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Abstract 

As a versatile polymer in many applications, synthesized polyethylenimine (PEI) is 

polydisperse with diverse branched structures that attain pH-dependent protonation states. 

Understanding the structure-function relationship of PEI is necessary for enhancing its efficacy in 

various applications. Coarse-grained (CG) simulations can be performed at length- and timescales 

directly comparable with experimental data while maintaining the molecular perspective. However, 

manually developing CG forcefields for complex PEI structures is time-consuming and prone to 

human errors. This article presents a fully automated algorithm that can coarse-grain any branched 

architecture of PEI from its all-atom (AA) simulation trajectories and topology. The algorithm is 

demonstrated by coarse-graining a branched 2 kDa PEI, which can replicate the AA diffusion 

coefficient, radius of gyration, and end-to-end distance of the longest linear chain. Commercially 

available 25 kDa and 2 kDa Millipore-Sigma PEIs are used for experimental validation. 

Specifically, branched PEI architectures are proposed, coarse-grained using the automated 

algorithm, and then simulated at different mass concentrations. The CG PEIs can reproduce 

existing experimental data on PEI’s diffusion coefficient and Stokes-Einstein radius at infinite 

dilution, as well as its intrinsic viscosity. This suggests a strategy where probable chemical 

structures of synthetic PEIs can be inferred computationally using the developed algorithm. The 

coarse-graining methodology presented here can also be extended to other polymers. 
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 Introduction 

Polyethylenimine (PEI) is a versatile polymer useful in many applications, including 

nanofiltration,1,2 carbon capture,3,4 fuel cells,5,6 solar cells,7,8 biosensing,9,10 and gene therapy11,12. 

Each application requires different properties like molecular weight (MW), dispersity (the ratio 

between weight average MW (Mw) and number average MW (Mn)), degree of branching (DB), and 

protonation ratio (PR). For example, it is desirable to have PEIs with high Mw and DB for 

nanofiltration,13 linear PEIs for carbon capture,3 and PEIs with moderate Mw14,15 and DB16 for gene 

therapy. Therefore, identifying the structure-function relationship of PEI is crucial for optimizing 

its performance. 

Experimentally, identifying structure-function relationships is difficult due to the diverse 

MW, chemical structures, and PR of synthesized PEIs. A PEI solution can have a wide range of 

MW, such as 0.5-360 kDa for the commercially available Mw = 25 kDa PEI from Millipore-

Sigma.15 Fractionation can reduce the range, but not below 6 kDa.14,15 Synthesis techniques usually 

dictate the chemical structures, for example linear17 vs. branched18, but branched PEIs in a solution 

can be very diverse. Nuclear Magnetic Resonance (NMR) can provide some insights, such as the 

percentage of primary (1°), secondary (2°), and tertiary (3°) amines, but not the precise PEI 

structures.19–22 The average PR of a PEI solution is typically determined by curve-fitting titration 

data.23 While NMR can provide information on protonated substructures,22 it is difficult to discern 

the PR of individual PEI molecules or the relationship between PR and MW or DB.  

On the other hand, computational studies can model monodisperse PEI with an exact 

chemical structure and PR, which is ideal for studying structure-function relationships. Several all-

atom (AA) forcefields have been developed for linear PEI,24–26 but only one can handle branched 

structures27. AA molecular dynamics (MD) simulations can typically access length scales of 10-
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20 nm and timescales of 100-500 ns, limiting their applications to low MW PEIs. A few coarse-

grained (CG) forcefields for PEI can simulate timescales of 1-10 μs and length scales of 20-100 

nm;28–30 however, they only include parameters for low MW or linear PEIs. High MW PEIs, 

especially those with branched structures, can potentially be simulated using the CG approach and 

compared with experiments, but they remain unreported. To our knowledge, the Martini-based CG 

PEI forcefield developed in our previous work28,31 is the only one in the literature that models both 

linear and branched PEIs. However, this CG forcefield at the current stage only accounts for 12% 

(98 out of 834) of all possible bonded interactions (nonbonded interactions are fully 

parameterized).28 Manually determining new bonded interaction parameters is a lengthy, 

inefficient, and inaccurate process, calling for an automated parameterization methodology. 

Automated coarse-graining includes three steps: (i) determining the AA to CG mapping 

scheme, (ii) modeling CG interactions, and (iii) validating the model against AA or experimental 

data. Automated AA to CG mapping can be based on AA trajectories, examples include Delaunay 

triangulation to capture a molecule’s moment of inertia,32 principal component analysis to identify 

essential degrees of freedom,33 and cost minimization for mapping under the Martini framework34. 

These techniques are sensitive to AA phase space sampling and can be computationally expensive. 

The graph-based approach of Webb et al.35 uses AA topology to determine a mapping that 

preserves the chemical topology. This technique is efficient and was recently modified by Potter 

et al.36 for Martini.  

The CG interactions can be described using tabulated data, fixed functional forms, or neural 

networks, and their parameters can be determined using bottom-up or top-down approaches. 

Readers are directed to the excellent reviews by Noid37 and Jin et al.38 Briefly, top-down 

approaches aim to model specific structural or thermodynamic properties with interaction 
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potentials that do not contain extensive details and chemical specificity.39 In contrast, bottom-up 

techniques can determine CG interaction potentials of arbitrary complexity from reference 

simulations (AA or CG with finer resolution). The CG interaction potentials can be learned from 

reference static pair correlations (e.g., bond length, bond angle, and dihedral angle distributions) 

using automated techniques such as iterative Boltzmann inversion40 (and its variations41–43), 

inverse Monte Carlo,44,45 and particle swarm optimization46–48. Also, comprehensive variational 

techniques such as force matching,49,50 ultra-coarse-graining,51 and relative entropy minimization52 

can non-iteratively determine CG interaction potentials as a multi-body potential of mean force 

from reference simulations.  

In Martini,53,54 nonbonded interaction parameters (CG bead type) are determined non-

iteratively from experimental free energies (top-down), and bonded interactions are determined 

iteratively from static pair correlations (bottom-up) using fixed functional forms. When modeling 

PEI, the Martini framework53 presents several advantages compared to other coarse-graining 

techniques. Purely top-down approaches are insufficient due to the lack of detailed experimental 

data on PEI’s chemical structure. Among the bottom-up techniques, the use of tabulated potentials 

can accurately describe the effective interaction between beads from a specific PEI. However, 

tabulated potentials cannot be repurposed to model another PEI with a different MW, DB, or PR. 

In contrast, CG potentials with fixed functional forms can achieve high adaptability. While 

variational bottom-up techniques are theoretically rigorous, Martini53 is preferred when 

considering the balance between accuracy and parameterization time. The combined top-down and 

bottom-up approaches in Martini allow the reproduction of quantitative trends observed in 

experiments without forcefield reparameterization for every new simulation condition.54 

Furthermore, Martini contains several models for solvents, biomolecules,55–57 and polymers58. 
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Parameterizing PEI under this framework will ensure its compatibility with these existing CG 

models and facilitate the simulation of PEI with other molecules (e.g., DNA and RNA in gene 

delivery applications).  

Several recent automated parametrizations within the Martini framework are worth 

highlighting. Potter et al.36 used a top-down approach (“experimental-torsion knowledge distance 

geometry” method59) to determine equilibrium bond length and bond angle parameters, whereas 

generic Martini parameters are used for force constants and dihedral angle parameters. Empereur-

Mot et al.48 parameterized bonded interactions using a fuzzy self-tuning particle swarm 

optimization technique that minimizes a cost function based on the earth mover’s distance60,61 

between the AA and CG bonded distributions. Bereau and Kremer34 determined bead types using 

the ALOGPS62 prediction of water/octanol partitioning free energies and hydrogen bonding 

capability predicted from RDKit63. The same methodology was followed by Potter et al.36 

Empereur-Mot et al.47, on the other hand, determined bead types by minimizing the earth mover’s 

distance60,61 between the AA and CG radial distribution functions (RDF). There are challenges 

associated with automated Martini parametrization of branched PEIs using these existing 

algorithms. Since PEI contains repeating units of -(C-C-N)- as its building block, it is desirable to 

map this unit to a single bead. Such a mapping cannot be achieved using Potter et al.36 because the 

underlying algorithm progressively groups two heavy atoms35. More importantly, the -(C-C-N)- 

building block has an intrinsically asymmetric architecture, which, without additional care, is lost 

after CG mapping. For example, the probability distributions of some bond angles would implicitly 

be assumed to be the same at the CG level, while they can be significantly different at the AA 

scale.28 CG bead asymmetry is not unique to PEI; for example, backbone beads in Martini 

proteins64 also have asymmetric atomistic architecture. However, such asymmetry is not 
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recognized in the existing automatic topology generators.35,36 Finally, existing automated 

parametrization techniques are resource intensive. To overcome these limitations, we report a fully 

automated software package, coarsen, to automatically generate CG topology and iteratively 

parameterize CG PEIs with significantly lower resource requirements. By carefully considering 

bead asymmetry and its implication for bonded interactions, our algorithm generates CG 

parameters that accurately reproduce local and global PEI properties in an aqueous solution. 

 Methods 

 Automated Coarse-graining Algorithm 

While the package coarsen is capable of simultaneously parametrizing multiple PEIs in the 

same system, the algorithm is explained below using one PEI as an example. The AA topology of 

a PEI with repeating units of -(C-C-N)- is used to create an AA network, where nodes represent 

atoms with attributes such as atom name, charge, mass, and residue name, while undirected edges 

represent chemical bonds (Figure 1, Figure 2a). For each PEI, the unique carbon bound to three 

hydrogens is designated as the head node (Carbon marked with * in Figure 1). Starting with the 

head node, every -(C-C-N)- and its associated hydrogens are grouped into a CG bead, forming the 

AA to CG mapping scheme. The trajectory from an AA simulation is mapped to the reference CG 

trajectory using the centers of mass of atoms in the CG beads. The last configuration of the AA 

simulation is used to initialize the CG simulation. 
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Figure 1. Schematic representation of the automated coarse-graining algorithm. Components in black are active when 
new CG parameters are being derived, whereas they are in blue when no new CG parametrization is required. The 
components in red are always active. In the image shown above “CG trajectory”, orange, red, and cyan beads represent 
beads of PEI, chloride ions, and water, respectively. 
 

The CG network is generated from the AA network (Figure 1), where nodes and edges, 

respectively, represent CG beads and bonds (Figure 2b). The total mass and charge of atoms 

included in a CG bead are assigned as the bead’s mass and charge (converted to an integer), 

respectively. The names pq, p, sq, s, tq, and t denote beads containing charged primary, primary, 

charged secondary, secondary, charged tertiary, and tertiary amines, respectively. The name of a 

given bead is determined by its charge and the total number of hydrogen atoms bound to the bead’s 

nitrogen (three for pq, two for p and s, one for s and tq, and zero for t). Based on our previous 

study in polarizable water,28 the Martini bead type P1 is assigned to t, s, and p beads, and Qd is 

assigned to tq, sq, and pq beads.28,31,53 The same bead types are applicable for refined polarizable 

water because the solvation and partitioning free energies of all bead types remain unaltered.65 
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Figure 2. (a) AA structure of a 2 kDa PEI  and (b) its corresponding CG structure. 
 

The CG beads in PEI are asymmetric, and all bead asymmetries are aligned, i.e., the 

nitrogen of one bead bonds with the terminal carbon of another bead, forming -(C-C-N)-(C-C-N)- 

units. Units such as -(N-C-C)-(C-C-N)- or -(C-C-N)-(N-C-C)- do not appear in PEI. Thus, one can 

capture the bead asymmetry using directed edges that point from the nitrogen in one bead to the 

terminal carbon in another (Figure 2b), which provides a way to distinguish bond lengths, bond 

angles, and dihedral angles.28 For example, t→sq ≠ sq→t because the tertiary nitrogen in the AA 

network is in the middle in t→sq but at the end in sq→t, while the situation is opposite for the 

location of the charge (see the AA and CG networks in Figure 1). These considerations can be 

extended to bond and dihedral angles. It should be noted that the directed edges in a bond or 

dihedral angle need not be in the same direction. For instance, a bond angle can have one directed 

edge in each direction (e.g. s←t→sq), which makes it symmetric (s←t→sq = sq←t→s). The bond 

angles sq←t→s and sq→t→s are different: in the former, both s and sq beads are bound to the 

same nitrogen in the t bead, while in the latter sq is bound to the terminal carbon and s to the 

nitrogen of the t bead (Figure 1). Similarly, the dihedral angle sq←t→t→pq is different from 

sq→t→t→pq. However, unlike bond angles, all dihedral angles are asymmetric. Finally, pq and p 



 9 

beads only exist at the end of directed edges, that is, →pq and →p exist but not pq→ or p→. 

Likewise, only t beads can have directed edges in both directions, that is, ←t→ and ←tq→ exist 

but not ←sq→, ←s→, ←pq→ or ←p→. 

A naming system is created for the bond lengths, bond angles, and dihedral angles based 

on the directed edges.28 When all directed edges are aligned, they are referred to as normal bond 

lengths, bond angles, and dihedral angles because they each have one C-terminal and one N-

terminal in the corresponding AA network (e.g., sq→t→s in Figure 1). In such a case, they are 

named along the direction of the edges, for example, bond length t→sq is named tsq, bond angle 

sq→t→s is named sqts, and dihedral angle sq→t→t→pq is named sqttpq. However, a bond or 

dihedral angle can have two N-terminals in the corresponding AA network (e.g., s←t*→sq and 

s←t*→sq→t in Figure 1). These are referred to as N-type bond or dihedral angles,28 and the letter 

N is affixed to the beginning of their names. Since N-type bond angles are symmetric,28 they can 

have two equivalent names. For example, the angle sq←t→s could be named Nsqts or Nstsq. To 

avoid ambiguity, a preference order of pq > p > sq > s > tq > t is used for the first bead, i.e., 

sq←t→s is uniquely named as Nsqts. The N-type dihedral angle is named such that the two edges 

that constitute a normal bond angle are placed at the end of the name. For example, the dihedral 

angle sq←t→t→pq is named Nsqttpq to ensure the last three beads, in sequence (t, t, and pq here), 

form a normal bond angle (t→t→pq). The probability distributions generated from the reference 

CG trajectories (Figure 1) are grouped by name and are referred to as the reference bonded 

distributions. 

The CG network, known parameters,28 and reference bonded distributions are used to 

generate the CG topology (Figure 1). Since the charge, mass, and type for each bead are available 

from the CG network, the nonbonded interactions are fully defined. Bonded interactions with the 
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same name are assigned the same parameters. The bond-stretching potential is harmonic, as shown 

in Eq 1, where 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between beads 𝑖𝑖 and 𝑗𝑗, 𝑟𝑟𝑒𝑒𝑒𝑒 is the equilibrium bond length, and 𝐾𝐾𝑏𝑏 

is the force constant.  

𝑉𝑉𝑏𝑏�𝑟𝑟𝑖𝑖𝑖𝑖� =
1
2
𝐾𝐾𝑏𝑏�𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑒𝑒𝑒𝑒�

2
 (1) 

Similarly, the angle-bending potential is described using the cosine-harmonic potential in Eq 2, 

where 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 is the angle between beads 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘, 𝜃𝜃𝑒𝑒𝑒𝑒 is the equilibrium bond angle, and 𝐾𝐾𝑎𝑎 is the 

force constant.  

𝑉𝑉𝑎𝑎�𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖� =
1
2
𝐾𝐾𝑎𝑎�cos 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 − cos𝜃𝜃𝑒𝑒𝑒𝑒�

2
 (2) 

For the dihedral-torsion potential, a sum of periodic functions is used as shown in Eq 3, where 

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the dihedral angle between beads 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, and 𝑙𝑙, 2𝑊𝑊 is the number of periodic functions, 

and ⌊⋅⌋ is the greatest integer function.  

𝑉𝑉𝑑𝑑�𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = �𝐾𝐾𝑑𝑑,𝑤𝑤

2𝑊𝑊

𝑤𝑤=1

�1 + cos ��
𝑤𝑤 + 1

2
� 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜑𝜑𝑒𝑒𝑒𝑒,𝑤𝑤�� (3) 

The parameters 𝐾𝐾𝑑𝑑,𝑤𝑤 and 𝜑𝜑𝑒𝑒𝑒𝑒,𝑤𝑤 are the force constant and phase angle for the 𝑤𝑤th periodic function, 

respectively. Specifically, 𝜑𝜑𝑒𝑒𝑒𝑒,2𝑛𝑛−1 ∈ {0∘, 180∘} and 𝜑𝜑𝑒𝑒𝑒𝑒,2𝑛𝑛 ∈ {−90∘, 90∘} for an integer 𝑛𝑛 ≥ 1. 

Eq 3 is equivalent to the Fourier series in Eq 4, where 𝑎𝑎0 = ∑ 𝐾𝐾𝑑𝑑,𝑤𝑤
2𝑊𝑊
𝑤𝑤=1 , 𝑎𝑎𝑤𝑤 =

𝐾𝐾𝑑𝑑,2𝑤𝑤−1 cos𝜑𝜑𝑒𝑒𝑒𝑒,2𝑤𝑤−1, 𝑏𝑏𝑤𝑤 = 𝐾𝐾𝑑𝑑,2𝑤𝑤 sin𝜑𝜑𝑒𝑒𝑒𝑒,2𝑤𝑤, and integer 𝑤𝑤 ∈ [1,𝑊𝑊]. 

𝑉𝑉𝑑𝑑�𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� = 𝑎𝑎0 + �𝑎𝑎𝑤𝑤

𝑊𝑊

𝑤𝑤=1

cos(𝑤𝑤𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑏𝑏𝑤𝑤 sin(𝑤𝑤𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) (4) 

The specific forms of bond-stretching, angle-bending, and dihedral-torsion potentials are chosen 

to be compatible with the Martini force field.53  

Bonded parameters that have been determined previously28 are used directly without 

modification. For new bonded parameters, an initial guess is made by applying direct Boltzmann 
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inversion on the reference bonded distributions, i.e., extracting parameters in the corresponding 

potentials by least squares fitting. With the initial guess, a CG simulation can be performed, which 

generates bonded distributions referred to as the CG bonded distributions. The new bonded 

parameters are iteratively improved by minimizing a cost function (Eq 5), where 𝝌𝝌𝛼𝛼 is a vector of 

properties quantifying bonded distribution 𝛼𝛼 and |⋅| represents the magnitude of a vector. 

𝐶𝐶 = ��𝝌𝝌𝛼𝛼𝐶𝐶𝐶𝐶 − 𝝌𝝌𝛼𝛼
𝑟𝑟𝑒𝑒𝑟𝑟�

2
 

𝛼𝛼

 (5) 

Superscripts ref and CG affixed to 𝝌𝝌𝛼𝛼 indicate whether the distribution is from the reference or 

CG bonded distribution, respectively. For bond lengths and bond angles, we aim for the CG 

bonded distribution to accurately reproduce the mean and standard deviation of the corresponding 

reference bonded distribution. Therefore, 𝝌𝝌𝛼𝛼 = {�𝜔𝜔𝛼𝛼𝜇𝜇𝛼𝛼 ,�1 − 𝜔𝜔𝛼𝛼𝜎𝜎𝛼𝛼}  for bond lengths and 

angles, where 𝜇𝜇𝛼𝛼 and 𝜎𝜎𝛼𝛼 are respectively the mean and standard deviation of the distribution, and 

𝜔𝜔𝛼𝛼 ∈ [0,1] is a weight that assigns the relative importance of 𝜇𝜇𝛼𝛼 and 𝜎𝜎𝛼𝛼. For the dihedral angle, 

the prescribed dihedral-torsion potential (Eq 4) is a Fourier series containing multiple maxima and 

minima. Therefore, instead of mean and standard deviation, 𝝌𝝌𝛼𝛼 is chosen as a vector consisting of 

Fourier series constants {𝑎𝑎�1, … , 𝑎𝑎�𝑊𝑊, 𝑏𝑏�1, … , 𝑏𝑏�𝑊𝑊} determined by curve-fitting the reference or CG 

bonded distribution with exp(−𝑉𝑉𝑑𝑑 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ) where 𝑉𝑉𝑑𝑑 is the dihedral-torsion potential in Eq 4. Here ⋅̃ 

is used to distinguish the curve-fit constants from the forcefield parameters {𝑎𝑎1, … ,𝑎𝑎𝑊𝑊, 𝑏𝑏1, … , 𝑏𝑏𝑊𝑊}. 

In other words, the forcefield parameters {𝑎𝑎1, … ,𝑎𝑎𝑊𝑊, 𝑏𝑏1, … , 𝑏𝑏𝑊𝑊} are iteratively adjusted to reduce 

the difference between �𝑎𝑎�1, … ,𝑎𝑎�𝑊𝑊, 𝑏𝑏�1, … , 𝑏𝑏�𝑊𝑊�  extracted from the reference and CG bonded 

distributions. An adaptive gradient descent is used to minimize the cost function in Eq 5, and the 

details can be found in the supporting information (SI) Section S1a.  
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The entire parameterization workflow is shown using black and red arrows in Figure 1. 

For PEIs that do not contain unknown parameters, CG topology and initial structure are determined 

from CG PEI SMILE (Simplified Molecular-Input Line-Entry System66) strings (see SI Section 

S1b for details). 

 Simulations 

A branched 2 kDa PEI with PR = 46% (Figure 2a) was simulated in TIP3P water with 

neutralizing salts (system AA2k in Table 1), based on the initial structure and forcefield 

(CHARMM General Force Field67) presented in Sun et al.27,68 The CG2k PEI in Table 1 and shown 

in Figure 2b was coarse-grained from Figure 2a and used to demonstrate the quality of the 

automated coarse-graining algorithm. Table 1 lists several other CG simulations performed for 

PEIs with different MW, DB, and PR to validate the CG model against experiments. The initial 

structure of these CG PEIs was based on the forcefield parameters derived from the CG 

parametrizations (SI Section S1b). Technical details of AA and CG simulation can be found in SI 

Section S1c and S1d, respectively, whereas methodologies used to determine PEI properties are 

given in SI Section S1e. 

Table 1: Summary of simulated systems. Each system is named after the simulation type, PEI structure, Mw, and the 
intended mass concentration of PEI (in g/L). The AA2k (same as CG2k) structure was proposed by Sun et al.27 Other 
PEI structures are proposed in this work (SL: semi-linear; MB: moderately-branched; HB: hyper-branched; see 
Section 3.3 for details). 
  

System name Simulation type Mn (kDa) Initial box size (nm3) 
AA2k All-atom 1.8 8.12×8.12×8.12 
CG2k Coarse-grained 1.8 8.12×8.12×8.12 
CG SL2k c10, CG MB2k c10, CG HB2k c10 Coarse-grained 1.8 6.92×6.92×6.92 
CG SL2k c20, CG MB2k c20, CG HB2k c20 Coarse-grained 1.8 5.50×5.50×5.50 
CG SL2k c30, CG MB2k c30, CG HB2k c30 Coarse-grained 1.8 4.80×4.80×4.80 
CG SL2k c37, CG MB2k c37, CG HB2k c37 Coarse-grained 1.8 4.50×4.50×4.50 
CG SL25k c5, CG MB25k c5, CG HB25k c5 Coarse-grained 10 14.92×14.92×14.92 
CG SL25k c10, CG MB25k c10, CG HB25k c10 Coarse-grained 10 11.84×11.84×11.84 
CG SL25k c20, CG MB25k c20, CG HB25k c20 Coarse-grained 10 9.40×9.40×9.40 
CG SL25k c30, CG MB25k c30, CG HB25k c30 Coarse-grained 10 8.21×8.21×8.21 
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 Results 

 Automated coarse-graining of PEI 

Analysis of the AA2k PEI revealed that parameters were known for 7 bond lengths, 12 

bond angles, and 9 dihedral angles,28 while unknown for 6 bond angles (Npqtt, Nsqtt, Nsqts, ttsq, 

sqtsq, and tsqt) and 21 dihedral angles (Nsqtspq, tsqtt, tsqts, Nsttt, tttsq, Npqttsq, tsspq, ttsqt, 

Nsqtsqt, sqtspq, tttt, ttss, Nsqtts, Nsqttpq, Nstsqt, tsqtpq, sqtsqt, Nttsqt, sqtss, Nttss, tsqtsq). The 

unknown parameters were determined over 30 iterations, with two additional sub-iterations for 

each bond angle to determine the Jacobian (see SI Section S1a) and eight periodic functions to 

model dihedral angles (W = 4 in Eq 4). Examination of five replicas of the automated 

parameterization confirmed the convergence of the algorithm and the uniqueness of the parameters 

it generated (shown below). The initial parameters were identical in all replicas because they were 

determined using direct Boltzmann inversion on the same reference bonded distributions. However, 

statistical variation among the replicas arose due to the different random seed values in CG 

simulations. 

The total cost and the cost associated with the new parameters are shown in Figure 3a and 

Figure 3b, respectively. For each replica, an overall decreasing trend of cost vs. iteration was 

observed, with some fluctuations arising from the statistical nature of MD simulations. The 

decreasing trend vanished within 30 iterations, indicating convergence. A further decrease in cost 

was not expected. The cost associated with the new parameters (Figure 3b) decreased by ~5 times, 

whereas the total cost decreased by ~2 times (Figure 3a). The lowest total cost was achieved at 

iterations 27, 20, 25, 23, and 28 for replicas 1-5, respectively (dashed vertical lines in Figure 3a). 

The parameters associated with these iterations are referred to as the optimal parameters for the 

corresponding replica. More discussions on the replica simulations can be found in SI Section S2. 
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Figure 3. Convergence of automated coarse-graining of a branched 2 kDa PEI: (a) the total cost and (b) the cost 
associated with new parameters. R1-R5 are different replicas. The vertical lines in (a) denote the optimal iteration for 
each replica. 
 

The new optimal parameters from different replicas are compared for bond angles in 

Figure 4a and dihedral angles in Figure 4b-v, where the optimized dihedral parameters 

{𝑎𝑎1, … ,𝑎𝑎𝑊𝑊, 𝑏𝑏1, … , 𝑏𝑏𝑊𝑊} in Eq. 4 were converted to �𝐾𝐾𝑑𝑑,1, … ,𝐾𝐾𝑑𝑑,2𝑊𝑊,𝜑𝜑𝑒𝑒𝑒𝑒,1, … ,𝜑𝜑𝑒𝑒𝑒𝑒,2𝑊𝑊� in Eq. 3. 

Figure 4a demonstrates the uniqueness of the parameters for bond angles Npqtt, Nsqtt, Nsqts, ttsq, 

and tsqt. However, parameters were not unique for sqtsq because simultaneously increasing the 

equilibrium angle and decreasing the force constant resulted in a similar CG bonded distribution 

(see SI Section S3). For the optimal dihedral parameters (Figure 4b-v), uniqueness was observed 

for 14 dihedral angles ((b) Nsqtspq, (d) tsqtt, (e) tsqts, (h) Nsttt, (i) tttsq, (j) Npqttsq, (k) tsspq, (l) 

ttsqt, (m) Nsqtsqt, (o) sqtspq, (p) tttt, (q) ttss, (u) Nsqtts, and (v) Nsqttpq), with a small variation 

for 4 dihedral angles ((c) Nstsqt, (n) tsqtpq, (s) sqtsqt, (t) Nttsqt), and a moderate variation for 3 

dihedral angles ((f) sqtss, (g) Nttss, (r) tsqtsq). Despite the variation in dihedral parameters, the 
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dihedral angle distributions were all similar to the corresponding reference bonded distributions 

(see SI Section S3). Therefore, the algorithm presented here ensures not only the accuracy of the 

CG forcefield but also the uniqueness of optimized parameters for most bonded interactions. 

 
Figure 4. Optimal bonded parameters for CG2k, obtained from 5 replicas (R1-R5) of automated parameterization: (a) 
bond angles, and (b-v) dihedral angles. 𝜃𝜃𝑒𝑒𝑒𝑒 and 𝐾𝐾𝑎𝑎 are parameters associated with bond angles (Eq 2), and 𝜑𝜑𝑒𝑒𝑒𝑒,𝑤𝑤 ,𝐾𝐾𝑑𝑑,𝑤𝑤 
are parameters associated with dihedral angles (Eq 3). The values of 𝜑𝜑𝑒𝑒𝑒𝑒,𝑤𝑤 are indicated by the symbols specified in 
the legend.  
 

Local properties of AA2k PEI and five replicas of CG2k PEI are compared in Figure 5 in 

terms of the RDFs between bead pairs P1-P1, P1-Qd, and Qd-Qd. The RDFs for AA2k were based 

on the reference CG trajectory (“ref-CG” in the legend), and those for CG2k were based on CG 

simulations using the optimal bonded parameters identified for the five replicas (R1-R5 in the 

legend). The RDF between 0-0.4 nm is shown in the top inset, 0.4-0.9 nm in the main plot, and 

0.9-4 nm in the bottom inset. Bond lengths, N-type bond angles, normal bond angles, and dihedral 

angles made the highest contribution to the RDF at radial distances of 0-0.4, 0.4-0.5, 0.5-0.7, and 

0.7-0.9 nm, respectively (comparison of bonded distributions can be seen in SI Section S3). The 
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contribution of 1-n (n > 4), i.e., nonbonded, interactions to the RDFs began at 0.8 nm and became 

prominent beyond 0.9 nm. The RDFs for CG2k can capture the general form of the RDFs for 

AA2k, with a few differences. First, in Figure 5a and 5b, there were multiple peaks between 0 

and 0.4 nm in the RDF of AA2k but only a single peak in the RDF of CG2k. This is typical of CG 

forcefields using a harmonic bond-stretching potential (e.g., Figure S3 in Song et al.69). The single 

peak, however, captured the spread of the multi-peak distribution and the location of the most 

prominent peak. Second, in Figure 5b and 5c, the peak at 0.4 nm in the RDFs of AA2k was not 

captured by the RDFs of CG2k, which stemmed from the difficulty in capturing the N-type bond 

angle distributions due to large Lennard-Jones repulsion at small angles.28 Atoms in AA 

simulations have more degrees of freedom that allow them to reduce the Lennard-Jones repulsions, 

which is difficult for the CG beads. Consequently, in the same figures, the peak at 0.45 nm was 

higher in the RDFs of CG2k. Third, in Figure 5c, the peak at 0.7 nm in the RDF of AA2k was not 

reproduced in the RDFs of CG2k, which is attributed to the previously parameterized bond angles, 

such as sqtpq28 (see SI Section S3). Fully re-parametrizing a new PEI molecule is expected to 

increase the accuracy of local structure because angles with the same name but in different PEIs 

can be subjected to different steric hindrances. However, it is undesirable to perform a complete 

reparameterization for every new molecule because AA simulations of high molecular weight PEIs 

are computationally costly and impractical. Instead, our design strategy is to reuse parameters that 

were previously learned without additional modification. Admittedly, such an approach can reduce 

accuracy, such as the CG RDFs between 0.5 and 0.8 nm in Figure 5c. However, similar level of 

discrepancies has been reported in the literature, e.g., in Figure 3 of Izvekov and Voth70. To 

examine the impact of discrepancies caused by reusing existing bonded parameters, we evaluated 
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global properties of CG2k (presented next) as well as simulated a new 2 kDa PEI with different 

structure but without any reparameterization (Section Error! Reference source not found.).  

 
Figure 5. Validation of local properties of CG2k against AA2k (ref-CG). Radial distribution function between bead 
type pairs (a) P1-P1, (b) P1-Qd, and (c) Qd-Qd. CG simulations were performed with the optimal parameters obtained 
from five replicas (R1-R5) of automated coarse-graining. 
 

The global properties including the diffusion coefficient D (Figure 6a), end-to-end 

distance of the longest linear chain Re (Figure 6b), and radius of gyration Rg (Figure 6c) are 

compared between CG2k replicas and AA2k for further validation. Note that no global properties 

were used in the cost functions for parameterizing CG2k. Based on the statistical z-test (SI Section 

S4), the CG and AA predictions were close for all replicas. Furthermore, CG simulations were 

able to reproduce the AA standard deviation of Re and Rg. The AA standard deviation of D was 

reproduced by the first replica, while the other replicas produced a smaller standard deviation. 

Since the CG parameterization was based on matching AA structural properties (bonded 

distributions), it is not surprising that less accuracy was observed for dynamic properties such as 

D. It is worth pointing out that for comparing D, the CG simulation time was scaled by a factor 

that depended on the mass concentration and PR of PEI as well as the Martini water model. In SI 

Section S5, it was demonstrated that the time scaling factor of a PEI was not significantly affected 

by the molecular topology. That is, the CG time-scaling factor could be determined from AA and 

CG simulations of ethylamine in refined polarizable65 or polarizable water71, and the same factor 
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would apply to complex PEI structures at the same mass concentration and PR. This is 

fundamentally different from the existing time-scaling factor used in the literature,53 which for 

every new molecule requires a new set of comparisons between AA and CG simulations.  

 
Figure 6. Validation of global properties of CG2k against AA2k. Comparison of (a) diffusion coefficient, (b) end-to-
end distance of the longest linear chain, and (c) radius of gyration. CG simulations were performed with the optimal 
bonded parameters obtained from five replicas (R1-R5) of automated coarse-graining. Diffusion coefficients from CG 
simulations were scaled based on SI Section S5. 
 

 Transferability of CG parameters 

To demonstrate the transferability of the CG parameters determined from CG2k, CG and 

AA simulations were performed for HB2k c37 (Table 1; Section 3.3), which has a different DB, 

PR, and mass concentration. All bonded parameters were directly adopted from the CG2k model 

(replica R5) without modification. Additionally, to test the transferability of parameters across 

different Martini water models, CG simulations were performed in polarizable71 (2.1P or 2.2P) 

and refined polarizable65 (2.2refP) water. The local (RDF) and global (D, Re, Rg) properties 

predicted from the CG simulations are compared against AA results in Figure 7. The accuracy of 

local properties (Figure 7a-c) was better than that of CG2k (Figure 5), whereas the accuracy of 

D (Figure 7d), Re (Figure 7e), and Rg (Figure 7f) were comparable to Figure 6. The accuracy of 

predicting the mean and standard deviation of Re and Rg was higher in polarizable water71 than in 

refined polarizable water65 (Figure 7e-f). However, all CG results were statistically similar to the 
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AA results. Overall, the CG parameters remain accurate despite a different branched structure, 

protonation state, and mass concentration. 

 
Figure 7. Validation of (a-c) local and (d-f) global properties of CG HB2k c37 against AA results, with parameters 
from replica R5. Radial distribution functions (RDFs) between bead type pairs (a) P1-P1, (b) P1-Qd, and (c) Qd-Qd 
and global properties (d) diffusion coefficient, (e) end-to-end distance of the longest linear chain, and (f) radius of 
gyration are shown. Diffusion coefficients from CG simulations are scaled as described in Section S5. Properties are 
determined from AA trajectories (AA), reference CG trajectories (ref-CG), CG simulations with polarizable water 
(2.1P/2.2P), and CG simulations with refined polarizable water (2.2refP). 
  

 Validation with experiments 

Additional validation was conducted against experiments using the optimal parameters of 

replica 5 for the CG models because of its lowest total cost among all replicas (Figure 3a). For 

such comparisons, the chemical structure and solvent conditions in the CG simulations must 

closely match those in the experiments. Commercially available Millipore-Sigma PEIs with Mw = 

25 kDa (Mn = 10 kDa) and 2 kDa (Mn = 1.8 kDa) were characterized by von Harpe et al.,72 and we 

used the reported amine ratios (1º: 2º: 3º) directly (Table 2). The PR of Mw = 25 kDa PEI at pH 7 

was determined from the buffering capacity data72 using an extended theory of Suh and Hwang23 
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(see SI Section S6). Due to the lack of buffering capacity data for Mw = 2 kDa PEI, the same PR 

as Mw = 25 kDa PEI was used. For ease of discussion, these PEIs are referred to as 25 kDa and 2 

kDa PEIs based on their Mw. 

Table 2. Characteristics of Millipore-Sigma PEIs, proposed CG PEIs (SL25, MB25, and HB25 for 25 kDa; SL2, MB2, 

and HB2 for 2 kDa), and PEIs previously reported experimentally in the literature (Roman numerals I to IX). When 

PR data was unavailable (indicated by ‡), it was predicted from the buffering capacity of 25 kDa Millipore-Sigma 

PEI72 using an extended theory of Suh and Hwang23 (SI Section S6). 

PEI 25kDa Mw (kDa) Mn (kDa) 1º: 2º: 3º PR (%) pH Solvent Buffer/Salt 
Millipore-Sigma72  25 10 1.03: 1.30: 1 31 7.0 Water 0 M NaCl 
SL25 10 10 1.01: 1.30: 1 31 7.0 Water 0 M NaCl 
MB25 10 10 1.01: 1.30: 1 31 7.0 Water 0 M NaCl 
HB25 10 10 1.01: 1.30: 1 31 7.0 Water 0 M NaCl 
I73 10.4 12.7 — 7‡ 9.63 Water 0.109 M NaCl 
II74 7.2 — 1.00: 2.00: 1 34 7.0 Water 0 M NaCl 
III75 16.6 7.9 — — — Water 1 M NaCl 
IV76 25 10 1.03: 1.30: 1 26 7.4 Water 20 mM Hepes 
V77 20 — — — 10 Water 0.086 M NaCl 
VI20 25 10 1.03: 1.30: 1 — — Water — 
VII78 25 10 1.03: 1.30: 1 28‡ 7.2 Water 0.05 M Tris-HCl 
VIII79 25 10 1.25: 1.50: 1 — — Chloroform — 
IX80 25 — — 31‡ 7.0 Water — 
PEI 2kDa        
Millipore-Sigma72 2 1.8 1.20: 1.13: 1 31‡ 7.0 Water 0 M NaCl 
SL2 1.8 1.8 1.08: 1.15: 1 31 7.0 Water 0 M NaCl 
MB2 1.8 1.8 1.08: 1.15: 1 31 7.0 Water 0 M NaCl 
HB2 1.8 1.8 1.08: 1.15: 1 31 7.0 Water 0 M NaCl 
I73 2.1 — — 7‡ 9.63 Water 0.109 M NaCl 
VII78 2 1.8 1.08: 1.15: 1 — 7.2 Water 0.05 M Tris-HCl 

 
For a given MW, (1º: 2º: 3º) ratio and PR, the numbers of primary, secondary, tertiary, and 

protonated amines were determined (see SI Section S7). With these descriptors, the number of 

possible chemical structures was still large. In this work, three branched structures, semi-linear 

(SL), moderately-branched (MB), and hyper-branched (HB), were proposed for 2 and 25 kDa CG 

PEIs (Figure 8). They were named SL2, MB2, HB2, SL25, MB25, and HB25, denoting their DB 

and Mw of the PEI they are modeling (Table 2). When designing these structures, we used 

repeating units of t(sspq) and t(spq) as well as terminals of pq, p, and sspq such that all bonded 

parameters were available from coarse-graining the 2kDa PEI in Section 3.1. As shown in Figure 
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8, SL structures had the smallest side chain and longest main chain; MB structures had a side chain 

between SL and HB; and HB structures had comparable main and side chains. Typically, the main 

chain was composed of tertiary beads, to which side chains of similar lengths were attached. Some 

side chains in the MB and HB structures were small (spq) to match the experimental descriptors. 

Due to the significant difference among the SL, MB, and HB structures, they are well 

representative of branched PEIs with Mn ≤ 10 kDa, and the properties of other branched structures 

would likely lie between those of SL and HB PEIs.  

 
Figure 8. Proposed CG structures for branched 25 kDa and 2 kDa Millipore-Sigma PEIs. The molecular weight of 
each structure is consistent with the Mn of the Millipore-Sigma PEI it represents. 
 

The diffusion coefficient D0 (Figure 9a) and radius of gyration R0 (Figure 9c) at infinite 

dilution and the intrinsic viscosity [𝜂𝜂] (Figure 9c) were evaluated for the CG PEIs. A comparison 

between 2 and 25 kDa CG PEIs showed that D0 was higher for 2 kDa and R0 was higher for 25 

kDa (Figure 9a, b), which is consistent with the understanding that D0 and the Stokes-Einstein 

radius are inversely proportional.78 The differences in [𝜂𝜂] between 2 and 25 kDa CG PEIs were 

insignificant (Figure 9c). For 25 kDa PEIs, D0 increased and R0 decreased with the increase in DB, 
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while the properties of 2 kDa PEIs were not significantly affected by DB. The dependence of [𝜂𝜂] 

on DB was negligible considering the standard deviation.  

 
Figure 9. Cross-validation of the CG PEI forcefield with experimental results. Comparison of (a) diffusion coefficient 
and (b) radius of gyration at infinite dilution, and (c) intrinsic viscosity. CG PEI results were calculated for three 
branched structures: semi-linear (SL), moderately-branched (MB), and hyper-branched (HB) based on the 
characterization of branched Mw = 25 kDa and 2 kDa Millipore-Sigma PEIs. The experimental results are numbered 
I-IX.  Experimental data statistically similar within a 95% confidence level to the data of SL, MB, and HB CG PEIs 
were respectively marked with ✦, ✶, and ✷. Data from (I) Hostetler and Swanson,73 (II) Lindquist and Stratton,74 
(III) Park and Choi,75 (IV) Clamme et al.76, (V) Ghriga et al.77, (VI) Zhou et al.20, (VII) Andersson et al.78, (VIII) Chen 
et al.79, and (IX) Nguyen et al.80  
 

Previously published experimental data for PEI had diverse branched structures and solvent 

conditions (Table 2). These PEIs were either polydisperse with an average Mw ~ 2 or 25 kDa, or 

fractionated with Mn ~ 1.8 kDa or 10 kDa. Available experimental values for D0, R0 (Stokes-

Einstein radius), and [𝜂𝜂] are shown in Figure 9. Overall, the experimental data compared well 

with CG simulations, which was confirmed quantitatively via the statistical z-test (see SI Section 
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S8). For each experimental data, the CG PEI model(s) that provided predictions within a 95% 

confidence interval from the experiment are indicated by ✦, ✶, and ✷ for SL, MB, and HB, 

respectively (Figure 9). Based on the comparison in Figure 9 and the statistical z-test data (SI 

Section S8), we can discern that HB25 is a good representation of the 25 kDa PEI in I73, III75, IV76, 

V77, and VIII79, and SL2 can reasonably represent the structure of the 2 kDa PEI in I73. It is 

important to note that there are likely other branched structures that can produce results similar to 

those of HB25 or SL2. However, they should also possess physical properties that are comparable 

to HB25 or SL2. In other words, one should have confidence in modeling the PEIs in these 

experiments using HB25 or SL2 and performing CG simulations to investigate phenomena that 

cannot be observed at experimental resolution.  

 
 Discussion 

In this work, the CG forcefield for PEI with an arbitrary MW and DB was determined from 

the AA trajectory and topology using graph analysis and adaptive gradient descent, consistent with 

the Martini methodology.53 CG simulations with the identified optimal bonded parameters could 

accurately predict AA local properties such as RDF (Figure 5) and bonded distributions (SI 

Section S3), as well as global properties such as D, Re, and Rg (Figure 6). Compared to our 

previous study,28 the present work: (i) automates the AA to CG mapping and CG topology 

generation with the consideration of bead asymmetry; (ii) introduces new cost functions that allow 

fast convergence (8 hours for a 2 kDa PEI vs. a few months for eight 600 Da PEIs) and accurate 

predictions of bonded parameters; (iii) demonstrates that bonded parameters can be partially 

(Section 3.1) or fully (Section 3.2) repurposed for PEIs with different MW, DB, PR, mass 

concentration, and in different Martini water models; and (iv) makes direct comparison with 

experimental data to predict the probable chemical structures of synthesized PEIs.  
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The CG forcefield generated from different replicas had similar accuracy in reproducing 

AA local and global properties (Figure 5, Figure 6, SI Section S3). The performance of the 

parameterization was not significantly affected by small changes in the settings of the adaptive 

gradient descent algorithm (e.g., initial learning rate and parameter constraints, see SI Section S2). 

While the CG parameterization in Section 3.1 was demonstrated for a single hydrated PEI, the 

algorithm and the package coarsen can parameterize AA trajectories containing multiple PEIs with 

diverse MW, DB, and PR in the presence or absence of solvent(s).  

During the NPT equilibration of system CG2k, the volume of the simulation box changed, 

increasing the mass concentration of CG2k PEI from 5.7 g/L (same as the AA simulation) to 8.4 

g/L. Using the van der Waal’s radius of 0.12 nm when adding refined polarizable water,65 the 

number of water molecules added to the system was insufficient, leading to volume reduction 

during equilibration. An additional simulation was performed with the same optimal bonded 

parameters as replica 5 and van der Waal’s radius, but the number of water molecules was 

increased (along with a larger initial box) to achieve an equilibrium mass concentration of PEI 

comparable to that in the AA simulation (6.0 g/L). The comparison of AA and CG RDFs improved 

after the mass concentration correction (Figure 5 vs. Figure S11), whereas the quality of bonded 

distributions and global properties remained the same (SI Section S3 and S9). The mass 

concentration correction was applied to the CG HB2k c37 system discussed in Section 3.2, thereby 

producing more accurate RDF curves. The comparison between CG PEI and experimental data 

did not need mass concentration correction because global properties were determined at infinite 

dilution using linear regression.  

Potter et al.36 recently developed an automated mapping algorithm for Martini by 

modifying the algorithm of Webb et al.35 In their algorithm, coarse-graining a simple linear PEI 
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such as (C-C-N)4 produced dissimilar beads (-(C-C-N)-, -(C-C-N)-, -(C-C-N-C)-, and -(C-N)-), 

which was inconsistent with the Martini methodology53. Furthermore, the algorithm cannot capture 

the asymmetry of -(C-C-N)- beads and the resulting asymmetric bonded distributions (as discussed 

in Methods). These issues were addressed by our work.  

There are differences in design philosophies between our iterative parameterization 

algorithm and that of Empereur-Mot et al.48 Here we elaborate on the performance of the two 

algorithms by comparing the parameterization of our 2 kDa PEI in Figure 2b with the 

parametrization of C3-symmetric benzotrithiophene and naphthalene diimide in Empereur-Mot et 

al.48 The 2 kDa PEI contained 27 new bonded distributions and 180 new parameters. C3-symmetric 

benzotrithiophene had a comparable number of distributions (25) but a lower number of 

parameters (50), and naphthalene diimide had a larger number of distributions (49) but half the 

number of parameters (98). First, we examine computational efficiency. Empereur-Mot et al.48 

obtained optimal parameters for C3-symmetric benzotrithiophene and naphthalene diimide after 

240 and 360 iterations, respectively, which is significantly higher than the number of iterations 

needed by our algorithm (at most 84 including the sub-iterations for Jacobian calculation). This is 

expected because particle swarm optimization searches more parameter space than adaptive 

gradient descent. In contrast, gradient descent is known to converge to the nearest minimum. Using 

initial guesses obtained from direct Boltzmann inversion, our optimal CG bonded parameters could 

reproduce local and global AA properties, which suggests that gradient descent likely converged 

to a global minimum. Therefore, our algorithm provides an efficient way to optimize parameters, 

especially when the number of parameters is high. 

Second, we examine the quality of reproducing the local structural properties. By 

minimizing the earth mover’s distance,60,61 Empereur-Mot et al.48 could match most of the 
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reference bonded distributions for C3-symmetric benzotrithiophene and naphthalene diimide, 

although in some cases they struggled to match the standard deviation. Our algorithm achieved a 

similar level of matching with the reference bonded distributions. As discussed in the Results, 

some reference N-type bond angle distributions were difficult to model due to strong repulsion 

between beads at small angles. It was also challenging to perfectly model certain reference dihedral 

angle distributions (SI Section S3). However, this is not a flaw associated with the adaptive 

gradient descent algorithm. Instead, we had demonstrated in a previous work that different 

reference bonded distributions are possible for the same dihedral angle due to local steric 

hindrance.28 Among the dihedral angles parameterized in the present work, the CG distribution did 

not perfectly match the reference bonded distribution for tttt, Nsqttpq, Nsttt, and Npqttsq (see SI 

Section S3); these dihedral angles have at least two tertiary beads, signifying the importance of 

local steric hindrance. 

Third, we compare the quality of reproducing global structural properties. Empereur-Mot 

et al.48 accurately reproduced the mean of Rg but not its standard deviation. In comparison, our 

optimal bonded parameters correctly predicted the mean and standard deviation of Rg and Re. The 

higher accuracy in our results is most likely due to the definition of the cost function, which 

minimizes the difference in means and standard deviations between CG and reference bonded 

distributions. That is, by modeling the fluctuations in local structural properties, the fluctuations 

in global structural properties are predicted with higher precision. Other considerations in our 

algorithm, such as the asymmetry of beads and multiple periodic functions for dihedral angles, can 

also contribute to higher accuracy. 

The recent work of Empereur-Mot et al.47 demonstrated the parameterization of bonded 

and nonbonded interactions of several lipids in implicit/explicit water. A multi-objective 
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optimization approach was taken to reproduce AA bonded distributions and RDFs as well as 

experimentally measured area per lipid and lipid bilayer thickness. The methodology presents 

several advantages, including automated parameterization of bonded and nonbonded interactions 

and good accuracy due to the application of multiple objective functions. On the other hand, 

simultaneously parameterizing bonded and nonbonded interactions can lead to unintended artifacts. 

One artifact could be the over- or under-stretching of the bond lengths to match the experimental 

lipid bilayer thickness instead of seeking the optimal nonbonded interactions. For example, large 

discrepancies in the reference and CG bond length distributions were observed for POPC in 

explicit water.47 Whether or not this has a strong influence on the transferability of the parameters 

remains to be explored. In comparison, in this work, nonbonded and bonded interactions are 

parameterized separately following the Martini methodology, which avoids such an artifact.53 

Nonbonded parameters are determined from solvation and partitioning free energies, which have 

proven to be robust and reproduce the potential of mean force (PMF) profiles from AA 

simulations.28,31  

For the first time, chemical structures of CG PEIs were proposed based on a commercial 

product (Millipore-Sigma PEIs), and their physical properties were compared with experiments. 

The results suggest the feasibility of using simulations to predict probable chemical structures of 

monodisperse PEI that can represent PEIs in experiments. Simulating these chemical structures 

can provide unique insights into the structure-function relationships that govern biological or 

physical phenomena that may not be accessible by experiments. It should be noted that the reported 

experimental data were obtained under varied conditions (pH, solvent, buffer, and salt 

concentration). Furthermore, synthesized PEI solutions are polydisperse even after fractionation. 

Replicating all experimental conditions and performing corresponding CG simulations is beyond 
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the scope of this work. While our simulation systems were designed to match experimental 

characterization and solution conditions as closely as possible, a better comparison can be achieved 

by developing Martini models for buffers and modeling polydisperse PEI systems. Additional 

experimental data, such as multidimensional NMR and the distribution of PEI’s MW, will benefit 

the construction of such polydisperse systems.  

Additional discussions are warranted for the PEI properties being compared. In 

experiments, the diffusion coefficient is calculated from the Stokes-Einstein radius (and vice versa) 

at a specified mass concentration or infinite dilution. Since Stokes-Einstein radius and Rg are by 

definition different, a comparison of D0 (or D) between CG PEI and experiments is more 

appropriate. In Figure 9, the standard deviation in [𝜂𝜂] is much higher than that in D0 and R0. 

Attempts to decrease the standard deviation by increasing the number of random walks, interior 

samples, and PEI configurations in the ZENO program81,82 were unsuccessful. Calculating 𝜂𝜂 and 

[𝜂𝜂]  using Green-Kubo relations generated unphysical values, probably because of the large 

timesteps used in CG simulations, which increase the integration error of the time autocorrelation 

function. For this work, the standard deviation in [𝜂𝜂] appears acceptable. However, further testing 

with different salt concentrations and validation with corresponding experiments are 

recommended for future studies.  

Currently, the software is limited to PEIs. Due to the large diversity of PEI structures and 

number of unparameterized bonded distributions, we expect this software would greatly speed up 

their CG modeling and simulation. The same algorithm can be adapted to automate the CG 

parameterization of other polymers, which requires only three changes in the open-source software. 

First, different repeating units should be searched, e.g., -(C-C(-C))- for branched or linear 

polypropylene (PPL) and -(O-C(=O)-C(-C))- for linear poly(lactide) (PLA). To handle block 
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polymers or polymers with large repeating units, different units can be searched one after another. 

For example, AA to CG mapping for PEI-g-polyethylene glycol (PEG) can be determined by 

searching all -(C-C-N)- units first, followed by searching all -(C-O-C)- units. For polymethyl 

methacrylate (PMMA), the units of -(C-O-C(=O))- and -(C-C(-C))- can be searched sequentially. 

Second, the criteria for identifying the “head node” might need modification. For example, the 

“head node” in PLL is a carbon atom with three hydrogens (the same as in PEI), while in PLA it 

is an oxygen atom with one hydrogen. Although PLL does not have a unique “head node”, starting 

from any “head node” and searching for the repeating units would produce the same AA to CG 

mapping. Finally, to handle CG molecules with only symmetric repeating units, the CG bonds 

should be represented by undirected edges. The iterative algorithm to determine bonded 

parameters remains the same. The automated structure generation from SMILE strings, AA to CG 

mapping, and CG parameterization scheme are particularly beneficial for modeling branched 

polymers and would allow high throughput simulations of complex polydisperse solutions. In our 

upcoming work, a general mapping algorithm that can handle molecules consisting of both 

symmetric and asymmetric units and fractional AA to CG mapping will be discussed, which is 

beyond the scope of this study. 

One final comment is that in the present work, the bonded parameters for PEI have been 

determined and validated for dilute hydrated systems (mass concentrations 6-37 g/L) and could be 

different for PEIs with high mass concentrations, in non-aqueous solvent(s), or PEI melts. In such 

cases, the bonded parameters derived here should not be repurposed without care. If an AA 

forcefield is able to accurately simulate such conditions, our automated algorithm can derive new 

bonded parameters from the reference CG trajectories. The nonbonded parameters are expected to 

remain the same because they were derived from partitioning free energy data between water and 
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different organic solvents; however, additional validation is recommended. The ability of our CG 

model to predict complex phenomena such as entanglements also needs further exploration.  

 Conclusion 

An automated algorithm was developed to determine Martini CG forcefield parameters for 

PEI with arbitrary molecular weight, chemical structure, and protonation state. The 

parameterization of a 2 kDa PEI was demonstrated as an example, where the optimization 

converged within 30 iterations. Four additional replica parameterizations were performed to 

demonstrate the uniqueness of the optimized parameters. The derived CG PEI forcefield 

reproduced the structural (radius of gyration, end-to-end distance of the longest linear chain, radial 

distribution function, and bonded distributions) and dynamic (diffusion coefficient) properties of 

AA PEI.  

Experimental characterization data were used to propose PEI structures and model them 

using the newly derived parameters. Specifically, three branched structures were proposed for 2 

and 25 kDa Millipore-Sigma PEIs. Multiple CG simulations were performed for each PEI to 

calculate the diffusion coefficient and radius of gyration at infinite dilution as well as the intrinsic 

viscosity. The properties of proposed CG PEI structures agreed well with experimental data, thus 

providing a strategy to infer and validate probable chemical structures in an experimental system. 

 Supporting Information 

Supporting methods; discussions on parameter constraints and learning rate in adaptive 

gradient descent; comparing reference and CG bonded distributions; z-score between CG and AA 

data; CG time scaling factor; determining protonation ratio from buffering capacity; determining 

the number of primary, secondary, tertiary, and protonated beads in PEI; z-score between CG and 
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experimental data; transferability of CG parameters to new PEIs; and effects of equilibrium mass 

concentration of PEI and water model on CG PEI properties. 
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