK/16QAM
802.11 (WLAN) PSK/QAM 8 x 1078
IEEE Amplitude Shift Keying (ASK)/Frequency 7o
802.15 (WPAN) Shift Keying (FSK)/PSK 10
802.16 (WMAN) PSK/QAM 10~ [14]

The BER is the ratio of the number of error bits to the total bemof trans-
mitted bits during a certain time interval, and is perhagsmiost important quality
of service (QoS) measure. It provides a useful method totfydhe reliability of
wireless channels for different wireless standards andutatidn schemes. For ex-
ample, for QAM in GSM900/GSM1800/GSM1900 and IEEE.11 (WLAN), the

2



maximal allowed BER differs. As a result, for each standarthaintain a reliable

transmission, the BER due to the difference between thevestand transmitted

signals influenced by noise, interference, and fading tjiindbe channels is speci-
fied.

BER is closely related to symbol error rate (SER), which & ilitio between
the number of erroneously decoded symbols and the total eunfltransmitted
symbols. For binary modulations, the BER is simply equah®$ER. Fo\/-ary
modulation, however, since one symbol represérig\/ bits, BER and SER may

be roughly related as
1

log, M
Due to this relationship, SER serves as a simple proxy for BHRs the-

BER ~

SER. (1.1)

sis therefore investigates accurate SER evaluations @fralegligital modulation
schemes used in the aforementioned wireless standardie [Tdh). Since these
wireless systems operate over multipath fading channélghaare the fundamen-
tal cause of harmful signal-strength fluctuations and tésuhcreasing the SER,
accurate evaluation of SER reveals the BER degradationadiagling.

Wireless performance also degrades due to co-channdkirgece (CClI), which
arises when multiple users access the same time-frequiensy Bhe impact of CClI
can be measured in terms of the outage probability. Thus thieisis also studies

the outage probability of wireless systems due to CCI.

1.2 Problem Statement

As mentioned in Section 1.1, BER/SER, outage and capaatysed to quantify
wireless system performance. These metrics can be exdr@sdbe following
generalized format a5 [15,/116]

Efh(x)] = / b () do (1.2)

whereh(.) represents outage, BER/SER, or capacjtig,a parameter dependent on
different types of measures; ands the instantaneous signal to noise ratio (SNR)

or signal to interference ratio (SIR). The average is pentat over the probability



density function (PDF) ofy, p, (7). Further details of_(1]2) can be found in Table
2.1.

However, obtaining the exact closed-form for (1.2) eitherymmot always be
possible or may have a high computation complexity and maygive the direct
insight about the core parameters that dominate the peafocen Therefore, accu-
rate and simple approximations to develop insight are delsr

Specifically, two Gaussian Chebyshev quadrature (GCQ}¥ rate studied in

this thesis to tackle these problems.

e Gaussian quadrature allows approximate evaluation ogiate [1.2) as a
simple weighted sum. GCQ rules are special cases of Gaugsadrature,
which have been widely used in numerical analysis for appraton calcu-

lations.

e Specifically, GCQ rules for SER and outage analysis have &teeied exten-
sively. While classical GCQ rule is commonly used for wissl@nalysis, the
accuracy of this rule has not been investigated in detaivéVer, it is known
that in the high SNR region, the classical GCQ rule is higligusate. What
is not known widely is that the GCQ rule requires a large nunadf¢erms
for the low SNR region. Thus, the convergence rate of thie ddpends on
the operating SNR. In this thesis, the convergence ratestinlbw and high

SNR regions are investigated.

e Moreover, rational GCQ, which has not yet been widely use@|so stud-
ied in this thesis. Rational GCQ rule for SER of several diginodulations
and outage probability is comprehensively described.Heamore, SER ex-
pressions of digital modulations amenable to GCQ rulesadrelated. Also,

rational GCQ rule for outage computation is developed.

e The comparisons of the convergence rates of classical G@@éonal GCQ
rules have been paid little attention. Thus, the convergeaite, measured by
the minimum required numbers of nodes for each GCQ rule, ER &nd

outage probability is investigated in this thesis.



1.3 Contributionsand Outline

The main contributions of the thesis are assessment andasop of the accuracy
of classical and rational GCQ rules for SER of several digitadulation schemes

and for wireless outage. These contributions are listeolel

e SER expressions for coherent and noncoherent digital mtidok that can

use the GCQ rules are presented.

e Both classical and rational GCQ rules to approximate SERidl@ss trans-
missions over multipath fading channels, Rayleigh, Rieiad Nakagami-m,
are presented. Their convergence rates are compared lnagrglthe num-

ber of nodes needed to achieve a given level of accuracy.

e A Gaussian integral model for arbitrary upper limits fof-ary PSK mod-
ulation is developed by using the rational GCQ rule. Expogssf error
probability of M/-PSK modulation, using the rational GCQ rule, is analyzed
instead of using the former analysis with Gaussgafunction in the format

of Craig’s transformation with limif0, = /2].

e Rational GCQ rule is adopted for outage analysis of sevasss, which are
a desired Rician faded signal and aggregate CCIl under RayteiRician or
the combination of these two fading scenarios. Convergesteeis studied

through the number of nodes required for a given accura@l.lev

The thesis has the following organization:

Chapter 2

In Chapter 2, basic background concepts and models of tigatdulation schemes
are presented. Mathematical tools of the classical anolmatiGCQ rules and node

and weight computation are also described.

Chapter 3

Chapter 3 reviews error performance of coherent and nomenhdigital modula-
tions. Multipath fading models are presented, and the ¢@mdil error probability

5



(CEP) of each modulation is obtained. Subsequently, dalsand rational GCQ
rules for calculating SER are evaluated. Numerical peréorece results for digital

modulation and diversity schemes are presented.

Chapter 4

Chapter 4 investigates classical and rational GCQ rule€@kr outage. The ex-
act closed-form outage expressions in the generalizeddagtienario are derived.
Numerical results of the desired signal under the Riciamfadh the presence of

multiple CCl is presented.

Chapter 5

Finally, Chapter 5 concludes the thesis and provides dinesfor further research.



Chapter 2

Background

This chapter describes several digital modulation scheandsmathematical tools
and methods that are used for their performance analysexifigplly, Gaussian

Q-function and GCQ rules are discussed.

2.1 Digital Modulation

bits q, Transmit E(t)
——  Mapper filter p——
g (1)

Y

Figure 2.1: Digital modulator

A typical digital modulator (Figure2l1) maps input digikals to a sequence of
real or complex symbolsy,,, wherem = 1,2, ..., co. Modulated symbol;,,, may

be expressed as
A amplitude modulation

Gm = { €7 phase modulation (2.1)

e?mfmt  frequency modulation

where; = /-1, anda,,, 0,,, and f,, are amplitude, phase, and frequency terms,
respectively. These terms are functions of input data bitav inputs are mapped
to a,,, 6,,, and f,, is determined by the given modulation scheme. The stream of

gm (m =1,2,...,00) drives a transmit filter whose outputi§).



The modulated signal may then be expressed as

“+oo

5(t) = Z amg(t —mTy), (2.2)

wherea,, is the information amplitude in theith symbol interval, and(¢) is the
pulse shape of the transmit filter with duratidnseconds.

The baseband modulated sigeéd) is transmitted over a wireless channel by
using a suitable carrier. For our purposes, the transmtsignergy and,,.;,,, the
minimum Euclidean distance between any two constellat@mntp, are the critical

parameters. These parameters for several modulationseyitesented next.

211 ASK

Since ASK simply maps input digital data to the amplitudehaf tarrier signal, its

mapper output thus takes on symmetric real values from
apm =2m—1—M, m=1,2,..., M. (2.3)

Hence, the amplitudes arel,+3,...,+(M — 1) in each symbol duratioffy.
Sincelog, M is the number of bits per symbol, the bit duration is givenhy=
Ts/logy M.

If £, is the energy ofj(¢), the transmit signal energy is given by [1]

favg = mm a,,

:%(12+32+...+(M—1)2)

(M2 B 1)59
76 .

Since energy consumption for data transmission is a dritcaor, the energy
per bitéy ay = Eavg/log, M is important. The energy per bit is given by [1]

(M2 B 1)59

S Sa—_ 2.4
Shavs = "G qoe (24)

For notational simplicity¢, .., iS represented &S.

Three ASK signal constellations are shown in Fidure 2.2.
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(2) BASK (M = 2)
0 1
@ ‘ @

(b) 4-ASK (M = 4)

00 01 11 10
@ L ’ L @

(c) 8-ASK (M = 8)

000 001 011 010 110 111 101 100
L ® ® L ® ® L ®

Figure 2.2: ASK Constellatior [1]

The minimum distance of two constellation points is thuegiby [1]

The minimum ASK distance can be expressed in termg, dfy substituting
(2.4) into [25). Thus, in terms of the constellation sizel @mergy per bit, the

minimum distance becomeés [1]

[12log, M

The minimum distance is critical to the operation of the d&te which searches
among all possible transmitted signal points to find the dva is closest to the
received signal in terms of the Euclidean distance. In Ghraterror probability
of ASK will be described in terms af,,,;,,.

ASK is commonly used to transmit data in optical fibres andthasadvantage
of simple implementation. But it is an inefficient modulatitechnique since it is

highly susceptible to noise interference, such as atmegpaed impulse noises,



which tend to cause rapid fluctuations in amplitudel [17]. Sehdrawbacks are
eliminated in PSK and QAM, which will be discussed next.

212 PSK

In PSK, information bits drive the phase of the carrier sigiae phase signal(t)
thus takes values from the discrete set

Qm:%,mzlﬂ,...,M 2.7)

in each symbol duratioff,.
Since phase change does not affect the signal energy, #t®nship between
energy per bit and signal energy is

S

S = 2log, M

(2.8)
Transmitted PSK signal can be representedlas [1]

5(t) = Re[eje’" ~g(t) - ejzwfct]
.27 (m—1)

= Rele/ 7 - g(t) - ejzwf“t]

2r(m — 1) 2 (m

= g(t) cos( ) cos(2m fot) — g(t) sin(T_l)) sin(2rf.t). (2.9)

wherem = 1,2,..., M is the M possible phases of the carrier that convey the
transmitted information, ang. is the carrier frequency.

Binary PSK (BPSK,M = 2), quaternary PSK (QPSK\/ = 4), and 8-PSK
signal constellations are shown in Figlrel2.3. Note thasmlation points are
uniformly spaced byr/M radians on a unit circle.

The Euclidean distance between two signal pointslis [1]

Aimn = \/|[5m — snl|?
= \J&ult — cos(2T m — ) 210)

Therefore, the minimum distance of the constellation cafobed to|m — n| =1

is [1]

Ayin = \/59(1 — cos %) = \/259(81112 %T) (2.112)

10



‘01 (011
010 001
9 1 11 Q0 110 Q00
111 100
10 J101
(a) BPSK (/ = 2) (b) QPSK (/ = 4) (c) Octal PSK (/ = 8)

Figure 2.3: PSK Constellation![1]

With simple modification and by substituting (R.8) infa (B 1d,..;,, in terms of¢,

can be expressed as [1]

dmn:2¢@m%%xhgﬂﬂg. (2.12)

As described previously, the key factor for the detectaabdity is d,,;,, which
will be discussed for PSK error probabilities in Chapter 3.

PSK is used for high-speed data transfer applications [TFe outstanding
feature of PSK is that it is more robust against the interfeeehan ASK. However,

PSK modulation requires more complex signal detection andvery processes.

213 QAM

QAM can be viewed as a combination of amplitude/phase mtidualal he two sep-
arate in-phase and quadrature carriers are in the foxs@2 f.t) andsin (27 f.t),
which are separated by a phase shiftrgP radians. The QAM signal may be
expressed as[[1]
5(t) = Re[(am; + jamq)g(t)ej(%fct)]
= Qi g(t) cos(27fe) — amqg(t) sin(2m fe), (2.13)
where the in-phase and quadrature-phase carriers are atedbly the information

bearing amplitudes,,; anda,,,. These are usually independently distributed over

the set of equiprobable values
iy Gmg € {2 — 1 —VMi=1,2,...,VM}.
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The transmit signal energy is the sum of in-phase and quaerahase terms:

a> a?

g”’ Ey+ % &, (2.14)

gm:

In Figure 2.4 M -ary QAM signal constellations wherd is a power of two are
presented; i.eM = 2%, such as\/ = 4, 16, 64, and with amplitudest1, £3, ...,
+(v/M — 1) on both horizontal and vertical directions. An immediatsafvation

is that wher¥ is the integral power of, the constellations are rectangular.

M = 64
@ @@ @@ B @@
¢ o o o o o o o
§ M = 16

® o o000 © o
i i M =4 |

¢ o o o0 o o o
o o ¢ o0 ¢ o o
0 o o -ol0o-0 0 @
¢ © © o 0 o o ¢
® 000 0000

Figure 2.4: QAM Constellationi [1]

The Euclidean distance between a pair of QAM pointslis [1]

dmn: H3m_3n||2

az.—a2. a%L —Cl%
— \/( mi 5 ny + q 5 (I) gg. (215)

Since the constellation map is a rectangular gird with Eaimiformly spaced along

each axis by 2 units, the minimum distance is

Amin = \/2&,. (2.16)
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For the squared QAM modulation, the average signal enerdynargy per bit

are [1]

= S x - == (2.17)

_ 5 _ (M — 1)59
log, M 3log, M

&b

, respectively. (2.18)

The minimum distance in terms gf is then given by([1]

_ [6logyM
dmin - M—1 gbv (219)

whered,,,;, once again is the critical parameter when the detector lsesr@mong

all possible transmitted signals to find the one that is dbethe received signal.
The QAM error probability will be discussed in Chapter 3.

QAM modulation is widely used in cable TV, Wireless Fidel{i-Fi), and
WLAN to achieve high data rates over bandwidth-limited ctels. For example,
the most generally usegil-QAM can reach up té&4 Mbit/s in the WLAN of 2.4
GHz frequency band [17]. The advantage of QAM modulatiorh&s énormous
efficiency of spectrum usage since it contains two indepeinckrier signals. For
example, the theoretical spectrum efficiencgHQAM can reach up t6 bits/s/Hz.

However, demodulation, especially in the presence of noeebe challenging.

214 FSK

FSK encodes the input information bits in the frequency efdarrier. The frequen-

cies thus take values from

fmzw,m:Lz...,M (2.20)
in each symbol interval’;. Therefore,f(¢) can be modelled in the form of
+00
F6) =" fug(t—mT,), (2.21)

where f,, is the information frequency for theth symbol, and;(¢) is a unit am-

plitude rectangular pulse of durati@n.
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In contrast to ASK and PSK, FSK is multidimensional sigmajidue to the mul-
tiple carrier frequencies. In fact, FSK is a special casertiffogonal modulation
in which the signal set is mutually orthogonal and has eguoeigy, such that 1]

< - & m=n
/ Sm(t)5,(t) dt = {0 m£n

—00

For M = 3, these symbols are represented in Figurée 2.5.

?,

/ / ;I(JE,O,O) #,

- d

?,

Figure 2.5: 3-FSK Constellations! [1]

The minimum Euclidean distance is

Apin = 1/ 2€. (2.22)
The relationship between average energy per symbol andyeper bit is given by
& = S : (2.23)
log, M

The minimum distance can be expressed as [1]

pin = \/2l0gy M - &y, (2.24)
Error Probability of FSK will be discussed in detail in Chaip8.
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2.2 Performancelntegrals

As stated in Section 1.2, typical wireless performance icgtsuch as BER/SER,
capacity, and outage can be expressed as integrals. Farmienee, we repedi(1.2)

here again as
Blb@)) = [ hm)p, ) do. (2.25)
0
Several cases chosen fafz) are listed in Tablg 2]1.

Table 2.1: Common performance measures

Expression type h(7)

SER Q(/a7)
Outage Ply < yin]

Capacity log,(1 + )

For SER, only the case of BPSK is listed, where- 2, v is the instantaneous
SNR, andq)(.) is GaussiarQ-function described in the next section. The SER of
most coherent modulations can be represented)py or linear combination of
weighted@(.)’s or powers ofQ)(.). For outage;y, is the power protection ratio
or minimum receiver SIR requirement, usuaily = 9.5 dB [18]. The capacity is
given by the classical Shannon formula.

The performance measures given in Tdblé 2.1 and](2.25) caaily com-
puted by using the Gaussian quadrature rules. In this thegsspecific numerical
estimations achieved by using the Gaussian quadratussjcséhand rational GCQ
rules, are considered. Those methods will be further addjpteerror and outage
performance analysis in the following chapter.

Next, Gaussia®-function is introduced. Classical and rational GCQ rules a

discussed later.

2.3 Gaussian Q-Function

GaussiarQ-function or equivalently the complementary error funotesfc() is of-
ten used for performance analysis. This is due to the fatttralitional BER/SER

of a broad class of coherent and differentially encodedalighodulation schemes
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can be expressed in terms Qffunction [1,19]. A detailed list of conditional
BER/SER expressions involvin@-function is given in Tablé€ 3]1. The Gaussian
Q-function is defined as the complement of the cumulativeriBigion function
(CDF) of a zero mean and unit variance Gaussian random Veridihe canonical
representation of Gaussigxfunction can be expressed as

1 2

Q(zx) = §erfc \/%exp —y—) dy,x > 0. (2.26)

This form presents analytlcal dlfflcultles for numericakgral evaluation since

the lower limit of (z) containsz, and the upper limit is infinity. This is due to
the fact that in order to calculate the average error rai@jzeeds to be averaged
over the PDF of random variable For such cases, variablepresent in the lower
integration limit is a drawback. Therefore, various appmeations, bounds and
expressions have been derived for solving this issug€ [40-€3@ig [31] generates

one such closed-expression for the Gaus&duanction, which can be written as

L =Y 2.2
. _ 27
Q0 =1 [ (5 ) 227
2 L LA 2.28
@) = ;/0 Y <_2Sin29> ' (2.28)

Expressions (2.27) an@ (2]28) have finite integration Brmtependent of the
argumentz. These forms are particularly useful in the analysis of thererates
of coherent and noncoherent modulation schemes in thermesé fading, which
will be presented in Chapter 3. Moreover, to evaluate errobability efficiently

and precisely, Gaussian quadrature is described next.

2.4 Gaussian Quadrature

Gaussian quadrature has been widely used in numericalsas &y approximation

calculation of definite integrals. For a definite integfét), [32]
b
= / f(z)u(x) du. (2.29)
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anm-point Gaussian quadrature rule may be expressed as

Ln(f) = wif(@k) + R, (2.30)

k=1
wherez; are the quadrature points which depend on the number of nedast

not onf(z), w; are the quadrature weights, angk) is a weight function orja, b],
wherea andb are normally set te-1 and1, respectively. The?,, is the remainder or
error term. Its key idea is to use the interpolation nodesinyeja, b to maximize
the exactness and accuracy. The use of Gaussian quadratubedn found to be

convenient for wireless analysis.

24.1 Classical GCQ

The classical GCQ was first introduced by Bigilier, Cairerid@ and Ventura-
Travest in[33] and [34]. This method was further developmdefror performance
analysis of coded system in [35]36], diversity combingeyst with binary modu-
lations in [37], and\/-ary quadrature amplitude modulatial/ ¢ary QAM) in [38].
The classical GCQ technique is simple and useful, but itirequa higher number
of nodes for accurate results in low SNR.

The classical GCQ rule can be expressed as the special cd8&€9f when
a = —1,b=1,andu(r) = 1/v/1 —22. For this case, nodes and weights are
explicitly given. This rule can be given as [39]

/H f@) 4= iwkf(:ck) + R, (2.31)
-1 V 1-— .1'2 =1 '

wherew;, = 7/m andx;, = cos(2k — 1)7/2m are the corresponding weights and
nodes. In[(2.31), the integral is approximated by the surematf the weighted
values of f(z) evaluated at the abscissag wherek = 1,2,...,m. It can be

shown that the erroR,, = 0 if f(x) is a polynomial of a degree less than or equal

to 2m — 1 [40].

2.4.2 Convergence of classical GCQ

Convergence refers to how faft,,| — 0 asm increases. To explore classical GCQ

rule’s convergence rate, Cauchy integral in the complerepla advocated [41]. If
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function f () is analytic in a domain containinjg-1, 1], Cauchy’s integral formula

for I(f) can be expressed as

o f@)

T dx

I(f) =

/1 27rz/ m?z_x) dedr

~ 5 | FR0E) 8= (2.32)

wherel is a contour contained in the domain of analyticityfdhat encloses-1, 1]

once in the counter-clockwise direction, apc) is given by

+1 1 -
#2) = 1 V1T —22(z —2) = zli (2:33)

22

With the same procedure, using complex residue calculesapiproximation

I,,(f) can be expressed as a contour integral dvas

:;wkf(kaR 2m/f )rm(2) dz + Ry, (2.34)

where by substituting), = 7/m andz = cos(2k — 1) /2m into r,,, hencer,, is
defined by

m

- 1
=y =y T (2.35)

1 © Tk v 2 — cos(~=5)

ThenR,, is given by

Ry, = I(f) — L( 2m/f — n(2)) dz, (2.36)

whereg(z), r,,(z) are defined by[(2.33) anf (2]35). However, this expression fo
R, can not be exactly evaluated, but tight upper bounds maytéwve convergence
behaviour.

Also, from (2.36), it follows that[42, Theorem 2.48]

Rl < " max0(2) = r(2)] - mas 1)1, (237

T zel

wherel(I") is the length of contour.
Figure[2.6 shows erronig(z) — r,,(z)| as contour plots in the complex plane

with m = 8 andm = 16. In each case, the contours correspond to the levels
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1,1072,1074, ..., 10~ from inner to outer circle. Thus¢(z) — r,,(z)| decreases
as the contours move away frop1, 1]. For a given value ofn, (2.37) gives a
upper boundary oR,, for a contour far from—1, 1], where the contour is limited
to wheref is analytic. From another point, the desired accuracy caacheved
only by increasingn, since for an analytic functiosi with a small neighbourhood
of [-1, 1], the bound ofR,,, will not be small due to the closer contour chosen.
One example of the relationship between the GCQ error boan®ER of
BPSK and the number of nodes is shown in Fiduré 2.7. The aadiyiction is

f(x) = 575, which has a pole at (1 + 27). Thus, the radius of the circular

contourI’ chosen should bé < r < (1 + 2%) such thatf is analytic in|z| < r.
For 7 in the region from—10dB to 10dB, the region of analyticity i$z| < 1.2,
|z| < 3, |z| < 21, |z| < 201, respectively. The bound derived in [43],

1.05 1\
R < i (7)1 (238)

r2m=2(2m

is used for the plot whergf||> = [ | f(re'?)[? dg.

Figure[2.7 reveals that at low SNR values, the classical G&alslow conver-
gence rate; i.e., for th&,, = 10715, it requiresm = 92 for y = —10dB, m = 15
fory = 0dB, m = 6 for y = 10dB, andm = 3 for v = 20dB to converge.
Thus, the convergence rate of classical GCQ rule improvasaically for large
SNR values. However, the low convergence rate in low SNR&stgghe usage of

rational GCQ rule.

2.4.3 Rational GCQ

The adopted rational GCQ rule was derived by Deun, Bultlaeel,Gonzalez-Vera
in [40] and is briefly described in Dhungana'’s papér [2]. Theearance of classical
and rational GCQ has the same format, except for the compnutat weightsw;,
and nodesr,. In the following sections, preliminaries of Chebyshevhogonal
rational functions are illustrated first, and then raticB&lQ approximation rule for

the weights and nodes calculation is presented.

19



|
[y
T

Figure 2.6: Contour plots of the err@p(z) — r,,(z)| for the GCQ formulas withn = 8
and16.
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Error Bound R

20 25 30 35 40
number of nodes (m)

Figure 2.7: GCQ error bound for the BER of BPSK over Raylemytirig [2]

Chebyshev orthogonal rational functions

The Chebyshev orthogonal rational function is defined as

bea® + byt + L+ ba?
(1—z/ap)(l —x/ag_1)...(1 —x/ay))
where{a1, as, ...} is a sequence of real poles outsidd, 1]. All Z, must be or-
thogonal ovedV (z) = 1/v/1 — 22 on [—1,1], and Z; are calledChebyshev or-

thogonal rational functions. In the special case of all;, = oo, then [2.3B) reduces

k=12, .. (2.39)

to Chebyshev polynomials of degreek.

Rational GCQ rule

Through the Joukowski transformatien= ;(z + z7!), denoted as: = J(z), the
unit circle is mapped onto the intenjat 1, 1] and points outside the interviat 1, 1]

are mapped onto the rangg < 1. With the sequence of real pol¢a;, as, ...}
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outside this interval, we associated a sequende&3aff,, ...} wheres, = J ! (ay)
should lie in the range df3| < 1.

The nodes|z;}}_; in then nodes rational GCQ rulé (2.81) can be computed
asxy = cos(f;) wherefy, is the only zero on (@&, of a real-valued functiotf,, ()

that strictly increases over the intervalfQ,

n—1 . .
B sin 05, sin 0,
fn(Or) =2 ]E:l arctan — - +arctan — R
—(n—1)0, —7/2(2k—1). (2.40)

The corresponding weight equatiomg in (2.31) can be derived as
wp, =21 (14 go(xp))™, k=1,2,...,n, (2.41)

where

n—1 /1 —1/a? 2
:22 \/ /j+\/1—1/04n (2.42)

gn{2x) 1—z/a; 1—z/a,,

j=1

Theorem: The above functiorf, is strictly increasing for0 < 6 < , then
we have) < 0; < 0, < ... < 6, < m. Furthermore, the functiorf, is concave
on (Oy) if all the poles are positive, and convex if all the poles aegative. If
there are both positive and negative polésf,) has only one inflection point in
the interval of (Ox).

Newton’s method is introduced into this monotonic functionfinding the ze-
ros 0, of f,(0;). In our computation of interest, there are two possible ct®i
of poles, which are all poles are either all positive or aljatee. For the case
where all poles are positive, as a strictly increasing ceméanction, the iterations
of Newton’s method can rapidly converge towards to the acasllt if the initial
guess value is less from the exact solution. With the ingisss o)y = 6; = 0
and the linear extrapolation &f,.; = 0 + (0x — 6x_1), the zeros off,, can be
easily obtained. For the case where all poles are negaltieeprocedure is sim-
ilar, but with the initial guess of,, = 6#,,.; = = and the linear extrapolation of

Or—1 = 0 + (0x — O141), then the zeros of,, can be obtained.
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2.5 Conclusion

This chapter provided background material for digital matan schemes and
GCQ rules. ASK, PSK, QAM and FSK modulation schemes wererdest: Gen-

eralized integral for performance metrics analysis, sichudage, BER/SER, and
capacity, was presented. Mathematical tools, such asicéssd rational GCQ

rules, and convergence rate, were described.
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Chapter 3
GCQ rulesfor SER

Chapter 2 introduced several digital modulation schemdss ghapter develops
an exact analysis and two Gaussian quadrature rules, ndassical and rational

GCQ, for the approximation analysis of digital modulatichemes.

3.1 Introduction

In this chapter, classical and rational GCQ rules are adofute SER of several
modulation schemes. Widely used multipath fading modeRayfieigh, Rician and
Nakagami-m fading are considered. Numerical examples rangded to demon-
strate the high accuracy of using the GCQ rules for SER.

The error performance of digital modulations over manyrigdithannels has
been extensively analyzed in the literature. Differentrapphes include analyt-

ically simple and tight closed-form bounds and approxioraifor Gaussian in-

tegral function [20=28], characteristic function methdd][ asymptotic analysis
approach([45], and alternative Craig’s exponential iraeggpresentations for the
Q-function and its corresponding Gaussian integral fumcfi]. Nevertheless,
simple GCQ approximations are highly desirable.

The rest of this chapter is organized as follows. RayleigtiaR and Nakagami-
m fading models are described in Section 3.2. The CEP ofteeleligital modula-
tion schemes is presented in Section 3.3. The rational G@&and classical GCQ
rule for error probability of each digital modulation arkugtrated in Section 3.4.

Numerical and simulation examples are presented in Se8tnFinally, Section
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3.6 concludes the chapter.

3.2 System Model

The basic model of wireless transmission is shown in Figuie 3he received

signal7(¢) through the channel can be represented as
7(t) = - 5(t) + n(t), (3.1)

wheres(t) is transmitted signaln(t) is zero-mean additive white Gaussian noise
(AWGN) with power spectral density¥,/2, and« is the channel gain. In a non-
fading channelq is set equal to unity. In a fading channel, the distributiébravo

depends on the type of fading models.

Transmitted Channel Received

Signal //i;j\\ Signal

(X)
ST

Attenuation

a n(t)

Figure 3.1: Channel Model

3.2.1 Non-fading Channels
Here, the received signal is simply given by
7(t) = §(t) + n(t), (3.2)

wherer(t) is the received signalt) is the transmitted digitally modulated signal,
i.e., ASK, PSK, QAM, and FSK explained in Chaptér 2, ar{d) is a zero-mean
AWGN parameter with the power spectral density\@f/2. The probability density
function (PDF) ofn is given by [1]

Je NG | (3.3)




3.2.2 Rayleigh Fading

Rayleigh fading is one of the commonly used multipath fadimagdels, which de-
scribes radio links with no direct line-of-sight (LOS) [1When radio links are
subject to Rayleigh fading, SNR per symbok £, /N, follows exponential distri-

bution as

1
po(7) = 5exp<—%>, 0< 7 < oo, (3.4)

where? is the average SNR.

The moment generating function (MGF) of ¢, (s) = E[e~*"], can be written

as[1]
00 . B 1
SO-y(S) :/0 € p’y('y) d7 ] —l—S’?‘

The MGF is necessary in order to use the GCQ rules.

(3.5)

3.2.3 Rician Fading

Rician fading characterizes channels consisting of a dantidirect LOS compo-
nent and multiple random components. Thus, with Riciannfgdihe PDF of the

instantaneous SNR per symbol is given by [1]

(1+ K)y

11y(2 M)WZO, (3.6)

(1+ K)e &

pﬁ/(’Y) = exp[—

where(0 < K < oo is the Rician factor, andy(.) is the zeroth-order modified
Bessel function of the first kind [, 39]. Rayleigh fading isfecial case of Rician
fading model wherk' = 0.

The MGF of SNRy can be written as

1+ K Ksy
— e — . 3.7
218 1+K+376Xp(1+K+37) S

3.2.4 Nakagami-m Fading

This is a versatile statistical model which can represeratreety of fading environ-
ments. When radio links are subject to Nakagamfiading, SNRy has the PDF,

mam—1 m
py(7) = ol —exp (—%) , 72>20 (3.8)



wherem is the Nakagami-m fading parameter, which ranges f%otn oo. This
model reduces to Rayleigh fading when= 1.
The MGF ofy can be written as

ool(s) = (1+ ﬁ)_m. (3.9)

3.3 Error Probability

The transmitter side of various digital modulation scheimas already been dis-
cussed in Chapter 2. In this section, the receiver of coheletection and non-
coherent detection of selected digital modulations isgme=d. In particular, the

conditional BER/SER expressions are derived.

3.3.1 Coherent Detection of ASK

In coherent detection, the receiver reconstructs thearawith perfect knowledge
of the phase and frequency. The received sigigl reconstructs the transmitted
signals(t) with perfect knowledge of the transmitter. A matched filted @ecision

device provide output symbols in Figlire3.2.

Data
Amplitude
Decision
~ M-1
r(?) 0 OI a,
——  Matched filter —— ~°—— —

t=T -1

Figure 3.2: Optimum Receiver of Amplitude Shift Keying [1]

Details of acquiring minimum Euclidean distance for sidgjngldetection have
already been discussed in Chapter 2. According to geometplementation, the
Euclidean distance region of bisector for two signal poist#lustrated in Figure
[3.3. Anerror occurs if is in D, for transmitted signal; sending. This error means
the distance between the projectionrof §; on s, — 5y, i.e., point A, froms; is

larger than‘%, whered;, = ||5; — 51]|. For the transmitted signal in AWGN
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channel, the noise is = 7 — 5;, zero-mean Gaussian noise with variancgig%,
and the projection of — s; on s, — §; is equal to% The error probability in
terms of Euclidean distance is given by [1]

n-(§2—§1) @

Fe =Pl di2 2 ]
-y dh
= ]P)[TL . (82 — 81) > 7]
diy
_o| = :Q<d12 ) (3.10)
V2N

diay /S

Figure 3.3: Binary equiprobable signals’ decision regions

Specific coherent detection of ASK modulation is presentddvia

M-ary ASK

As we assuming all the signals are equiprobable, the eradrgtility for M-ary
ASK follows the procedure of bisector for two signal pointhie constellation for
M-ary ASK is shown in Figure_3l4 in terms the minimum distanigg,, which is

given [2.6) as

12log, M
— 0% (3.11)

dmin
M? —1
H H 1 3 M-—1
The constellation points are located{at; dpin, 5 dmin, - - -, =75 dpmin } -
The two types of points in thé/-ary ASK constellation are th&/ — 2 inner

points and th& outer points in the constellation. Each inner point has tetection
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d

min

Figure 3.4: The ASK constellationl[1]

regions, and the outer points have only one detection regionording to [(3.1D),

the error probabilities for the inner points and outer poare given as [1]

dmin
Pei = IP)[|’)’L| > %dmzn] = 2Q < —2]\70) 5 (312)
Poy =Pl > Sduin] = Q <\/m) . (3.13)

The total symbol error probabilities are givenlas [1]

M

1
=17 Zl Plerror|a,, sent]

_ %[2(]\4 )Py 42 P,

oAM= 1) ([ dyin
2=y () o1

Substituting the right-hand side ¢f(3]11) féy,;,, and using the instantaneous
SNR per bity, = &,/N yields [1]

P. = WQ (\/%%IO&M> ) (3.15)

One example of ASK modulation is BASK\ = 2, v = ;). Therefore, the

P

probability of error is given as
P. = Q(v/29). (3.16)

3.3.2 Coherent Detection of PSK

With the same assumption of coherent detection, the redsigaal at receiver side
is7(t) = 5(t)+n(t). In the PSK modulatiorg refers toe’%~ ¢(t), wherem is in the

range ofl < m < M andg(t) is same for each signal which can be omitted. One
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familiar PSK modulation is BPSK, which correspondsito= 2. Therefore, the
values of),,, can be chosen @sandr, which correspond to/® = 1 ande/ ™ = —1.
The receiver is depicted in Figure B.5.

Data Phase
Decision
1
" ) 0,
— Matched filter ‘J<“—— —

=1 | 1

Figure 3.5: Optimum Receiver of Phase Shift Keying [1]

Figure 3.6: PSK signalling constellation

According to [2.8), PSK is two dimensional for each transeditsignal. In
Figure[3.6, the PSK constellation is shown along with thesies regionD;. For

the transmitted signal, = (\/€,0), the received vectar is given by

r=(r,r) = (\/E+ Ny, ng) (3.17)
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whereny, n, are noise of independent Gaussian random variables witanear

6% = 1Ny, and means are both The joint PDF of(n;, n,) is given by [1]

1 _nitn3

p(na,ng) = 7T—NO€ No . (3.18)

By using the transformation of polar coordinates, the neviatdes are given
B  r— B " - .
by V = \/ni + n3 and®© = arctan 2. Then, the joint PDF of” and© is given
as[1]

1/2

v vt
ﬂ—]\foe 0. (319)

The decision region is partitioned infd regions denoted by, D-, ..., D), such
thatif 7 € D,,, thend,, = 6,,. The regionD,,, 1 < m < M, is called the decision

pV,@('Uv 9) -

region for transmitted signal,,. In Figure[3.6, the decision regidn, is described
asDy ={0:—n/M <6 <m/M}.

Specific coherent detection of PSK modulation is presendéalb
M-ary PSK

As we discussed above, we have the transformation of the RBEKIEng constella-
tions in the polar coordinates system. Theary PSK follows the same procedure.
The constellation fon/-ary PSK is shown in Figufe 3.7. Only point and its de-
cision region are shown here. The shaded area, which candtdenfinity, shows
the error region wheas; is transmitted.

One conventional transformation is to let the new polar do@tes system’s
origin be at\/¢, which is shown in Figure3l8. Therefore, the error probgbis

Pl(n1,ny) € shaded areal. The new polar coordinates system is giveri as [1]

r = y/n}+ n3, (3.20)

¢ = arctan @, (3.21)
m

wheren; andn, are independent Gaussian random variables with zero means a

variances? = %NO. The length ofR is a function in terms of and is given as 1]

(3.22)
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Figure 3.7: Signalling constellation of MPSK systerm [1]

Figure 3.8: Polar coordinates system for MPSK constehatio
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Therefore, the error probability is given as [1]
Pe N /27r—17xr4 de /OO Lexp <_L) dr
x r TN Ny
T o sin 7
- 2/ dg/R o <‘No smgw—w/M)) o
1 (M;{l)fr g SiIl2 ﬁ
= ;/0 exp (—FO Sz 0 ) de. (3.23)

Substituting instantaneous SNR per Rjt= ¢,/Ny and using the relationship

between instantaneous SNR per bit and SNR per symboty,log, M yields

(M—1)m
1 [ sklogy M .
P, = - /0 exp(—%) df, where g, = sin’ % (3.24)
The most commonly used PSK modulation scheme is BPSK, where 2.

Therefore, the probability of error is given as

p-1 /0 exp (— i ) 0 = 20(/27). (3.25)

T sin? 6

where in the case of BPSK,and~, are equivalent.

3.3.3 Coherent Detection of squared QAM

Coherent detection of QAM follows the same procedure asfttadSK. The re-
ceived signaF(t) = 5(t) + n(t), wheres(t) refers toRe[(a; + jamg)g(t)e?? /<],
whereg(t)ei?™/<t is same and is omitted here. The receiver is depicted in Eigur
3.9.

Squared M-ary QAM

For the squared/-ary QAM, the signal constellation is shown as Figurée 2.4c8i
the in-phase term,,; and quadrature-phase teup, both take the equiprobable
values of their information amplituded/-ary QAM can be considered as twal/-
ary ASK constellations in the in-phase and quadrature times. By using the same
procedure of bisector for two signal points, the constieltatan be considered in
terms ofd,,,;,, as well asM-ary ASK modulation, wherd,,,;, is given [2.19) as

6log, M
M—1

Ep- (3.26)

dmin -
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Figure 3.9: Optimum Receiver of Quadrature Amplitude Matioh [1]

The probability of the correct detection fof-ary QAM is the product of correct
decision probabilities for constituent ASK modulatiow,j.[1]
Pev—qam = PCQ,\/M_ASK =(1-P, 37_asx)” (3.27)
Therefore, the error probability is given by [1]
Per—qam =1 — Peov—qam = 2F, 57 ask — PS,\/M—ASK' (3.28)

According to [3.14) and(3.26), the probability of erroriimplified to [1]

Pevi—qam = 4(% 1)@ (\/Mg,_ 1%10g2M)

- 4(%)@2 ( M?’_ ﬂblogzM) . (3.29)

The most commonly used QAM modulation is 4-QAM, whichlis = 4. For
4-QAM,

P. =2Q(v/27) - @*(v/27). (3.30)
3.3.4 Coherent Detection of FSK

The received signal for coherent FSK7ig) = 5(¢) + n(t). The decision about
the transmitted signal is based on the largest frequencyrdteiver is depicted in
Figure[3.10.
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Figure 3.10: Optimum Receiver of Frequency Shift Keying [1]

In FSK, 5(t) refers toRe[e/?™/mt, /2¢, /Tei?™/<!], wherem is in the rage of
1 < m < M, and/2¢,/Te?*™! is same for each signal and is omitted here for

simplification.
BFSK

One common version of FSK is BFSK, which corresponddfto= 2. Therefore,
the frequencies of,, are equal tof; and f,, respectively. Since we assume all
transmitted signals are equiprobale, the error probgthdit BFSK follows the pro-
cedure of bisector for two signal points. The error probgbf BFSK can be

expressed in terms af,,;,,, which is given[(2.24) as

i = /2log, M - &, (3.31)

Therefore, the error probability of BFSK can be obtained Wlyssitutingd, .,
from (3.31) into the bisector determination describedid@3in the form of

28,
V2N,

3.3.5 Noncoherent Detection of M-ary Differential PSK

Po= QY=L = Q) (3.32)

The noncoherent receiver is not perfectly synchronizetl tié transmitter. Thus,
the received signal at receiver side*($) = 5(t — t4) + n(t), wheret, represents a
timing error. In such a case, differential PSK may be used.

Differential PSK (DPSK) is also one kind of phase modulatioett conveys or
modifies the phase of the signal waves. Compared to the oydi®K modulation

explained in Section 2.1.2, the DPSK modulation does nal ae®nstant reference
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carrier and can operate with respect to itself; i.eAdf, is the information phase to

be transmitted in the:th transmission interval, the transmitter would first madel
0, = 0,—1 + Ab,,, modulo 2, (3.33)

and then modulaté,, on the carrier. At the receiver side, successive decisians o
0,, andé,,_, will be made depending oAd,,. In Figure[3.11, the receiver side of
two adjacent phase decisions for a differentially encodaddgature PSK system

is illustrated.

1 Decision

L("”)TS Ode - .

A,

(1)

—»
3 1 Decision
_,| Delay HI("”Z)E( )dt |
Ts/2 1 ’
S/ (n+E)TS _1 Hm+1

Figure 3.11: Optimum Receiver of Differential Phase Shiétykig Modulation|[[1]

In this modulation technique, the demodulation part deireesithe changes
in the phase of the received signal rather than the phase efesence carrier
signal. DPSK is a simpler modulation technique than orgi@8K modulation
since DPSK does not require a coherent reference at theveedéhis technique
is referred to amoncoherent detectigrand thus it can be noncoherently demodu-
lated. However, DPSK will produce more erroneous demoduiahan the ordi-
nary PSK’s demodulation.

The error probability of\/-ary DPSK is given by [46]

9 (3.34)

P sin {7 /’2’ exp[—logy M~(1 — cos(; cos0))]
T Jo

s
1 — cos 1; cos 6
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7 /4-Differential QPSK

The modulation technique af/4-DQPSK is based on the QPSK modulation. The
ordinary QPSK modulation is a special caselMbfary PSK; i.e.,M = 4, and the
phase set,,, is chosen fron, 7 /2, 7,37 /2 to represent the information phases.
By converting with the initial transmitted phasg4, the ordinary QPSK is con-
verted to the conventional form of Differential QPSK (DQPS#odulation, in
which thed,,, is range over the set/4, 3w /4, 57 /4, Tn /4.

In the noncoherent detectionof 4-DQPSK, the receiver side’s phase decisions

Ab,, are based on

(2k — 1)m
4 )

i.e., the phase angles ar¢4, 3w /4, 57/4, 7w /4, in each symbol duratioff;. The

error probability ofr /4-DQPSK is given by([47]

1T +(B? — a2)?
Fe= 27 J, P <2(a2 +b?) — 4abcos 40, (3.36)

Ab,, = k=1,2,3,4; (3.35)

wherea = /(1 — /T~ [p/2), b = \/(1+ /T~ [p[2/2), and0 < |p| < 1is

the magnitude of the cross-correlation coefficient betwbertiwo signals.

3.4 Application of GCQ rules

In Section 3.3, SER expressions for selected digital madulachemes were given.
These must be averaged over the distribution of the SNR indathannel. For our

purpose, GCQ rules are introduced for calculating the CEP.

3.4.1 Error Performance of Coherent ASK

The conditional symbol error probability for coherdrtary ASK can be expressed

in the form of

2(M —1) 6
Pi(elv) = TQ (\/mvblo&M) . (3.37)
By using the transformation of Craig’s formula [n (2.27) 8EP is given as

oM —1) [™/? 3plogy M
Py =—° — do. 3.38
() = =77 /0 P02 — 1) sin?0 (3:38)
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By changing the variabless(20) = z, the CEP 0f[(3.38) can be transformed into
the desired form of GCQ rule as

mlogz My )
dx

+16Xp< z—1
P = 5 |

V1—22

(3.39)

For BASK, 4-ASK, 8-ASK, which is\M/ = 2, M = 4, M = 8 respectively, the CEP
in the desired form of GCQ rule is given as

1 +1 exp ( 2% )

Py(e|lyw) = o 1 Wi dx, BASK, (3.40)
3 [lexp < 5%)

Ps(eln) = w), i dr, 4— ASK, (3.41)
7 [+lexp < ”’i)

P(elm) = o = dr, 8— ASK. (3.42)

where in BASK, there is only conditional bit error probatyiinstead of the condi-

tional symbol error probability.

3.4.2 Error Performance of Coherent PSK

The conditional symbol error probability for coheretary PSK can be expressed

in the form of

(M—1)m

1 sklogo M )
Pebw) = - / T ep(- LB 4y, where g, = sin® 1. (3.43)

sin? 4
Through the variable substitution of = cos(M60/(M — 1)), the desired form of

GCQ rule can be expressed as

sklogo M
M—1 +1 EeXp <sm ipMk 1gv32os Pylb(m))> . o9 T
Pi(e|y) = e /_1 \/%1'2 dx, where g, = sin U
(3.44)

One immediate observation can be found is that the uppet 6m(3.43) is
(M — 1)x/M, i.e., an arbitrary number. Through the variable subsbituof x =
cos(M6/(M — 1)), any integration with an arbitrary upper limit can be expssb
in the form of GCQ rule.
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For BPSK, 4-PSK, 8-PSK, which & = 2, M = 4, andM = 8 respectively,
the CEP in desired form of GCQ rule is given as

1 +1 exp (ﬂ)

Plehw) = o |~ dv, BPSK. (3.45)
3 [+l exp (W)

P,(ely) = yy /1 \/14_7# dr, 4—PSK, (3.46)
7 pHlexp (%)

Py(ely) = . /1 \/18_7x2 dr, 8—PSK, (3.47)

where in BPSK, there is only conditional bit error probailnstead of the condi-

tional symbol error probability.

3.4.3 Error Performance of Coherent QAM

The conditional symbol error probability for coherent saquebl/-ary QAM can be

expressed in the form of

Py(eln) =4 (% 1) Q (\/ﬁ%logﬂw)

—4 (% 1) Q? ( M3_ 1%10g2M> . (3.48)

Following the same procedure as that in the ASK modulatignyding the trans-
formation of Craig’s formula inl(2.27) an (2128), the CERjigen as

4 (VM -1 2 —3log,M~,
P, == S A L W
(chw) s ( v M ) /0 P ( 25sin” 6

2
4 (VM -1 I —3 _Jog, M
_2 / exp |~ HL527 ) 4 (3.49)
™ v M 0 2sin” 0

where the first term in((3.49) can be achieved as the desimeal 66 GCQ rule
following the ASK’s substitution. By using the variable stikutioncos(46) = «

for the second term, the desired form of GCQ rule for the CERUSs given as

3logy M
Py = 2 (Y1 o (i)
sew) =2\ =77 ) [ V1—22
) 3logo, M,
i l \/M 1 /+1 exp (Q(M_l)sin%(%gos—li d (3.50)
T VM -1 Vi
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For 4-QAM, 16-QAM, and 64-QAM, which i/ = 4, M = 16, andM = 64,

respectively, the desired form of CEP is given as

Pi(elv) = ), 7 j_xz dx
1 +1 €XP (SmQ(%ZI;sl r))
_ dr, 4 —QAM, 3.51
=/ 1 S Q (3.51)
4
3 [+lexp <5(x_1)>
Pi(ely) = o /1 T dx

z, 16 — QAM, (3.52)

v, 64— QAM. (3.53)

3.4.4 Error Performance of Coherent FSK

The CEP for coherent BFSK can be expressed in the form of

By(eln) = Q(v%)- (3.54)

By following the same procedures as that for ASK, and usieg/tdriable substitu-

tion of cos(20) = x, the desired form of CEP can be expressed as

Lopte (2
Pileln) = 5- =

3.45 Error Performance of Nocoherent modulation

The CEP for noncoherent M-ary DPSK is given by!|[46]

sin -
Puew) = =2 |

By changing of the variable; = cos(26), the desired form of CEP is acquired as

2 exp[—logy M~(1 — cos(%) cos 0)]

s
1 —cos 7 cos 6

do. (3.56)

exp|—plogy M (1—cos % COS(% cos™ ! x))]

sin ~ +1 —cos = (cos(% cos— 1z
Py(elw) = = / 1 - N¢(1_(7x2 DA (3.57)
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For noncoherent QDPSK, which ig = 4, the CEP in the desired form of GCQ
rule is given as

exp[—2v,(1—cos 7 COS(% cos~1x))]

sin = +1 1—cos X (cos(L cos—1 x))
P, = 4 / — dz. 3.58
(€l7) o ), T2 € ( )
The CEP for noncoherent detection of equal energyl, DQPSK, is given by
1 T 27{,
P = — - | df. 3.59
(el) = 5~ /O exp < . \/§cos9) (3.59)

By using the variable substitution oebs# = x, the desired form of GCQ rule can

be expressed as

i =L [0 )
o) V-2
The conditional BERS/SERs of several digital modulatiohesoes are given
in Table[3.1. To author's best knowledge, Tablel 3.1 has &dédlevery digital

modulation scheme which can adopt the GCQ rule.

dz. (3.60)

Furthermore, one recognition can be acquired immediatet fTable 3.1, that

these expressions can be classified into two general forms

1. the simple-angle limits Gaussi@afunction, i.e.,Q(-), which has the Craig’s

transformation with limitg0, 7], and

2. the multi-angle limits Gaussian integral function,,itee CEP of\/-ary PSK,

which has the limitgo, “-07] .

Moreover, the simple-angle limits Gaussi@ffunction can be considered as a spe-
cial case of the multi-angle limits Gaussian integral fimrctwhich can be obtained
through modifying the upper limits to the correspondingygrangle.

The average BER/SER over the fading channels can be denwvaddygrating
the CEP over the PDF of SNR, which can be expressed as

00 +1
D _ _ G (z)

where ¢, (z) is selected and calculated with respect to the correspgndigital

modulation scheme in Table B.1.
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Table 3.1: Common Digital Modulation Scheme using Gaus$gsteev Quadrature

Coherent Modulation

Modulation Modulation Conditional Error Probability Gauss Chebyshev Quadrature Format
Type Name P (el ) P(elm)
Z'yb
exp(z=%)
BASK Py =Q(H27) Py= =[] ﬁ dx
ASK P _2(1\471) p.— M-1
MASK s M ST Mn
m%lOE(M)’Yb
ex _—
Q( %'Yblog (M) ‘f+1 ’ ot dar
-1 V1—x?
Z'yb
exp(5—7)
BPSK | Py = Q(v2) P= g S
1 M—1
PSK Ps =2 Ps =
MPSK @ oo (M) Cxplri 2g(zg&k71tJlg(M)’vlb( )))
. M __ Ipsk +1 sin: cos™ 4 (x
fO CXp( sin2(@) )d@ -f71 11‘112 dzx
whereg,,o;, = sin? whereg,,o;, = sin?
AT
romm | P=200/TW) R T
- —T
—Q2(vZs) 1+l exp(2sin2(ZI2Zos*1(z)))
Vo -= /5 N dx
AM
Q Py =421 P, = 2(YAL1)
M T
Sqrared Q( 3 1 (M)) f+1 CXP(_(J?\’/[%lf)g((A_q))
@\ ar—7 Wlog I %da}
1—x22
_4(@71)2 _l(m71)2
M-QAM VM T\ VM 5 o (A1)
‘Q2(y/ 31 log (M)) + °xp(2<M—1);in2;cos*1<w>)) dx
— X
75
FSK BFSK Py = Q%) Py= o= [T} % dz
— X
Non-Coherent Modulation
MDPSK p.— 3 p.— S0 ar
s T s 27
oxp[—1lo —cos = cos(L cos™ 1 o
% cxp[flog(]VI)'yb(lfcos(% cos 0))] expl] g(i\/[)(‘ll Z}/Il (,31 Dl
fO 1—cos 7 cos dd J‘Jfll 1—cos Mi;‘izc‘)b x)) da
- 1—a2
Z'yb
; -1 (7 % _ 1 1 e’“’(’ 7¢‘;,)
7r/4 DQPSK PS 27 fO OXp( 27\/5(:059) do PS —2xJ-1 .2z /127%22
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3.5 Numerical and S mulation Results

In this section, classical and rational GCQ rules are useeMaluating SER in both
single and diversity receptions over the Rayleigh, Riciad Bakagami-m fading

channels. The MGF approach of calculating the average exteis adopted.

3.5.1 Error Performance of Single Channel Reception

Numerical results for several digital modulation schenmregpeovided to investigate
the efficiency of both classical and rational GCQ rules. Anedent agreement

between the analytical and numerical integration simaitatesults is observed.
Rayleigh Fading

Figured 3.12-3.16 show the performance of different digitadulation schemes
described in Sectidn 3.4 in the single channel reception Begleigh fading sce-
nario. The average BERS/SERs are quantified by both classidarational GCQ
rules. For comparison, the exact average BERS/SERs areagethéhrough numer-
ical integrations.

Subfigure$ 3.12-3.16 (a) show the exact BERsS/SERs of seadigitl modula-
tion schemes and the quantified BERsS/SERs by adopting tesicth and rational
GCQ rules with2 nodes. These subfigures show that the rational GCQ outpesfor
the classical GCQ rule in the low SNR region.

Subfigure$ 3.12-3.16 (b) show the numbemnofies required for each method
to converge. The convergence rate is defined by

lim 2 Um=l <075, (3.62)

m—00 Um

wherem refers to the number afodes, andwv refers to the relative error, which
is determined by the number abdes. By comparing the relative error obtained
through the number afodes and its adjacent number of¢des — 1) at the same
SNR in the region of less or equal thad—>, the minimal requiredn can be ob-
tained. It is clear that rational GCQ rule converges fastantthe classical GCQ
rule in the lower SNR region.
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Figure 3.12: Coherent Detection df-ary ASK (M = 2, 4, 8) in Rayleigh fading

+ ey

(a) Error performance with 2 nodes
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Figure 3.13: Coherent Detection df-ary PSK (\ = 2, 4, 8) in Rayleigh fading
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Figure 3.14: Coherent Detection dof-ary QAM (M = 4,16, 64) in Rayleigh fading
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Figure 3.15: Coherent Detection of BFSK in Rayleigh fading
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Figure 3.16: Non Coherent Detectionssfiry DPSK andr/4-DQPSK modulation in Ray-
leigh fading
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Rician Fading

Figures[3.1l-3.21 show the SER of several digital modutatio Rician fading
(K = 3). It can be seen that in each different digital modulatiohesce, the
rational GCQ performs better than the classical GCQ rulpe@ally, in the low
SNR region. These figures also show that the rational GCQcatgerges faster
than classical GCQ rule; i.e., rational GCQ requires feweles than the classical
one, where the convergence rate is defined as the same a® ithis numerical

analysis shown in Rayleigh fading.
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(a) Error performance with 2 nodes (b) Convergence rate of GCQ

Figure 3.17: Coherent Detection df-ary ASK (M = 2, 4, 8) in Rician fading £ = 3).
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Figure 3.18: Coherent Detection df-ary PSK (M = 2, 4, 8) in Rician fading £ = 3).
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Figure 3.19: Coherent Detection bf-ary QAM (M = 4, 16, 64) in Rician fading £ = 3).
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Figure 3.20: Coherent Detection of BFSK in Rician fadig € 3).
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Figure 3.21: Non Coherent Detection #fary DPSK andr/4-DQPSK in Rician fading
(K =3).
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Nakagami-2 Fading

The error performance of different digital modulations iakKdgami2 fading is

presented in Figurés 3)22-3126. The rational GCQ rule hataéwvely lower error
in the low SNR region, and its convergence rate is better thanof the classical
GCQ rule.
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Figure 3.22: Coherent Detection of-ary ASK (M = 2,4, 8) in Nakagami-2 fading
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Figure 3.23: Coherent Detection df-ary PSK (M = 2, 4, 8) in Nakagami-2 fading
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Figure 3.24: Coherent Detection df-ary QAM (M = 4,16, 64) in Nakagami-2 fading
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Figure 3.25: Coherent Detection of BFSK in Nakagami-2 fgdin
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Figure 3.26: Non Coherent Detection df-ary DPSK andr/4-DQPSK in Nakagami-2
fading
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3.5.2 Error Performance of Diversity Reception

The three commonly used diversity combining techniquesraeimal ratio com-
bining (MRC), equal gain combining (EGC), and selection baring (SC). Here,
we will focus on only MRC. MRC is an optimal diversity combmg technique for
the independent AWGN channels since MRC provides the highesage output
SNR regardless of the fading statistics|[48]. The MGF of thé&kSnh MRC can be

expressed as

©+(s) = Elexp[—=s(v1 + 72+ ... +71)]]

L
10 (3.63)
=1

whereL is the number of diversity branches. Thus, the MRC case fptadimod-
ulation schemes can be obtained by combining Table 3.1 anM@&F of the SNR
over different fading scenarios.

Recognizing that the CEP @f -ary PSK in Tabl&3]1 has a common format, we
can intuitively derive every single angle from it. Thus, wil wse M-ary PSK as
a proxy for general digital modulation schemes to investighe rational GCQ in

different common fadings.
Rayleigh Fading

Figure[3.2V shows the SERs of 8-PSK with the assumption thidieaMRC space
diversity branches undergo identical Rayleigh fading. &kect performance curve
of MRC is generated by using the numerical integration satioh. Figurd 3.27
reveals that the difference between rational GCQ and clas&CQ rules is quite
small .

Figured 3.28, 3.29, arid 3130 compare the convergence réteés — oo) of
the classical and rational GCQ rules for Rayleigh fadingncieds. These figures

show that as the diversity ordérincreases the absolute erreF, ... — Pyl IS

decreasing. In other words, MRC provides the best comlwnati SER of any of
the modulation schemes. This result is to be expected bechwsrsity reception

implements an effective technique for suppressing thersdlaiading effects. As
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the nodes increase, both classical GCQ and rational GCQ turn to bevabgunt.
Another observation is that by using a small numbernafes for both classical
and rational GCQ rules for evaluation, rational GCQ rule &éswer value of the
absolute error, so that the rational GCQ rule has a bettefecgence rate.

Table[3.2 shows the required numbermeiies for classical and rational GCQ
rules and their relative error. One recognition is that ia liw SNR region, the
rational GCQ requires fewetodes to converge, and the relative error is smaller
than that of the classical GCQ rule. In the high SNR regioe rétional GCQ and
the classical GCQ require almost an equal numbercaks to converge, and the
relative error for each is almost the same. However, whemtineber ofnodes is

smaller, the rational GCQ performs better than the clas&8€HQ.

Symbol Error Rate
=
o

i
OI
A

-5

10

10_6 i i i
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Figure 3.27: Error performance for 8PSK with diversity ngti@n in Rayleigh fading
(nodes = 8).
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Figure 3.28: Error performance for 8PSK with MRLC £ 1) in Rayleigh fading.
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Figure 3.29: Error performance for 8PSK with MRC £ 2) in Rayleigh fading.
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Figure 3.30: Error performance for 8PSK with MRC € 3) in Rayleigh fading.

Table 3.2: Relative erroré:= 1,2, 3, MRC, Rayleigh fading

Average SNR| L number of nodes Relative Error
Y nodesgeq nodesycq relative errorgeq | relative errorycq

1 54 22 2.78e-05 3.56e-05

—20dB 2 56 28 5.52e-05 4.75e-05
3 44 32 1.41e-04 5.69e-05

1 38 38 7.97e-05 8.35e-05

—-10dB 2 46 48 1.03e-04 1.02e-04
3 50 52 1.09e-04 1.12e-04

1 46 46 9.85e-05 1.01e-04

0dB 2 40 42 8.41e-05 8.20e-05
3 30 32 5.96e-05 6.05e-05

1 42 42 8.92e-05 9.05e-05

10 dB 2 10 10 5.77e-05 6.14e-05
3 10 12 2.31e-06 2.36e-06

1 40 40 9.07e-05 9.11e-05

20dB 2 10 10 2.17e-05 2.22e-05
3 10 10 5.06e-07 5.02e-07
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Rician Fading

Figure[3.31 compares the SER of 8-PSK with MRC reception émiidal Rician
fading, where the Rician fading factéf = 3. One recognition is that SER evalua-
tion using rational and classical GCQ rules is quite cloghécexact performance.
Figure[3.32[3.33, arld 3.84 compare the convergence rateéss(— oo) of the
classical GCQ and rational GCQ rules for Rician fading € 3) channel. It can

be seen that as the diversity ordemcreases, the evaluation of the absolute errors
between classical and rational rules is decreasing. Thidtreerifies that MRC is

an effective diversity combining technique.

In Table[3.B, selected data of the required numbetdales and relative error
between the classical GCQ and rational GCQ rules are pexsenhis table reveals
that in the low SNR region, the required numberoflcs and the relative errors
of rational GCQ are smaller than those of the classical GA. rin the high
SNR region, the number ofodes required to converge and the relative errors are
similar, except when, = —10 dB,L = 1 andv, = 20 dB, L = 3. These two
exceptions are caused by the convergence rate. The claGsi€arule converges
faster than the rational GCQ in these two exceptional poidtsvever, compared
to the results of the relative error, the rational GCQ rule &&igh accuracy at these

two exceptions.
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Figure 3.31: Error performance for 8PSK with diversity netoen in Rician fading { = 3)
and qodes = 8).

10

-10

10

54



10 \
-10dB cGCQ
Ll O -10dBrGCQ
107 b 0dBcGCQ |
—»—0dB rGCQ
. 10 dB cGCQ
10 f 10 dB rGCQ |
20 dB cGCQ
_ —A— 20 dB rGCQ
o -6
g 10° |
T
s}
§ 148
o 10
10—10 |
10—12 |
10_14 i i i i

0 10 20 30 40 50
number of nodes

Figure 3.32: Error performance for 8PSK with MRLC £ 1) in Rician fading £ = 3).
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Figure 3.33: Error performance for 8PSK with MRLC £ 2) in Rician fading = 3).
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Figure 3.34: Error performance for 8PSK with MRLC £ 3) in Rician fading = 3).

Table 3.3: Relative errors: = 1,2, 3, MRC, Rician fading and Rician factdt = 3

Average SNR| L number of nodes Relative Error
b nodesgcq nodesrcq relative €ITOT gcq relative €ITOTpcq

1 38 48 4.56e-04 2.71e-05

—20dB 2 54 38 5.94e-05 4.11e-05
3 44 36 1.48e-04 5.10e-05

1 26 40 1.78e-04 8.56e-05

—10 dB 2 46 48 1.04e-04 1.04e-04
3 50 52 1.10e-04 1.14e-04

1 46 48 1.07e-04 1.02e-04

0 dB 2 40 40 8.05e-05 8.75e-05
3 30 32 5.65e-05 5.82e-05

1 38 38 7.52e-05 7.73e-05

10 dB 2 22 24 4.92e-05 4.53e-05
3 10 12 2.41e-05 2.29e-05

1 40 40 8.32e-05 8.41e-05

20 dB 2 28 28 5.74e-05 5.91e-05
3 8 18 1.03e-04 3.18e-05
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Nakagami-m Fading

Figure[3.35 shows the SERs evaluation of Nakaganii= = 2) with the MRC
diversity branches undergoing identical Nakaganfading. Figurd 3.36,3.37, and
[3.38 compare the convergence rate a&i¢s — oo) of the classical GCQ and
rational GCQ rules for Nakagamifading.

In Table[3.4, selected data for the required numbendfes and the relative
errors for classical GCQ and rational GCQ rules are illusttaln the low SNR re-
gion, the rational GCQ rule needs fewerdes to converge, and the relative error is
almost10 times less than that of the classical GCQ); i.e., rational G@&has high
accuracy. In the high SNR region, the numbenofles required for convergence
and the relative errors is almost the same, except forjghe —10 dB, L = 1 and
v = 20 dB, L = 3. These two exceptions are caused by the convergence rae. Th
classical GCQ rule converges faster than the rational GGReat two exceptional
points. However, compared to the results for the relativerethose for the rational

GCQ rule have high accuracy at these two exceptions.
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Figure 3.35: Error performance for 8PSK with diversity neti@en in Nakagami fading

(nodes = 8).
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Figure 3.36: Error performance for 8PSK with MRLC £ 1) in Nakagami2 fading.
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Figure 3.37: Error performance for 8PSK with MRC €& 2) in Nakagami2 fading (n =
2).
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Figure 3.38: Error performance for 8PSK with MRC & 3) in Nakagami2 fading (m =
2).

Table 3.4: Relative errors:= 1,2, 3, MRC, Nakagam@ fading

Average SNR| L number of nodes Relative Error
Vb nodesgeq nodesrcq relative errorgeq | relative errory.cq

1 40 22 4.56e-04 3.63e-05

—20dB 2 58 28 2.62e-05 4.67e-05
3 48 32 3.75e-05 5.59e-05

1 30 40 1.15e-04 8.45e-05

—10dB 2 44 46 1.02e-04 1.01e-04
3 48 52 1.09e-04 1.03e-04

1 48 48 1.02e-04 1.05e-04

0 dB 2 44 44 9.25e-05 9.83e-05
3 38 40 7.58e-05 7.57e-05

1 34 34 7.41e-05 7.59e-05

10 dB 2 32 34 6.34e-05 6.54e-05
3 22 22 4.36e-05 4.73e-05

1 30 30 6.47e-05 6.53e-05

20 dB 2 30 30 6.29e-05 6.38e-05
3 20 8 3.61e-05 1.62e-04
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3.6 Conclusion

This chapter reviewed the performance of coherent and raneat digital mod-
ulation schemes over typical multipath fading channelsalpiical expressions of
BER/SER were tabulated for the cases where the classicabtiodal GCQ rules
can be adopted. One new generalized integral model for exdpptional GCQ
rule, i.e., SER ofM-PSK, with arbitrary upper limits was investigated. Numer-
ical results showed that in the low SNR region, the ration@lQGrule provided
a rapid convergence rate and better accuracy than theadh&CQ rule. In the
high SNR region, the classical and rational GCQ rules hadstitthe same perfor-
mance. However, when the number of nodes was smallergss.than the number
required for each rule to converge, the rational GCQ peréativetter than the clas-
sical GCQ.
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Chapter 4

GCQ for Co-Channd Interference
Outage

In Chapter 3, performance metrics of SER over multipathrfigdihannels were

described. This chapter will use GCQ rules for computingaihage.

4.1 Introduction

In this chapter, the use of classical and rational GCQ rue®@itage probability
analysis in the presence of CCI is investigated. Numerigaimples of unequal
Rice factors and transmit powers over the Rayleigh and Ri@iding distributions
demonstrate the high accuracy of these methods.

In the remainder of this chapter, outage computation andiésé&red form of
GCQ rule for calculating outage probability of each differéading case is illus-
trated in Section 4.2. Numerical and simulation examplegpagsented in Section

4.3. Finally, Section 4.4 concludes the chapter.

4.2 Qutage Probability

The outage probabilityP,,; , is defined as the probability that the instantaneous
SIR falls below a certain threshold value. The outage pritibabf an interference-

limited network can be expressed as

Pout :P{QO < ’}/th(Ql ++QL)}, (41)
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wheref), and(y, ..., 2 are the instantaneous signal powers of the desired signal
and interfering signals, respectively, with average poWgr! = 0,1,..., L. The
power protection ratioy,;, is fixed by the type of modulation and transmission
technique employed and the quality of service desired.

The instantaneous SIR is given by

Qo Qo

F: p— y
D +...+Q Elele

(4.2)

where the instantaneous SIR falls below a pre-defined thlésly,. It is easy to

show that the outage probability in termslo&énd-,,, is presented as
Pout = P(F < ’Yth). (43)
Let us define a new variabtg;;z:
Ysir =1 — v
Q<
= — — Q. (4.4)
Vih ; :
The MGF ofyg; is given by
s L
Pysir = 900<_> H ‘Pl<_5)7 (4-5)
Ven

wherey, is the MGF ofp, and can be any one of the MGFs in Section 3.2. It follows

that the outage probability is given by

Pout = P(’VSIR < 0) (46)
P,,; can also be written a5 [49]

Py = i ~ 30“{5112(0?"]'@”) dw
21 J_ o c+jw

L[ Rl plet 0,

4.7)

T ? + w? ’
wherej? = —1,0 < ¢ < Sy = min{s;|1 < i < L} with s; being thei-th pole of
6,1 (s) In the right-half plane. Although the value etan be selected anywhere
betweerD ands,,,, it is better to choose it such that,, decays very rapidly as

w — oo. In practice, it is sufficient to use= s,,,;,, /2 [18/49].
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By substitutingw = ctan(6/2) into (4.1), we get[18]
1 [7 . 0 , 0
Pout = or Re[(1 — jtan(=))(@qq,,(c + jetan(=)))] db. (4.8)
T Jo 2 2

Further, by using variable substitutian= cos ¢ in (4.8), we get[[2]
1 +1 Re{(l—jvlﬂ:#)gpvsm (c+jcvf;§2>}d

ut = % /_1 S X,

which is the desired form for applying the rational GCQ araksical GCQ rules.

P, (4.9)

By using the MGF of the corresponding fading scenario, trerdd GCQ for-
mat of outage probability of each different fading case camlstained. However,
the available models for using both classical and ratio@QGules are limited to
Rayleigh and Rician fading only, since for other fading sueos, the use of the
rational GCQ rule for the nodes computation always involsasiplex numbers,

which do not satisfy the initial assumption that all the r®dee real values.

4.2.1 Rician Fading with Multiple Rayleigh Interferers

In this case, the desired signal experiences Rician fadimgw interfering signals
are subject to Rayleigh fading. By using the results frob)(and [3.7) for Ray-
leigh and Rician distributions and substituting them irjaation [4.5), the desired

signal,yo(s/~), and the interfering signals;,(—s), are obtained as

s exp <_ 1+<Kfo)th )
_ Din
@0(%) DI ; (4.10)
(K—’_l)vth
1
)= 411
2= = T ) (4.11)
Therefore, the MGF ofi5; is
s L
30“/5112(‘9) = 900(%> E@l<_3)
eXp (_ (Kiff?’:th )
Q
_ o (4.12)

(14 s T (1 — )
The outage can be computed by substituting (4.12) [ntd .(4=6) the rational

GCQrule, the pole of the functiof(z) needs to be found first. One observation can
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be found is thaif () has a pole of infinite multiplicity at- (1 + 12125%50/0(/7(%}1515;312))»

H 291202
andL simple poles at (1 + 20c ) -

4.2.2 MultipleRician Interferers

In the case of the desired signal and thenterfering signals both experiencing
Rician fading, by applying the MGF expression from {3.7)e tiesired signal,
vo(s/vn) , and the interfering signalgy (—s) are obtained as

KDQDS
(A+Ko)vip
exp <_ Qost )

1+ (1+Ko)vth

@0(— - s 5 (413)
th 1+ (1+K00)%h
K;1Qps
exp (1_1+glzs )
pi(—s) = ———g (4.14)
1 - 1+ K,

The MGF Of’)/sz is

KoQps Klﬂls
_ (4+Ko)vin 1+ K
eXp < 1+ Qps ) L eXp (1_ Qs )
A+K)nn /| H K (4.15)
1+ __ Qos 1 — Sus ’ ’
(1+Ko)ven =1 1+ K

Pysir (S) =

To compute the outage, we just need to substifute(4.15)@h8). By using

the rational GCQ rule, the poles ¢fx) can be found at one pole of multiplicity at

203/ (yen (Ko+1))? : 202 /((14+K,)%)
_ (1 + 1+§ro/(twih(1%o+1))) andL simple poles at- (1 + WM)

4.2.3 Mixed Rayleigh and Rician Interferers

In this case, the desired signal is subject to Rician fadamgl the total number
of L interfering signals are composed of both Rayleigh and Ritaaed signals;
i.e., there arel/ Rayleigh interferers and — M Rician interferers. By applying
the MGF from [3.5) and[(3]7), the corresponding desiredaigpy(s/~:), the

interfering signals of Rayleigh fading,,,(—s), and the interfering signals of Rician
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fading, ¢, (—s) can be written as

KgQps
(A+Kg)y
eXp <_ 1+ Qosth )
(I+Ko)nn

S
Po(—) = s ; (4.16)
th 1+ (1+K00)%h
1
m(—S8) = ; 4.17
Pm(—s) 0 (4.17)
KnQns
o (2
1+ Kn
on(—s) = T (4.18)
1+K7L
Therefore, the MGF ofi5; is given by
(1f?<9?s e
U TRo)Vh _1tKn
(8) - ( 1+(1+S;<%§vth) 1 ﬁ - (1_ 12nl’;n)
Prysir = Qos s ’ Qns
1 + (1+I(00)7th Hmzl(l - Qms) n=M+1 1 - 1+Ky
(4.19)

The outage can be computed by substituting (4.19) intd .(89)adopting the
rational GCQ approximation, the poles f6fz) can be found. There is one pole
located at- <1 + 29362/(%””{0“”2) , M simple poles located at <1 4 2 )

1+2Q0c¢/ (ven (Ko+1)) 1-2Qmec

andL — M simple poles located at (1 + %)

4.3 Numerical Results

In this section, a set of numerical results and simulaticemgxes are provided
under the asumption that Rayleigh and Rician fading chanauie present. Since
the desired format of (4.9) for rational GCQ and classicalJ@@les is straightfor-
ward, the main aim is to verify their accuracy, relative gremd convergence rate.
In addition, we use the value of= s,,;,/2 as a rule of thumb for the outage com-
putations. For comparison purposes, the exygtis computed by evaluating (4.8)
by using Matlab’s;uad8 function with an absolute tolerance o~ [49]. All the
investigated cases show excellent agreement betweendhgieal and simulation

results.

4.3.1 Rician Fading with Multiple Rayleigh Interferers

Figure[4.1 shows the outage performance when the desiredldi) subject to

Rician fading while the interfering signals are Rayleigddd. The Rician fad-
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ing factor of the desired signdl’ = 3, and the number of interferels = 2.
The interfering signals’ powers arg;, = [1,1.8], and the power protection ra-
tio is 74, = 9.5dB [18]. The instantaneous SIR over the power protection ratio
A = Qo/ (v 21, ). In Figure[Z1 (a), the outage probability values obtained
by using the classical GCQ and rational GCQ rules are cordpaith the exact
results. For both GCQ rule8,nodes are used. It is apparent from Figuré 4.1 (a)
that both rules yield highly accurate results. Figuré 4.5fmows the relative er-
ror of each rule. It is clear that rational GCQ rule outparierthe classical GCQ
rule with a relatively small number of nodes. In other worfds,a given number

of nodes, the rational GCQ achieves relatively fewer erttoas the classical GCQ

rule.

4.3.2 Rician Fading with Multiple Rician Interferers

Figurel4.2 shows the outage performance when both the dessgeal and interfer-
ing signals are subject to Rician fading. The Rician fadaxgdr of the desired sig-
nal K = 2 and the interference signal statistics are giverby 2, K; = [1.8, 1.5],
andQ; = [1,1.6]. The power protection ratig,, = 9.5dB, and the instantaneous
SIR over the power protection rativo = Qg /(v Ele Q). Figure[4.2 (a) shows
that both rules yield highly accurate results. Fiduré 4)Xtmws the relative error
of each rule. Clearly, rational GCQ rule has better accutiaay the classical GCQ
rule, especially in low SIR region. As SIR increases, botlihoés converge to

roughly same levels of relative error.

4.3.3 Rician Fadingwith Mixed Rayleigh and Rician Interferers

Figure[4.3 illustrates the outage performance when theatésignal is subject
to Rician fading and the interfering signals are composetiath Rayleigh and
Rician faded signals. The statistics of the given examperar= 2.8, M = 1,
L =2 K, =15 Q = [11,0.6], the power protection ratio is;, = 9.5dB,
and the instantaneous SIR over the power protection rato Qq/ (v, SO, Q).
It is apparent from Figure 4.3 that the rational GCQ appration yields a better

performance in the low SIR region.
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4.4 Conclusion

This chapter presented an exact closed-form expressitimgq@robability of outage

in a generalized fading environment. In order to calculagedutage performance,
classical GCQ and rational GCQ rules were applied. Sincath#gable modes for

using both classical and rational GCQ rules are restricitdhe available cases
were listed, i.e., the desired Rician faded signal and aggeeCCls under Rayleigh
or Rician fading or the mix of these two fading scenarios. Simeulations results

showed that both rules yielded high accuracy. However, vihemumber of nodes
was relatively small, rational GCQ rule always performettdrethan the classical
GCQ rule; i.e., the relative error of rational GCQ was lowsrt that of classical

GCQ rule.
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Chapter 5

Conclusions

This thesis focused on the relative accuracy of the classihrational GCQ rules
for error performance of digital modulation in the fadingdasutage performance
due to the CCI. These two rules were thus compared in termsafracy and
complexity. Both rules were shown to provide highly accerasults, and their
convergence rate was found to depend on the SNR.

In Chapter 2, several digital modulation techniques andsital and rational
GCQ rules were described.

In Chapter 3, classical and rational GCQ rules for SER amabfcoherent and
noncoherent detection of different digital modulatione@mmon fading channels
were studied. The most significant utilization of those teghes occurred with
models for which the closed-form expressions for the errobability were not
known. Therefore, in many cases, numerical integrationregsired to obtain the
error probability. Based on these techniques, the closad-approximations for
each modulation were derived. We evaluated the performafrtbe new technique,
rational GCQ, and the conventional technique, classicaDE0r different digital
modulations in multipath fading scenarios. The comparsgmwwed that the rational
GCQ had a much more rapid convergence rate and a lower eelkatror in the
low SNR region. Although in the high SNR region, the numbenades required
for convergence was similar, when the number of nodes wadhes the number
required for convergence, the rational GCQ had a fasteofatenvergence.

In Chapter 4, the GCQ formulas were adopted for the outaglysiea The

exact closed-form expression for the probability of outaggeneralized fading
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environment was presented. When the desired signal waarRiading and the
interfering signals were Rayleigh or Rician or the comhorabf those two, the

outage expressions were derived.

5.1 FutureResearch Directions

This thesis work provides a foundation for further resedrabed on the classical
and rational GCQ rules. Since the error and outage perfazenavaluated in this
thesis are based on the MGF approach, other fading modeldieerdity reception
methods, where MGF is available, can be evaluated by using @&fes [50].

Also, further application of the rational GCQ rule to modslth capacity prob-
lems may also prove to be useful. [n_[51]52], the classicaQRA3€ successfully
applied to analyze of the capacity problem. The rational @@@Qalso be used for
capacity analysis since the GCQ format is always the samepékar the calcula-
tion of nodes and weight.

Furthermore, the adopted rational GCQ rule is applicablg when the poles
of f(z) are real. In[[53], the researchers suggest an algorithncdrabe used to
calculate the rational GCQ rule when the poles for) are complex. Therefore,
the rational GCQ rule can be further extended to more fading@ ments.

Finally, investigating how to find the poles of the rationahétions used in the

GCQ rule would possibly increase the accuracy of the cdioms.
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