SUPPORTING INFORMATION, Part 2

Synthesis of Phenolic Components of Grains of Paradise

By Hiroyuki Hattori,^a Tohru Mitsunaga,^a Derrick L. J. Clive*^b

^aThe United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 10 501-1193, Gifu, Japan

^bChemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

derrick.clive@ualberta.ca

File: /mnt/d600/home14/clivenmr/nmrdata/DATA_FROM_NMRSERVICE/Hiroyuki/2018.12/2018.12.13.v7_HH-2-185_loc7_13.25_H

Department of Chemistry, University of Alberta

File: /mut/d600/frome14/clivenmr/mutdata/DATA_FROM_NMRSERVICE/Hiroyuki/2019.02.23.v7_HH-3-246_Fr_73_loc18_20.16_C13_APT_ad

File: /mnt/d600/home14/clivenmr/nmrdata/hattori/2019.02.25 i5_HH-3-250_Fr.20_21_C13_APT_ad

HPLC of natural compound 2

Data File C:\HPCHEM\1\DATA\ED\19030505.D

Sample Name: CL NP

Instrument 1 3/6/2019 8:35:40 AM Ed

Page 1 of 2

Sample Name: CL NP

Data File C:\HPCHEM\1\DATA\ED\19030505.D

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	20,566 25,719	MM MF	0.8785 1.0883	4922.77539 8527.76562	93.39045 130.59981	36.5991 63.4009
Total	ls :			1.34505e4	223,99026	

Signal 2: DAD1 E, Sig=280,4 Ref=off

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	20.567 25.720	MM MM	0.8990 1.1036	2550.20557 4342.74561	47.28008 65.58202	36.9973 63.0027
Total	5:			6892.95117	112.86211	

*** End of Report ***

Instrument 1 3/6/2019 8:35:40 AM Ed

Page 2 of 2

Data File C:\HPCHEM\1\DATA\ED\19030502.D Sample Name: HH-3-252 OD column, IPA:Hex=15:85 0.5 mL/min 20C L4:27:09 PM Seq. Line : 2 : HH-3-252 Location : Vial 29 Acq. Instrument : Instrument 1 Inj Volume : 1 µl Different Inj Volume from Sequence ! Actual Inj Volume : 0.3 µl Acq. Method : C:\HPCHEM\1\METHODS\EDH85.M Last changed : 3/5/2019 11:26:00 AM by Ed (modified after 1 loading) DADI C.Sig=230.8 Ref=off (ED:19030502 D) mAU 17.5 1. 84 mai 198.161 17.5 -15 -12.5 -10 7.5-34 18 20 22 DAD1 E, Sig=280,4 Ref=off (ED\19030502.D) 24 26 28 30 32 min 518,708 mAU _ 25.937 .98.2126 6 P283 5 4 -9 2 20 22 24 26 28 30 32 34 min 18 Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=230,8 Ref=off

Instrument 1 3/5/2019 2:21:40 PM Ed

Page 1 of 2

Sample Name: HH-3-252

Data File C:\HPCHEM\1\DATA\ED\19030502.D

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	20,716 25,937	MM MM	0.8784	199.18086 1050.28552	3,77929 15,69707	15.9413 84.0587
Total	ls :			1249.46638	19.47636	

Signal 2: DAD1 E, Sig=280,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	20.715 25.937	MM MM	0.8710 1.1092	98.21260 519.70337	1.87927 7.80871	15.8942 84.1058
Tota	ls :			617.91597	9.68798	

*** End of Report ***

Instrument 1 3/5/2019 2:21:40 PM Ed

Page 2 of 2

Data File C:\HPCHEM\1\DATA\ED\19030503.D Sample Name: HH-3-258 OD column, IPA:Hex=15:85 0.5 mL/min 20C Injection Date : 3/5/2019 1:23:17 PM Seq. Line : 3 Sample Name : HH-3-258 Location : Vial 30 Acq. Operator : Ed Inj : 1 Acq. Instrument : Instrument 1 Inj Volume : 1 µl Different Inj Volume from Sequence ! Actual Inj Volume : 0.3 µl Acq. Method : C:\HPCHEN\1\METHODS\EDH85.M Last changed : 3/5/2019 11:26:00 AM by Ed Analysis Method : C:\HPCHEM\1\METHODS\MEH98.M Last changed : 3/5/2019 2:19:28 EM by Ed (modified after loading) DADIC.Sig=203.8 Rd=off(ED19030532D) mAUH & S & . AS2. 32 5.05 Mar. 6 Mar. 6 Mar. 50 600 25.827 mAU 14 -12-10-8 34 18 20 22 DAD1 E, Sig=280,4 Ref=off (ED\19030503.D) 24 26 28 зю 32 min 1.228.48¹ 228.08 25.814 mAU 20.637 4 3. 2-1. 20 22 24 26 28 30 32 34 min 18 Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=230,8 Ref=off

Instrument 1 3/5/2019 2:20:15 PM Ed

Page 1 of 2

Sample Name: HH-3-258

Data File C:\HPCHEM\1\DATA\ED\19030503.D

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	20,629 25,827	MM MM	0.8748	453.60031 452.13226	8.64238 6.86014	50.0810 49.9190
Tota	Ls :			905.73257	15.50252	

Signal 2: DAD1 E, Sig=280,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	20.637 25.814	MM MM	0.8789 1.0990	228.46127 226.09076	4.33252 3.42874	50.2608 49.7392
Tota	ls:			454.55203	7.76126	

*** End of Report ***

Instrument 1 3/5/2019 2:20:15 PM Ed

Page 2 of 2

HPLC of Synthetic compound 3

Instrument 1 2/12/2019 1:04:37 PM ed

Page 1 of 2

Sample Name: CL S-isomer

Data File C:\HPCHEM\1\DATA\ED\19021202.D

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
Totals :		3.06596e4	433,07456	
Signal 2: DAD1 E, :	Sig=280,	16 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
Peak RetTime Type # [min] 	Width [min] 0.9426 1.1909	Area [mAU*s] 661.84857 1.30302e4	Height [mAU] 	Area % 4.8338 95.1662

*** End of Report ***

Instrument 1 2/12/2019 1:04:37 FM ed

Page 2 of 2

HPLC of racemic compound 3

Instrument 1 2/12/2019 1:11:35 PM ed

Page 1 of 2

Sample Name: CL Racemate

Data File C:\HPCHEM\1\DATA\ED\19021204.D

Peak RetTime Type Width # [min] [min]	Area	Height	Area
	[mAU*s]	[mAU]	%
Totals :	3424.01050	56.76243	
Signal 2: DAD1 E, Sig=280	,16 Ref=off		
Peak RetTime Type Width # [min] [min]	Area	Height	Area
	[mAU*s]	[mAU]	%

1	19.338	MM	0.8942	765.26886	14.26325	50.0299
2	24.688	MM	1.1380	764.35364	11,19423	49.9701
Total	Ls :			1529.62250	25.45748	

*** End of Report ***

Instrument 1 2/12/2019 1:11:35 FM ed

Page 2 of 2

Experimental section

General procedures.

Solvents used for chromatography were distilled before use. Commercial thin layer chromatography plates (silica gel, Merck 60F-254) were used. Silica gel for flash chromatography was Merck type 60 (230–400 mesh). Dry solvents were prepared under an inert atmosphere (N₂) and transferred by syringe or cannula. Unless otherwise indicated, all reactions were done under an inert atmosphere (N₂). The symbols s, d, t, and q used for ¹³C NMR spectra indicate zero, one, two, or three attached hydrogens, respectively, the assignments being made from APT spectra. Optical rotations were measured at 20 °C. Solutions were evaporated under water pump vacuum, and the residue was then kept under oil pump vacuum. High resolution electrospray mass spectrometric analyses were done with an orthogonal time-of-flight analyzer, and electron ionization mass spectra were measured with a double-focusing sector mass spectrometer. Gradient flash chromatography was done by stepwise small increases in the proportion of the more polar solvent, as described for the individual experiments.

Synthesis of (1)

Ethyl (2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate and Ethyl (2Z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate (1.3)^{18,30}

Dry PhH (150 mL) was added to a flask containing vanillin (8.0 g, 52.6 mmol) and the Wittig reagent 1.2^{31} (19.0 g, 54.6 mmol). The solution was stirred and heated at 80 °C for 4.5 h (oil bath) by which time the reaction was complete (tlc, silica, 1:1 EtOAc-hexane). Evaporation of the solvent and flash chromatography of the residue over silica gel (23 × 5 cm), using 1:1 EtOAc-hexane, gave 1.3 (11.638 g, 99%) as an oil which was a mixture of *Z* and *E* isomers (ca 3:1 *E:Z*).

In an earlier run we separated the Z and E isomers. The Z isomer had: FTIR (CDCl₃, cast) 3419, 2925, 1515, 1174 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.31 (t, J = 7.0 Hz, 3 H), 3.95 (s, 3 H), 4.21 (q, J = 7.0 Hz, 2 H), 5.83 (d, J = 13.0 Hz, 1 H), 5.83 (d, J = 13.0 Hz, 1 H), 6.81 (d, J = 13.0 Hz, 1 H), 6.90 (d, J = 8.0 Hz, 1 H), 7.13 (dd, J = 1.5, 8.5 Hz, 1 H), 7.79 (d, J = 2.0 Hz, 1 H); exact mass (electrospray) *m/z* calcd for C₁₂H₁₃O₄ (M–H)⁻ 221.0819, found 221.0816.

The *E* isomer had: FTIR (CDCl₃, cast) 3392, 2927, 1514, 1176 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.35 (t, *J* = 7.0 Hz, 3 H), 3.94 (s, 3 H), 4.27 (q, *J* = 7.0 Hz, 2 H), 5.92 (s, OH), 6.31 (d, *J* = 15.9 Hz, 1 H), 6.93 (d, *J* = 8.0 Hz, 1 H), 7.05 (br s, 1 H), 7.09 (br d, *J* = 8.0 Hz, 1 H), 7.63 (d, *J* = 15.9 Hz, 1 H); exact mass (electrospray) *m*/*z* calcd for C₁₂H₁₃O₄ (M–H)⁻ 221.0819, found 221.0817.

Ethyl 3-(4-hydroxy-3-methoxyphenyl)propanoate (1.4)^{18,30}

10% Pd/C (1.2 g) was added to a solution of **1.3**^{18,30} (*Z*,*E* isomer mixture, 11.8 g, 56.0 mmol) in EtOH (120 mL). The flask was flushed with hydrogen (balloon) several times, then kept under a slight pressure of H₂ (balloon), and the mixture was stirred overnight by which time the reaction was over (tlc, silica, 1:4 EtOAc-hexane). The mixture was diluted with EtOH and passed through a short pad of Celite. Evaporation of the filtrate gave **1.4** (10.2 g, 86%) as an oil which was pure enough for the next step. The material had: ¹H NMR (CDCl₃, 400 MHz) δ 1.24 (t, *J* = 7.2 Hz, 3 H), 2.59 (t, *J* = 7.2 Hz, 2 H), 2.88 (t, *J* = 7.6 Hz, 2 H), 3.87 (s, 3 H), 4.13 (q, *J* = 7.2 Hz, 2 H), 5.48 (s, OH), 6.69 (dd, *J* = 2.0, 8.0 Hz, 1 H), 6.71 (d, *J* = 2.0 Hz, 1 H), 6.83 (d, *J* = 8.0 Hz, 1 H).

3-(4-Hydroxy-3-methoxyphenyl)propanal (1.5)¹⁸

DIBAL-H (1.1 M in cyclohexane, 30 mL, 33 mmol) was added dropwise by syringe to a stirred and cooled (–78 °C) solution of **1.4** (4.23 g, 18.9 mmol) in dry CH₂Cl₂ (200 mL). After the addition, stirring at –78 °C was continued for 3.5 h, and then the mixture was quenched by addition of MeOH (15 mL). Saturated aqueous Rochelle salt (400 mL) was added, the cold bath was left in place but not recharged, and stirring was continued overnight. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 200 mL). The combined organic extracts were washed with brine, dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (5 × 23 cm), using first 20% EtOAc-hexane, and then 50% EtOAc-hexane, gave **1.5** (2.5 g, 73%) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 2.75 (t, *J* = 7.2 Hz, 2 H), 2.90 (t, *J* = 7.2 Hz, 2 H), 3.88 (s, 3 H), 5.48 (s, OH), 6.67–6.70 (m, 2 H), 6.84 (d, *J* = 8.0 Hz, 1 H), 9.82 (s, 1 H); exact mass (EI) *m/z* calcd for C₁₀H₁₄O₃ (M)⁺ 182.0943; found: 182.0943.

(5E)-8-(4-Hydroxy-3-methoxyphenyl)oct-5-en-4-one (1)

A solution of ylide $1.6^{19,32}$ (1.3 g, 3.68 mmol) in dry CH₂Cl₂ (24 mL) was added dropwise by syringe to a cooled (ice bath) flask containing **1.5** (552.3 mg, 3.07 mmol) and a magnetic stirring bar. The mixture was stirred and the ice bath was left in place but not recharged. Stirring was continued for 18 h by which time the reaction was over (tlc control, silica, 1:4 EtOAc-hexane). Evaporation of the solvent and flash chromatography of the residue over silica gel (20 × 2 cm), using 1:3 EtOAc-hexane, gave **1** (1.3 g, 77%) as a pale yellow solid which was a single *E* isomer, corresponding spectroscopically (¹H and ¹³C NMR) to the natural product: mp 35–38 °C; FTIR (CDCl₃, cast) 3418, 2962, 1516, 1272 cm⁻¹; ¹H NMR (CDCl₃, 700 MHz) δ 0.92 (t, *J* = 7.7 Hz, 3 H), 1.62 (sextet, *J* = 7.7 Hz, 2 H), 2.48–2.52 (m, 4 H), 2.71 (t, *J* = 7.0 Hz, 2 H), 3.87 (s, 3 H), 5.54 (s, OH), 6.10 (dt, *J* = 1.4, 15.4 Hz, 1 H), 6.66–6.68 (m, 2 H), 6.81–6.85 (m, 2 H); ¹³C NMR (CDCl₃, 175 MHz) δ 13.8 (q), 17.7 (t), 34.2 (t), 34.4 (t), 42.1 (t),

55.9 (q), 110.9 (d), 114.3 (d), 120.9 (d), 130.8 (d), 132.7 (s), 144.0 (s), 145.9 (d), 146.4 (s), 200.7 (s); exact mass (electrospray) m/z calcd for C₁₅H₁₉O₃ (M–H)⁻ 247.134, found 247.1339.

Synthesis of (3)

(3S)-3-Hydroxy-4-methoxy-4-oxobutanoic acid $(4.2)^{24,33}$

The L-malic acid used in this experiment (99%) had $[\alpha]_D$ –3.22 (c = 30.036, MeOH); Lit.³⁴ $[\alpha]_D$ –2.92 (c = 30, MeOH).

(CF₃CO)₂O (29.3 mL, 207.6 mmol) was added to a stirred sample of L-(–)-malic acid (**4.1**) (11.1 g, 83.0 mmol) and stirring was continued for 90 min (N₂ atmosphere). Residual (CF₃CO)₂O was evaporated under water pump vacuum (protection from moisture). Dry MeOH (35 mL) was added and stirring was continued for 2 h. The MeOH was evaporated and the residue was crystalized from Et₂O to afford **4.2** (12.1 g, 98%): $[\alpha]_D$ –5.57 (*c* = 9.5 g/100 mL); FTIR (MeOH, cast) 3440, 3116, 1732, 1223 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.84 (dd, *J* = 6.5, 16.9 Hz, 1 H), 2.92 (dd, *J* = 4.5, 16.9 Hz, 1 H), 3.81 (s, 3 H), 4.52 (dd, *J* = 4.0, 6.5 Hz, 1 H); ¹³C NMR (CD₃OD, 175 MHz) δ 39.8 (t), 52.7 (q), 68.6 (d), 173.9 (s), 175.2 (s); exact mass (electrospray) *m/z* calcd for C₅H₈O₅ (M–H)⁻ 147.0299, found 147.0300.

Methyl (2S)-2,4-dihydroxybutanoate $(4.3)^{24}$

BH₃.SMe₂ (9.0 mL, 94.9 mmol) was added dropwise by syringe over ca 15 min to a stirred and cooled (0 °C) solution of **4.2** (3.5 g, 23.7 mmol) in THF (20 mL). The ice bath was left in place but not recharged, and stirring was continued overnight. The mixture was quenched by slow addition of MeOH and the solvents were evaporated at *room temperature* under water pump vacuum. The residual oil was diluted with MeOH and the solution was evaporated at room temperature. This procedure was repeated four more times to remove B(OMe)₃. The resulting crude diol (**4.3**) was used directly for the next step without purification. The material had: ¹H NMR (CDCl₃, 500 MHz) δ 1.88–1.95 (m, 1 H), 2.05–2.11 (m, 2 H), 3.80 (s, 3 H), 4.40 (dd, *J* = 3.5, 7.5 Hz, 1 H).

*Methyl (2S)-4-[(tert-butyldimethylsilyl)oxy]-2-hydroxybutanoate (4.4)*³⁵

Crude 4.3 (5.5 g, 41.2 mmol), was dissolved in dry CH_2Cl_2 (25 mL), and Et_3N (6.9 mL, 49.4 mmol) and DMAP (503.2 mg, 4.12 mmol) were then added (N₂ atmosphere). The stirred solution was cooled in an ice bath and solid *t*-BuMe₂SiCl (6.8 g, 45.3 mmol) was added in several small portions by momentarily removing the septum used to close the reaction flask. The ice bath was left in place but not recharged, and stirring was continued for 30 h. Water (50 mL) was added and the mixture was extracted with EtOAc (3 × 50 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica

gel (25 × 4.5 cm), using 15:85 EtOAc-hexane, gave **4.4** (5.6 g, 60% over two steps) as an oil: which contained a small impurity (¹H NMR signals at δ 0.13 and 0.16 ppm); [α]_D –5.29 (*c* = 1.369, CHCl₃); Lit³⁵ –37.5 (*c* = 0.5, CHCl₃); FTIR (CHCl₃, cast) 3494, 2955, 1739, 1101 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.05 (s, 6 H), 0.90 (s, 9 H), 1.83–1.90 (m, 1 H), 2.00–2.06 (m, 1 H), 3.77 (s, 3 H), 3.78–3.82 (m, 2 H), 4.35 (dd, *J* = 3.5, 7.0 Hz, 1 H); ¹³C NMR (CD₃OD, 175 MHz) δ –5.59 (q), 18.2 (s), 25.8 (q), 36.2 (t), 52.3 (q), 59.8 (t), 68.9 (d), 175.3 (s); exact mass (electrospray) *m/z* calcd for C₁₁H₂₄NaO₄Si (M+Na)⁺ 271.1336, found 271.1333.

*Methyl (2S)-2-(benzyloxy)-4-[(tert-butyldimethylsilyl)oxy]butanoate (4.5)*³⁶ (a) Use of Ag₂O²⁶

Freshly-prepared Ag₂O²⁵ (7.4 g, 32.0 mmol) was tipped into a stirred solution of **4.4** (5.3 g, 21.3 mmol) and BnBr (3.8 mL, 32.0 mmol) in CH₂Cl₂ (60 mL). Stirring was then continued at 35 °C for 15 h with protection from light. The mixture was filtered through a pad of Celite, using CH₂Cl₂ as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (20×6 cm), using 7:93 EtOAc-hexane, gave **4.5** (2.2 g, 30%) as an oil.

(b) Use of NaH^{27}

Bu₄NI (939.5 mg, 2.54 mmol) was tipped into a stirred mixture of NaH (57–63% dispersion in oil, 1.29 g, 30.5 mmol) in dry DMF (30 mL). Dry DMF (15 mL) was injected into another flask containing **4.4** (6.3 g, 25.4 mmol), followed by BnBr (3.65 mL, 30.5 mmol). The resulting solution was taken up into a syringe and added at a fast dropwise rate to the stirred mixture in the first flask. Stirring was continued for 6 h. The mixture was quenched with ice-cold water and extracted with CH₂Cl₂ (3 × 60 mL). The combined organic extracts were washed with water and brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (26 × 5.5 cm), using 5:95 EtOAc-hexane, gave **4.5** (6.9 g, 79%) as an oil: $[\alpha]_D$ –48.28 (*c* = 1.110, CHCl₃); FTIR (CHCl₃, cast) 2954, 1753, 1255, 1099 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.04 (s, 6 H), 0.90 (s, 9 H), 1.90–2.04 (m, 2 H), 3.69–3.81 (m, 2 H), 3.75 (s, 3 H), 4.17 (dd, *J* = 4.4, 8.4 Hz, 1 H), 4.43 (d, *J* = 11.2 Hz, 1 H), 4.71 (d, *J* = 11.2 Hz, 1 H), 7.27–7.37 (m, 5 H); ¹³C NMR (CD₃OD, 125 MHz) δ –5.4 (q), 18.3 (s), 25.9 (q), 36.1 (t), 51.8 (q), 58.6 (t), 72.6 (t), 75.0 (d), 127.8 (d), 128.0 (d), 128.4 (d), 137.6 (s), 173.5 (s); exact mass (electrospray) *m*/*z* calcd for C₁₈H₃₀NaO₄Si (M+Na)⁺ 361.1806, found 361.1802.

(2S)-2-(Benzyloxy)-4-[(tert-butyldimethylsilyl)oxy]butanal (4.6)

DIBAL-H (1 M in hexane, 8.12 mL, 8.12 mmol) was added by syringe at a slow dropwise rate to a stirred and cooled (-78 °C) solution of **4.5** (2.3 g, 6.76 mmol) in dry hexane (10 mL). Stirring at -78 °C was continued for 6 h and the mixture was quenched by dropwise

addition of MeOH (5 mL), followed by saturated aqueous Rochelle salt (40 mL). The cold bath was left in place but not recharged, and stirring was continued overnight. The mixture was extracted with EtOAc (3 × 50 mL) and the combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (22.5 × 4 cm), using 7:93 EtOAc-hexane, gave **4.6** (1.90 g, 91%) as an oil: $[\alpha]_D$ –20.64 (c = 1.149, CHCl₃); FTIR (CDCl₃, cast) 2929, 1732, 1255, 1099 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.05 (s, 6 H), 0.90 (s, 9 H), 1.88–1.98 (m, 2 H), 3.71–3.81 (m, 2 H), 3.97–3.99 (m, 1 H), 4.57 (d, J = 12.0 Hz, 1 H) , 4.69 (d, J = 11.5 Hz, 1 H) , 7.30–7.36 (m, 5 H), 9.69 (br s, 1 H); ¹³C NMR (CD₃OD, 125 MHz) δ –5.47 (q), 18.2 (s), 25.9 (q), 33.9 (t), 58.1 (t), 72.6 (t), 80.8 (d), 127.9 (d), 128.0 (d), 128.5 (d), 137.5 (s), 203.4 (d); exact mass (electrospray) *m*/*z* calcd for C₁₇H₂₈NaO₃Si (M+Na)⁺ 331.17, found 331.1709.

Diethyl {[4-(benzyloxy)-3-methoxyphenyl]methyl}phosphonate (3.4)^{23a}

4-(Benzyloxy)-3-methoxybenzaldehyde³⁷ was reduced $(NaBH_4)^{38}$ and the resulting alcohol was converted into the corresponding bromide $(PBr_3)^{38}$ to afford 1-(benzyloxy)-4-(bromomethyl)-2-methoxybenzene.

(EtO)₃P (24.4 mL, 142.5 mmol) was added dropwise by syringe to a stirred solution of the bromide (8.8 g, 28.5 mmol) in PhH (50 mL) and the mixture was refluxed (oil bath at 100 °C) for 20 h. The mixture was cooled and evaporated. Flash chromatography of the residue over silica gel (11.5 × 5.5 cm), using 1:4 EtOAc-hexane, gave **3.4** (9.9 g, 95%) as an oil: ¹H NMR (CDCl₃, 500 MHz) δ 1.24 (t, *J* = 7.0 Hz, 3 H), 3.08 (d, *J* = 21.4 Hz, 2 H), 3.88 (s, 3 H), 3.96–4.04 (m, 4 H), 5.13 (s, 2 H), 6.73–6.76 (m, 1 H), 6.82 (d, *J* = 8.0 Hz, 1 H), 6.88 (t, *J* = 2.0 Hz, 1 H), 7.27–7.43 (m, 5 H).

 $\{ [(3S,4E)-3-Benzyloxy)-5-[4-benzyloxy)-3-methoxyphenyl] pent-4-en-1-yl] oxy \} (tert-butyl) dimethylsilane (E-5.1) and \{ [(3S,4Z)-3-Benzyloxy)-5-[4-benzyloxy)-3-methoxyphenyl] - pent-4-en-1-yl] oxy \} (tert-butyl) dimethylsilane (Z-5.1)$

(Me₃Si)₂NLi (1 M in THF, 5.37 mL, 5.37 mmol) was added dropwise by syringe to a stirred and cooled (-78 °C) solution of the phosphonate **3.4** (1.95 g, 5.37 mmol) in THF (12 mL) and HMPA (3 mL). Stirring at -78 °C was continued for 1 h and a solution of aldehyde **4.6** (1.4 g, 4.41 mmol) in THF (5 mL) was added dropwise. The cold bath was left in pace but not recharged, and stirring was continued for 23 h. The mixture was quenched with saturated aqueous NaHCO₃ and extracted with Et₂O (3 × 40 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (21.5 × 4.5 cm), using 1:19 EtOAc-hexane, gave *E*-**5.1** (1.6 g, 70%) and *Z*-**5.1** (140.5 mg, 6%) as colorless oils: *Z*-**5.1** had: $[\alpha]_D$ -30.42 (*c* = 1.208, CHCl₃); FTIR (CDCl₃, cast) 2928, 1513, 1255, 1089

cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.05 (d, *J* = 1.6 Hz, 6 H), 0.90 (s, 9 H), 1.83–2.00 (m, 2 H), 3.72–3.77 (m, 1 H), 3.83–3.89 (m, 1 H), 3.88 (s, 3 H), 4.26 (d, *J* = 11.6 Hz, 1 H), 4.55 (d, *J* = 11.6 Hz, 1 H), 4.71 (dt, *J* = 4.0, 12.8 Hz, 1 H), 5.19 (s, 2 H), 5.61 (dd, *J* = 9.6, 12.0 Hz, 1 H), 6.61 (d, *J* = 11.6 Hz, 1 H), 6.82–6.84 (m, 3 H), 7.22–7.49 (m, 10 H); ¹³C NMR (CDCl₃, 175 MHz) δ –5.4 (q), 18.3 (s), 25.9 (q), 38.6 (t), 56.0 (q), 59.4 (t), 70.2 (t), 71.1 (t), 112.9 (d), 113.8 (d), 121.5 (d), 127.2 (d), 127.3 (d), 127.81 (d), 127.83 (d), 128.2 (d), 128.6 (d), 130.2 (s), 131.6 (d), 132.6 (d), 137.2 (s), 138.7 (s) 147.4 (s), 149.3 (s); exact mass (electrospray) *m/z* calcd for C₃₂H₄₂NaO₄Si (M+Na)⁺ 541.2745, found 541.2745.

E-5.1 had: $[\alpha]_D$ –33.95 (*c* = 1.121, CHCl₃); FTIR (CDCl₃, cast) 2928, 1512, 1258, 1091 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.04 (s, 6 H), 0.89 (s, 9 H), 1.79 (sextet, *J* = 6.0 Hz, 1 H), 1.97 (sextet, *J* = 6.0 Hz, 1 H), 3.68–3.78 (m, 2 H), 3.92 (s, 3 H), 4.11 (dd, *J* = 8.0, 13.6 Hz, 1 H), 4.40 (d, *J* = 12.0 Hz, 1 H), 4.62 (d, *J* = 12.0 Hz, 1 H), 5.17 (s, 2 H), 5.99 (dd, *J* = 8.0, 16.0 Hz, 1 H), 6.48 (d, *J* = 16.0 Hz, 1 H), 6.83 (d, *J* = 8.0 Hz, 1 H), 6.87 (dd, *J* = 2.0, 8.0 Hz, 1 H), 6.98 (d, *J* = 1.6 Hz, 1 H), 7.28–7.45 (m, 10 H); ¹³C NMR (CDCl₃, 175 MHz) δ –5.3 (q), 18.3 (s), 26.0 (q), 39.2 (t), 56.0 (q), 59.4 (t), 70.2 (t), 71.1 (t), 109.4 (d), 114.0 (d), 119.6 (d), 127.2 (d), 127.4 (d), 127.7 (d), 127.8 (d), 128.3 (d), 128.5 (d), 128.6 (s), 130.3 (d), 132.0 (d), 137.1 (s), 138.8 (s) 148.1 (s), 149.8 (s); exact mass (electrospray) *m*/*z* calcd for C₃₂H₄₂NaO₄Si (M+Na)⁺ 541.2745, found 541.274.

Preparation of Z,E-5.1 without separation

 $(Me_3Si)_2NLi$ (1 M in THF, 7.26 mL, 7.26 mmol) was added dropwise by syringe to a stirred and cooled (-78 °C) solution of the phosphonate **3.4** (2.65 g, 7.26 mmol) in THF (15 mL) and HMPA (5 mL). Stirring at -78 °C was continued for 1 h and a solution of aldehyde **4.6** (1.9 g, 6.1 mmol) in THF (5 mL) was added dropwise. The cold bath was left in pace but not recharged, and stirring was continued for 18 h. The mixture was quenched with saturated aqueous NaHCO₃ and extracted with Et₂O (3 × 50 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (20 × 4.5 cm), using 7:93 EtOAc-hexane, gave *E*,*Z***-5.1** (2.3 g, 72%) as a colorless oil.

(3S,4E)-3-(Benzyloxy)-5-[[4-(benzyloxy)-3-methoxyphenyl)pent-4-en-1-ol (5.2)

Bu₄NF (1 M in THF, 10.6 mL, 10.6 mmol) was added by syringe at a fast dropwise rate to a stirred solution of *E*-**5.1** (1.567 g, 3.02 mmol, containing ca 3% of the *Z* isomer as judged by ¹H NMR) in THF (10 mL). Stirring was continued for 44 h, and the mixture was diluted with water and extracted with CH₂Cl₂ (3 × 40 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (23 × 4 cm), using 1:1 EtOAc-hexane, gave *E*-**5.2** (1.142 g, 93%) and *Z*-**5.2** (78 mg, 6%) as oils. *Z*-**5.2** had: $[\alpha]_D$ –

65.10 (c = 2.139, CHCl₃); FTIR (CDCl₃, cast) 3457, 2926, 1513, 1256, 1139 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.85–1.91 (m, 1 H), 1.97–2.04 (m, 1 H), 3.74–3.78 (m, 1 H), 3.82–3.86 (m, 1 H), 3.83 (s, 3 H), 4.23 (d, J = 12.0 Hz, 1 H), 4.52 (d, J = 11.5 Hz, 1 H), 4.69 (dt, J = 4.0, 13.4 Hz, 1 H), 5.18 (s, 2 H), 5.63 (dd, J = 9.5, 12.0 Hz, 1 H), 6.65 (d, J = 12.0 Hz, 1 H), 6.72 (dd, J = 2.0, 8.5 Hz, 1 H), 6.79 (d, J = 2.0 Hz, 1 H), 6.85 (d, J = 8.5 Hz, 1 H), 7.15–7.45 (m, 10 H); ¹³C NMR (CDCl₃, 125 MHz) δ 37.5 (t), 56.0 (q), 60.6 (t), 70.2 (t), 71.0 (t), 73.3 (d), 112.6 (d), 113.7 (d), 121.4 (d), 127.2 (d), 127.7 (d), 127.9 (d), 128.0 (d), 128.3 (d), 128.6 (d), 130.0 (s), 131.5 (d), 132.2 (d), 137.1 (s), 138.1 (s) 147.5 (s), 149.4 (s); exact mass (electrospray) *m*/*z* calcd for C₂₆H₂₈NaO₄ (M+Na)⁺ 427.188, found 427.188.

E-5.2 had: $[\alpha]_D$ –54.53.10 (*c* = 1.136, CHCl₃); FTIR (CDCl₃, cast) 3443, 2935, 1512, 1265, 1138 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.85–1.91 (m, 1 H), 1.97–2.04 (m, 1 H), 3.76–3.86 (m, 2 H), 3.94 (s, 3 H), 4.19 (dt, *J* = 4.5, 16.4 Hz, 1 H), 4.43 (d, *J* = 11.5 Hz, 1 H), 4.68 (d, *J* = 12.0 Hz, 1 H), 5.18 (s, 2 H), 6.04 (dd, *J* = 8.5, 15.9 Hz, 1 H), 6.52 (d, *J* = 15.9 Hz, 1 H), 6.86 (d, *J* = 8.5 Hz, 1 H), 6.90 (dd, *J* = 1.5, 8.5 Hz, 1 H), 7.00 (d, *J* = 1.5 Hz, 1 H), 7.29–7.46 (m, 10 H); ¹³C NMR (CDCl₃, 125 MHz) δ 38.3 (t), 56.1 (q), 60.6 (t), 70.3 (t), 71.1 (t), 79.7 (d), 109.5 (d), 114.0 (d), 119.8 (d), 127.3 (d), 127.6 (d), 127.7 (d), 127.8 (d), 127.9 (d), 128.5 (d), 128.6 (d), 129.9 (s), 132.5 (d), 137.0 (s), 138.3 (s), 148.3 (s), 149.8 (s); exact mass (electrospray) *m/z* calcd for C₂₆H₂₈NaO₄ (M+Na)⁺ 427.188, found 427.1878.

(3S,4E)-3-(Benzyloxy)-5-[[4-(benzyloxy)-3-methoxyphenyl)pent-4-enal (E-5.3)

Dess-Martin reagent (1.30 g, 3.07 mmol) was added in portions to a stirred and cooled (0 °C) mixture of E-5.2 (992.7 mg, 2.45 mmol), NaHCO₃ (1.44 g, 17.2 mmol)³⁹ and CH₂Cl₂ (10 mL). The ice bath was left in place and stirring was continued for 3 h, during which time all the ice melted. The mixture was cooled to 0 °C, quenched with saturated aqueous Na₂S₂O₃ and extracted with EtOAc (3×40 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(23.5 \times 4 \text{ cm})$, using 1:2 EtOAchexane, gave *E*-**5.3** (943 mg, 95%) as a yellowish oil: $[\alpha]_{D}$ -51.26 (*c* = 2.233, CHCl₃); FTIR (CDCl₃, cast) 3031, 2863, 1724, 1512, 1265 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.64 (qd, J = 1.6, 4.8, 16.0 Hz, 1 H), 2.85 (qd, J = 2.4, 8.0, 16.4 Hz, 1 H), 3.94 (s, 3 H), 4.46 (d, J = 12.0 Hz, 1 H), 4.48-4.52 (m, 1 H), 4.67 (d, J = 12.0 Hz, 1 H), 5.18 (s, 2 H), 6.03 (dd, J = 8.0, 15.6 Hz, 1 H), 6.58 (d, J = 16.0 Hz, 1 H), 6.87 (d, J = 8.4 Hz, 1 H), 6.90 (dd, J = 1.6, 8.4 Hz, 1 H), 6.99 (d, J = 1.6, 8.4 Hz, 1 H), 6.91.6 Hz, 1 H), 7.29–7.47 (m, 10 H), 9.81 (t, J = 2.0 Hz, 1 H); ¹³C NMR (CDCl₃, 125 MHz) δ 49.6 (t), 56.0 (q), 70.3 (t), 71.0 (t), 75.2 (d), 109.5 (d), 114.0 (d), 119.9 (d), 126.2 (d), 127.2 (d), 127.7 (d), 127.8 (d), 127.9 (d), 128.4 (d), 128.6 (d), 129.5 (s), 133.2 (d), 137.0 (s), 138.0 (s), 148.4 (s), 149.8 (s), 200.7 (d); exact mass (electrospray) m/z calcd for C₂₆H₂₆NaO₄ (M+Na)⁺ 425.1723, found 425.1725.

(3S,4E)-3-(Benzyloxy)-5-[[4-(benzyloxy)-3-methoxyphenyl)pent-4-enal and (3S,4Z)-3-(Benzyloxy)-5-[[4-(benzyloxy)-3-methoxyphenyl)pent-4-enal (E,Z-**5.3**)

Dess-Martin reagent (1.95 g, 4.59 mmol) was added in portions to a stirred and cooled (0 °C) mixture of *E*,*Z*-**5.2** (1.55 g, 3.82 mmol), NaHCO₃ (2.25 g, 26.8 mmol)³⁹ and CH₂Cl₂ (10 mL). The ice bath was left in place and stirring was continued for 4 h, during which time all the ice melted. The mixture was cooled to 0 °C, quenched with saturated aqueous Na₂S₂O₃ and extracted with EtOAc (3 × 40 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (22 × 5 cm), using 1:2 EtOAchexane, gave *E*,*Z*-**5.3** (1.46 g, 94%) as a yellowish oil.

1-(Benzyloxy)-4-[(1E,3S)-3-(benzyloxy)undeca-1,5-dien-1-yl]-2-methoxybenzene (1E-5.4) from E-5.3

(Me₃Si)₂NLi (1 M in THF, 4.69 mL, 4.69 mmol) was added dropwise by syringe to a stirred and cooled (-78 °C) solution of hexyltriphenylphosphonium bromide⁴⁰ (2.00 g, 4.69 mmol) in a mixture of THF (40 mL) and HMPA (5 mL). Stirring at -78 °C was continued for 1 h and then a solution of E-5.3 (926.0 mg, 2.30 mmol) in THF (5 mL) was added dropwise by syringe over ca 5 min. The cold bath was left in place but not recharged, and stirring was continued for 22 h. The mixture was quenched by addition of aqueous phosphate buffer [pH 7.2, prepared⁴¹ by mixing aqueous 1 M Na₂HPO₄ (3.42 volumes) and 1 M NaH₂PO₄ (1.58 volumes)] and extracted with Et₂O (3×60 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(21.5 \times 4.5 \text{ cm})$, using 7:93 EtOAc-hexane, gave 5.4 (827.1 mg, 76%) as a yellowish oil, which appeared to be a single isomer (¹H NMR, ¹³C NMR) of unestablished C5–C6 geometry: $[\alpha]_D$ –57.70 (c = 1.003, CHCl₃); FTIR (CDCl₃, cast) 2926, 1265, 1160 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.88 (t, J = 7.0 Hz, 3 H), 1.26–1.38 (m, 6 H), 2.05 (dd, J = 6.5, 13.9 Hz, 2 H), 2.38–2.44 (m, 1 H), 2.51–2.56 (m, 1 H), 3.92-3.96 (m, 1 H), 3.93 (s, 3 H), 4.45 (d, J = 12.0 Hz, 1 H), 4.66 (d, J = 12.0 Hz, 1 H), 5.18 (s, 2 H), 5.43–5.52 (m, 2 H), 6.02 (dd, J = 8.0, 15.9 Hz, 1 H), 6.48 (d, J = 15.4 Hz, 1 H), 6.85 (d, J = 8.5 Hz, 1 H), 6.89 (dd, J = 2.0, 8.5 Hz, 1 H), 6.99 (d, J = 2.0 Hz, 1 H), 7.27-7.46 (m, 1)10 H); ¹³C NMR (CDCl₃, 175 MHz) & 14.1 (q), 22.6 (t), 27.5 (t), 29.3 (t), 31.6 (t), 33.9 (t), 56.0 (q), 70.1 (t), 71.1 (t), 80.2 (d), 109.6 (d), 114.1 (d), 119.6 (d), 124.8 (d), 127.2 (d), 127.4 (d), 127.7 (d), 127.9 (d), 128.3 (d), 128.4 (d), 128.6 (d), 130.3 (s), 132.2 (d), 137.1 (s), 138.8 (s), 148.1 (s), 149.8 (s); exact mass (electrospray) m/z calcd for C₃₂H₃₈NaO₃ (M+Na)⁺ 493.2713, found 493.2716.

1-(Benzyloxy)-4-[(3S)-3-(benzyloxy)undeca-1,5-dien-1-yl]-2-methoxybenzene (1E,1Z-5.4) from E,Z-5.3

(Me₃Si)₂NLi (1 M in THF, 7.25 mL, 7.25 mmol) was added dropwise by syringe to a stirred and cooled (–78 °C) solution of hexyltriphenylphosphonium bromide⁴⁰ (3.1 g, 7.25 mmol) in a mixture of THF (55 mL) and HMPA (7.5 mL). Stirring at –78 °C was continued for 1.5 h and then a solution of *E*,*Z*-**5.3** (1.43 g, 3.55 mmol) in THF (5 mL) was added dropwise by syringe over ca 10 min. The cold bath was left in place but not recharged, and stirring was continued for 15 h. The mixture was quenched by addition of aqueous phosphate buffer [pH 7.2, prepared⁴¹ by mixing aqueous 1 M Na₂HPO₄ (3.42 volumes) and 1 M NaH₂PO₄ (1.58 volumes)] and extracted with Et₂O (3 × 50 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (22 × 4.5 cm), using 5:95 EtOAc-hexane, gave 1*E*-**5.4** as a single isomer and 1*E*,1*Z*-**5.4** (1.5 g in total, 88%) as yellowish oils.

1-(Benzyloxy)-4-[(3S)-3-(benzyloxy)undecyl]-2-methoxybenzene (5.5)

5% Rh/Al₂O₃ (28.4 mg) was added to a solution of 1*E*-**5.4** (single compound of unestablished C5–C6 geometry, 567.8 mg, 1.21 mmol) in EtOH (4 mL) and the diene was hydrogenated at room temperature (H₂-filled balloon) for 3 h. The mixture was filtered through a pad of Celite, using CH₂Cl₂ as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (22.5 × 2 cm), using 1:19 EtOAc-hexane, gave **5.5** (551.3 mg, 96%) as an oil: $[\alpha]_D$ 9.14 (*c* = 1.996, CHCl₃); FTIR (CDCl₃, cast) 2927, 1513, 1263, 1027 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (t, *J* = 7.0 Hz, 3 H), 1.28–1.42 (m, 12 H), 1.51–1.66 (m, 2 H), 1.77–1.90 (m, 2 H), 2.56–2.62 (m, 1 H), 2.68–2.74 (m, 1 H), 3.42 (quint, *J* = 6.0 Hz, 1 H), 3.87 (s, 3 H), 4.49 (d, *J* = 11.5 Hz, 1 H), 4.55 (d, *J* = 12.0 Hz, 1 H), 5.13 (s, 2 H), 6.65 (dd, *J* = 2.0, 8.0 Hz, 1 H), 6.73 (d, *J* = 2.0 Hz, 1 H), 6.81 (d, *J* = 8.0 Hz, 1 H), 7.27–7.46 (m, 10 H); ¹³C NMR (CDCl₃, 175 MHz) δ 14.1 (q), 22.7 (t), 25.3 (t), 29.3 (t), 29.6 (t), 29.8 (t), 31.4 (t), 31.9 (t), 33.8 (t), 35.9 (t), 56.0 (q), 70.8 (t), 71.3 (t), 78.4 (d), 112.4 (d), 114.3 (d), 120.2 (d), 127.3 (d), 127.4 (d), 127.7 (d), 127.8 (d), 128.5 (d), 135.9 (s), 137.5 (s), 139.1 (s), 146.3 (s), 149.6 (s); exact mass (electrospray) *m/z* calcd for C₃₂H₄₂NaO₃ (M+Na)⁺ 497.3026, found 497.3026.

4-[(3S)-3-Hydroxyundecyl]-2-methoxyphenol [(S)-3]

10% Pd/C (7.2 mg) was added to a solution of **5.5** (144.1 mg, 0.30 mmol) in EtOH (3 mL) and the compound was hydrogenated at room temperature (H₂-filled balloon) for 2.5 h. The mixture was filtered through a pad of Celite, using CH₂Cl₂ as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (17 × 2 cm), using EtOAc, gave (*S*)-**3** (86.2 mg, 96%) as a white solid: mp 53–55 °C; $[\alpha]_D$ 8.35 (*c* = 1.233, CHCl₃); FTIR (CDCl₃,

cast) 3338, 3245, 1516, 1153 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.89 (t, *J* = 6.8 Hz, 3 H), 1.28–1.51 (m, 14 H), 1.66–1.81 (m, 2 H), 2.57–2.64 (m, 1 H), 2.69–2.76 (m, 1 H), 3.60–3.66 (m, 1 H), 3.86 (s, 3 H), 6.68–6.71 (m, 2 H), 6.83 (d, *J* = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃, 175 MHz) δ 14.1 (q), 22.6 (t), 25.6 (t), 29.2 (t), 29.6 (t), 29.7 (t), 31.8 (t), 31.9 (t), 37.6 (t), 39.4 (t), 55.9 (q), 71.4 (d), 111.0 (d), 114.2 (d), 120.9 (d), 134.1 (s), 143.7 (s), 146.4 (s); exact mass (EI) *m/z* calcd for C₁₈H₃₀O₃ (M)⁺ 294.2195, found 294.2191.

Chiral HPLC (CHIRALCEL OD column, 250×4.6 mm, 15:85 *i*-PrOH:hexane, 0.5 mL/min, wavelength 230 and 280 nm, 20 °C) showed the compound to have an ee of 90%.

Preparation of (\pm) -3 for establishing enantiomeric purity of [(S)-3] (\pm)-1-[4-(Benzyloxy)-3-methoxyphenyl]undecan-3-ol [(\pm)-3] (a) (3S)-1-[4-(Benzyloxy)-3-methoxyphenyl]undecan-3-ol

K₂CO₃ (218.8 mg, 1.59 mmol) was added to a stirred solution of (*S*)-**3** (155.4 mg, 0.53 mmol) in dry acetone (6 mL) and then BnBr (0.13 mL, 1.06 mmol) was added. The stirred mixture was heated at 60 °C for 10 h. The solvent was evaporated and water (20 mL) was added to the residue. The mixture was extracted with EtOAc (3 × 20 mL) and the combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (21.5 × 2 cm), using 1:4 EtOAc-hexane, gave (3*S*)-1-[4-(benzyloxy)-3-methoxyphenyl]undecan-3-ol (194.4 mg, 95%) as a white solid: mp 53–54 °C; [α]_D 6.78 (*c* = 1.15, CHCl₃); FTIR (CDCl₃, cast) 3328, 2924, 1514, 1223 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.88 (t, *J* = 7.0 Hz, 3 H), 1.25–1.49 (m, 14 H), 1.67–1.81 (m, 2 H), 2.58–2.64 (m, 1 H), 2.70–2.76 (m, 1 H), 3.60–3.65 (m, 1 H), 3.88 (s, 3 H), 5.12 (s, 2 H), 6.67 (dd, *J* = 2.0, 8.0 Hz, 1 H), 6.76 (d, *J* = 2.0 Hz, 1 H), 6.81 (d, *J* = 8.5 Hz, 1 H), 7.28–7.45 (m, 5 H); ¹³C NMR (CDCl₃, 175 MHz) δ 14.1 (q), 22.6 (t), 25.6 (t), 29.2 (t), 29.6 (t), 29.7 (t), 31.7 (t), 31.9 (t), 37.6 (t), 39.2 (t), 56.0 (q), 71.2 (t), 71.4 (d), 112.4 (d), 114.4 (d), 120.2 (d), 127.3 (d), 127.7 (d), 128.5 (d), 135.6 (s), 137.4 (s), 146.4 (s), 149.6 (s); exact mass (electrospray) *m/z* calcd for C₂₅H₃₆NaO₃ (M+Na)⁺ 407.2557, found 407.2552.

(b) 1-[4-(Benzyloxy)-3-methoxyphenyl]undecan-3-one

NaHCO₃ (105.9 mg, 1.26 mmol) and Dess-Martin periodinane (213.9 mg, 0.50 mmol) were added sequentially to a stirred and cooled (0 °C) solution of (3*S*)-1-[4-(benzyloxy)-3-methoxyphenyl]undecan-3-ol (161.5 mg, 0.42 mmol) in dry CH₂Cl₂ (3 mL). Stirring at 0 °C was continued for 3.5 h. The reaction mixture was quenched by addition of saturated aqueous Na₂S₂O₃ (4 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (24 × 2 cm), using 1:4 EtOAc-hexane, gave 1-[4-(benzyloxy)-3-

methoxyphenyl]undecan-3-one (125.6 mg 78%) as a white solid: mp 70–72 °C; FTIR (CDCl₃, cast) 2920, 1701, 1512, 1136 cm⁻¹; ¹H NMR (CDCl₃, 700 MHz) δ 0.88 (t, *J* = 7.0 Hz, 3 H), 1.24–1.30 (m, 10 H), 1.55 (quint, *J* = 7.0 Hz, 2 H), 2.37 (t, *J* = 7.0 Hz, 2 H), 2.69 (t, *J* = 7.0 Hz, 2 H), 2.83 (t, *J* = 7.0 Hz, 2 H), 3.87 (s, 3 H), 5.12 (s, 2 H), 6.64 (dd, *J* = 2.1, 7.7 Hz, 1 H), 6.73 (d, *J* = 2.1 Hz, 1 H), 6.79 (d, *J* = 7.7 Hz, 1 H), 7.28–7.43 (m, 5 H); ¹³C NMR (CDCl₃, 175 MHz) δ 14.1 (q), 22.6 (t), 23.8 (t), 29.1 (t), 29.2 (t), 29.3 (t), 29.4 (t), 31.8 (t), 43.1 (t), 44.4 (t), 56.0 (q), 71.2 (t), 112.3 (d), 114.3 (d), 120.1 (d), 127.2 (d), 127.7 (d), 128.5 (d), 134.5 (s), 137.4 (s), 146.5 (s), 149.6 (s), 210.5 (s); exact mass (electrospray) *m*/*z* calcd for C₂₅H₃₄NaO₃ (M+Na)⁺ 405.24, found 405.2401.

(c) (±)-1-[4-(Benzyloxy)-3-methoxyphenyl]undecan-3-ol

NaBH₄ (10.4 mg, 0.27 mmol) was added in portions to a stirred solution of 1-[4-(benzyloxy)-3-methoxyphenyl]undecan-3-one (105 mg, 0.27 mmol) in dry MeOH (4 mL). Stirring was continued for 2 h, ice water (10 mL) was added and the mixture was extracted with EtOAc (3×20 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (20×2 cm), using 7:93 EtOAc-hexane, gave (\pm)-1-[4-(benzyloxy)-3-methoxyphenyl]undecan-3-ol (101.3 mg 96%) as a white solid: mp 59–62 °C; FTIR (CDCl₃, cast) 3226, 2918, 1515, 1255 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (t, J = 7.0 Hz, 3 H), 1.25–1.58 (m, 14 H), 1.67–1.81 (m, 2 H), 2.58–2.64 (m, 1 H), 2.71–2.77 (m, 1 H), 3.60–3.65 (m, 1 H), 3.88 (s, 3 H), 5.13 (s, 2 H), 6.68 (dd, J = 1.5, 8.0 Hz, 1 H), 6.77 (d, J = 1.5 Hz, 1 H), 6.81 (d, J = 8.0 Hz, 1 H), 7.28–7.45 (m, 5 H); ¹³C NMR (CDCl₃, 175 MHz) δ 14.1 (q), 22.7 (t), 25.6 (t), 29.3 (t), 29.6 (t), 29.7 (t), 31.7 (t), 31.9 (t), 37.6 (t), 39.2 (t), 56.0 (q), 71.3 (t), 71.4 (d), 112.4 (d), 114.4 (d), 120.2 (d), 127.3 (d), 127.7 (d), 128.5 (d), 135.6 (s), 137.5 (s), 146.4 (s), 149.6 (s); exact mass (electrospray) *m/z* calcd for C₂₅H₃₆NaO₃ (M+Na)⁺ 407.2557, found 407.2555.

(d) (\pm) -4-[(3-Hydroxyundecyl]-2-methoxyphenol [(\pm)-3]

10% Pd/C (3.5 mg) was added to a solution of (±)-1-[4-(benzyloxy)-3-methoxyphenyl]undecan-3-ol (70.1 mg, 0.18 mmol) in EtOH (3 mL) and the mixture was stirred under H₂ (balloon) for 1.5 h. The mixture was filtered through a short pad of Celite which was rinsed with EtOAc. Evaporation of the filtrate gave (±)-**3** (52.8 mg, 98%) as a white solid that was pure (¹H NMR): 62–63 °C; FTIR (CDCl₃, cast) 3390, 2920, 1516, 1154 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.88 (t, *J* = 7.0 Hz, 3 H), 1.25–1.54 (m, 14 H), 1.66–1.80 (m, 2 H), 2.57–2.63 (m, 1 H), 2.70–2.75 (m, 1 H), 3.60–3.65 (m, 1 H), 3.86 (s, 3 H), 6.69 (dd, *J* = 2.0, 8.0 Hz, 1 H), 6.71 (d, *J* = 1.5 Hz, 1 H), 6.83 (d, *J* = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃, 175 MHz) δ 14.1 (q), 22.7 (t), 25.6 (t), 29.3 (t), 29.6 (t), 29.7 (t), 31.8 (t), 31.9 (t), 37.6 (t), 39.3 (t), 55.8 (q), 71.4 (d),

111.0 (d), 114.3 (d), 120.9 (d), 134.1 (s), 143.7 (s), 146.4 (s); exact mass (electrospray) m/z calcd for C₁₈H₂₉O₃ (M–H)⁻ 293.2122, found 293.2122.

Synthesis of (2)

1-(Benzyloxy)-4-[(1E,3S)-3-(benzyloxy)deca-1,5-dien-1-yl]-2-methoxybenzene (1E-6.1)and 1-(Benzyloxy)-4-[(1E,1Z,3S)-3-(benzyloxy)deca-1,5-dien-1-yl]-2-methoxybenzene (1E,1Z-6.1)

(Me₃Si)₂NLi (1 M in THF, 14.9 mL, 14.9 mmol) was added dropwise by syringe to a stirred and cooled (-78 °C) solution of pentyltriphenylphosphonium bromide⁴² (6.16 g, 14.9 mmol) in a mixture of THF (70 mL) and HMPA (10 mL). Stirring at -78 °C was continued for 1.5 h and then a solution of Z,E-5.3 (3.0 g, 7.5 mmol) in THF (5 mL) was added dropwise by syringe over ca 10 min. The cold bath was left in place but not recharged, and stirring was continued for 22 h. The mixture was quenched by addition of aqueous phosphate buffer [pH 7.2, prepared⁴¹ by mixing aqueous 1 M Na₂HPO₄ (3.42 volumes) and 1 M NaH₂PO₄ (1.58 volumes)] and extracted with Et₂O (3×80 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel $(27 \times 5.5 \text{ cm})$, using 5:95 EtOAc-hexane, gave 12,1E-6.1 (1.5 g, 44%) and 1E-6.1 (178.2 mg, 5%), both as yellowish oils. The 1Z,1E mixture (mainly E) had: ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (t, J = 7.0 Hz, 3 H), 1.31-1.37 (m, 4 H), 2.08 (dd, J = 6.5, 13.4 Hz, 2 H), 2.41-2.46 (m, 1 H), 2.53-2.60 (m, 1 H), 3.94-3.98 (m, 1 H), 3.94 (s, 3 H), 4.47 (d, J = 12.0 Hz, 1 H), 4.68 (d, J = 12.5 Hz, 1 H), 5.19 (s, 2 H), 5.45-5.54 (m, 2 H), 6.04 (dd, J = 8.0, 15.4 Hz, 1 H), 6.50 (d, J = 15.9 Hz, 1 H), 6.87 (d, J = 15.9 Hz, 1 H), 5.87 (d, J = 15.9 Hz, 1 8.5 Hz, 1 H), 6.90 (dd, J = 1.5, 8.5 Hz, 1 H), 7.01 (d, J = 1.5 Hz, 1 H), 7.28–7.49 (m, 10 H); ¹³C NMR (CDCl₃, 175 MHz) δ 14.0 (q), 22.4 (t), 27.2 (t), 31.8 (t), 33.9 (t), 56.0 (q), 70.1 (t), 71.1 (t), 80.2 (d), 109.5 (d), 114.0 (d), 119.7 (d), 124.9 (d), 127.2 (d), 127.4 (d), 127.7 (d), 127.9 (d), 128.3 (d), 128.4 (d), 128.6 (d), 130.3 (s), 132.1 (d), 132.2 (d), 137.1 (s), 138.8 (s), 148.1 (s), 149.8 (s).

The 1*E* isomer had: $[\alpha]_D$ –39.19 (*c* = 1.043, CHCl₃); FTIR (CDCl₃, cast) 2928, 1512, 1266, 1138 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.87 (t, *J* = 7.0 Hz, 3 H), 1.26–1.35 (m, 4 H), 2.05 (dd, *J* = 6.5, 13.4 Hz, 2 H), 2.37–2.43 (m, 1 H), 2.50–2.55 (m, 1 H), 3.91–3.95 (m, 1 H), 3.92 (s, 3 H), 4.44 (d, *J* = 12.0 Hz, 1 H), 4.65 (d, *J* = 12.5 Hz, 1 H), 5.18 (s, 2 H), 5.42–5.51 (m, 2 H), 6.01 (dd, *J* = 8.0, 15.9 Hz, 1 H), 6.47 (d, *J* = 15.9 Hz, 1 H), 6.84 (d, *J* = 8.5 Hz, 1 H), 6.88 (dd, *J* = 2.0, 8.5 Hz, 1 H), 6.98 (d, *J* = 2.0 Hz, 1 H), 7.28–7.45 (m, 10 H); ¹³C NMR (CDCl₃, 175 MHz) δ 14.0 (q), 22.4 (t), 27.2 (t), 31.7 (t), 33.9 (t), 56.0 (q), 70.1 (t), 71.0 (t), 80.1 (d), 109.5 (d), 114.0 (d), 119.6 (d), 124.8 (d), 127.2 (d), 127.4 (d), 127.6 (d), 127.8 (d), 128.30 (d), 128.34 (d), 128.5 (d), 130.2 (s), 132.1 (d), 132.2 (d), 137.1 (s), 138.8 (s), 148.0 (s), 149.8 (s); exact mass (electrospray) *m*/*z* calcd for C₃₁H₃₆NaO₃ (M+Na)⁺ 479.2557, found 479.2558.

For both fractions the C5–C6 double bond geometry was not determined.

1-(Benzyloxy)-4-[(3S)-3-(benzyloxy)decyl]-2-methoxybenzene (6.2)

5% Rh/Al₂O₃ (32.5 mg) was added to a solution of 1*E*,1*Z*-6.1 (unestablished C5–C6 geometry, 650.7 mg, 1.43 mmol) in EtOH (10 mL) and the diene was hydrogenated at room temperature (H₂-filled balloon) for 4 h. The mixture was filtered through a pad of Celite, using CH₂Cl₂ as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (26.0 × 4 cm), using 1:19 EtOAc-hexane, gave **6.2** (407.2 mg, 62%) as an oil: $[\alpha]_D$ 6.53 (*c* = 1.041, CHCl₃); FTIR (CDCl₃, cast) 2928, 1513, 1262, 1027 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.92 (t, *J* = 7.0 Hz, 3 H), 1.26–1.53 (m, 10 H), 1.54–1.68 (m, 2 H), 1.79–1.92 (m, 2 H), 2.59–2.65 (m, 1 H), 2.71–2.77 (m, 1 H), 3.44 (quint, *J* = 5.5 Hz, 1 H), 3.88 (s, 3 H), 4.51 (d, *J* = 12.0 Hz, 1 H), 4.57 (d, *J* = 11.5 Hz, 1 H), 5.15 (s, 2 H), 6.67 (dd, *J* = 2.0, 8.0 Hz, 1 H), 6.76 (d, *J* = 2.0 Hz, 1 H), 6.83 (d, *J* = 8.0 Hz, 1 H), 7.28–7.48 (m, 10 H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.2 (q), 22.7 (t), 25.3 (t), 29.9 (t), 31.4 (t), 31.9 (t), 33.8 (t), 36.0 (t), 56.0 (q), 70.9 (t), 71.3 (t), 78.5 (d), 112.5 (d), 114.4 (d), 120.2 (d), 127.3 (d), 127.5 (d), 127.75 (d), 127.79 (d), 128.4 (d), 128.5 (d), 136.0 (s), 137.5 (s), 139.1 (s), 146.3 (s), 149.7 (s); exact mass (electrospray) *m*/*z* calcd for C₃₁H₄₀NaO₃ (M+Na)⁺ 483.287, found 483.2873.

Larger scale experiment

5% Rh/Al₂O₃ (65.0 mg) was added to a solution of 1E,1Z-6.1 (unestablished C5–C6 geometry, 1.07 g, 2.35 mmol) in EtOH (10 mL) and the diene was hydrogenated at room temperature (H₂-filled balloon) for 4 h. The mixture was filtered through a pad of Celite, using CH₂Cl₂ as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (25.5 × 4 cm), using 1:19 EtOAc-hexane, gave 6.2 (684 mg, 63%) as an oil.

4-[(3S)-3-Hydroxydecyl]-2-methoxyphenol [(S)-2]

10% Pd/C (20.1 mg) was added to a solution of **6.2** (402.5 mg, 0.87 mmol) in EtOH (10 mL) and the compound was hydrogenated at room temperature (H₂-filled balloon) for 2 h. The mixture was filtered through a pad of Celite, using CH₂Cl₂ as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (22.5 × 2 cm), using first 1:4 EtOAc-hexane and then 1:1 EtOAc-hexane, gave (*S*)-**2** (211.4 mg, 86%) as a white solid: mp 48–49 °C; $[\alpha]_D$ 6.31 (*c* = 1.049, CHCl₃); FTIR (CDCl₃, cast) 3423, 2928, 1515, 1270 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.89 (t, *J* = 7.0 Hz, 3 H), 1.28–1.34 (m, 10 H), 1.41–1.51 (m, 2 H), 1.67–1.80 (m, 2 H), 1.82 (br s, OH), 2.57–2.63 (m, 1 H), 2.70–2.76 (m, 1 H), 3.60–3.65 (m, 1 H), 3.84 (s, 3 H), 5.81 (s, OH), 6.69 (dd, *J* = 2.0, 8.0 Hz, 1 H), 6.71 (d, *J* = 2.0 Hz, 1 H), 6.83 (d, *J* = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1 (q), 22.7 (t), 25.7 (t), 29.3 (t), 29.7 (t), 31.78 (t),

31.85 (t), 37.6 (t), 39.4 (t), 55.9 (q), 71.5 (d), 111.2 (d), 114.4 (d), 120.9 (d), 134.2 (s), 143.7 (s), 146.6 (s); exact mass (EI) *m/z* calcd for C₁₇H₂₈NaO₃ (M+Na)⁺ 303.1931, found 301.1931.

Larger scale experiment

10% Pd/C (34.2 mg) was added to a solution of **6.2** (684 mg, 1.49 mmol) in EtOH (10 mL) and the compound was hydrogenated at room temperature (H₂-filled balloon) for 17 h. The mixture was filtered through a pad of Celite, using CH₂Cl₂ as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (25 × 3 cm), using first 1:4 EtOAc-hexane and then 1:1 EtOAc-hexane, gave (*S*)-**2** (354 mg, 85%) as a white solid.

Chiral HPLC (CHIRALCEL OD column, 250×4.6 mm, 15:85 *i*-PrOH:hexane, 0.5 mL/min, wavelength 230 and 280 nm, 20 °C) showed the compound to have an ee of 68%.

The material isolated from natural sources had: $[\alpha]_D - 0.46$ (c = 0.29, CHCl₃). Chiral HPLC (CHIRALCEL OD column, 250 × 4.6 mm, 15:85 *i*-PrOH:hexane, 0.5 mL/min, wavelength 230 and 280 nm, 20 °C) showed the compound to be a 1:1.7 *R*:S mixture.

Preparation of (\pm) -2 for establishing enantiomeric purity of [(S)-2]

(a) (3S)-1-[4-(Benzyloxy)-3-methoxyphenyl]decan-3-ol

K₂CO₃ (284.0 mg, 2.06 mmol) was added to a stirred solution of (*S*)-**2** (192.1 mg, 0.69 mmol) in dry acetone (10 mL) and BnBr (0.16 mL, 1.37 mmol) was added. The stirred mixture was then heated at 60 °C for 12 h. The solvent was evaporated, water (20 mL) was added to the residue and the mixture was extracted with EtOAc (3 × 30 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (21 × 2 cm), using 1:4 EtOAc-hexane, gave (3*S*)-1-[4-(benzyloxy)-3-methoxyphenyl]decan-3-ol (247.0 mg, 97%) as a white solid: mp 63–65 °C; $[\alpha]_D$ 5.20 (*c* = 1.085, CHCl₃); FTIR (CDCl₃, cast) 3334, 2925, 1514, 1260 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (t, *J* = 7.0 Hz, 3 H), 1.29–1.34 (m, 10 H), 1.43–1.51 (m, 2 H), 1.67–1.81 (m, 2 H), 2.58–2.65 (m, 1 H), 2.71–2.77 (m, 1 H), 3.60–3.65 (m, 1 H), 3.88 (s, 3 H), 5.13 (s, 2 H), 6.68 (dd, *J* = 1.5, 8.0 Hz, 1 H), 6.77 (d, *J* = 1.5 Hz, 1 H), 6.81 (d, *J* = 8.0 Hz, 1 H), 7.28–7.45 (m, 5 H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1 (q), 22.7 (t), 25.7 (t), 29.3 (t), 29.7 (t), 31.75 (t), 31.84 (t), 37.7 (t), 39.2 (t), 56.0 (q), 71.3 (t), 71.4 (d), 112.5 (d), 114.4 (d), 120.2 (d), 127.3 (d), 127.7 (d), 128.5 (d), 135.6 (s), 137.5 (s), 146.4 (s), 149.7 (s); exact mass (electrospray) *m*/*z* calcd for C₂₄H₃₄NaO₃ (M+Na)⁺ 393.24, found 393.2395.

(b) 1-[4-(Benzyloxy)-3-methoxyphenyl]decan-3-one⁴³

NaHCO₃ (153.2 mg, 1.82 mmol) and Dess-Martin periodinane (309.5 mg, 0.73 mmol) were added sequentially to a stirred and cooled (0 °C) solution of (3*S*)-1-[4-(benzyloxy)-3-

methoxyphenyl]decan-3-ol (225.0 mg, 0.61 mmol) in dry CH₂Cl₂ (4 mL). Stirring at 0 °C was continued for 14 h. The reaction was quenched by addition of saturated aqueous Na₂S₂O₃ (4 mL) and the mixture was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (22.5 × 2 cm), using 1:5 EtOAc-hexane, gave 1-[4-(benzyloxy)-3-methoxyphenyl]decan-3-one (203.1 mg, 90%) as a white solid: mp 53–55 °C; FTIR (CDCl₃, cast) 2928, 1712, 1514, 1262 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.89 (t, *J* = 7.5 Hz, 3 H), 1.24–1.32 (m, 8 H), 1.53–1.59 (m, 2 H), 2.37 (t, *J* = 7.5 Hz, 2 H), 2.69 (t, *J* = 7.5 Hz, 2 H), 2.83 (t, *J* = 7.5 Hz, 2 H), 3.87 (s, 3 H), 5.12 (s, 2 H), 6.65 (dd, *J* = 1.5, 8.5 Hz, 1 H), 6.74 (d, *J* = 1.5 Hz, 1 H), 6.80 (d, *J* = 8.5 Hz, 1 H), 7.27–7.44 (m, 5 H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1 (q), 22.6 (t), 23.8 (t), 29.1 (t), 29.2 (t), 29.5 (t), 31.7 (t), 43.1 (t), 44.4 (t), 56.0 (q), 71.2 (t), 112.4 (d), 114.4 (d), 120.1 (d), 127.3 (d), 127.8 (d), 128.5 (d), 134.6 (s), 137.4 (s), 146.6 (s), 149.7 (s), 210.4 (s); exact mass (electrospray) *m/z* calcd for C₂₄H₃₂NaO₃ (M+Na)⁺ 391.2244, found 391.2240.

(c) (\pm) -1-[4-(Benzyloxy)-3-methoxyphenyl]decan-3-ol

NaBH₄ (20.2 mg, 0.53 mmol) was added in portions to a stirred solution of 1-[4-(benzyloxy)-3-methoxyphenyl]decan-3-one (196.3 mg, 0.53 mmol) in dry MeOH (5 mL). Stirring was continued for 3 h and then ice water (20 mL) was added. The mixture was extracted with EtOAc (3 × 30 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated to give (\pm)-1-[4-(benzyloxy)-3-methoxyphenyl]decan-3-ol (193.7 mg 97%) as a white solid: mp 65–66 °C; FTIR (CDCl₃, cast) 3230, 2920, 1515, 1256 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.90 (t, *J* = 7.0 Hz, 3 H), 1.26–1.34 (m, 10 H), 1.42–1.52 (m, 2 H), 1.67–1.81 (m, 2 H), 2.59–2.65 (m, 1 H), 2.71–2.77 (m, 1 H), 3.60–3.65 (m, 1 H), 3.88 (s, 3 H), 5.13 (s, 2 H), 6.68 (dd, *J* = 2.0, 8.0 Hz, 1 H), 6.77 (d, *J* = 2.0 Hz, 1 H), 6.81 (d, *J* = 8.0 Hz, 1 H), 7.28–7.45 (m, 5 H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1 (q), 22.7 (t), 25.7 (t), 29.3 (t), 29.7 (t), 31.76 (t), 31.84 (t), 37.7 (t), 39.2 (t), 56.0 (q), 71.3 (t), 71.4 (d), 112.5 (d), 114.4 (d), 120.2 (d), 127.3 (d), 127.7 (d), 128.5 (d), 135.6 (s), 137.5 (s), 146.4 (s), 149.7 (s); exact mass (electrospray) *m/z* calcd for C₂₄H₃₄NaO₃ (M+Na)⁺ 393.2400, found 393.2401.

(d) (\pm) -4-[(3-Hydroxydecyl]-2-methoxyphenol [(\pm)-2]¹⁵

10% Pd/C (9.4 mg) was added to a solution of (\pm) -1-[4-(benzyloxy)-3-methoxyphenyl]decan-3-ol (190.0 mg, 0.51 mmol) in EtOH (6 mL) and the mixture was stirred under H₂ (balloon) for 1.5 h. The mixture was filtered through a short pad of Celite which was rinsed with EtOAc. Evaporation of the solvent gave (\pm) -2 (143.5 mg, 99%) as a white solid that was pure (¹H NMR): 59–60 °C; FTIR (CDCl₃, cast) 3400, 2921, 1517, 1154 cm⁻¹; ¹H NMR

(CDCl₃, 500 MHz) δ 0.89 (t, *J* = 7.0 Hz, 3 H), 1.25–1.34 (m, 10 H), 1.41–1.52 (m, 2 H), 1.54 (br s, OH), 1.67–1.80 (m, 2 H), 2.57–2.63 (m, 1 H), 2.70–2.76 (m, 1 H), 3.60–3.65 (m, 1 H), 3.86 (s, 3 H), 6.69–6.71 (m, 2 H), 6.83 (d, *J* = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1 (q), 22.7 (t), 25.6 (t), 29.3 (t), 29.7 (t), 31.79 (t), 31.83 (t), 37.6 (t), 39.4 (t), 55.9 (q), 71.5 (d), 111.1 (d), 114.3 (d), 120.9 (d), 134.2 (s), 143.7 (s), 146.5 (s); exact mass (electrospray) *m/z* calcd for C_{17H27O3} (M–H)[–] 279.1966, found 279.1966.

References

- (30) Purushotham, S.; Chinnababu, B.; Venkateswarlu, Y. Helv. Chim. Acta 2014, 97, 999–1003.
- (31) Mondal, S.; Mohamed, R. K.; Manoharan, M.; Phan, H.; Alabugin, I. V. Org. Lett. 2013, 15, 5650–5653.
- (32) Ramirez, F.; Dershowitz, S. J. Org. Chem. 1957, 22, 41-45.
- (33) Numerous values for the specific rotation of 4.2 are reported in the literature: (a) Reference 24: [α]_D-15.6 (c = 1.33, MeOH); (b) Schobert, R.; Jagusch, C. Synthesis 2005, 2421-2425: [α]_D-15.0 (c = 1, MeOH); (c) Cammas, S.; Renard, I.; Boutault, K.; Guérin, P. *Tetrahedron: Asymmetry* 1993, 4, 1925-1930: [α]_D-5.0 (c = 2, dioxane); (d) Miller, M. J.; Bajwa, J. S.; Mattingly, P. G.; Peterson, K. J. Org. Chem. 1982, 47, 4928-4933: [α]_D-5.8 ± 1 (c = 9.5, MeOH); (e) Cooper, J. K.; Li, K.; Aubé, J.; Coppage, D. A.; Konopelski, J. P. Org. Lett. 2018, 20, 4314-4317: [α]_D-7.1 (c = 1.35, MeOH).
- (34) Shiraiwa, T.; Sado, Y.; Inoue, M.; Sakamoto, K.; Miyazaki, H.; Kurokawa, H. Bull. Chem. Soc. Jpn. 1988, 61, 899–903.
- (35) Alvarez, C.; Pérez, M.; Zúñiga, A.; Gómez, G.; Fall, Y. Synthesis 2010, 3883–3890.
- (36) Racemic compound is known: Shiina, I.; Kawakita, Y.; Ibuka, R.; Yokoyama, K.; Yami, Y. Chem. Commun. 2005, 4062–4064.
- (37) Martin, P. Helv. Chim. Acta 1989, 72, 1554–1582.
- (38) Wang, M.; Mickens, J.; Gao, M.; Miller, K. D.; Sledge, G. W.; Hutchins, G. D.; Zheng, Q.-H. Steroids 2009, 74, 896–905.
- (39) Cf. Narita, K.; Kikuchi, T.; Watanabe, K.; Takizawa, T.; Oguchi, T.; Kudo, K.; Matsuhara, K.; Abe, H.; Yamori, T.; Yoshida, M.; Katoh, T. *Chem. Eur. J.* 2009, *15*, 11174–11186.
- (40) Guan, J.; Zou, Y.; Gao, P.; Wu, Y.; Yue, Z. Chin. J. Chem. 2010, 28, 1613–1617.
- (41) Molecular Cloning: A Laboratory Manual; Sambrook, J.; Russell, D. W. Eds.; Cold Spring Harbor Laboratory Press: New York, 2001; p A1.5.

- (42) Prasad, V. P.; Wagner, S.; Keul, P.; Hermann, S.; Levkau, B.; Schäfers, M.; Haufe, G. Biorg. Med. Chem. 2014, 22, 5168–5181.
- (43) Hori, Y.; Suruga, C.; Akabayashi, Y.; Ishikawa, T.; Saito, M.: Myoda, T.; Toeda, K.; Maeda, Y.; Yoshida, Y. *Eur. J. Org. Chem.* **2017**, 7295–7299.