Overcoming arithmophobia:

A statistics primer

Laura Hamonic & Maria Tan

February 2018

Purpose

To refresh your memory about basic descriptive stats you will encounter in survey research

To help you to decide what types of stats are appropriate for types of survey data

Learning Outcomes

- Recognize the appropriate level of measurement when looking at survey items
- Identify which type of data lends itself best to which descriptive statistics (e.g., central tendency)
- Interpret the meaning of measures of dispersion

Outline

- The Role of Stats
- Variables

4

- Levels of Measurement (NOIR)
- Descriptive Stats
 - Frequency distributions
 - Central tendency
 - Dispersion
- Inferential Stats & Hypotheses

Role of statistics

- What are stats?
 - Data vs Stats

- Why are they important?
 - Getting to know your data

Variables

- Independent vs. dependent variables

- Discrete vs. Continuous variables

- Univariate vs. Bivariate

Levels/scales of measurement (NOIR)

- Nominal
- Ordinal
- Interval
- Ratio

Nominal (aka categorical)

Please select the area of practice that best applies to you:

- Academic Institution
- Hospital Library
- Public Library
- Government Library
- Other

Ordinal (aka ranked)

Please select the answer that best describes your level of education

- LIS Doctorate
- LIS Masters
- LIS Bachelors
- LIS Technical Diploma

Interval

Some temperatures (Celsius & Fahrenheit)

Ratio

11

Race Results

Lewis	2:30
Kamran	2:32
Rainier	5:00

What about Likert Scales?

Compared to before this session, how confident are you about which library to approach for specific resources and services?

Much more confident

Somewhat more confident

No change

Somewhat less confident

Not at all confident

How well did the session meet your expectations?

NOIR Activity, Part 1

- How many bags of m&ms do you eat in a week? Less than 1, 1-5, 5-10, More than 10
- What is your age in numbers?
- What is your favourite colour of m&m?

NOIR Activity, Part 1

- On a scale of 1-4, rate how much you like m&ms, where 1 is not at all, and 4 is very much
- What is the ideal temperature in celsius at which to eat m&ms?

NOIR Activity, Part 2

- What is your independent & dependent variable

 Identify the types of data (in terms of levels of measurement) you would want to answer your study's question

Central tendency

"Average" = 1 value that best represents the entire group of scores

- **Mode**: Value that occurs the most often
- Median: Value of the middle case
- Mean: Sum of the individual values divided by the number of cases

Mode	Which value occurs the most often Can have >1 mode	Most general, least precise	Nominal & ordinal data - mutually exclusive categories
Median	Middle/Centremost case Focus: # of cases, not their value	Not sensitive to extreme scores	When have extreme scores
Mean	Point at which all the values are equal in weight on both sides of the distribution Focus: value of the cases	Very sensitive to extreme scores	Interval & Ratio data No extreme scores

ł

Normal Distribution

19

Central tendency & Skew

Source: http://my.ilstu.edu/~gjin/hsc204-hed/Module-5-Summary-Measure-2/Module-5-Summary-Measure-26.html

Central tendency – What are all these weird symbols

Central tendency – M&M activity

- Pour out your m&ms and organize your data points by colour
- Mode?
- Frequency?
- Median?

Central tendency – M&M activity

- Does it work for mean?

Mode can be used for nominal, ordinal, interval, ratio.

Median can be used for ordinal, interval, and ratio data

Mean can only be used for interval and ratio data

Dispersion

- Range = difference between highest and lowest values
- Standard Deviation = distance from the mean

Standard deviation explained and visualized https://www.youtube.com/watch?v=MRqtXL2WX2M

Source: https://www.mathsisfun.com/data/standard-normal-distribution.html

Variance (population):
$$\sigma^2 = \frac{\sum (x-\mu)^2}{n}$$

Standard Deviation (population):
$$\sigma = \sqrt{\frac{\sum (x-\mu)^2}{n}}$$

Variance (sample): $s^2 = \frac{\sum (x - \bar{x})^2}{n-1}$

Standard Deviation (sample):

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Range = maximum-minimum

Central tendency & Dispersion

 What measures can be done in your articles? (Activity) Describing relationships between variables: Correlations

How does the value of 1 variable changes when another variable changes?

Do the variables move in the same direction, or in opposite directions?

How strong is that relationship between the variables?

Correlations

Positive correlation: values move together

Negative correlation: values move in opposite directions

Adapted from https://www.mathsisfun.com/data/correlation.html

Correlation & Variability

Sample diversity can affect correlation strength

Determining Correlation Strength

Correlation Coefficient Scale

- Eyeballing
 method →
- Coefficient of determination (calculation)

+ r values		Positive	– r values	Negative
and a start	1.0	Perfect +	-1.0	Perfect –
	8 to .99	Very strong+	–.8 to –.99	Very strong-
	.6 to .8	Strong +	6 to8	Strong –
	.4 to .6	Moderate +	4 to6	Moderate –
	.2 to .4	Weak +	2 to4	Weak –
	0 to .2	Very weak +	0 to2	Very weak –

Source: https://spencermath.weebly.com/home/interpreting-the-correlation-coefficient

Calculating Correlations

Source: Salkind, N. J. (2008). Statistics for people who (think they) hate statistics. 3rd ed. Thousand Oaks: SAGE Publications. (p.89)

Level of Measurem	ent and Examples	Type of Correlation	Correlation Being Computed
Variable X	Variable Y		
Nominal (voting preference, such as Republican or Democrat)	Nominal (sex, such as male or female)	Phi coefficient	The correlation between voting preference and sex
Nominal (social class, such as high, medium, or low)	Ordinal (rank in high school graduating class)	Rank biserial coefficient	The correlation between social class and rank in high school
Nominal (family configuration, such as intact or single parent)	Interval (grade point average)	Point biserial	The correlation between family configuration and grade point average
Ordinal (height converted to rank)	Ordinal (weight converted to rank)	Spearman rank coefficient	The correlation between height and weight
Interval (number of problems solved)	Interval (age in years)	Pearson correlation coefficient	The correlation between of number problems solved and age in years

Correlations \neq Causation Number of people who drowned by falling into a pool correlates with Films Nicolas Cage appeared in

34

Intro to Inferential Stats

Hypotheses

- Hypothesis and null hypothesis

- Directional and non-directional hypotheses

NEGATIVE

Hypotheses

- Hypothesis Testing
- Significance Testing

THANKS!

Any questions?

Resources & References

- Australian Bureau of Statistics. <u>Understanding Statistics</u>.
- Byrne, G. (2007). <u>A Statistics Primer: Understanding Descriptive and</u> <u>Inferential Statistics</u>. Evidence Based Library and Information Practice, 2(1), 32-47.
- Kranzler, J.H. (2011). Statistics for the Terrified.
- Salkind, N. J. (2011). Statistics for people who (think they) hate statistics.
- University of North Texas Libraries. <u>Statistics for Librarians</u>. (4 videos)