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Abstract

This thesis aims at introducing a methodology for clinical evaluation of orthodontic

treatments using three-dimensional dento-maxillofacial images. Since complemen-

tary information is achieved by integrating multiple modalities, cone-beam com-

puted tomography (CBCT) and stereophotogrammetry technologies are used to de-

velop a methodology for tracking bone and facial skin variations over time.

Our proposed methodology consists of a two-phase registration procedure. In

the first phase, the multimodal images are registered using an extrinsic landmark-

based registration followed by a robust Iterative Closest Points (ICP) method. In

the second phase, by utilizing specific anatomical landmarks, single modal images

of the skull and the mandible are registered over time using an intrinsic landmark-

based registration method followed by the robust ICP algorithm. The results of

registrations show that the signed error distribution of both mandible and skull reg-

istrations follow a normal distribution while all the errors fall within the CBCT

precision range.
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Chapter 1

Introduction

Medical Imaging refers to the science of probing structures and functions of the hu-

man body, through medical images obtained from various imaging modalities. One

of the current important issues in medical imaging is the ability to track and eval-

uate patients’ treatment in 3D over time (also called 4D tracking), through various

imaging modalities (MRI, CT, and photogrammetry) obtained before and after the

treatment. The information obtained from this process may help with developing

better treatments and patient outcomes. This study aims at introducing a method-

ology for tracking bone and skin variations of the human head over a long period

of time, after an orthodontic treatment has been performed. Our proposed tracking

system is shown to capture tissue variations accurately for several subjects and over

a one-year period of time.

Various imaging modalities have been employed in the field of dentistry. Tra-

ditionally, the structures of teeth and jaws have been evaluated by using two di-

mensional images obtained from projecting X-ray sources to the patients’ heads.

Cephalometric and panoramic images were for decades the most frequently used

modalities by dentists. Although the amount of X-ray radiated to the patients’ heads

were safe, there were some limitations [24] that prevented the dentists from accu-

rately measuring the anatomy of the patients. These limitations are superposition of

anatomical structures and distortions due to hardware limitations in x-ray imaging

systems.

During the past two decades, three dimensional (3D) imaging and modeling

have brought the “Anatomic Truth” [25] to the field of dentistry. More specifi-

1



cally, three dimensional images do not suffer from projection or superposition of

structures that lead to misrepresentation of the anatomy [6, 61]. Among the imag-

ing systems used in dentistry, Cone-Beam Computed Tomography (CBCT) is used

to represent and measure the full anatomy of the head including skull, teeth, and

mandible.

Recent advances in the field of CT imaging have led to the development of

Cone Beam Computed Tomography (CBCT) systems, which use a cone shaped X-

ray beam to construct 3D images of the patients. In comparison to conventional CT,

patients using CBCT are exposed to lower X-ray dosages, around 100Sv which is

only 1% of the conventional medical CT exposure. This technology produces ac-

curate images of bony structures of the maxillodental areas which have widespread

applications in implantology [4], mandibular skeletal corrections [11], and maxillo-

facial morphology [48]. As investigated by [46, 38, 33], the measurements obtained

from CBCT images are of high accuracy for maxillodental applications.

Although images obtained from a single modality, such as CBCT, may suffice

to solve some clinical dental issues, in more general cases, dentist must deal with

problems relating to different body tissues. Hence, as discussed in [5], it is essen-

tial to utilize other imaging modalities in order to get complementary information

to capture a complete 3D model of the maxillodental structures and tissues. As a

result, adding skin surface information using stereo-photogrammetry to the skeletal

data taken from CBCT may be essential. As an example, three-dimensional im-

ages of the skin along with color information may give surgeons an assessment on

how swellings evolve during patient recovery. The ability to fuse the two imaging

modalities enables interactive surgical planning, leading to objective and accurate

tracking of surgery outcomes. Many studies such as [32, 3, 63, 49, 51, 34, 31]

have shown the reliability of digital measurements using stereo-photogrammetry,

and therefore have recommended its use as an accurate surface imaging system for

clinical applications.

During the past decade, many studies have been conducted on fusing CBCT and

photogrammetry including evaluating their accuracies [46, 38, 3, 18, 49, 51, 63] and

the ability to track patients over time [11]. The most relevant study is a pilot study
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in [35] on the registration of skull and face data, both extracted from CT. This

research demonstrated the importance of 4D image analysis in orthodontics and

dentistry. However, to the best of our knowledge, no research has been conducted

capable of tracking soft and hard tissues simultaneously during an orthodontic treat-

ment for long periods of time (greater than six months).

1.1 Thesis Contributions

Our proposed tracking methodology includes two registration phases. The first

phase consists of registering the CBCT and photogrammetry data at each patient’s

visit, using an extrinsic landmark-based registration technique. The second phase

consists of registering the fused CBCT and photogrammetry data performed at each

visit over a long period of time (more than six months), using feature points on the

patient’s skull and mandible since fixed external targets are impossible to use in this

case. One can see in Figure 1.1 an illustration of the proposed image registration

process:

1. Data Acquisition

The first step consists of acquiring almost simultaneously the bony struc-

tures of the head using CBCT and face surface structures using a 3dMD

stereo-photogrammetry system. Before the acquisition process, the patient is

asked to wear a target-band on the forehead composed of six titanium spheres,

which can be imaged in both modalities without any problems. This process

is explained in Section 5.1.

2. Pre-Processing

In the second step, which is discussed in Section 5.2, the 3D geometry of the

bony structures is extracted from the CBCT using the well-known Marching

Cubes algorithm. This technique extracts a polygonal model from tracking

an iso-density value corresponding to bone. In a similar way, a polygonal

model of the patient’s face is extracted by solving the correspondence prob-

lem between the four cameras looking at the patients. The face color taken

by two high-resolution color cameras is then added onto the face geometry.
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Figure 1.1: Procedure of complete registration of CBCT and 3dMD maxillodental
data over time.

Once 3D polygonal models of the bone and the face are extracted, a filtering

process removes adaptively (based on curvature) redundant points and deals

with outliers.

3. Registration

The third step involves a two phases registration process:

Phase1 : The first phase consists of extracting the targets in both modalities

and then registering them using a 3D rigid registration algorithm. The two

geometric models (skull and face) are then registered in the same coordinate

systems and saved as a unique polygonal shell that will be used as one entity.

This phase of registration procedure is described in Section 5.3.1.

Phase2 : The second phase, as explained in Section 5.3.2, uses intrinsic land-

marks on the skulls geometry at times T1 and T2 to initialize the registration.

Based on this registration, an automatic robust registration algorithm is ap-

plied. The two shells containing the registered bone-face 3D models at each
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time step are then transformed in the same coordinate system. The assump-

tion here is that most of the upper skull will not have change during the mea-

suring periods.

Since the mandibles move independently of the upper skull and therefore

should be registered separately, the same registration procedure as explained

in Section 5.3.2, with specific extrinsic landmarks was performed on the

mandibles after their segmentation from the upper skull. It was again as-

sumed that most of the mandible will not have change during the measuring

periods.

4. Evaluation

The last step discussed in Section 5.5.3 computes the difference between the

corresponding points in two time steps and displays them using color codes.

We also determine the validity of our proposed registration process by using

a goodness of fit test to show that all the skull and the mandible results, after

trimming, follow a normal distribution with the significance level of 95%,

indicating that there is no systematic bias due to our methodology.

1.2 Thesis Organization

This thesis is organized as following:

Chapter 2: In Chapter 2, we explain hard tissue acquisition using X-ray modality.

We describe the capabilities of this modality and how precise the measurements are.

We also introduce the link between imaging quality and dose for different X-ray

dental imaging modalities. In Sections 2.3.1 and 2.3.3 we will describe the working

principles of two tomographic X-ray imaging modalities: Conventional Computed

Tomography (CT) and Cone-Beam Computed Tomography (CBCT). We will de-

scribe various algorithms for back-projection as it relates to image reconstruction

and the extraction of geometry through the Marching Cubes algorithm. In Sec-

tion 2.5, the CBCT system used for this study is described.

Chapter 3: In Chapter 3, we introduce different modalities used for surface ac-

quisition, and explain their accuracies and capabilities. We then discuss how pho-
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togrammetry can be used for skin acquisition. Two challenges in photogrammetry,

i.e correspondence problem and triangulation, are described in Section 3.3. The last

section describes the 3dMD system used in this study.

Chapter 4: In Chapter 4, the registration problem is defined, and the role of regis-

tration in this project is explained. Then two registration methods are presented,

1. Landmark-based methods, and

2. Template-based iterative closest point algorithm.

The chapter concludes by introducing skull and mandible landmark systems used

in literature for registration, and a selection of landmarks used in this study.

Chapter 5: In Chapter 5, we will first explain the data acquisition and pre-processing

techniques used. Then, the two phases of registration procedures are explained.

Section 5.3.1 introduces a methodology for multi-modal registration of CBCT and

3dMD, and Sections 5.3.2 and 5.3.2 explain the multi-temporal registrations for

the skull and the mandible respectively. Then we explain the goodness-of-fit tests,

which represent how well our registered data are following the normal distribution.

The results of our normality tests are shown in Sections 5.5.3 for both skull and

mandible registrations.

Chapter 6: We conclude and describe future avenues of the research in Chapter 6.
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Chapter 2

Hard Tissue Acquisition: X-Ray
Computed Tomography

2.1 Introduction to Computed Tomography:
Reliability of the Measurements

Maxillofacial treatment refers to the field that treats the entire anatomical struc-

tures of the head: skull, face, mouth, jaws, and related areas. Three-dimensional

visualization and imaging techniques have been used in this field for diagnosis, pre-

operative planning, and surgical navigation. Multiple imaging modalities are now

used to construct 3D models of different parts of the head. Bony structures can be

measured in high definition from cone-beam computed tomography (CBCT) scan-

ners, soft tissues like muscles from MRI, and skin from stereo-photogrammetry.

In this chapter, we will study how CBCT can be used to extract exact geometric

models of the bony structures of the head.

CBCT technology has gone through a rapid growth since its introduction in

2000. Improved acquisition speed, resolution, and lower X-ray dosage have made

CBCT the primary choice for maxillofacial applications.

Many studies have investigated the accuracy and repeatability of measurements

performed on CBCT images. Moerenhout et al. [46] assessed the accuracy of mea-

surements on a phantom’s 3D face surface obtained from a CBCT scanner, and

compared them with higher precision measurements from optical laser scans. Their

study demonstrated the reliability of distance measurements between facial land-

marks with a maximal deviation of 1.9mm. Howe et al. [28] also took advantage of
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CBCT to perform small measurements on bony structures. They compared calliper

measurements with the CBCT measurements for 414 data points on the skull, and

reported a standard deviation of these measurements to be on average 1.1mm.

Moreover, Lascala et al. [38] investigated the accuracy of linear measurements

in CBCT images of head structures. They collected 13 real linear measurements

out of 13 chosen anatomical landmarks, and compared them with those taken from

CBCT scans. Their results showed that the real measurements are always larger

than CBCT ones, but the differences are only significant for internal skull mea-

surements. They demonstrated that CBCT is a highly precise scanning system for

dento-maxillofacial applications.

In this chapter, the theory and physics behind X-ray imaging will be discussed.

Then two X-ray Computed Tomography (CT) modalities known as conventional

CT and cone-beam CT will be introduced, and the advantages and disadvantages of

each will be discussed. In Section 2.4, a generic CT scanner will be described from

the viewpoint of data acquisition, image reconstruction, and image segmentation.

In the last section, the structure of the NewTom CBCT machine from which all the

data is obtained, and the process of image acquisition will be discussed.

2.2 Fundamentals of X-Ray Imaging

X-ray is an electromagnetic radiation that can be viewed as photon particles, with

energies ranging between 120 electron-Volts (eV) to 120 KeV. They are categorized

to be soft or hard depending on their energy. Hard X-rays, which have energy levels

between 12 to 120 KeV can penetrate solid materials, and therefore can be utilized

to image the inside of objects, such as body tissues. As discussed in [58], when

an X-ray beam is radiated into the body, the photons can either be absorbed by

the other atoms, or transformed into an electron-positron pair. This process makes

the radiation attenuated and therefore causes a change in the intensity of the beam.

One can see the attenuation process in Equation 2.1. The intensity of the outgoing

beam Ioutgoing is related to the incoming intensity Iincoming by the absorption of

the material (µ), and the width (x2 − x1) of the material traversed, as depicted in
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Figure 2.1: The outgoing X-ray intensity is related to the incoming intensity, mate-
rial of the tissue, and the width of the medium.

Figure 2.1:

Ioutgoing = Iincoming e
−µ∗(x2−x1)· (2.1)

Since most tissues are not homogeneous, the linear attenuation coefficient (µ)

changes from one point to another. Therefore, Equation 2.1 for nonhomogeneous

mediums should be re-written as follows:

Ioutgoing = Iincoming e
−

∫ x2
x1

µ(x)dx·

The outgoing attenuated X-ray beam can then be absorbed and measured by

X-ray detectors. The sensitivity and quality of an image can be quantified by the

measure of signal to noise ratio (SNR). This measure shows the ratio of the signal

power to the unwanted noise power. In the field of imaging, SNR is defined as

follows:

SNR =
µsignal
σsignal

where µsignal is the average signal value, and σsignal is the standard deviation of the

signal around a neighbourhood. This factor is dependent on the X-ray dose as the

detectability of X-ray decreases when the X-ray acquisition dose decreases.

The X-ray dosage needed for performing tissue radiography varies depending

on the devices used. Even low doses might be sufficient to damage or modify cells.

If the repairing mechanisms of the human body fail, and the process of irradiated

cells’ fixation does not work well, then cancer or genetic changes can happen [58].

That is the main reason for physicians to check the risks of radiological devices,
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Table 2.1: Comparison of effective radiation dose for orthodontic X-ray technolo-
gies vs. their equivalent natural radiation. Courtesy of James Mah, DDS, MSc,
X-ray Imaging and Oral Healthcare, 2006 [42].

Examination Effective Radiation Dose (mSv) Equivalent Natural Radiation
Panoramic 3 to 11 half to one day

Cephalogram 5 to 7 half to one day
Occlusal Film 5 half day

Bite Wing 1 to 4 half day
Full Mouth Series 30 to 170 4 to 21 days

TMJ Series 20 to 30 3 to 4 days
CBCT Exam 40 to 135 4 to 17 days
Medical CT 8000 1000 days

and they have to decide about an imaging system that not only can image the de-

sired tissues, but keeps the dosage as low as possible for the patient. This radiation

protection is referred to as keeping the exposure “ALARA (As Low As Reason-

ably Achievable)” [6]. Table 2.1 [42] shows the effective radiation doses for many

orthodontic X-ray modalities, and compares each with the equivalent natural back-

ground radiation. As one can observe from the table, the decision to use some of

these radiological modalities may have a huge effect on the radiation exposure to

the patient.

2.3 Computed Tomography Modalities

2.3.1 Conventional Computed Tomography (CT)

Tomography comes from the Greek word “Tomos” which means sectioning or slic-

ing. Computed Tomography known as CT is a tomography-based imaging method

that employs computer processing and mathematical analysis of two dimensional

images (cross-sections) taken by the X-ray CT scanners to generate three dimen-

sional images of the objects. This technology measures X-ray photons transmitted

through the subject’s organ along a single projection line, and presents the X-ray

attenuation properties of the body [58] quantified as Hounsfield numbers.
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Figure 2.2: The difference of scanning techniques in a: CT and b: CBCT. From
Arun Singh, Imaging Sciences, Hatfield PA,USA [54].

Conventional CT scanners consist of an X-ray generator (tube) and an X-ray

detector, which are mounted on a CT scanner device, on the opposite side of each

other, as shown in Figure 2.2.a. This source/detector assembly rotates as a unit

around the object, and takes sequential scans at fixed angular increments. A cross-

section or slice can be produced when the assembly accomplishes a 360 degrees

rotation. During a complete rotation, the detector receives numerous snapshots of

the X-ray beam from different angles. After restoring the data for cross-section

reconstruction, the patient table moves forward for acquiring other slices. These

slices will be later used to build a three dimensional model by stacking them on top

of each other.

2.3.2 Conventional CT versus Cone-Beam CT

The high dosage of radiation in conventional CT scanners is a result of separate

X-ray exposure for each slice. However, advances in Computed Tomography tech-

nology have led to Cone-Beam Computed Tomography (CBCT), which reduces the

exposure to only one rotation of the X-ray generator-detector assembly, reducing

radiation risks, acquisition time, effects of patients movements, and image distor-

tion [53].

Some CBCT devices are also capable of limiting the X-ray exposure to the area

of interest, hence limiting radiation to organs that do not need to be imaged. The
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CBCT X-ray generator is made of smaller and less costly materials in comparison

to conventional CT scanners [59].

2.3.3 Cone-Beam Computed Tomography (CBCT)

CBCT utilizes cone shaped rather than fan shaped X-ray beams to provide volu-

metric structures of craniofacial regions. This technology has been optimized for

dento-maxillofacial assessments due to its high accuracy in these areas [46].

In CBCT, the generator-detector assembly is constructed with a cone shaped

X-ray generator, as well as a two dimensional (2D) detector array mounted on op-

posite side of each other, as depicted in Figure 2.2.b. With only one rotation of the

assembly, the detector detects the attenuated X-rays received by the subject and is

able to reconstruct multiple slices in one rotation. This capability, in comparison to

conventional CT scanners, helps to reduce scan time and therefore artefacts result-

ing from longer scanning times. In addition, as one can observe in Table 2.1, the

effective radiation dose in CBCT systems is only 1 % of that in conventional CT

scanners.

2.4 Mechanism of Computed Tomography Scanners

2.4.1 Data Acquisition

As described earlier, the detector receives the beams from different angles. Fig-

ure 2.3 shows the distribution of x-ray beams over the object at an angle θ. Project-

ing the beams on X and Y axis gives us the new r and s coordinates:

[
r
s

]
=

[
cosθ sinθ
−sinθ cosθ

] [
x
y

]
⇒ x = r.cosθ − s.sinθ·

y = r.sinθ + s.cosθ·

Using the intensity attenuation Equation 2.1, one can represent the imaging pro-

cess as:

Iθ(r) = I0.e
−

∫+∞
−∞ µ(r.cosθ−s.sinθ,r.sinθ+s.cosθ)ds·
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Figure 2.3: X-ray beam attenuation. Courtesy of Paul Suetens, Fundamentals of
Medical Imaging, 2009 [58].

Taking the logarithm on both sides:

ln Iθ(r) = ln I0.e
−

∫+∞
−∞ µ(r.cosθ−s.sinθ,r.sinθ+s.cosθ)ds·

By rearranging the terms we have:

pθ(r) = − ln
Iθ(r)

I0
=

∫ +∞

−∞
µ(r.cosθ − s.sinθ, r.sinθ + s.cosθ)ds· (2.2)

This integral represents the integral of the density function µ projected on r

and s coordinates at different angles θ. The integral is referred to as pθ(r) [58]. A

sinogram is made by stacking all pθ(r)s, and making p(r, θ) which has a sinusoidal

shape. This process of making a sinogram is similar to the Radon Transform as

described in [58].

2.4.2 Image Reconstruction: Back-projection Algorithm

The data received from each rotation goes under tomographic reconstruction to

build a two dimensional cross-sectional image. In this process, each data point

is being convolved with the neighbours, and a back-projection algorithm is used to

reconstruct the slice. The results can be later used to build the three dimensional

model by stacking each slice on top of the other.
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The back-projection algorithm is based on Equation 2.2, in which µ is the linear

attenuation coefficient that represents the distribution of X-ray intensity inside the

irradiated tissue. Having the sinogram p(r, θ), the back-projection algorithm uses

the inverse of Radon Transform to extract the density function µ:

µ(x, y) = R−1(p(r, θ))·

Finding the density function µ is possible based on the Central Slice Theorem.

If we consider F (k.cosθ, k.sinθ) as the 2D Fourier Transform of µ(x, y),

F (k.cosθ, k.sinθ) =

∫ +∞

−∞

∫ +∞

−∞
µ(x, y)e−2πi(k.cosθ.x+k.sinθ.y)dxdy,

and Pθ(k) as 1D Fourier Transform of Pθ(r),

Pθ(k) =

∫ +∞

−∞
Pθ(r)e

−2πi(k.r)dr,

then,

P (k, θ) = F (k.cosθ, k.sinθ),

where P (k, θ) is the 2D function of Pθ(k). Intuitively, the central slice theorem

states that the 1D Fourier transform of a Radon transform of a 2D µ function with

respect to r, is the 2D Fourier Transform of the µ function. Therefore, the density

function µ can be extracted based on the projections pθ(r).

The following is the back-projection algorithm:

1. Find the 1D Fourier Transform of all the projections pθ(r)
F(pθ(r)) = Pθ(k)

2. Find the 2D function of P (k, θ)
P (k, θ) = F (k.cosθ, k.sinθ) based on the Central Slice Theorem

3. Find the 2D Fourier Transform of F (k.cosθ, k.sinθ)
F(F (k.cosθ, k.sinθ)) = µ(x, y)

2.4.3 Iso-surface Segmentation

CT scan images can either be shown on a film as 2D slices, or they can be presented

in 3D on high resolution screens using volume rendering algorithms. In the case
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Figure 2.4: The geometry construction of a skull (b), from its volumetric density
data (a).

of surface reconstruction for geometric processing, the desired skull volume should

be first extracted from the neighbouring tissues. This extraction process is called

segmentation. There are various methods for skull segmentation, such as atlas-

guided techniques [13] and region growing segmentation methods [45]. However,

according to [23], most methods take advantage of threshold criteria in combination

with gradient analysis.

The Marching Cubes [40] algorithm is an interactive segmentation that uses

user-defined thresholds to produce polygonal triangle meshes of constant density

surfaces (iso-surface) from 3D data [16]. As a consequence, different surfaces such

as skull and skin can be extracted from a 3D volume density model. Figure 2.4

represents the geometry construction of a skull from its volumetric density data.

Consider the volume as a density function D(x, y, z). In this sense, the extrac-

tion algorithm tries to find the surface which satisfies D(x, y, z) = c, in which c is

a constant [39]. As shown in Figure 2.5, the Marching Cubes algorithm uses the

divide-and-conquer method to find the surface in an imaginary cube created from

four pixels in a slice combined with four other pixels from the adjacent slice.

This algorithm first makes an imaginary cube around a voxel by taking the eight

neighbour locations. Each of these neighbours can be considered as a bit, hence

making an eight bit integer. The value of the bits can either be above or below a

certain threshold, known as the iso-surface value, therefore making 256 (28) possi-

bilities for cubes’ configurations. Fifteen out of 256 configurations shown in Fig-

ure 2.6 are found to be unique, hence making the total possible surfaces. Then for
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Figure 2.5: The imaginary cube created from eight pixels for Back-projection algo-
rithm.

each configuration, the algorithm replaces the cube with a surface.

As described in [40], the orientation of the surface is calculated by finding the

normal vector at a surface point, which can be calculated using gradients at each

vertices:

Gx(i, j, k) =
D(i+ 1, j, k)−D(i− 1, j, k)

∆x
(2.3)

Gy(i, j, k) =
D(i, j + 1, k)−D(i, j − 1, k)

∆y
(2.4)

Gz(i, j, k) =
D(i, j, k + 1)−D(i, j, k − 1)

∆z
(2.5)

The result is a complete surface representing a specific intensity value. Fig-

ure 2.7 shows the 3D surfaces representing different density values for skin and the

Figure 2.6: 15 unique cube configurations which make the total of 256 possibilities
in the Marching Cubes algorithm. Wikipedia, Wikimedia Foundation, Inc.
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Figure 2.7: 3D surface representing different density values, for skin (left) and skull
(right).

skull respectively.

2.5 CBCT System: NewTom QR - DVT 9000

In this thesis, a NewTom QR - DVT 9000 machine (Quantitative Radiology, Verona,

Italy) shown in Figure 2.8 was used for hard-tissue acquisition. As discussed

in [30], this CBCT system is dedicated for dento-maxillofacial applications, and

is composed of the following components.

1. A scanning System : X-ray Source, Bi-dimensional Detector

2. A patient’s Table : Table, Laser Pointers

3. A workstation

4. Back-projection and 3D visualization software

The scanning system contains an X-ray source, which produces cone-shaped

X-ray beams, and an X-ray bi-dimensional detector. The generator and detector

assembly are mounted along a 360 degree arc, and are synchronized with each

other by the software to reduce the patient’s exposure. During a scanning process,

the patient is placed supine on the patient’s table, and two laser pointers are used

to locate the head at the center of the scan system. Then, the scanning system

turns around the subject’s head and acquires images. At the end of the 75 seconds
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Figure 2.8: NewTom QR - DVT 9000, the first CBCT (Cone-Beam Computed To-
mography) imaging system. Courtesy of Boulanger et al. [9].

of scanning time, one axial section of the head is reconstructed and displayed to

assure the operator that the data is correct. The patient can then leave the table

and be scanned by a stereo-photogrammetry system to capture the geometry of the

face. After scanning, the bi-dimensional scan data is transmitted from the detector

to the workstation. These raw data are then back-projected to find the attenuation

coefficient (µ) of the captured tissues, and the bone surface is reconstructed using a

Marching Cubes algorithm set for bone density.

As stated by the manufacturer, the following are the underlined characteristics

of QR-DVT 9000 machine:

1. Elevated signal-to-noise ratio (SNR) by utilizing X-ray detector with a high

quantum efficiency,

2. Optimizing X-ray beam intensity in relation to subject’s head thickness, and

3. Minimizing dosage depending on the image quality requested by the operator.

2.6 Conclusion

In this chapter, we explained hard tissue acquisition using X-ray modalities. We first

presented a literature review on the measurements and precisions obtained from
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different CBCT studies. These studies have demonstrated that CBCT is a highly

precise scanning system for dentomaxillofacial applications. We then described

the fundamentals of X-ray imaging, and introduced computed tomography (CT) as

an X-ray modality. Then, two CT technologies known as Conventional Computed

Tomography (CT) and Cone-Beam Computed Tomography (CBCT) have been in-

troduced, and the mechanism of CT scanners were described. At the end, NewTom

scanner, the CBCT system used for this study, was explained.

Complementary to hard tissue information, skin and facial shape information

are acquired by stereo-photogrammetry systems. The next chapter is devoted to the

shape acquisition modalities, and their mechanisms.
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Chapter 3

Human Shape Acquisition:
Stereo-Photogrammetry

3.1 Introduction to Surface Acquisition:
Reliability of the Measurements

During the last decade, the ability to digitize in 3D the human shape had a great

influence on the sciences of morphology, dentistry, and plastic surgery [21]. Ac-

cording to [22], non-invasive and non-ionizing measuring instruments such as laser

scanners and stereo-photogrammetric systems have enabled dentists to achieve ob-

jective evaluations of treatments supported by quantitative measurements. As dis-

cussed in [32], facial growth, craniofacial anomalies, and orthodontic surgeries are

the applications that take advantage of these technologies.

Laser scanners can be used for scanning the maxillofacial areas in 3D. Typi-

cally, laser scanners project a laser pattern onto the surface to be digitized which

is deformed by the relative height variation of the surface relative to the scanner.

In many systems, a camera digitizes the deformation of the laser pattern, and by

triangulation determines the shape of the surface, producing a dense range map.

In many applications, multiple views must be registered and integrated in order to

produce a complete model.

There are some attempts in literature to analyze the precision and reliability of

laser scanners to digitize the human shape. Coward et al. [15] identified the loca-

tions of landmarks on ears and faces, and showed that the variances between re-

peated measurements of the ears and faces were less than 1mm. Their experiments

20



suggested that laser scanners are sufficiently precise and reliable for planning facial

reconstructions. This technology can also take advantage of recent developments

in CAD (Computer Assisted Design) software, where 3D data from laser scanners

can be used to construct and print models in 3D, for implants or prostheses devel-

opments.

In recent years, stereo-photogrammetry systems were developed to deal with

some of the shortfalls of laser scanners. Some systems can provide a colored model

of the patient’s skin in 3D. The main advantage of this technology over laser scan-

ners is its speed, as it is able to deal with patient motion as acquisition time is

less than 100ms. This is a big improvement over laser scanning devices which

usually take more than 10 sec to digitize a head. There are many types of 3D pho-

togrammetry devices one can find in literature. A popular system used in different

experiments, including this thesis, is the 3dMDface TMsystem.

Many studies have been conducted on the accuracy of photogrammetry for dig-

itizing the human shape. Aldridge et al. [3] investigated the precision and repro-

ducibility of coordinate data collected from the 3dMD system. Twenty standard

anthropometric landmarks mentioned in [18] were identified on the face and ears

of 15 subjects whose data were collected two times to test the repeatability. The in-

vestigation demonstrated that the measurements produced by the 3dMD system are

highly repeatable with an error in sub-millimeter range, making the 3dMD system

sufficiently precise for medical applications. Wong et al. [63] also did an exper-

iment on two sets of 3dMD measurements obtained from twenty normal adults,

showing the precision on the measurements of 18 distances from 19 standard an-

thropometric landmarks mentioned in [18]. These experiments, along with similar

investigations [49, 51] show that digital measurements are reliable and that the mean

absolute difference is less than a millimeter.

In addition to the measurements produced by the 3dMD system, extracting color

information from stereo-photogrammetry systems is a valuable asset in different

studies. Nestor et al. [47] investigated the role of surface imaging in gender recog-

nition. They extracted contrast information of main features, and compared them

with the rest of the face. The results suggest color as a factor for high-level visual
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processing. Beside color information, facial morphological differences between

males and females have also been investigated. Kau et al. [34] showed that the ar-

eas of greatest deviation are in zygomatic and lower jaw, with differences in males

being more prominent. These studies show the potential for making useful tem-

plates for investigation of maxillofacial anomalies.

Head shape acquisition technologies have great impact on maxillodental surg-

eries and follow-ups. Kau et al. [31] introduced a method for evaluating the amount

of facial swelling after an orthodontic surgery. Their results provide clinical infor-

mation, both for the patients and the physicians, about the associated soft tissue

changes. This methodology is based on 3D surface images of three patients, before

and after surgery. Their pre- and post-surgical images were aligned (registered) and

compared to evaluate the swellings. This study demonstrated that face swelling can

be accurately quantified. The results showed that there was a swelling reduction one

month after the surgery, and the facial morphology returned to 90% of its original

size by the third month.

Due to its advantages, 3D stereo-photogrammetry is rapidly replacing other

technologies as the preferred facial surface acquisition modality [26]. In this chap-

ter, the fundamentals of photogrammetry and stereo-photogrammetry will be pre-

sented. Then two important algorithms for correspondence matching and stereo

triangulation will be discussed in Section 3.3. We will then describe in detail how

the 3dMD system works.

3.2 Photogrammetry

Photogrammetry is the science of measuring objects from their photographs. Many

studies have been done on the automation of information retrieval from digital pho-

tographs. Many researchers suggest photogrammetry as a non-invasive technique

that provides medical staff with basic body shape measurements. However, the

usefulness of this technology is limited by the image resolution, and, in the case

of medical applications, how one can measure the “anatomic truth”. Studies on

the precision of these measurements have been conducted by [3, 32, 49, 51, 63].
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They all demonstrated the reproducibility and high accuracy of photogrammetry

measurements in the medical field.

One form of photogrammetry with widespread applications in maxillofacial ra-

diology is called stereo-photogrammetry. Since imaging devices convert 3D world

to 2D, they cannot project all the details and properties of an object, hence los-

ing key information. Stereo-photogrammetry builds up the lost information again

as it computes depth information from two or more images. As stated previously,

this information is necessary for constructing the morphology of the face and ob-

taining objective treatment evaluations supported by quantitative measurements in

maxillofacial field.

3.2.1 Stereo-photogrammetry

Stereo-photogrammetry is the science of making 3D measurements from multiple

pairs of digitized images. These images are captured simultaneously from multiple

static cameras, observing the same scene from different views. This method enables

the measurement of the distance. The two fundamental principles used by stereo-

photogrammetry are:

1. Correspondence Matching

2. Stereo Triangulation

Since two or more images of the same 3D scene are taken from different angles,

the set of points in one image corresponding to the same points in other images

should be extracted first. This process of correspondence matching is an area of

intense research. When the corresponding points are found in at least two images,

they can be used to extract depth information using stereo triangulation.

3.3 Principal Algorithms

3.3.1 Correspondence Problem

The correspondence problem can be stated as follows: Suppose the set P consists of

the common points in n photos. Given the geometric point or feature p1 in photo1,
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Figure 3.1: Two correspondence matching algorithms. a: Correlation-based
method, and b: Feature-based method. Courtesy of George Bebis, University of
Nevada, Reno [7].

find the corresponding point or feature pn in photon. There are three main classes

of correspondence matching algorithms, two of which are shown in Figure 3.1.

1. The correlation-based method attempts to find each pixel’s disparity which

is the difference in coordinates of corresponding points, under the hypothe-

sis that they should have similar intensities. This method conducts a search

through 1/2 window size in each direction, and finds the disparity d = (d1, d2)

that maximizes cross-correlations of image intensities I1 and I2.

For each pixel pn = (i, j) in photon do:

For each disparity d = (d1, d2) do:

c(d1, d2) =
∑w

k=−w
∑w

l=−w I1(i+ k, j + l)I2(i+ k − d1, jl − d2)

disparity ← argmaxd1,d2c(d1, d2)

2. The feature-based method tries to solve correspondence by matching sparse

set of features in each image. In this sense, this method checks a smaller set

of candidates as features than correlation-based methods do. This method

uses typical feature properties such as length l, orientation θ, coordinates of

midpoint m, and the average intensity i to find the most similar feature on the

other image.

Among the mentioned approaches, the correlation-based method is easier
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For each feature fn(l, θ,m, i) in photo1 do:

For each feature in photo2 do:

S = 1
w0(l1−l2)2 + w1(θ1−θ2)2 + w2(m1−m2)2 + w3(i1−i2)2

Feature ← argmaxl2,theta2,m2,i2S

to implement, and works well in the presence of texture information. The

feature-based method is faster when some features can be extracted from the

image. However, structured lighting method can be used beside the men-

tioned approaches to find a more accurate solution for the correspondence

problem.

3. The structured light projection technique, as discussed in [37], utilizes struc-

tured patterns of lights such as white light or grids that are projected on the

subjects. The process of projecting lights is being performed at the same time

as the subject is being photographed by calibrated cameras. In this sense, in-

stead of the natural texture of the normal face, the structured light pattern is

used to solve the correspondence algorithm. As stated in [7], this method is

simplified when the geometry of the projected patterns is known.

When the correspondence problem is solved, a triangulation algorithm is used to

infer the coordinates of the corresponding points.

3.3.2 Stereo Triangulation

The required inputs for triangulation are camera positions and the angles they make

with an object. As one can see in figure 3.2, two cameras are located in points

P and Q, and the object is observable by them. The distance between the cam-

eras is denoted by D. The triangulation algorithm uses these parameters as inputs

from which the coordinates of the object is computed. The following calculations

determine the distance of the object from the line which connects the two cameras.
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Figure 3.2: Triangulation Principle: Finding the location of an object by the use of
two cameras mounted to view the object in different angels. Camera positions and
angles they make with the object are known.

tanP =
L

x
⇒ 1

tanP
=
x

L

tanQ =
L

D − x
⇒ 1

tanQ
=
D − x
L

⇒ 1

tanP
+

1

tanQ
=
D

L
· (3.1)

Equation 3.1 yields the desired object’s depth L. This distance can be used for

finding the full object coordinates.

L =
D

1
tanP

+ 1
tanQ

·

After the correspondence matching is determined, and the 3D model is recov-

ered by triangulation, the color information captured from color cameras can be

mapped and added to the model. The result is a highly precise 3D colored model,

immediately usable for medical applications.

3.4 Photogrammetry System: 3dMDface

The 3dMDface system has been first developed in 1999 and is now in its third gener-

ation. This system combines the following techniques to produce a high resolution

3D image of the subjects’ shape (mainly the face),
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Figure 3.3: 3dMDface device containing six cameras taking shots of the subject. a:
Courtesy of Lane et al. [37], b: Courtesy of 3dMD Incorporation [1].

1. Structured Light Projection, and

2. Stereo-Triangulation.

The 3dMDface device consists of six cameras (see Figure 3.3) and four flash

units. Two infrared cameras, one speckle flash unit, one texture flash unit, and one

color camera are mounted on each side of the device. By projecting unstructured

light patterns (see Figure 3.3.a) on the subject, the infrared cameras capture the

geometry of the face, and a triangulation algorithm uses the light projection infor-

mation combined with natural patterns of the skin to build the geometric meshes of

the face. The color information captured by the color cameras are then mapped on

the surface after the mesh reconstruction using a re-projection algorithm.

Before using 3dMDface system, the six cameras has to be calibrated. This

device has an automatic calibration routine to align the cameras. A calibration

plate consisting of an upside down “T” symbol should be positioned in front of the

cameras, and after an automatic detection of the symbol, the 3dMD system tries to

align the cameras automatically. This routine only takes 2 to 4 minutes.

As noted in [1], the acquisition time is about 1.5ms at the highest resolution, and

the coverage is 180 degrees. The accuracy of the reconstructed geometry is reported

as less than 0.2mm, however it is said to be <0.5mm by [32], and <0.6mm by [22].

27



3.5 Conclusion

In this chapter, we introduced different systems, such as laser scanners and pho-

togrammetry, used for surface acquisition and explained their accuracies and capa-

bilities. We then discussed why photogrammetry has become the preferred facial

surface acquisition modality. We presented two challenges in photogrammetry, the

correspondence problem and stereo-triangulation, and explained the mechanism of

3dMDface system used in this study.

In the next chapter, the necessity to fuse multiple modalities such as CBCT and

photogrammetry is discussed, and the technique of registration is presented as a

way to quantitatively measure the differences between imaging modalities.
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Chapter 4

Multi-Modal Image Registration

4.1 Problem Definition

Image registration is the process of spatially aligning two or more images taken

from the same patient, either at different times, or by different sensors.

Images taken from the same patient at different times are being registered to

find, visualize, and evaluate the changes that happened in a specific time period.

This registration method is referred to as multi-temporal single-modality image

registration, and can be utilized in many clinical evaluations, such as monitoring

teeth growth, and tracking orthodontic treatments.

Registering two or more imaging sensors, and extracting medical information

from them may improve the accuracy of patient assessments. Processing different

modalities includes properly registering them, hence making differences detectable.

This procedure is referred to as multi-modal image registration. The application of

this type of registration is necessary due to the advancements in imaging devices

and techniques, and also due to the fact that no one modality can give a complete

description of the patient conditions. Figure 4.1 shows an example of a multi-modal

registration of skull and facial-skin, using CT and photogrammetry sensors from

two different viewpoints.

As discussed in [33], CBCT technology has enabled capturing all possible max-

illofacial radiographs in less than one minute with dosages that are much smaller

than normal medical CT. Assessments of mandibular anatomy and position, and

evaluation of anatomical surgeries can be accomplished by registering CBCT data.
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Figure 4.1: Multi-modal registration of skull and skin, using CT and photogram-
metry sensors, from two different view points.

Cevidanes et al. [11] evaluated the registration of 3D models from CBCT data of

10 patients obtained before and after orthodontic surgery. Instead of using land-

marks, they used the grey value information of the cranial base to register before

and after-surgery images. The reproducibility of their method was confirmed under

the hypothesis that the lower jaw should remain unchanged after the surgery.

However, since CBCT scanners cannot capture the true color texture of the

skin, one should map the texture information onto the skull-based model. There

have been some attempts to map the skin texture onto the conventional CT images.

Khambay et al. [35] demonstrated that superimposition of 3D images of skull and

skin extracted from 3D CT on to the 3D stereo photogrammetric images is possible.

They introduced a methodology and performed this re-projection, and claimed an

accuracy of their landmark-based registration method between 1.25 to 1.5mm.

One of the most important issues in dentistry today is the ability to track patients

during and after treatments. Considering time as the fourth dimension gives us the

ability to analyze the evolution of various structures during a specific time period.

This method can either be done in real time, e.g. in studying chewing, or can be

done over hours, days or even years as a treatment follow-up. Advances in medical

imaging have led to creation of faster and better algorithms for reconstruction and

analysis of 3D images over time.

Multi-modal registration of CBCT with stereo-photogrammetric data over time
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gives us the ability to evaluate dental treatments more precisely and objectively.

Boulanger et al. [9] have introduced a registration methodology for tracking based

on a robust rigid registration algorithm. However, they have not reported the in-

trinsic landmarks used for long-term visit registrations, and do not describe the

registration procedure for mandibles.

Due to the importance of evaluating orthodontic treatments and tracking mandible

variations, we are introducing new methodologies for multi-modal and multi-temporal

registrations of data obtained from CBCT and stereo-photogrammetry.

4.2 Registration Algorithms

4.2.1 Landmark-based Registration

Registering imaging modalities can be done using either extrinsic or intrinsic landmark-

based methods [43]. “Landmarks” are points situated on meaningful parts of the

subject, and represent the whole image for registration. Extrinsic registration meth-

ods are based on external objects attached to the subject. These objects should be

clearly visible by all modalities, and should be easily detectable, either manually

or automatically. Landmark-based registration method relies on the artificial land-

marks to find the optimal geometric transformation between modalities.

Intrinsic registration methods are based on the intrinsic landmarks available on

the patient without using any artificial object. A common way of performing in-

trinsic registration is to use anatomical landmarks that are unambiguous, visible

parts of the anatomy of a patient, or user-defined geometrical points that are easily

identifiable in different modalities.

The definition of landmark-based registration is as follows: For two sets of

landmarks L1 and L2, each containing n points, find the best mapping that, for each

point, minimizes the distance between the point in L1 and the corresponding point

in L2. In other words, after the landmarks are determined on all images, each set of

features should be mapped with the corresponding ones in the other image. In this

sense, a transformation matrix, corresponding to a rotation and translation, can be

determined to match the rest of the points, while minimizing the distance.
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Given two sets of landmark points L1 and L2, a rotation matrix R, and transla-

tion vector T, the following formula provides the transformation matrix M :

M(Li) = Lj = RLi + T·

Now that the mapping function is determined, it should be optimized to mini-

mize the distance between the corresponding points. A common function of mea-

suring this distance is the Sum of the Squared Distances (SSD), which is defined as

follows:

D(M,L1, L2) =
n∑
i=1

||M(l1n)− l2n||2·

Hence, the definition of registration would be as below.

For sets of landmarks L1 and L2, with n corresponding points,

Find rotation matrix (R) and translation vector (T) such that:

The following distance function is minimized.

D(M,L1, L2) =
∑n

i=1 ||M(l1n
)− l2n

||2 =
∑n

i=1 ||Rl1n
+ T − l2n

||2

4.2.2 Iterative Closest Point (ICP)

The most commonly used registration method for landmark-based registrations was

proposed by Besl et al. [8] in 1992, and is known as “Iterative Closest Point (ICP)”.

As discussed in [43], its versatility, speed, and ease of implementation made it a

very popular registration method.

According to Ezra et al. [17], the definition of ICP algorithm is as follows: For

two shapes of S1 and S2, find the best mapping for S1, i.e. closest points CS2 , that

uses translation and rotation to match S2 as well as possible.

Various cost functions have been used in different ICP implementations to find

the best transformation from S1 to S2, two of which are defined below:

1. Hausdorff Distance

F (S1, S2) = maxs∈S1||s− CS2(s)||
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2. Sum of the Squared Distances

F (S1, S2) = 1
m

∑
s∈S1
||s+ t− CS2(s+ t)||2

The ICP algorithm uses the Sum of the Squared Distances to minimize F (S1 +

t, S2) over all the possible transformations t consisting of translations and rotations.

It starts with an initial estimate of the transformation, and iteratively tries to align S1

on S2, while decreasing the cost function F . This method is guaranteed to converge

to a local minimum [14].

As explained in [17], considering t0 = 0, at each iteration i, the shape S1 has

been transformed by ti−1. Then each translated point s+ ti−1 ∈ S1 + t is assigned

to its closest point CS2(s + ti−1). Once the set of closest points are found, the new

transformation ∆t that minimizes the cost function F is computed. More specifi-

cally, the cost function minimized is the following:

1. Hausdorff Distance

F (S1 + ti−1, S2) = maxs∈S1||s+ ti−1 + ∆ti − CS2(s+ ti−1)||

2. Sum of the Squared Distances

F (S1 + ti−1, S2) = 1
m

∑
s∈S1
||s+ ti−1 + ∆ti − CS2(s+ ti−1)||2,

and the new transformation would be ti−1 + ∆ti. The algorithm terminates if the

cost function is below a pre-defined threshold. The following is a step-by-step

procedure for ICP algorithm.

Input: Initial estimation of the transformation

For ∀s ∈ S1:

1. Assign s + ti−1 to its closest point in S2 (CS2
(s + ti−1))

2. Find ∆t such that the following cost function is minimized:

F (S1 + ti−1, S2) = 1
m

∑
s∈S1
||s + ti−1 + ∆ti − CS2

(s + ti−1)||2,
3. Terminate if the error is below a defined threshold.

Figure 4.2.a shows the initial estimation of the transformation obtained via an

extrinsic landmark-based method, and Figure 4.2.b represents the final transforma-

tion after the ICP algorithm is applied on the data.
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Figure 4.2: a: The initial estimation of the transformation, and b: The final trans-
formation after the ICP algorithm is applied on the data.

One of the key elements of the ICP algorithm is its ability to determine rapidly

the closest points. The brute force implementation isN×M whereN is the number

of points in the first set, and M is the number of points in the second set. This could

make the ICP very slow for large datasets. A better point search algorithm can

be found such as the k-D tree explained in [55] where a binary search tree for k-

dimensional data is used to partition the space, and find the closest points. Using

this algorithm, the search complexity can be reduced to N logM .

Other improvements of the ICP algorithm include:

• Using robust statistics, which make the ICP robust to outliers [12],

• Stochastic search for global minimum based on very fast simulated anneal-

ing [41], and

• Implementation of ICP algorithm for Graphics Processing Unit (GPU) [36].

4.3 Natural Landmarks for Multimodal Image Reg-
istration

The fundamental step for landmark-based registration is the selection of landmarks,

and positioning them where it helps obtaining more accurate registration results. In

case of attaching extrinsic landmarks to the subjects, landmarks should be made
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Figure 4.3: a: 28 landmarks placed on the skull. From Stratemenn et al. [57]. b: 10
landmarks out of 14 utilized for skull measurements. From Periago et al. [50].

from a material that does not interfere with the imaging source. For example in CT

imaging modality, the landmarks should be made of a material that does not scatter

X-ray. They should also be visible and traceable through all the modalities involved

in the registration procedure.

Utilizing implantable markers as extrinsic landmarks gives surgeons and radi-

ologists the opportunity of having highly accurate registration results. They can be

precisely identified in CT, and their position does not change during the imaging

process [19]. However, this method is considered highly invasive, and the need for

non-invasive procedures has focussed many researchers on anatomical landmarks

belonging to the bone surface instead.

In contrast to extrinsic landmarks, the positioning of natural landmarks on the

human body is much more difficult. These landmarks should be easily detectable in

all the modalities, and should not change position or grow in case of multi-temporal

image registration.

Many studies on natural landmarks can be found in the literature [57, 50, 27, 19]

and have been devoted to finding the validity of skull measurements. In the follow-

ing section, we will discuss four studies that took advantage of skull landmarks and

how they can be used to register modalities.
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Figure 4.4: Landmarks used for investigating the accuracy of skull measurements.
From Stratemenn et al. [27].

4.3.1 Skull Landmarks

Stratemann et al. [57] tried to determine the accuracy of linear measurements be-

tween orthodontic landmarks located on the skull. They compared the measure-

ments taken from two CBCT systems with real measurements made with a calliper.

The authors used 28 external spherical landmarks to make 125 linear measurements.

Figure 4.3.a depicts all the landmarks placed on the skull model. The registration

has been done by picking the center of the spheres, which helps minimize landmark

identification error. This method is used in our study as well.

Periago et al. [50] conducted similar research with the use of fourteen anatom-

ical landmarks, ten of which are depicted in Figure 4.3.b. They showed that most

craniofacial linear measurements made from CBCT are sufficiently accurate for

craniofacial analysis. Hildebolt et al. [27] made 29 standard measurements on two

normal and three deformed skulls. They found the difference between the reference

calliper measurements and those made from images. The craniofacial landmarks

were selected from standard craniofacial ones introduced in [29]. Figure 4.4 shows

the landmarks located on the skull. This study showed that equivalent measure-

ments can be made in comparison to calliper references.

Fieten et al. [19] introduced a new method for registration of cranial CT images.

They used skull landmarks depicted in Figure 4.5.a to compare their own results

with the registrations produced by the ICP algorithm.
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Figure 4.5: a: Skull landmarks. Red anatomical landmarks used for pre-
registration. Yellow surface points used for surface-based registration. Green el-
lipses are bone-mounted markers. From Fieten et al. [19]. b: Landmarks on digi-
tized skull. Couresy of Vanezis et al. [60].

In addition, many studies on the accuracy of skull measurements have been

conducted to construct 3D models of the face and the skull. Vanezi et al. [60]

took advantage of skull landmarks to fit a 3D facial image over a skull image, to

reconstruct a human face. The skull landmarks used in that study are shown in Fig-

ure 4.5.b. They introduced other applications of 3D reconstruction in identification

of murder victims, and reconstruction of archaeological skulls.

4.3.2 Mandible Landmarks

There are a number of studies in the literature that use mandible landmarks. Nielsen

et al. [10] developed a physically valid model for registration of time sequence

images of the mandible. They collected three images of one person’s mandible at

different times, and registered them with the use of a physical bone growth model.

They used the fact that bones grow from their surface, not from their interior. As a

result, they suggested the inferior dental nerve channel, the inner cortical surface of

symphysis, and the tip of the chin, as stable features of the mandible, suitable for

jaw registration. One can see the location of those landmarks in Figure 4.6.

Afsar et al. [2] have used the mandible features shown in Figure 4.7.a. to assess

the precision of panoramic radiographs. They showed that the panoramic radio-

graphs are as good as oblique cephalonetric radiographs. In another study, Williams

et al. [62] investigated the accuracy of the human mandible landmarks, and intro-

duced a set of mandibular landmarks that can be used for evaluating craniofacial
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Figure 4.6: Three mandible landmarks which are suggested for registration use.

disorders and biological processes. The suggested landmarks are depicted in Fig-

ure 4.7.

Figure 4.7: Anatomical landmarks for mandible. a: landmarks used for assessments
of panoramic radiographs (from Afsar et al. [2]). b: Possible mandible landmarks
which can be used for mandible research (from Williams et al. [62]).

4.4 Selected Anatomical Landmarks for our Study

Figure 4.8 shows a set of 13 possible anatomical landmarks of skull, based on the

literature reviews presented in Section 4.3.1. Since the mandible moves indepen-

dently to the upper-skull, it should be segmented and analyzed separately. There-

fore, feature points 11, 12, and 13 cannot be used as skull anatomical points in

our study. Moreover, feature points 9 and 10 are situated down the nose and up

the teeth. These points cannot be considered as suitable landmarks since the bony

structures of those parts can grow in an 8-12 months period during which our data

has been acquired, and therefore cannot be identified as stable landmarks for our

38



study. Feature points 2, 5, and 7 are located in areas which can be affected by the

segmentation algorithms. These areas might result in different structures when seg-

mented from the CBCT data, and therefore may not be easily identifiable in all the

images of different times. The remaining points which are points 1, 3, 4, 6 and 8

can be considered as stable anatomical landmarks for skull, since they are all easily

identifiable through images of both times, and they do not change position or grow

during the acquisition period.

Figure 4.8: Possible anatomical landmarks for skull, based on natural feature points
used in the literature.

Different anatomical landmarks have also been studied in the literature that was

reviewed in Section 4.3.2. Nielsen et al. suggested the three feature areas shown in

Figure 4.6 for the mandible registrations due to their stability. Among these areas,

the tip of the chin is not considered a possible landmark in our study, since the skull

segmentation process might affect the exact place of it. However, the inner cortical

surface and the inferior dental nerve channels illustrated in Figure 4.9 were selected

for the mandible registration in this study.
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Figure 4.9: Possible anatomical landmarks for mandible, based on natural feature
points used in the literature.

4.5 Conclusion

In this chapter, we addressed the problem of tracking orthodontic patients over time,

and we explained multi-modal registration as a solution to our problem. Then two

registration methods of landmark-based, and template-based iterative closest point

algorithms were presented. Then different skull and mandible landmark systems

used in the literature for registration were introduced, and a selection of stable and

identifiable landmarks for our study was also presented.

In the next chapter, we will represent our registration procedure for solving the

problem of tracking patients over time, and we will evaluate the methodology with

different validation techniques.
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Chapter 5

Experimental Results

As discussed in Section 4.1, combining CBCT for 3D bone shape measurement,

with 3dMD for face-skin shape measurement is necessary for the complete tracking

of shape variations of orthodontic patients. Soft tissues as well as teeth and jaw

displacements can be viewed, measured and evaluated between visits occurring at

Time1 (T1) and Time2 (T2).

In this chapter, we explain a methodology to track face-skin and bony struc-

tures of the human head, after a maxillofacial treatment has been performed. We

introduce three registration methods,

1. Phase 1:

• Extrinsic landmark-based registration of multi-modal CBCT and 3dMD

data at each visit;

2. Phase 2:

• Intrinsic landmark-based registration of single-modal multi-temporal CBCT

data of the skull, between two visits at T1 and T2;

• Intrinsic landmark-based registration of single-modal multi-temporal CBCT

data of the mandible, between two visits at T1 and T2.
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5.1 Data Acquisition

As shown in Figure 1.1, the proposed tracking procedure consists of four steps.

In the first step, six subjects were chosen from an ongoing clinical trial. Three of

these data sets were from untreated controls (Subjects 2, 3 and 5), and the other

three (subjects 1, 4 and 6) were from treated patients undergoing a treatment. Six

Titanium spheres with a diameter of 6.5mm were located on a head-band, which

was placed on patient’s forehead during each imaging session.

For each subject, multi-modal images of CBCT and stereo-photogrammetry

were acquired at each visit at times T1 and T2 within an 8-12 month period. A

NewTom QR-DVT9000 CBCT scanner described in Section 2.5 was used to mea-

sure the bone structure, and a 3dMDface system described in Section 3.4 was used

to capture the patient’s head skin. Ethical approval was granted by the University

of Alberta Health Research Ethics Board, HREB during the test period.

5.2 Pre-processing Procedure

The pre-processing procedure includes applying different filters and algorithms to

the CBCT and 3dMD data separately, in preparation to the experimental analysis.

For CBCT, the raw data saved in DICOM (Digital Imaging and Communica-

tions in Medicine) format were converted to a VTI format, which could be viewed

and edited by an open-source volumetric data processing and visualization software

called Paraview. This conversion process was done by the Volview software. The

resolution of the volumetric CBCT data was 512 x 512, with 256 grey levels per

pixel.

A Marching Cubes filter was used in Paraview to extract the skull geometry

from the CBCT density values. An iso-density value of 950 was used to separate

bone tissues from the rest. One can see in Figure 5.1.b the surface data produced by

the Marching Cubes algorithm. After extracting the skull geometry, a decimating

filter was applied to reduce the number of triangles produced from the Marching

Cubes algorithm. One can see in Figure 5.1.b that the decimated geometry (at 80%)

does not produce any noticeable differences. This decimation is essential, as large
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Figure 5.1: 3D surface representing different density values regarding (a) skin and
(b) skull.

polygon counts are hard to process and cannot be displayed easily in real-time.

For the 3dMD data, the calibrated system digitized the patient after being scanned

by the CBCT. After the four infrared and the two high-resolution color images (see

Figure 3.3.a) were acquired and transferred to the processing workstation, the soft-

ware extracted a geometric mesh (see Figure 5.1.a) by solving the correspondence

problem from the four infrared images. Using the calibration parameters, the corre-

sponding points measured in 3D and the extracted measurements were triangulated

and back-projected onto the high-resolution color images. The result was a tex-

tured polygonal data with approximately 50K triangles. The polygonal data was

saved into an OBJ format and loaded into the Rapidform software to be further pro-

cessed. The textured polygons were converted from vertex to texture definition to

vertex to color, which allowed to move the color information at the same time as

the vertices during registration.

One can see in Figure 5.1.a the polygonal face information from 3dMD, and in

Figure 5.1.b the corresponding skull polygons from the CBCT data at time T1 for

patient1.
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5.3 Methodology

A complete tracking of the shape variations for the head skin and bone structures

necessitates a multi-modal and multi-temporal registration of CBCT and 3dMD

data, which are obtained at different times.

The registration procedure, illustrated in Figure 1.1 can be divided into two

phases. The first phase consists of performing the multi-modal registration of the

CBCT and the stereo-photogrammetry data at each visit. The second phase uses the

results of the first phase saved as a polygonal shell grouping the registered polygons

from the head skin and the skull into a common coordinate system. The two shells

at T1 and T2 are then registered together using intrinsic landmarks on the skull and

applied to each shell. The following sections describe the registration procedure.

5.3.1 Phase 1: Multi-Modal Registration of CBCT and 3dMD

The first phase includes multi-modal registration of CBCT and 3dMD data at each

visit. For this procedure, we utilized the extrinsic, landmark-based registration

method.

To accomplish extrinsic landmark-based registration, it is necessary to have ex-

trinsic landmarks that do not scatter the radiation beam and are clearly identifiable

in both modalities. As described in Majid et al. [44], five to eight pairs of landmarks

are necessary to obtain high accuracy registration results. Therefore six Titanium

spheres with a diameter of 6.5mm were glued on a head-band. The headband was

placed on patient’s forehead during the entire imaging procedure.

Rapidform, a commercial polygon processing software was used to register the

polygons from the CBCT and 3dMD. To register those geometries, we started by

first registering the extrinsic landmarks pairwise. In order to do so, we had to first fit

spheres on the polygons corresponding to the sphere. We first selected the polygons

in both data sets and then used a mean square sphere fitting routine with a fixed

radius of 3.25mm. From the fitted spheres, the estimated centers were used as the

reference points for data sets to be registered. Figure 5.2 shows the virtual spheres

fitted on the headbands’ spheres, for both the 3dMD and the CBCT data sets.
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Figure 5.2: Green virtual spheres fitted on the headband. These fitted spheres are
then used as extrinsic landmarks for the registration of 3dMD and CBCT data.

After finding each reference sphere’s center, a transformation matrix was found

between the corresponding points using a point registration routine provided by

the Rapidform. The same transformation was applied to the CBCT geometry to

bring it in registration with the 3dMD data. This registration process was explained

in Section 4.2.1. The coarse registration result was then used as a starting point

for an ICP algorithm which is used to provide a more accurate registration result.

The results for all six registered spheres are shown in Figure 5.3 and in Figure 5.4.

As illustrated, the blue and the silver target points are perfectly aligned, and the

skull and the skin shells are registered while keeping a reasonable distance in be-

tween. The registration results with and without applying ICP algorithm are also

illustrated. Figures 5.5 and Figure 5.6 show the effect of ICP algorithm on T1 data,

and Figures 5.7 and Figure 5.8 present the T2 results. As depicted, the distances

between the skull and the skin are changed after applying ICP, which improved the

registrations.
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Figure 5.3: Registration results of multi-modal data of CBCT and 3dMD for Sub-
jects 1-3, for T1 (left), and T2 (right). As shown, the blue and the silver target points
are perfectly aligned, and the skull and the skin shells are registered while keeping
a reasonable distance in between. 46



Figure 5.4: Registration results of multi-modal data of CBCT and 3dMD for Sub-
jects 4-6, for T1 (left), and T2 (right). As shown, the blue and the silver target points
are perfectly aligned, and the skull and the skin shells are registered while keeping
a reasonable distance in between. 47



Figure 5.5: Registration results of multi-modal data of CBCT and 3dMD for T1
images, obtained from Subject1 to Subject3. The left pictures show the result of
landmark-based registration algorithm and the right pictures show the effect of the
ICP algorithm on them. As depicted, the distances between the skull and the skin
are changed after applying ICP, which improved the registrations.
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Figure 5.6: Registration results of multi-modal data of CBCT and 3dMD for T1
images, obtained from Subject4 to Subject6. The left pictures show the result of
landmark-based registration algorithm, and the right pictures show the effect of the
ICP algorithm on them. As depicted, the distances between the skull and the skin
are changed after applying ICP, which improved the registrations.
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Figure 5.7: Registration results of multi-modal data of CBCT and 3dMD for T2
images, obtained from Subject1 to Subject3. The left pictures show the result of
landmark-based registration algorithm and the right pictures show the effect of the
ICP algorithm on them. As depicted, the distances between the skull and the skin
are changed after applying ICP, which improved the registrations.
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Figure 5.8: Registration results of multi-modal data of CBCT and 3dMD for T2
images, obtained from Subject4 to Subject6. The left pictures show the result of
landmark-based registration algorithm and the right pictures show the effect of the
ICP algorithm on them. As depicted, the distances between the skull and the skin
are changed after applying ICP, which improved the registrations.
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5.3.2 Phase 2: Multi-Temporal Registration

Once the multi-modal data are registered for each visit at time T1 and T2 separately,

a methodology for multi-temporal registration was developed. The result of this

procedure is that the polygon set from T1 is registered with the one at time T2. The

challenge of this process is that it is impossible to guarantee that the spheres are

at the same location in different visits. Furthermore, the subjects’ face shape and

lower jaw may not be the same as it is under treatment. Therefore, we used intrinsic

anatomical landmarks for multi-temporal registration.

Moreover, since the mandible moves independently from the upper skull, it

should be analyzed separately. For each skull in T1 and T2, the mandibles are seg-

mented manually from the upper skull using a polygon selection tool in Rapidform.

As a result, the multi-temporal registration was done as a separate process for the

mandible and the skull.

Multi-Temporal Registration of Skull

Since choosing intrinsic landmarks on 3dMD data were difficult due to its con-

structions around eyes and nose, we decided to use the skull data to deal with the

in-between visit registration. In order to use the skull, intrinsic anatomical land-

marks have been selected to be mapped and used for multi-temporal registration.

The anatomical landmarks chosen from the skull, which are discussed in Sec-

tion 4.4, are shown in Figure 5.9. These landmarks are easily identifiable at both

times and are stable over long periods. Once the points are selected on the CBCT

data, intrinsic landmark-based registration method is applied, and the two skulls

are registered. By applying the same transformation on the entire polygon shell,

the 3dMD skin data, which had been registered with CBCT data in phase 1, is also

registered. From the initial estimate of the landmark registration, an ICP algorithm

is then used to optimize the quality of the registration. In this study, the maximum

average for deviations are set at 1mm. This parameter is set to eliminate outliers,

which due to [52] has a positive effect when ICP is performing least-square mini-

mization.

To represent the registration results, the signed distances (in mm) for the corre-
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Figure 5.9: Anatomical skull landmarks used for multi-temporal registration of
CBCT data, from T1 to T2.

sponding points between T1 and T2 shells were measured as the registration errors.

Then for each patient, a diagram of error distribution was plotted, and the corre-

sponding color-coded map of the error distribution was visualized on the patient’s

skull. As illustrated in Figure 5.11, the signed distances are the distances of data-

points from their closest triangles along with a positive or negative sign due to the

position of the point relative to the triangle normal (inside or outside). The dark

colors which show more extreme deviations are only present at the borders which

is due to the segmentation, and on the front teeth which shows the growth of the

teeth during the treatment. The rest of the skulls seem to have a distribution error

around zero, which shows the effectiveness of the registration procedure. More-

over, Figures 5.12 and 5.13 also represent the effect of the ICP algorithm on the

multi-temporal skull registration. The left columns show the results before, and the

right columns show the results after the use of the ICP algorithm. As one can see in

the diagrams of deviation distributions, the registration errors are distributed around

zero after applying the ICP algorithm, which means that the distances between the

corresponding points have been improved, and the precision of the registration re-

sults are optimized by this algorithm.
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Figure 5.10: Anatomical mandible landmarks used for multi-temporal registration
of CBCT data, from T1 to T2.

Multi-Temporal Registration of Mandible

Similar to the skull registration, one has to use intrinsic landmarks to register the

mandibles between trials. Therefore, anatomical landmarks were chosen as dis-

cussed in Section 4.3.2. Nerve passage foramina and the inner cortical surface were

selected, as shown in Figure 5.10. As in the skull registration, the landmark-based

registration was first used to initialize an ICP optimization. The graph of error

distribution as well as the corresponding color-coded map was visualized on each

patient’s mandible. As shown in Figure 5.14, the dark colors are only located at

the borders due to the manual segmentation. The rest of the mandible registrations

seem to have a distribution error around zero, which shows the effectiveness of the

registration procedure. Moreover, One can see the effect of the ICP algorithm on the

registration procedure in Figure 5.15 and Figure 5.16. The left columns show the re-

sults before, and the right columns show the results after the use of ICP algorithm.

Again, the registration errors are more distributed around zero after applying the

ICP algorithm, which means that the registration between the corresponding points

have been improved, and the registration results are optimized by this algorithm.
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Figure 5.11: Results of registered skulls between T1 and T2 using intrinsic
landmark-based method. The left column shows the results for untreated subjects
and the right column represents the procedure for treated ones. The dark colors
represent larger registration errors (in mm) on the skulls, and the graphs show the
distribution of signed deviations for the registration errors. As shown, the errors are
distributed around zero, meaning that the registration procedure is not biased.
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Figure 5.12: Registration results of multi-temporal data of CBCT between T1 and
T2, for treated subjects. The left pictures show the results of the landmark-based
registration algorithm, and the right pictures show the effect of the ICP algorithm
on them. The registration errors are more distributed around zero after applying the
ICP algorithm, which means that the registration between the corresponding points
have been improved.
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Figure 5.13: Registration results of multi-temporal data of CBCT between T1 and
T2, for untreated subjects. The left pictures show the results of the landmark-based
registration algorithm, and the right pictures show the effect of the ICP algorithm
on them. The registration errors are more distributed around zero after applying the
ICP algorithm, which means that the registration between the corresponding points
have been improved.
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Figure 5.14: Results of registered mandibles between T1 and T2 using intrinsic
landmark-based method. The left column shows the results for untreated subjects
and the right column represents the procedure for treated ones. The dark colors
represent larger registration errors (in mm) on the skulls, and the graphs show the
distribution of signed deviations for the registration errors. As shown, the errors are
distributed around zero, meaning that the registration procedure is not biased.
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Figure 5.15: Registration results of multi-temporal data of CBCT between T1 and
T2, for treated subjects. The left pictures show the results of the landmark-based
registration algorithm, and the right pictures show the effect of the ICP algorithm
on them. The registration errors are more distributed around zero after applying the
ICP algorithm, which means that the registration between the corresponding points
have been improved.

59



Figure 5.16: Registration results of multi-temporal data of CBCT between T1 and
T2, for untreated subjects. The left pictures show the results of the landmark-based
registration algorithm, and the right pictures show the effect of the ICP algorithm
on them. The registration errors are more distributed around zero after applying the
ICP algorithm, which means that the registration between the corresponding points
have been improved.
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5.4 Registration Validation

We used the signed distance as a measure to validate our proposed registration

methodology. For each subject, we extracted the signed distance between the T1

and T2 skulls as well as those for T1 and T2 mandibles, and plotted the histograms

of the measurements to visualize the error distributions. In our experiment, we ex-

pect our registration errors to follow a normal (Gaussian) distribution if there is no

bias involved in the registration process, as any miss-registration data will create

an error distribution that will not follow the Gaussian assumption. In this section,

we are focusing on normal distributions, and the different tests that can be used to

determine how likely it is that the error distributions can be modeled by a normal

distribution.

5.4.1 Normal Distribution

A normal distribution, also known as Gaussian distribution, is a bell-shaped prob-

ability distribution with a single peak, which can be defined with the following

probability density function (pdf):

f(x) =
1

σ
√

2π
e−

1
2
(x−µ
σ

)2

where µ is the mean where the peak of the density occurs, and σ is the standard

deviation which shows the spread of the distribution.

A very important property of normal distribution is the three-sigma or 68-95-

99.7 rule. This rule states that in a normally distributed population, almost all values

are within a µ ± 3σ range. More specifically, this rule indicates that 68% of the

values lie within a µ± σ range, 95% within a µ± 2σ range, and nearly all (99.7%)

within a µ± 3σ range.

5.4.2 Skewness Measure

The first step before testing the normality of the error distributions is to calculate a

skewness measure. Skewness is the measure of lack of symmetry of the distribution,

and measures if the error data are distributed more to the right or to the left of
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the mean. A perfect normal distribution is symmetric, and therefore the skewness

measure is equal to zero. However, for experimental normal distributions which are

not perfectly symmetric, a skewness measure less than or equal to 0.5 is considered

symmetric. This measure is calculated as follows:

skewness =
E(x− µ)3

σ3

where µ is the mean of x, σ is the standard deviation of x, and E is the expected

value.

5.4.3 Normality Tests

Two different tests are used to determine if the experimental distributions follow

the normality assumption. A visual test consists of comparing the histograms of the

signed distances with a normal curve. The graphical representation of distributions

should be a bell-shaped curve with a single peak around the average µ centered in

our case around zero. However, comparing other properties of a normal distribu-

tion is not possible visually. Therefore, a quantitative test such as the Chi-Square

goodness-of-fit test is used after a visual inspection is successful.

In this thesis, we used the Chi-Square [56] to test the normality of our results.

This test gets a vector data x as a sample of a data set, and estimates the mean

and variance of the normal distribution from the signed error of each point. The

null hypothesis that the error is a random sample from a normal distribution will be

tested against the alternative hypothesis which is defined as the error is not normally

distributed with the estimated mean and variance values.

H0: The error distribution comes from a normal distribution.

Ha: The error does not come from a normal distribution.

Chi-Square test divides the sample data intoN bins, and performs the following

statistics:

χ2 =
N∑
i=1

(Oi − Ei)2

Ei
(5.1)

where Oi is the observed frequency for bin i, and Ei is the expected frequency for

bin i. Considering that cumulative distribution function (CDF) is the probability

62



that a variable X takes a value less than or equal to a specified value x:

CDF (µ) = P [X ≤ µ] =

∫ µ

−∞
f(x)dx,

the expected frequency Ei for bin i would be calculated as follows:

Ei = S(CDF (U)− CDF (L))

where S is the sample size, U is the upper limit for bin i, and L is the lower limit

for bin i.

Rejection Region

The null hypothesis will be rejected if

χ2 > χ2
(α,df),

where α is the desired significance level, df is the degree of freedom calculated

by (N − 1), and χ2 is determined from Equation 5.1. The look-up table published

by Fisher et. al in [20] shows χ2 values versus P -values for different degrees of

freedom. With the significance level P = α, the value of χ2
(α,df) is extracted from

an already existing table of χ2 values.

If the sample comes from a normally distributed data, χ2 would be smaller

than χ2
(α,df), and the null hypothesis cannot be rejected at the significance level

α. Otherwise, if the χ2 is larger than χ2
(α,df), the null hypothesis can be rejected

at significance level α. In this case, a P -value which shows the probability of

observing the result, or one more extreme cases under the assumption that the null

hypothesis is true, would also be returned. This value can be used for a better

estimation of α in case the null hypothesis is rejected. A P -value of 0.05 or less is

considered as statistically significant.

5.5 Registration Statistics

Our experiments on six subjects contain two registration results:

1. Skull Registration
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2. Mandible Registration

For each subject, we extracted the signed distances between T1 and T2 surfaces

for both the skull and the mandible registration results. Due to the hardware limita-

tions, we extracted 1% of the signed distances as sample data from the Rapidform

software to perform evaluation tests.

Prior to performing different statistical tests on the sampled data, we removed

outliers from both the skull and the mandible data which did not fall inside the range

of 2.5 ∗ σ(dataset). Moreover, a tighter threshold of 1.5 ∗ σ(dataset) was used on

the skull data of subject5 and subject6. We propose that the presence of the outliers

is due to the following reasons:

1. The effect of the treatment on the treated patients: The orthodontic changes

on patients’ teeth has influenced the measured distances from T1 to T2.

2. Biological changes: Biological changes such as teeth growth has affected the

registration procedure. A big part of the calculated large deviations are due

to the growing of canine teeth between the T1 and T2 scanning processes,

especially for teenagers.

3. Segmentation: Extraction of skulls bone from the CT data taken at different

points of time T1 and T2, even with the same parameters, results in different

density of data-points that may be due to CT intensity calibration. This seg-

mentation error can produce large outliers if the scanning parameters are not

controlled.

In the rest of this section, the following statistical results will be represented,

1. Registration precision estimation,

2. Graphic representation of the distributions, and

3. Chi-square normality test.

Tables 5.1 and 5.2 show the mean, standard deviation and skewness measures

of the signed errors in millimeter, for the skull and the mandible registrations, re-
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Table 5.1: Information extracted from skull registrations regarding the signed dis-
tances (in mm) between corresponding points in T1 and T2.

UNTREATED Subject2 Subject3 Subject5
Mean 0.1502 -0.0167 0.0144

Standard Deviation 0.5199 0.4752 0.2713
Skewness Measure 0.3006 0.0752 0.2441

TREATED Subject1 Subject4 Subject6
Mean 0.1567 -0.4801 -0.0202

Standard Deviation 0.4895 0.6413 0.2705
Skewness Measure 0.132 -0.0081 0.0632

Table 5.2: Information extracted from mandible registrations regarding the signed
distance (in mm) between corresponding points in T1 and T2.

UNTREATED Subject2 Subject3 Subject5
Mean 0.2122 -0.0781 0.0700

Standard Deviation 0.5756 0.5954 0.5772
Skewness Measure 0.4440 0.0268 0.3598

TREATED Subject1 Subject4 Subject6
Mean 0.0762 -0.4899 -0.1241

Standard Deviation 0.5571 0.5827 0.5416
Skewness Measure 0.2937 -0.1684 0.0752

spectively. As represented, the skewness measures of all the errors are in the range

of [-0.5 , 0.5], hence making the error distributions approximately symmetric.

5.5.1 Registration Precision Estimation

The precision of the entire registration system is calculated by µ ± σ, where µ is

the mean of the registration error, and σ is the standard error of our sample data. As

shown in Table 5.3, all the registration precisions are smaller than 1.9mm reported

in [46], and 1.5mm reported in [28] as the precision of CBCT devices.

5.5.2 Graphic Representation of the Distributions

For each subject, the distribution of signed errors was plotted by a histogram with

100 bins for the skulls and the mandibles. One can see in Figures 5.17 to 5.22

the signed error distributions for the skulls. Similarly, Figures 5.23 to 5.28 repre-
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Table 5.3: Calculated registration precisions (in mm) for the skull and the mandible.

SKULL-TREATED Subject1 Subject4 Subject6
Precision 0.1567±0.4895 -0.4801±0.6413 -0.0202±0.2705

SKULL-UNTREATED Subject2 Subject3 Subject5
Precision 0.1502±0.5199 -0.0167±0.4752 0.0144±0.2713

MANDIBLE-TREATED Subject1 Subject4 Subject6
Precision 0.0762±0.5571 -0.4899±0.5827 -0.1241±0.5416

MANDIBLE-UNTREATED Subject2 Subject3 Subject5
Precision 0.2122±0.5756 -0.0781±0.5954 0.0700±0.5772

sent the signed error distributions for the mandibles. In all the figures, the normal

distribution fitted on the error distributions are also represented.

From visual observations, one cannot reject the null hypothesis stating that

the histograms are normally distributed. They are all bell-shaped symmetric his-

tograms, with a single peak around their mean values. However, we need to know

quantitatively how well the histograms are following a normal distribution, in order

to certify that our registration technique is not biased. As mentioned previously,

this can be tested by using a chi-square normality test on the error distributions.

5.5.3 Chi-Square Normality Test

Chi-Square normality test was used to test the normality of the error distributions on

both the skull and the mandible data. The results of the test showed that with alpha

probability level of 5%, one cannot reject the null hypothesis that our data follow a

normal distribution. Moreover, the results of the zero-mean test using one-sample

t-test on the skull and the mandible data show that except for two data sets (subject2

and subject4), this test could not reject the hypothesis that the our data is following

a normal distribution with zero mean. Table 5.4 and Table 5.5 show the results of

these two tests for skull and mandible error distributions.
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Table 5.4: The results of Chi-Square normality test, and the zero-mean T-test on
the error distrbutions of skull data. The second column shows the P value, the Chi-
square value, and the degree of freedom for Chi-square normality test, and the third
column shows the P value, the T value, and the degree of freedom for zero-mean
T-Test.

SKULL Chi-Square Normality Test Zero-Mean T-Test
P-Value, Chi-Square Value, DoF P-Value, T-Value, DoF

Subject1 0.2772,6.3106,5 0.1704,1.3809,99
Subject2 0.6679,3.2081,5 REJECTED
Subject3 0.5936,3.6984,5 0.4278,-0.7962,99
Subject4 0.5894,3.7267,5 REJECTED
Subject5 0.4514,4.7166,5 0.8806,0.1506,99
Subject6 0.3675,5.4133,5 0.7952,-0.2603,99

Table 5.5: The results of Chi-Square normality test, and the zero-mean T-test on the
error distrbutions of mandible data. The second column shows the P value, the Chi-
square value, and the degree of freedom for Chi-square normality test, and the third
column shows the P value, the T value, and the degree of freedom for zero-mean
T-Test.

MANDIBLE Chi-Square Normality Test Zero-Mean T-Test
P-Value, Chi-Square Value, DoF P-Value, T-Value, DoF

Subject1 0.3135,7.0800,6 0.8668,0.1679,199
Subject2 0.1419,8.2721,5 REJECTED
Subject3 0.4595,6.7118,7 0.6815,-0.4111,199
Subject4 0.5308,5.1022,6 REJECTED
Subject5 0.5337,4.1097,5 0.8241,0.2225,199
Subject6 0.5828,3.7712,5 0.1552,1.4267,199

5.6 Summary

In this chapter, we first explained the data acquisition and pre-processing techniques

used. Then the two phases of registration procedures were explained. In the first

phase, we introduced a methodology for multi-modal registration of CBCT and

3dMD, and in the second phase we explained the multi-temporal registrations for

the skulls and the mandibles.

Evaluating our registration results, we measured the signed distances between

the corresponding points in images obtained at T1 and T2. We then tested the signed
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distance errors with a Chi-Square goodness-of-fit test. The results of our normality

tests showed that with the removal of the outliers, all the error data are following

normal distributions which shows that our registration methodology is not biased

and is reliable.
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Figure 5.17: Distribution of signed registration errors (in mm) for Subject 1 - Skull.
This error distribution is a normal distribution tested by Chi-Square normality test,
and therefore indicates that the registration procedure is not biased.

Figure 5.18: Distribution of signed registration errors (in mm) for Subject 2 - Skull.
This error distribution is a normal distribution tested by Chi-Square normality test,
and therefore indicates that the registration procedure is not biased.
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Figure 5.19: Distribution of signed registration errors (in mm) for Subject 3 - Skull.
This error distribution is a normal distribution tested by Chi-Square normality test,
and therefore indicates that the registration procedure is not biased.

Figure 5.20: Distribution of signed registration errors (in mm) for Subject 4 - Skull.
This error distribution is a normal distribution tested by Chi-Square normality test,
and therefore indicates that the registration procedure is not biased.
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Figure 5.21: Distribution of signed registration errors (in mm) for Subject 5 - Skull.
This error distribution is a normal distribution tested by Chi-Square normality test,
and therefore indicates that the registration procedure is not biased.

Figure 5.22: Distribution of signed registration errors (in mm) for Subject 6 - Skull.
This error distribution is a normal distribution tested by Chi-Square normality test,
and therefore indicates that the registration procedure is not biased.
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Figure 5.23: Distribution of signed registration errors (in mm) for Subject 1 -
Mandible. This error distribution is a normal distribution tested by Chi-Square
normality test, and therefore indicates that the registration procedure is not biased.

Figure 5.24: Distribution of signed registration errors (in mm) for Subject 2 -
Mandible. This error distribution is a normal distribution tested by Chi-Square
normality test, and therefore indicates that the registration procedure is not biased.
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Figure 5.25: Distribution of signed registration errors (in mm) for Subject 3 -
Mandible. This error distribution is a normal distribution tested by Chi-Square
normality test, and therefore indicates that the registration procedure is not biased.

Figure 5.26: Distribution of signed registration errors (in mm) for Subject 4 -
Mandible. This error distribution is a normal distribution tested by Chi-Square
normality test, and therefore indicates that the registration procedure is not biased.
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Figure 5.27: Distribution of signed registration errors (in mm) for Subject 5 -
Mandible. This error distribution is a normal distribution tested by Chi-Square
normality test, and therefore indicates that the registration procedure is not biased.

Figure 5.28: Distribution of signed registration errors (in mm) for Subject 6 -
Mandible. This error distribution is a normal distribution tested by Chi-Square
normality test, and therefore indicates that the registration procedure is not biased.
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Chapter 6

Conclusion

Integrating multiple 3D imaging modalities in dentistry gives us the ability to re-

construct different tissue types, such as bone and skin, and to visualize 3D models

of the patients. The information obtained from the reconstruction of different tis-

sues in 3D before and after the treatments may help quantifying patient outcomes,

which results in development of better treatments and objective surgical plannings.

In this thesis, we introduced a methodology for tracking bone and facial skin

variations over a one-year period of time, in this case following an orthodontic

treatment. Due to the fact that complementary information can be achieved from

multiple modalities, CBCT and stereo-photogrammetry technologies are utilized

to reconstruct bone and skin structures of the face. Six subjects, including three

subjects experiencing a treatment and three untreated subjects, were chosen from

an ongoing clinical trial, and undergone the data acquisition process at two different

points of times (T1 and T2), within an 8 to 12 months period. During each imaging

session, a headband with six titanium spheres glued to it was worn by the subjects.

A NewTom QR-DVT 9000 CBCT scanner was used to capture all the needed

information for volumetric reconstruction of the skull and the teeth through only

one rotation of the X-ray source and detector around the head. Once the scanning

was performed, the data received by the detector was transmitted to a workstation

where a 3D volumetric model of the skull was reconstructed by a backprojection

algorithm implemented in the NewTom software.

A 3dMDface system mounted on top of the NewTom CBCT device was also

used for skin texture and color acquisition just after the bone acquisition process
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was done. By solving correspondence problem for the images captured from the

four stereo-paired cameras, the corresponding points were detected, and a compli-

cated triangulation algorithm was used to reconstruct the 3D model of the face.

This system was then used to reproject the surface skin color captured by two high

resolution cameras into the 3D model.

Comparing 3D models of the skull with the skin captured at one point of time

gives us the ability to analyze the effects of bone variations on the skin structures.

Moreover, comparing skull and skin variations before and after the treatments may

help physicians to evaluate and plan for different treatments. As a consequence, a

registration procedure is needed in order to overlay 3D skin over 3D skull models

at each time and between visits, before and after the treatments.

Our proposed tracking system consisted of a two-phase registration procedure.

In the first phase, we extracted from both modalities extrinsic landmarks which were

put on the subjects’ forehead during the imaging sessions, and registered them using

a 3D rigid registration algorithm. The two geometric models (skull and face) were

then registered in the same coordinate systems and saved as a unique polygonal

shell that was used as one entity. As a result of this registration methodology, one

can analyze the effects of bone treatments on the facial soft tissue.

In the second phase of registration, we took advantage of intrinsic landmarks

on the skull geometry at times T1 and T2 to apply an automatic, robust registration

algorithm. The skeletal anatomical landmarks were chosen among those which

could be easily identifiable, and did not theoretically change or grow during the

interval T1 to T2. In this way, by applying an intrinsic landmark-based registration

followed by an Iterative Closest Points (ICP) algorithm, the skull data from time

T1 were registered on the skull data of time T2, and comparisons among them were

performed.

Since the mandibles can move independently to the upper-skulls and therefore

should be registered separately, the same registration procedure with specific intrin-

sic landmarks was performed on the mandibles after they were segmented from the

upper skull. Once the intrinsic landmark-based methodology was applied on the T1

and T2 datasets, the ICP algorithm was utilized to optimize the registration results.
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Our registration methodology is shown to capture tissue variations accurately,

with 95% of significance, for a few subjects and over a long period of time. The re-

sults of our registrations show that all of the measured errors stay within the CBCT

device precision. Moreover, the registration errors for both mandible and skull

data have been demonstrated to follow normal distributions with 95% significance,

which shows that there is no bias regarding our registration methodology.

6.1 Future Work

Due to the relative high accuracy obtained from this methodology, it can be em-

ployed by dentists and physicians for tracking treatment results. However, a main

source of outliers in our registration methodology, specially in the case of skulls,

is caused by segmentation. Investigating the effects of different iso-surface val-

ues in Marching Cubes algorithm might result in finding the optimized value for

registration. Additionally, developing an automatic process for the segmentation

of mandibles, as well as automation of anatomical landmark detection might help

reducing the outliers, and therefore improves the registration results.

Performing polygon morphing algorithms on soft tissue, bone and teeth data

separately, and reconstructing polygonal models between patients’ visits will help

physicians to investigate the effects of treatments. Also, since 3dMD systems use

light projection technique to find the corresponding point in stereo images, the col-

ors captured by this device is different from the true colors. By developing a color

calibration methodology, one would be able to extract the true color information

from a photogrammetry system. Adding color information to morphing techniques

will help find the color variations between times, and as a consequence, develop a

complete track of the patients.
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