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Abstract

The evolution of data acquisition technologies and the exponential growth in comput-

ing capabilities have inaugurated an epoch wherein researchers are empowered to pro-

cure data of unprecedented dimensionality and complexity. Simultaneously, Bayesian

hierarchical models distinguish themselves as promising methodologies, offering ver-

satile frameworks for modeling and addressing intricate data-driven challenges. This

thesis harnesses the power of this advanced Bayesian statistical framework to explore

innovative solutions in the realms of neuroimaging data interpretation, mental health

assessment, and differentially private data analysis. The work is organized into three

distinct parts, each dedicated to a specific application of Bayesian hierarchical mod-

eling, reflecting its capacity to tackle diverse analytical problems. The first section of

the thesis concentrates on the analysis of electroencephalogram (EEG) data, leverag-

ing Bayesian hierarchical models to uncover latent structures and patterns within the

complex signals. This part introduces a groundbreaking approach to EEG data anal-

ysis, emphasizing the model’s ability to discern intricate neural activity patterns that

elude traditional analysis techniques. By applying this novel methodology to EEG

datasets, the study not only demonstrates the model’s superior analytical prowess

but also highlights its potential to revolutionize our understanding of neural dynam-

ics, offering new insights into brain function and disorder diagnostics. In the second

segment, attention shifts to the Hamilton Depression Rating Scale (HAMD), a widely

recognized metric for assessing depression severity. Here, Bayesian hierarchical mod-

els are employed to analyze HAMD data, aiming to identify latent subgroups among

patients and predict treatment outcomes more accurately. This section showcases
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the application of the model to clinical trial data, revealing its capability to enhance

the precision of depression severity assessment and to inform personalized treatment

strategies. The use of Bayesian hierarchical models in this context exemplifies the

model’s adaptability and its potential to contribute meaningfully to the field of men-

tal health. The final part of the thesis addresses the critical issue of data privacy,

particularly through the lens of differential privacy (DP). It presents an innovative

integration of DP principles within the Bayesian hierarchical modeling framework to

safeguard individual privacy in data analysis. This approach not only demonstrates

a novel method for achieving privacy-preserving but also improves the efficiency of

the statistical inference. By weaving together these diverse applications—ranging

from EEG data analysis and mental health assessment to privacy preservation—the

thesis underscores the versatility and power of Bayesian hierarchical modeling. Each

section, grounded in rigorous theoretical derivations and validated through extensive

simulations and real-data applications, contributes to the advancement of statistical

analysis in its respective field. Collectively, this thesis not only enriches our under-

standing of Bayesian hierarchical modeling but also opens new avenues for research

and application of Bayesian hierarchical models in neuroscience, mental health, and

data privacy.
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Chapter 1

Introduction and Overview of the
Thesis

The relentless advancement of data acquisition technologies and the exponential

growth of computing capabilities have ushered in an era where researchers are en-

dowed with the ability to gather data of unprecedented dimensionality and complex-

ity. This evolution has been observed across various fields, encompassing genomic se-

quencing, neuroimaging techniques such as electroencephalogram (EEG), functional

magnetic resonance imaging (fMRI), environmental monitoring, and social media ana-

lytics. At the heart of statistical inference lie the critical processes of model estimation

and interpretation. It is a principle of statistical science that as the dimensionality of

data swells, so does the requisite volume of data needed to sustain a specific level of

statistical accuracy. This principle often collides with practical limitations, rendering

the accumulation of necessary data volumes prohibitively expensive or logistically

unfeasible, as seen in exhaustive clinical trials.

Beyond the challenge of dimensionality, the multifaceted nature of modern datasets

introduces a complex array of challenges that extend well beyond the concerns asso-

ciated with high-dimensional data. As data grows not only in size but in complexity,

capturing the nuanced relationships and patterns within it requires advanced ana-

lytical techniques. High-dimensional data often contains intertwined layers of infor-

mation, where variables may exhibit intricate correlations or redundancies, and ob-
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servations themselves may be influenced by hierarchical or nested structures. These

characteristics complicate the task of discerning the underlying signals amidst the

noise, demanding approaches that can untangle these complexities while preserving

the essence of the data. Simultaneously, the challenge of ensuring the integrity and

utility of analysis in the face of missing or biased data points requires meticulous

methodological considerations.

In response to these multifaceted challenges, Bayesian hierarchical models offer a

strategic avenue for simplifying complex data into more tractable forms. Their in-

herent flexibility and the foundational principle of integrating prior knowledge with

observed data make them uniquely suited to tackle the complexities presented. The

hierarchical construct can be ingeniously divided into three principal echelons: the

Data Level, where direct modeling of observations takes place and individual vari-

ability is meticulously accounted for; the Parameter Level, which models the param-

eters that govern the data-level distributions, capturing group or category-specific

variability; and the Hyperparameter Level, where hyperparameters controlling the

distributions at the parameter level are specified. Such a hierarchical arrangement

is instrumental not only in modeling complex data structures with inherent nested

or multilevel characteristics but also in enhancing the precision of estimates through

the statistical principle of “borrowing strength” across groups or levels. The applica-

bility of Bayesian hierarchical models spans a vast array of fields, including but not

limited to ecology, education, psychology, and medical research, thereby underscor-

ing their pivotal role in tackling multifaceted statistical challenges. This dissertation

is dedicated to uncovering the profound capabilities of Bayesian hierarchical models

in two critical domains: clustering and data privacy preservation. It is through an

in-depth exploration that this work aims to shed light on how Bayesian hierarchical

models not only proficiently identify inherent groupings within complex datasets but

also provide frameworks for gaining efficiency while preserving the privacy of sensitive

information.
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The proposed Bayesian hierarchical clustering framework application is specifi-

cally emphasized within the domain of antidepressant mental health research. It

is widely recognized that mental health, constituting a fundamental facet of com-

prehensive well-being, has garnered escalating attention within the realm of global

health research. Among various mental health issues, depression stands out due to its

widespread prevalence and profound impact on individuals’ lives. The World Health

Organization estimates that depression affects over 264 million people worldwide,

making it a leading cause of disability. This high prevalence underscores the urgency

of developing effective treatments and understanding the underlying mechanisms of

depression. Clinical antidepressant studies in the realm of mental health research

are laden with a myriad of challenges, primarily stemming from the heterogeneous

nature of depression as a disorder. Patients with depression display a vast spec-

trum of symptoms and exhibit varied responses to treatment, presenting a significant

challenge in the analysis and interpretation of clinical data. This heterogeneity ne-

cessitates the use of advanced and sophisticated statistical methodologies to ensure

accurate results [1]. Another prominent challenge in these studies is the prevalence

of missing data, particularly in longitudinal research designs. Such missing data can

introduce substantial bias, potentially compromising the validity and reliability of the

study findings [2]. This issue is exacerbated in clinical trials involving antidepressants,

where patient dropout rates are often high due to side effects or lack of efficacy.

The first project involving clustering in this thesis pivots towards the inherent het-

erogeneity in patient responses to antidepressants. Major depressive disorder, as a

biologically diverse and etiologically complex syndrome, manifests in varied symp-

toms and treatment responses. This diversity necessitates the use of advanced statis-

tical models to accurately capture and analyze the multifaceted nature of depression.

Latent mixture models are valuable tools in identifying latent subgroups within a

population based on observable characteristics. This project extends these models

to incorporate matrix-variate data, enhancing their capability to handle complex,
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multi-dimensional datasets commonly encountered in clinical studies. The extension

is inspired by a antidepressant study aimed at examining patient heterogeneity based

on baseline (pre-treatment) electroencephalograph (EEG) data and its association

with antidepressant response. A distinctive feature of this project is the develop-

ment of a three-level structure model. The first level deals with the uncertainty of

latent class membership in matrix-variate EEG data, using a multinomial logistic

model. The second level assumes that class-specific EEG data follow a probabilistic

multilinear principal component analysis model. The third level establishes the as-

sociation between baseline EEG and antidepressant response under the conditional

independence given latent class membership. This comprehensive approach allows

for a deeper understanding of the relationship between EEG patterns and treatment

outcomes, offering potential insights into personalized treatment strategies for depres-

sion. The application of this model in the motivating study led to the identification

of distinct patient subpopulations, differentiated by their baseline EEG patterns and

varied responses to antidepressant treatment. This level of granularity in understand-

ing patient subgroups is a significant advancement over existing clustering methods,

offering a more targeted approach to treating depression. The second project in-

volving clustering shifts focus to a pivotal tool in antidepressant study, the 17-item

Hamilton Depression Rating Scale (HAMD17), a clinician-administered scale used to

assess depression severity. Understanding the progression of depression over time is

essential in evaluating the efficacy of antidepressants, and the HAMD17 trajectories

offer valuable insights into this aspect. This project employs our unique Bayesian

clustering approach which assumes that the clustering information of the trajectory

only depends on a dimension reduced subspace. A significant challenge in analyzing

HAMD17 trajectories is the presence of missing data, a common issue in longitudinal

studies. The nature of depressive symptoms influences both the likelihood of patients’

responses and the incidence of missing data. For instance, severely depressed patients

might be less inclined to attend follow-up sessions, resulting in missing HAMD17
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scores. This project acknowledges the critical impact of such missingness on study

outcomes, advocating for sophisticated methods to handle it effectively. The Bayesian

clustering approach introduced in this project is not only designed to identify latent

classes of depression severity and treatment response, but also taking into account

the missing data mechanism. This approach is particularly important for ensuring

accurate and unbiased estimates of depression severity and the effectiveness of in-

terventions. The method goes beyond standard analysis techniques by incorporating

multiple imputation and joint modeling approaches, which leverage observed data to

infer missing HAMD17 scores accurately. The application of the model in the motivat-

ing HAMD17 trajectories also led to the identification of two distinct subpopulations,

one corresponds to the responders to the treatment and the other one yet not.

Apart from Bayesian hierarchical clustering, the application encompasses the uti-

lization of Bayesian hierarchical models for data privacy as well. In an era where

data is increasingly digitized and easily accessible, the privacy of sensitive informa-

tion has become a paramount concern. Project 3 contributes a foundational statis-

tical methodology that can be pivotal in the context of Differential Privacy (DP).

The efficient estimation of coefficients under the constraints of DP, as explored in

this project, lays the groundwork for handling sensitive data responsibly and effec-

tively. Theoretically speaking, the third project introduces a Bayesian hierarchical

modeling framework in the context of DP and linear regression to improve the co-

efficient estimation efficiency. Considered there is no available dataset at hand, this

project only provide simulation study with pseudo unobserved confidential predictors

and responses and the only information available is the deferentially private sufficient

statistics. The project centers on the concept of DP, a well-established framework that

provides robust algorithmic protections to individual privacy. This concept involves

introducing calibrated random fluctuations into algorithmic calculations, limiting the

probability of revealing individual-specific information through the output. The in-

novation of this project lies in its unique approach that combines DP with Bayesian

5



envelope-based hierarchical model which is motivated by the observation that certain

variations in predictors may not significantly affect the response variable in a regres-

sion model. By building a bridge between the concepts of envelopes, introduced for

efficient coefficient estimation, and differential privacy, the project establishes a novel

framework. This framework is implemented within a Markov Chain Monte Carlo

(MCMC) data augmentation setup, allowing for Bayesian inference in linear regres-

sion while adhering to privacy constraints. The comparative analysis between this

framework and traditional methods highlights the advantages of utilizing the envelope

technique in maintaining privacy without sacrificing statistical rigor.

The rest of the thesis is organized as follows. Chapter 2 introduces the first project

modeling and interpreting the associations between EEG-defined subgroups and an-

tidepressant response. Chapter 3 introduces the second project discussing Bayesian

envelope-based clustering Model with non-ignorable missingness and its application

on HAMD trajectory. Chapter 4 introduces the third project involving the differen-

tially private Bayesian envelope regression.
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Chapter 2

Associations Between
EEG-Defined Subgroups and
Antidepressant Response: A Joint
Mixture of Probabilistic
Multilinear Principle Component
Analysis Modeling Approach

2.1 Introduction

Despite the growing availability of antidepressant medications, major depressive dis-

order remains a leading cause of disability worldwide [3–5]. The morbidity persists,

in part because, as a biologically heterogeneous and etiologically complex syndrome,

depression encompasses various symptoms and exhibits divergent treatment responses

[6–8]. [9] reported that about 60% of patients respond poorly to their first antide-

pressant trial. Moreover, for patients who already have tremendous concerns of hope-

lessness and discouragement, any treatment failure can lead to significant delays in

alleviation of depression [10, 11]. Therefore, if patients who will likely respond to a

specific antidepressant can be identified in advance of treatment, it would be of great

clinical benefit.

Electroencephalography (EEG), which measures the brain’s electrical activity ac-

quired from each electrode placed on the scalp, is found to be a promising source of
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non-invasive neuroimaging biomarkers of response to antidepressant treatment among

patients with major depressive disorder (MDD) (e.g., [7, 12–14]). Specific attention

has been paid to the utility of EEG power spectra, a transformation of EEG measures

observed over time to the frequency domain (e.g., [15]). EEG spectral domains can

be typically divided into the delta (<4 Hz), theta (4-7 Hz), alpha (7-15 Hz) and beta

(15-30 Hz)-frequency bands. For example, [16] reported increased EEG alpha power

at the posterior region of the brain in MDD patients who responded to a specific an-

tidepressant. Similarly, [17] found that antidepressant responders in their study had

higher EEG alpha power compared to non-responders. These findings also suggest

that (1) there may exist different subgroups of MDD patients, characterized by dif-

ferent pre-treatment EEG powers, and (2) such EEG-defined subgroups might be of

value as predictors of antidepressant response. While many EEG studies have demon-

strated the existence of distinct EEG patterns within their study participants (e.g.,

[18, 19]), EEG-defined heterogeneity among MDD patients is not well understood.

In our current study, we aim to investigate whether pre-treatment EEG powers

cluster into meaningful subgroups and how these EEG-defined subgroups are related

to the antidepressant response, using the data drawn from the Establishing Modera-

tors and Biosignatures of Antidepressant Response in Clinic Care (EMBARC) study

[20, 21]. The pre-treatment EEG data were obtained for 83 MDD patients who un-

derwent 8-week treatment with an antidepressant, and transformed to EEG power

spectra using the current source density (CSD) methods [22]. Specifically, we will fo-

cus on the EEG powers spanning the theta and alpha frequency bands (4-15 Hz) with

a resolution of 0.25 Hz, collected from the total 72 electrode locations on the scalp,

yielding EEG powers at 72 electrode locations across 45 unique frequencies; that is,

for each MDD patient’s EEG data takes the form a 72 × 45 matrix. Patients’ depres-

sive symptom severity was assessed using the 17-item Hamilton Depression Rating

Scale (HAMD17) and a patient is considered to be a responder, i.e., who respond

favorably to the treatment, if there is a 50% or more reduction of HAMD17 after 8
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weeks of treatment compared with baseline. Our statistical task is then to cluster

these matrix-variate EEG data into subgroups and evaluate the association between

the associated subgroup memberships and the binary antidepressant response.

With the increased availability of matrix-variate data in modern scientific studies,

the literature on clustering methods for matrix-variate data is growing (e.g., [23–

26]). These methods extend multivariate Gaussian mixture models to accommodate

matrix-variate data by imposing various low-rank and sparsity constraints to achieve

dimension reduction and parsimonious modeling. However, the focus of these works

is on clustering performance and as a result, they would not allow joint inference

of the latent EEG subgroup memberships and their associated correlations with the

antidepressant response of interest. In other words, applying these methods in our

current setting would require a two-stage approach. In the first stage, one needs to

carry out a clustering task for our EEG data to assign patients to different subgroups

and then relate the known subgroup memberships to the antidepressant response in

the second stage analysis. Without accounting for the estimation errors in the first

stage clustering step, such a two-stage approach can result in attenuation bias when

studying the subgroup specific effects on the response of interest (e.g., [27, 28]).

To overcome these shortcomings, we propose a Bayesian joint modeling approach

to simultaneously model both the EEG data and the antidepressant response. We

summarize our contributions as follows:

• We propose a mixture of probabilistic multilinear principal component analysis

(mixture-PMPCA) model for our EEG data, in order to identify “homogeneous”

subgroups of MDD patients who share similar pre-treatment EEG patterns. Our

mixture-PMPCAmodel inherits the strength of multilinear principle component

analysis (e.g., [29, 30]) by performing low-rank decomposition simultaneously

to both the row and column spaces of the matrix-variate data, thus allowing

better preservation of their spatial structures, and is a matrix-variate extension
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of the classical mixture of probabilistic component analysis model ([31]).

• In contrast to a two-stage approach, our joint modeling approach properly ac-

counts for the uncertainty in the estimation of the latent EEG subgroup mem-

berships (avoiding attenuation bias) and relate the unknown subgroup mem-

berships to the response of interest in one modeling step.

This chapter is structured as follows. Section 2.2 describes the proposed model

along with its estimation and inference procedures. In Section 2.3, we describe the

detailed data analysis for our motivating study. The paper concludes with a discussion

in Section 2.4.

2.2 Model Specification

The task of identifying unobserved EEG subgroups can be naturally formulated as a

latent class model (e.g., [32]), which is also referred to as a mixture of experts models

(e.g., [33, 34]), with each latent class representing a homogeneous subgroup that has

its own EEG pattern and probability of a favorable antidepressant response. For each

observation i ∈ {1, · · · , n} (n = 83 in our EMBARC dataset), let xi ∈ Rp×q be the

p × q matrix-variate EEG data with p = 72 and q = 45, (fi, C
h
i )
n
i=1 be the binary

scalar covariates denoting gender (fi = 0 as male and 1 as female) and chronicity

(Ch
i = 0 as no chronic disease and 1 otherwise) respectively, and oi be the binary

response variable with oi = 1 indicating an antidepressant responder.

2.2.1 Model for the Baseline Matrix-Variate Covariates

Suppose that there are G latent subgroups. We let ci
.
= (ci1, . . . , ciG) with cig = 1

if subject i belongs to subgroup g ∈ {1, · · · , G}, and 0 otherwise, and the proba-

bility that subject i is a member of subgroup g, denoted by πg = P(cig = 1) follow

the multinomial distribution: Multi(1;π) with event probabilities π = (π1, · · · , πG)

(
∑︁G

g=1 πg = 1). To accomplish simultaneous dimension reduction and clustering task,

10



we establish the following mixture-PMPCA model under the previous notation

P(xi|ui) = MN p×q
(︁
AuiB

⊤, ϕ−1Ip×p, Iq×q
)︁
,

P(ui|cig = 1) = MN p0×q0
(︁
ηg,Γ,Λ

)︁
,

(ci1, · · · , ciG) ∼ Multi (1;π) , with π = (π1, · · · , πG)⊤,

πg = P(cig = 1), g = 1, · · · , G. (2.1)

In model (2.1), MN () denotes matrix normal distribution. Ap×p0 and Bq×q0 are

semi-orthogonal matrices, Γp0×q0 and Λq0×q0 are diagonal, ui and ηg ∈ Rp0×q0 . After

vectorization, the matrix normal distribution above can be equivalently written as

P(vec(xi)|ui) = Npq

(︁
(B⊗A)vec(ui), ϕ

−1Ipq×pq
)︁
,

P(vec(ui)|cig = 1) = Np0q0

(︁
vec(ηg),Λ⊗ Γ

)︁
, (2.2)

In model (2.2), ⊗ denotes the Kronecker product. The marginal distribution for

xi then has the following form:

P(x) =
G∑︂
g=1

∫︂
πgP (x | ui)P (ui | cig = 1) dui (2.3)

The parameters of the model are
{︁
A,B,Γ,Λ, ϕ, (ηg)

G
g=1

}︁
, and the latent variables in

this model are the core matrices and the subgroup membership indicators (ui, ci)
n
i=1,

where ci = (ci1, · · · , ciG).

2.2.2 Model for the Binary Treatment Response

We use Probit regression for the binary treatment outcome. Instead of regressing oi on

xi or ui, we relate the likelihood of oi = 1 to the latent class clusters cig. Specifically,

it assumes that the variation inside each latent class, and the random error provides

no information in predicting oi. For simplicity, we denote the indicator function

I(cig = 1) as Iig and let zi
.
= {(Iig, Iigfi, IigCh

i , IigfiC
h
i )
G
g=2, fi, C

h
i , fiC

h
i } denote all the

independent variables. It is worth noting that the independent variables zi not only
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contain the indicator (Iig)
G
g=2, gender fi and chronicity Ch

i , but also all the higher

order interactions (Iigfi, IigC
h
i , IigfiC

h
i )
G
g=2. The formulation for Probit regression can

be expressed as

Φ−1 (P(oi = 1)) =β0 + zTi β (2.4)

In (2.4), Φ(·) denotes the cumulative distribution function for a standard normal

distribution. β is the corresponding coefficients for zi. Based on model (2.4), the

reference group refers to patients in the first latent class with gender as male (fi = 0)

and no chronic disease (Ch
i = 0). When performing the analysis, we manually select

the class with the least average CSD-EEG signals and refer it as the first latent class,

i.e. the baseline.

2.2.3 Hierarchical Joint Modeling approach

As mentioned in introduction, in contrast to the two-stage approach, our joint mod-

eling framework estimates the unknown subgroup memberships and relates the sub-

group memberships to the response of interest in a unified framework. Our hierar-

chical joint modeling approach for CSD-EEG matrices and treatment outcome is de-

scribed in Figure 2.1. In the figure, Diag() means the diagonal elements of a matrix,

MN () denotes matrix normal distribution, Vp0,p and Vq0,q denote Stiefel manifold

with corresponding dimensions. ci indicates the latent class of the latent variable ui,

on the other hand, ci is also the independent variable in the Probit regression.

If we use ν to denote all the model parameters, ν
.
=
{︁
A,B,Γ,Λ, ϕ, (ηg)

G
g=1,π, β0,β

}︁
,

then in our Bayesian joint modeling approach,

P(xi, oi, ci,ui|ν) = P(xi|ci,ui,ν)P(oi|ci,ui,ν)P(ui|ci,ν)P(ci|ν).

12



The detailed complete data likelihood is given below,

P(x,o, c,u|ν) =
n∏︂
i=1

P(xi, oi, ci,ui|ν)

=
n∏︂
i=1

G∏︂
g=1

[︄
πg

(︃
ϕ

2π

)︃ pq
2

exp

{︃
−ϕ
2

⃦⃦
xi −AuiB

⊤⃦⃦2
F

}︃
× Φ

(︁
β0 + zTi β

)︁I(oi=1) [︁
1− Φ

(︁
β0 + zTi β

)︁]︁I(oi=0)
(2π)−

p0q0
2

× exp

{︃
− 1

2
vec
(︁
ui − ηg

)︁⊤
(Λ⊗ Γ)−1 vec

(︁
ui − ηg

)︁}︃]︄I(cig=1)

(2.5)

where ∥ · ∥2F represents the Frobenius norm.

Compared with the joint modeling approach, the two-stage approach consists of

the following two steps:

• Stage 1: Model CSD-EEG with (2.1) and for each subject i assign

ĉig = 1 where g = argmax
k∈1,...,G

P(cik = 1|xi)

• Stage 2: Predict the binary treatment outcome oi through the Probit regression

model (2.4) given the subject belongs to the g’th class membership.

Remark 1 From ˆ︁cig, we can define ˆ︁ci ∈ RG with the g’th element equal to 1 and the

rest equal to 0s. Basically, ˆ︁ci stores the subgroup membership of the ith subject. In

summary, the two-stage approach separates clustering and outcome prediction steps.

They first estimate ˆ︁ci, and then, in the second stage, regress oi on ˆ︁ci (along with other

clinical covariates). Even though ˆ︁ci is a random variable, which follows Multi(1; ˆ︁π)
with event probabilities ˆ︁π = (ˆ︁π1, · · · , ˆ︁πG), such a two-stage strategy considers ˆ︁ci as
non-random quantities when predicting the outcome oi.

In summary, the two-stage approach fails to take into account the variability in the

estimated ˆ︁cig when fitting the Probit regression model. Indeed, ignoring the variability

in ˆ︁cig can introduce attenuation biases for the regression coefficient estimates, and

result in underestimation of their associated uncertainty estimates (such as the width
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of credible intervals). In contrast, the joint modeling approach naturally considers

the variation in ˆ︁cig when predicting oi, which can help reduce the estimation bias and

provide correct uncertainty quantification for the regression coefficients in the Probit

model.

Figure 2.1: A graphical representation of the hierarchical structure of the joint modeling
approach. cig is the bridge which connects CSD-EEG and the binary treatment outcome.
On one hand, cig indicates the latent class of ui, on the other hand, cig is the independent
variable in the Probit regression.

[xi | ui, ϵi] = AuiB
T + ϵi

[ui | cig = 1] ∼ MN p0×q0 (ηg ,Γ,Λ)

vec(ϵi) ∼ Npq(0, ϕ−1I)

(ci1, · · · , ciG) ∼ Multi (1;π)

with π = (π1, · · · , πG)⊤

Φ−1 (P(oi = 1)) = β0 + zT
i β

ϕ−1 ∼ G (0.1, 0.1)

A ∈ Vp0,p B ∈ Vq0,q

Diag(Λ
1
2 )

∼ Np0 (0, 10I)

Diag(Γ
1
2 )

∼ Nq0 (0, 10I)
P(ηg) ∝ 1

[β0,β] ∼ N
(︁
0, 1002I

)︁

2.2.4 Prior Distributions

For model (2.1), we need priors for the parameters A, B, Γ, Λ, ϕ, (ηg)
G
g=1 and π.

Since Ap×p0 and Bq×q0 are semi-orthogonal, we adopt the uniform distribution on

Stiefel manifold Vp0,p as the non-informative prior for Ap×p0 . Similarly, the uniform

distribution on Stiefel manifold Vq0,q is adopted as the prior for Bq×q0 . we assume

Γ and Λ are positive definite diagonal matrices. For such matrices, we can adopt

normal distribution as conjugate prior for the diagonal elements [35]. Hence N (0, 10)

as the conjugate diffuse prior for each diagonal element of Γ
1
2 and Λ

1
2 is adopted.
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Commonly used noninformative conjugate flat priors is adopted for ηg, P(ηg) ∝ 1.

Conjugate diffuse Gamma prior is adopted for ϕ−1 with ϕ−1 ∼ G(0.1, 0.1). The latent

variable ci follow a multinomial distribution ci
.
= (ci1, · · · , ciG) ∼ Multi (1;π), and

we adopt the conjugate prior for π as

π = (π1, · · · , πG)⊤ ∼ Dirichlet(4, . . . , 4)

The choice of our Dirichlet prior is equivalent to assuming a priori of four observations

for each class, which can avoid having empty classes [36].

For model (2.4), we adopt conjugate diffuse priors for coefficients {β0,β} ∼ N (0, τI),

τ = 1002

Remark 2 For all the parameters mentioned above, either conjugate non-informative

or conjugate weakly informative priors are selected. The model is not sensitive to the

priors as long as the priors are not highly informative. For Gamma distribution

G(0.1, 0.1), a decrease of the hyper-parameter 0.1 would make the prior less informa-

tive. For normal distributions above, N (0, 10I) and N (0, 1002I) a increase of number

10 or 1002 would also make the priors less informative.

Remark 3 The multilinear transformation matrices A ∈ Rp×p0 and B ∈ Rq×q0, are

semi-orthogonal matrices. The set of such matrices is called the Stiefel manifold and

we denote it as Vp0,p and Vq0,q, respectively. Uniform distribution is the unique prob-

ability measure on Stiefel manifold that is invariant under left and right orthogonal

transformations. Let A[,k] denote the kth column of A and A[,−k] denote the ma-

trix A with its kth column removed. When a uniform prior distribution for A is

assumed, the conditional distribution of A[,k] given A[,−k] is equal to the distribu-

tion of NA{−k}ak where NA{−k} is a basis for the null space of columns of A[,−k](︁{︁
x ∈ Rp0−1 : A[,−k]x = 0

}︁)︁
and ak is uniformly distributed on the (p− p0 + 1)-

dimensional sphere, and Bk is uniformly distributed on the (q − q0 + 1)-dimensional

sphere. i.e., conditional on A[,−k],A[,k]
d
= NA{−k}Ak. Similar for B, conditional on
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B[,−k],B[,k]
d
= NB{−k}bk, where NB{−k} is a basis for the null space of columns of

B[,−k], and bk is uniformly distributed on the (q − q0 + 1)-dimensional sphere.

2.2.5 Model Selection with Widely Applicable Information
Criterion

For our Bayesian joint modeling framework, the dimension (p0, q0) and the number

of latent classes G need to be selected. The criterion used in this chapter is called

Widely Applicable Information Criterion (WAIC)[37].

Based on [38], if a statistical model is regular and the likelihood can be approx-

imated by Gaussian functions, then AIC [39] and BIC [40] can be applied to such

evaluation processes. However, if a statistical model contains hierarchical structure

or latent variables, then regularity condition is not satisfied. The information criteria

WAIC are devised so as to estimate the generalization loss and the free energy, re-

spectively, even if the posterior distribution is far from any normal distribution and

even if the unknown true distribution is not realizable by a statistical model. With

our notation, WAIC is with the form WAIC = log
∏︁n

i=1 ppost(xi, oi) − pwaic, where

ppost(xi, oi) denotes the posterior probability and pwaic denotes the WAIC penalty

term. [41] showed two ways of calculating WAIC during Markov chain Monte Carlo

(MCMC) procedures, namely WAIC1 (2.6) and WAIC2 (2.7).

log
n∏︂
i=1

p̂post(xi, oi)− p̂waic1

=

n∑︂
i=1

log

(︄
1

M

M∑︂
m=1

p (xi, oi | νm)

)︄
−

2

n∑︂
i=1

(︄
log

(︄
1

M

M∑︂
m=1

p (xi, oi | νm)

)︄
− 1

M

M∑︂
m=1

log p (xi, oi | νm)

)︄ (2.6)

log
n∏︂
i=1

p̂post(xi, oi)− p̂waic2

=

n∑︂
i=1

log

(︄
1

M

M∑︂
m=1

p (xi, oi | νm)

)︄
−

n∑︂
i=1

VMm=1 {log p (xi, oi | νm)}
(2.7)

16



In equation (2.6) and (2.7), M denotes the length of total MCMC iterations, νm

denotes the m’th posterior MCMC draw of

ν =
{︁
A,B,Γ,Λ, ϕ, (ηg)

G
g=1, (ci,ui)

n
i=1

}︁
and VM

m=1 represents the sample variance with varMm=1am = 1
M−1

∑︁M
m=1(am − ā). In

this chapter we focused on WAIC2, because for practical use, WAIC2 has closer re-

semblance to the leave one out cross validation (LOO-CV) and also in practice seems

to give results closer to LOO-CV [41].

2.3 Numerical Results

The subjects in our study consisted of 83 medication-free MDD patients who were

recruited in the EMBARC study and received an antidepressant from the class of

selective serotonin reuptake inhibitors (SSRI) for 8 weeks. The depression symptom

severity was assessed using the 17-item Hamilton Depression Rating Scale (HAMD17)

at baseline, weekly at weeks 1, 2, 3 and 4, and then bi-weekly at weeks 6 and 8

after initiation of the treatment. The outcome oi is an indicator of a 50% or more

reduction of HAMD17 scores after 8 weeks of treatment compared with the baseline

[42]. The resting state EEG data were collected before treatment at four sites in

the United States and transformed to CSD-based EEG power spectra at different

frequency bands, leading to 83 72× 45 matrices.

Among the 83 subjects, 46 subjects (55%) were classified as treatment responders

(oi = 1) and 37(45%) were classified as non-responders (oi = 0) . The 72 × 45 CSD-

based EEG matrices, denoted as xi, i ∈ {1, . . . , 83}, contains the CSD amplitude

spectrum values (µV/m2) of the total 72 electrodes located in different brain regions,

including pre-frontal (Fp), frontal (F), temporal (T), parietal (P), occipital (O), and

central (C) lobes, measured at the theta (4 − 7Hz) and alpha (7 − 15Hz) frequency

bands (with the given 0.25Hz frequency resolution, 45 frequencies are recorded). Since

the original CSD-EEG data were all positive with large scale, thus they were log-
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transformed before the analysis. The scalar covariates contain gender and depression

chronicity, which are both clinically relevant covariates for antidepressant response

[43], [44], [45].

Figure 2.2 shows the mean CSD-EEG heatmap for antidepressant responders and

non-responders. From the figure, we can hardly visualize the difference and a further

comprehensive analysis is needed.

(a) Mean CSD-EEG heatmap for non-
responders o = 0

(b) Mean CSD-EEG heatmap for respon-
ders o = 1

Figure 2.2: Mean CSD-EEG heatmap based on antidepressant outcome.

Figure 2.3 shows the heatmap of four random selected CSD-EEG subjects. It

can be visualized that there is considerable variation. First, we can see that the

signals (shown in red) exist especially in the parietal (P) region. In addition, the

four heatmaps show significant differences in terms of the signals: case 1 exhibits

moderate signal patterns; case 2 has the weakest signal; both case 3 and case 4 are

active with strong signals, but clearly the signal in case 3 is stronger. The evidence

motivates us to perform latent class analysis and detect the relationship between the
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EEG heterogeneity and the treatment outcome.

In the project, we performed WAIC2 to select (p0, q0, G). Based on equation (2.7),

the model with the largest WAIC2 is selected as the best candidate. For all models

fitted here, we ran MCMC chains of 25, 000 iterations with the initial 10, 000 iterations

discarded as burn-in period, and retained every 3rd sample, leading to 5, 000 posterior

samples used in the analysis. The WAIC2 value under different choices of (p0, q0, G)

are shown in Table 2.1; the model with (p0 = 2, q0 = 1, G = 4) leads to the best

WAIC2 = −135692.

Under the best setup, each xi (i ∈ {1, . . . , 83}) was assigned to the latent class

with the largest posterior probability, and we obtained 4 classes, with sizes of n1 = 20,

n2 = 47, n3 = 11 and n4 = 5, respectively. These four latent classes were ordered such

that the first latent class had the weakest signal and the fourth had the strongest sig-

nal. Figure 2.4 shows the class-specific heatmaps for the p× q mean structure of each

latent class, which is calculated by µ̂g =
1
M

∑︁M
m=1µ

(m)
g where µ

(m)
g = A(m)η

(m)
g B(m)T

with (m) denoting the m’th posterior draw and g denoting the g’th latent class, for

g ∈ {1, 2, 3, 4}. As in the figure, unique pattern exists in each heatmap: there is

almost no signal in the first latent class cluster; a relatively weak signal between

8.25Hz to 12.5Hz for the second latent class; a strong signal between 7.5Hz to 13Hz

for the third class; a strong signal not only exists in the alpha bands (7− 15)Hz but

also in the theta bands: (4− 7)Hz. Moreover, we found that the majority of the sig-

nals are concentrated in the posterior region for all four classes. This observation is

consistent with previous studies relating pre-treatment CSD-EEG to treatment out-

comes for serotonergic medications [22],[46], which found that the differences between

responders and non-responders are most pronounced in the posterior region .

The posterior mean and 95% credible intervals for the Probit regression coefficients

are shown in Table 2.2. For illustration, the name of the coefficient is redesigned. The

first latent class with gender being male (gen= 0) and no chronicity (chr= 0) is treated

as the baseline group.
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Table 2.1: WAIC2 examination different p0, q0 and G. Based on experience, the best
setup is (p0 = 2, q0 = 1, G = 4).

q0 = 1 q0 = 2 q0 = 3

G = 2 p0 = 1 −350048 −298921 −303196

p0 = 2 −290239 −318353 −393451

p0 = 3 −267369 −328985 −391602

G = 3 p0 = 1 −143244 −144516 −146087

p0 = 2 −143303 −145614 −165372

p0 = 3 −143306 −146328 −191468

G = 4 p0 = 1 −136690 −214781 −144620

p0 = 2 −135692 −146566 −156412

p0 = 3 −137290 −156543 −171317

G = 5 p0 = 1 −219218 −143154 −142210

p0 = 2 −142651 −136745 −171317

p0 = 3 −145340 −146566 −168129
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Table 2.2: The Probit regression coefficient summary under (p0 = 2, q0 = 1, G = 4).
The name of the variables is redesigned for illustration. The baseline group is the
first latent class with gender being male and with no chronicity.

posterior (mean) 95% C.I.

intercept −1.03 (−2.26, 0.01)

class2 1.93 (0.66, 3.33)∗

class3 1.22 (−0.23, 2.77)

class4 −12.52 (−28.20,−0.52)∗

chr 1.43 (−0.07, 3.03)

gen 3.59 (0.45, 8.26)∗

gen:chr −4.19 (−9.03,−0.65)∗

class2:gen −2.32 (−4.15,−0.56)∗

class3:gen −1.51 (−4.08, 1.00)

class4:gen −1.61 (−18.13, 13.38)

class2:chr −3.67 (−8.37,−0.16)∗

class3:chr −3.21 (−8.02, 0.40)

class4:chr −3.81 (−19.76, 10.48)

class2:gen:chr 4.40 (0.36, 9.42)∗

class3:gen:chr 10.57 (1.94, 22.89)∗

class4:gen:chr −0.04 (−19.81, 19.26)
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Due to space limits, we focus on interpreting the main effects in our model. Inter-

pretation with the interaction effect can be drawn similarly. Table 2.2 shows that the

main effect coefficients for the second and fourth latent classes are significant. The

coefficient for the third latent class is almost significant as the lower bound of its 95%

credit interval is only −0.23. Our results indicate that, among male patients without

chronic disease, patients with Class-2 EEG signals are more likely to be responders

than the ones showing Class-1 EEG signals. This conclusion is consistent with previ-

ous findings [22], [46] and [17]. They concluded that the patients with greater alpha

than expected for control subjects would respond well to the SSRI antidepressant

treatment, whereas those with less alpha than expected for control subjects would

not. In the forth latent class, we observe a presence of signal not only in the alpha

frequency band but also in theta frequency band. Additionally, the coefficient for

this class is significantly negative, indicating that patients in this class have a lower

likelihood of being responders. However, it is worth noting that the fourth latent class

contains less than 10 observations, and thus the effect of this class was estimated with

less precision compared to the rest of the latent classes. Aside from the concern of

the small sample size, our results suggest that when there is strong signal on both

alpha and theta frequency bands, patients are less likely to be responders. This find-

ing highlights the collective impact of theta and alpha frequency on SSRI treatment

outcomes, a conclusion that is consistent with previous studies such as [47],[48].

Furthermore, our results show that the main effect of gender is significant, with

female patients being more likely to respond to SSRI treatment than male patients.

The main effect of chronicity is not shown to be significant.

In addition to the Bayesian joint modeling approach, we also employed two other

latent class models to analyze the data. The first approach we tried is the two-

stage mixture of common factor analyzers (MCFA) [49], with vectorized CSD-EEG

as inputs, using the R function mcfa() in the package EMMIX. However, due to the

high dimensionality of the data (p × q = 3240 and n = 83), this approach was not
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feasible. The second approach we tried is the two-stage tensor envelope mixture model

(TEMM) by [50]. The temm() function in the R package TensorClustering allows

the researcher to select the envelope dimension based on BIC, but not the number

of latent classes. In order to compare our approach with the two-stage TEMM, we

manually set G = 4 when applying function temm(). Based on BIC, the selected

envelope dimension was (2, 2), which means that both p and q were reduced to 2

through dimension reduction. The mean CSD-EEG structure of each latent class

is shown in Figure 2.5. After applying the TEMM, the Probit regression (2.4) was

performed to estimate the regression coefficients as shown in Table 2.2. However,

among all the coefficients, only interaction effect (class2:chr) is significant at 0.05

level.

As another alternative method, we applied a non-model based approach using

two-stage K-means clustering. Specifically, we first divided the EEG patterns into

clusters using K-means, and then used the cluster membership as a predictor in

a Probit regression model for treatment outcome. To select the best number of

clusters, we used 5-fold cross-validated area under the curve (AUC) of the receiver

operating characteristic (ROC). Table 2.3 presents the cross-validated AUC under

different cluster numbers. The highest AUC achieved was 0.58 with 4 clusters as the

optimal number of clusters.

Table 2.3: Cross-validation AUC for Probit regression with two-stage K-means Clus-
tering

Clusters 2 3 4 5

AUC 0.52 0.53 0.58 0.51

In summary, we employed three different methods to relate the EEG data to

SSRI treatment response: our proposed mixture-PMPCA Bayesian joint modeling

approach, the two-stage TEMM approach, and the two-stage K-means approach. We

evaluated their prediction performance using AUC and presented the results in Table
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2.4. The table presents the AUC calculated with all samples for the best candidate

models after hyper-parameter selection, which are the mixture-PMPCA joint mod-

eling approach with (p0 = 2, q0 = 1, G = 4), the two-stage TEMM approach with

(Enlp1 = 2, Enlp2 = 2, G = 4), and the two-stage K-means approach with G = 4.

Note that all the three approaches discussed above use the same Probit regression

model, with predictors as outlined in equation (2.4). However, there are two main

differences among these approaches. The first distinction is in how they treat the

latent EEG subgroup memberships ˆ︁ci when estimating effects on treatment response.

Specifically, our mixture-PMPCA with Probit regression is a joint modeling approach,

where the indicator variable ˆ︁ci is considered as a random variable. In contrast, the

two-stage TEMM and K-means treat the indicator variable as a fixed quantity, which

ignores the uncertainty in estimating ˆ︁ci, and can thus lead to attenuation bias and

worse prediction performance. The second distinction lies in the methods used for un-

covering hidden subgroups in the EEG data. Our mixture-PMPCA model performs

low-rank decomposition on both the row and column spaces of the matrix-variate

EEG data, which results in a better preservation of the EEG data’s spatial structure

than K-means. Overall, our mixture-PMPCA joint modeling approach shows the best

prediction performance, as indicated in Table 2.4.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure 2.3: Heatmaps of 4 random selected CSD-EEG. The vertical axis denotes the
72 electrodes and the horizontal axis denotes the frequencies between 4Hz to 15Hz.
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(a) µ̂1 (b) µ̂2

(c) µ̂3 (d) µ̂4

Figure 2.4: Heatmaps for the p × q mean structure of each latent class µ̂g, (g ∈
{1, . . . , 4}) under our joint modeling framework. The vertical axis denotes the 72
electrodes and the horizontal axis denotes the frequencies between 4Hz to 15Hz.
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(a) TEMM latent class1 (b) TEMM latent class2

(c) TEMM latent class3 (d) TEMM latent class4

Figure 2.5: Heatmaps for the p× q mean structure of each latent class under TEMM.
The vertical axis denotes the 72 electrodes and the horizontal axis denotes the fre-
quencies between 4Hz to 15Hz.

27



(a) K-means cluster1 (b) K-means cluster2

(c) K-means cluster3 (d) K-means cluster4

Figure 2.6: Heatmaps for the p × q mean structure of each K-means cluster. The
vertical axis denotes the 72 electrodes and the horizontal axis denotes the frequencies
between 4Hz to 15Hz.
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We then compare the mean EEG structres in the hidden subgroups derived from

our proposed mixture-PMPCA (Figure 2.4) with the ones from TEMM (Figure 2.5)

and K-means (Figure 2.6). Overall, the heatmaps generated by the three methods,

share some similarities, indicating that all three methods are able to uncover similar

structure in the EEG data to some degree. It can be observed that the signal trend

increases from Cluster 1 to Cluster 4, and the signal is mainly present in the posterior

region.

However, there are still some differences in the heatmaps generated by the three

methods. Specifically, the TEMM signal in the second cluster is stronger than that in

the mixture-PMPCAmethod, and the TEMM signal in the third and fourth clusters is

more condensed. These differences can be attributed to the fact that mixture-PMPCA

utilizes a joint modeling approach that accounts for the uncertainty in the estimation

of latent EEG subgroup memberships, whereas the TEMM-based approach treats the

cluster membership as fixed quantities. Due to the one-stage nature, our mixture-

PMPCA joint modeling approach is able to uncover signal that better reflects the

association of EEG and the treatment outcome. This is supported by the improved

prediction performance of the mixture-PMPCA method as evidenced in Table 2.4.

The same phenomenon can be observed when comparing the signal from the mixture-

PMPCA method and the K-means method. Additionally, it can be observed that the

heatmap signals generated by the two-stage TEMM and K-means methods are almost

identical, further emphasizing the benefits of the joint modeling approach.

2.4 Discussion and Conclusion

Our exploration into the utilization of Bayesian hierarchical models for analyzing

electroencephalograph (EEG) data in the context of depression treatment efficacy has

yielded compelling insights and methodological advancements. This study, centered

on the intricate relationship between baseline EEG patterns and responses to antide-

pressant medication, demonstrates the profound potential of sophisticated statistical
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frameworks in mental health research. The application of Bayesian hierarchical mod-

els has not only facilitated a nuanced understanding of patient heterogeneity but also

opened avenues for personalized treatment strategies.

The proposed Bayesian hierarchical joint modeling approach successfully summa-

rized the relationship between matrix-variate CSD-EEG and binary antidepressant

outcome. On one hand, the proposed mixture-PMPCA model preserves the CSD-

EEG matrix structure. On the other hand, Probit regression model successfully

summarizes the correlation between CSD-EEG latent classes and treatment outcome

even the sample size n is far less than the dimension p × q. Through our model, 4

latent classes with unique signal were found. The latent classes and the corresponding

signals we found confirm that there is a collective effect of theta and alpha frequency

towards SSRI, which is consistent with the previous studies about CSD-EEG and

antidepressant treatment [47]. We also tried the two-stage mixture of common fac-

tor analyzers (MCFA) [49] with vectorized CSD-EEG as inputs. However, since the

Table 2.4: AUC for the best candidate models: mixture-PMPCA joint modeling
approach with (p0 = 2, q0 = 1, G = 4), two-stage TEMM approach with (Enlp1 =
2, Enlp2 = 2, G = 4), two-stage Kmeans approach with G = 4.

Methods AUC

Mixture-PMPCA 0.73

K-means 0.67

TEMM 0.69

dimensionality is too large and the R function mcfa() crashed. Aside from MCFA,

the two-stage tensor envelope mixture model (TEMM) [50] is also applied. How-

ever, there is no existing tool or function to select the number of TEMM clusters G.

Another advantage of our Bayesian framework is its joint modeling nature. Unlike
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traditional frequentist methods, the Bayesian framework estimates and returns a dis-

tribution instead of a point estimator. The joint approach considers the variability of

the latent class indicator and helps reducing the bias in the estimator and improving

the efficiency. The joint framework is not specific to only using PMPCA and Probit

regression. Instead of PMPCA, we can incorporate other clustering strategies for

CSD-EEG. For example, the recently proposed Envelope clustering framework [51].

Moreover, instead of the Probit regression with latent class indicators as predictors,

researchers can also design other regression frameworks, for example, [52] proposed

the partial least square regression; [29] proposed the left and right multiplication of

vector when regressing with matrix covariates. Papers such as [26], [53] and [54]

have discussed modeling with tensor structured data. As future research directions,

our proposed framework can be easily extended to higher mode tensors rather than

matrices. With such extension, our framework can be applied to model bio-markers

with tensor structures.

Moreover, the introduction of a three-level hierarchical model to analyze matrix-

variate EEG data represents a significant methodological innovation. At the core of

our approach is the capacity to cluster patients into latent subgroups based on their

baseline EEG characteristics, thereby illuminating the complex dynamics between

neural activity patterns and treatment outcomes. This clustering approach not only

enhances our understanding of the biological underpinnings of depression but also

contributes to the broader goal of tailoring treatment plans to individual patient

profiles, potentially increasing the efficacy of antidepressant therapies.

Finally, the key finding of our study is the identification of distinct patient sub-

populations, differentiated by their EEG signatures and corresponding treatment re-

sponses. This granularity in patient categorization underscores the limitations of

one-size-fits-all treatment approaches and highlights the critical need for precision

medicine in the management of depression. By leveraging Bayesian hierarchical mod-

els, we have demonstrated an advanced analytical capability that transcends tradi-
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tional clustering methods, offering a more refined lens through which to view the

heterogeneity of depressive disorders.

In conclusion, the integration of Bayesian hierarchical models into the analysis of

EEG data presents a promising pathway for enhancing our understanding of depres-

sion and optimizing treatment interventions. Our research not only contributes to the

statistical literature by showcasing the application of advanced modeling techniques

but also holds significant implications for clinical practice. As we move forward, it is

imperative that future studies continue to build on these methodological foundations,

exploring the vast potential of Bayesian hierarchical models in mental health research

and beyond.
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Chapter 3

Bayesian Envelope-Based
Clustering Model with
Non-Ignorable Missingness

3.1 Introduction

As the pace of technological innovation surges forward, we find ourselves amidst an

ever-expanding ocean of data, brimming with complexity and nuance. In this land-

scape, the advent of model-based clustering stands as a testament to the sophistication

achievable in the domain of data analysis. By positing that the observable data are

generated from a finite amalgamation of underlying probability distributions, each

indicative of a unique cluster, model-based clustering offers a nuanced lens through

which the intrinsic groupings within data can be discerned [55]. This approach is

particularly adept at navigating the inherent heterogeneity of real-world data, allow-

ing for the accommodation of clusters of varying shapes and densities. Furthermore,

the integration of dimensionality reduction techniques within model-based clustering

frameworks serves to illuminate the core characteristics of the data, thereby facilitat-

ing a more profound understanding of its inherent structure.

Concurrently, the issue of non-ignorable missingness, or Missing Not at Random

(MNAR), underscores the complexities inherent in data analysis. The presence of data

missing in a manner contingent upon unobserved values necessitates a departure from
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conventional methodologies predicated on simpler missing data mechanisms[56, 57].

The resolution of this challenge through advanced statistical models and sensitivity

analyses not only exemplifies the nuanced understanding required for modern data

analysis but also highlights the critical importance of accounting for non-ignorable

missingness in ensuring the integrity of inferential conclusions. The interplay be-

tween model-based clustering and the meticulous handling of non-ignorable missing

data structures thus epitomizes the sophisticated analytical strategies requisite for

navigating the complexities of contemporary datasets.

In this chapter, we present a Bayesian clustering approach, inspired by the recogni-

tion that certain data variations may not significantly influence the clustering result.

Essentially, certain data dimensions may be redundant for clustering purposes, as

projections onto these dimensions yield no substantive information. This concept

resonates with the recent envelope regression methodology, which postulates the ex-

istence of an envelope-reducing subspace encapsulating all pertinent information be-

tween dependent and independent variables [58, 59]. Due to the motivation, we call

our model the Bayesian envelope-based clustering approach. While building on this

concept, our methodology extends the envelope notion in regression to clustering con-

text and integrates an additional noise component. This noise is orthogonal to both

the envelope-reducing subspace and its complementary, rendering our model more

realistic by accounting for inevitable measurement errors present in empirical data.

The fundamental premise of our clustering approach assumes the existence of a sub-

space, denoted as S, encapsulating all clustering-relevant information of the data. Its

orthogonal complement, S⊥, is independent of S, and the projection of the data onto

this space has no bearing on the clustering outcome. Beyond the scope of clustering,

our model is also extended to address the intricacies of the missing data mechanism,

with a particular emphasis on the treatment of non-ignorable missingness, a prevalent

yet overlooked issue in literature.

The simulation study in the paper explores the performance of our Bayesian
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envelope-based clustering approach with missing data, considering various scenarios of

sample sizes and noise variances. Results demonstrate the superior performance of our

framework across scenarios, highlighting its effectiveness in accurately selecting the

correct number of clusters. In our case study, our Bayesian envelope-based clustering

framework is applied to analyze heterogeneity within incomplete 17-item Hamilton

Depression Rating Scale HAMD17 trajectories sourced from the Establishing Moder-

ators and Biosignatures of Antidepressant Response in Clinic Care (EMBARC) study

[20]. The results show advantage of of our framework again as the rest of the methods

compared in this chapter could not detect the heterogeneity.

In antidepressant trials, the notation HAMD17 denotes the 17-item clinician-evaluated

Hamilton Depression Rating Scale System. Each corresponding HAMD17 trajectory

chronicles the temporal variations in a patient’s depression severity, with individ-

ual data points within the trajectory signifying respective severity scores. Elevated

scores on the scale indicate increased severity of depression in the patient. Model-

based clustering paradigms pertinent to the HAMD17 trajectories are recurrent topics

of discussion. Foremost among these methodologies is the Growth Mixture Model,

meticulously crafted for longitudinal trajectory examinations. This model, for ev-

ery latent demographic, delineates a representative progression trajectory and con-

currently assesses inter-individual fluctuations. Noteworthy contributions, such as

those by [60–62], harness the Growth Mixture Model to elucidate the heterogeneity

in HAMD17 trajectories. Beyond this archetype, Gaussian Mixture Models have as-

cended to a prominent stature within the analytical toolkit. A plethora of modern

studies, exemplified by [63, 64], champion the merits of Gaussian Mixture Models in

unearthing latent classes within the HAMD17, spanning from rudimentary Gaussian

architectures to their sophisticated covariance-structured counterparts. Except for the

traditional Gaussian Mixture Models, extended mixture models such as the mixture

of probabilistic principal components [31], Gaussian components infused with poten-

tial contaminants [65], robust multivariate t component mixtures [66], and mixtures
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with shared loading matrix [49] can also be considered to expose the multifaceted

heterogeneity inherent in the HAMD17.

In antidepressant studies utilizing the HAMD17, the mechanism behind missing

data is critical to address for several reasons. Firstly, the nature of depressive symp-

toms can influence both the likelihood of response and the missingness of the data.

For instance, patients experiencing severe depression may be less likely to attend

follow-up appointments or fully engage with the questionnaire, leading to systemati-

cally missing HAMD17 scores. If such non-ignorable missingness is not accounted for,

estimates of depression severity and treatment efficacy could be biased, potentially

leading to incorrect conclusions about the effectiveness of interventions. Secondly, in

longitudinal studies using the HAMD17, the interest often lies in changes in depres-

sion severity over time. When data are missing, particularly in a non-random man-

ner related to patients’ underlying depression trajectories, standard analysis methods

that simply exclude missing data or impute missing values without considering the

missing-data mechanism may lead to misleading inferences. Advanced statistical tech-

niques that model the missingness process, such as multiple imputation with chained

equations (MICE) or joint modeling approaches, can help mitigate this bias by lever-

aging the information in the observed data to make plausible inferences about the

missing AMD17 scores. Research by [57, 67], underscores the importance of using

appropriate methods for handling missing data in psychiatric scales to avoid biased

parameter estimates and conclusions. Of the three missing mechanisms delineated by

[68]—namely, missing completely at random (MCAR), missing at random (MAR),

and missing not at random (MNAR)—only MNAR holds significance for clustering

inference. MCAR and MAR’s inherent ignorable nature renders them less critical.

Conversely, studies by [69, 70] suggest that trajectory data’s missing mechanism tends

to be non-random. Accordingly, in our Bayesian clustering methodology, we model

the missing data mechanism as MNAR, articulated via a Probit regression model,

incorporating both HAMD17 and its latent class membership as predictors.
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The subsequent sections of this chapter are organized as follows. Section 3.2 in-

troduces the Bayesian model-based clustering methodology. It include the Probit

regression tailored for addressing the MNAR missing mechanism, the selections of

priors, the model’s likelihood, prior and posterior distributions. Simulation outcomes

are delineated in Section 3.3. Our Bayesian model-based clustering results, juxta-

posed with prevailing techniques, are presented in Section 3.4. Concluding remarks

and discussions are provided in Section 3.5. Comprehensive derivations, utilizing the

Markov Chain Monte Carlo method, can be found in the appendix.

3.2 Model Specification

In this section, details for the Bayesian framework of HAMD17 trajectories are pre-

sented. For each subject i ∈ {1, . . . , n}, letYi ∈ Rr be the full r-dimensional HAMD17

trajectory including both the observed and missing data. In this article, the EM-

BARC dataset of interest is with r = 7. Without generalization, suppose the scores

Yi are centered, with E(Yi) = 0. We assume there are K finite latent subgroups and

introduce a discrete latent variable Di
.
= (Di1, . . . ,DiK) with Dik = 1 if trajectory

i belongs to subgroup k ∈ {1, · · · , K}, and 0 otherwise. Di is the latent indicator

indicating the latent subgroup that Yi belongs to. The probability that trajectory

i is a member of subgroup k, denoted by πk = P(Dik = 1) follow the multinomial

distribution: Multi(1;π) with event probabilities π = (π1, · · · , πK) and
∑︁K

k=1 πk = 1.

3.2.1 Bayesian Envelope-Based Clustering for HAMD17 Tra-
jectory

Consider the full r dimensional vector including both the observed and missing data

Yi = (Yobs
i ,Ymis

i ), and the latent variable Di that indicates the latent classes of

Yi. We assume that there exist a subspace S ∈ Ru that captures all the clustering

information of the HAMD17. In this chapter, the orthogonal basis of S is denoted

as Γ ∈ Rr×u, u ≤ r. Furthermore, we denote Γ0 ∈ Rr×(r−u) as the basis of S⊥, the
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orthogonal complement of S.

With the previous notation, our model for Yi can be expressed as

Yi = ΓUi+Γ0Vi + εi

[Ui|Dik = 1] ∼ N (µk,Ω) Vi ∼ N (0,Ω0)

Di ∼ Multi (1;π), with π = (π1, · · · , πK)⊤

Γ ∈ Rr×u Γ0 ∈ Rr×(r−u)

Ω ∈ Ru×u Ω0 ∈ R(r−u)×(r−u)

P(Dik = 1) = πk, εi ∼ N (0, σ2I)

u ≤ r and k = 1, 2, . . . , K.

(3.1)

Remark 4 As shown in model (3.1), if we ignore εi, Γ0Vi is invariant under dif-

ferent latent classes and only ΓUi matters for the clustering of Yi. We can derive

the covariance matrix of the trajectory Yi, denoted by Σ = ΓΩΓ⊤ + Γ0Ω0Γ
⊤
0 . Fur-

thermore, we can also derive Σ−1 = ΓΩ−1Γ⊤ + Γ0Ω
−1
0 Γ⊤

0 . If we use ν to denote

all the relevant parameters, then it is straightforward to show that the distribution of

[Dik = 1|Yi] is the same as [Dik = 1|Γ⊤Yi].

P(Dik = 1|Yi,ν)

=
πkP(Yi|Dik = 1,ν)∑︁
j πjP(Yi|Di = j,ν)

=
πk · e(Yi−Γµj)

⊤Σ−1(Yi−Γµj)∑︁
j πj · e(Yi−Γµj)

⊤Σ−1(Yi−Γµj)

=
πk · e(Γ

⊤Yi−µk)
⊤Ω−1(Γ⊤Yi−µk)∑︁

j πj · e(Γ
⊤Yi−µj)

⊤Ω−1(Γ⊤Yi−µk)

= P
(︁
Dik = 1|Γ⊤Yi,ν

)︁

(3.2)

Remark 5 Given the dimension of the subspace S ∈ Ru, our goal is to find such space

with S
.
= span(Γ) for model (3.1). It worth noting that Γ is not uniquely defined.

In order to make it identifiable, in this chapter we define Γ and Γ0 as a function of
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an unconstrained matrix A ∈ R(r−u)×u. Let CA = (Iu,A)⊤ and DA = (−A, Ir−u)
⊤,

define

Γ(A)
.
= CA

(︁
C⊤

ACA

)︁−1/2

Γ0(A)
.
= DA

(︁
D⊤

ADA

)︁−1/2
(3.3)

In equation (3.3), the matrix A and span(Γ) are uniquely determined by each other

hence Γ(A) is identifiable. The notation of Γ(A) as the function of A prevents the

prior selection and the posterior updating of Γ on Stiefel manifolds. As there is no

close form posterior for A, the update of A is through Metropolis–Hastings algorithm.

3.2.2 Model for Non-Random Missing Data in HAMD17 Tra-
jectory

As highlighted in the introduction, the collection of HAMD17 trajectories over several

weeks for individual patients frequently results in datasets with missing values. As

described by [68], there exist three primary mechanisms for missing data: missing

completely at random (MCAR), missing at random (MAR), and missing not at ran-

dom (MNAR). MCAR occurs when the likelihood of missing data is independent of

the dataset itself, whereas MAR transpires when the propensity for missing data is

solely dependent on the observed values. On the other hand, MNAR is character-

ized by a dependence on unobserved values, rendering it distinct from MCAR and

MAR. While MCAR and MAR are predicated on substantial assumptions that might

not hold in practical scenarios, they are also considered ignorable, diminishing their

relevance in certain research contexts. Previous studies, such as those conducted by

[69, 70], have suggested that missing data in trajectories are often non-random. In

response to these findings, the mechanism in the HAMD17 prioritizes the MNAR,

delving into its nuances and implications in the subsequent sections.

Let m ∈ Rn×r denote the missing indicator, n is the sample size and r is the

dimension of HAMD17 scores. mij = 1 if the data is not missing, mij = 0 if the
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data is missing. Let pij be the probability that the data exists, i.e, mij = 1, then the

missing mechanism is modeled through a Probit regression with

Φ−1(pij) = θ0 + Z⊤
ijθ (3.4)

where Zij
.
= {Yi(j−1), Yij−Yi(j−1)}⊤. Note that when θ1 and θ2 are not significant, the

model becomes Φ−1(pi,j) = θ0, which is the case of MCAR. By introducing a latent

variable wij for each mij with

wij = θ0 + Z⊤
ijθ + ϵwij (3.5)

where ϵwij ∼ N (0, 1). Then mij = 1 if and only if wij > 0; mij = 0 if and only if

wij ≤ 0.

3.2.3 Likelihood of the Model-Based Clustering with MNAR

If we still use ν to represent the model parameters

ν
.
= (A,µ1, . . . ,µk,Ω,Ω0,θ,π, σ

2)

and denote Yobs as all the Yij that is observed, Y
mis as all the Yij that is missing, and

D
.
= {D1, . . . ,Dn}, i ∈ {1, . . . , n}, j ∈ {1, . . . , r}, then the likelihood of (Y,D,m)

given ν can be expressed as

f(Yobs,Ymis,D,m|ν)

= f
(︁
m|Yobs,Ymis,D,ν

)︁
f
(︁
Yobs,Ymis|D,ν

)︁
f (D|ν)

∝
n∏︂
i=1

(︄
K∏︂
k=1

π
I(Dik=1)
k

)︄(︄
r∏︂
j=1

Φ
mij

ij (1− Φij)
1−mij

)︄

×

(︄
K∏︂
k=1

e− 1
2
(Ỹi−Γ(A)µk)

⊤Σ−1(Ỹi−Γ(A)µk)

)︄I(Dik=1)

(3.6)

where Φij = Φ(θ0 + Z̃
⊤
ijθ) with Z̃ij denote Zij after imputation, Ỹi denote Yi after

imputation, and Σ = Γ(A)ΩΓ(A)⊤ + Γ(A)0Ω0Γ(A)⊤0 + σ2I
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3.2.4 Prior Distribution

A ∼ MN (r−u)×u (A0,K,L), where MN denotes the matrix normal distribution.

A0 ∈ R(r−u)×u, K ∈ R(r−u)×(r−u), L ∈ Ru×u are positive symmetric matrices. In

equation (3.3), CA is defined to be (Iu,A)⊤. We set A0 = 0(r−u)×(r−u). It means Γ

is assumed centered at Γ(0) = (Iu,0)
⊤, which corresponds to an identity projection

to the first u dimensions. K and L are chosen to be identity matrices I(r−u)×(r−u)

and Iu×u. During MCMC, we first perform eigen-decomposition for covariance matrix

of the cases without missing data Ycomplete, cov(Ycomplete) = VΛV−1. Suppose the

diagnal elements of Λ is decreasing. The first u eigen-vectors V[,1:u] is set to be the

initial value of Γ. The corresponding A such that Γ(A) = V[,1:u] is the initial for A.

Ω and Ω0 follow the Inverse-Wishart distribution: Ω ∼ IWu (ΨY , νY ), Ω0 ∼

IW(r−u) (Ψ0,Y , ν0,Y ). In order to determine parameters (ΨY , νY , Ψ0,Y , ν0,Y ), we first

make the projection V⊤
[,1:u]Ycomplete and V⊤

[,(u+1):r]Ycomplete. After the projection, de-

note S1 and S2 as the their corresponding sampling covariance. We set ΨY = 0.75S1

νY = 8.5 + 0.5(u− 1), Ψ0,Y = 0.75S2, ν0,Y = 8.5 + 0.5(r − u− 1). By [36], with our

choice, the prior expectation of the amount of heterogeneity explained by difference

of the group means is 90%: E (R2
t ) = 1 − Ψ(Y )S−1

1

νY −0.5·(u+1)
= 0.9. The parameter θ0, θ

are assumed to be independently normally distributed. θ0 is assigned with a weakly

informative prior θ0 ∼ N (0, 1002). Considered the study from [69], we apply the

mildly informative priors for θ as θ ∼ N
(︂
(0, 0.2)⊤ , 0.01I

)︂
. σ2 follow the Inverse-

Gamma distribution with σ2 ∼ IG(0.1, 0.1). Finally, µk ∝ 1 the improper flat prior.

k = 1, . . . , K.

3.2.5 Posterior Distribution

• [Di]|· ∼Multinormial(π̃i1, . . . , π̃iK) with

π̃ik = P(Dik = 1|·) = ∆ik∑︁K
j=1∆ij

where ∆ik is defined as
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∆ik =

(︄
r∏︂
j=1

Φ
mij

ij (1− Φij)
1−mij

)︄
×

exp{−1

2
(Ỹi − Γ(A)µk)

⊤Σ−1(Ỹi − Γ(A)µk)}

with notation Φij = Φ(θ0 + Z̃
⊤
ijθ) with Z̃ij denote Zij after imputation, Ỹi

denote Yi after imputation, and Σ = Γ(A)ΩΓ(A)⊤ + Γ(A)0Ω0Γ(A)⊤0 + σ2I

• Since the posterior distribution of A given other parameters

π(A|·) ∝
N∏︂
i=1

K∏︂
k=1

exp
{︂
− 1

2

(︂
Ỹi − Γ (A)µk

)︂⊤
Σ−1

(︂
Ỹi − Γ (A)µk

)︂}︂I(Dik=1)

× exp

{︃
−1

2
trace

[︂
K−1 (A−A0)L

−1 (A−A0)
⊤
]︂}︃

has no standard distribution form, thus we need to sample A using Metropolis-

Hasting strategy.

• Since

π(µk|·) ∝ exp−1

2

∑︂
i,Di=k

{︂(︂
Ỹi − Γ (A)µk

)︂⊤
Σ−1

(︂
Ỹi − Γ (A)µk

)︂}︂
the posterior distribution of µk, k ∈ 1 . . . K, given other parameters

µk ∼ N (

∑︁
i,Di=k

Γ⊤Ỹi

nk
,Ω+ σ2I)

where nk denotes the number of observations in kth latent class.

• Denote Y0i = ΓUi + Γ0Vi and Ỹ0i as Y0i after imputation, then

σ2 ∼ IG(0.1 + n/2, 0.1 + 1/2
n∑︂
i=1

(Ỹ0i − Ỹi)
2)

• Ỹ0i|Dik = 1, Ỹi, · ∼ N (µ0,Σ0) where

µ0 = Σ0(Σ0µk +
1

σ2
Ỹi)

−1

and

Σ0 = Γ(A)ΩΓ(A)⊤ + Γ(A)0Ω0Γ(A)⊤0 + σ2I
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• Ω|Ỹ0i, · ∼ IWu(ΨY +
∑︁

i

∑︁
k I(Dik = 1)(Γ⊤Ỹ0i − µk)(Ỹ

⊤
0iΓ− µ⊤

k ), νY +N)

• Ω0|Ỹ0i, · ∼ IWr−u(Ψ0,Y +
∑︁

i Γ
T
0 Ỹ0iỸ

T

0iΓ0, ν0,Y +N)

• [wij|·] ∼ N (θ0 + Z̃
⊤
ijθ, 1) with Z̃ij denoting Zij after imputation. The update of

wij is as follows:

If mij = 1

[wij|·] ∼ N
(︂
θ0 + Z̃

⊤
ijθ, 1

)︂
I(0,+∞)

If mij = 0,

[wij|·] ∼ N
(︂
θ0 + Z̃

⊤
ijθ, 1

)︂
I(−∞,0)

• [θ0,θ|·] ∼ N (M,E)

where

M =
(︂∑︁

i[1, Z̃ij]
⊤[1, Z̃ij] +Σθ

)︂−1 (︂∑︁
i[1, Z̃ij]wij +Σθµθ

)︂
and

E =
(︂∑︁

i[1, Z̃ij]
⊤[1, Z̃ij] +Σθ

)︂−1

with µθ and Σθ denoting the prior mean and covariance.

• [π|·] ∼ Dirichlet(4 + n1, . . . , 4 + nG)

where nk =
∑︁

iDik

The details of the missing data imputation is given in appendix.

3.2.6 Model Selection with Widely Applicable Information
Criterion

For our envelope clustering framework, the envelope dimension u and the number

of latent classes K need to be selected. The criterion used in this chapter is called

Widely Applicable Information Criterion (WAIC) [37].
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Similarly [38], if a statistical model is regular and the likelihood can be approx-

imated by Gaussian functions, then AIC [39] and BIC [40] can be applied to such

evaluation processes. However, if a statistical model contains hierarchical structure

or latent variables, then regularity condition is not satisfied. The information criteria

WAIC are devised so as to estimate the generalization loss and the free energy, re-

spectively, even if the posterior distribution is far from any normal distribution and

even if the unknown true distribution is not realizable by a statistical model. With

our notation, WAIC is with the form WAIC = log
∏︁n

i=1 ppost(Yi,mi)− pwaic, where

ppost(Yi,mi) denotes the posterior probability and pwaic denotes the WAIC penalty

term. [41] showed two ways of calculating WAIC during Markov chain Monte Carlo

(MCMC) procedures, namely WAIC1 (3.7) and WAIC2 (3.8).

log
n∏︂
i=1

p̂post(Y
obs
i ,mi)− p̂waic1

=

n∑︂
i=1

log

(︄
1

M

M∑︂
m=1

p
(︂
mi | Ỹ

m
i ,ν

m
)︂
p
(︂
Ỹ
m
i | νm

)︂)︄
−

2

n∑︂
i=1

{︃
log

(︄
1

M

M∑︂
m=1

p
(︂
mi | Ỹ

m
i ,ν

m
)︂
p
(︂
Ỹ
m
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M
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log p
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mi | Ỹ

m
i ,ν

m
)︂
p
(︂
Ỹ
m
i | νm

)︂}︃
(3.7)

log

n∏︂
i=1

p̂post(Y
obs
i ,mi)− p̂waic2

=

n∑︂
i=1

log

(︄
1

M

M∑︂
m=1

p
(︂
mi | Ỹ

m
i ,ν

m
)︂
p
(︂
Ỹ
m
i | νm

)︂)︄
−

n∑︂
i=1

VMm=1

{︂
log p

(︂
mi | Ỹ

m
i ,ν

m
)︂
p
(︂
Ỹ
m
i | νm

)︂}︂
(3.8)

In equation (3.7) and (3.8), M denotes the length of total MCMC iterations, νm

denotes the m’th posterior MCMC draw of all the model parameters and latent

variables. Ỹ
m

i denote the m’th impuation of Yi
.
= (Yobs

i ,Ymis
i ). VM

m=1 represents the

sample variance with varMm=1am = 1
M−1

∑︁M
m=1(am − ā). In this chapter we focused
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on WAIC2, because for practical use, WAIC2 has closer resemblance to the leave one

out cross validation (LOO-CV) and also in practice seems to give results closer to

LOO-CV [41].

3.3 Simulation Study

In this section, we focus on the simulation about the envelope-based clustering with

missing data approach. For all simulation scenarios n ∈ {50, 100}, σ2 ∈ {0.1, 1.0, 3.0},

the dimension of the simulated data is set to be r = 4 and the true dimension of the

informative subspace is set to be u = 2. The sample size n is set to be either 50 or

100 to emulate the performance of our clustering approach under small sample size.

The true classes is set to be K = 2 and the probability of individual belonging to

each class is assigned as π1 = 0.4, and π2 = 0.6. For each simulation scenario, the

process is replicated 100 times. The detailed information including generating the

trajectory and the missing mechanism is listed below.

• generating the full data Y:

1. given fixed matrix A ∈ R(p−r)×r, define CA, DA

and calculate Γ and Γ0 based on CA and DA through equation (3.3).

2. given fixed µ1 = {0.5, 0.5}⊤, µ2 = {−0.5,−0.5}⊤, Ω = 5Ir and Ω0 = Ip−r,

generate (Ui1,Ui2,Vi)
n
i=1 as Ui1

i.i.d.∼ N (µ1,Ω), Ui2
i.i.d.∼ N (µ2,Ω) and

Vi
i.i.d.∼ N (0,Ω0)

3. given fixed σ2 ∈ {0.1, 1, 3}, for each i, generate εi
i.i.d.∼ N (0, σ2I).

4. for each i, assign the class of each individual with the probability π1 of

being in the first class and π2 in the second class. Then calculate Yi =

ΓUik + Γ0Vi + εi, i ∈ {1, . . . , n}.

• generating the missing data indicator m:
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1. given fixed θ0 = 1.0, θ1 = 5.0, generate wij = θ0 + θ1Yij + eij, where

eij ∼ N (0, 1). i ∈ {1, . . . , n}, j ∈ {1, . . . , r}.

2. set mij = 1 (exist) if and only if wij > 0; mij = 0 (not exist) if and only if

wij ≤ 0. i ∈ {1, . . . , n}, j ∈ {1, . . . , r}.

After the generating process, we keep Yij with mij = 1 and discard the rest. For

simplicity, the dimension of the informative subspace is set to be the true value u = 2.

Three approaches were compared which includes 1. Bayesian clustering approach

with full data; 2. Bayesian clustering approach with the true missing not at random

mechanism; 3. Bayesian clustering approach with ignorable missing mechanism; 4.

Growth Mixture Model (linear random effect) with ignorable missing mechanism.

Table 3.1: The percentage of selecting the correct number of clusters (K = 2).

σ2 0.1 1.0 3.0

n 50 100 50 100 50 100

Bys full 96% 99% 94% 99% 91% 95%

Bys nigr 86% 91% 79% 82% 71% 77%

Bys igr 81% 84% 66% 73% 58% 62%

Growth igr 62% 66% 54% 56% 38% 41%

As shown in the table, four methods in selecting the correct number of clusters

(K = 2) under varying conditions of noise variance σ2 and sample size n were com-

pared. It is evident from the data that the Bayesian clustering approach with full

data consistently outperforms the others across all scenarios, maintaining high accu-

racy (91%− 99%) regardless of the increase in noise variance or sample size. Among

the rest of the three methods, Bayesian clustering with non-ignorable missing mech-

anism shows commendable performance, and its accuracy decreases more noticeably

as the noise variance increases. The Growth Mixture method, while still effective
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to a degree, demonstrates the lowest accuracy among the four methods, particularly

struggling in higher noise and lower sample size environments.

3.4 Trajectory Clustering Results of HAMD17

The goal of our model-based clustering approach is to find out whether the latent

class exists in the HAMD17 trajectories during the antidepressant treatment. If the

patient reacts to the treatment, its HAMD17 trajectory would improve rapidly, oth-

erwise, it is not. Thus we are trying to detect the heterogeneity with one latent

class corresponding to the rapid improvement individuals and another corresponding

to the slowly improvement individuals. In this section, we apply the Bayesian clus-

tering method to the HAMD17 trajectory. First the analyze results with complete

trajectories are shown and then followed by the analyze results with all trajectories

with missing data. For comparison, growth mixture model [71] and Gaussian mix-

ture model with different covariance structures are also applied and the results are

summarized.

3.4.1 Study of Cases Without Missing Data

Among the n = 94 HAMD17 trajectories, nc = 60 are cases without missing data.

Figure (3.1) shows the HAMD17 trajectory plot for the 60 complete cases.

Figure 3.1: HAMD17 trajectory plot for the 60 cases without missing data.
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The Gaussian Mixture Model (GMM) assumes that the trajectory follows a multi-

dimensional Gaussian distribution. We use the R package mclust [72] when applying

GMM with different within-class covariance structures. The R package mclust is

used for model-based clustering and classification using Gaussian Mixture Model,

where different covariance structures are denoted by abbreviations like ‘EII’, ‘VVI’,

‘EEE’, ‘VVI’, ‘VVV’. These abbreviations represent assumptions about cluster shapes

and orientations: ‘EEI’ implies equal spherical shapes for all clusters; ‘VVI’ allows

for different sizes but maintains spherical shapes; ‘EEE’ suggests equal ellipsoidal

shapes with possible variations in orientation; ‘VVV’ is the most flexible, allowing

each cluster to have its own ellipsoidal shape, size, and orientation. These models

provide a range of options for capturing the underlying structure in the data, from

simple spherical clusters (‘EEI’) to more complex, varied ellipsoidal shapes (‘VVV’).

The choice of model impacts how data is partitioned into clusters, making mclust a

versatile tool for data analysis.

Table 3.2 lists the within-class covariance matrix Σk, k = 1, . . . K. In table 3.2, λ

and λk are real numbers. T and Tk are diagonal matrices. Q and Qk are orthogonal

matrices.

Table 3.2: Some examples of the within-group covariance matrix Σk in Gaussian
Mixture Model from simple to complex.

Model Σk

EEI λT

VVI λkTk

EEE λQTQ⊤

VVE λkQTkQ
⊤

VVV λkQkTkQ
⊤
k

Table (3.3) shows the plot of BIC value for different Gaussian Mixture Models. As
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Table 3.3: BIC summary table for different GMMs, except for EII, BIC selects EEE
with one latent component.

Mixtures EEI VVI EEE VVE VVV

1 −2717 −2717 −2614 −2614 −2614

2 −2623 −2649 −2631 −2642 −2703

3 −2626 −2666 −2650 −2675 −2776

4 −2643 −2691 −2671 - -

5 −2662 −2731 −2692 - -

6 −2652 −2777 −2700 - -

we can see, Gaussian Mixture supports only one latent class. Note that the covari-

ance assumption in our Bayesian clustering framework is based on the assumption

that there exist a low-dimensional subspace that fully captures the cluster variation.

However, the GMMs have no such interpretation. Because nc = 60 and some of the

models cannot be estimated, whose results are denoted by ‘-’ in Table (3.3).

Growth models, typically used in longitudinal data analysis, focus on estimating

and predicting individual change over time and understanding the factors influencing

this change. These models often use repeated measurements to track development,

learning, or progress in a subject. The Growth Mixture Model, an extension of

these basic growth models, introduces the concept of latent classes to account for

unobserved heterogeneity within the population. Unlike traditional growth models

that assume a single underlying growth trajectory for the entire population, Growth

Mixture Model allows for the existence of multiple latent subgroups within the popu-

lation, each with its distinct growth trajectory. This approach is particularly valuable

in fields like psychology or education, where individuals’ development paths can vary

significantly, and understanding these different paths can provide deeper insights into

49



the factors driving change over time. We fit the Growth Mixture Model with the

function hlme in R package lcmm [73]. Table (3.4) shows the BIC for Growth Mix-

ture Models with linear, quadratic and cubic random effects of time. Unfortunately,

for all random effects, the BIC criterion selects only one latent class.

Table 3.4: BIC summary table for complete cases with Growth Mixture Model

K = 1 K = 2 K = 3

Linear 2550.49 2560.17 2566.42

Quadratic 2533.97 2545.72 2550.74

Cubic 2551.04 2565.61 2580.13

Table (3.5) shows the WAIC for our Bayesian clustering approach. The MCMC

has 40, 000 iterations and saved every 5th iteration. The first 20, 000 iterations are

discarded as the burn-in period. The WAIC criterion selects the model (K = 2, u = 3)

Table 3.5: WAIC2 for the 60 trajectories without missing data in our Bayesian clus-
tering approach.

K = 1 K = 2 K = 3

u = 2 −1281.7 −1289.4 −1294.5

u = 3 −1282.7 −1280.8 −1296.4

u = 4 −1286.0 −1299.6 −1286.2

Figure (3.2) shows our Bayesian clustering result on the original space with the

mean trajectories and their corresponding 95% Credible Intervals. As shown in the

figure, two classes one with rapid improvement and the other with slowly improvement

were captured.
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Figure 3.2: Bayesian clustering trajectory result for HAMD17 without missing data,
(u = 3, K = 2)

Figure 3.3: Clustering posterior draws of µk on the reduced span(Γ) 3D-space (ma-
terial part) for HAMD17 trajectories without missing data, k = 1, 2. (u = 3, K = 2)

Figure (3.3) shows our Bayesian clustering posterior draws of µk on the reduced

u = 3 dimensional subspace, k = 1, 2. Figure (3.4) shows the projected Γ⊤Y on the

reduced u = 3 dimensional subspace. The red and blue color denotes two classes. By

assuming the clustering variation information only depends on the projected space,

the r = 7 dimensional clustering problem is transferred into u = 3 dimensional. It can
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be seen that on this 3D space, there almost exist a hyper-plane which can separate

the two classes.

Figure 3.4: Scatter plots on the projected span(Γ) 3D-space for HAMD17 trajectories
without missing data, (u = 3, K = 2).

Γ⊤
0 Y projects the trajectory onto the orthogonal compliment of span(Γ) with

dimension r − u = 4. In order to visualize Γ⊤
0 Y, Figure (3.5) shows the 3D scatter

plot with all combinations of the four dimensions (r1, r2, r3, r4): (r1, r2, r3), (r1, r2, r4),

(r1, r3, r4), (r2, r3, r4). It can be seen on the scatter plot (3.5), there is no clustering

variation information as the dots are random distributed around 0 for both classes.

3.4.2 Study of Cases with Missing Data

The n = 94 HAMD17 trajectories are analyzed in this section. Table (3.6) shows the

BIC for Growth Mixture Models with linear, quadratic and cubic random effects of

time for all 94 trajectories. Again, for all random effects, the BIC criterion selects

only one latent class. Since there is no R package at hand to apply Gaussian Mixture

Model with missing data, the result is not compared in this section.
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(a) (b)

(c) (d)

Figure 3.5: Scatter plot on the projected span(Γ0) space for HAMD17 trajectories
without missing data, (u = 3, K = 2). Four figures represent four dimension combi-
nations of (r1, r2, r3, r4).

Table 3.6: BIC using Growth Mixture Model assuming ignorable missingness for all
HAMD17 trajectories.

K = 1 K = 2 K = 3

Linear −3568.29 −3577.63 −3586.76

Quadratic −3535.31 −3547.7 −3555.04

Cubic −3551.87 −3564.51 −3579.03
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Table (3.7) shows the WAIC for our Bayesian clustering approach. Similarly, the

MCMC chain has 40, 000 iterations and saved every 5th iteration. The first 20, 000

iterations are discarded as the burn-in period. The WAIC criterion selects the model

(u = 2, K = 2).

Table 3.7: WAIC2 for the 94 HAMD17 trajectories with missing data in our Bayesian
clustering approach.

K = 1 K = 2 K = 3

u = 1 −2053.7 −2022.3 −2020.5

u = 2 −2058.1 −2015.8 −2021.8

u = 3 −2054.4 −2023.0 −2024.1

Figure 3.6: Bayesian clustering trajectory for HAMD17 with missing data, (u =
2, K = 2) after imputation.

Figure (3.6) shows the Bayesian clustering result on the original space with the

mean trajectories and their corresponding 95% Credible Intervals. As shown in the

figure, the pattern of the two classes matches the counter part in the previous section:

one with rapid improvement and the other with slowly improvement.

Figure (3.7) shows the Bayesian clustering posterior distribution of µk on the

reduced u = 2 dimensional subspace, k = 1, 2. It can be seen that the clustering
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Figure 3.7: Clustering posterior draws of µk on the reduced span(Γ) 2D-space (ma-
terial part) for HAMD17 trajectories with missing data, k = 1, 2. (u = 2, K = 2)

variation information depends on S. Figure (3.8) shows the projected Γ⊤Y on the

reduced u = 2 dimensional subspace. The red and blue color denotes two classes. By

assuming the clustering variation information only depends on the projected space,

the r = 7 dimensional clustering problem is transferred into u = 2 dimensional space.

It can be seen that on this 2D space, there almost exist a line which can separate the

two classes.

Γ⊤
0 Y projects the trajectory onto the orthogonal compliment of span(Γ) with

dimension r − u = 5. In order to visualize Γ⊤
0 Y, Figure (3.9) shows the 3D scatter

plot with 4 random combinations of the 5 dimensions (r1, r2, r3, r4, r5). It can be seen

on the scatter plot (3.5), there is no clustering variation information as the dots are

random distributed around 0 for both classes.

Table (3.8) showed the summary statistics for θ. As we can see, θ2 is significant

with the 0.95 threshold. In fact, we should study more MNAR models and perform

the robust analysis. However, due to the length of this project we leave it to further
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Figure 3.8: Scatter plots on the projected span(Γ) 2D-space for HAMD17 trajectories
with missing data, (u = 2, K = 2).

mean st.d 95% C.I

θ0 1.22 0.11 (1.05, 1.52)

θ1 0.03 0.02 (−0.01, 0.07)

θ2 −0.10 0.05 (−0.20,−0.01)

Table 3.8: The summary statistics for θ.

studies. Moreover, the results from both section showed the similar trajectory class

pattern which showed the consistency of the analysis no matter only with the complete

cases or the full dataset.

3.5 Discussion and Conclusion

In this chapter, we have introduced a pioneering Bayesian envelope-based cluster-

ing framework designed to navigate the complexities inherent in analyzing HAMD17
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(a) (b)

(c) (d)

Figure 3.9: Scatter plot of HAMD17 trajectories on the projected span(Γ0) space,
with (u = 2, K = 2). Four figures represent four random dimension combinations.

trajectories, particularly under the challenge of non-ignorable missing data. This

framework represents a significant methodological leap, focusing on dimension re-

duction to identify and capture the quintessence of clustering information within a

designated subspace, thereby facilitating a more nuanced and efficient analysis of

depression severity over time.

One of the most compelling aspects of our approach is its capacity to discern la-

tent subgroups within the patient data, which are indicative of differential responses

to antidepressant treatments. The simulation studies conducted, alongside the em-

pirical analysis using data from the EMBARC study, underscore the robustness and
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superior performance of our model, especially when juxtaposed with traditional clus-

tering methods such as Gaussian Mixture Models and Growth Mixture Models. These

conventional methods, while valuable, often fall short in addressing the specific chal-

lenges posed by mental health data, particularly the nuanced aspects of missing data

patterns and their implications on the analysis outcomes.

Our model’s innovative integration of a non-ignorable missing data mechanism,

modeled through Probit regression, is a testament to the sophisticated understanding

required to adequately address the phenomenon of missingness in clinical trials. This

aspect is crucial, as the nature of missing data in such studies is seldom random

and typically dependent on unobserved variables, such as the severity of depression

or the trajectory of response to treatment. By acknowledging and modeling this

complexity, our approach not only enhances the reliability of the clustering outcomes

but also ensures that the inferences drawn are grounded in a realistic representation

of the data.

The development and application of the Bayesian envelope-based clustering model

for HAMD17 trajectories represent a significant advancement in the field of mental

health research. Through this study, we have demonstrated the model’s unparalleled

ability to identify latent classes within depression studies, thereby illuminating the

heterogeneity of patient responses to antidepressant treatments. The detection of dis-

tinct subpopulations characterized by rapid and slow improvement trajectories offers

critical insights that could revolutionize personalized treatment strategies, emphasiz-

ing the potential for targeted interventions tailored to individual patient profiles.

Moreover, the model’s adept handling of non-ignorable missing data through a

comprehensive missing data mechanism marks a methodological milestone. This fea-

ture addresses one of the most pressing challenges in clinical research, ensuring that

our findings are not only accurate but also reflective of the complex realities of data

collection in mental health studies. The application of our model to the nuanced

dataset from the EMBARC study serves as a validation of its utility and efficacy,
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highlighting its promise for future applications in both research and clinical settings.

Despite the promising advancements offered by the Bayesian envelope-based clus-

tering model in analyzing HAMD17 trajectories, our study is not without limitations.

A notable constraint is the assumption of non-ignorable missing data mechanism

modeled specifically through Probit regression. While this approach is robust and

offers significant insights into the patterns of missingness, it may not encapsulate all

possible mechanisms of missing data in clinical studies. Future research could explore

alternative models for missing data that accommodate a wider range of missingness

patterns, potentially enhancing the model’s applicability and accuracy across diverse

clinical datasets. Additionally, the current study’s focus on HAMD17 trajectories

within a specific antidepressant treatment context may limit the generalizability of

our findings. Expanding the model’s application to other treatments and mental

health conditions could provide a more comprehensive understanding of patient het-

erogeneity and treatment efficacy. Moreover, integrating other types of data, such

as genetic information or biomarkers, into the Bayesian hierarchical framework could

offer deeper insights into the biological underpinnings of depression and its treat-

ment, paving the way for truly personalized medicine. Finally, the implementation

of our model in real-world clinical settings presents an exciting avenue for future

research. Developing user-friendly software tools and guidelines for applying the

Bayesian envelope-based clustering model could facilitate its adoption by clinicians

and researchers, ultimately benefiting patient care and advancing the field of mental

health research. The journey ahead is filled with opportunities to refine, expand, and

apply the innovations presented in this study, promising significant contributions to

our understanding and treatment of depression.
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Chapter 4

Differentially Private Bayesian
Envelope Regression

4.1 Introduction

As technological advancements continue to accelerate, we are faced with the challenge

of managing and understanding increasingly complex data. Dimensionality reduction

is a fundamental tool for understanding such complex data. Despite each data point

often consists a large number of features, the underlying subject of interest is typi-

cally lower-dimensional. Reducing the data’s “extrinsic” dimension to its “intrinsic”

dimension enables analysts to unveil critical structural relationships among features.

This dimensionality reduction not only facilitates more efficient utilization of the data

for learning tasks, such as classification and regression but also significantly diminishes

the storage space required for the data. On one hand, it streamlines these datasets

into a more tractable form, retaining crucial information which facilitates simpler

analysis and interpretation. On the other hand, dimensionality reduction techniques

are pivotal in diminishing the number of variables under consideration. This reduc-

tion is essential for addressing challenges such as the curse of dimensionality and the

risk of overfitting in statistical models. By lowering the complexity of the data, these

techniques contribute to more robust and generalizable model construction.

As data complexity grows, so does the imperative to safeguard data privacy. Differ-

ential Privacy (DP) [74] has gained recognition as a prominent mathematical frame-
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work for quantifying privacy protection, and several privacy mechanisms [75] have

been devised to achieve DP. It entails the introduction of calibrated random fluc-

tuations into algorithmic calculations to demonstrably constrain the probability of

individual-specific information being revealed through the algorithm’s output. Such

a guarantee protects the privacy of individuals while still allowing valuable insights to

be extracted from the data. DP is widely used in various applications, especially in

scenarios where sensitive data needs to be analyzed, such as healthcare research and

census data analysis. Building upon this foundation, our paper introduces an innova-

tive amalgamation of linear regression with DP by leveraging the envelope concept.

This framework markedly improves the efficiency of coefficient estimation by adeptly

filtering out extraneous information among predictors, showcasing a pioneering ap-

plication of DP in enhancing statistical analysis precision while concurrently securing

sensitive data.

Related Work In the past decade, there has been a significant development of

methodologies adapting traditional linear regression to ensure DP. These methodolo-

gies are broadly categorized into frequentist and Bayesian approaches. Frequentist

approaches include sufficient statistic perturbation and subsample aggregation. Suffi-

cient statistic perturbation involves adding noise to the statistics computed from the

data. This method is exemplified in the works of [76] and [77], where noise is added

to the sufficient statistics of Ordinary Least Squares (OLS) computations to achieve

DP. On the other hand, subsample aggregation, as outlined by [78], involves aggre-

gating results from multiple subsamples, each treated with DP mechanisms. Bayesian

approaches, such as the MCMC data augmentation using sufficient statistics, are an-

other significant category. This approach, seen in the works of [79] and [80], employs

MCMC methods in conjunction with DP to perform Bayesian linear regression. The

focal point of the prior work in the DP linear regression has predominantly centered

on enhancing the accuracy of estimation. This trend is evident in the literature, where
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the precision of estimation under differential privacy constraints has been the primary

objective. Nevertheless, a relatively limited subset of recent research has ventured

beyond mere utility aspects to explore the underlying regression structure. A few

notable studies in this area include the works of [81–84]. Specifically, these studies

incorporate methods such as PCA and regularization techniques like Lasso, Ridge,

or Sparse Regression. PCA is employed for dimensionality reduction, whereas regu-

larization methods are used to address issues like overfitting and to enhance model

interpretability in the context of high-dimensional data. The incorporation of these

conventional techniques in DP linear regression signifies an attempt to strike a balance

between maintaining privacy and preserving the integrity of the underlying regression

structure. However, the exploration of regression structures in differentially private

settings remains an area with ample room for further research and development.

Motivation Motivated by the simple observation that certain variations in the pre-

dictors may have no discernible effect on the response variable [59], we focus on a

model which assumes that there are “non-important” variations among the predictors

when predicting the response and we call it the immaterial component. Our goal is

to develop a privacy-preserving linear regression model which can identify the imma-

terial information among the predictors. In the meantime, such recognition of the

material immaterial separation would improve the parameters estimation efficiency.

The fundamental principle of our model is to identify a subspace (the envelope) within

the predictor variable space that encapsulates the maximum variation related to the

response. By focusing only on the material variation, one significant advantage of

predictor envelope regression is its potential for efficient estimation of regression co-

efficients. Moreover, it also offers a clear and interpretable estimation. It segregates

the space of the predictor variables into the envelope subspace and its orthogonal

complement, simplifying the interpretation of regression results.
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Our Contribution In this chapter, we bridge this gap by developing a Differ-

entially private Bayesian envelope linear regression model. Our model innovatively

utilizes the predictor envelope methodology within a privacy-preserving framework,

leveraging the strengths of envelope methodology to enhance both the efficiency and

interpretability of differentially private linear regression. There are two key con-

tributions to our study. Firstly, the introduction of a novel Bayesian hierarchical

framework for linear regression that incorporates envelope methodology for identi-

fying immaterial predictor information while ensuring differential privacy. This is

the first known application of the envelope idea in privacy preservation, representing

a significant interdisciplinary innovation. Secondly, the use of an envelope nucleus

within our framework provides a refined approach to dimension reduction and coef-

ficient estimation. By focusing on the essential aspects of the predictor covariance

matrix, our model goes beyond traditional regression methods that uniformly treat

all components of the response variable’s covariance structure. This targeted ap-

proach not only improves estimation efficiency but also reduces the risk of overfitting.

Through this integration of envelope methodology with differential privacy, our ap-

proach marks a significant step forward in developing privacy-preserving statistical

methods. It retains the advantages of envelope regression, such as efficiency and clar-

ity in estimation, while introducing a novel dimension of privacy assurance that is

increasingly critical in the age with more sensitive data.

The manuscriptis organized as follows: Section 4.2 delineates the foundational

principles of differential privacy and envelope methodology, setting the stage for the

subsequent discussions. Section 4.3 unveils the novel framework of our differentially

private Bayesian envelope analysis. In Section 4.4, simulation experiments are con-

ducted to evaluate the performance of the proposed method against the conventional

technique presented by [79]. The results underscore the superiority of our approach

in terms of estimation precision and the conciseness of credible intervals, attributing

these advancements to the efficient utilization of the underlying low-dimensional data
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structure.

4.2 Preliminaries

In this section, we briefly revisit some background materials for differential privacy

[74] and envelope methodology [59].

4.2.1 Differential Privacy

Differential privacy is a privacy definition that is tailored to the task of privacy-

preserving data analysis. First introduced in [74], it quickly gains popularity as it

provides a mathematically rigor framework to quantify the amount of privacy protec-

tion. The formal definition of ϵ-Differential Privacy is as follows,

Definition 6 (ϵ-Differential Privacy [74]) For any ϵ > 0, a mechanism A is said

to be ϵ-differentially private (ϵ-DP) if for all measurable sets S and for all pairs of

neighboring datasets X and X′, where neighboring datasets refer to two datasets that

differ by only one element, the following holds,

P(A(X) ∈ S) ≤ exp(ϵ)P (A (X′) ∈ S) (4.1)

The parameter ϵ quantifies the level of privacy protection. Smaller values of ϵ provide

stronger privacy guarantees. As ϵ increases, the privacy protection decreases. A

natural relaxation of ϵ-DP is approximate (ϵ, δ)-differential privacy, which allows for

a more relaxed level of privacy in some scenarios. Approximate differential privacy has

found widespread application in practical settings where a small amount of privacy

leakage is acceptable in exchange for improved accuracy or utility of the analysis. In

this chapter, we specifically focus on approximate differential privacy and utilize the

analytic Gaussian mechanism [85] as our guarantee.

Definition 7 (Approximate Differential Privacy [74, 75]) For any δ ∈ (0, 1)

and ϵ > 0, a mechanism A is said to be approximate (ϵ, δ)- differentially private if for

64



all measurable sets S and for all pairs of neighboring datasets X and X′, the following

holds true,

P(A(X) ∈ S) ≤ exp(ε)P (A (X′) ∈ S) + δ (4.2)

To achieve (ϵ, δ)-DP, the analytic Gaussian mechanism [85] is one of the most com-

monly used mechanisms. It improves the original Gaussian mechanism by calibrating

the variance directly using the Gaussian cumulative density function instead of a

tail-bound approximation.

Definition 8 (Analytic Gaussian Mechanism [85]) Let f : D → Rd be a func-

tion with global L2 sensitivity ∆2.
1 For any ε ≥ 0 and δ ∈ [0, 1], the Gaussian output

perturbation mechanism M(x) = f(x)+Z with Z ∼ N
(︁
0, σ2

dpI
)︁
is (ε, δ)-differentially

private if and only if

Φ

(︃
∆

2σdp
− εσdp

∆

)︃
− eεΦ

(︃
− ∆

2σdp
− εσdp

∆

)︃
≤ δ (4.3)

where Φ(·) denotes the cumulative distribution function of standard normal distribu-

tion.

Please refer to [85] for more information and a detailed algorithm for calibrating σ2
dp.

4.2.2 Predictor Envelope Regression

Consider the following univariate linear regression model with p predictor variables,

yi = x⊤
i β + εi, i = 1, . . . , n (4.4)

εi
i.i.d∼ N (0, σ2), i = 1, . . . , n (4.5)

Here, yi represents the scalar response of the ith observation, and xi ∈ Rp repre-

sents the predictor vector of the ith observation with a mean of 0 and a covariance

1D is the space of the input datasets, and the global L2 sensitivity of f is defined as ∆2 =
max{X,X′} ∥f(X)− f (X′)∥2.
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matrix of Σx. Predictor envelopes for model (4.4) gain efficiency in the estimation of

β by incorporating the projection PEx onto the smallest subspace E ∈ Rr with the

following proprieties [86].

1. The distribution of QEx is uncorrelated with PEx , where QE = IE −PE , and

2. y be uncorrelated with QEx given PEx.

For any E with properties (1) and (2), it is said that QEx is linearly immaterial to

the regression since QEx depends linearly on neither PEx nor y. Consequently, PEx

must carry all of the information that is linearly material to the regression, i.e. all

of the information that is available about β from x.

Denote Rm×n as the collection of all real matrices with size m × n and Sk×k as

the collection of all real, symmetric matrices with size k × k. For a given matrix

A ∈ Rm×n, we denote span(A) ⊆ Rm as the subspace spanned by columns of A.

Definition 9 (Reducing Subspace [87]) A subspace R ⊆ Rp is said to be a re-

ducing subspace of M ∈ Rp×p if R decomposes M as M = PRMPR+ QRMQR. If

R is a reducing subspace of M, we say that R reduces M.

Definition 10 (Envelope [59]) Let M ∈ Sp×p and let B ⊆ span(M). Then the

M-envelope of B, denoted by EM(B), is the intersection of all reducing subspaces of

M that containB.

With the above definitions, it can be shown that PE andQE is the smallest reducing

subspace ofΣx, which can be achieved by intersecting all the reducing subspace ofΣx.

PE is then defined formally as the projection onto EΣx(span(β)) which “envelopes”

span(β). Let B1 be a orthogonal basis of PE and B2 be a orthogonal basis of QE ,

then the envelope parametric version of (4.4) can be expressed as

yi = x⊤
i B1θ + εi, with Σx = B1ΩB⊤

1 +B2Ω0B
⊤
2 , (4.6)
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where β = B1θ, θ ∈ Rr. r is the dimensionality of PE , which is also called the

envelope dimension. Ω and Ω0 are positive definite matrices. The correlation

between y and x is only through the projection of x on PE , which is B⊤
1 x. The

parameters of interest β and Σx depend only on PE and not on the basis.

4.3 Data Augmentation MCMC for Envelope Lin-

ear Regression via Privatized Sufficient Statis-

tics

In this section, we present our data augmentation framework for Bayesian linear re-

gression. The proposed framework allows the practitioners to perform valid Bayesian

inference on linear regression with differentially privatized sufficient statistics gen-

erated through the analytic Gaussian mechanism [85]. The key distinction in our

approach is our model takes into account the low-dimensional structure of the data

by partitioning the predictors into material and immaterial components, based on

the observation that certain changes in the predictors might have no impact on the

response.

Specifically, let xi denote a predictor in a p-dimensional space, and let the scalar yi

represent the corresponding response. Let ν be all the model parameters. Consider

the unobserved confidential dataset represented by x
.
= (x1, . . . ,xn)

⊤ ∈ Rn×p and

y
.
= (y1, . . . , yn)

⊤ ∈ Rn. Instead of having direct access to the dataset (x,y), our

observations are limited to privatized sufficient statistics for ν which is denoted as sdp.

Based on the Bayes’ rule, we are concerned with the following posterior distribution:

p (ν | sdp) ∝ p(ν)p (sdp | ν) (4.7)

As the marginal likelihood p (sdp | ν) is often unknown, we augment the MCMC state

space with the latent confidential dataset (x,y),
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p (ν,x,y | sdp) ∝ p(ν)f(x,y | ν)p (sdp | x,y) (4.8)

Marginally, the ν samples produced by equtaion (4.8) follow the posterior p (ν | sdp)

in equation (4.7). The joint posterior distribution of p (ν,x,y | sdp) can be achieved

through the following Gibbs sampling procedure: (a) sample the confidential dataset

(x,y) given model parameters ν; (b) sample parameters ν given latent confidential

(x,y) and sdp [79]. The following subsections will illustrate the envelope regression

structure [x,y|ν], the sufficient statistics [sdp | x,y] and their corresponding Gibbs

sampling steps.

4.3.1 Hierarchical Envelope Linear Regression

The hierarchical envelope regression structure between (x,y) given parameters ν =

(B1,B2,Ω,Ω0,θ, σ) can be expressed as follows,

xi = B1λi +B2ξi

[yi|λi] = λ⊤
i θ + εi

λi ∼ N (0,Ω)

ξi ∼ N (0,Ω0)

εi ∼ N (0, σ2)

(4.9)

In model (4.9), B1 ∈ Rp×r and B2 ∈ Rp×(p−r) are two orthogonal matrices with

B⊤
1 B2 = 0. It can be seen that xi is decomposed into two parts, which is the material

B1λi and the immaterial B2ξi. λi ∈ Rr and ξi ∈ Rp−r are the corresponding material

and immaterial coordinates. The regression dependency between xi and yi is only

through the material part λi. After the dimension reduction, the regression coefficient

θ is r dimensional.

Remark 11 As shown in model (4.9), yi remains the same no matter how xi varies

in the space of span(B2) since the distribution of [yi|xi] is the same as [yi|B⊤
1 xi]. It
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is worth noting that for the given dimension r, B1 and B2 are not uniquely defined.

To make it identifiable, in this chapter we define B1 and B2 as a function of an

unconstrained matrix A ∈ R(p−r)×r. Let CA =
(︁
Ir,A

⊤)︁⊤ and DA = (−A, Ip−r)
⊤,

define

B1(A)
.
= CA

(︁
CA

TCA

)︁−1/2

B2(A)
.
= DA

(︁
DA

TDA

)︁−1/2
(4.10)

In equation (4.10), the matrix A and span(B1) is uniquely determined by each other

hence B1(A) is identifiable. The notation of B1(A) as the function of A prevents

the prior selection and the posterior updating of B1 on Stiefel manifolds. As there

is no close form posterior for A, the update of A is through the Metropolis–Hastings

algorithm.

Remark 12 Given model (4.9), the conditional distribution of [yi|xi] is uniquely

determined with [yi|xi,B1,θ] ∼ N (x⊤
i B1θ, σ

2) and the regression coefficient β of

[yi|xi] is given by β = B1θ. The density function f(x,y|ν) is as follows,

f(x,y|ν) = f(y|x,B1,θ, σ
2)f(x|B1,B2,Ω,Ω0)

=
n∏︂
i=1

1

σ
√
2π

exp [−(yi − x⊤
i B1θ)

2

2σ2
]×

n∏︂
i=1

1

|Σx|1/22πp/2
exp [−xiΣ

−1
x xi
2

]

(4.11)

where Σx = B1ΩB⊤
1 +B2Ω0B

⊤
2 .

4.3.2 Differentially Privatized Sufficient Statistic

In this chapter, the analytic Gaussian mechanism [85] is utilized to achieve (ϵ, δ)-

DP for sufficient statistics. Observing inequality (4.3), a finite global sensitivity is

required to calibrate the DP variance. In literature, the routine procedure entails

bounding each predictor and response variable in a manner that is independent of

69



the data. For simplicity, we set a lower and upper bound (L,U) for all dimensions of

xi and yi.

Remark 13 In model (4.9), (x⊤x,x⊤y,y⊤y) is the sufficient statistics of

ν = (B1,B2,Ω,Ω0,θ, σ)

Denote the L2 sensitivity for (x⊤x,x⊤y,y⊤y) as ∆2. By analytic Gaussian mech-

anism, we generate sdp by adding Gaussian noises N (0, σ2
dp) independently to each

element of (x⊤x,x⊤y,y⊤y) where σ2
dp satisfies (4.3).

When calculating ∆2, we can reason the worst case influence of an individual on

each component of sdp = (x⊤x,x⊤y,y⊤y). The number of unique elements in sdp is

[p(p+ 1)/2, p, 1] and ∆2 = (U − L)2p(p+ 1)/2 + (U − L)2(p+ 1).

4.3.3 Prior Specification

Denote the parameters in the model (4.9) as ν = (B1,B2,Ω,Ω0,θ, σ). Note that

B1,B2 are set to be functions of an unconstrained matrix A for identification. Thus,

we impose diffuse priors for (A,Ω,Ω0,θ, σ) as follows,

• θ is normally distributed: θ ∼ N (0, 100Ir).

• σ2 follows Inverse-Gamma distribution: σ2 ∼ IG(a0, b0) where a0 = b0 = 0.1.

• Ω and Ω0 follow Inverse-Wishart distribution: Ω ∼ IW (S, s), Ω0 ∼ IW (S0, s0),

where the parameters are commonly selected as S = Ip−r, S0 = Ir and s =

p− r + 1, s0 = r + 1 [36].

• A follows matrix normal distribution: A ∼ MN (A0,K,L). A0 ∈ R(p−r)×r

is the mean matrix for A. K ∈ S(p−r)×(p−r), L ∈ Sr×r are positive symmetric

covariance matrices. We set A0 = 0. It means B1 is assumed to be centered

at B1(0) = (Ir,0)
⊤, which corresponds to an identity projection to the first

r dimensions of the predictors. K and L are chosen to be 10 times identity

matrix, 10I(p−r) and 10Ir.
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4.3.4 Privacy-Aware Gibbs Sampler

Let λ
.
= (λ1, . . . ,λn)

⊤ and ξ
.
= (ξ1, . . . , ξn)

⊤ be the material and immaterial informa-

tion for the confidential dataset. Let (x(t),y(t), λ(t), ξ(t),ν(t)) denote the state of the

Gibbs sampler at the t-th iterations. Based on equation (4.8), the Gibbs sampling

procedure can be split into three detailed steps: (1) sample (x(t+1),y(t+1)) given ν(t)

and sdp; (2) calculate (λ
(t+1), ξ(t+1)) based on x(t+1) and ν(t); (3) sample ν(t+1) given

(x(t+1),y(t+1), sdp).

In step (1), the conditional distribution of (x,y) given sdp and ν(t) has no closed

form posterior and we employ the algorithm in [79] for the sampler which is Algorithm

(1) in appendix. In step (2), (λ(t+1), ξ(t+1)) based on x(t+1) and ν(t) can be calculated

as

λ(t+1) = x(t+1)B
(t)T
1

ξ(t+1) = x(t+1)B
(t)T
2

In step (3), all the model parameters are updated and the details are in the appendix.

4.4 Simulation Study

In this section, we conduct a comparative analysis of our data augmentation MCMC

framework for Bayesian envelope linear regression and the existing data augmentation

MCMC framework by [79]. The comparison is conducted through the utilization of

a straightforward, yet informative simulation scenario within the context of (ϵ, δ)-

differential privacy. We consider scenarios with different privacy budgets ϵ. δ is

considered as 1/n which is a common choice for approximate differential privacy. n is

the sample size and we choose it to be n ∈ {500, 1000, 5000}. The dimension for the

predictor is set to be p = 4. The dimension for the material part r is set to be r = 2.

When comparison, our primary focus is directed towards evaluating the efficiency

enhancement of the linear regression coefficients β = B1θ, taking into considera-

tion the presence of the material and immaterial separation. When comparing our
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approach with the existing data augmentation MCMC [79], it is expected that our

framework would lead to a reduction in the uncertainty associated with the estimated

coefficients β̂.

4.4.1 Generating the Differentially Private Sufficient Statis-
tics

Despite the absence of the confidential dataset (x,y) at our disposal, it is worthwhile

to demonstrate the process of how (x,y) is generated under our framework.

For all simulation scenarios (for each selected n and ϵ), the confidential dataset

(x,y) is generated as the following. Set δ = 1/n, r = 2, Ω = Ir and Ω0 = 0.1Ip−r.

For each given n ∈ {500, 1000, 5000} and ϵ ∈ {0.5, 1, 3, 5}, generate (xi, yi)
n
i=1 as

follow.

1. Given fixed matrix A ∈ R(p−r)×r, compute B1 and B2 through (4.10).

2. For each i ∈ [n]:

(a) generate λi ∼ N (0,Ω) and ξi ∼ N (0,Ω0),

(b) compute xi = B1λi +B2ξi,

(c) generate εi ∼ N (0, σ2) given fixed σ2 and

(d) compute yi = λ⊤
i θ + εi given fixed θ ∈ Rr.

For simplicity, we set a lower and upper bound (L,U) for all dimensions of xi

and yi. For a real value z, and L ≤ U , we define the clamp function [z]UL :=

min{max{z, L}, U}. If z is a vector of length d, we use the same notation to ap-

ply an entry-wise clamp: [z]UL :=
(︂
[z1]

U
L , [z2]

U
L , . . . , [zd]

U
L

)︂⊤
.

After clamping (x,y) into range (L,U) for each dimension, we denote the clamped

dataset as (xC ,yC). Finally, generate sdp through the analytic Gaussian mechanism

[85] by adding Gaussian noises independently to each element of (x⊤
CxC ,x

⊤
CyC ,y

⊤
CyC).
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For each of the simulation scenarios, we simulate 50 datasets (xC ,yC) and sdp. For

each generated sdp, we obtain the posterior samples of all model parameters using the

Gibbs sampling algorithm described earlier, retaining 5000 iterations after a burn-in

period of 5000 iterations.

For all given parameters in the simulation scenario, θ and A are randomly gener-

ated for each dataset and σ2 = 1. The lower and upper bound is set to be [−10, 10].

A more detailed configuration for the simulation is provided in the appendix.

Remark 14 An essential aspect of MCMC is ergodicity [88], which guarantees the

convergence of the MCMC chain to the posterior distribution in terms of total vari-

ation. It can be verified that within our model: (a) the chosen priors are proper and

p(ν) > 0 for all ν; (b) the condition f(x,y|ν) > 0 and p(sdp|x,y) > 0 is consis-

tently satisfied for all (x,y). Under the two conditions above, it can be proved that

the Gibbs sampler for latent confidential dataset (x,y) and parameters ν is ergodic

and the limiting distribution is unique [79].

4.4.2 Evaluation and Comparison

As mentioned previously, the primary focus is directed towards evaluating the effi-

ciency enhancement of the linear regression coefficients β̂. During Gibbs sampling,

the t-th posterior draw of B1 and θ is denoted as B̂
(t)

1 and θ̂
(t)
. β̂

(t)
is calculated as

β̂
(t)

= B̂
(t)

1 θ̂
(t)
.

To assess the performance of the efficiency gain on the estimation of the coefficient

matrix β̂, we obtain the overall average 95% credible interval width and the overall

mean squared error (MSE) based on the 50 simulated confidential dataset (x,y) and

sdp in each setup. For each β̂j in β̂ = {β̂1, . . . , β̂p}, j ∈ {1, . . . , p} define MSE as

follows,

MSE =
1

50

50∑︂
j=1

{︃
1

p

⃦⃦⃦
β̂
j
− βj

⃦⃦⃦2
2

}︃
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where ∥ · ∥2 represents the L2 norm. βj is the true coefficient from the jth simulation

and β̂
j
is its posterior mean estimate. The overall average 95% credible interval width

is then defined as

W =
1

50

50∑︂
j=1

{︃
1

p

⃦⃦⃦
W

β̂
j

⃦⃦⃦2
2

}︃
where W

β̂
j
.
= (w

β̂
j
1
, . . . ,w

β̂
j
p
) is the 95% credible interval width vector for all of the p

predictors from the jth simulation.

Table (4.1) displays the average MSE and interval width, derived from our frame-

work utilizing the envelope technique, alongside the data augmentation framework

outlined in [79] without the envelope approach. It is evident that with limited sam-

ple size and a small ϵ value, both methods exhibit pronouncedly elevated MSE and

interval width. As the sample size and ϵ increase, there is a reduction in the MSE

and interval width for both methods. Upon comparison between the two methods,

the observed trend aligns with our expectations—namely, an enhancement in the ef-

ficiency of estimating β̂ across all different combinations of sample size n and privacy

budget ϵ.

Figure (4.1) depicts the boxplot illustrating the distribution of the 50 mean squared

errors for β̂, while Figure (4.2) presents the boxplot showcasing the distribution of the

50 average 95% credible intervals. These figures provide a more detailed presentation

of the information presented in Table (4.1). Notably, a substantial improvement

becomes evident as the sample size increases from n = 500 to n = 1000. It can be seen

that the degree of improvement is less pronounced with further increases in sample

size. Similarly, as the privacy budget ϵ ranges from 0.5 to 3, there is a considerable

enhancement, but further increases in ϵ do not yield clear improvements.
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MSE Interval Width

n ϵ Bayes Env No Env Bayes Env No Env

n = 500

ϵ = 0.5 6.81 11.20 3.10 6.36

ϵ = 1.0 3.26 6.26 2.48 5.22

ϵ = 3.0 1.05 3.01 1.45 2.98

ϵ = 5.0 0.71 2.98 1.14 2.27

n = 1000

ϵ = 0.5 3.30 7.56 2.00 4.04

ϵ = 1.0 1.93 5.19 1.43 3.01

ϵ = 3.0 0.67 3.42 0.82 1.65

ϵ = 5.0 0.65 3.34 0.62 1.28

n = 5000

ϵ = 0.5 2.67 3.97 0.65 0.94

ϵ = 1.0 1.60 2.14 0.39 0.66

ϵ = 3.0 0.81 1.07 0.20 0.36

ϵ = 5.0 0.91 0.95 0.16 0.27

Table 4.1: The average MSE and interval width for β̂, derived from our framework
utilizing the envelope technique, alongside the framework without the envelope ap-
proach.

4.5 Discussion and Conclusion

Our work presents a groundbreaking approach to Differentially Private Bayesian En-

velope Regression, offering a nuanced solution to the challenges of maintaining pri-

vacy while harnessing the utility of data and improving the efficiency of the esti-

mation in regression analysis. By innovatively applying the envelope method within

a Bayesian framework, we address the critical need for preserving privacy without

sacrificing the richness of data insights, particularly when dealing with datasets that
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has low-dimensional structures. This methodological advancement not only enhances

efficiency of the parameter estimation in comparison to existing differentially private

mechanisms but also facilitates nuanced statistical inference, such as the construction

of credible intervals, which is often overlooked in the differential privacy landscape.

The simulation studies and theoretical discussions further underscore the superiority

of our approach in terms of efficiency improvement over traditional methods.

In conclusion, this paper has introduced an innovative Bayesian Envelope Regres-

sion model that significantly enhances the efficiency and interpretability of regression

analysis in privacy-sensitive contexts. Our approach leverages the strengths of the

envelope methodology to focus analysis on the most impactful predictor components,

thereby improving parameter estimation efficiency and reducing the risk of overfitting.

Through rigorous simulation studies, we have demonstrated the efficiency improve-

ments achieved by our model, highlighting its potential to serve as a valuable tool for

researchers and practitioners dealing with sensitive datasets. This pioneering inte-

gration of differential privacy with envelope regression methodology not only marks a

significant methodological innovation but also paves the way for new research direc-

tions in privacy-preserving data analysis. It highlights the potential for sophisticated

statistical techniques to enhance data utility while rigorously protecting individual

privacy, thereby contributing to the advancement of responsible and ethical data

science practices.

Despite the promising results, our approach faces limitations inherent in the as-

sumptions of envelope methods and the specific modeling of privacy mechanisms. Fu-

ture research could explore extending our framework to accommodate more complex

data structures and a wider range of regression models, enhancing its applicability

and robustness. Additionally, assessing the performance of our framework with high-

dimensional datasets, where predictors substantially outnumber observations, stands

as a significant area of interest. Furthermore, examining the framework’s robustness

to model misspecification and atypical data distributions constitutes another vital
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extension. These topics are earmarked for subsequent studies.
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(a) n = 500

(b) n = 1000

(c) n = 5000

Figure 4.1: The boxplot of average MSE for the coefficient estimation based on our
framework and the framework without the envelope approach.
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(a) n = 500

(b) n = 1000

(c) n = 5000

Figure 4.2: The boxplot of average 95% credible interval width for the coefficient
estimation based on our framework and the framework without the envelope approach.
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Appendix A: Computation Details
in Chapter 2

First, the conditional posterior for semi-orthogonal matrices A and B are derived.

In the following equations, we denote uig
.
= [ui|cig = 1].

Let A[,k] denote the kth column of A and A[,−k] denote the matrix A with its

kth column removed. Based on Proposition 1 from [35], when the distribution of

A is the uniform distribution on Stiefel manifold denoted as Vp0,p, then the condi-

tional distribution of A[,k] given A[,−k] is equal to the distribution of NA{−k}ak where

NA{−k} is a basis for the null space of columns of A[,−k] and ak is uniformly dis-

tributed on the (p− p0 + 1)-dimensional sphere, i.e., conditional on A[,−k],A[,k]
d
=

NA{−k}ak. When ak is uniformly distributed on spherical space with parameter µ,

we have ak ∼ vMF(µ), and log(ak) ∝ aTkµ. In our setting, we have the following

derivation:
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Since conditional on A[,−k],A[,k]
d
= NA{−k}ak, thus

A⊤
[,k]

∑︂
i,g,
cig=1

q0∑︂
s=1

ϕuig[k,s]x
−k
i B[,k] =
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k (N

⊤
A{−k}

∑︂
i,g,
cig=1

q0∑︂
s=1

ϕuig[k,s]x
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i B[,k])

which means ak ∼ vMF(µ) with

µ = N⊤
A{−k}

∑︂
i,g,
cig=1

q0∑︂
s=1

ϕuig[k,s]x
−k
i B[,k]

.

The derivation for B is similar with A, and we have the following Gibbs sampling

posterior updates
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•
[︁
A[,k]|·

]︁
= NA{−k}ak, for k ∈ {1, . . . p0} where ak ∼ vMF(µa) with

µa = N⊤
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cig=1
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•
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= NB{−d}bd, for d ∈ {1, . . . q0} where bd ∼ vMF(µb) with
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cig=1
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The update of the rest of the model parameters are standard and the Gibbs sam-

pling posterior update is as follows

• If we denote likelihood equation (2.5) as L(ν)
.
=
∏︁n

i=1

∏︁G
g=1[p̃ig]

I(cig=1), then

[ci|·] ∼Multinomial(1, π̃1, . . . , π̃G)

where π̃m = p̃im∑︁
g p̃ig

, m ∈ {1, . . . , G}.

• [vec(ηg)|·] ∼ N (M ,E)

where

M = E(B ⊗A)T
∑︁

i,g,
cig=1

[vec(xi)− (Bλ1/2)⊗ (AΓ1/2) vec(ũig)],

and
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ngϕ

I, ng =
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• [λ
1/2
1 , . . . λ

1/2
q0 ] is updated element-wisely:

[λ
1/2
m |·] ∼ N (M,E), m = 1, . . . , q0.

where
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• Here we introduce a latent variable ωi such that oi = I(ωi > 0),

and we have [ωi|·] ∼ N (β0 + VT
i β +

∑︁G−1
g=1 XT

igδg, 1)

The update of ωi is as follows:

If oi = 1

[wi|·] ∼ N
(︁
β0 + zTi β, 1

)︁
· I(0,+∞)

If oi = 0,

[wi|·] ∼ N
(︁
β0 + zTi β, 1

)︁
· I(−∞,0)
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• [β0,β|·] ∼ N (M,E)

where

M =
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i[1, zi]
⊤[1, zi] +

1
τ0
I
)︂−1∑︁

i[1, zi]wi

and
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• [π|·] ∼ Dirichlet(4 + n1, . . . , 4 + nG)

where ng =
∑︁

i cig
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Appendix B: Computation Details
in Chapter 3

The missing imputation procedure in chapter 3 is shown below. Let m ∈ Rn,r denote

the missing indicator, n is the sample size and r is the dimension of HAMD scores.

mi,j = 1 if the data is not missing, mi,j = 0 if the data is missing. Let pi,j be the

probability that the data exists, i.e, mi,j = 1, then the model of missing is a probit

model with

Φ−1(pi,j) = θ0 + θ1 · Yi,j−1 + θ2 · Yi,j

Note that by introducing a latent variable wi,j for each mi,j with

wi,j = θ0 + θ1 · Yi,j−1 + θ2 · Yi,j + ϵ

where ϵ ∼ N (0, 1). Then mi,j = 1 if and only if wi,j > 0; mi,j = 0 if and only if

wi,j ≤ 0.

In the following of this section, we use Y to denote the full data, i.e, Y is the

combination of the missing and existing Ymis and Yexist. Similarly, for each patient’s

score, we still use Yi to denote the full, and use Yi,mis, Yi,exist to denote the missing

and existing scores.

Because we need to partition Yi into the missing part and the existing part, a

further partition for the mean and covariance is needed. In our notation, [Yi|Di,k =

1] ∼ N (µenv,k, Σenv). After partition, [Yi,mis,Yi,exist|Di,k = 1] ∼ N (µparti,k, Σparti)

General derivation:
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f(Yi,mis|Yi,exist,wi,Di,k = 1,µparti,k,Σparti)

∝ f(Yi,mis,wi|Yi,exist,Di,k = 1,µparti,k,Σparti)

= f(wi|Yi,mis,Yi,exist) · f(Yi,mis|Yi,exist,µparti,k,Σparti,Di,k = 1)

= [
r∏︂
j=1

f(wi,j|Yi,mis,Yi,exist)] · f(Yi,mis|Yi,exist,µparti,k,Σparti,Di,k = 1)

.
= 1○ · 2○

(B.1)

For part 2○, f(Yi,mis|Yi,exist,Di,k = 1, ·) is still a multivariate normal distribution.

Assume there are r1 missing values and r2 existing values with r1 + r2 = r, i.e,

Yi,partition =

⎡⎣ Yi,mis

Yi,exist

⎤⎦ with sizes

⎡⎣ r1 × 1

r2 × 1

⎤⎦
The according µparti,k and Σparti is

µparti,k =

⎡⎣ µ1,k

µ2,k

⎤⎦ with sizes

⎡⎣ r1 × 1

r2 × 1

⎤⎦
Σparti =

⎡⎣ Σ11 Σ12

Σ21 Σ22

⎤⎦ with sizes

⎡⎣ r1 × r1 r1 × r2

r2 × r1 r2 × r2

⎤⎦
With the above notation,

f(Yi,mis|Yi,exist,Di,k = 1, ·) ∼ N (µ̄k, Σ̄)

with

µ̄k = µ1,k +Σ12Σ
−1
22

(︁
Yi,exist − µ2,k

)︁

Σ̄ = Σ11 −Σ12Σ
−1
22 Σ21

For part 1○, the density function is

r∏︂
j=2

1√
2π

· exp−1

2
(wi,j − θT Ỹ

j

i )
2
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with

θ =

⎡⎢⎢⎢⎣
θ0

θ1

θ2

⎤⎥⎥⎥⎦ and Ỹ
j

i =

⎡⎢⎢⎢⎣
1

Yi,j−1

Yi,j

⎤⎥⎥⎥⎦
It is known that, after considering 1○ and 2○, the conditional distribution of Yi,mis

still follows a multivariate normal distribution. The following material are the steps

that finds the kernel.

One loop, four situation:

From 2○, the kernel part with second order is YT
i,misΣ̄

−1
Yi,mis. The kernel with

first order is YT
i,misΣ̄

−1
µ̄i,k.

Before the loop, set

Final.K1 = YT
i,misΣ̄

−1
µ̄i,k

Final.K2 = YT
i,misΣ̄

−1
Yi,mis

From each j, consider the following 4 different situations.

• Both Yi,j−1 and Yi,j exist.

In this case, there is no second order and first order kernel part in 1○.

Final.K1 = Final.K1 + 0

Final.K2 = Final.K2 + 0

• Yi,j−1 exist but Yi,j miss.

In this case, the first order contribution from 1○ is

Yi,jθ2 · (wi,j − θ0 − θ1Yi,j−1)

and the second order contribution is

Y 2
i,jθ

2
2
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Suppose Yi,j corresponds to the t’th index in Yi,mis, i.e,

Yi,mis =

⎡⎢⎢⎢⎣
...

Yi,mis,t = Yi,j
...

⎤⎥⎥⎥⎦
Then

Final.K1 = Final.K1 +YT
i,mis

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−1

θ2 · (wi,j − θ0 − θ1Yi,j−1)

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= YT
i,mis(Σ̄

−1
µ̄i,k +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−1

θ2 · (wi,j − θ0 − θ1Yi,j−1)

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
)

(B.2)
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Final.K2 = Final.K2 +YT
i,mis

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−1

θ2

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−1

θ2

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Yi,mis

= YT
i,mis(Σ̄

−1
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−1

θ2

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−1

θ2

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

)Yi,mis

(B.3)

• Yi,j−1 miss but Yi,j exist.

Similarly, the first order contribution from 1○ is

Yi,j−1θ1 · (wi,j − θ0 − θ2Yi,j)

and the second order contribution is

Y 2
i,j−1θ

2
1

Again, suppose Yi,j−1 corresponds to the (t− 1)’th index in Yi,mis.
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Final.K1 = Final.K1 +YT
i,mis

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1 · (wi,j − θ0 − θ2Yi,j)

0t
...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= YT
i,mis(Σ̄

−1
µ̄i,k +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1 · (wi,j − θ0 − θ2Yi,j)

0t
...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
)

(B.4)

Final.K2 = Final.K2 +YT
i,mis

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1

0t
...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1

0t
...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Yi,mis

= YT
i,mis(Σ̄

−1
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1

0t
...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1

0t
...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

)Yi,mis

(B.5)
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• Both Yi,j−1 and Yi,j miss

In this case, the first order contribution from 1○ is

[︂
Yi,j−1 Yi,j

]︂
· (wi,j − θ0)

⎡⎣θ1
θ2

⎤⎦
and the second order contribution is

[︂
Yi,j−1 Yi,j

]︂⎡⎣θ1
θ2

⎤⎦[︂θ1 θ2

]︂⎡⎣Yi,j−1

Yi,j

⎤⎦
Again, suppose Yi,j−1 corresponds to the (t − 1)’th index in Yi,mis, and Yi,j

corresponds to the (t)’th index in Yi,mis Then

Final.K1 = Final.K1 +YT
i,mis

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1 · (wi,j − θ0)

θ2 · (wi,j − θ0)

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= YT
i,mis(Σ̄

−1
µ̄i,k +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1 · (wi,j − θ0)

θ2 · (wi,j − θ0)

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.6)

98



Final.K2 = Final.K2 +YT
i,mis

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1

θ2

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1

θ2

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Yi,mis

= YT
i,mis(Σ̄

−1
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1

θ2

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01
...

0t−2

θ1

θ2

0t+1

...

0r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

)Yi,mis

(B.7)

Loop r − 1 times and return the final.k1 and final.k2. Calculate the conditional

mean and covariance based on it.

Before the running of the algorithm, impute the all the missing values fromN (µinit,Σinit),

where µinit is the sample mean of the complete cases, and Σinit is the covariance ma-

trix of the complete cases.
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Appendix C: Computation Details
in Chapter 4

The detailed MCMC Gibbs sampling approach in chapter 4 for the parameters and

latent variables mentioned in the model is given as below,

• Given x and (B1,B2), (λ, ξ) can be calculated as λ = xBT
1 and ξ = xBT

2 .

Thus (λ(t+1), ξ(t+1)) based on x(t+1) and ν(t)

λ(t+1) = x(t+1)B
(t)T
1

ξ(t+1) = x(t+1)B
(t)T
2

• With θ ∼ N (0, 100Ir), we have

p(θ|σ,x,y,B1)

∝f(y|x,B1, σ,θ)p(θ)

∝ exp {−
∑︁n

i=1(yi − xTi B1θ)
2

2σ2
− θ⊤θ

200
}

Thus [p(θ(t+1)|σ(t),x(t+1),y(t+1),B
(t)
1 ] ∼ N (µθ,Σθ) where

µθ = ΣθB
(t)
1 x(t+1)Ty(t+1)

Σθ =
1

σ(t)2
B

(t)
1 x(t+1)Tx(t+1)B

(t)T
1 +

1

100
Ir

• With p(Ω) ∼ IW(S, s), we have

p(Ω|λ) ∝ p(Ω)f(λ|Ω)

∝|Ω|−(s+r+1)/2 exp−1

2
tr
(︁
SΩ−1

)︁
× |Ω|−

n
2 exp−1

2

n∑︂
i=1

λTi Ω
−1λi
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[p(Ω(t+1)|λ(t+1)] ∼ IW(S̃, s̃) where

s̃ = s+ n

S̃ = S+ λ(t+1)Tλ(t+1)

• With p(Ω0) ∼ IW(S0, s0), we have

p(Ω0|ξ) ∝ p(Ω0)f(ξ|Ω0)

∝|Ω0|−(s0+p−r+1)/2 exp−1

2
tr
(︁
SΩ−1

0

)︁
× |Ω0|−

n
2 exp−1

2

n∑︂
i=1

ξTi Ω
−1
0 ξi

Thus [p(Ω
(t+1)
0 |ξ(t+1)] ∼ IW(S̃0, s̃0) where

s̃0 = s0 + n

S̃0 = S0 + ξ(t+1)T ξ(t+1)

• With p(σ2) ∼ IG(a0, b0), we have

p(σ2|x,y,B1,θ)

∝p(σ2)f(y|x,B1,θ)

∝(σ2)−(a0+1) exp− b0
σ2

× (σ2)−
n
2 exp− 1

2σ2

n∑︂
i=1

(yi − xTi B1θ)
2

Thus,

[p(σ2(t+1)|x(t+1),y(t+1),B
(t)
1 ,θ

(t+1)] ∼ IG(ã0, b̃0)

ã0 = a0 +
n

2

b̃0 = b0 +
1

2

n∑︂
i=1

(y
(t+1)
i − x

(t+1)T
i B

(t)
1 θ(t+1))2
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• With B
(t+1)
1 and B

(t+1)
2 expressed as functions of a matrix A, we let p(A) ∼

MN (A0, 10I, 10I), we have.

p(A|x,y, σ,Ω,Ω0,θ)

∝f(y|x,B1(A), σ,θ)f(x|B1(A),B2(A),Ω,Ω0)p(A)

∝

{︄
exp− 1

2σ2

n∑︂
i=1

(yi − xTi B1θ)
2

}︄

×

{︄
|Σx|−

n
2 exp−1

2

n∑︂
i=1

xTi Σxxi

}︄
p(A)

and A is updated through the following Metropolis-Hasting algorithm.

1. Propose A⋆, A⋆ = A+ e with e ∼ N (0, τ 2).

2. Calculate pA = p(A|x,y, σ,Ω,Ω0,θ) and

p⋆A = p(A⋆|x,y, σ,Ω,Ω0,θ).

3. Accept the proposed state with probability α(A⋆) = min
{︂
p⋆A
pA
, 1
}︂
.

τ serves as a hyper-parameter that is chosen to ensure that the acceptance rate

of A falls within the specified interval of (0.2, 0.6).

To maintain traceable outcomes, we employed distinct seeds for each simulated

dataset. For initializing the MCMC process, random values were utilized for the

parameters ν as well as the latent (x,y).

The conditional distribution of (x,y) given sdp and ν(t) is shown in algorithm (1).

The notation N (t;0, σ2
dpI) represents the probability density of N (0, σ2

dpI) in t.

Statement on Computing Resources We ran the experiments through software R on

Compute Canada high performance cluster. We conducted individual MCMC chains,

each comprising 10000 iterations. A standard chain necessitates approximately 9 min-

utes to complete when considering a sample size of n = 500, and around 30 minutes

when n = 1000. However, with n = 5000, the runtime experienced a significant surge,

extending to around 12 hours.
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Algorithm 1 Update (x,y) within Gibbs sampler

1: For each i = 1, 2, . . . , n, update (xi, yi) | ν, sdp.
2: (a) Propose (x⋆i , y

⋆
i ) as follows:

3: x⋆i ∼ N (0,B1ΩB⊤ +B2Ω0B
⊤
2 )

4: y⋆i |x⋆i ∼ N (x⋆Ti B1θ, σ
2)

5: (b) Set ts = {x⊤y,x⊤x,y⊤y} with current (x,y).
6: Update ts and set t+s = ts − ti + t⋆i .
7: ti = {xiyi,xix⊤

i , y
2
i },

8: t⋆i = {x⋆i y⋆i ,x⋆ix⋆Ti , y⋆2i }
9: (c) Accept the proposed state with
10: probability α(x⋆i , y

⋆
i ) given by:

11: α(x⋆i , y
⋆
i ) = min

{︃
N (t+s ;0,σ2

dpI)

N (ts;0,σ2
dpI)

, 1

}︃
12: (d) Set ts = t+s if the state is accepted.
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