
University of Alberta

Coding Techniques to Reduce Material Saturation
in Holographic Data Storage

by

Seth William Phillips

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Communications

Department of Electrical and Computer Engineering

©Seth William Phillips
Spring 2014

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis
and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed

or otherwise reproduced in any material form whatsoever without the author’s prior written permission.

To Marissa

Abstract

Holographic data storage (HDS) is an emerging data storage technology that

has received attention due to a high theoretical data capacity, fast readout

times, and a potentially long lifetime of the recording materials. The work

presented in this thesis was undertaken to solve one of the technical impedi-

ments preventing the widespread use of HDS, the occurrence of large concen-

trations of power in recorded holograms. Such peak values of optical power

cause the medium to saturate during the recording process. As a result, the

most significant portions of the hologram are not recorded accurately, and on

readout, saturated recordings are not reconstructed correctly.

In the implementation of HDS considered in this thesis, data is organized

into an array of pixels using hybrid ternary modulation that contains an off-

pixel and two different on-pixels that are differentiated by their phase terms.

The Fourier transform of this data array is created optically and the image of

the Fourier transform is recorded holographically.

This thesis presents a two-step coding technique that decreases the likeli-

hood and severity of peaks in encoded holograms. In the first step, sparsity,

the proportion of off-pixels in the array, is increased, which decreases the

total power in the encoded array. In the second step, phase masks are used

to alter the phase of on-pixels to decrease periodic content in the data array.

This reduces the likelihood of an encoded array containing large peak values

at any point in the Fourier domain.

Analysis is presented for the sparsity encoding which demonstrates the

worst-case sparsity for certain system parameters. The performance of both

the sparsity encoding and phase masking procedure are tested with numerical

simulations. The results of these simulations indicate that these encoding tech-

niques effectively inhibit the occurrence of large intensity peaks the holograms

of encoded arrays.

Contents

1 Introduction 1

2 Background 4
2.1 Holography . 4
2.2 Holographic Materials . 6
2.3 Holographic Data Storage . 8
2.4 Recording in the Fourier Domain 9
2.5 Modulation Methods . 11

2.5.1 Amplitude Modulation 12
2.5.2 Phase Modulation . 14
2.5.3 Hybrid Ternary Modulation 16

2.6 Optical Fourier Transform . 18
2.6.1 Conceptual Analysis of Lenses and Point Sources . . . 18
2.6.2 Mathematical Analysis of Lenses and Point Sources . . 21
2.6.3 Fourier Optics . 28

2.7 Physical Properties of Fourier Images 30
2.7.1 Discrete Time Fourier Transform 32
2.7.2 Area Represented by the DTFT 34
2.7.3 Energy Represented by the Fourier Transform 37
2.7.4 Over-Sampling and Zero-Padding 41
2.7.5 Analysis of DFT Definitions 42

3 Binary-to-Ternary Sparse Guided Scrambling 48
3.1 Introduction . 48
3.2 Binary to Ternary Encoding 49

3.2.1 Direct Base Conversion 50
3.2.2 Conversion through Base-10 51

3.3 Guided Scrambling . 52
3.3.1 Mathematical Nomenclature 53
3.3.2 Scrambling Process . 54
3.3.3 Set of Relationship Sequences 57

3.4 Primitive Scrambling Polynomials 58
3.4.1 m-sequences . 58
3.4.2 Table of Relationship Sequences 60
3.4.3 Selection Set Analysis 62
3.4.4 Worst-case Sets . 63
3.4.5 Identification and Occurrence of Worst-case Sets 66

3.5 Simulation Results . 71
3.5.1 Primitive Scrambling Polynomials 72
3.5.2 Degree of Scrambling Polynomial 76

3.6 Conclusion . 79

4 Selective Phase Masking 80
4.1 Introduction . 81

4.1.1 Physical-Level Phase Masks 82
4.1.2 Selective Phase Masks 83
4.1.3 Mathematics of Phase Masks 84
4.1.4 Evolutionary Algorithm Simulations 85

4.2 Phase Mask Design . 87
4.2.1 Gaussian Pulses . 88
4.2.2 Unit Pulses . 90
4.2.3 High Frequency Unit Pulses 94
4.2.4 Multi-Frequency Unit Pulses 95
4.2.5 Pseudo-random Masks 96
4.2.6 Simulations . 97

4.3 Number of Phase Masks . 107
4.4 Interleavers . 109
4.5 Array Size . 111

4.5.1 Definition of Terms Regarding Array Size 112
4.5.2 Problem Formulation 112
4.5.3 Fourier Coefficient Analysis 112
4.5.4 Computed Results . 117
4.5.5 Simulations . 119

4.6 Conclusion . 119

5 Example 121
5.1 Example . 121

5.1.1 Binary Data . 122
5.1.2 Binary-to-Ternary Encoding 124
5.1.3 Selective Phase Masking 125
5.1.4 Summary of Example 127

6 Conclusion 128
6.1 Main Contributions . 128
6.2 Future Work . 129

A Evolutionary Algorithm 139
A.1 Initialization . 140
A.2 Selection . 140
A.3 Mutation . 141
A.4 Finalization . 142

List of Tables

3.1 Direct Base Conversions . 51
3.2 GF(3) Arithmetic . 53
3.3 Guided Scrambling Division Encoding and Multiplication De-

coding . 56
3.4 Example m-sequence and recurrence relation 60
3.5 An example set of relationship sequences generated by the prim-

itive polynomial x2 + x+ 2. 61
3.6 An example selection set constructed by adding q0(x) to each

sequence in the set of relationship sequences generated with the
scrambling polynomial d(x) = x2 + x+ 2, as shown in Table 3.5. 63

3.7 Degree-2 scrambling polynomial cohorts 72
3.8 Degree-3 scrambling polynomial cohorts 74
3.9 Average Sparsity for Primitive Scrambling Polynomials 77
3.10 Number of symbols and concatenated blocks calculated in Fig-

ure 3.5b. 78

4.1 Description of each Cr term in F [1, 1] for the N = 5 case. . . . 113
4.2 Listing of cN(v) values for N equal to zero through four. . . . 115

5.1 Number of data symbols at each step in the encoding process. 122

List of Figures

2.1 System diagram of Gabor’s original holographic process [1]. . . 5
2.2 A simple diagram of a 4-f system configuration [2] 10
2.3 Lens Focusing for two points, one on-axis, and one off-axis . . 19
2.4 Lens with two point sources 20
2.5 A geometric representation of the Fourier lens system. 22
2.6 Diagram of axis rotation . 25
2.7 Relation between plane waves and spatial frequency in the x, y

plane. 29
2.8 A Data Array and its Fourier Transform 30

3.1 General Shift Register Division 58
3.2 Finite State Diagrams for two d(x) polynomials. 59
3.3 Sparsity performance of degree-3 polynomials 73
3.4 Sparsity performance of degree-4 polynomials. 76
3.5 Experimentally derived sparsity CDFs for single blocks and con-

catenated blocks using primitive scrambling polynomials of dif-
ferent degree. 77

4.1 Element-wise multiplication in the data array results in a con-
volution in the Fourier domain. 86

4.2 Gaussian Pulse Masks and Fourier Transforms 90
4.3 Fourier Pairs: Circular Pulses and Sincs 91
4.4 Circular Pulses as Phase Masks and the corresponding Fourier

Transforms . 92
4.5 Geometric Diagram and Plot of ε 92
4.6 High Frequency Unit Pulse Masks and the corresponding Fourier

Transforms . 94
4.7 Multi-Frequency Unit Pulse Masks and the corresponding Fourier

Transforms . 95
4.8 Pseudo-Random Masks and the corresponding Fourier Transforms 97
4.9 Results of one test of a set of four Gaussian Pulses (Set shown

in Figure 4.2). 99

4.10 Results of one test of a set of four Circular Unit Pulse Masks
(Set shown in Figure 4.4). 101

4.11 Results of one test of a set of four High Frequency Unit Pulse
Masks (Set shown in Figure 4.6). 103

4.12 Results of one test of a set of four Multi-Frequency Unit Pulse
Masks (Set shown in Figure 4.7). 105

4.13 Results of one test of a set of four random phase masks (Set
shown in Figure 4.8). 106

4.14 Results from several evolutionary tests with various numbers of
pseudo-random phase masks. 108

4.15 Results from tests of Masking systems with and without inter-
leavers. 111

4.16 Histogram of coefficient distribution as N increases. 116
4.17 Plot of the cumulative proportion of arrays with scaled mag-

nitude values less than or equal to the value on the x-axis for
varying N . 117

4.18 Diagrams of two arrays with different N values. 118
4.19 Global maximum Fourier Transform peak value per simulation

and average resulting Fourier transform peak value for various
number of masks using 32×32, 64×64, 128×128, and 256×256
sized arrays. 120

5.1 Two binary arrays and their Fourier Transforms 123
5.2 HTM Array after the 19:12 binary-to-ternary code. 124
5.3 HTM Array after guided scrambling using d(x) = x2 + x+ 2. . 125
5.4 Masked HTM Array . 126

Table of Acronyms

CCD Charge Coupled Device
CDF Cumulative Distribution Function
DC Direct Current (refers to the zero frequency term)

DFT Discrete Fourier Transform
DTFT Discrete-Time Fourier Transform
FFT Fast Fourier Transform
FT Fourier Transform

GF(N) Denotes the Galois Field of N elements
HDS Holographic Data Storage
HTM Hybrid Ternary Modulation
LCD Liquid Crystal Display
PDF Probability Density Function
SLM Spatial Light Modulator

Chapter 1

Introduction

Within the field of information storage, holographic data storage (HDS) is an

emerging technology that promises high storage density, fast data readout,

and long material lifetimes [2, 3]. A few technical problems exist that inhibit

the practicality of HDS systems. The work presented in this thesis seeks to

resolve one of these problems: the occurrence of spectral peaks in recorded

data arrays.

In a holographic data storage system, information is recorded as a hologram

in an appropriate medium. Chapter 2 begins with a brief overview of the

history of holography. The fundamental concepts underlying holographic data

storage are then presented. Additionally, the modulation methods and system

configurations are detailed.

A problem currently facing holographic storage systems is material satu-

ration. This occurs if the optical intensity of any point in the recorded image

exceeds the saturation threshold value of the medium. On readout, saturated

recordings are reconstructed improperly, which leads to errors in the data array

at the decoder.

One method that reduces the optical intensity of recorded holograms is

sparsity encoding. Chapter 3 first demonstrates an algorithm that converts

binary data into ternary and follows with guided scrambling as a method that

can be used to introduce sparsity to ternary data. A ternary alphabet is

used because it allows more information to be stored per array compared to

1

binary modulation, and hybrid amplitude/phase modulation provides inherent

benefits to the Fourier domain properties of recorded arrays, as detailed in

Chapter 2. Analytical results determine the worst-case sparsity using guided

scrambling, and the number of worst cases is demonstrated.

Selective phase masking, a process for mitigating material saturation, is

detailed in Chapter 4. Previous studies have shown that phase masking re-

duces the Fourier domain peak at DC. In those studies, the phase mask was

implemented as a static optical device which introduced new difficulties such

as diffraction effects and stringent requirements for optical alignment. In this

thesis, phase masking is studied at the encoding level for data arrays using

ternary modulation. Since a phase mask implemented during encoding is not

a physical device in the optical path, diffraction effects and alignment problems

are avoided. Furthermore, multiple phase masks can be used, which affords

the encoder a choice among a set of masked variants (including the unmasked

array) to represent a data array. This choice decreases the likelihood of an

encoded data array containing Fourier domain peaks.

Simulation results are presented for systems using selective phase masking.

An evolutionary algorithm was designed to generate data arrays with Fourier

domain peaks in all masked and unmasked cases. This algorithm was then

used to determine the effect of using various numbers of phase masks. A

decreasing trend in the magnitude of Fourier domain peaks was observed as

the number of phase masks available to the encoder increases. This algorithm

was also used to test selective phase masking for arrays of various size. It was

found that as the size of the array increases, the relative magnitude of Fourier

transform peaks decreases, which indicates that the number of masks required

to keep the occurrence of large Fourier domain peaks acceptably low does not

increase when using arrays that are larger than the ones studied in this thesis.

Additionally in Chapter 4, the selective use of interleavers is detailed and

studied. It was determined that adding interleavers to a selective phase mask-

ing system is less beneficial than adding additional masks.

In Chapters 3 and 4, simulation results are presented that indicate a de-

crease to the average and maximum peak values in the Fourier domain of data

arrays. These results are not translated into a final bit error rate improvement

2

because doing so would require the selection of several system parameters to

be made. The results presented here are intended to serve to as evidence of

the utility of these techniques in general, so computing a resulting bit error

rate for a specific system runs counter to this goal.

Chapter 5 presents an example that incorporates the techniques presented

in this thesis: conversion from binary data to ternary form, then sparse guided

scrambling and selective phase masking. The example begins with binary data

that is converted into its ternary representation. The ternary data is made

sparse using guided scrambling, and this sparse data is mapped to an array.

Next, selective phase masking is used to generate a masked array that contains

no significant peak values in its Fourier domain representation. At each step,

the data and its Fourier domain representation are plotted to illustrate the

benefit of each step in the coding procedure. This example demonstrates that

arrays can be encoded using the techniques developed in this thesis to record

ternary data without large Fourier domain peaks.

Finally, in Chapter 6, the thesis concludes with a summary of the tech-

niques presented herein, and a discussion of future work. With the analytical

and simulated results, it can be concluded that guided scrambling works well

to introduce sparsity to the data array, and that selective phase masking ef-

fectively reduces the peak values in the Fourier domain of the encoded data

array. These techniques result in data arrays that are less likely to saturate

a recording medium, which can yield higher reliability for a given material

as well as allow the use of new materials that have relatively low saturation

thresholds.

In this thesis, several novel contributions are presented. For encoding, the

binary to ternary conversion with subsequent guided scrambling for sparsity

is a new technique. Also, guided scrambling with a set of ternary symbols has

not previously been investigated, and the proofs that describe the worst-case

sparsity are novel. Although phase masking has been studied in the past,

the implementation of phase masks at the coding step is a new technique

for this application. Additionally, the use of multiple phase masks, and the

evolutionary algorithm simulations that indicate the benefit of using multiple

masks are original contributions.

3

Chapter 2

Background

2.1 Holography

Holography is a method of recording images within the volume of a record-

ing medium. The technique was invented in 1948 by Dennis Gabor[1]. This

discovery would earn him the 1971 Nobel Prize in Physics.

The general principle governing holography is the ability for a holographic

recording medium to record an interference pattern within its chemical struc-

ture. The recorded interference pattern is created by superimposing two co-

herent light waves upon one another. Once the recording is made, either of

the waves can be imposed on the holographic material to reconstruct its coun-

terpart.

Gabor’s original system was devised as a method of microscopy. In his

setup, he sought to produce a beam of electrons brought into focus at a point.

From this point the beam would expand as a coherent, point source wave,

which he called the primary wave. He would then place an object at some

distance from the focus such that the object was fully illuminated by the

primary wave but did not completely block the primary wave. The wave that

is transmitted by the object he called the secondary wave. A photographic

plate would be placed some distance from the object, which would record the

interference pattern between the primary and secondary waves.

He found that applying the primary wave to the recording did, in fact,

4

Point Focus

Object

Primary Wavefront

Secondary Wavefront
Emitted by Object

Interference
Maxima

Phase
Coincidences

Figure 2.1: System diagram of Gabor’s original holographic process [1].

replicate the secondary wave, complete with depth, which he noted:

It is a striking property of these diagrams that they constitute

records of three-dimensional as well as of plane objects. One plane

after another of extended objects can be observed in the micro-

scope, just as if the object were really in position.[1]

Gabor later replicated this experiment with monochromatic light sources[4].

As research progressed into improving the holographic recording process,

new system configurations were developed. The idea of placing the primary

and second waves on different optical paths was first introduced by Emmett

Leith and Juris Upatnieks [5]. Further work by Leith and Upatnieks [6, 7]

expanded upon this insight by designing new geometries for the optical system.

In [7] the authors illuminated three-dimensional objects with laser light.

The reflected portion of the light was then used as the secondary wavefront

(now called the object beam). Additionally, they placed a mirror in the scene

with the three-dimensional objects. The laser light reflected by the mirror

provided the primary wavefront (now known as the reference beam). With

the optical system oriented in such a way that the holographic material is

struck by the reference beam, a hologram is recorded with the depiction of

the three-dimensional object as seen from the perspective of the holographic

material.

The reference beam needs to interfere with the object beam in order to

record the hologram. Since the object beam is now light reflected from a

three-dimensional structure, the holographic material will be struck by the

object beam if it is in a location that receives any of the reflected light. Since

5

the reference beam is a plane wave reflected from a mirror, all that is necessary

for interference to occur is for mirror to be oriented in such a way that the

reference beam impinges upon the holographic material. This will ensure that

an interference pattern is formed within the holographic material.

Once the hologram is recorded, reconstruction of the object beam is pos-

sible by illuminating the holographic material with a duplicate of the refer-

ence beam. Since the reconstructed object beam is an accurate replica of the

original object beam, the hologram will have all the properties of the origi-

nal wavefront. This means that every ray that impinged upon the recording

medium will be emulated with its amplitude and direction intact. This effec-

tively treats the holographic material itself as a window through which the

entire recorded, three-dimension scene can be observed. A moving observer

will notice parallax between distant and near field objects in the recording.

2.2 Holographic Materials

The holographic medium itself is obviously very important to any holographic

system. Several varieties of material have been utilized in systems described

in the literature. The two main material classes used are inorganic crystals

(particularly lithium niobate [8]) and organic materials [9]. The fundamen-

tal requirement for a material to be suitable for holography is that it must

be responsive to light. Both organic and inorganic materials are capable of

providing refractive index modulation due to exposure to light. The physical

processes a specific material undergoes in the formation of the refractive index

modulation differs depending on its chemical composition. For instance, an

inorganic crystal may store the interference pattern as changes in its electron

distribution [10], whereas an organic monomer/polymer material can store

the hologram through polymerization of the monomers [11, 12] or alignment

of polymer chains [13].

There also exist additional material requirements that any substance should

meet if it is to be used not just for holography but for holographic data storage.

Firstly, the material should have high sensitivity, where sensitivity describes

the change in refractive index due to some level of exposure [2]. A high sen-

6

sitivity material will be able to record holograms more quickly or record with

lower overall power, which would in turn allow more holograms to be recorded

within the same medium. Secondly, the material should exhibit high stability,

which is to say that the recording should not degrade over time. Generally

there is a trade off in materials between stability and sensitivity, in that a

highly sensitive material is usually not as stable as a less sensitive one, and

vice versa. Finally, the material should be available in thick samples, on the

mm-cm range. This is due to holography being a volumetric process, so there

are inherent advantages to using a thick material as opposed to a thin film,

however thin film holography is an active area of research [14, 15, 16].

Historically, the most often used material for holographic storage is lithium

niobate (LiNbO3), an inorganic crystal. One property of lithium niobate is

that it undergoes a change in its refractive index when exposed to light [17].

In some optical applications this property is disadvantageous, however, it is

precisely what is required for a material to serve as a holographic medium.

Shortly after the discovery of this property, lithium niobate was demonstrated

as a viable medium for storing holograms [8]. From that point onward, it

served as the backbone material for nearly every demonstration of holographic

storage. However, LiNbO3 has a few drawbacks, namely its low sensitivity [18].

This low sensitivity results in long write times, and a low overall capacity when

compared to the theoretical limits of the technology. These drawbacks have

led to a search for more viable materials.

The alternate class of materials, organic polymers and monomers, is cur-

rently the focus of many research efforts [13, 19, 20]. The major advantage

organic materials have over inorganic crystals is that organic compounds are

both easier and less expensive to produce. Also, organic materials are capable

of high sensitivities [2]. However, these materials introduce new issues that are

not found with inorganic crystals. For one, the physical changes which record

the hologram can so severely alter the material that warping can be intro-

duced to the holographic medium. For a system relying on angle multiplexing

of the reference beam, losing control over the precise angle of the medium is

a serious problem. Also, organic films are easy to produce with spin-coating,

but creating a thick material, with constant optical properties throughout its

7

bulk, is more challenging.

The lack of a truly ideal material that satisfies all the requirements for

holographic storage is one of the main hindrances to the commercialization of

the technology. There are research efforts underway which will hopefully yield

a viable candidate material, from either glass-like polymers [21] or composite

materials [18]. The work presented in this thesis is independent of the record-

ing material, and is valid for current holographic materials as well as more

ideal materials that may be developed in the future. Additionally, the coding

techniques presented in this thesis reduce the likelihood of material saturation

which enables less ideal recording materials to be reliably used as holographic

storage media.

2.3 Holographic Data Storage

The premise underlying holographic data storage is the utilization of a holo-

graphic medium to record images that contain an organized data structure,

rather than a three dimensional image of a scene. This is done by forming the

data structure with the object beam, then recording its interference with a

plane wave reference beam. Retrieval of this data structure is then possible by

once again applying the reference beam used to create the holographic record-

ing to the material [22]. Readout of the stored data is then possible through

some method which is dependent on the nature of the data structure chosen

for the storage system.

The simplest type of data structure is an array of on and off data pixels.

Each element in the array can correspond to either a one or a zero depending on

whether or not the object beam is on or off at that location. This modulation

scheme can be implemented with something as simple as a transparency that

contains a printed image of the data array, to a liquid crystal display that

produces the data array by turning some pixels on or off. Once the data

has been encoded into the object beam wavefront, it is impinged upon the

holographic medium and interfered with by a chosen reference beam, causing

the medium to record a hologram that represents the data.

After the recording is completed the object beam is reproduced by applying

8

the reference beam to the medium. The object wavefront is then decoded by

some method such as projecting the reconstructed wavefront onto an image

sensor. Signal and image processing techniques can then be used to extract

the data represented by the object beam. For instance, if data was encoded

serially into the array, recovery of the data would consist of scrolling serially

through the image and interpreting light and dark pixels as ones or zeros with

respect to the modulation scheme chosen.

In most systems described in the recent literature, data is represented,

optically, through the use of a spatial light modulator (SLM). An SLM is, in

the simplest case, an LCD without a light source. In the holographic data

storage system a laser will serve as the light source, and the SLM will be used

either to pass or to block some of the light, thereby depicting the data as a

wavefront. Readout is usually performed by a charge coupled device (CCD).

The CCD is similar to the component in a digital camera that converts the

image passed through the lens and shutter into an electrical signal to be stored

as a digital image. It is used in exactly the same manner in holographic storage

systems. The reconstructed data wave front is displayed onto the CCD, which

converts the pattern of incoming photons into an electrical signal, which is

then analyzed to recover the data.

2.4 Recording in the Fourier Domain

Despite its simplicity, directly recording the data array introduces a few prob-

lems. Most notably, any material defect in the holographic medium will result

in corruption of the reconstructed wave front. When the data array is recorded

directly the corrupted wave front will likely cause errors in the data itself.

Fortunately, alternatives to direct recording of data arrays exist. The most

common form discussed in the literature is known as the 4-f configuration [2].

This system consists of using two convex lenses, with one placed between the

SLM and the holographic medium and the other placed between the medium

and the CCD. The spacings between the SLM and first lens, first lens and

holographic medium, holographic medium and second lens, second lens and

CCD are all equal to the focal lengths of the lenses used. For convenience, it

9

Spatial Light
Modulator

Image Sensor
(CCD)

Storage
Medium

Reference Beam

Object Beam

Figure 2.2: A simple diagram of a 4-f system configuration [2]

is generally assumed that the lenses are symmetrical and identical, meaning

all focal lengths in the optical system are equal to one another. With these as-

sumptions the distance between the SLM and CCD will be four focal lengths,

hence the 4-f designation of the system. A diagram of this type of system is

given in Figure 2.2.

In this system, the first lens optically converts the data array image into

its two-dimensional spatial frequency representation, or its Fourier transform

[23]. This is a well-known property of lenses operating on an image generated

by coherent light, which will be further discussed in section 2.6. By the same

physical principle, the second lens converts the reconstructed hologram into

its Fourier transform. Since the recorded hologram and the original data array

are Fourier pairs, this is in effect the inverse Fourier transform, which recovers

the data array from the stored hologram. The advantage here is that any

material defects in the medium will now cause a relatively mild degradation

of the whole reconstructed image rather than more severe noise localized to a

few data pixels.

Recording the Fourier transform presents some drawbacks. The most seri-

ous of these is the fact that the Fourier transform of a data array can focus a

significant fraction of the optical power in the data array to small areas. For

instance, the center point in the spatial frequency representation encodes the

DC, or zero frequency, component of the data array. In the case of a data

array consisting of on and off pixels the DC component will be equivalent to

the total power in the array. A very high intensity peak in the hologram will

10

result in very poor performance of the holographic data storage system due to

saturation of the medium. This is explained in greater detail in section 2.7.

Peaks in the spatial frequency image can also be the result of periodic

structures within the data. The two-dimensional spatial Fourier transform of

a plane wave image has two peaks that are equidistant from and fall on a line

that includes the central point of the image. The distance from the DC location

to either peak is proportional to the spatial frequency of the plane wave, and

the orientation of the peaks about the center represents the direction of the

wave in the image plane. Because of this property of the Fourier transform,

any periodicity in the data array will also generate significant peaks in the

hologram.

Developing methods for reduction of these peaks is one of the main goals of

this research. In chapter 4, selective phase masking is introduced and detailed.

This method effectively reduces the DC component to zero in most cases,

and also disrupts periodic structures within an array that has large Fourier-

domain peaks at higher frequencies. To this end, in Chapter 3, sparse guided

scrambling is detailed. This type of encoding reduces the severity of Fourier-

domain peaks by limiting the number of on-pixels in a data array, thereby

providing a limit to the total optical power.

2.5 Modulation Methods

As with any communication system, the precise manner in which information

is represented in the holographic storage device is dependant on the modula-

tion scheme that is employed. The modulation schemes available depend on

the physics of the channel as well as the modulating and demodulating appa-

ratuses. Data must be represented such that symbols with differing values are

discernable upon readout. In the case of holographic storage by means of an

SLM and CCD, modulation is most often limited to the amplitude and phase

of the object wave at different physical locations.

The following discussion of modulation schemes describes the manner in

which the SLM forms a set of symbols to represent the data in the storage

system. The multiplexing methods and specific nature of the reference beams

11

are not considered so that more attention can be given to the alterations

performed on the object beam in each system.

2.5.1 Amplitude Modulation

In traditional communications, amplitude modulation refers to the act of trans-

mitting a signal as a change in amplitude of some carrier wave. In holographic

storage scenarios the term essentially has the same meaning. The laser light

source provides the carrier wave, and the SLM performs the modulation. In

the typical case the carrier wave is multiplied by the signal to produce the mod-

ulation. For the holographic storage case, the multiplication is carried out as

well, but the signal is now the SLM that can have, for instance, binary values.

That is to say, for a binary one the SLM passes the light unperturbed, and for

a binary zero, the SLM blocks the light completely. Thus, the multiplication

is carried out with the SLM representing an array of ones and zeros.

It is also possible to store more than one bit per pixel by using gray-scale

amplitude-modulated arrays [24]. In this scheme, the data page contains more

than two amplitude levels. This provides multiple symbols for encoding the

data, which allows each symbol to carry more than one bit of data.

Recording a hologram with multiple brightness levels is not overly compli-

cated. Some SLMs can provide multiple brightness levels intrinsically. With

these, the task of recording a hologram with multiple amplitude levels is

straightforward. If a binary SLM is used then it is still possible to record

a gray-scale array. To do this the exposure time is altered for individual pixels

such that some are recorded more strongly than others [25]. For example, if a

four-level array is desired, three levels of on pixel brightness are required, with

the fourth level being the off state. The exposure time is then subdivided

into 3 time slots. Pixels which are to be the least bright on state are recorded

for the first time slot, the intermediate state are recorded for the first two

time slots, and the brightest state are recorded during all three slots. With

this procedure, the recorded array contains on pixels of three brightness levels

as well as the off state.

Demodulating a gray-scale array is much more difficult than the simple

12

scheme required for binary amplitude modulation. Typically, signal depen-

dent effects will make simple threshold detection unreliable for determining

the differing gray levels. As shown in [26], the page diffraction efficiency1 is

dependent on the number of holograms multiplexed within a given material,

but is independent of the proportion of on-pixels in the array. However, since

the reference beam ideally diffracts only to on-pixel locations the diffraction

efficiency per pixel is dependent on the number of on-pixels in the array. An

array with fewer on pixels will reconstruct each pixel more brightly than one

with a greater number of on pixels. This variation in reconstructed pixel in-

tensities causes serious problems if detection thresholds are set for a system

prior to reading out the hologram. To circumvent this, demodulating makes

use of intensity variations within an array itself to determine the thresholds

for detection.

In [24], the authors used several demodulating methods to reproduce data

represented in a gray-scale modulated array. For smaller block sizes it is

possible to sort pixels by brightness and demodulate accordingly, if a constraint

is enforced such that a known proportion of each gray-level is used. In [24],

an array was recorded with three total amplitude levels (0, 1 and 2 in order of

increasing intensity). A 15:12 code was used to map 15 user bits to 12 pixels,

with the constraint that four of the pixels would be level-0, four would be level-

1, and the final four would be level-2 for each data block. At the demodulator,

each block is sorted by brightness, so that the four brightest are decoded as

the level-2 pixels, the four dimmest are decoded as the level-0 pixels, and the

remaining four are the level-1 pixels.

Amplitude modulation provides the simplest detection requirements of all

modulation schemes used in holographic storage. Amplitude modulation ben-

efits from simple modulating procedures as well. On the other hand, both bi-

nary and gray-scale amplitude-modulated arrays suffer from very large peaks

at DC in their Fourier transforms. This causes the holographic material to be-

come saturated and reduces the overall storage capacity. Alternative modula-

tion schemes, described in the following sections, do not have such problematic

1The total proportion of reference beam power that is diffracted to form the hologram
on readout

13

DC components, but introduce further complexity. Techniques for mitigating

the DC peak are described in chapter 4.

2.5.2 Phase Modulation

Although amplitude modulation is perhaps the simplest modulation scheme,

it is not the only modulation method that is used. Advances in liquid crystal

display technologies have made it possible to alter the phase of pixels inde-

pendently in spatial light modulators. This has led to researchers using phase

modulation as a method for encoding data into arrays for holographic storage

[27, 28, 29, 30].

Phase modulation has several advantages over the amplitude modulation

techniques described above. As described in section 2.4, data images are typ-

ically recorded as their Fourier transforms, and amplitude-modulated data

pages have a strong DC component. With phase modulation, it is possible

to reduce the DC peak through destructive interference of the out-of-phase

pixels.

In phase modulation, zeros and ones are represented as 0 and π phase shifts

respectively. Since the zero frequency component in the center of the Fourier

image is the DC value of the data image, it is proportional to the sum of the

data array. In this case, the 0 and π phase shifted pixels cancel each other

out, so that for a perfectly balanced array (i.e. an array in which the number

of 0 pixels exactly equals the number of π pixels) the DC component is zero.

In amplitude modulation, the DC component is the most significant peak

in the hologram. However, the total power contained in the Fourier image is

equivalent to the power of the laser source scaled by the number of on pixels

that are in the data array. In phase modulated data arrays, however, all pixels

are on pixels, since only phase shifts used to encode the data. Because of

this, the total power in a phase-modulated array is higher than that of an

amplitude modulated array for all possible input data with the exception of

the all-on array, in which case both modulation schemes will result in equal

power in the array.

The fact that a phase-modulated array will contain more power in its holo-

14

gram than an amplitude-modulated array carrying identical data is important

to consider while attempting to reduce Fourier-domain intensity peaks of the

recording. Since this power is not concentrated at DC, in relatively balanced

arrays, it must be located elsewhere in the Fourier image. Because of this, it

is possible for a phase-modulated array to produce very large peaks elsewhere

in its Fourier image if the data array contains highly periodic pixel patterns.

Reading data from the reconstructed array is more challenging for phase

modulated arrays than it is for amplitude modulated arrays. This is due to

the fact that the CCDs used to read the data are unable to detect the phase

of an incoming light wave, but can only detect intensity. To recover the data

from a phase modulated array it is necessary to impinge a plane wave upon

the reconstructed data image. This plane wave should be in phase with one

of the data symbols. This will cause constructive interference at the points

which are in phase, and destructive interference at the points which are out

of phase with the plane wave. In this way, the CCD is able to discriminate a

binary zero from a binary one via the variation of intensity. If the intensity of

the plane wave closely matches that of the reconstructed wave, then the out

of phase pixels reduce nearly to zero and the phase matched pixels are made

brighter.

Several methods for producing the interference plane wave have been pro-

posed. One solution, known as the real time holographic interferometric

method [28], involves using the SLM to generate the interference wave. This

method essentially creates an object beam of constant phase to be displayed

concurrently with the reconstructed hologram, which is read out with the ap-

propriate reference beam. The constant phase interference wave will traverse

the holographic system to reach the CCD. Since this method involves display-

ing both an object and reference beam on the holographic material, it is not

suitable for re-writable systems. In such systems the read out process would be

identical to the write process, and as a result, each read out would record the

constant phase wave on top of the data hologram. This method would work

well for systems with permanently recorded holograms or systems employing

gated recording.

15

2.5.3 Hybrid Ternary Modulation

Another modulation method for holographic storage is hybrid ternary modu-

lation (HTM) [31, 32]. The premise for HTM is to combine both amplitude

and phase modulation into one modulation scheme. The motivation for this

is that it should be possible to achieve the advantageous Fourier properties of

a phase-modulated array while maintaining most of the positive attributes of

an amplitude-modulated array, all while increasing the total capacity of the

data storage system.

In its initial presentation, HTM was intended to be a method for reducing

the previously mentioned DC peaks in the Fourier image [31]. In that publi-

cation, the authors constructed a system that would essentially use amplitude

modulation to represent data, but the on pixels would not all have the same

phase state. They proposed introducing a π phase shift to roughly half of

the on pixels. With this approach, the magnitude of the DC peak should be

reduced, given that it is determined by the sum of the values of the pixels in

the data array. Through the Fourier transform, the π shifted on pixels de-

structively interfere with the unshifted on pixels, resulting in the reduced DC

value. When the number of phase-shifted pixels is equivalent to the number

of unshifted pixels, the DC value is at its minimum.

As noted previously, the phase shifts for each on pixel has no effect in

read-out because CCDs can only detect optical intensity and not the phase of

the light wave. So, for data read-out, the detector can function exactly as one

designed for an amplitude-modulated data array.

Since HTM provides three different states for the pixels in the data array,

a natural extensions is to use all of those states to represent data[33]. The

premise is that a π phase shifted on pixel and a zero phase shifted on pixel

will represent different information content. Doing so provides a ternary data

array rather than a binary one. The ternary array is capable of encoding more

than one data bit per pixel, so this results in an overall capacity increase.

The main drawback to using HTM is that it results in a significant increase

in the complexity of the overall system. In the original HTM system the

phase did not carry any information, so it did not need to be detected. If,

16

however, data is encoded in the phase of the on pixels then the detector must

be able to recover the phase if the input information is to be reconstructed

correctly. Phase detection is possible with interferometric techniques, but this

does require a high level of precision.

The general readout method, as described in [33], is a two step process. In

the first step the detector reads the recorded hologram itself. This allows the

detector to differentiate the on pixels from the off pixels. The detector then

reads the recorded array and a constant-phase reference wave simultaneously.

This produces an interference pattern on the CCD in which the on pixels

that are in-phase with the reference wave will constructively interfere, causing

doubly bright pixels. The off pixels will be illuminated by the reference wave,

and appear as less bright pixels to the detector. Finally, the on pixels that are

out of phase with the reference wave will interfere destructively, and appear

as minimally bright pixels. This assumes the reference wave is of an intensity

equal to the intensity of the recorded hologram’s pixels, and that the reference

wave is exactly in phase with one set of on pixels and exactly out of phase with

another. Maintaining these conditions is likely to be the primary challenge in

the physical detection of an HTM data array.

The origin of the reference wave is another matter that will add complex-

ity to the HTM system. In [33], the authors describe a method of recording

a constant phase data array in the holographic medium. This constant phase

array is then reconstructed at the same time as the data array that is being

read during the second step of the detection process. Generating the reference

wave in this manner would seem to be a good method for ensuring that it has

equal amplitude and is phase-matched with one set of the on pixels in the data

array because both arrays are generated by the same laser source, and both

have phase alterations set by the same process (the modulating SLM). Re-

constructing two holograms simultaneously, however, requires generating two

separate reference waves simultaneously, which results in increased complexity

in the system.

For the purposes of this thesis, error-free hybrid ternary modulation and

demodulation will be assumed because the focus of this work is encoding HTM

arrays in a manner so as to improve the characteristics of their frequency

17

domain representations.

2.6 Optical Fourier Transform

In section 2.4 it was noted that convex lenses are used to create the Fourier

transform of an image. This property requires that the input light is co-

herent, which is satisfied in the holographic storage case by the laser light

source. With coherent light, the optical rays exhibit predictable interference

effects which are necessary for the Fourier transform to be carried out. It can

be shown mathematically that the output focal plane of a lens will be pro-

portional to the Fourier transform of the input focal plane image under the

conditions described above (see chapter 4 - section 4.2 of [23]). However, a

more intuitively accessible, geometric approach will be explained below. This

description follows the treatment provided in [34].

2.6.1 Conceptual Analysis of Lenses and Point Sources

The Fourier property of lenses is evident given the fact that a point-source,

spherical light wave at the input focal plane is transformed into a plane wave

after passing through the lens. This also works in reverse, in that a plane wave

passing through the lens is focused to a point at the focal plane. In the case

of a point source producing a plane wave, the plane wave is directed along the

line from the point source through the center of the lens. For a point source

lying on the optical axis, the plane wave is directed along the optical axis. For

a point source lying in the focal plane, but some distance off the optical axis,

the plane wave is directed askew to the optical axis.

This principle is illustrated in Figure 2.3. The y-axis is directed vertically,

the z-axis is horizontal (and also represents the optical axis for these systems),

and the x-axis is directed into the page. A point source is shown for two

different orientations: the on-axis case, and the off-axis case (the axis being

the optical axis). In both cases, the point source is depicted as a circle, and

the resulting wavefront is shown as a series of dark lines. On the left side of the

lens the point source produces a spherical wave front. In this and subsequent

18

(a) on-axis (b) off-axis

Figure 2.3: Lens Focusing for two points, one on-axis, and one off-axis

figures, the portion of the spherical wavefront not impinging upon the lens is

omitted for clarity. In both cases, the lens shapes the spherical wavefront into

a plane wave. The plane wave is depicted as a series of dark, parallel lines

which indicate points of zero phase. The two vertical, dotted lines on either

side of the lens represent the focal planes.

An on-axis point source is shown in 2.3a. This point source produces a

spherical wave front, a small portion of which is incident on the lens. The lens

then focuses this spherical wave into a plane wave. Since the point source lies

on the optical axis, the plane wave is directed along the optical axis. When

the edge effects of the lens are neglected, the result is an area of uniform

amplitude and uniform phase at the back focal plane. The uniform phase of

the back focal plane image is indicated by the wavefront being parallel to the

focal plane. This shows that, at any two points on the back focal plane, the

light wave is in phase.

In Figure 2.3b, however, the point source has been moved some distance

from the optical axis. Because of this positional translation, the resulting

plane wave is now directed along a line that intersects the optical axis in the

center of the lens. The result of this, in the back focal plane, is that the

focused image is still of uniform amplitude, but there is a phase shift along

the vertical axis as shown in the figure. The phase shift is evident because the

wavefronts are not parallel to the focal plane. Since the dark lines represent

the zero-phase points of the plane wave, the points at which the dark lines

intersect the focal plane represent zero-phase points in the focal plane. The

phase gradation is evident by inspecting the back focal plane along the vertical

19

(a) Point +a (b) Point −a (c) Both Points

Figure 2.4: Lens with two point sources

axis. Beginning at one zero-phase point, it is clear that moving vertically will

show that the phase of the light wave progresses linearly from 0 to 2π, which

is the phase at the subsequent zero-phase point, and then repeats this phase

change periodically. This is due to the fact that the phase has a period of 2π,

and therefore any phase value φ can be equivalently expressed as φ (mod2π).

Figure 2.4 shows a lens with two point sources that are equidistant from

the optical axis and both lie on the y-axis. Figure 2.4a shows one of the

sources with a positive shift in the vertical direction, and Figure 2.4b shows

the other source which has a negative shift. The plane wave in figure 2.4b

is similar in form to the one from Figure 2.3b. As before, scrolling vertically

in the back focal plane, in this case, will reveal that the phase of the image

cycles linearly through 0 to 2π. However, scrolling vertically in the back focal

plane of Figure 2.4a will reveal that its image cycles linearly from 2π to 0.

What is important about this is that the phase values of the two back-focal-

plane images, originating from the two point sources, are exact reversals of

one another. As a result, the image at the back focal plane of Figure 2.4c will

be a plane wave with high-intensity maxima where the two phase components

are equal (when they are both 0 or when they are both π) and low-intensity

minima when the two phase components are π radians out of phase (when one

is π/2 and the other is 3π/2).

Figure 2.4c shows the two waves overlapped in the back focal plane. The

two plane waves are in phase at the points where the wavefronts meet; these

points indicate a 0 phase shift relative to the original point source. The waves

are also in phase at the midway points between each of these 0 phase points; at

20

these points both wavefronts have a π phase shift. Also, note that Figure 2.4

is equally accurate when the propagation direction of the light is right to left.

A plane wave in the front focal plane will be converted to two points in the

back focal plane.

The above discussion provides hints of the Fourier property of a lens. It

is illustrated that a plane wave on one side of the lens will be focused to

two points on the other. This is analogous to the Fourier transform of a

one dimensional sinusoid, which is two Dirac delta functions spaced equally

from the zero frequency point. The essence of the Fourier transform is the

representation of a signal by a sum of weighted, complex-exponential basis

functions.

In the two-dimensional case, the basis function is a complex plane wave.

One way to conceptualize the lens performing the two-dimensional Fourier

transform is to realize that every point in an image is converted into a plane

wave with its direction determined by the direction to the optical axis from

the point in question. Additionally, each of these complex plane waves will be

scaled by the value of the point in the front focal plane which produced them.

Because of this, the output at the back focal plane is the sum of each complex

plane wave generated by each point in the image. This sum of complex plane

waves is actually the Fourier transform of the input image.

2.6.2 Mathematical Analysis of Lenses and Point Sources

Mathematically the image in the back focal plane arising from a point source

in the front focal plane can be expressed as a complex exponential function.

Following the notation of [34], the image of the front focal plane is referenced

as f(x, y) and the image in the back focal plane is referred to as F (du, dv).

The arguments of F are (du, dv), respectively, to indicate that F is a function

of distances. In section 2.7, F is re-introduced as a function of spatial frequen-

cies, and a relation will be drawn between the function of spatial frequencies

and the function of distances in the back focal plane. Since the Fourier trans-

form is reversible it is also possible to express f(x, y) as a function of spatial

frequencies. However, for this presentation of the optical Fourier transform,

21

f f

l

dv

a

A

B

C

Wavefront

D

E

F

G

Figure 2.5: A geometric representation of the Fourier lens system.

the image in the front focal plane will be referred to exclusively in terms of

distances.

On-Axis Point Sources

For a single point source in the front focal plane f(x, y) = δ(x − dx, y −
dy), where dx, dy are the distances of the point source in the x and y axes,

respectively. Also, F (du, dv) = eiφ(du,dv), where φ(du, dv) is the phase factor

in the u, v plane. Also, the amplitude of F (du, dv) must equal
∫∫

f(x, y).

By the definition of the Dirac delta function,
∫∫

f(x, y) = 1 and, therefore,

|F (du, dv)| = 1. In the above discussion, the phase was discussed intuitively,

however, it is necessary to have a mathematical description of it to show that

F (du, dv) is indeed the Fourier transform of f(x, y).

Following the work presented in [34], a mathematically simple and in-

tuitively satisfying derivation of the phase factor φ(du, dv) can be attained

through geometry. Figure 2.5 depicts a geometric system representing the

Fourier lens system in discussion. As in Figures 2.3 and 2.4, the vertical axis

represents the y-axis, the horizontal axis is the z-axis (also the optical axis),

and the x-axis is directed into the page.

To determine an expression for the phase of the Fourier image it is neces-

sary to determine the optical path difference between any two points in the

Fourier image. The two points chosen in Figure 2.5 are the center point of the

back focal plane (F) and a point located a distance dv from the optical axis

22

(G). This distance can be approximated as the length, l, of segment DG in

Figure 2.5. This approximation is based on the assumption that the rays in the

optical system are paraxial, or close enough to the optical axis for the small

angle approximation to hold (i.e. sin(θ) = θ). The paraxial approximation is

valid in this case, and is already employed with discussion of the focal plane

of the lens; Non-paraxial rays do not converge at the focal plane, in an effect

known as spherical abberation (see [23], Chapter 1, Section 1.2-C). The actual

optical path difference would be determined by the length of segment EG; the

approximation is that DG ≈ EG.

An expression for l is found by examining the three triangles 4ABC,

4CDF , and 4DFG. These three triangles are all similar. 4ABC ∼ 4CDF
because ∠ACB and ∠DCF are vertical angles, and therefore congruent. Since

both triangles are right, it follows that their third angles must also be congru-

ent, and the triangles are similar. 4CDF ∼ 4DFG because they are both

right, and DG and CF are parallel, so the alternate interior angles ∠GDF

and ∠CFD are congruent. Therefore4CDF and4DFG have two congruent

angles, so their third angles must also be congruent, which makes the triangles

similar.

Since the three triangles are similar, ratios of their similar sides are equal,

and l/dv = a/f . So the expression for l as a function of a, f , and dv is:

l =
adv
f

(2.1)

With the optical path difference known, the phase difference is deduced

through the use of properties of the wave nature of light. To do this, the

optical path difference is divided by the wavelength of the light, λ, which

gives a value in dimensionless units equivalent to the optical path difference in

wavelengths. This value is then multiplied by 2π to convert the wavelengths

value to radians. This conversion is possible because one wavelength represents

2π radians in terms of phase. The result of this operation is the expression for

the phase difference in terms of a, dv, f , and λ:

φ(du, dv) =
2πadv
fλ

(2.2)

23

Using Equation 2.2 with the discussion above concerning Figure 2.4, the

result of the superposition of the image of two point sources spaced equidistant

from the optical axis is mathematically expressible. As mentioned previously,

the back focal plane image resulting from an off-axis point source, as in Fig-

ure 2.3b, is:

F (du, dv) = eiφ(du,dv) (2.3)

Inserting the value for φ(du, dv) found in Equation 2.2, yields:

F (du, dv) = e(
2πadvi
fλ) (2.4)

From Equation 2.4, it is clear that the phase gradient in the back focal plane

is linear along the v direction. It is also evident that a point source located at

−a will produce an image in the back focal plane with a phase gradient exactly

opposite the one produced by a point source located at +a (i.e. using a value

of −a for a in Equation 2.4 gives the function an equal value but negative

exponent, which translates to a phasor with equal but opposite frequency).

The superposition of the back focal plane images of a point source a distance

a and another a distance −a can be written mathematically as:

F (du, dv) = e(
2πadvi
fλ) + e(

−2πadvi
fλ)

since the complex exponentials have opposite exponents, their sum will be:

F (du, dv) = 2 cos

(
2π

a

fλ
dv

)
(2.5)

which is a standard plane-wave. In Section 2.6.1, it was stated that the image

at the back focal plane of two point sources in the front focal plane has intensity

maxima at locations in which both point sources produce 0 and π phase shifts.

Equation 2.5 indicates that F (du, dv) has values of 2 and−2 for these respective

phase shifts. The intensity, however, is determined by |F (du, dv)|2, which does

have maxima at 0 and π.

24

θ

x

y

a

(a) x, y plane

θ

u

v
v′

u′

(b) u, v plane

Figure 2.6: Diagram of axis rotation

Off-Axis Point Sources

Conceptually, it is apparent that rotating the image in the front focal plane

should simply produce a corresponding rotation of the image in the back focal

plane. That is to say, if the point source discussed above is not located on the

y-axis, but instead is located at an arbitrary point in the x, y plane the output

will be a phase gradient as described in Equation 2.4, but with a direction

dictated by the rotation in the front focal plane.

Describing this mathematically can be done by considering a rotation of

the axes, as presented in [34]. A single point source located a distance a

from the optical axis, but now at some angle from the y-axis, θ, is shown in

Figure 2.6a. Equation 2.4 accurately describes the image in the back focal

plane if an arbitrary axis is created with a rotation equal to θ as shown in

Figure 2.6b. Using Equation 2.4 with the arbitrary axis gives the following:

F (du, dv) = e

(
2πad′vi
fλ

)
(2.6)

where d′v is the distance along the rotated axis v′. This distance is a function

of du and dv. Also, due to the rotation, the point source needs to be expressed

in terms of its extent in both the x and y directions. These distances are dx

and dy respectively. From Figure 2.6, the following relations between a, dx,

25

and dy as well as du, dv, and d′v can be determined:

dx = a sin(θ) (2.7)

dy = −a cos(θ) (2.8)

d′v = du sin(θ)− dv cos(θ) (2.9)

Substituting Equation 2.9 into Equation 2.6 gives:

F (du, dv) = e(
2πia(du sin(θ)−dv cos(θ))

fλ) (2.10)

Rewriting this expression yields:

F (du, dv) = e(
2πi[du(a sin(θ))+dv(−a cos(θ))]

fλ) (2.11)

Finally, substituting Equations 2.7 and 2.8 into Equation 2.11 gives:

F (du, dv) = e

(
2πi[dudx+dvdy]

fλ

)
(2.12)

Arbitrary Image as Composite Point Sources

To progress, mathematically, from a single point to an image, it is necessary

to note that the lens apparatus is a linear system. This means that the output

of several points will be equivalent to the sum of the output of each point

separately. This property was discussed in Section 2.6.1, in which the output

of two point sources was shown to be the superposition of the output of each

point source. Mathematically, this superposition is described by a summation,

which is the definition of the linearity property.

Describing an input image as a sum of point sources, and then determining

the output of that summation demonstrates the Fourier property of the single

lens system. This is the approach taken by the authors in [34], and will be

detailed here as well.

Firstly, the input image is described as a double integral of point sources

26

of varying amplitude:

f(x, y) =

+∞∫∫
−∞

f(dx, dy)δ(x− dx, y − dy)ddxddy (2.13)

The image in the back focal plane is governed by the relation described in

Equation 2.12. Each point source in the input image produces a plane wave,

with direction and frequency dictated by the orientation and distance of the

point source with respect to the optical axis, and amplitude dictated by the

amplitude of the point source.

F (du, dv) =

+∞∫∫
−∞

f(dx, dy)e

(
2πi[dudx+dvdy]

fλ

)
ddxddy (2.14)

Lastly, as a matter of notational clarity, dx, dy, the distance of each point in

the x, y axes, are re-written as x, y, likewise du, dv are written as u, v.

F (u, v) =

+∞∫∫
−∞

f(x, y)e(
2πi[ux+vy]

fλ)dxdy (2.15)

This gives the definition of the inverse Fourier transform, due to the exponent

being positive. This is not a problem, however, due to the Fourier transform

being reversible.

Reexamining the derivation of the exponent reveals that the positive factor

is due to the point G in Figure 2.5 lagging point F in phase. If the analysis

were done in reverse, but keeping the same convention that point G lags point

F in phase, it would reveal that point B leads point A. Thus, the phase term

for the front focal plane would be Equation 2.2 multiplied by −1. Following

the remainder of the derivation with the negative value of φ yields:

f(x, y) =

+∞∫∫
−∞

F (u, v)e−(2πi[ux+vy]
fλ)dudv (2.16)

27

which is the definition of the forward Fourier transform.

In reality, the notion of forward and reverse Fourier transform is only arbi-

trarily connected to the lens system. The matter of the back focal plane being

the reverse Fourier transform of the image in the front focal plane is simply

due to the axis conventions used in this derivation. The important concept is

that the two images are mathematically related as a Fourier transform.

2.6.3 Fourier Optics

The Fourier property of a lens can also be described with standard Fourier

optics. Through conventional Fourier theory, an image can be represented by

the sum of complex-amplitude harmonic functions of different spatial frequen-

cies. For this analysis, the front focal plane of the lens is referred to as the

xy-plane or the z = 0 plane.

A harmonic function with spatial frequency νx and νy in the x and y di-

rections respectively is equivalent to a plane wave directed with angles θx and

θy to the optical axis in the x and y dimensions respectively. This plane wave

has the wave-vector k = (kx, ky, kz) and wavenumber k =
√
k2
x + k2

y + k2
z = 2π

λ

where λ is the wavelength of the light.

The components of k are related to the spatial frequencies of the harmonic

function in the z = 0 plane by:

νx =
kx
2π

νy =
ky
2π

The angles θx and θy are determined by the x and y components of the

wave-vector as:

θx = sin−1

(
kx
k

)
= sin−1 (λνx)

θy = sin−1

(
ky
k

)
= sin−1 (λνy)

The relationship between an harmonic function with spatial frequency νx in

28

x

z

y

k

θx

(a) Plane wave resulting from
low νx.

x

z

y

k

θx

(b) Plane wave resulting from
high νx.

Figure 2.7: Relation between plane waves and spatial frequency in the x, y
plane.

the xy-plane and a plane wave with wave vector k is depicted in Figure 2.7. The

harmonic function with a relatively low spatial frequency shown in Figure 2.7a

is related to a plane wave that creates a relatively small angle θx with the

optical axis. Conversely, the harmonic function with a relatively high spatial

frequency shown in Figure 2.7b is related to a plane wave that makes a much

larger angle with the optical axis.

When the plane wave encounters the lens, the wave front is focused to a

point, (x, y), in the back focal plane. This point is determined by the angles

θx and θy. For paraxial waves, the coordinates x, y are given by the following

relation:

x = θxf

y = θyf

where f is the focal length of the lens.

Accordingly, every point in the back focal plane of the lens represents

the contribution of its corresponding harmonic function in the image in the

front focal plane. Therefore, the image in the back focal plane of the lens

is proportional to the two-dimensional Fourier transform of the image in the

front focal plane.

29

20 40 60 80 100 120

20

40

60

80

100

120 −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Data Array

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

200

400

600

800

1000

1200

1400

1600

(b) Fourier Transform of
Data Array

Figure 2.8: A Data Array and its Fourier Transform

2.7 Physical Properties of Fourier Images

In a hybrid ternary modulation scheme, as described in section 2.5.3, data

is represented with the symbols 1, 0, or -1. Both the 1 and -1 represent on

pixels, however, the -1 indicates an optical phase shift of π radians. When

analyzing data arrays it is more convenient to use these logical symbol values,

rather than using a value that takes into account the actual laser power of the

system. From a coding perspective, using logical units allows isolation of the

coding method from the other parameters in the holographic storage system.

This isolation allows several coding-based approaches to be directly compared

with each other. Additionally, in the analysis of frequency domain properties

of data arrays, the data that is represented by the different logical values is

not important; the physical transformation processes are carried out by the

lens without regard to the data represented by the pixels. An HTM array is

shown in Figure 2.8a.

However, to accurately analyze the physical properties of the Fourier trans-

form of a data array, it is necessary to convert the logical units (1, 0, -1) to

physical units. This is due to the fact that a Fourier transform for an array

with logical units contains values that are dependent upon the logical units

rather than physical units. The resulting values in the Fourier transform are,

therefore, unrelated to the actual system in review, and peak values in the

30

transform cannot give an indication as to whether or not the data array will

cause the material to saturate. For instance, Figure 2.8b shows the magnitude

of the Fourier transform of the data array in Figure 2.8a. The magnitude

of the transform has three peaks each of approximately 1700. Without addi-

tional information about the physical parameters of the holographic system,

this value is meaningless.

However, the logical units of an array are not physically defined (See [23]:

Section 2.1). Fortunately, the physical units can be derived from the fact that

the total magnitude squared value of f [m,n] represents the power of the data

array (where f [m,n] denotes logical value in the mth row and nth column of the

data array). To convert the logical-valued data array into a properly scaled ar-

ray of physical values for any given system, the total magnitude squared value

of the data array must equal the power of the object laser beam multiplied

by the proportion of on pixels. With this scaling, it is possible to compare

the peak values of the Fourier image to a threshold value to determine if a

given data array will saturate the medium. The specific threshold value is a

property of the material used for the holographic recording medium.

The scaling factor is constant for all pixel values if it is assumed that the

laser power is distributed evenly across the SLM. This is a common assumption

that will be applied here. With this assumption, the scaling factor (sc) is√
Po/M, where Po is the object beam power, and M is the total number of

pixels in the array. This scaling factor has units
√

W. The SLM will simply

absorb the power impinging on pixels that are off. Multiplying the scaling

factor by the data array gives the result
∑

m

∑
n |sc · f [m,n]|2 = Po ·Mo/M ,

where Mo is the number of on pixels. This is the result that is required to

properly scale the data array.

With this scaling factor in place, the square of the data array values rep-

resents the amount of optical power contained in each pixel. However, holo-

graphic material saturation is determined by the amount of energy delivered

to a specific area of the medium. It is therefore necessary to derive an ex-

pression for the area of each pixel. The area is affected by system parameters,

namely the lens focal length, the wavelength of the laser used, and the size

of the SLM. Also, to obtain simulation results, the discrete Fourier transform

31

will be used. The physical area represented by a single point in the transform

array is dependent upon the sample spacing chosen for each dimension of both

the spatial and transform domains.

2.7.1 Discrete Time Fourier Transform

A continuous Fourier transform of a discrete function is known as the discrete-

time Fourier transform (DTFT). The term DTFT will be used to describe the

two-dimensional transform of a two dimensional data array. Even though the

discrete domain for the data array is spatial, rather than temporal, the DTFT

designation is used due to convention. The definition of the two-dimensional

DTFT is:

F (νu, νv) =
∑
m

∑
n

f [m,n]e−2πi(νumxo+νvnyo) (2.17)

where xo and yo are the sample spacings in the x and y directions of the data

array respectively, and νu, νv are spatial frequencies in the u and v directions.

Here, ν is used as the argument variable to distinguish it from the expression

for F provided in section 2.6, which was a function of distances.

Examination of the units in the DTFT definition reveals that F (νu, νv) has

the same units as f [m,n]. In the exponent, νu and νv have units of 1/meters,

m and n are unit-less indices, and xo and yo have units of meters. Therefore,

the argument of the exponential is radians, given by the 2π term, and the

exponential term does not alter the units in the equation. So F (νu, νv) has

the same
√
W units as f [m,n].

Because f [m,n] is discrete, F (νu, νv) will be periodic. The periodic nature

of F (νu, νv) can be shown by examining the complex exponential summand.

Using Euler’s formula2, Equation 2.17 can be re-written as:

F (νu, νv) =
∑
m

∑
n

f [m,n] [cos (θ) + i sin (θ)]

where:

θ = −2πνumxo − 2πνvnyo

2Euler’s Formula: eiθ = cos(θ) + i sin(θ)

32

Since cosine and sine are periodic about 2π, values for F (νu, νv) will be iden-

tical when the arguments of the cosine and sine functions are incremented or

decremented by 2π. Therefore, F (νu + p, νv + q) = F (νu, νv) for some values

of p and q. Determining the value for p which results in periodicity with νu is

accomplished by examining the arguments of the cosine and sine functions:

cos(−2π(νu + p)mxo − 2πνvnyo) + i sin(−2π(νu + p)mxo − 2πνvnyo)

cos(−2πνumxo − 2πpmxo − 2πνvnyo) + i sin(−2πνumxo − 2πpmxo − 2πνvnyo)

The change resulting from the addition of p to νu is the term −2πpmxo in

each argument. When this term is an integer multiple of 2π, F (νu + p, νv) =

F (νu, νv). This condition can be written:

−2πpmxo = 2πk (2.18)

where k is some integer. Since the variable m is an arbitrary integer index,

its value is irrelevant in this expression. Likewise, the negative sign is not

important, as either a positive or negative value for k will satisfy the periodicity

requirement. This reduces the condition for periodicity in Equation 2.18 to:

pxo = k′

where k′ is an integer accounting for the removal of m and the negation. This

gives a value of p:

p =
k′

xo
(2.19)

This expression indicates that F
(
νu + k′

xo
, νv

)
= F (νu, νv). In other words,

F (νu, νv) is periodic in νu, with a period of 1/xo. A similar derivation can be

followed for νv which gives q = l′/yo, where l′ is some integer. This demonstrates

that the period of F (νu, νv) in νv is 1/yo.

As a result, only values of F (νu, νv) for νu ∈
(
−1
2xo
, 1

2xo

)
and νv ∈

(
−1
2yo
, 1

2yo

)
accurately reflect the actual Fourier transform as carried out by the lens. Any

values outside these ranges will be the values for the next period, and those will

33

not accurately represent the values produced by the lens because the physical

Fourier transform of the spatial data array is a non-periodic image.

2.7.2 Area Represented by the DTFT

Given an understanding of the frequency range calculated by the DTFT, it is

important to develop the relationship between the spatial frequencies of the

DTFT and the physical distances in the Fourier image. Discussion thus far

has focused on the DTFT operating in the frequency domain. However, in

the holographic system, the material will be saturated by an excess amount

of energy per area, so the size of the Fourier image, in meters, is crucially

important. System parameters such as light wavelength and the lens focal

length affect the size of the image that is projected upon the holographic

medium. With variation of these parameters, it is possible for a single data

array to saturate a medium in one system, but not saturate the same material

in a different system.

Equation 2.4 is the basis for determining a relation between distance in

the image and frequency in the DTFT. Reprinted here for clarity, the Fourier

transform of a point source is:

F (du, dv) = e(
2πadvi
fλ) (2.4)

where a is the distance of a point source from the optical axis in the front

focal plane, dv is a distance from the optical axis in the back focal plane, f

is the focal length of the lens, and λ is the wavelength of the laser. Based

on this result, it is shown in the following that the optical Fourier transform

of a sinusoidal plane-wave in one domain is two points in the other domain.

These two points will be some distance from the optical axis, and this distance

will represent a certain spatial frequency in the DTFT. That frequency is the

spatial frequency of the plane-wave which is the Fourier transform pair of the

two points.

Beginning with two point sources, one located at +a and the other at

−a from the optical axis, the resulting plane-wave can be determined using

34

Equation 2.4. The plane-wave is the sum of the output of each point:

F (du, dv) = e(
2πadvi
fλ) + e(

−2πadvi
fλ).

Since the exponents of the complex exponentials have opposite polarity, their

sum is:

F (du, dv) = 2 cos

(
2π

a

fλ
dv

)
From this expression, it is evident that the frequency of the plane wave, due

to two point sources, is:

ν =
a

fλ

a = fλν (2.20)

The area represented by the DTFT can be calculated using this relation.

Equation 2.20 was derived for a point source located a distance a from the

optical axis in the image plane causing a plane wave of spatial frequency ν

in the Fourier plane. However, the distinction between the image plane and

Fourier plane is mathematically arbitrary because the two are Fourier pairs.

So it is also evident from Equation 2.20 that a plane wave of spatial frequency

ν in the image plane creates a point source located a distance a from the

optical axis in the Fourier plane. It is thereby possible to use Equation 2.20

to convert the ranges of spatial frequencies for which the DTFT is accurate

into a range of distances for which the DTFT is accurate.

Because the extent of the DTFT in the spatial frequency domain is νu ∈(
−1
2xo
, 1

2xo

)
and νv ∈

(
−1
2yo
, 1

2yo

)
, the physical extent of the Fourier image can

be determined to be du ∈
(
−fλ
2xo

, fλ
2xo

)
and dv ∈

(
−fλ
2yo

, fλ
2yo

)
. The total extent in

each direction is thereby λf
xo

meters in the u direction and λf
yo

meters in the v

direction. This gives a total area calculated by the DTFT of:

A =
(λf)2

xoyo
(2.21)

Since a closed-form solution to Equation 2.17 isn’t possible, evaluating

35

this Fourier transform at discrete values for (νu, νv) is useful. This results in

a two dimensional array of sampled values from a continuous two dimensional

function. If the spacing between the samples of νu and νv is constant in each

direction (though not necessarily the same for each) and both cover the entire

frequency range (i.e. νu ∈ (− 1/2xo, 1/2xo) and νv ∈ (− 1/2yo, 1/2yo)), the resulting

array is effectively equivalent to the Discrete Fourier Transform (DFT) of the

original image. This DFT can be expressed as:

F [k, l] =
∑
m

∑
n

f [m,n]e
−2πi

(
mk
Nk

+ nl
Nl

)
(2.22)

where k and l are unit-less indices of the Fourier transform array, and Nk and

Nl are the number of elements in each dimension of the array. The inverse

DFT is given by:

f [m,n] =
1

NkNl

∑
k

∑
l

F [k, l]e
2πi

(
mk
Nk

+ nl
Nl

)
(2.23)

Further insight into these definitions is given in Section 2.7.5.

Equation 2.22 is equivalent to Equation 2.17 when k/Nk = νuxo and l/Nl =

νvyo, and therefore Equation 2.22 is a DTFT when evaluated at the spatial

frequencies νu = k/Nkxo and νv = l/Nlyo.

Since k and l are integers, the preceding equations describe νu and νv as

one dimensional arrays of Nk and Nl elements, respectively, which cover the

range νu ∈ (0, 1/xo) and νv ∈ (0, 1/yo). This range is not identical to the range

derived above for the DTFT, but it does contain the correct values due to the

periodic nature of the DTFT. The DTFT does not accurately depict the true,

continuous optical Fourier transform in the region beyond νu ∈ (− 1/2xo, 1/2xo)

and νv ∈ (− 1/2yo, 1/2yo). However, the values outside this range represent a

tiling of the range in which the DTFT is accurate. So, the range of spatial

frequencies over which the DFT calculates the Fourier transform of the data

array contains every value within the range of accuracy of the DTFT.

Using the periodicity of the DFT indicated by Equation 2.19, the results

of the DFT can be rearranged to be in the same order as those of the DTFT

by adding the period to each argument of F . The range that is not directly

36

calculated by the DFT is νu ∈ (− 1/2xo, 0) and νv ∈ (− 1/2yo, 0). However, due

to the periodicity of the DFT:

F [− 1/2xo, − 1/2yo] = F [− 1/2xo + 1/xo, − 1/2yo + 1/yo]

F [− 1/2xo, − 1/2yo] = F [1/2xo, 1/2yo]

Likewise:

F [0, 0] = F [1/xo, 1/yo]

So the ranges νu ∈ (− 1/2xo, 0) and νv ∈ (− 1/2yo, 0) are evaluated by the DFT

along the ranges νu ∈ (1/2xo, 1/xo) and νv ∈ (1/2yo, 1/yo). Because of this, the

DFT contains the DC value of the Fourier transform (F [0, 0]) in the upper left

corner of the array, as per signal processing convention. In this derivation, the

DFT is shifted so that the zero frequency point F [0, 0] is located in the center

of the array rather than the corner to provide an accurate image of the Fourier

transform of f [m,n]. This convention is used for all figures of Fourier-domain

images.

2.7.3 Energy Represented by the Fourier Transform

It is necessary to derive an expression for the energy contained in each element

of F [k, l] to determine whether or not a given holographic medium will be

saturated by a given data array. This expression can be derived from Parseval’s

Theorem, which describes conservation of energy through the Fourier lens

system. Parseval’s Theorem for the discrete Fourier transform is:

∑
m

∑
n

|f [m,n]|2 =
1

N2

∑
k

∑
l

|F [k, l]|2 (2.24)

Here, it has been assumed that Nk = Nl = N , for notational convenience as

well as for practicality. It is generally the case that both indices in F [k, l] will

consist of an equal number of elements. Additionally, the squaring operations

are element-wise, rather than matrix squaring. This is because f [m,n] and

F [k, l] are two-dimensional discrete functions, rather than systems of equations

represented by matrices.

37

A proof of Equation 2.24 follows from the relationship:∑
m

∑
n

|f [m,n]|2 =
∑
m

∑
n

f [m,n] · f ∗[m,n]

with the dot operator indicating the element-wise multiplication, and f ∗[m,n]

representing the conjugate of f [m,n]. Using Equation 2.23 to represent f ∗[m,n]

as the inverse of its transform gives:

∑
m

∑
n

|f [m,n]|2 =
∑
m

∑
n

f [m,n] · 1

N2

∑
k

∑
l

F ∗[k, l]e−2πi(mkN +nl
N)

where both F [k, l] and the exponential term are represented by their conjugates

in the inverse DFT expansion of f ∗[m,n]. Rearranging the summations gives:

∑
m

∑
n

|f [m,n]|2 =
1

N2

∑
k

∑
l

F ∗[k, l] ·
∑
m

∑
n

f [m,n]e−2πi(mkN +nl
N)

=
1

N2

∑
k

∑
l

F ∗[k, l] · F [k, l]

=
1

N2

∑
k

∑
l

|F [k, l]|2

which concludes the proof of Parseval’s Theorem for the DFT.

The left-hand side of Equation 2.24 was used above to determine the scal-

ing of f [m,n] required when representing the distribution of laser power over

the data array. To evaluate the scaling factor it was stated that the scaled

summation must be equivalent to the power contained in the data array. Be-

cause of this, the right-hand side is also equivalent to the power contained in

the data array.

However, the equality in Equation 2.24 assumes that all light from the

SLM will be contained within the area represented by the DFT. In practice,

this assumption causes this derivation to yield an upper bound on the actual

value of the energy delivered to the holographic material from the laser source

because, in the physical system, some light that passes through the lens might

not fall on the recording medium; the power of any light that, in reality,

38

falls outside the DFT boundary is considered to have been supplied to the

holographic medium. Therefore, the actual energy within a prescribed area

in the hologram may be lower than the value calculated by the formulation

resulting from Parseval’s Theorem. The calculated upper bound is expected to

closely approximate the actual energy, because only negligible high frequency

content is outside the range of the transform.

Returning to Equation 2.24, the 1/N2 term can be written inside the double

summation to give the power at each frequency domain sample:

Pd =
1

N2
|F [k, l]|2

Summing this across the k and l indices gives the total power contained in the

data array. The area expression given in Equation 2.21 can be divided by N2

to give the area covered by each sample in the DFT. This is possible because

the DFT evenly divides the area of the frequency into N2 equal-sized sample

spacings. The expression for the area of a single frequency domain sample is:

Ad =
(λf)2

xoyoN2
(2.25)

Dividing Pd by Ad gives an expression for the intensity (W/m2) at each data

sample in the F [k, l] array:

Id = |F [k, l]|2 xoyo

(λf)2

This expression is true only if f [m,n] is already properly scaled. If the data

array still contains logical units then F [k, l] must be multiplied by the scaling

factor sc to give an accurate result. This multiplication is valid because the

DFT is a linear operation. For simplicity, |sc|2 = Po/M can be multiplied with

Id to give the properly scaled version of Id for each point in the transform

domain when logical units are used in the original data array:

Id,sc = |F [k, l]|2 Poxoyo

M (λf)2 (2.26)

39

The units of Id,sc are W/m2 because |F [k, l]|2 is composed of the unit-less logical

values in this expression.

Holographic materials are saturated by an amount of energy per meter

squared, not power per meter squared. To convert Id,sc to an energy per meter

squared expression it is necessary to multiply by the exposure time. This gives

units of Ws/m2, which are equivalent to units of J/m2:

Fd,sc = |F [k, l]|2 Poxoyot
M(λf)2

(2.27)

where t is the exposure time.

If a saturation limit (Fo) is known for a given holographic recording ma-

terial, an expression can be derived for the lowest value of |F [k, l]| that will

result in a saturated medium. This is done by placing the value for saturation

into the left-hand side of equation 2.27, then solving for |F [k, l]|.

|F [k, l]| =
√
FoM(λf)2

Poxoyot

This expression gives a value for the amplitude of the Fourier transform of a

data array that will result in saturation. This is useful when working with

data arrays in logical units as it allows an upper limit for the peaks in the

Fourier domain to be derived, given several system parameters.

Finally, it is important to note that this expression does not take into

account the reference beam of the holographic storage system. The treatment

of the reference beam in this analysis assumes that the reference beam has a

constant intensity profile in the Fourier plane. Because of the constant profile,

the intensity at each pixel due to the reference beam is constant. A variable

representing the intensity of the reference beam can be added to Equation 2.26

to account for its effects:

IT = |F [k, l]|2 Poxoyo

M (λf)2 + Ir

where Ir represents the intensity of the reference beam.

40

Following the same reasoning as before, multiplying this value by the expo-

sure time gives the total amount of energy per area delivered to the holographic

storage medium.

FT = |F [k, l]|2 Poxoyot

M (λf)2 + Irt

And finally, solving for |F [k, l]| with FT set to Fo gives:

|F [k, l]| =
√

(Fo − Irt)M(λf)2

Poxoyot
(2.28)

This expression gives the amplitude limit for saturation in the Fourier plane.

If any point in F [k, l] exceeds the value determined by Equation 2.28, the

holographic material will become saturated at that point when the data array,

f [m,n], is recorded.

2.7.4 Over-Sampling and Zero-Padding

When using the DFT, it is required that f [m,n] and F [k, l] have the same

dimensions. In the case of optical Fourier transforms, it is usually more infor-

mative for F [k, l] to have more elements than f [m,n]. This is due to the fact

that the Fourier image tends to have more variation within a given area than

does the data array, with its fixed-size data elements.

There are two methods for increasing the size of F [k, l]. The first is to

over-sample the data array, so that each pixel in the SLM is represented by

more than one sample in f [m,n]. Over-sampling decreases the values of xo and

yo if the size of the pixels in the SLM is kept constant. This increases the area

covered by the DFT, as shown in Equation 2.21. However, the resolution in the

frequency domain remains constant, as shown with Equation 2.25. Increasing

N by a factor of 2 will decrease both xo and yo by a factor of 1/2. This

relation between N and the sampling spacing variables causes the denominator

of Equation 2.25 to remain constant, and thus the area per element of F [k, l]

does not change.

The second method is to zero-pad f [m,n]. Zero-padding involves simply

appending zeros after the data samples in f [m,n] to create a larger array.

41

This technique increases N without decreasing xo and yo. Because of this, the

resolution of the frequency domain image is increased. This is useful because

the DFT can only determine the total amount of power per each frequency

domain sample, not the distribution of power within the sample itself. Higher

resolution, thereby, allows a more accurate depiction of the Fourier image. If

zero-padding is used, care must be taken when scaling the data array. The

valueM refers only to the number of elements in the data array which represent

the SLM. The zero-padded elements will represent the empty space beyond the

SLM, and should not be counted when scaling the data array values.

2.7.5 Analysis of DFT Definitions

The definitions for the DFT and its inverse, Equations 2.22 and 2.23 respec-

tively, can be explained in greater detail through the use of a matrix represen-

tation of the DFT operator. This can be more readily understood in the case

of a one-dimensional DFT. The definition for the one-dimensional DFT is:

F [k] =
N−1∑
m=0

f [m]e−2πi(mkN)

In this case, since F [k] and f [m] are one-dimensional arrays, the Fourier op-

erator can be expressed as an N × N matrix. With both F [k] and f [m]

represented as N × 1 vectors, the exponential terms can be written in the

following Φ matrix, where the (k,m)th element in the matrix is given by the

corresponding exponential term in the DFT definition:

Φ =



1 1 1 · · · 1

1 e−2πi 1
N e−2πi 2

N · · · e−2πiN−1
N

1 e−2πi 2
N e−2πi 4

N · · · e−2πi
2(N−1)
N

...
...

...
. . .

...

1 e−2πiN−1
N e−2πi

2(N−1)
N · · · e−2πi

(N−1)2

N


It is important to note here that the indices k and m have values between 0

and N − 1, inclusively. To simplify notation in this section, also let the rows

42

and columns of the matrices be numbered 0 through N − 1.

With the matrix Φ defined, the DFT definition can be re-written as:

F = Φf

where the discrete functions f [m] and F [k] are written as N × 1 vectors f and

F, respectively.

Considering N = 4, for example, gives the following:
F [0]

F [1]

F [2]

F [3]

 =


1 1 1 1

1 e−2πi 1
4 e−2πi 2

4 e−2πi 3
4

1 e−2πi 2
4 e−2πi 4

4 e−2πi 6
4

1 e−2πi 3
4 e−2πi 6

4 e−2πi 9
4



f [0]

f [1]

f [2]

f [3]


This specific example shows the matrix operations more explicitly than the

previous equations. It is clear that F [k] is the sum of each element of f [m]

multiplied by a complex exponential term which has a frequency of mk/N. This

also makes the indexing of Φ clear. The vertical index must be k so that the

product of f with each row corresponds to the kth index of F. Likewise, the

horizontal index must be m so that the multiplication of f and Φ proceeds

along the m index.

Writing the DFT operator as a matrix has the advantage of providing

an intuitive approach for deriving the inverse DFT operator. The inverse of

matrix Φ provides the inverse DFT operator as a matrix. This can be shown

through matrix mathematics as:

Φ−1F = Φ−1Φf

= If

= f

where I is the N ×N identity matrix.

The inverse of Φ can be verified as follows. First, assume it will be the

conjugate of Φ multiplied by some scaling factor. If this is the case, the product

of Φ and its conjugate, Φ∗, should be a diagonal matrix with a constant value

43

along the diagonal.

Consider:

D = ΦΦ∗

D =



1 1 · · · 1

1 e−2πi 1
N · · · e−2πiN−1

N

1 e−2πi 2
N · · · e−2πi

2(N−1)
N

...
...

. . .
...

1 e−2πiN−1
N · · · e−2πi

(N−1)2

N





1 1 · · · 1

1 e2πi 1
N · · · e2πiN−1

N

1 e2πi 2
N · · · e2πi

2(N−1)
N

...
...

. . .
...

1 e2πiN−1
N · · · e2πi

(N−1)2

N


From this it can be seen that the (k,m)th element in D is the product of the

kth row of Φ and the mth column of Φ∗. Using the definitions of these rows

and columns, this product can be expressed as:

Dk,m =
N−1∑
z=0

e−2πi(zkN)e2πi(mzN)

where z is an arbitrary variable of summation that represents m in the kth row

of Φ and k in the mth column of Φ∗. This can be re-written as:

Dk,m =
N−1∑
z=0

e(−2πi k−m
N)z (2.29)

which is a standard geometric series. For the diagonal elements of D, k = m.

Using the previous expression it is clear that for k = m, the sum is:

Dk=m =
N−1∑
z=0

e(−2πi 0
N)z

=
N−1∑
z=0

1

= N

Thus it is shown that that diagonal elements of D are constant, and have value

N . For Φ−1 to be a scaled version of Φ∗, it must also be demonstrated that the

44

non-diagonal elements of D are zero. This is done by evaluating Equation 2.29

for k 6= m:

Dk 6=m =
N−1∑
z=0

e(−2πi k−m
N)z

=
1− e(−2πi k−m

N)N

1− e(−2πi k−m
N)

(2.30)

For this expression to be zero, it is sufficient that the numerator be equal to

zero and sufficient that the denominator have a non-zero value. Evaluating

the numerator gives:

1− e(−2πi k−m
N)N = 1− e−2πi(k−m)

This expression is always equal to zero because k and m are integers, so k−m
must also be an integer, and 1−e2πin = 0, for any integer n. The denominator

of Equation 2.30 is non-zero for k −m 6= 0 and k −m is not a multiple of N .

It is not possible for k − m = 0 or for k − m to be a multiple of N in this

expression. The first case would require k = m, and Equation 2.30 is derived

for k 6= m. The second case is impossible because k and m only take values

between 0 and N − 1, so the difference between k and m can never be N .

The above derivation demonstrates that D = NI. Therefore:

ΦΦ∗ = D

= NI

Φ

(
1

N
Φ∗
)

= I

1

N
Φ∗ = Φ−1 (2.31)

45

The equation for the inverse DFT can be derived given knowledge of Φ−1:

f = Φ−1F

f =
1

N



1 1 1 · · · 1

1 e2πi 1
N e2πi 2

N · · · e2πiN−1
N

1 e2πi 2
N e2πi 4

N · · · e2πi
2(N−1)
N

...
...

...
. . .

...

1 e2πiN−1
N e2πi

2(N−1)
N · · · e2πi

(N−1)2

N


F

The matrix multiplication of Φ−1 and F can be re-written in summation no-

tation to give the standard definition of the inverse DFT:

f [m] =
1

N

N−1∑
k=0

F [k]e2πi(mkN)

This matrix approach to the DFT is also amenable to two dimensional

transforms. The DFT of a two-dimensional array can be determined by com-

puting the DFT of the rows of the array, and then computing the DFT of

the columns of the resulting array. This process is easily carried out with the

matrix formulation. If the dimensions of the data array are not equal, two

separate Φ matrices will be needed to compute the DFT. Each Φ matrix is

computed using Nk and Nl in place of N , respectively.

The process of computing the two-dimensional DFT using matrices can be

written:

F =
[
Φl (Φkf)T

]T
(2.32)

where f is a k × l array, Φk and Φl are the DFT matrices computed with

Nk and Nl, respectively, and T indicates the non-conjugate matrix transpose.

This expression evaluates the DFT of the rows of f then evaluates the DFT of

the columns of the resulting matrix.

46

Equation 2.32 can be re-written using matrix identities:

F =
[
Φl (Φkf)T

]T
=
(

(Φkf)T
)T

(Φl)
T

= ΦkfΦl

Here, ΦT
l = Φl because it is a symmetric matrix.

For Nl = Nk = N the two-dimensional matrix DFT reduces to:

F = ΦfΦ (2.33)

Since this expression introduces Φ twice, it follows that the inverse DFT equa-

tion for two-dimensional arrays will require a 1/N2 term.

47

Chapter 3

Binary-to-Ternary Sparse

Guided Scrambling

3.1 Introduction

In this chapter, a method for converting binary data to sparse ternary data

is presented. The first step in this encoding involves representing binary data

with unconstrained ternary sequences. Binary to ternary conversion is neces-

sary for a practical implementation of a ternary holographic storage system

because the overwhelming majority of data is currently represented in binary

form. Thus any system that makes use of the data stored by a ternary HDS

system will need to input and read out binary data.

It is also important to ensure that the recorded data arrays are sparse,

which is the objective of the second step of encoding. Sparsity is defined as

the proportion of off-pixels to the total number of pixels in a given block

of data. Higher sparsity is beneficial to an HDS system because sparse data

pages contain less power than data pages with a high number of on-pixels, and

therefore consume a smaller proportion of the dynamic range of the recording

medium. This increases the storage capacity because more data pages can be

recorded[35, 36, 37]. As a point of reference, uniformly distributed ternary

symbols would have an average sparsity of 33.3̄%.

48

3.2 Binary to Ternary Encoding

The initial conversion of data from binary to ternary symbols can be imple-

mented with either a fixed length block code or a variable-length code. Since

the final HTM data must be mapped to fixed size arrays, a fixed-size block

code in which nb bits are mapped to nt ternary symbols is used. There are 2nb

possible binary blocks and 3nt possible ternary blocks. The main requirement

for encoding is that the number of ternary blocks must be greater than or

equal to the number of binary blocks so that every input block can be mapped

to a unique ternary block.

The code rate, Rb is defined as the ratio of nb to nt: Rb = nb/nt. The rate

quantifies the number of bits stored per ternary symbol. Given that there are

3nt ternary blocks and 2nb binary blocks, the requirement that there be at least

as many ternary blocks as binary blocks gives 3nt ≥ 2nb ; with this constraint

the maximum code rate is log2(3). However, it is impossible for 2nb and 3nt to

be equal for integers nb and nt because that would require some number to be

both a power of 2 and a power of 3. In such a case, that number would have

two distinct prime factorizations, which violates the fundamental theorem of

arithmetic. Therefore, the rate of any binary-to-ternary block code must be

strictly less than log2(3).

Since sparsity is not a concern for this first step in binary-to-ternary con-

version, values for nb and nt are chosen to maximize Rb and an efficiency metric

η = Rb/log2(3). The values chosen here are nb = 19 and nt = 12, which results

in Rb = 1.5833 and η = 0.99897. The next nb, nt pair that achieves a higher

rate is 84 : 53 which provides η = 0.99996.

The binary-to-ternary conversion can be done with a lookup table for small

block sizes, but this will be impossible with larger block sizes. For instance,

a lookup table for the 19:12 code would need to store 219 = 524288 entries of

length-12 ternary sequences for encoding, and 312 length-19 binary entries for

decoding where “illegal” ternary sequences are matched to “best guesses.” A

lookup table of this size would be manageable, but would require the encoding

and decoding hardware to use more memory than is required for an algorithmic

conversion. However, the 84:53 code would require a lookup table with 283 ≈

49

1025 length-53 ternary entries for encoding and 353 length-83 binary entries

for decoding, which is infeasible due to the memory requirement alone. The

following subsections therefore describe algorithms to perform the conversion

when large values of nb and nt are used.

3.2.1 Direct Base Conversion

One method that can be used to convert a binary data sequence to a ternary

valued codeword is to treat the binary sequence as an nb bit binary number

and convert this number to its nt symbol base-3 representation. This base

conversion can be performed directly using a successive division algorithm

with operations carried out in base-2. The first step of the algorithm is to

divide the binary number by 112, where the subscript denotes the base of the

number. The remainder, converted to base-3, is the least significant digit of

the ternary word. For example, the remainder could be 102 which is equivalent

to 23. Continuing with the algorithm, the quotient is again divided by 112, and

the remainder of this second division operation is the second-least significant

digit. The successive divisions continue until the quotient is zero; the last

remainder is the most significant non-zero digit of the base-3 number.

An example of this process is shown in Table 3.1a. The binary input

{111011} is converted to {2012}, its ternary representation, by repeatedly

dividing successive quotients by 112.

It is possible for the running quotient to become zero before nt ternary

symbols have been found, which means that the base-3 representation of the

binary number has leading zeros. Enforcing the constraint that 3nt be greater

than 2nb ensures that this conversion will never produce a ternary sequence

containing more than nt symbols. To verify this, the greatest possible number

represented by nb bits is 2nb − 1, and the greatest possible number than can

be represented by nt ternary symbols is 3nt − 1, so with the constraint that

3nt > 2nb , it is clear that any sequence of nb bits will represent a number that

is less than the largest number that can be represented by nt ternary symbols.

Decoding the ternary sequence back to binary is performed in a manner

similar to the encoding procedure. The successive divisions can directly con-

50

Table 3.1: Direct Base Conversions

(a) Base-2 to Base-3 Encoding

1 0 0 1 1 r10 = 23

11 1 1 1 0 1 1
1 1 0 r1 = 13

11 1 0 0 1 1
1 0 r0 = 03

11 1 1 0
0 r10 = 23

11 1 0

(b) Base-3 to Base-2 Decoding

1 0 0 2 r1
2 2 0 1 2

1 1 2 r1
2 1 0 0 2

2 1 r0
2 1 1 2

1 0 r1
2 2 1

1 r1
2 1 0

0 r1
2 1

vert from base-3 to base-2 with all operations performed in base-3. As an

example, the ternary sequence {2012} is decoded in Table 3.1b. The remain-

ders, read bottom to top, give the correct binary sequence {111011}.

3.2.2 Conversion through Base-10

In practice, it may be simpler to first convert the binary number to base-10,

given that commonly available processors are designed for base-10 operations.

Using only base-10 operations, the conversion can be performed by finding

the inner product of the binary number, treated as an nb length vector, and

another vector consisting of 2nb−1, 2nb−2, · · · , 20. The base-10 representation

of the binary number can then be converted to a base-3 number using the

previously described successive division algorithm, with the advantage that all

arithmetical operations will be in base-10.

As an example, the binary input shown in Table 3.1a is first converted to

its decimal representation through matrix multiplication of the vectors [1 1 1

0 1 1] and [25 24 23 22 21 20]ᵀ:

51

[
1 1 1 0 1 1

]


25

24

23

22

21

20


= 25 + 24 + 23 + 2 + 1 = 59

Then, using base-10 arithmetic the number 59 is converted to its base-3 rep-

resentation by successive divisions. This process is similar to the examples of

Table 3.1, with 59 as the dividend and 3 as the divisor.

To decode, the ternary sequence can first be converted to base-10 by

finding the inner product of the base-3 number and a vector composed of

3nt−1, 3nt−2, · · · , 30. The base-10 number can then be converted to binary

using successive divisions with operations in base-10.

3.3 Guided Scrambling

Sparsity is introduced into the ternary data by way of a guided scrambling

coding step. Guided scrambling is a multi-mode coding technique that pro-

duces a set of candidate codewords for a given source word[38]. The candidate

codeword with the greatest number of zeros is selected from the set of candi-

dates.

To determine each candidate codeword, the length-W source word is aug-

mented by appending a prefix of A ternary symbols at the start of the block.

The augmented sequence contains S = W + A terms and is scrambled to

produce one of the candidate codewords that may represent the source word.

Since each possible augmenting pattern is used, the set of candidate codewords,

called the selection set, includes 3A candidate codewords.

All sequences are composed of elements from the set {0, 1, 2}. These values

are used to represent the HTM symbols; 0 corresponds to the off-pixel, 1 to

the on-pixel with zero phase shift, and 2 to the on-pixel with π phase shift.

The guided scrambling step is distinct from the initial binary-to-ternary

encoding. It is implemented as a block code, but the size of the input ternary

52

Table 3.2: GF(3) Arithmetic

(a) Addition

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

(b) Multiplication

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

blocks is unrelated to nt.

3.3.1 Mathematical Nomenclature

Throughout this analysis several representations are used for the ternary data.

This subsection outlines those representations and the relationships between

them. All operations are performed using arithmetic from the Galois field

of three elements, GF(3); these operations are shown in Table 3.2. For the

addition operation, each element has an inverse that is defined as the element

that when added to the original element gives a sum of zero. The elements

1 and 2 are mutual additive inverses, and zero is its own additive inverse.

Additive inverses allow subtraction in GF(3). The additive inverse of 1 can be

written as −1, which implies that in GF(3), 2 = −1 and similarly 1 = −2.

The most basic form for the ternary data is a sequence of consecutive

ternary symbols. Sequences are described in this chapter using the notation

{t0t1t2...}. An example sequence is {01220211}. With this representation of

sequences, the left-most symbol is the first symbol in time i.e. t0 occurs before

t1.

Sequences are translated into a polynomial form that is useful to describe

the guided scrambling algorithm. For this translation, the sequence values

are used as the coefficients of a polynomial, and the coefficient of the highest

order term in the polynomial represents the first symbol in the sequence. The

example sequence {01220211} translates to the polynomial x6 + 2x5 + 2x4 +

2x2 + x+ 1. Polynomials are referenced using the notation p(x).

Because the guided scrambling process generates a set of candidate code-

words for each source word, this analysis often needs to refer to several related

53

polynomials at once. To do this, a matrix notation is used to represent the

set of polynomials. Each row of the matrix is a vector consisting of the coeffi-

cients of the polynomial that the row represents. The row vectors are referred

to with bold-face, lower-case notation such as mi where i is the index of the

row. The matrix is referred to with bold-face, capital notation such as M.

As an example, the polynomials p0(x) = x3 + 2x + 2, p1(x) = x3 + x2 + 1,

p2(x) = 2x3 + 2x2 + 1, and p3(x) = x3 + x+ 2 are represented by rows in the

following matrix:

M =


m0

m1

m2

m3

 =


1 0 2 2

1 1 0 1

2 2 0 1

1 0 1 2

 (3.1)

The polynomials and vectors/matrix are related by:
p0(x)

p1(x)

p2(x)

p3(x)

 = M


x3

x2

x1

x0

 =


1 0 2 2

1 1 0 1

2 2 0 1

1 0 1 2



x3

x2

x1

x0


Finally, the operation of adding two sequences is used frequently in the

following subsections. This operation is defined for the polynomial and vector

representations of the sequence, so the addition is always element-wise, where

the result of each element-wise addition is always an element from the set {0,

1, 2}.

3.3.2 Scrambling Process

The scrambling process is defined by polynomial division. Each of the se-

quences is represented by a polynomial in which the first term in the sequence

is the coefficient of the highest order term in the polynomial. Let the length-

W input word be represented with the polynomial w(x), the ith augmenting

sequence be ai(x), the ith augmented sequence be si(x), and the ith candidate

codeword be qi(x).

54

The polynomials are related according to:

w(x) =
W−1∑
j=0

wjx
j

a(x) =
A−1∑
j=0

ajx
j

s(x) = a(x)xW + w(x)

where wj, j ∈ (0 : W − 1), are the values of the symbols in the source word,

and aj, j ∈ (0 : A−1), are the symbols in the ith augmenting pattern. Let the

division of s(x) by d(x) be expressed with the operator Qd(x)[s(x)], defined as:

q(x) = Qd(x)[s(x) · xD]

,
s(x)xD

d(x)
− r(x)

d(x)

where r(x) is the remainder of the division. Subtracting r(x)/d(x) from the

quotient effectively neglects the remainder when constructing q(x). This re-

mainder term is inconsequential because a codeword is decoded by multiplying

it with the scrambling polynomial, which gives:

q(x)d(x) = s(x)xD − r(x)

The lowest order term in s(x) is the constant term, so the lowest order term in

s(x)xD is the xD term. Since the degree of r(x) must be less than D (including

the degenerate case when r(x) = 0) the subtraction of r(x) will not alter any

of the terms in s(x)xD, and thus s(x) can be reconstructed by reading the first

S terms in q(x)d(x).

An example of this process is shown in Table 3.3. The source sequence

{111111} is augmented with the sequence {21} to produce the augmented

sequence {21111111}. The polynomial form of this sequence is s(x) = 2x7 +

x6 + x5 + x4 + x3 + x2 + x+ 1. The scrambling polynomial d(x) = x2 + x+ 2

divides s(x)xD as shown in Table 3.3a. This division yields the quotient q(x) =

55

Table 3.3: Guided Scrambling Division Encoding and Multiplication Decoding

(a) Division

2x7 +2x6 +x5 +2x4 +x

x2 + x+ 2 2x9 +x8 +x7 +x6 +x5 +x4 +x3 +x2

−2x9 −2x8 −x7

2x8 +x6

−2x8 −2x7 −x6

x7 +x5

−x7 −x6 −2x5

2x6 +2x5 +x4

−2x6 −2x5 −x4

x3 +x2

−x3 −x2 −2x

x

(b) Multiplication

q(x)d(x) = (2x7 + 2x6 + x5 + 2x4 + x) (x2 + x+ 2)

= 2x9 +2x8 +x7 +2x6 +x3

+ +2x8 +2x7 +x6 +2x5 +x2

+ +x7 +x6 +2x5 +x4 +2x

= 2x9 +x8 +x7 +x6 +x5 +x4 +x3 +x2 +2x

2x7 + 2x6 + x5 + 2x4 + x and the remainder r(x) = x. The quotient represents

the scrambled sequence {22120010}, and the remainder is neglected.

Table 3.3b shows that the product of q(x) and d(x) is 2x9 + x8 + x7 + x6 +

x5 +x4 +x3 +x2 +2x. This is equivalent to s(x)xD− r(x), and the augmented

sequence can be recovered from this product by reading the first eight terms,

which gives {21111111}. The source word is reconstructed by discarding the

augmenting sequence.

The rate of the guided scrambling code is defined as the ratio of the number

of input symbols to the number of encoded symbols: Rg = W/S. Once the

choice of D, A, and W has been made, the rate is constant for all scrambling

polynomials of degree D. Since all candidate codewords are the same length,

the selection of the most sparse candidate codeword does not affect the rate.

56

3.3.3 Set of Relationship Sequences

The quotients in the selection set for a particular input word are related

through addition with a set of relationship sequences. To illustrate this prop-

erty, consider a specific augmented word si(x) which is defined as:

si(x) = ai(x) · xW + w(x)

The quotient for si(x) is given by:

qi(x) = Qd(x)

[
si(x)xD

]
which can be rewritten as:

qi(x) = Qd(x)

[(
ai(x)xW + w(x)

)
xD
]

= Qd(x)

[
ai(x)xW+D

]
+Qd(x)

[
w(x)xD

]
The term Qd(x)

[
ai(x)xW+D

]
is equivalent to the quotient produced by scram-

bling the all-zero source sequence augmented with ai(x). Let this quotient

be hi(x). Similarly, Qd(x)

[
w(x)xD

]
is equivalent to the quotient produced

by scrambling the input word w(x) augmented with the all-zero augmenting

sequence. Let this quotient be q0(x). With these definitions, qi(x) can be

expressed as:

qi(x) = hi(x) + q0(x) (3.2)

The selection set is the set of all qi(x) with i ∈ (0 : 3A − 1). Equation 3.2

implies that the entire selection set can be constructed by adding each hi(x)

polynomial to a single quotient q0(x). All of the hi(x) sequences are determined

solely by the augmenting sequences and the scrambling polynomial, both of

which do not depend on the input word. The set of all hi(x) with i ∈ (0 : 3A−1)

is called the set of relationship sequences.

57

· · ·

−dD−1 −dD−2 −d0

. . .

. . .

s(x)

q(x)

mD−1 mD−2 m0

Figure 3.1: General Shift Register Division

3.4 Primitive Scrambling Polynomials

The scrambling polynomial has a significant effect on the overall sparsity of the

output data. Extensive simulations, which are summarized in Section 3.5.1,

have indicated that the use of primitive polynomials in GF(3) as scrambling

polynomials results in the highest average sparsity in the encoded arrays.

In this section it is proven that systems employing primitive scrambling

polynomials guarantee a sparsity greater than 1/3, and that the probability of

encoded sequences having this worst-case sparsity decreases with increasing

D.

3.4.1 m-sequences

The polynomial division algorithm can be performed directly using a linear

feedback shift register with D memory elements. Figure 3.1 shows a general

design for such a shift register for a monic scrambling polynomial (when the

coefficient of the xD term in d(x) has the value 1). The
⊕

symbols denote

GF(3) addition, and the circled −di terms denote GF(3) multiplication by −di.
The coefficients of s(x) are fed into the register serially and the coefficients

of q(x) are calculated immediately. The negatives of the order D − 1 and

lower terms of d(x) multiply the value in each corresponding memory element.

These values are all summed over GF (3), and this feedback term is added to

the next input value to determine each subsequent quotient value.

The division circuitry can be represented by a finite state machine with

3D possible states. Because the circuitry contains feedback, the finite state

machine will cycle through some set of states while the input is zero. With

58

00

11

10

21

0201

12

20

22

(a) d(x) = x2 + x+ 1

00

01

10

21

2202

20

12

11

(b) d(x) = x2 + x+ 2

Figure 3.2: Finite State Diagrams for two d(x) polynomials.

all-zero input, if the circuit ever reaches the all-zero state, it will remain there

perpetually for any d(x). As such, the longest possible cycle will progress

through every state except the all-zero state.

Figure 3.2 shows the finite state diagrams for two different degree-2 d(x)

polynomials with transitions shown for s(x) = 0. The states are labeled by

the contents of the memory elements (m1,m0) as described in Figure 3.1. As

shown in Figure 3.2a, the polynomial x2 + x + 1 contains several cycles. By

contrast, the polynomial x2 + x+ 2 contains only two cycles, the self-loop on

state 00 and a maximum length cycle of length 32 − 1 = 8.

The output of a maximum length cycle is known as a m-sequence[39].

Ternary m-sequences repeat with a period of 3D − 1 and contain every com-

bination of D symbols except for the length-D all-zero pattern. Primitive

polynomials over GF(P) produce m-sequences[40].

Additionally, a linear recurrence relation can be defined for the output of

a given shift register circuit. The general form of this relation is:

qn = sn −
D−1∑
i=0

diqn−D+i (3.3)

where di represents the ith coefficient of d(x) with d0 being the constant term.

In Equation 3.3, the qn and sn terms are time-indexed.

As an example, the polynomial d(x) = x2 + x + 2, which is primitive

59

n qn = −d0 · qn−2 − d1 · qn−1

0 0 = −2 · 1− 1 · 1 = 1 + 2
1 1 = −2 · 1− 1 · 0 = 1 + 0
2 2 = −2 · 0− 1 · 1 = 0 + 2
3 2 = −2 · 1− 1 · 2 = 1 + 1
4 0 = −2 · 2− 1 · 2 = 2 + 1
5 2 = −2 · 2− 1 · 0 = 2 + 0
6 1 = −2 · 0− 1 · 2 = 0 + 1
7 1 = −2 · 2− 1 · 1 = 2 + 2

Table 3.4: Example m-sequence and recurrence relation

over GF(3), generates the m-sequence {01220211}. Table 3.4 verifies that this

sequence satisfies the recurrence relation of Equation 3.3 using the coefficients

of d(x). Since the m-sequence is cyclical, q6 and q7 are used to represent q−2

and q−1 respectively. Additionally, sn is equal to zero for all n in this example.

3.4.2 Table of Relationship Sequences

When the scrambling polynomial is primitive and the number of augmenting

symbols is equal to the degree of the scrambling polynomial, each relationship

sequence is either an m-sequence or the all-zero sequence, as shown below.

The system will have 3D possible states and the 3A augmenting sequences

will consist of all possible sequences of length A. Each of these augmenting

sequences will force the shift register to a different initial state. From each non-

zero state, the shift register will cycle through every other state, producing the

rest of the m-sequence as its output, for the remaining W iterations. With the

all-zero input word, the all-zero augmenting sequence will initialize the system

to the all-zero state where it will remain and give the all-zero output.

Therefore, the set of relationship sequences for a system that uses a primi-

tive scrambling polynomial of degreeD = A will consist of the all-zero sequence

as h0(x), and each of the remaining 3D − 1 relationship sequences will be a

shifted version of one particular m-sequence. All hi(x), i ∈ (0 : 3D−1), are the

same m-sequence because the state transitions that generate the m-sequence

are determined by the scrambling polynomial. They are all shifted versions of

60

hi(x) Coefficients
h0(x) 0 0 0 0 0 0 0 0
h1(x) 0 1 2 2 0 2 1 1
h2(x) 0 2 1 1 0 1 2 2
h3(x) 1 2 2 0 2 1 1 0
h4(x) 1 0 1 2 2 0 2 1
h5(x) 1 1 0 1 2 2 0 2
h6(x) 2 1 1 0 1 2 2 0
h7(x) 2 2 0 2 1 1 0 1
h8(x) 2 0 2 1 1 0 1 2

Table 3.5: An example set of relationship sequences generated by the primitive
polynomial x2 + x+ 2.

this m-sequence because the shift register is initialized to a different state for

each hi(x). Finally, the set of all hi(x) sequences will include all shifts of the

m-sequence because every possible initial state will be used.

Table 3.5 lists the coefficients of each hi(x) for the scrambling polynomial

d(x) = x2 + x + 2. It can be observed that h0(x) is the all-zero sequence and

each of the remaining sequences are shifted versions of the same m-sequence.

A set of sequences containing the all-zero sequence as well as each shifted

version of a particular m-sequence forms an Abelian group with the operation

of element-wise addition of the sequences in GF(3). This was proven in [39] for

binary valued m-sequences in GF(2), and the group properties hold for ternary

m-sequences in GF(3). The only significant difference between the binary and

ternary cases is that any sequence is its own additive inverse in the binary

case, but this is not true for the ternary case. However it is straightforward to

show that the additive inverse of any relationship sequence will be in the set

of relationship sequences.

Any particular sequence, hi(x), is generated by initializing the system with

one of the augmenting prefixes, ai(x). The additive inverse of hi(x), denoted

h̄i(x), will be generated when the additive inverse of ai(x), denoted āi(x),

is used as the augmenting prefix. This is because āi(x) = 2ai(x) in GF(3),

so ai(x) and its additive inverse are related linearly. As shown by the lin-

ear feedback shift register implementation and the linear recurrence relation,

61

Qd(x) [s(x)] is a linear operation. Thus:

Qd(x)

[
āi(x)xW+D

]
= Qd(x)

[
2ai(x)xW+D

]
= 2Qd(x)

[
ai(x)xW+D

]
= 2hi(x)

= h̄i(x)

Additionally, āi(x) is certain to be used to generate a sequence in the set of

relationship sequences because all possible ternary sequences of length A are

used as prefixes to generate the selection set. Therefore, every hi(x) has its

additive inverse in the set of relationship sequences.

It can also be shown that the first half of a ternary m-sequence is the

additive inverse of its second half. This is a result of the fact that the set of

relationship sequences is composed of shifted versions of an m-sequence, and

that the set of relationship sequences forms a group. Because of the group

structure, the additive inverse of an m-sequence is in the set of relationship

sequences, and therefore the additive inverse can also be formed by shifting the

original sequence by k positions. Since k shifts invert the original sequence,

k more shifts must invert the inverted sequence to reconstruct the original

sequence. Because m-sequences have a period of S, k = S/2, and the first half

of an m-sequence is equal to the additive inverse of its second half.

3.4.3 Selection Set Analysis

It will now be shown that for any quotient in a selection set, the other members

of that selection set can be found by adding each h(x) sequence to the quo-

tient. The given quotient, qi(x), is equal to q0(x) + hi(x). Adding a different

relationship sequence, hj(x), to qi(x) gives:

qk(x) = qi(x) + hj(x)

qk(x) = q0(x) + hi(x) + hj(x)

qk(x) = q0(x) + hk(x)

62

qi(x) Coefficients
q0(x) 0 0 1 0 2 2 1 2
q1(x) 0 1 0 2 2 1 2 0
q2(x) 0 2 2 1 2 0 0 1
q3(x) 1 2 0 0 1 0 2 2
q4(x) 1 0 2 2 1 2 0 0
q5(x) 1 1 1 1 1 1 1 1
q6(x) 2 1 2 0 0 1 0 2
q7(x) 2 2 1 2 0 0 1 0
q8(x) 2 0 0 1 0 2 2 1

Table 3.6: An example selection set constructed by adding q0(x) to each se-
quence in the set of relationship sequences generated with the scrambling poly-
nomial d(x) = x2 + x+ 2, as shown in Table 3.5.

The third expression follows since, due to the group structure of the set of rela-

tionship sequences, the sum of two sequences is a third sequence in the group.

Adding each of the 3D h(x) sequences to the initial quotient is equivalent to

adding each sequence to q0(x). Thus, the entire selection set is determined.

This property allows the selection set to be analyzed by considering the sum

of a given length-S sequence with each of the length-S m-sequences created

by the primitive scrambling polynomial.

Table 3.6 shows an example selection set. In this table, q0(x) was calcu-

lated by scrambling the source word {111111} with the all-zero, length-two

augmenting sequence. The other rows were determined by adding q0(x) to

each relationship sequence shown in Table 3.5. These results are identical to

those obtained by scrambling the source word with each respective augmenting

sequence.

3.4.4 Worst-case Sets

In this application, the worst-case codewords are the words that are selected

from the selection set to represent the source word, but that contain the fewest

zeros of all codewords. A codeword, the word selected from the selection set,

is defined as the quotient with the most zeros among the quotients in the

selection set (in the event of ties, the designation of codeword is arbitrary

63

among the quotients with the highest number of zeros in a selection set). An

analysis of the worst-case codewords follows for systems employing primitive

scrambling polynomials over GF(3) with A = D and W = 3D − 1− A.

With the described system characteristics, it will now be shown that a

quotient with 3D−1 zeros will be the worst-case codeword.

A matrix H can be formed from the set of relationship sequences. Each

row in H consists of the coefficients of a single hi(x) polynomial. Thus, H

contains 3D rows and 3D − 1 columns. A general definition of H is given in

Equation 3.4. The hi,j term in the matrix is the jth coefficient of hi(x), with

j = 3D − 2 being the term representing the most significant coefficient in the

polynomial hi(x), and j = 0 being the term representing the least significant

coefficient.

H =


h0,3D−2 h0,3D−3 · · · h0,0

h1,3D−2 h1,3D−3 · · · h1,0

...
...

. . .
...

h3D−1,3D−2 h3D−1,3D−3 · · · h3D−1,0

 (3.4)

As an example, the coefficients shown in Table 3.5 form the H matrix for

the system using d(x) = x2 + x + 2, with two augmenting symbols and six

symbols per source word. Reprinted here as a matrix this gives:

H =



0 0 0 0 0 0 0 0

0 1 2 2 0 2 1 1

0 2 1 1 0 1 2 2

1 2 2 0 2 1 1 0

1 0 1 2 2 0 2 1

1 1 0 1 2 2 0 2

2 1 1 0 1 2 2 0

2 2 0 2 1 1 0 1

2 0 2 1 1 0 1 2


(3.5)

Every column in H has exactly 3D−1 zeros, ones, and twos. This is true

because each row, except the first, is an m-sequence, and every possible shift

64

of the m-sequence is present. A ternary m-sequence contains 3D−1 ones, 3D−1

twos, and 3D−1 − 1 zeros. The first row consists of the coefficients of h0(x)

which are all zeros. Thus, the columns of H all contain 3D−1 zeros, ones, and

twos.

It follows from Section 3.4.3 that a matrix representing the selection set

can be created by adding the coefficients of q0(x) to each row in H. Let this

selection set matrix be Q. The columns of Q have the same distribution of

zeros, ones, and twos as H, because every column in Q will be the sum of a

column from H and a single q0,j value. If the q0,j value is zero the column of Q

is identical to the column from H; if the value is one the column of Q has the

same structure as the column from H except the zeros in H are now ones, the

ones are twos, and the twos are zeros; for q0,j being two, the structure is the

same, but the zeros are now twos, the ones are zeros, and the twos are ones.

Thus, the number of zeros, ones, and twos in the columns of Q are identical

to the numbers of each in H.

Since each column must contain 3D−1 zeros and there are 3D−1 columns in

Q, every selection set with the described system characteristics must contain

exactly 3D−1
(
3D − 1

)
= 32D−1 − 3D−1 zeros.

To determine the number of zeros in a worst-case codeword, assume that

a quotient with 3D−1 − 1 zeros is selected. Since the system chooses the

quotient with the most zeros to be the codeword, this implies that no other

quotient in the selection set has more than 3D−1 − 1 zeros. Given that there

are 3D quotients in the selection set, this gives a maximum of 3D
(
3D−1 − 1

)
=

32D−1 − 3D zeros in the selection set in total. Since this maximum is lower

than the required number of zeros in a selection set, it cannot possibly be a

valid Q matrix, and no selection set with 3D−1− 1 zeros as its best choice can

exist. Similarly, no selection set with fewer than 3D−1 − 1 zeros as its best

choice can exist.

Alternatively, a selection set with 3D−1 zeros in its best choice quotient will

have a maximum of 3D−1 · 3D = 32D−1 zeros. Since this is greater than the

required value, a selection set with such a quotient can at least conceivably

exist. It will now be shown that such selection sets do exist.

65

3.4.5 Identification and Occurrence of Worst-case Sets

Selection sets that produce worst-case codewords can be identified and enu-

merated based on a few properties of the table of relationship sequences and

the selection set.

Table of Relationship Sequences

To illustrate these properties, consider the following organization of the set of

relationship sequences:

Hc =

Hc0

Hc1

Hc2


Here, Hc is the matrix formed from the coefficients of each hi(x) relationship

sequence sorted along column c. The sub-matrices Hc0, Hc1, and Hc2 are

each defined as the set of rows in H with a 0, 1, or 2 in column c respectively.

These three subsets each contain 3D−1 rows because, as shown previously, each

column in H has exactly 3D−1 occurrences of each symbol.

Continuing with the example of d(x) = x2 + x+ 2 with A = 2 and W = 6,

the H matrix from Equation 3.5 is sorted along column 0 to give the following

H0 matrix:

H0 =



0 0 0 0 0 0 0 0

0 1 2 2 0 2 1 1

0 2 1 1 0 1 2 2

1 0 1 2 2 0 2 1

1 1 0 1 2 2 0 2

1 2 2 0 2 1 1 0

2 0 2 1 1 0 1 2

2 1 1 0 1 2 2 0

2 2 0 2 1 1 0 1


=

H00

H01

H02

 (3.6)

In subset Hc0, column c contains all-zeros as does column c+ S/2 (mod S).

Column c is all-zero because of the definition of Hc0, and column c+S/2 (mod S)

is all-zero because each row in Hc0 is either an m-sequence or the all-zero row.

66

The second half of an m-sequence is the additive inverse of the first half of the

m-sequence so any positions in one half of the m-sequence that contain zeros

must also contain zeros in those positions in the other half. For example, if the

first symbol in the first half of a row is zero, then the first symbol in the second

half of the m-sequence must also be zero. For brevity, column c+ S/2 (mod S)

is referred to as column c̄ henceforth because these two columns are additive

inverses in H.

Note that Hc0 is a subgroup of H, because the rows of Hc0 are selected

from the rows of H, and Hc0 has the four properties of a group:

1. The additive identity is in Hc0 because h0 has zeros in every column, so

it will be placed in Hc0 for all c.

2. Hc0 has closure because all elements in Hc0 have a zero in column c and

H has closure. Thus, the sum of any two elements in Hc0 will have a

zero in column c and the sum is also an element of H. All such sums are

therefore also in Hc0 by definition.

3. Every element in Hc0 also has its additive inverse because H has this

property, and the additive inverse of any row with a zero in column c

must also have a zero in column c.

4. Associativity follows from the standard definition of finite field addition.

A column k of Hc0 can only have one of two distinct symbol distributions.

Either the column will only contain zeros, or it will contain an equal number

of each ternary symbol. This follows from a few implications of the group

properties of Hc0. Since every row in Hc0 has an additive inverse in Hc0, then

any 1s in column k will be balanced by an equal number of 2s in that column.

Furthermore, every individual sum of any row with a 1 in column k with all

rows containing a 2 in column k must result in a unique row with a zero in

column k. So, the number of ones or twos in a column of Hc0 cannot be greater

than the number of zeros in that column.

Likewise, every sum of any row with a 1 (or 2) in column k with all rows

containing a zero in column k must each result in a unique row with a 1 (or

67

2) in row k. Because of this, the number of rows with a zero in column k

cannot be greater than the number of rows with a 1 (or 2), unless column k

contains no 1s or 2s. Given these two conditions, the number of 1s or 2s in

column k must be either zero or equal to the number of zeros in column k.

In the second case, the number of zeros in column k is equal to the number

of ones and equal to the number of twos. Therefore columns of this type are

balanced, and contain 3D−2 occurrences of each symbol.

The total number of ones (or twos) in Hc0 is 3D−1
(
3D−1 − 1

)
, because each

row, except for the additive identity, is an m-sequence and has 3D−1 ones or

twos and there are 3D−1 − 1 such rows. Since ones and twos can only occur

in columns with 3D−2 of each symbol, then 3D − 3 columns must contain ones

and twos. There are 3D− 1 columns in Hc0, so there can only be two columns

with no ones or twos for all D. These two columns are columns c and c̄, and

hence every column except for these two must contain the same number of

ones, twos, and zeros in Hc0.

Hc1 and Hc2 also have balanced columns in all columns except c and c̄,

because they are cosets of Hc0. Hc1 can be generated by adding any row in

H that has a 1 in column c to every row in Hc0, and Hc2 can be generated

by adding any row in H that has a 2 in column c to every row in Hc0. These

summations uniquely produce every row in H that has a one or two, respec-

tively, in column c due to the closure of H. These summations will also simply

increment each column by a constant, so the distribution of elements in every

column except c and c̄ will be unchanged.

Selection Set

Because a selection set Q can be constructed by summing rows of H with the

coefficients of q0(x), and therefore that Q is a coset of the group H, it follows

that the selection set can be sorted in a manner similarly to that previously

described for the matrix of relationship sequences, Hc. This sorting gives:

Qc =

Qc0

Qc1

Qc2


68

where Qc is the sorted selection set, with Qc0, Qc1, and Qc2 being the subsets

of Qc with a 0, 1, or 2 in column c respectively. The example presented in

Table 3.6 is continued in Equation 3.7 to illustrate this sorting. The selection

set is formed by scrambling the source word {111111} with the scrambling

polynomial q(x) = x2 + x + 2. The matrix Q is comprised of the coefficients

of each quotient in the selection set, and this matrix is sorted along column

0, the first column, to produce Q0. The sub-matrices Q00, Q01, and Q02 are

separated to show that each contains a 0, 1, or 2 in column 0, respectively.

Q0 =



0 0 1 0 2 2 1 2

0 1 0 2 2 1 2 0

0 2 2 1 2 0 0 1

1 0 2 2 1 2 0 0

1 1 1 1 1 1 1 1

1 2 0 0 1 0 2 2

2 0 0 1 0 2 2 1

2 1 2 0 0 1 0 2

2 2 1 2 0 0 1 0


=

Q00

Q01

Q02

 (3.7)

Each of the subsets in the general Qc has a balanced distribution of symbols

in all columns except for c and c̄. This property exists because Qc is a coset of

Hc. Any row qz from Q with a zero in column c can be added to each subset

of Hc to generate Qc. Since Qc can be formed by a constant addition to each

row in Hc, Qc has the same column-wise properties as Hc.

Since each subset in Qc has an equal number of each symbol in all columns

except c and c̄, the total number of zeros in each subset can be determined.

Column c of Qc0 contains only zeros. The number of zeros in Qc0 is thus

determined by the symbol in column c̄ of q0. If this symbol is a zero, then

column c̄ is also composed entirely of zeros. In such a case, there are two

columns with 3D−1 zeros and 3D − 3 columns with 3D−2 zeros, and the total

number of zeros in Qc0 is 32D−2 + 3D−1. Since Qc0 has 3D−1 rows, the mean

number of zeros in each row is
(
32D−2 + 3D−1

)
3−D+1 = 3D−1 + 1. Thus, Qc0

must contain at least one row with more than 3D−1 zeros, and such a selection

set cannot be a worst-case set.

69

Furthermore, in the case where columns c and c̄ of Qc0 are both zero,

columns c and c̄ in Qc1 must be non-zero and opposite, that is, one of the

symbols is a one and the other is a two. This is true because qz has zeros in

columns c and c̄ so its summation with Hc1 has the same values in columns

c and c̄ as Hc1 i.e., column c is entirely 1s and column c̄ is entirely 2s. This

property also holds for Qc2 by similar reasoning, with the values in column c

being all 2s and c̄ being all 1s.

In a worst-case selection set, Qc0 must have zeros in column c and one of

the non-zero symbols in column c̄. This arrangement gives Qc0 one column

with 3D−1 zeros, one column with no zeros, and 3D − 3 columns with 3D−2

zeros. This gives a total of 32D−2 zeros in Qc0. Since there are 3D−1 rows, the

mean number of zeros per row must be 3D−1. This implies that all rows of

Qc0 must have exactly 3D−1 zeros in a worst-case selection set. Any row with

fewer than 3D−1 zeros will force another row to have more than 3D−1 zeros,

resulting in a selection set that is not a worst-case.

Any row in Qc that contains zeros will appear in Qc0 when c is equal to a

column in which the row has a zero. Given that Qc0 of a worst-case selection

set has 3D−1 zeros in every row, all rows in a worst-case set with any zeros

must have exactly 3D−1 zeros because each row will sorted into Qc0 for some

c.

The selection set Q has 3D−1 zeros per column and 3D−1 columns for a total

of 3D−1
(
3D − 1

)
zeros. In a worst-case selection set, these zeros are divided

into rows each containing exactly 3D−1 zeros. As such, there are exactly 3D−1

rows containing zeros. Since Q has a total of 3D rows there must be exactly

one row with no zeros.

Let the row with no zeros be called quotient qπ. Since this row contains no

zeros, it is not placed in Qc0 for any c. As noted previously, when the values in

columns c and c̄ of Qc0 are zeros, the values in these columns of Qc1 and Qc2

must be additive inverses. The converse of this is true as well. For instance,

column c of Qc1 is composed of ones by definition, so if column c̄ is composed

of twos the value in column c̄ of qz is necessarily zero.

This indicates that in a worst-case selection set the values in column c̄ of

Qc1 must be either ones or zeros, and similarly the values in column c̄ of Qc2

70

must be either twos or zeros. Also, column c̄ must have a set of 3D−1 zeros

exclusively in either Qc1 or Qc2 because the column as a whole must contain

3D−1 occurrences of each symbol. So, only one of the thirds will have identical

elements in columns c and c̄. Since qπ has no zeros it must always be sorted

into this dense third. Therefore, the value in column c must be equal to the

value in column c̄ of qπ for all c, and the second half of qπ is identical to its

first half.

The selection set shown in Equation 3.7 is a worst-case selection set. The

second quotient in Q01 is qπ for that selection set. Note that it has no zeros,

and that its first half is identical to its second half. Since this particular

example has the all-one sequence as qπ the equivalence of the two halves may

not be readily apparent. It is a special case of the defining characteristic of a qπ

sequence: that it consists of the concatenation of two identical subsequences

without zeros, a condition satisfied by, for instance, the sequence {12111211}.
The number of worst-case selection sets can be enumerated by enumerating

the number of possible quotients qπ because each of these quotients corresponds

to only one selection set and each worst-case selection set contains only one of

these quotients. Since the quotient qπ consists of a subsequence of S/2 elements

repeated twice, and each element must be either one or two, there are 2
S
2 total

possible quotients of this form.

The number of different source words is 3W = 3S−D. Given the one-to-one

mapping of source words to selection sets, there are 3S−D unique selection

sets of which 2
S
2 are worst cases. The fraction of source words that will be

represented by worst-case codewords is then 2
S
2/3S−D < 3

S
2/3S−D = 3

−S
2

+D,

which becomes vanishingly small as sequence length S increases.

3.5 Simulation Results

Simulations have been designed to test the effect that the choice of scrambling

polynomial has on the overall sparsity performance of a guided scrambling

code. The first set of simulations test the sparsity performance of different

polynomials of the same degree. The second set of simulations test the per-

formance of primitive polynomials with different degrees.

71

Table 3.7: Degree-2 scrambling polynomial cohorts

Cohort d(x) Average Sparsity

1 x2 50%

2
x2 + x

58.5%
x2 + 2x

3
x2 + 1

59.25%
x2 + 2

4
x2 + x+ 1

60%
x2 + 2x+ 1

5
x2 + x+ 2

60.75%
x2 + 2x+ 2

For every simulation only monic polynomials are considered. Polynomials

with a leading coefficient of 2 perform identically to their additive inverse

polynomials. This is a result of the linearity of the scrambling process. The

selection set Q arising from any scrambling polynomial d(x) and source word

w(x) is identical to 2Q̄ where Q̄ is the selection set generated by the polynomial

2d(x) and the source word w(x). Since the number and placement of zeros is

identical between Q and Q̄ the sparsity performance of d(x) is identical to the

sparsity performance of 2d(x).

3.5.1 Primitive Scrambling Polynomials

The scrambling polynomial is important because it defines the correspondence

between each input data block and each codeword. A poor choice of scram-

bling polynomial can result in a system which maps several of the more sparse

codewords to the same source word, causing more source words to be rep-

resented by codewords with few zeros. Therefore, the choice of scrambling

polynomial can affect the sparsity in the scrambled data without affecting the

rate.

Table 3.7 lists all possible monic scrambling polynomials of degree 2. For

each scrambling polynomial, every length-6 input word was augmented with

two symbols and this augmented word was scrambled to produce a set of

72

0.4 0.5 0.6 0.7 0.8 0.9 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Sparsity

P
ro

p
o

rt
io

n
 o

f
O

c
c
u

rr
e
n

c
e
s

Cohort 5

Cohort 7

Cohort 8

Cohort 9

Cohort 10 (i)

Cohort 10 (p)

Figure 3.3: Sparsity performance of degree-3 polynomials

nine quotients. The quotient with the highest number of zeros was selected.

The right column lists the average sparsity of the selected codewords for each

scrambling polynomial.

Some of the polynomials produced identical average sparsity values. These

polynomials were grouped together to produce a set of five cohorts of polyno-

mials. The two polynomials in the cohort with the highest values are both

primitive polynomials, and the only primitive polynomials, of degree 2 in

GF (3).

Simulations were also conducted for higher degree polynomials. In the case

of degree-3 polynomials, every monic degree-3 scrambling polynomial was used

to encode one billion random source words. The occurrence of each sparsity

value was recorded; this data is presented in Figure 3.3. The horizontal axis

records sparsity values, and the vertical axis indicates the number of times

that a codeword of each sparsity value occurred, divided by the number of

codewords that were tested. A log scale is used on the vertical axis to help

distinguish the lower valued data points.

In the degree-3 tests, the polynomials are divided into 10 cohorts with equal

sparsity performance. Table 3.8 lists the members of each of these cohorts as

well as the average sparsity of each cohort. The polynomials of cohort 10

are divided into two subgroups. The polynomials above the dashed line are

irreducible, and the polynomials below the dashed line are primitive. This

cohort contains all the degree-3 irreducible and primitive monic polynomials.

73

Table 3.8: Degree-3 scrambling polynomial cohorts

Cohort Polynomials Average Sparsity

1 x3 41.025%

2 x3 + x2 x3 + 2x2 47.824%

3 x3 + x x3 + 2x 49.512%

4 x3 + x2 + x x3 + 2x2 + x 50.264%

5 x3 + 1 x3 + 2 50.321%

6 x3 + x2 + 2x x3 + 2x2 + 2x 50.608%

7
x3 + x2 + x+ 1

51.536%
x3 + 2x2 + x+ 2

8
x3 + x2 + 2x+ 2

52.259%
x3 + 2x2 + 2x+ 1

9
x3 + x+ 1 x3 + x+ 2

52.589%
x3 + x2 + 1 x3 + 2x2 + 2

10

x3 + 2x+ 2 x3 + x2 + x+ 2

52.982%
x3 + x2 + 2 x3 + 2x2 + 2x+ 2

x3 + 2x+ 1 x3 + x2 + 2x+ 1

x3 + 2x2 + 1 x3 + 2x2 + x+ 1

74

For clarity, the results for only one member of each cohort are plotted in

Figure 3.3, with the exception that two polynomials from cohort 10 are plotted.

Additionally, polynomials from cohorts 1, 2, 3, 4, and 6 are not represented

because these polynomials have a zero constant term which means that they

are effectively lower degree scrambling polynomials operating with a delay.

Finally, note that with degree-3 scrambling polynomials, irreducible poly-

nomials perform as well as primitive polynomials in terms of average spar-

sity. In Figure 3.3, results for both an irreducible polynomial and a primitive

polynomial from Cohort 10 are represented; the data points of each plot are

marked with diamonds and asterisks respectively. These irreducible polyno-

mials produce “half” m-sequences as their respective relationship sequences.

These sequences differ from true m-sequences in that their first and second

halves are identical rather than additive inverses. A set of relationship se-

quences composed of half m-sequences performs similarly to a set composed

of m-sequences because such a set contains the additive inverse of each half

m-sequence due to the linearity of the division operation and the fact that all

possible augmenting sequences are used to determine the set of relationship

sequences. The analogue of qπ for irreducible scrambling polynomials consists

of sequences that contain no zeros and the two halves of which are additive

inverses, such as {12112122} for example. Further work is required to deter-

mine why irreducible polynomials of degree-3 produce half m-sequences but

irreducible polynomials of degree-2 and degree-4 do not.

Similar tests were conducted for degree-4 polynomials. Instead of testing

all possible monic polynomials, simulations were run for the reducible polyno-

mial x4+2x+1, the irreducible, non-primitive polynomial x4+2x3+x2+1, and

the primitive polynomial x4 +x+ 2. For each polynomial, 100 million pseudo-

random length-76 input words were encoded using 4 augmenting symbols.

These results are shown in Figure 3.4. The primitive polynomial produced

codewords with the highest average sparsity with 46.62%, and in this simula-

tion the irreducible polynomial performed worse than the primitive polynomial

with an average sparsity of 46.39%. As expected, the reducible polynomial

produced the least sparse encoded words with 46.16% average sparsity.

75

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Sparsity

P
ro

p
o

rt
io

n
 o

f
O

c
c
u

rr
e

n
c
e

s

x
4
 + 2x + 1

x
4
 + 2x

3
 + x

2
 + 1

x
4
 + x + 2

Figure 3.4: Sparsity performance of degree-4 polynomials.

3.5.2 Degree of Scrambling Polynomial

The degree of the scrambling polynomial is another important component of

the encoding system. In the analysis presented in Section 3.4, where D = A,

the degree of the scrambling polynomial affects the number of augmenting

symbols, the length of the source words, the length of the codewords, and

thereby the coding rate. Additionally, that analysis only holds for primitive

scrambling polynomials, because they were found to outperform non-primitive

polynomials in terms of average sparsity, as shown in the previous subsection.

As a result only primitive polynomials were used in the following simulations.

Simulations were designed to test the sparsity of selected codewords for

various degrees of primitive scrambling polynomials. For the degree-2 case,

the polynomial d(x) = x2 + x+ 2 was chosen. In this case, there are only 729

possible source words, so the simulation considered all possible source words.

In the degree-3 case, the primitive polynomial d(x) = x3+2x+1 was chosen

as the scrambling polynomial. Since the number of possible source words is

3S where S = 3D − D − 1 = 23, encoding all source words is intractable

for degree-3 and higher simulations. Instead, a number of pseudo-randomly

generated source words are encoded, and a count of the resulting sparsity of

each codeword is recorded. The counts are then divided by the number of

encoded source words to give a distribution of the sparsity performance of the

scrambling polynomial. In the degree-3 case, one billion source words were

encoded.

76

Table 3.9: Average Sparsity for Primitive Scrambling Polynomials

Degree Scrambling Polynomial Rate Average Sparsity
N/A Unencoded 1 33.50%

2 x2 + x+ 2 6⁄8 60.75%
3 x3 + 2x+ 1 23⁄26 52.98%
4 x4 + x+ 2 76⁄80 46.62%
5 x5 + 2x+ 1 237⁄242 42.04%
6 x6 + x+ 2 722⁄728 38.91%
7 x7 + 2x2 + 1 2179⁄2186 36.85%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

ro
p
o
rt

io
n
 o

f
O

c
c
u
rr

e
n
c
e
s

Sparsity

x
7
+2x

2
+1

x
6
+x+2

x
5
+2x+1

x
4
+x+2

x
3
+2x+1

x
2
+x+2

Unencoded

(a) Single Blocks

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 P

ro
p
o
rt

io
n
 o

f
O

c
c
u
rr

e
n
c
e
s

Sparsity

x
7
+2x

2
+1

x
6
+x+2

x
5
+2x+1

x
4
+x+2

x
3
+2x+1

x
2
+x+2

Unencoded

(b) Concatenated Blocks

Figure 3.5: Experimentally derived sparsity CDFs for single blocks and con-
catenated blocks using primitive scrambling polynomials of different degree.

In the degree-4 case, the primitive polynomial d(x) = x4 + x + 2 was

chosen as the scrambling polynomial, and 100 million pseudo-random source

words were scrambled. For the simulations of degree 5, 6, and 7 the primitive

polynomials x5 + 2x+ 1, x6 + x+ 2, and x7 + 2x2 + 1 were used as scrambling

polynomials respectively, and 25 million pseudo-random source words were

encoded using each polynomial. Finally, as a point of reference, a set of 25

million pseudo-random binary sequences were converted to ternary form using

the 19:12 code described in Section 3.2. The average sparsity of codewords

using each of these polynomials as well as the unencoded ternary data is shown

in Table 3.9.

Each simulation of a scrambling polynomial resulted in a frequency distri-

bution of the sparsity in a single block of encoded data for that polynomial.

77

Table 3.10: Number of symbols and concatenated blocks calculated in Fig-
ure 3.5b.

Scrambling Polynomial Block Length Enc. Blocks Enc. Symbols
x2 + x+ 2 8 273 2184
x3 + 2x+ 1 26 84 2184
x4 + x+ 2 80 27 2160
x5 + 2x+ 1 242 9 2178
x6 + x+ 2 728 3 2184
x7 + 2x2 + 1 2186 1 2186
Unencoded 12 182 2184

The cumulative sum of a frequency distribution yields an experimental cumu-

lative distribution function (CDF) of the sparsity of a single block of encoded

data. These CDFs are plotted for each scrambling polynomial in Figure 3.5a.

Since the blocks have different lengths for scrambling polynomials with dif-

ferent degrees, the granularity of each CDF is different. A more uniform com-

parison is achieved by considering the sparsity of sequences of encoded symbols

of approximately the same length. To obtain this result, the single-block fre-

quency distribution is used to calculate a probability density function (PDF)

of concatenated blocks for each scrambling polynomial from Figure 3.5a. To

determine the PDF of k concatenated blocks, the single-block frequency dis-

tribution is convolved with itself k times.

Table 3.10 lists the number of blocks that are concatenated for each poly-

nomial such that encoded sequences of approximately the same length are

considered. The CDFs of the concatenated sequences, plotted in Figure 3.5b,

have more similar granularity.

From these CDFs, it can be seen that as the degree of the scrambling

polynomial is increased the relative sparsity of the encoded words decreases.

This result is expected in light of the fact that the rate of the guided scram-

bling code increases drastically with increases to the degree of the scrambling

polynomial. An increased rate means that a higher proportion of all possible

length-S words must be used as codewords to represent data, which forces less

sparse words to be selected as codewords, resulting in poorer sparsity perfor-

mance as the rate increases. All coded systems exhibit higher sparsity than

78

what is expected without sparsity encoding.

3.6 Conclusion

A coding scheme that algorithmically maps binary data to sparse ternary data

has been presented. The encoding is performed in a two step process. Firstly,

the input binary data is converted into a ternary data stream with a high rate.

The base conversion algorithm is relatively simple, and for small block lengths

the process can be efficiently implemented with a look-up table.

Secondly, the ternary data is made sparse through the use of guided scram-

bling. The scrambling step guarantees a minimum worst-case sparsity of

3D−1/3D − 1, and this worst case occurs very rarely as D increases. Simulations

demonstrated an average sparsity in excess of 60% with a code rate of 0.75,

diminishing to 36.9% with a code rate of 0.997, as compared to an average

sparsity of approximately 1⁄3 that is expected without sparsity encoding.

79

Chapter 4

Selective Phase Masking

Holographic data storage as described in Chapter 2 is a two-dimensional stor-

age system, in contrast to one-dimensional storage systems such as magnetic

storage systems and optical storage systems, where the dimensionality refers to

the data structures in which information is contained. Two-dimensional holo-

graphic systems store data as pages of pixels, whereas magnetic and optical

drives store data as a spiral on a platter or disk, respectively.

Applying constraints to the recorded data allows a level of control over the

physical process of storing the data. In the case of holographic storage, as

discussed in Section 2.7, some data patterns can cause the holographic mate-

rial to saturate at certain locations. Upon readout, the data array will likely

contain errors, due to the corrupted recording. For a practical holographic

storage device to be realized, safeguards must be established to ensure that

either no material-saturating data arrays are recorded or the probability of a

material-saturating array being recorded is remote enough so as to be negligi-

ble. Constrained coding methods can be utilized to provide such safeguards.

The most common types of two-dimensional constraints are run-length lim-

its and the “no isolated bits” constraint [41]. These two constraints chiefly in-

crease the detector’s ability to discriminate between different channel symbols

and keep track of pixel spacing.

However, these constraints do not address system errors that arise in holo-

graphic storage systems from either periodic bit patterns or a significant DC

80

component within a data array. As described in Section 2.7, periodic data

patterns or a large DC component will create Fourier images with large peaks,

and thereby cause saturation of the material used to store holographic images

leading to readout errors.

Designing an encoder to dynamically map the input data to pixel values

while minimizing the DC and periodic content of the data array is a significant

combinatoric challenge. This is because, in the two-dimensional array, repeti-

tive pixel patterns in any orientation can result in large peaks in the Fourier

image. To constrain these cases the encoder would be required to eliminate

or minimize periodic pixel trends in two dimensions. An encoder that serially

maps incoming data to an array would be required to ensure that data arrays

do not have periodic components among all possible directions in which pe-

riodicity could be oriented. Given the difficulty of doing so, more practical

page-oriented approaches are considered.

This chapter discusses selective phase masking, a practical method to re-

duce the occurrence and severity of peaks in the Fourier domain representation

of data arrays. Additionally, a similar technique involving interleavers is pre-

sented, but it is shown not to perform as well as phase masks. Both of these

techniques are similar to techniques used in OFDM systems to address the

problem of a high peak to average power ratio [42].

4.1 Introduction

Phase masks are used to reduce the peaks in a Fourier image by altering the

phase of a subset of the pixels in the data array. This method was originally

proposed using an etched glass slide to alter pixel phase, and conceived as a

means to reduce the DC peak in systems which record data as strictly on or

off pixels[43, 44, 45]. However, using a physical device to impart these phase

shifts introduces additional difficulties, as discussed below.

In this section, phase masks implemented at the coding level are discussed,

and this procedure and its effects in the Fourier domain are described math-

ematically. Finally, a method to test the efficacy of a system selectively em-

ploying multiple phase masks at the coding step is introduced. The results of

81

several tests are presented in the following sections to demonstrate the utility

of selectively employing phase masks at the coding step.

4.1.1 Physical-Level Phase Masks

The use of phase masks to reduce the peaks in the Fourier image of a data array

for holographic storage was first demonstrated in 1970 by Burckhardt[43]. The

original method involved fabricating a mask that shifted the phase of some

pixels by π radians. This was accomplished by etching a piece of glass such

that the glass corresponding to a random selection of data pixels was thicker

than the glass corresponding to the others. The difference in thickness was

chosen to introduce a phase delay of one half-wavelength.

This method of using a static phase mask was first proposed for systems

using amplitude modulation with on and off pixels representing binary data.

For such modulation schemes, the DC component of the Fourier image tends

to be the dominant cause of material saturation. The phase mask diminishes

the DC peak because on pixels of differing phase interfere destructively at DC

in the Fourier domain.

Physical phase masks have a few weaknesses, however. Firstly, while it may

result in improved performance with some data arrays, it does not always result

in an improvement over an unmasked array. In the worst case for an unmasked

array, the all on case, a physical random phase mask which alters the phase of

half of the pixels would remove the DC component completely. However, it is

unlikely that any practical system would allow an all on array to be recorded

in the first place. Most holographic storage systems described in the literature

make use of fairly restrictive sparsity codes that force some percentage of the

data to be recorded as off pixels. A code that enforces an equal probability

of on and off pixels would produce arrays that are just as problematic for

the phase masked system as for the unmasked system. The two worst-case

arrays would be the array in which the on pixels correspond exactly with the

zero phase-shifted pixels in the phase mask, and its complement, the array in

which the on pixels correspond exactly with the π phase-shifted pixels. In

these situations, the phase mask would do nothing to diminish the DC peak

82

in the Fourier image.

Other poor-case arrays are arrays in which the resulting phase-masked

array is unbalanced. Here, balance refers to the proportion of π phase-shifted

on pixels to zero phase-shifted on pixels. An array in which the two are

exactly equal is said to be perfectly balanced. The worst-case arrays discussed

in the previous paragraph would be described as being completely unbalanced.

Also, partially unbalanced arrays can result in DC values above the saturation

limit for data arrays in a system that employs a physical phase mask.

The second major drawback for a physical phase mask is that it is an

optical element. This requires very precise alignment between the phase mask

and SLM, in all three spatial directions[46, 47, 48]. Additionally, the phase

mask introduces diffraction effects which lead to cross-talk between adjacent

pixels[49, 50].

4.1.2 Selective Phase Masks

An alternative to physical phase masking is to utilize an SLM that can control

the phase of the data pixels. It is then possible to use a phase mask during

the coding procedure, rather than a physical optical element. A phase mask

of this type is an array with size equal to that of the data array, and values

of its elements are either +1 or −1. The phase mask array and data array are

then multiplied element-wise to produce the masked data array that will be

recorded. For clarity: in this thesis the term “data array” always refers to the

unmasked array of ternary symbols; the term “mask array” refers to the array

of ±1 values that represents the phase mask; and the term “masked array”

refers to the array resulting from pixel-wise multiplication of the data array

and the mask array.

There are several advantages of this method over use of a physical phase

mask, two of which are highlighted here. Firstly, since the mask is not a phys-

ical device, there are no diffraction effects or alignment requirements beyond

those inherent in the holographic storage system.

Secondly, it is possible to use multiple phase masks within the same sys-

tem. To introduce multiple physical-level phase masks, some device would be

83

required to move the various masks into and out of position while maintaining

the stringent alignment requirements. In the case of masking at the coding

step, however, the only requirement is storing each mask in memory. This al-

lows the storage system to evaluate the performance of several different phase

masks for a given data array, and to choose the one with the lowest probability

of saturating the medium. Doing this reduces both the number and severity of

poor-case data arrays that the system may encounter, assuming good choices

have been made in the design of the set of masks to be used.

These two advantages eliminate the main difficulties of using physical phase

masks. The primary drawback of selective phase masks is the increased com-

plexity of the overall system. An encoder must determine which of the masked

data arrays provides the best Fourier domain properties. This requires calcu-

lating the Fourier transform for each possible masked array, recording the peak

value of the transform, and choosing the mask which generates the lowest peak

value, or at least choosing a mask that ensures all spectral components of the

masked array are below a predetermined threshold. This is a significant cost,

but if it is able to provide a holographic system that is free from material

saturation it may be worthwhile.

With respect to phase masking at the coding step versus using a physical

phase mask, this work is focused solely on the coding-level phase masks. From

this point onward any use of the term “phase mask” is in reference to a phase

mask or phase masks applied at the coding level.

4.1.3 Mathematics of Phase Masks

As described in Section 2.7, data arrays can be represented as two-dimensional

discrete functions. The allowed values of the elements in the array are deter-

mined by the type of modulation method in use. In general, a single element

in the array will have the form f [m,n] = am,ne
iθm,n , where am,n represents

the amplitude and θm,n represents the phase of the pixel at position (m,n).

This general format allows for any number of amplitude and phase levels to

be utilized in the modulation scheme.

For the purposes of this work, only hybrid-ternary modulation (HTM) is

84

considered. HTM is represented by either am,n ∈ {−1, 0, 1} and θm,n = 0, or

am,n ∈ {0, 1} and θm,n ∈ {0, π}, with the understanding that {am,n = 0, θm,n = 0}
and {am,n = 0, θm,n = π} represent the same modulation symbol. Since the two

representations are mathematically identical, the choice of which notation to

use is arbitrary. For simplicity, the first description is used henceforth. This

allows dispensing with the phase term altogether, and elements in the data

array are represented with just a single value, am,n.

The mask or masks can similarly be represented as a two-dimensional dis-

crete function. This chapter is focused entirely upon the use of binary phase

masking, where only two values are used for an individual element in the phase

mask: either 1 or -1. The 0 value that is used in HTM is not used in the phase

mask array because a non-zero original data value would be impossible to re-

cover after the multiplication with 0. Using the same notation as before, this

is described as either am,n ∈ {1,−1} and θm,n = 0 or am,n = 1 and θ ∈ {0, π}.
The choice of which notation to use is arbitrary; as before, the first is chosen

for simplicity.

The process of masking a data array is described mathematically as the

element-wise multiplication of the data array with the mask array. This two-

dimensional multiplication results in a two-dimensional convolution of the

Fourier transforms of the data array and phase mask. Because of this, the

Fourier transform of the phase mask itself has a critical influence on the per-

formance of the system as a whole. Figure 4.1 illustrates this convolution in

the Fourier domain. In this figure and all subsequent figures, only the mag-

nitude of the complex-valued Fourier transforms are depicted; phase plots of

the Fourier images are not shown, since it is only the magnitude of spectral

peaks that is of concern.

4.1.4 Evolutionary Algorithm Simulations

The ideal metric to determine the efficacy of a peak reduction technique is

the peak value of the worst-case data array. However, finding the worst-case

data array is no simple task. There are 3N
2

possible arrays of size N × N .

For values of N on the order of 100, a brute-force search to find the absolute

85

Array 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Array 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Element−wise Product of Arrays 1 and 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Element-wise Multiplication of Data Array and Mask
Fourier Transform of Array 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fourier Transform of Array 2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fourier Transform of Element−wise Product of Arrays 1 and 2

0

0.05

0.1

0.15

0.2

0.25

(b) Magnitude of FT of Data Array, Mask, and Element-wise Product

Figure 4.1: Element-wise multiplication in the data array results in a convo-
lution in the Fourier domain.

worst-case is practically impossible.

In order to find an array that produces poor results, an evolutionary al-

gorithm was developed. The algorithm begins with some number of random

arrays which represent the primary generation. It then finds the best way to

mask each of the primary arrays. The best choice of mask is the mask that

results in the lowest peak value in the Fourier transform of the masked array.

Then, the array with the highest peak Fourier-domain values in its best choice

masked array is selected as the surviving array. In the search for a problem-

atic array, the algorithm selects the data array with the worst best-case peak

values to be the surviving array.

The surviving array is then mutated very slightly by adding a random

array, called the mutation array, that consists of zeros with 99.95% probability

and ones with 0.05% probability. The probability of changing the value of an

element in the data array must be very low. Initially it was set higher, but

the algorithm did not focus on one particular solution and instead alternated

between several differing solutions. Keeping the probability of change low

86

reduces the scope over which the algorithm searches for data arrays with large

peaks in their Fourier transforms, encouraging it to settle on a single solution.

After the mutation array is added to the data array, any elements in the

array with a value of 2 are set to −1. The algorithm also keeps track of

the proportion of on and off pixels in the data array. This feature was

implemented to simulate an enforced sparsity constraint. Also, if the algorithm

is allowed to increase the number of on-pixels without bound, it will do so

rather than evolve a single solution. The constraint is enforced as an upper

bound on the percentage of the array that can be composed of on pixels. If a

mutated array contains on pixels in excess of this percentage, the algorithm

changes some on pixels to off pixels. The number of on pixels that are

made off is chosen so that the mutated array will be within compliance. The

specific on pixels to be made off are chosen at random. The balance between

on pixels with 0 and π phase shifts is not controlled by the algorithm. A more

in-depth description of this algorithm is found in Appendix A.

This mutation is repeated some number of times until a new generation

of arrays is created. The process repeats with the selection of the best choice

of mask for each of the new arrays. The simulation runs for some specified

number of generations before halting.

The variable parameters for the evolutionary algorithm simulations are

the number of arrays in each generation, the number of generations that the

algorithm simulates, and the size of the arrays. The mutation probability and

sparsity constraint are constant for all simulations in this chapter.

4.2 Phase Mask Design

For a set of masks to be ineffective in generating at least one array with minimal

periodic components, every possible masked version of the data array, and the

data array itself, must have Fourier transforms with large peaks. This happens

through constructive interference in the convolution of the Fourier transforms

of the mask and data array. The scaled versions of the Fourier transform of

the masks must sum to produce large peaks at some points in the Fourier

transform of the resulting masked data array.

87

An early approach taken to generate a set of phase masks was to design

masks based on their Fourier transforms. The goal was to determine charac-

teristics in the Fourier domain that contribute, either positively or negatively,

to the performance of either a single mask or a set of masks. The starting

point for this task was the convolution relation between the Fourier transform

of the phase mask and the Fourier transform of the data array.

The Fourier transform of a data array that saturates the holographic medium

will contain one or more large peaks. The convolution of the Fourier transform

of the data array with the Fourier transform of the mask is the summation of

“copies” of the Fourier transform of the mask centered at the location of each

sample value in the Fourier transform of the data array. Also, each “copy”

of the Fourier transform of the mask is scaled by the value upon which it is

centered. Because of this scaling, the copies of the Fourier transform of the

mask which are centered upon the peaks in the Fourier transform of the data

array have a much larger scaling factor than the copies that are centered upon

non-peak values of the Fourier transform of the data array. It is difficult to

determine generally whether the few, larger-scaled copies have a greater ef-

fect on the resulting convolution than the more numerous, yet smaller-scaled

copies.

Several designs of phase masks that approximate broad Gaussian pulses

were investigated. The motivation for masks of this style is the idea that

masks exhibiting a large pulse in the Fourier domain would distribute the

intensity from peaks in the Fourier transform of a data array across a broader

area, and therefore not allow a data array to saturate the medium in every

masked or unmasked case.

As a contrast to the designed masks, phase masks with values chosen

pseudo-randomly were also investigated. These types of phase masks have

low peak values in the Fourier domain.

4.2.1 Gaussian Pulses

The first simulation used a set of four masks, representing four pulses of vary-

ing width in the Fourier domain. For this first set of masks, the requirement

88

that the masks be composed entirely of ±1 values was removed. This restric-

tion was removed so that the simulation would provide the effect of using

Gaussian pulses for masks, which would then serve as a baseline for compar-

ison of the results obtained from masks that emulate Gaussian pulses in the

Fourier domain but are composed solely of ±1 values.

To construct the pulses that would serve as the masks, a script was written

to generate a two-dimensional Gaussian pulse. The function first generates an

array of size N ×N . The function then creates two indexing vectors a and b

for the vertical and horizontal indices of the array, respectively. The elements

of the mask array are calculated as e−(a2+b2). The pulse width can be altered

by changing the values of a and b. For instance, if a and b are vectors equal

to [−2 : 2], the pulse in the mask array will be wider than a pulse calculated

with a and b equal to [−5 : 5].

For uniformity between this simulation and others, the total power repre-

sented by each mask must be constant, otherwise the masks themselves scale

the data array, thereby distorting the peak values of the transforms of the

masked data arrays. For a mask comprised entirely of ±1 values, the total

power is
∑

m

∑
n |µ [m,n]|2 = N2, where µ [m,n] represents pixel values in a

phase mask of size N ×N . This scaling can be written as:

µ[m,n] = µu[m,n] ·
√

N2∑
m

∑
n |µu [m,n]|2

where µu[m,n] is the unscaled mask array.

As Figure 4.2 shows, there exists an inverse relationship between the widths

of pulses in the two domains. The narrower pulse masks have broader distri-

butions of power in the Fourier domain. For a pulse mask to be successful in

redistributing the peak power of a Fourier image, a relatively broad pulse in

the Fourier domain is required.

Because of the inverse relation, however, a mask with a broad Fourier pulse

allows only a few pixels in the center of the array to dominate the masked data

array. For example, Pulse 4, shown in Figure 4.2, contains only 16 pixels with

a value greater than 1. The non-uniform nature of the pixels within Gaussian

pulse masks raises several impediments to a practical implementation. The

89

Pulse 1

0

5

10

15

Pulse 2

0

5

10

15

20

Pulse 3

0

5

10

15

20

25

30

35

Pulse 4

0

10

20

30

40

50

(a) Gaussian Pulse Masks
Fourier Transform of Pulse 1

0

0.02

0.04

0.06

0.08

0.1

0.12

Fourier Transform of Pulse 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fourier Transform of Pulse 3

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Fourier Transform of Pulse 4

0.005

0.01

0.015

0.02

(b) Fourier Transforms of Gaussian Pulse Masks

Figure 4.2: Gaussian Pulse Masks and Fourier Transforms

feasibility of these types of masks is discussed in Section 4.2.6.

4.2.2 Unit Pulses

Practical phase masks should only be composed of ±1 values. With this con-

straint, the challenge is creating phase masks that emulate the Fourier prop-

erties of the Gaussian pulse masks. The sinc1 function shares some features

with the Gaussian pulse, namely a large central distribution of power. Unlike

the Gaussian pulse, however, the sinc has a Fourier transform that is more

amenable to the constraints required for a practical phase mask.

In the one-dimensional case, a single square pulse has the sinc function as its

Fourier transform. In the two-dimensional case, a circular unit-pulse function

has a circular sinc as its Fourier transform. The width of the central lobe in

the sinc function is inversely proportional to the width of the circular pulse.

A circular pulse with a smaller radius will result in a sinc that distributes its

power more broadly. Figure 4.3 illustrates the relationship between the radius

of the circular pulse and the width of the central lobe of the corresponding

1sinc(x) =

{
sin(x)
x x 6= 0

1 x = 0

90

Unit Pulse with 10 Pixel Radius

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unit Pulse with 20 Pixel Radius

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unit Pulse with 30 Pixel Radius

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unit Pulse with 40 Pixel Radius

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Circular Pulses
Fourier Transform of Unit Pulse with 10 Pixel Radius

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fourier Transform of Unit Pulse with 20 Pixel Radius

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fourier Transform of Unit Pulse with 30 Pixel Radius

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fourier Transform of Unit Pulse with 40 Pixel Radius

0.05

0.1

0.15

0.2

0.25

0.3

(b) Sinc Functions

Figure 4.3: Fourier Pairs: Circular Pulses and Sincs

sinc function.

However, the circular unit-pulses shown in Figure 4.3 are not appropriate

phase masks because of the zeros contained outside the pulses. To convert the

unit-pulses to phase masks, the zero pixels must be translated to -1’s. The

Fourier transform of a mask of this type is the sum of the Fourier transform

of a unit pulse, scaled by a factor of 2, and the Fourier transform of an array

consisting entirely of -1 values. The Fourier transform of a uniform array of

on-pixels is simply a large peak at DC. This DC term tends to dominate the

Fourier transform of the mask if the contribution from the circular unit-pulse

is relatively insignificant. This is the case for circular unit-pulses with small

radii, particularly those with the broadest central pulses in the Fourier domain.

As shown in Figure 4.4, the very broad Fourier domain pulses shown in

Figure 4.3 are no longer attainable with the ±1 constraint applied. A balance

must be struck between making the circular pulse as narrow as possible, while

not allowing the mask to become too unbalanced. An obvious choice is to

construct a mask that is as balanced as possible. Finding the appropriate

radius to give a balanced mask is a geometric problem.

Figure 4.5a shows a diagram of the problem. The solution is to find values

91

Circular Pulse with 20 Pixel Radius

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Circular Pulse with 30 Pixel Radius

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Circular Pulse with 40 Pixel Radius

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Circular Pulse with 48 Pixel Radius

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Circular Pulse Masks
Fourier Transform of Circular Pulse with 20 Pixel Radius

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fourier Transform of Circular Pulse with 30 Pixel Radius

0.1

0.2

0.3

0.4

0.5

0.6

Fourier Transform of Circular Pulse with 40 Pixel Radius

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fourier Transform of Circular Pulse with 48 Pixel Radius

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) Fourier Transforms of Circular Pulse Masks

Figure 4.4: Circular Pulses as Phase Masks and the corresponding Fourier
Transforms

A

B

r

d

d

(a) Geometry of the Circular Mask

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Imbalance vs. Ratio of Radius to Width of Array

Im
ba

la
nc

e
(ε

)

p

(b) Plot of ε vs. p

Figure 4.5: Geometric Diagram and Plot of ε

92

of r, the radius of the circle, and d, the length of a side of the square, such

that the two areas, A and B are equal. The expression for A is the area of a

circle of radius r:

A = πr2

The area of B is the area of the square minus the area of section A:

B = d2 −A

A value for the imbalance of the two areas, proportional to the total area of

the square, can be written as:

ε =
|A−B|
d2

=
|2πr2 − d2|

d2

Rewriting r as pd, where p = r/d gives:

ε =
|2π(pd)2 − d2|

d2

=
∣∣2πp2 − 1

∣∣
Solving for ε = 0 gives:

p =

√
1

2π

Therefore, the ratio of the radius of the circle to the width of the array should

be as close to
√

1/2π as possible to produce the most balanced mask. An

example of this is the fourth mask shown in Figure 4.4. The array itself if

120 × 120 pixels, and the radius of this circular pulse is 48 pixels. This gives

a ratio of 0.4, which is as close to
√

1/2π as possible given the discrete nature

of the mask array.

The balanced array still has a fairly narrow distribution of power in the

Fourier domain. As such, the convolution of this mask’s Fourier transform

and that of a data array with large Fourier peaks will not be very effective in

93

High Frequency Pulse 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
High Frequency Pulse 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
High Frequency Pulse 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
High Frequency Pulse 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) High Frequency Unit Pulse Masks
Fourier Transform of High Frequency Pulse 1

0.02

0.04

0.06

0.08

0.1

0.12

Fourier Transform of High Frequency Pulse 2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fourier Transform of High Frequency Pulse 3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Fourier Transform of High Frequency Pulse 4

0.05

0.1

0.15

0.2

(b) Magnitude Plots of Fourier Transforms of High Frequency Unit Pulse Masks

Figure 4.6: High Frequency Unit Pulse Masks and the corresponding Fourier
Transforms

reducing the peaks.

4.2.3 High Frequency Unit Pulses

An extension of circular unit pulses is high frequency unit pulses. Rather than

consisting of a single circular pulse, high frequency unit pulses are constructed

from several concentric pulses. The process for combining the single pulses

begins with constructing one pulse with a large radius, then subtracting a

pulse with a smaller radius, then adding yet a third pulse with a still smaller

radius, and so on.

Since the periodic component of the mask is circular, the power in the

Fourier domain is distributed circularly as well. A constant decrease in pulse

radius gives a mask with a significant portion of its power distributed at a

single frequency. This frequency is the inverse of the period of change in

pulse radius. The radius of the circle in the frequency domain represents this

frequency.

As shown in Figure 4.6, a smaller change in radius of the circles used to

create the masks (that is, a mask with a smaller period) results in a mask

94

Multi−Frequency Pulse 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Multi−Frequency Pulse 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Multi−Frequency Pulse 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Multi−Frequency Pulse 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Multi-Frequency Unit Pulse Masks
Fourier Transform of Multi−Frequency Pulse 1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fourier Transform of Multi−Frequency Pulse 2

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fourier Transform of Multi−Frequency Pulse 3

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Fourier Transform of Multi−Frequency Pulse 4

0.01

0.02

0.03

0.04

0.05

0.06

(b) Fourier Transforms of Multi-Frequency Unit Pulse Masks

Figure 4.7: Multi-Frequency Unit Pulse Masks and the corresponding Fourier
Transforms

with more of its power distributed at higher frequencies. This is illustrated as

an increase in radius of the circular distribution of power shown Figure 4.6b.

Also, the increasing radius of the distribution of power in the Fourier domain

entails a decrease in the peak value of the Fourier transform of the mask. The

circumference of the power distribution is increased, which implies an increase

of the area over which the power is distributed.

4.2.4 Multi-Frequency Unit Pulses

A better approximation of the Gaussian pulse is attained by using several

circular frequencies, rather than just one because this allows the power of the

data array to be distributed across multiple circular areas in the Fourier image.

Spreading the power over a larger area reduces the likelihood of saturation of

the holographic material.

One way to generate masks using multiple frequencies is to proceed as

described previously, but to alter the radius of the circular pulses by a non-

constant value during mask construction. When the rings making up the high

frequency unit pulses have variable width, multiple frequencies are introduced

95

in the Fourier domain. Figure 4.7 shows a set of four multi-frequency unit

pulse masks and their Fourier transforms.

Another method is summing several of the high frequency unit pulse masks.

The Fourier transform of the sum of multiple high frequency unit pulse masks is

equivalent to the sum of the Fourier transforms of each mask, due to linearity

of the Fourier transform. By combining several high frequency unit pulse

masks, a mask with a broad central distribution of power can be attained.

However, this summation results in arrays with values not equal to ±1. In

some cases several of the masks will have a +1 in the same location, which

results in the summation of the masks containing integer values greater than

1. Likewise, integer values less than −1 appear. Additionally, values of 0 may

appear if an even number of high frequency unit pulse masks are used for the

summation.

To form an appropriate phase mask, the values higher than 1 are set equal

to 1 and the values lower than −1 are set to −1. For the elements of the

array that are equal to 0, a value of either +1 or −1 is assigned at random.

The random values distribute the power of the data array away from the

rings of spatial frequencies dictated by the high frequency pulses. This rough

quantization tends to distort the Fourier transform of the resulting mask such

that this method is no better than generating multi-frequency unit pulse masks

with random variations in pulse radii.

4.2.5 Pseudo-random Masks

Finally, phase masks can be generated by populating the mask array with

pseudo-random values. The values are limited to ±1, but the choice of which

value to use is made according to a pseudo-random algorithm. With pseudo-

random phase masks, generating the masks is a simple process, and the Fourier

transform of a random mask has a relatively even intensity distribution.

An even intensity profile in the Fourier domain is advantageous for the

reduction of peaks in a data array because of the convolution relation. Ev-

ery point in the Fourier transform of the data array is distributed across the

Fourier transform of the mask. In a data array with very strong periodic com-

96

Pseudo−Random Mask 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Pseudo−Random Mask 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Pseudo−Random Mask 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Pseudo−Random Mask 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Pseudo-Random Masks
Fourier Transform of Pseudo−Random Mask 1

0.005

0.01

0.015

0.02

0.025

0.03

Fourier Transform of Pseudo−Random Mask 2

0.005

0.01

0.015

0.02

0.025

0.03

Fourier Transform of Pseudo−Random Mask 3

0.005

0.01

0.015

0.02

0.025

Fourier Transform of Pseudo−Random Mask 4

0.005

0.01

0.015

0.02

0.025

(b) Fourier Transforms of Pseudo-Random Masks

Figure 4.8: Pseudo-Random Masks and the corresponding Fourier Transforms

ponents, the Fourier transform of the masked array is mostly determined by

the convolution of the periodic components and the Fourier transform of the

mask. The non-periodic portions of the Fourier transform of the data array

become more important as the data array becomes less periodic.

The Fourier transform of a pseudo-random mask has low peak values, but

the precise location of peaks is also random. Thus, it is difficult to obtain any

control over the Fourier properties of the pseudo-random masks. Although

this contrasts with the approach taken for the prior mask designs, it does not

pose a problem since the peak values of the Fourier transforms are small.

4.2.6 Simulations

The results of the evolutionary algorithm for various phase masks are detailed

below. In each case, the proportion of off pixels is enforced to be at least

30%.

In these simulations, the data arrays are modeled as 120 × 120 arrays of

HTM data. For the calculation of the Fourier transforms during the evolu-

tionary algorithm used in the simulations of this section, the data arrays are

oversampled by representing each data pixel as a block of 4× 4 samples.

97

Additionally, the Fourier transforms are calculated by zero padding the

oversampled data arrays into 1001× 1001 arrays. An odd number was chosen

for the Fourier transform arrays so that the array would contain an equal

number of samples on both sides of the DC row and column. These sizes were

also chosen to increase the amount of data obtained for the frequency domain

representation of the data arrays while keeping processing times reasonable.

This zero padding may introduce some inaccuracy due to the edge transition

between the data array and the padded zeros. Windowing techniques exist

to alleviate this problem, but none were utilized in this application because

the resulting zero padded Fourier transformed were closely matched to Fourier

transforms computed without zero padding in test cases.

Gaussian Pulses

The simulation result using the set of pulse masks shown in Figure 4.2 showed

that only a small portion of the data values affected the masked data array.

In one simulation, the evolved data array contained a circular portion of +1

pixels. In this case, the resulting Fourier transforms of the masked data arrays

were roughly equivalent to the Fourier transforms of the masks themselves. In

another, the circular shape of on pixels was present, but the pixels varied in

phase in each column. In this second test, the Fourier transforms of the masked

data arrays were equal to the Fourier transforms of the masks, convolved with

the Fourier transform of the plane wave representing the variation in phase.

In both cases, the peak value of the Fourier images of both evolved data

arrays was close to the peak value of the Fourier transform of the mask labeled

“Pulse 4” in Figure 4.2. The evolutionary algorithm in both cases found arrays

with on pixels for the central four pixels, which are the most significant pixels,

in that those pixels are multiplied by the greatest factor. Once the smallest

pulse was used the evolutionary algorithm could not find an array that had a

higher peak FT value than Pulse 4 itself.

Figure 4.9 shows the first results of the evolutionary algorithm for a set

of four Gaussian pulses. Here, the algorithm found that a patch of on pixels

in the center of the array provides the highest peak values in the Fourier

98

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Evolved Data Array

0.005

0.01

0.015

0.02

0.025

(b) Fourier Transform of
Evolved Data Array

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

Generation

S
c
a

le
d

 F
o

u
ri
e

r
T

ra
n

s
fo

rm
 P

e
a

k
 V

a
lu

e

(c) Peak Value of Fourier
Transform of Evolved
Data Array vs. Genera-
tion

−2

0

2

4

6

8

10

12

14

0

5

10

15

20

0

5

10

15

20

25

30

35

0

10

20

30

40

50

(d) Masked Versions of Evolved Data Array

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.005

0.01

0.015

0.02

(e) Fourier Transforms of Masked Versions of Evolved Data Array

Figure 4.9: Results of one test of a set of four Gaussian Pulses (Set shown in
Figure 4.2).

99

transform. The pixels outside the central region are random which indicates

that those pixels did not have a strong impact on the overall result.

The evolution of the array is presented in the plot in Figure 4.9c. The

algorithm records the peak value of the Fourier transform of the best choice

for the surviving data array before the mutation step. The graph in Figure 4.9c

is a plot of these recorded values each divided by N2, where N is the number

of pixels in each dimension of the data array.

The Gaussian pulse masks cause the evolution of the data array to proceed

less smoothly than the evolution of other masks. This is due to the imbalance

between the effect that individual pixels in the data array have on the Fourier

transforms: changes to the central pixels have a much stronger effect than

changes to the peripheral pixels, and the evolutionary algorithm only makes

progress as it changes the central pixels. The plot shows that roughly after

generation 400 the algorithm made no significant change to the data array.

This is likely due to the central pixels being on at this point, and any change

to these pixels resulted in arrays with lower peaks in their Fourier images.

Changes to pixels outside the central region would have a negligible affect on

the overall peak value of the Fourier transform, so the algorithm was unable

to progress by changing those pixel values.

In principle, the results show that a mask with a broad pulse in the Fourier

domain will greatly minimize the ability of any data array to saturate the

recording material. In practice, however, the pulse masks are unusable. The

masks require the data array to be modulated in amplitude in such a way

that the central pixels have a much higher magnitude than the pixels toward

the edge of the array. This is impractical for two reasons. Firstly, the actual

process of varying the amplitude according to the Gaussian pulse mask is

either overly complex or impossible. Secondly, and perhaps most importantly,

the pixels which are amplitude modulated by a factor less than 1 will become

nearly impossible to decode accurately. In the case of Pulse 4, all but the

central 16 pixels will be reduced nearly to zero.

100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Evolved Data Array

0.05

0.1

0.15

0.2

0.25

(b) Fourier Transform of
Evolved Data Array

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generation

S
c
a
le

d
 F

o
u
ri
e
r

T
ra

n
s
fo

rm
 P

e
a
k
 V

a
lu

e

(c) Peak Value of Fourier
Transform of Evolved
Data Array vs. Genera-
tion

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Masked Versions of Evolved Data Array

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25

0.05

0.1

0.15

0.2

0.25

(e) Fourier Transforms of Masked Versions of Evolved Data Array

Figure 4.10: Results of one test of a set of four Circular Unit Pulse Masks (Set
shown in Figure 4.4).

101

Unit Pulses

The evolutionary algorithm generated an interesting solution when the mask

set consisted of the four unit pulse masks shown in Figure 4.4. The evolved

array contained one dominant frequency component as well as a minor, modu-

lated circular component. The main frequency component caused the Fourier

transform of the array to have peaks in the unmasked case as well as the data

array being masked with the first or second mask. The minor circular compo-

nents caused the third and fourth masks to generate large peaks in the Fourier

image.

The difference between each of the masks is that balance increases from

mask 1 to mask 4. Increasing balance indicates a decreasing DC component.

The masks with a more significant DC component are unable to reduce inher-

ent periodicity in a data array. This is because the convolution of the Fourier

transform of the data array and the Fourier transform of the mask are dom-

inated by the DC component of the mask replicating the inherent frequency

component of the data array.

The results of this simulation are shown in Figure 4.10. The unit pulse

masks fared much worse than the Gaussian pulse masks, with peaks roughly

10 times larger than those generated by the algorithm when Gaussian pulses

were used. This is mainly due to the set of masks lacking one member that

virtually blocked out the data array, as was the case with the fourth mask in

the Gaussian pulse set. However, the unit pulse masks are practical for use

in the holographic storage system because they do not require pixel by pixel

amplification or attenuation because all elements in the mask arrays are either

±1.

High Frequency Unit Pulses

The results from the evolutionary algorithm for the set of four high frequency

unit pulses, shown in Figure 4.6, were somewhat similar to the results for the

unit pulses. It is clearer in this case that the data array has been evolved to

contain within it some similarity to the masks. The Fourier transform of the

data array, shown in Figure 4.11b, indicates a strong periodic component in

102

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Evolved Data Array

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b) Fourier Transform of
Evolved Data Array

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Generation

S
c
a
le

d
 F

o
u
ri
e
r

T
ra

n
s
fo

rm
 P

e
a
k
 V

a
lu

e

(c) Peak Value of Fourier
Transform of Evolved
Data Array vs. Genera-
tion

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Masked Versions of Evolved Data Array

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(e) Fourier Transforms of Masked Versions of Evolved Data Array

Figure 4.11: Results of one test of a set of four High Frequency Unit Pulse
Masks (Set shown in Figure 4.6).

103

the data array, as well as replications of the Fourier transforms of each mask

at some spatial frequency.

The Fourier transforms of the masks are visible as pairs of circles that are

equidistant from the origin. These portions are representative of the convolu-

tion of each mask with some spatial frequency. This implies that in the data

array some pixels create a pattern that is partially equivalent to each mask

multiplied by some periodic data pattern. When the data array is multiplied

by any of the masks, the intrinsic periodic component in the data array is

reduced, but the portion of data equivalent to the masked version of a plane

wave becomes “unmasked” and results in a strong periodic component in the

Fourier transform of the newly masked array.

Multi-Frequency Unit Pulses

The results of one evolutionary simulation of the set of four multi-frequency

unit pulse masks, shown in Figure 4.7, are displayed in Figure 4.12. The

evolved data array contains periodic components that produce large peaks in

every masked case. The components that are periodic in each masked case

are present in the unmasked data array as masked versions of the periodic

components.

This is much less noticeable with this set of masks than it was for the

unit pulse and high-frequency pulse masks. With the two prior types of mask,

the Fourier transform of the data array contained features relating to the

convolution of each mask and some periodic data pattern. Since the Fourier

transforms of the multi-frequency pulse masks have lower peaks and are more

uniform than the other types, these convolutional features are more difficult

to discern visually.

Pseudo-Random Phase Masks

Among the various types of phase mask designs that have been reviewed in

this section, pseudo-random phase masks have the most uniform Fourier trans-

forms. That is to say, the Fourier images of pseudo-random masks contain the

lowest peak values and have these smaller peaks in more locations. Following

104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Evolved Data Array

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) Fourier Transform of
Evolved Data Array

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Generation

S
c
a
le

d
 F

o
u
ri
e
r

T
ra

n
s
fo

rm
 P

e
a
k
 V

a
lu

e

(c) Peak Value of Fourier
Transform of Evolved
Data Array vs. Genera-
tion

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Masked Versions of Evolved Data Array

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(e) Fourier Transforms of Masked Versions of Evolved Data Array

Figure 4.12: Results of one test of a set of four Multi-Frequency Unit Pulse
Masks (Set shown in Figure 4.7).

105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Evolved Data Array

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b) Fourier Transform of
Evolved Data Array

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generation

S
c
a
le

d
 F

o
u
ri
e
r

T
ra

n
s
fo

rm
 P

e
a
k
 V

a
lu

e

(c) Peak Value of Fourier
Transform of Evolved
Data Array vs. Genera-
tion

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Masked Versions of Evolved Data Array

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(e) Fourier Transforms of Masked Versions of Evolved Data Array

Figure 4.13: Results of one test of a set of four random phase masks (Set
shown in Figure 4.8).

106

the results presented thus far, which indicate that masks with more uniform

Fourier transforms produce Fourier images with lower peak values, it is ex-

pected that pseudo-random phase masks will work better than masks with

some inherent periodic components.

The results of an evolutionary algorithm simulation using a set of four

pseudo-random phase masks are shown in Figure 4.13. The first masked array

contains the lowest peak Fourier-domain values of any array in this section,

with the exception of the arrays that were masked using the impractical Gaus-

sian pulse masks. From these results it is concluded that pseudo-random masks

outperform all of the practical designed masks presented in this section.

The Fourier-domain peaks in a data array are diminished when the array

is masked with a pseudo-random phase mask because the convolution of the

Fourier domain representations of the data array and mask array ensures that

the peaks will be distributed relatively uniformly in the Fourier domain of the

masked array. Furthermore, since the Fourier-domain peaks in each pseudo-

random phase mask occur in sporadic locations a data array is less likely

to have large peaks in every masked array. This is evident in the results of

the evolutionary algorithm simulations since the set of pseudo-random masks

resulted in the lowest peak values in evolved arrays.

Because pseudo-random masks outperformed designed masks in these sim-

ulations, the remaining sections consider only pseudo-random phase masks.

4.3 Number of Phase Masks

Since the random phase masks are the best performing design under review,

the next step is to determine the effect of adding multiple masks to the system.

This is done by simply expanding the number of masks in the trial sample and

running the evolutionary algorithm. Results from tests of various numbers of

phase masks are shown in Figure 4.14.

In each evolutionary algorithm test, the number of child arrays per gen-

eration was kept at 50, and the algorithm was executed for 4500 generations.

The data arrays were chosen to contain 128 × 128 pixels, and the Fourier

transforms are calculated without over-sampling to keep the simulation times

107

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Masks (N
µ
)

N
o
rm

a
liz

e
d
 F

o
u
ri
e
r

T
ra

n
s
fo

rm
 M

a
g
n
it
u
d
e
 V

a
lu

e

Maximum Value

Average Result

Figure 4.14: Results from several evolutionary tests with various numbers of
pseudo-random phase masks.

relatively short as the number of masks is increased. Ten simulations were run

for each value of Nµ with a different set of pseudo-random masks used for each

simulation.

Since the actual values in the Fourier transforms are dependent on the

number of elements in f [m,n] the peak values of the Fourier transform arrays

were normalized by dividing by 1282 in Figure 4.14. An array consisting solely

of on pixels with uniform phase has a normalized value of 1 at DC in the

Fourier array.

Since ten simulations were used per each value of Nµ, the Fourier domain

peak values of the best-choice masked arrays for the evolved data arrays of each

simulation are averaged. Additionally, the overall maximum Fourier domain

peak value at any point during all ten simulations is plotted in Figure 4.14.

The results of these simulations show a clear decline in the Fourier-domain

peak value as the number of masks is increased. Moreover, the majority of

this decrease is achieved with relatively few masks. The average end value for

Nµ = 6 is 50% less than this value for Nµ = 1. Likewise, the maximum value

with five masks is 50% of the maximum value found in simulations using one

mask. This indicates that a practical system will not need to employ more

than roughly 10 masks to gain a significant portion of the benefit available

through selective phase masking.

108

4.4 Interleavers

Interleavers are devices that reorder the elements in data arrays. The use

of interleavers as a means to reduce peaks in the Fourier domain is possible

because shuffling the data array can disrupt periodicity which leads to large

peaks. Additionally, phase masks are unable to alter the pattern of on ver-

sus off pixels in a data array. Interleavers can alter this pattern, so their

potential utility was investigated to determine the effectiveness of their use in

diminishing Fourier peaks.

Unlike phase masks, however, interleavers are incapable of actually altering

the value of any pixel. Because of this, a system using only interleavers will

have not decrease the DC value of an array that is unbalanced. Interleavers

are therefore used in conjunction with a set of phase masks in the simulations

presented in this section. When combining the two approaches, the number

of options available to the system is determined by the expression:

No = (Nµ + 1)(Ni + 1) +NµNi

where No is the number of options, Nµ is the number of masks, and Ni is

the number of interleavers in use in the system. The different options are:

the data array as it is, the Nµ masked arrays, the Ni interleaved arrays, the

NµNi masked then interleaved arrays, and finally the NiNµ interleaved then

masked arrays. Masking an interleaved array and interleaving a masked array

have different results, so the order of the operations is important and provides

additional alternatives for representing a data array. To decode an interleaved

and masked array some pixels must be reserved to indicate to the decoder

which option was used to encode the array. At a minimum 3No pixels are

required to store this information, but encoding these reserved pixels with an

error control code would likely be necessary to ensure that the array is correctly

decoded. As in the phase masking case, decoding an array with an incorrect

mask or interleaver will result in an error rate roughly equal to decoding each

pixel at random.

The peak reduction capabilities of interleavers were tested by running the

evolutionary algorithm on systems employing some combination of masks and

109

interleavers. The results obtained from these tests were compared to similar

tests run for systems containing only phase masks. The tests consisted of data

arrays of size 120× 120 with no oversampling. The arrays are zero padded to

size 1001× 1001 for calculation of the FFT. The evolutionary algorithm used

35 children per generation and ran for 3000 generations. The normalization

factor used in Figure 4.15 is 1202, because the data arrays contain 1202 data

samples prior to computing the peak values of the Fourier transforms.

Compared to the tests in the prior section, these evolutionary simulations

have narrower breadth as a result of having only 35 children per generation as

opposed to 50. The interleaver tests also have a shallower depth by searching

for only 3000 generations rather than 4500. A narrower breadth decreases the

scope over which the algorithm can search in a single generation. Likewise,

the shallower depth decreases the level of refinement of the final data array.

As a result of these two changes, the peak values of the Fourier transforms of

the evolved data arrays, which are plotted in Figure 4.15, are lower than those

reported in Section 4.2.6. In this section, the absolute value of the peaks is

not as important as the comparative results between masks only and masks

with interleavers.

No tests were run for systems consisting solely of interleavers. As men-

tioned in Section 4.4, interleavers are incapable of reducing a DC value. For

this reason, their utility as the only means of peak mitigation is inadequate.

Initially, it was hypothesized that the interleavers would provide results

equivalent to those provided by phase masks. The results of the evolutionary

algorithm tests, however, indicate that interleaver and mask combinations are

inferior to systems that use phase masks exclusively, for the same number of

total options.

The trendlines plotted in Figure 4.15 show that the systems which em-

ployed interleavers did not reduce peaks in the Fourier image as well as those

systems which contained only phase masks. When keeping the number of data

array masking options constant, the systems with interleavers are uniformly

higher than those without interleavers. The trendline for the interleaved sys-

tems is y = 0.3369x−0.583. The trendline for the systems containing only phase

masks is y = 0.2795x−0.583. The exponent of x is the same value for each

110

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of Options

N
or

m
al

iz
ed

 F
ou

rie
r

T
ra

ns
fo

rm
 P

ea
k

Comparision of Interleavers and Masks

Masks and Interleavers
MI Trendline
Masks
Mask Trendline

Figure 4.15: Results from tests of Masking systems with and without inter-
leavers.

trendline, but the constant scaling term is greater for the system containing

interleavers.

From these results it is concluded that adding an interleaver to a system

that employs phase masking is less effective than simply adding an additional

mask. If the interleaving operation can be performed faster or more efficiently

than masking, interleavers could be used to provide a similar, though less

effective, benefit to masking. However, a comparison between the hardware

requirements of the two systems is left for future work. Based on these con-

clusions, only phase masks are considered for the remainder of this thesis.

4.5 Array Size

The results shown in Section 4.3 were demonstrated using data arrays of 128×
128 pixels. In practice, the arrays are likely to be composed of a larger number

of pixels, therefore the effect of using an array of some other number of pixels

must be determined. The work in this section has been conducted to determine

how the proportion of arrays that produce large Fourier domain peaks changes

with changing array dimensions, from which conclusions can be draw regarding

the number of masks required to effectively limit spectral peaks.

111

4.5.1 Definition of Terms Regarding Array Size

It has been shown in Sections 2.6 and 2.7 that the size of the data array is

an important factor in the evaluation of the Fourier transform. Size can refer

to the number of pixels in each dimension of the data array as well as the

physical measurements of the SLM. For clarity, in this section, the number of

pixels in each dimension will be referred to as N with the term “size” used in

reference to the physical dimensions of the SLM.

Altering either N or the physical size of the data array can impact the

optical power. As N increases, if the total optical power remains constant

throughout the entire array, the power per pixel decreases. Alternatively, the

power per pixel can be kept constant, in which case the overall power per

array increases. In the following analysis, the total maximum possible power

in the array is kept constant. This means that an all-on array of either +1 or

−1 valued pixels will have the same total power regardless of N . This choice

isolates the effect of the change of N by keeping the total optical power in the

system constant.

4.5.2 Problem Formulation

With HTM, as N increases, the total number of possible arrays increases as

3N
2
. Determining the proportion of all arrays that saturate the medium in

such a search space by direct examination of all arrays is intractable for even

modest values of N . Instead, work has been carried out to obtain an estimate

of the proportion of arrays of size N that produce large peaks as N increases.

With the power kept constant with increasing N , the peak magnitude val-

ues in the Fourier domain can range from 0 to N2 in the worst-case. The

magnitude values can thereby be normalized and recorded as simply a propor-

tion of N2 from 0 to 1.

4.5.3 Fourier Coefficient Analysis

The number of calculations in estimating the likelihood of occurrence of spec-

tral peaks can be reduced by first examining the two-dimensional DFT defini-

112

C0 = f [0, 0] + f [1, 4] + f [2, 3] + f [3, 2] + f [4, 1]
C1 = f [0, 1] + f [1, 0] + f [2, 4] + f [3, 3] + f [4, 2]
C2 = f [0, 2] + f [1, 1] + f [2, 0] + f [3, 4] + f [4, 3]
C3 = f [0, 3] + f [1, 2] + f [2, 1] + f [3, 0] + f [4, 4]
C4 = f [0, 4] + f [1, 3] + f [2, 2] + f [3, 1] + f [4, 0]

Table 4.1: Description of each Cr term in F [1, 1] for the N = 5 case.

tion:

F [k, l] =
∑
m

∑
n

f [m,n] e
−2πi
N

(mk+nl)

This summation results in F [k, l] being composed of N exponential terms

of varying phase. In most cases, the amplitudes of these phase terms are

determined by the sum of a set of N elements from f [m,n]. In the case of

HTM data, the f [m,n] array values can take on only three possible values: -1,

0, or 1. Because of this limited range, the sums of the f [m,n] elements can

be replaced by coefficients that also have a relatively small range of possible

values, from −N to N . Writing the DFT definition with these coefficients

gives:

F [k, l] = C0 + C1e
−1 2πi

N + C2e
−2 2πi

N + · · ·+ CN−1e
−(N−1) 2πi

N

where each Cr term is determined by the sum of all f [m,n] elements such that

mk + nl = r modulo N .

As an example, the coefficients for F [1, 1] when N = 5 are detailed in

Table 4.1. If this table were calculated for a different F [k, l] value, the specific

f [m,n] elements that compose each coefficient would change. However, each

of the five coefficients would still be the sum of five f [m,n] elements, with the

lone exception of F [0, 0] in which all 25 f [m,n] terms are associated with C0.

There are cases in which each coefficient is not associated with N terms

from the f [m,n] array. As mentioned previously, the F [0, 0] value for all N

is equivalent to the sum of all f [m,n] values. In this case the coefficient C0

is associated with every element in f [m,n] while the coefficients C1 through

CN−1 are not associated with any f [m,n] elements.

In addition to F [0, 0] for all N , there are F [k, l] values with non-prime N

113

values that have an uneven distribution of f [m,n] elements to the coefficients.

For instance, F [2, 2] for N = 6 has twelve f [m,n] elements associated with

each of C0, C2, and C4, and zero elements associated with the remaining coef-

ficients C1, C3, and C5. In this case, the three coefficients that are associated

with twelve f [m,n] elements range from -12 to 12 rather than -6 to 6. This

discrepancy causes the simplifications outlined below not to hold for F [k, l]

values with an uneven distribution of f [m,n] elements.

Uneven coefficient distributions are not present when N is prime with the

exception of the DC value, and they are in the minority when N is composite.

These cases are not considered in the computations presented in the remainder

of this section. The computations detailed henceforth compute the distribution

of magnitude values for all evenly distributed F [k, l] points for a given N as

described in the following.

For small N , the magnitude of F [k, l] reduces to:

|F [k, l]| =

√√√√N−1∑
r=0

N−1∑
s=0

CrCs cos
(
φ|r−s|

)
with:

φ|r−s| = |r − s|
2π

N

This equation was manually derived by determining the expression for the

magnitude value when N = 3, 4, 5, and 6. It is hypothesized that this expres-

sion extends to larger values of N also.

Introducing the coefficients allows the F [k, l] values to be calculated using

only the set of all coefficients rather than the set of all f [m,n] arrays. This set

of coefficients has N elements, each with 2N + 1 possible values. This results

in (2N + 1)N computations rather than 3N
2
, which is a significant reduction

in complexity even though it still has greater than factorial growth with N .

Since several different arrays produce identical sets of coefficients, it is

important to know how many arrays produce a given set of coefficients. The

distribution of the coefficient values can be described by a simple recursive

relation.

In the N = 1 case, the single coefficient can have a value of either -1, 0 or

114

v: -4 -3 -2 -1 0 1 2 3 4
N = 0: 1
N = 1: 1 1 1
N = 2: 1 2 3 2 1
N = 3: 1 3 6 7 6 3 1
N = 4: 1 4 10 16 19 16 10 4 1

Table 4.2: Listing of cN(v) values for N equal to zero through four.

1. There are three possible arrays, and each coefficient value is produced by

exactly one array.

In the N = 2 case, the two coefficients can have values of either -2, -1,

0, 1, or 2. For this case, there are 81 possible arrays, and each coefficient

value is not equally represented. For each coefficient, one subset of N f [m,n]

elements produces the ±2 values, two subsets produce the ±1 values, and

three subsets produce the 0 value. Note that the coefficients are determined

by wholly separate sub-sets of N pixels in the array. This gives a total array

count of 32 · 32 = 322 = 81, or more generally (3N)N = 3N
2
, which equals the

total number of arrays.

As N increases, the distribution of the coefficients follows a pattern similar

to Pascal’s Triangle. The coefficient distribution, cN(v), is described by the

recursive relation:

cN(v) = cN−1(v) + cN−1(v − 1) + cN−1(v + 1) (4.1)

where v is a value of the coefficient and cN(v) is the number of N pixel subsets

that generate the coefficient value v. Table 4.2 depicts the cN(v) values for

N ranging from 0 to 4. The recursive definition can be demonstrated by

inspection of each cN(v) value in the table. Each element is the sum of the

elements in the previous row directly above as well as one column to the left

and one column to the right of its position.

The values shown in Table 4.2 and the definition given in Equation 4.1

are useful for determining the range of values the coefficients can take in log-

ical units. However, v increases with N which means that the total power

within the array also increases with N . This is a direct contradiction of the

115

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Histogram of C values

P
ro

po
rt

io
n

of
 a

ll
C

 V
al

ue
s

Proportion of N

N = 10
N = 31
N = 52
N = 73
N = 94
N = 115
N = 136
N = 157
N = 178

Figure 4.16: Histogram of coefficient distribution as N increases.

assumption stated in Section 4.5.1 that the power contained in the array is

kept constant as N increases. To compensate for this, the v values need to be

scaled so that the maximum value of v does not increase with N . This can be

accomplished by dividing v by N so that v ranges from −1 to 1.

Figure 4.16 shows a histogram of coefficient values as N increases, with

scaling so that v ranges from −1 to 1. Additionally, the cN values have been

scaled by 3N . This is done so that each scaled cN value is the proportion of

all coefficient values that have value v. A histogram is more informative than

a direct plot, because with the scaling each point in the plot approaches zero

as N increases. This tendency can be observed in Table 4.2 by examining the

cN(0) values. The raw number increases with N , however the number of all

possible arrays increases at a faster rate. In the N = 2 case, 3 out of 9 pixel

subsets produce the value 0. In the N = 4 case, this proportion has reduced

to 19 out of 81.

The histogram indicates that as N increases the proportion of all cN val-

ues shifts heavily toward 0. With each coefficient value tending toward zero,

it follows that the magnitude values of the DFT should also tend to zero due

to the fact that the coefficients are the magnitude values for each complex ex-

ponential term in the DFT. Therefore, it can be expected that as N increases,

the proportion of arrays with low-level peaks increases, while the proportion

of arrays with large peak values decreases.

116

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x, Scaled |F[k,l]|

P
ro

po
rt

io
n

of
 |F

[k
,l]

| v
al

ue
s

≤
x

Cumulative distribution of scaled |F[k,l]| values

N = 6
N = 5
N = 4
N = 3

Figure 4.17: Plot of the cumulative proportion of arrays with scaled magnitude
values less than or equal to the value on the x-axis for varying N .

4.5.4 Computed Results

Numerical calculations of |F [k, l]| were computed for several values of N . The

magnitude values were computed by iteration through all sets of coefficient

values for a given N . For each set, the number of arrays producing that set

was computed combinatorially. Several sets of coefficients produced identical

magnitude values. To mitigate the effect of finite precision, if a calculated

magnitude value was within ±5 ·10−7 of a previously calculated value, the two

values were considered identical.

The results of four calculations are plotted in Figure 4.17. In these plots,

the magnitude values are scaled by 1/N2 to place the range of the magnitude

values for each N between 0 and 1. Additionally, the number of arrays at

each magnitude value is scaled by 1/3N2 , the reciprocal of the total number of

arrays. This converts the total number of arrays value to the proportion of all

arrays for a given magnitude value. Finally, the plot shown is the cumulative

sum of the proportion of all arrays. This converts the scattering of points into

a cumulative distribution of the magnitude values.

From these results, it is clear that as N increases, arrays with low peak

magnitude values form a larger proportion of all arrays. This is in agreement

with the results presented in Section 4.5.3 of the distribution of coefficient

values as N increases.

117

(a) N = 3 Data Array (b) N = 9 Data Array

Figure 4.18: Diagrams of two arrays with different N values.

Conversely, as N increases, the number of arrays that produce large peaks

relative to the number of all arrays decreases. An intuitive explanation of this

result is as follows.

An N = 3 array is shown in Figure 4.18a. Next to that array is an N = 9

array in Figure 4.18b. Since the total power in the array is kept constant with

increasing N , the N = 3 array can be viewed as an N = 9 array in which

each of the pixels in the 3× 3 array are composed of a set of 3× 3 sub-pixels,

where all sub-pixels in each 3 × 3 set have the same value. Because of this,

the sub-pixel arrays are forced to be either of the worst-case 3× 3 arrays (the

all 1 and all -1 arrays), or the best-case array (the all-off array). Here, the

worst and best cases are in reference to the peak magnitude values that arise

in the Fourier transforms of the 3× 3 pixel patterns.

The two constant-phase, all-on arrays are the worst-case in the sense that

they have the highest possible Fourier domain magnitude values. In each case,

the DC component is equivalent to the total power in the array, which is the

greatest possible magnitude value, since it is impossible for any portion of the

Fourier domain representation to have more power than is contained in the

data array. Likewise, the all-off array is the best case in that it has peak

values of 0 in the Fourier domain due to no optical power being transmitted

through the SLM. So, of all sub-arrays available for use as pixel values in the

larger N = 3 array, 2⁄3 are worst-case sub-arrays and 1⁄3 are best-case sub-

arrays.

118

In the N = 9 case, however, there is no requirement for any of the pixels

to have common values. Keeping the grouping of pixels from the N = 3 case,

the 3 × 3 sub-pixel arrays are no longer forced to be either the best-case or

the worst case. The smaller 3 × 3 sub-arrays will have the worst-case value

in only 2/39 cases. The best-case sub-array constitutes only one of the 39

sub-arrays, but the remaining sub-arrays are more closely distributed to the

best-case sub-array. This causes the proportion of all arrays that results in

large Fourier-domain peaks to be lower with N = 9 than it is with N = 3.

4.5.5 Simulations

Simulations using the evolutionary algorithm were run with arrays of 32× 32,

64 × 64, 128 × 128, and 256 × 256 pixels. For each array size, simulations

were run for systems using 4, 8, 12, 16, and 20 masks. The results of these

simulations are plotted in Figure 4.19. The Fourier-domain peak values are

normalized by dividing the Fourier transform values by the number of pixels

in the array. With this normalization, the total power of the array is constant

for the various array sizes since an all-on array has a Fourier-domain peak

value of 1 at DC for all array sizes.

For each array size, the Fourier-domain peaks of evolved arrays decreases

as the number of masks increases, similar to the results shown in Section 4.3.

Furthermore, it is clear from these results that the evolutionary algorithm

produced arrays with greater normalized Fourier domain peaks for the smaller

sized arrays.

4.6 Conclusion

Selectively using one of a set of phase masks at the coding step has been shown

to provide a significant reduction in the severity of Fourier domain peaks in

evolved data arrays. Multiple mask designs were tested, and pseudo-random

phase masks have been shown to outperform any of the designed masks that

emulated the Fourier-domain characteristics of a Gaussian pulse. This is due

to the Fourier transforms of pseudo-random masks having low peak values.

119

4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Number of Masks

N
o
rm

a
liz

e
d
 F

o
u
ri
e
r

T
ra

n
s
fo

rm
 V

a
lu

e

32×32 − Max

32×32 − Avg

64×64 − Max

64×64 − Avg

128×128 − Max

128×128 − Avg

256×256 − Max

256×256 − Avg

Figure 4.19: Global maximum Fourier Transform peak value per simulation
and average resulting Fourier transform peak value for various number of masks
using 32× 32, 64× 64, 128× 128, and 256× 256 sized arrays.

Selective phase masking provides increased peak reduction ability as more

masks are used. A diminishing marginal utility of each additional mask ensures

that most of the benefits of this technique can be realized without using an

impractically large set of masks. In the simulations presented here, with 128×
128 sized data arrays, 10 masks provide more than 50% of the peak reduction

capability provided by 50 masks.

Finally, analysis suggests that large Fourier-domain peaks are less likely to

occur as the dimensions of the data array are increased. This indicates that

arrays larger than the ones used in the simulations presented in this chapter

will not require a larger number of masks to maintain the benefits of selective

phase masking. These expectations have been confirmed by simulations.

120

Chapter 5

Example

Having demonstrated the manner in which sparse guided scrambling and selec-

tive phase masking function, this chapter includes a brief example to demon-

strate the entire coding process from binary source data to encoded array.

5.1 Example

For the example, the final HTM array size is 120 × 120 pixels, so that a

maximum of 14400 HTM symbols can be recorded. The 19:12 binary-to-

ternary code is used for the initial binary-to-ternary conversion, and this is

followed with guided scrambling using the degree-2 scrambling polynomial

d(x) = x2 + x + 2. Following the discussion of Chapter 3 that considers the

case when A = D and S = 3D−1, this degree-2 encoding maps 6 source HTM

symbols to 8 encoded HTM symbols. Finally, the sparse array is masked which

requires some pixels to be reserved to store the index of the mask.

It is straightforward to determine the number of data symbols to encode

at each stage by working backwards. The final array will contain 14400 HTM

symbols. The number of HTM symbols before the sparsity encoding must be

equal to 14400 × 6/8 = 10800, which equates to 900 blocks encoded by the

19:12 binary-to-sparsity code, or 17100 bits. However, the final HTM array

must have some pixels reserved to store the mask index. Instead of encoding

900 blocks of binary data, 899 blocks are used in this example. This results

121

Table 5.1: Number of data symbols at each step in the encoding process.

Binary Data 17081 bits
Uncoded HTM 10788 HTM symbols

Encoded Sparse HTM 14384 HTM symbols
Masked HTM Array 14400 HTM symbols

in 17081 bits being represented by 14400 sparse HTM symbols (including the

mask index) for an overall code rate of 1.1862 bits per pixel in the encoded

array. The number of symbols at each step is outlined in Table 5.1.

Since the final array has 14384 data-bearing HTM symbols, 16 pixels are

available to store the mask index. This allows an error control code to be used

to minimize the risk of incorrectly decoding the index, assuming fewer than

316 masks are used.

5.1.1 Binary Data

For this example, 17081 bits are generated to represent the data that will be

stored. To demonstrate the effectiveness of the coding techniques outlined in

this thesis, two different arrays containing this binary data are considered and

are shown in Figure 5.1. The first maps the first 14400 of the 17081 bits to

a 120× 120 array in order to provide an unencoded reference with a constant

sized array for each step in the encoding process. To better characterize the

entire data set, a second array maps all 17081 bits to a 131× 131 array with

80 zeros padded to fill out the array (note the vertical sequence of off-pixels

in the lower right).

The Fourier transforms of both arrays are dominated by the DC peak.

Since the arrays do not use a phase shift of any kind, the magnitude of the

DC peak is proportional to the percentage of on-pixels in the array. The

120×120 array has 49.74% on-pixels, and the 131×131 array has 49.97% on-

pixels. The scaled DC peaks shown in Figure 5.1b and Figure 5.1d are equal to

these values respectively, which indicates that both reference representations

of the binary data are approximately equal in terms of the Fourier domain

peak value. The zeros padded to the 131× 131 array have minimal affect the

122

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 120× 120 Binary Array

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Fourier transform of 120×120
Binary Array

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) 131× 131 Binary Array

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(d) Fourier transform of 131×131
Binary Array

Figure 5.1: Two binary arrays and their Fourier Transforms

123

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Uncoded HTM Array

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(b) Fourier transform of Uncoded
HTM Array

Figure 5.2: HTM Array after the 19:12 binary-to-ternary code.

DC peak; instead, the data that was truncated to make the 120× 120 array is

slightly less sparse than the first 14400 bits.

5.1.2 Binary-to-Ternary Encoding

The binary data is next converted to HTM using the 19:12 code outlined

in Chapter 3. This encoding produces a sequence of 10788 ternary symbols

containing 66.9% on-pixels, which indicates a sparsity value of 33.1%.

The uncoded HTM data is mapped directly to a 120 × 120 array, leaving

3612 pixels unused. In Figure 5.2, these unused pixels are off-pixels. Al-

ternatively, the unused pixels could store an additional 3612 HTM symbols,

in which case the uncoded array would carry more data than the final out-

put array. However, the goal of the subsequent sparsity encoding is to reduce

Fourier domain peaks, and it is instructive to compare the effect of sparsity

coding against an uncoded HTM array. Since leaving the unused pixels off

decreases the magnitude of Fourier domain peaks in general, the array in Fig-

ure 5.2 provides the most sparse presentation of the uncoded HTM data, and

is therefore a best-case array for this uncoded data. The sparsity of this array,

including the padded off-pixels, is 49.83%.

The uncoded HTM data is made sparse via guided scrambling with the

124

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Sparse HTM Array

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b) Fourier transform of Sparse
HTM Array

Figure 5.3: HTM Array after guided scrambling using d(x) = x2 + x+ 2.

scrambling polynomial d(x) = x2 + x + 2. As described in Chapter 3, this

degree-2 primitive polynomial produces m-sequences of length 8, so it is well

utilized when S = 8 and A = D = 2 which implies that W = 6. This forms a

sparsity code with a rate of R = 6/8.

After sparse guided scrambling, the 10788 HTM symbols from the uncoded

array produce 14384 sparse HTM symbols, which are mapped into the 120×120

array shown in Figure 5.3. The encoded data array has a sparsity of 60.36%,

which is significantly greater than the sparsity of the uncoded array even when

the padded zeros are counted.

5.1.3 Selective Phase Masking

As is evident from Figure 5.3b, a sparse HTM array can still contain significant

peaks in the Fourier domain. These peaks can be reduced using selective phase

masking, as described in Chapter 4. The Fourier transforms for each masked

variant of the sparse array are calculated, and the masked array with the lowest

peak magnitude value is selected to be recorded.

The sparse array from Figure 5.3a is masked using a set of four pseudo-

random phase masks. The resulting masked arrays are shown in Figure 5.4a.

As shown in Figure 5.4b, the Fourier images of these masked arrays have

125

Data Array with Mask 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Data Array with Mask 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Data Array with Mask 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Data Array with Mask 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Masked arrays
Fourier Transform of Data Array with Mask 1

2

4

6

8

10

12

14

16

x 10
−3 Fourier Transform of Data Array with Mask 2

2

4

6

8

10

12

14

16

x 10
−3 Fourier Transform of Data Array with Mask 3

2

4

6

8

10

12

14

16

x 10
−3 Fourier Transform of Data Array with Mask 4

2

4

6

8

10

12

14

16

18

x 10
−3

(b) Fourier transforms of masked arrays

Figure 5.4: Masked HTM Array

no significant peaks. The second masked array has the lowest Fourier-domain

peak value of the four masked arrays, so the encoder chooses the second masked

array for recording. In this example, the peak value of the Fourier image of

the masked array is less than Fourier-domain peak value of the sparse array

by a factor greater than 25.

As mentioned in Chapter 4, the encoder can alternatively be configured

to select the first masked array with a peak value below a threshold value.

If this threshold was set at 2% of the total optical power in the array, the

encoder would instead calculate only the Fourier transform of the first masked

array and select that masked array for recording because it has a peak value

only slightly greater than 1.6% of the total optical power in the array. In this

instance, the second masked array has Fourier-domain peak values that are

lower than those of the first masked array by only 0.01% of the total optical

power in the array. This difference can be greater in general, depending on the

threshold value. This method results in fewer Fourier transform calculations,

thereby increasing the speed of the encoding process, at the cost of slightly

higher peak values in recorded holograms.

126

5.1.4 Summary of Example

In this example, 17081 bits are mapped into a 120× 120 HTM array with no

significant peaks in the Fourier domain. The binary data is first converted

to ternary form using the high-rate 19:12 binary to ternary code described in

Chapter 3. The binary form of the data will contain a large peak value at

DC, and the ternary form of the data may contain a DC peak if there is an

imbalance between the proportion of on-pixels with zero phase shift and the

on-pixels with π phase shift. Additionally, large peak values can exist if there

is some periodicity in the data array.

To reduce the occurrence and severity these Fourier-domain peaks, the

HTM data is made sparse with guided scrambling as described in Chapter 3.

The primitive degree-2 polynomial d(x) = x2 +x+ 2 is used as the scrambling

polynomial. Two ternary symbols are used to augment the input ternary

sequence of six symbols, resulting in encoded blocks of eight symbols. The

resulting code has a rate of 6/8, and increases the sparsity of encoded data

from 33.1% to 60.36%.

Finally, the sparse HTM array is masked to remove the peaks that are

present in the Fourier image of the array. Four masks are used to create a set

of masked arrays through element-wise multiplication of each mask array and

the sparse HTM data array. The Fourier transforms of each of these masked

arrays are calculated, and the masked array with the lowest peak Fourier

domain values is selected for recording.

Although this example exhibits incremental decreases in the Fourier do-

main peak values with each step of encoding, this is not necessarily the case

for all data sequences. It is possible that an uncoded HTM array could have no

significant peaks but the guided-scrambling-encoded sparse array does. This

holds likewise for every step in the encoding process, with the exception of the

phase masking step (which can never be detrimental because the unmasked

array can be selected for recording). However, as has been demonstrated in

the previous chapters, each step of the encoding process provides an improved

likelihood of producing an array without significant Fourier domain peaks.

127

Chapter 6

Conclusion

This chapter concludes the thesis with a discussion of the main contributions

presented herein as well as a brief overview of several potential avenues along

which future work can be investigated.

6.1 Main Contributions

The main contributions presented in this thesis include the following:

A binary-to-ternary base conversion code that operates at a high rate and

converts binary blocks to ternary blocks by way of algorithms that are easy

to implement efficiently was developed. Since this is a block code, the rate is

defined by the ratio of the number of bits in the input block to the number

of symbols in the encoded block. Using block sizes of 19 and 12 respectively

gives a rate of 1.583̄ which is very close to the capacity of 1.58496.

Guided scrambling as a means to produce sparse ternary-valued data was

evaluated analytically. Guided scrambling has been used to enforce other con-

straints on data, but the investigation of its use to increase the number of

off-pixels in an HDS system is novel. Guided scrambling produces signif-

icantly more sparse data than an unencoded system, while being relatively

simple to perform.

The worst-case for guided scrambling sparsity encoding was proven. It was

shown that when using a number of augmenting symbols equal to the degree

128

of the primitive scrambling polynomial and using encoded blocks of length

S = 3D− 1, the worst- case sparsity is equal to 3D−1/3D − 1, and that this worst

case occurs in 2(S/2) encoded words.

Simulations indicating that primitive polynomials yield the most sparse

data in comparison to non-primitive polynomials were presented. This result

prompted the analysis that focused on primitive scrambling polynomials.

Simulations indicating the tradeoff between increasing code rate and de-

creasing resultant sparsity with increasing scrambling polynomial degree were

presented. As the degree of the scrambling polynomial increases the rate of

the code increases drastically because the encoded block size is the sum of

the number of augmenting symbols and the number of input symbols, and the

number of augmenting symbols is equivalent to the degree of the scrambling

polynomial while the total number of encoded symbols increases with the cube

of the scrambling polynomial degree. Because of the drastically increasing code

rate, the degree of control over the encoded distribution is reduced.

The process of selective phase masking was developed. The use of multi-

ple phase masks at the coding step is introduced in this thesis. Simulations

indicate that it is an effective method for reducing concentrations of optical

power at all locations in the Fourier domain.

Detailed analysis was presented for various mask designs. Masks with

structured designs were investigated, and while these designs did provide some

degree of reduction of Fourier domain peak values, it was demonstrated that

masks composed of pseudo-randomly distributed elements resulted in lower

peak values in data arrays produced by the evolutionary algorithm.

The use of interleavers in addition to phase masks was investigated. In-

terleavers rearrange the elements within a data array, and can thereby reduce

Fourier domain peaks away from DC. This method of peak reduction was found

to be inferior to the reduction granted by use of additional phase masks.

6.2 Future Work

The results of this thesis can be extended in future work. The following items

list a few possible areas in which this work can begin.

129

The performance of irreducible polynomials of degree 3 bears further in-

vestigation. In the case of degree 3 polynomials, irreducible polynomials per-

formed as well as primitive polynomials. This finding was unexpected, given

that irreducible polynomials were clearly inferior to primitive polynomials in

the degree 2 and 4 cases. As presented in Chapter 3, the degree 3 irreducible

polynomials produce sequences that are very similar to m-sequences, but this

result was not fully investigated. It is likely that the similar performance of

irreducible and primitive polynomials occurs again at some degree higher than

3; the most likely candidates being degree 5, 7, 9 etc.

Guided scrambling for sparsity encoding can be extended beyond ternary

alphabets. Several of the modulation schemes outlined in Chapter 2 have been

extended to create more than 3 channel symbols. These are useful additions

because they allow more data to be stored per array than in the binary or

ternary cases. The analysis of guided scrambling detailed in Chapter 3 is

applicable only to the ternary case and must be re-evaluated for inclusion in a

system operating with a higher order signalling alphabet. Likewise, selective

phase masking can be extended for systems using larger alphabets.

The results presented in the thesis indicate the performance of these tech-

niques in general, as discussed in Chapter 1. An applied demonstration of the

techniques can be performed to determine effectiveness for a particular system.

Such experiments should be designed to evaluate an overall decrease in BER

due to the techniques developed for this thesis.

Finally, an interesting analytical view of the phase masking process was

suggested during the review of this thesis [51]. It is possible to view an ad-

ditional masked data array as the multiplication of a previous masked data

array by an arbitrary phase mask. In this way, the distribution of peak values

in the Fourier domain of a set of masked arrays can be determined by the con-

volution of the distribution of peak values of several masked arrays. Through

the law of large numbers, this distribution approximates a Gaussian distribu-

tion. This theory is supported by the fact that the resulting Fourier domain

peak values from the set of Gaussian masks approximately equals the value

attained through the use of 50 pseudo-random phase masks. This approach

has the potential to reveal the upper limit of Fourier domain peak value that is

130

possible with an arbitrarily large set of masks, and bears further investigation.

131

Bibliography

[1] D. Gabor, “A new microscopic principle,” Nature, vol. 161, no. 4098, pp.

777–778, May 1948.

[2] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A.

Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby,

and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop.,

vol. 44, no. 3, pp. 341–368, May 2000.

[3] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage

systems,” Proc. IEEE, vol. 92, no. 8, pp. 1231–1280, 2004.

[4] D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. of the Royal

Soc. of London. Series A. Mathematical and Physical Sciences, vol. 197,

no. 1051, pp. 454–487, July 1949.

[5] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communi-

cation theory,” Journal of the Optical Society of America, vol. 52, no. 10,

pp. 1123–1130, October 1962.

[6] ——, “Wavefront reconstruction with continuous-tone objects,” Journal

of the Optical Society of America, vol. 53, no. 12, pp. 1377–1381, Decem-

ber 1963.

[7] ——, “Wavefront reconstruction with diffused illumination and three-

dimensional objects,” Journal of the Optical Society of America, vol. 54,

no. 11, pp. 1295–1301, November 1964.

132

[8] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage

in lithium niobate,” Applied physics letters, vol. 13, no. 7, pp. 223–225,

October 1968.

[9] D. Close, A. Jacobson, J. Margerum, R. Brault, and F. McClung, “Holo-

gram recording on photopolymer materials,” Applied Physics Letters,

vol. 14, no. 5, pp. 159–160, March 1969.

[10] L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neur-

gaonkar, “Photorefractive materials for nonvolatile volume holographic

data storage,” Science, New Series, vol. 252, no. 5391, pp. 1089–1094,

November 1998.

[11] P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction

efficiency near 100% for holographic storage,” Applied Physics Letters,

vol. 78, no. 11, pp. 1490–1492, March 2001.

[12] M. R. Gleeson, S. Liu, and J. T. Sheridan, “Improvement of photopolymer

materials for holographic data storage,” Journal of Materials Science,

vol. 44, no. 22, pp. 6090–6099, July 2009.

[13] H. Audorff, K. Kreger, R. Walker, D. Haarer, L. Kador, and H.-

W. Schmidt, “Holographic gratings and data storage in azobenzene-

containing block copolymers and molecular glasses,” Advances in Polymer

Science, vol. 228, no. 1, pp. 59–121, 2010.

[14] P. Lundquist, C. Poga, R. DeVoe, Y. Jia, W. Moerner, M.-P. Bernal,

H. Coufal, R. Grygier, J. Hoffnagle, C. Jefferson, R. Macfarlane,

R. Shelby, and G. Sincerbox, “Holographic digital data storage in a pho-

torefractive polymer,” Optics Letters, vol. 21, no. 12, pp. 890–892, June

1996.

[15] E. Zarins, V. Kokars, A. Ozols, and P. Augustovs, “Synthesis

and properties of 1,3-dioxo-1h-inden-2(3h)-ylidene fragment and (3-

(dicyanomethylene)-5,5-dimethylcyclohex-1-enyl)vinyl fragment contain-

ing derivatives of azobenzene for holographic recording materials,” Proc.

SPIE, vol. 8074, pp. 80 740E:1–6, 2011.

133

[16] Q. Mohammed Ali, P. K. Palanisamy, S. Manickasundaram, and P. Kan-

nan, “Sudan iv dye based poly(alkyloxymethacrylate) films for optical

data storage,” Optics Communications, vol. 267, no. 1, pp. 236–243, 2006.

[17] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman,

J. Levinstein, and K. Nassau, “Optically-induced refractive index inho-

mogeneities in LiNbO3 and LiTaO3,” Applied Physics Letters, vol. 9, no. 1,

pp. 72–74, July 1966.

[18] R. Castagna, F. Vita, D. E. Lucchetta, L. Criante, and F. Simoni,

“Superior-performance polymeric composite materials for high-density

optical data storage,” Advanced Materials, vol. 21, no. 5, pp. 589–592,

February 2009.

[19] L. K. Roland Walker, Hubert Audorff and H.-W. Schmidt, “Blends

of azobenzene-containing polymers and molecular glasses as stable

rewritable holographic storage materials,” Proc. SPIE, vol. 7619, pp.

76 190H:1–9, 2010.

[20] T. Sabel, S. Orlic, K. Pfeiffer, U. Ostrzinski, and G. Grtzner, “Free-

surface photopolymerizable recording material for volume holography,”

Optical Materials Express, vol. 3, no. 3, pp. 329–338, March 2013.

[21] J.-H. Chen, C.-T. Yang, C.-H. Huang, M.-F. Hsu, and T.-R. Jeng, “Study

of optical properties of glass-like polymer material for blue laser holo-

graphic optic data storage recording,” IEEE Transactions on Magnetics,

vol. 45, no. 5, pp. 2256–2259, May 2009.

[22] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic

storage and retrieval of digital data,” Science, vol. 265, no. 5173, pp.

749–752, August 1994.

[23] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, J. W. Good-

man, Ed. Wiley-Interscience, 1991.

134

[24] G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, and C. M. Jeffer-

son, “Gray-scale data pages for digital holographic data storage,” Optics

Letters, vol. 23, no. 15, pp. 1218–1220, August 1998.

[25] G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jef-

ferson, “Noise reduction of page-oriented data storage by inverse filtering

during recording,” Optics Letters, vol. 23, no. 4, pp. 289–291, February

1998.

[26] B. M. King and M. A. Neifeld, “Unequal a-priori probabilities for holo-

graphic storage,” Proc. SPIE, vol. 3802, pp. 40–45, 1999.

[27] R. John, J. Joseph, and K. Singh, “Holographic digital data storage using

phase-modulated pixels,” Optics and Lasers in Engineering, vol. 43, no. 2,

pp. 183–194, 2005.

[28] J. Joseph and D. A. Waldman, “Homogenized Fourier transform holo-

graphic data storage using phase spatial light modulators and methods

for recovery of data from the phase image,” Applied Optics, vol. 45, no. 25,

pp. 6374–6380, September 2006.

[29] T. Sarkadi, P. Koppa, F. Ujhelyi, J. Reményi, G. Erdei, and E. oke

Lõrincz, “Holographic data storage using phase-only data pages,” Proc.

SPIE, vol. 7000, pp. 700 004:1–11, 2008.

[30] B. Das, S. Vyas, J. Joseph, P. Senthilkumaran, and K. Singh, “Trans-

mission type twisted nematic liquid crystal display for three gray-level

phase-modulated holographic data storage systems,” Optics and Lasers

Engineering, vol. 47, pp. 1150–1159, 2009.

[31] J.-S. Jang and D.-H. Shin, “Optical representation of binary data based on

both intensity and phase modulation with a twisted-nematic liquid-crystal

display for holographic digital data storage,” Optics Letters, vol. 26,

no. 22, pp. 1797–1799, November 2001.

[32] J. Reményi, P. Várhegyi, L. Domján, P. Koppa, and E. Lõrincz, “Ampli-

tude, phase, and hybrid ternary modulation modes of a twisted-nematic

135

liquid-crystal display at ∼ 400 nm,” Applied Optics, vol. 42, no. 17, pp.

3428–3434, 2003.

[33] G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes

for page-oriented holographic data storage,” Journal of Optics A: Pure

and Applied Optics, vol. 10, no. 11, November 2008.

[34] S. Jutamulia and T. Asakura, “Optical Fourier-transform theory based

on geometrical optics,” Optical Engineering, vol. 41, no. 1, pp. 13–16,

January 2002.

[35] B. M. King and M. A. Neifeld, “Sparse modulation coding for increased

capacity in volume holographic storage,” Applied Optics, vol. 39, no. 35,

pp. 6681–6688, December 2000.

[36] B. M. King, G. W. Burr, and M. A. Neifeld, “Experimental demonstration

of gray-scale sparse modulation codes in volume holographic storage,”

Applied Optics, vol. 42, no. 14, pp. 2546–2559, May 2003.

[37] A. Sütő and E. Lőrincz, “Optimisation of data density in fourier holo-

graphic system using spatial filtering and sparse modulation coding,”

Optik, vol. 115, no. 12, pp. 541–546, 2004.

[38] I. J. Fair, W. D. Grover, W. A. Krzymien, and R. I. MacDonald, “Guided

scrambling: A new line coding technique for high bit rate fiber optic

transmission systems,” IEEE Transactions on Communications, vol. 39,

no. 2, pp. 289–297, 1991.

[39] S. W. Golomb, Shift Register Sequences, rev. ed. Walnut Creek, Califor-

nia: Aegean Park Press, 1982.

[40] S. R. Blackburn, “A note on sequences with the shift and add property,”

Designs, Codes, and Cryptography, vol. 9, no. 3, pp. 251–256, 1996.

[41] S. Halevy, J. Chen, R. M. Roth, P. H. Seigel, and J. K. Wolf, “Improved

bit-stuffing bound on two-dimensional constraints,” IEEE Transactions

on Information Theory, vol. 50, no. 5, pp. 824–838, May 2004.

136

[42] J. Tellado, Multicarrier Modulation with Low PAR. Kluwer Academic

Publishers, 2000.

[43] C. B. Burckhardt, “Use of a random phase mask for the recording of

Fourier transform holograms of data masks,” Applied Optics, vol. 9, no. 3,

pp. 695–700, March 1970.

[44] Q. Gao and R. Kostuk, “Improvement to holographic digital data-storage

systems with random and pseudorandom phase masks,” Applied Optics,

vol. 36, no. 20, pp. 4853–4861, 1997.

[45] M. J. O’Callaghan, “Sorting through the lore of phase mask options -

performance measures and practical commercial designs,” Proc. SPIE,

vol. 5362, pp. 150–159, 2004.

[46] M. J. O’Callaghan, J. R. McNeil, C. Walker, and M. A. Handschy, “Spa-

tial light modulators with integrated phase masks for holographic data

storage,” Proc. SPIE, vol. 6282, pp. 628 208:1–9, 2006.

[47] W. Ren, Q. Ma, L. Cao, Q. He, and G. Jin, “Applications of phase masks

in volume holographic data storage system and correlators,” Proc. SPIE,

vol. 6827, pp. 682 710:1–8, 2007.

[48] F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter, “Spe-

cial phase mask and related data format for page-based holographic data

storage systems,” Optical Review, vol. 16, no. 6, pp. 583–586, November

2009.

[49] J. Hong, I. McMichael, and J. Ma, “Influence of phase masks on cross talk

in holographic memory,” Optics Letters, vol. 21, no. 20, pp. 1694–1696,

October 1996.

[50] M.-P. Bernal, G. Burr, H. Coufal, R. Grygier, J. A. Hoffnagle, C. M.

Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quin-

tanilla, “Effects of multilevel phase masks on interpixel cross talk in digital

holographic storage,” Applied Optics, vol. 36, no. 14, pp. 3107–3115, May

1997.

137

[51] J. Ilow, private communication, 2013.

138

Appendix A

Evolutionary Algorithm

In this appendix, the function of the evolutionary algorithm is described in

detail. The main phases of the algorithm are divided into separate sections

for organizational clarity.

The algorithm was first developed in Matlab, and then was recreated in

C++ to allow for longer simulations due to the inherently faster performance

of the compiled C++ program. The results presented in the thesis for phase

masking with a different number of pseudo-random masks used the C++ im-

plementation. The results for the different designs of mask as well as the

interleaver results were produced with the Matlab implementation. Concep-

tually the two implementations are identical, the only major difference is that

the C++ version does not utilize over-sampling or zero-padding while calcu-

lating Fourier transforms. This appendix is focused on the algorithm itself,

but refers specifically to functions used in the C++ implementation.

There are several variables that are hard-coded for each run of the algo-

rithm. The values of these variables do not change over the course of a single

run, but may be changed between runs as described in Chapter 4. The vari-

ables that are changed include the x and y dimensions of the arrays, and the

number of masks.

The following variables were not changed between runs and have the value

shown in parentheses: the number of arrays per generation (50), the number of

generations per simulation (50), the number of iterations of the simulation per

139

program execution (10), the minimum sparsity value (0.3), and the mutation

probability (0.0005).

A.1 Initialization

The first phase of the algorithm is the initialization phase. The first step of the

program is to draw a seed for the pseudo-random number generator (RNG)

that is used throughout the program. The first seed is the current system time

represented as an unsigned long. The RNG used is the MTRand package in

the C++ implementation (the Matlab implementation uses the native RNG

in Matlab).

After the RNG is seeded, the actual algorithm begins by allocating the

appropriate number and size of masks, represented by a three dimensional

array of int values. Each mask is generated by randomly drawing a +1 or −1

for each element of the array.

Next, the initial generation of data arrays is randomly generated. The set

of arrays is represented by a three dimensional array of int values. The data

arrays are first generated by drawing a +1, 0, or −1 value at random for each

element in the array.

A.2 Selection

With the set of masks and the first generation initialized, the algorithm pro-

ceeds to the selection phase for the first time. In the selection phase, two new

variables are initialized to store the value of the largest Fourier domain peak

yet encountered and the index of the data array that produced the peak.

To begin the selection phase, the first data array is copied from the set

of data arrays into a temporary array. A score is calculated for this array.

This score is found by calculating the Fourier transform of the data array

and the Fourier transforms of each array that results from the element-wise

multiplication of the data array and each mask array. Then, the maximum

magnitude value of each of the Fourier transforms is determined (resulting in

140

a total number of values equal to one more than the number of masks in the

simulation). The minimum of these values is the score for that data array.

Likewise, a score is computed for the remaining data arrays in the current

generation.

After each score is computed, the algorithm checks this score against the

current maximum score. If the new result is greater than the current maxi-

mum, then that array becomes the new selected array; its score is stored to

be compared against all forthcoming scores, and its index is stored so that the

algorithm can quickly find the array that produced the maximum score.

After all arrays in the current generation are scored, the highest score is

recorded into the array that keeps track of the score per generation. Then,

the algorithm proceeds to the mutation phase.

A.3 Mutation

In the mutation phase, the algorithm loads the data array with the highest

score into a temporary array. This temporary array is then mutated to create

each data array of the subsequent generation. The mutation is carried out by

drawing a random value between 0 and 1 for each element in the array1. If

this value is less than the mutation probability, the element is incremented by

1. In the event that the value was previously a 1, the new value is set equal

to −1 instead of 2. If the value is greater than the mutation probability, the

element is not changed for the new array.

After a mutated array is generated, the number of 1 and −1 values is

counted. If this value is greater than the maximum number of on-pixels

allowed, some of the non-zero pixels are set to zero. This is accomplished

by recording the number of non-zero pixels that must be set to zero. While

that value is greater than zero, an element in the array is selected at random.

If that element is non-zero, it is set to zero and the counter is decremented

by 1. If the element is zero it is ignored and the counter is not changed.

This continues until the counter reaches zero. This function can theoretically

1This is implemented in C++ via the MTRand function drand(), which provides a
uniform distribution of numbers on the interval [0,1].

141

run indefinitely if the random pixels are always zero, but in practice non-zero

pixels are selected frequently enough that its processing time is negligible in

comparison to the rest of the evolutionary algorithm.

After the last new array is generated by mutation, and made sufficiently

sparse the algorithm has a new generation with which to begin the selection

process again. As such, it returns to that phase, and iterates until the defined

number of generations have been simulated.

A.4 Finalization

After the algorithm as run for the specified number of generations, the data

must be exported. This is done in C++ with libraries provided by Matlab that

export data to a file type that can be loaded by Matlab. The last surviving ar-

ray and set of masks are exported as Matlab two-dimensional int arrays. The

running score is exported as a one-dimensional double vector. Additionally,

the x and y dimensions, and seed value are exported as well. These values are

all contained in a single .mat file with the file name generated by the number

of masks used and a counter to prevent previously existing files from being

overwritten. For instance, if the algorithm finds a file with the currently gen-

erated file name in its folder it will append a 1 to the end of the file name,

and if the new file name exists as well it removes the 1 and appends a 2 and

so on until a file name is generated that does not already exist.

After the data has been saved, the program can terminate. Typically it is

configured to run multiple times, and it begins from the beginning until the

specified number of iterations have been processed.

142

