
Transliteration Generation from the Orthographic and Phonetic
Data

by

Lei Yao

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c©Lei Yao, 2014

Abstract

Machine transliteration is important to machine translation and cross-lingual in-

formation retrieval. Previous works show that machine transliteration can benefit

from supplemental phonetic transcriptions and transliterations from other languages

through a re-ranking framework. In this thesis, I propose to leverage supplemental

information by jointly considering it with the spelling of the source word during the

transliteration generation process. This approach is shown to be more accurate and

faster than the re-ranking approach. In addition, I propose to represent supplemen-

tal transliterations through a common phonetic interlingua. Experiments suggest

that the interlingua representations can be as effective as the original orthography,

and can even be obtained from languages that are not available during training.

ii

To my friends and family

iii

Acknowledgements

First of all, I am very grateful to my supervisor, Dr. Kondrak, for his great guidance
and patience throughout my graduate study and research. I would like extend my
thanks to Garrett Nicolai, for his collaboration and constructive feedbacks; thanks
to Mohammad Salameh, for the fruitful discussions. And, especial thanks to my
family for being so supportive all the time.

iv

Contents

1 Introduction 1

2 Related Work 4
2.1 Machine Transliteration . 4

2.1.1 Transliteration Process . 4
2.1.2 Alignment . 5
2.1.3 Phonetic-based Transliteration 6
2.1.4 Spelling-based Transliteration 8

2.2 Leveraging supplemental languages 8
2.3 Transliteration Interlingua . 9

3 DirecTL+ 11
3.1 Scoring Model . 11
3.2 Searching . 12
3.3 Training . 13

4 Joint Consideration of Spellings and Supplemental Information 15
4.1 Joint Consideration of Spellings and Phonemes 15

4.1.1 Scoring Model . 15
4.1.2 Searching . 16
4.1.3 Training . 18

4.2 Alignment and Implementation . 18
4.2.1 Pivoting on the target language 19
4.2.2 Pivoting on the source language 19

4.3 Generalization for Jointly Considering Arbitrary Number of Strings 20
4.4 Beyond the Joint Model . 21

4.4.1 Language-specific preprocessing 21
4.4.2 Combining joint model with re-ranking 22
4.4.3 Apply target-language lexicons 23

4.5 Experiment and Discussion . 24
4.5.1 Data . 24
4.5.2 Improving Transliteration with Phonetics 25
4.5.3 Improving Transliteration with Supplemental Transliterations 28
4.5.4 Discussion . 29

v

5 Transliteration with Interlingua as Supplemental Information 31
5.1 IPA as Interlingua . 32
5.2 English as Interlingua . 32
5.3 Phonetic feature vector as Interlingua 34

5.3.1 Merge Phonetic Feature Vectors 34
5.3.2 Joint Model Modification 35

5.4 Experiments and Discussions . 35
5.4.1 Data . 36
5.4.2 Effectiveness . 36
5.4.3 Multilinguality . 38

5.5 Discussion . 40

6 Conclusion and Future work 41
6.1 Future work . 41

References 43

vi

List of Tables

3.1 Feature Template applied by DirecTL+ 12

4.1 Feature template for extracting features between the phoneme string
and the target string . 17

4.2 The size of each pairwise NEWS dataset and the amount of com-
mon data with the English-Japanese dataset 25

4.3 Pivoting on the target vs. Pivoting on the source on the development
set . 26

4.4 English-to-Japanese transliteration results on the development set . . 27
4.5 English-to-Japanese transliteration results on the test set 27
4.6 The amount of data entries in English-Japanese dataset having cer-

tain number of supplemental transliterations 28
4.7 Results of utilizing supplemental transliteration for English-to-Japanese

and Japanese-to-English transliteration on the development set . . . 29
4.8 Results of incorporating an English lexicon for the Japanese-to-

English transliteration on the development set 29
4.9 Results of utilizing supplemental transliterations for English-to-Japanese

and Japanese-to-English on the test set 30

5.1 G2P performance on the Wiktionary development set 37
5.2 The development results of transliterating each supplemental lan-

guage into English for using English as interlingua 37
5.3 Results of using different representations of supplemental translit-

erations on the English-to-Japanese development set 38
5.4 Results of using different representations of supplemental translit-

erations on the English-to-Japanese test set 39
5.5 Multilingual performance on the development set 39
5.6 Multilingual performance on the test set 40

vii

List of Figures

1.1 An irregular name that is difficult to transliterate correctly 2

2.1 The typical machine transliteration framework summarized in (Karimi
et al., 2011) . 5

2.2 Pairwise alignment example . 6
2.3 Two typical graphic representations of phonetic-based approaches . 7
2.4 The graphic representation of spelling-based methods 8

4.1 Triple alignment for training joint model 16
4.2 Inconsistency exists among three pairwise alignments 18
4.3 Pivot on the target word . 19
4.4 Pivot on the source word . 21
4.5 Poor triple alignment . 23
4.6 Better triple alignment by romanizing Japanese characters 23
4.7 Better triple alignment by romanizing Japanese characters and con-

verting x to ks . 24

5.1 Different interlingua representations 33
5.2 Phonetic feature vector example 34

viii

Chapter 1

Introduction

Transliteration, also known as phonetic translation, is the process of transforming
the script of a word from the source language to the target language, while preserv-
ing the original pronunciation as closely as possible. For the example in Figure 1.1,
the name Joaquin in English is transliterated intoホアキン (pronounced as HO A
KI N) in Japanese. Machine transliteration aims to automate this process.

Machine transliteration is important to statistical machine translation (SMT).
SMT usually performs poorly at translating names (Hermjakob et al., 2008) while
some names often carry the central meanings of a sentence (Li et al., 2013). There-
fore, machine transliteration is applied to overcome this bottleneck. It is also impor-
tant for cross-lingual information retrieval (Abduljaleel and Larkey, 2003; Udupa
and Khapra, 2010). For example, we may not have documents for the queryホア
キン, but we can return documents containing the name Joaquin with the help of
machine transliteration.

Most early transliteration models are developed on a phonetic-based framework.
Their intuition is straightforward, i.e., the phonetic space is common among lan-
guages, which can be used to generate intermediate representation between source
and target languages. The goal of machine transliteration is then simplified to learn
transformation rules between the source language and the target language in the
common phonetic space. The early models often apply a pipeline architecture
(grapheme to phoneme conversion, followed by phoneme to phoneme conversion,
then phoneme to grapheme conversion) that increases the chance of error propa-
gation. Also, they do not account for the fact that some names are transliterated
according to their orthographic rather than their phonetic representation. Spelling-
based models are thereby developed to overcome the above-mentioned drawbacks.
These models learn directly the orthographic mapping between the source language
and the target language. Thus, there is only one step in their process and orthogra-
phy is taken into consideration.

Although spelling-based models generally achieve better results than phonetic-
based ones, they can barely handle irregular names which are pronounced unusual.
Let us take a look at the previous example of transliterating Joaquin into Japanese.
The source word, Joaquin, originates from Spanish thus it does not follow English

1

Figure 1.1: The source name Joaquin and the corresponding target transliteration

ホアキン (pronounced as HO A KI N). It is difficult to pronounce the source name,

but with the help of its phonemes /hwakin/ and supplemental transliterations from

other languages we have a better idea how to transliterate it into Japanese.

orthography nor phonology. It is likely to be incorrectly transliterated into ジョ
アキン(pronounced as ZI yo A KI N), because this word, especially the letter J,

is pronounced unusual. If we have access to the phonetic transcription of Joaquin,

such as the phoneme string /hwakin/, generating the correct target transliteration

becomes a much easier task. Bhargava and Kondrak (2012) propose using the

phonetic transcription of the source word to re-rank the outputs of spelling-based

models, which are typically in the form of ranked lists of candidate transliterations.

Although their method boosts the transliteration performance by a large margin,

the post-hoc property of the re-ranking idea prevents further improvement. If the

spelling-based models fail to put the correct transliteration in the candidate lists in

the first place, re-ranking will not bring any improvement. Therefore, in this work,

I propose to directly include phonemes into the process of generating translitera-

tions. This joint consideration of orthographic and phonetic representations is more

intuitive and natural. Imagine a translator attempts to transliterate an English name

into Japanese. It is more likely that he/she will consider pronunciation and spelling

simultaneously and then come up with an answer, rather than first creating a list of

candidates based on the spelling and then picking the one with the closest sound

to the original name. My experiments suggest that the joint approach is more ac-

curate and faster than the re-ranking approach. In addition, I show that these two

approaches can be combined to achieve further improvement.

Supplemental transliterations from other languages could also help improve

transliteration. For the example in Figure 1.1, we are provided a Chinese translit-

eration华坚. As a Chinese speaker, I know immediately the letter J in the source

word Joaquin should be pronounced as /h/, because 华 is a strong indication of

the sound /h/. Bhargava and Kondrak (2012) report significant improvement of

using these supplemental transliterations to re-rank the results of spelling-based

models. However, besides the above-mentioned drawbacks of their approach, it has

additional limitations. First, the feature space expands polynomially when more

languages are included, because features are extracted from the orthography of lan-

guage pairs. Second, their model cannot utilize supplemental transliterations from

languages that are not available during training, which means they need to retrain

their model each time they have access to a new language. Inspired by the interlin-

2

gua machine translation and phonetic-based transliteration approaches, I propose to
represent all the supplemental transliterations through a common phonetic interlin-
gua, and then extract features from this interlingua representation. Thus, the size
of the feature space is independent of the number of supplemental languages; and
when we have access to new languages, we only need to learn how to map them to
the phonetic interlingua rather than retraining the transliteration model. My exper-
iments show the phonetic interlingua representation has great potential in encoding
supplemental transliterations and leveraging transliterations from new languages.

The thesis is organized as follows. Chapter 2 introduces the related work. Chap-
ter 3 describes the state-of-the-art string transduction model, DirecTL+, through
which I implement my ideas. Chapter 4 details improving transliteration by jointly
considering orthography with supplemental information such as phonetic transcrip-
tions, and transliterations from other languages. I explore the idea of using interlin-
gua to represent supplemental transliterations in Chapter 5. Chapter 6 presents my
conclusion and future work.

3

Chapter 2

Related Work

This chapter starts with a brief review of the general machine transliteration. Then
I will describe specifically the ideas of leveraging supplemental information and
interlingua for machine transliteration.

2.1 Machine Transliteration
Works in machine transliteration fall into two groups, i.e., transliteration genera-
tion and transliteration mining. Transliteration generation models are developed
to transliterate new terms. Transliteration mining aims to discover transliterations
from large multilingual corpora; thus, it can be applied to provide training data for
transliteration generation models. Since transliteration generation is often referred
to as the core task of machine transliteration and is also the focus of my study, I only
review transliteration generation in this thesis. I will use machine transliteration and
transliteration generation interchangeably unless otherwise specified.

2.1.1 Transliteration Process
The transliteration generation process consists of two phases: training and decod-
ing. The training stage assumes a bilingual corpus for training, where each source
word is paired with its transliteration in the target language1. The decoding stage
produces a ranked list of transliteration candidates given a source word. Figure 2.1
shows the typical transliteration generation framework in the literature (Karimi et
al., 2011).

The training stage can be further divided into two phases: letter-level alignment
between the source and target words, followed by transformation rule generation.
The transformation rule is often represented as a mapping between a source let-
ter/sound sequence and a target letter/sound sequence. Each transformation rule
is associated with a score indicating the confidence of this transformation. The
typical decoding stage also consists of two sub-stages: segmentation of the source

1I also refer to this kind of bilingual corpus as the pairwise data.

4

word into multiple letter sequences and generation of a list of candidate target words
sorted by their confidence scores.

Training

Alignment Transformation
Rule
Generation

Bilingual
Corpus
B = (S,T)

Model Segmentation

Source Word S

Transliteration
Generation

Pre−Processing

Decoding

Target
Word(s)
T

Figure 2.1: The typical machine transliteration framework summarized in (Karimi
et al., 2011)

2.1.2 Alignment
The purpose of aligning the source and target words is to find the letter/sound cor-
respondence between the source and target languages, which thereby provides the
basis for learning transformation rules. The quality of alignment has a substantial
effect on a model’s performance. Figure 2.2 shows an aligned pair of English and
Japanese transliterations. We can notice that there is no crossed lines in this ex-
ample. This is due to the monotonic constraints of transliteration alignment (that
is, the order of letter/sound is preserved between languages). Early transliteration
systems directly apply the non-monotonic aligners that are originally developed for
machine translation, such as IBM Model 1 and Model 3 (Brown et al., 1993) and
GIZA++ (Och and Ney, 2003). However, non-monotonic alignments are inferior to
monotonic alignments (Gao et al., 2004; Li et al., 2004; Karimi et al., 2007).

Transliteration alignment algorithms can be further categorized according to the
representation they use.

• Phonetic-based: Algorithms in this category require preprocessing the source
and target words by mapping them into a common phonetic space. Prior

5

Figure 2.2: The alignment between the English word ADEPT and the Japanese
Katakanaア(A)ド(DO)ネ(NE). is a null letter, which means the English letter T
has no correspondence in Japanese.

knowledge about phonetic similarity is often utilized to achieve alignment
with phonetic representations (Oh and Choi, 2002; Kessler, 2005; Tao et al.,
2006; Yoon et al., 2007; Pervouchine et al., 2009; Jiampojamarn et al., 2009).

• Spelling-based: Since the orthography of the source language and the target
languages is usually heterogeneous; in order to be language-independent, al-
gorithms of this category assume no or minimal knowledge about the orthog-
raphy. Unsupervised algorithms, e.g., Expectation Maximization(EM) (Demp-
ster et al., 1977), are broadly applied to learn letter correspondences between
languages (Abduljaleel and Larkey, 2003; Karimi et al., 2006; Jiampojamarn
et al., 2009).

Notice that although alignment is important to transliteration, it is not a prereq-
uisite to build a transliteration system. There are alignment free approaches that are
also effective (Zelenko and Aone, 2006; Langlais, 2013).

2.1.3 Phonetic-based Transliteration
Most early efforts in machine transliteration follow a phonetic-based framework,
due to the phonetic nature of transliteration. Two typical diagrams of these ap-
proaches are shown in Figure 2.3.

Methods represented by Figure 2.3(A) only create a single phonetic represen-
tation of either the source or the target language. Sound changes are not modelled
explicitly in the phonetic space. Arbabi et al. (1994) propose a knowledge-based
system for Arabic-to-English transliteration. Arabic names are first converted into
phonetic transcriptions, which are then directly converted into English names. The

6

(A)

I

S T

I
S

I
T

S T

(B)

Figure 2.3: Two typical graphic representations of phonetic-based approaches. I is
the phonetic representation.

two phases of conversion are based on a predefined set of rules. Thus, no machine
learning technique is involved. Jeong et al. (1999) apply a hidden Markov model
(HMM) for Korean-to-English transliteration. They only consider the phonetic rep-
resentation of English, and assume any Korean letter is only dependent on one sin-
gle pronunciation unit in English. Jung et al. (2000) approach English-to-Korean
transliteration using an extended Markov model that allows the context information
to be encoded; that is, the target letter depends on a context window of the source
phonetic units.

Methods represented by Figure 2.3(B) create phonetic representations for both
the source and target words. The transformation rules are then generated to trans-
form sounds from the source language to the target language. Knight and Graehl
(1998) create such a transliteration model for Japanese-to-English transliteration.
Their model is composed of four successive components: one weighted finite-state
transducer (WFST) to produce the phonetic transcription of a given Japanese word,
one WFST to convert the Japanese transcription into the corresponding English
transcription, one WFST to recover the English word from the transcription gen-
erated by the previous WFST, and one weighted finite-state acceptor (WFSA) to
give the likelihood of an English word just as a unigram language model does. In
order to train the second WFST, they apply the EM algorithm to align the source
and target transcriptions. Note their EM algorithm only learns the co-occurrence
of the source and target phonemes, thus phonetic similarities of phonemes are not
explicitly modelled. Lin and Chen (2002) present a method of English-to-Chinese
transliteration by explicitly utilizing a phonetic similarity measure. They apply a
modified Widrow-Hoff learning algorithm to automatically acquire phonetic simi-
larities from a bilingual transliteration corpus. Their automatically extracted pho-
netic similarities outperform hand-crafted phonetic similarities.

7

2.1.4 Spelling-based Transliteration
The phonetic approaches suffer from the error propagation problem because of their
requirement of multiple processing steps. Spelling-based approaches are thereby
proposed to overcome this problem. Figure 2.4 shows a general diagram of a
spelling-based approach. We can see the number of steps in the transliteration pro-
cess is reduced to one.

S T

Figure 2.4: The graphic representation of spelling-based methods.

Kang and Choi (2000) study English-to-Korean transliteration with decision-
tree learning. They derive their alignment algorithm by extending the cognate align-
ment algorithm by Covington (1996) with heuristic rules about correspondence be-
tween Korean and English letters, then apply decision tree learning to transform
each English letter to Korean. Abduljaleel and Larkey (2003) apply GIZA+ + to
align English and Arabic words. They then adapt the noisy-channel model to learn
English-to-Arabic transliteration based on the aligned data. Li et al. (2004) propose
a joint source-channel model for English-to-Chinese transliteration. Their model
is capable of learning alignment and transliteration simultaneously (the alignment
model and the transliteration model actually share the same set of parameters),
which has advantages over the systems that separate the two steps.

Sherif and Kondrak (2007) investigate Arabic-to-English transliteration using
a Viterbi substring decoder and a substring-based transducer. They show that the
transducer outperforms the Viterbi decoder as a result of its capability in implement-
ing a unigram model and eliminating low probability mappings. Jiampojamarn et
al. (2009) apply a general string aligner, M2Maligner (Jiampojamarn et al., 2007)
and a general discriminative transducer, DirecTL+ (Jiampojamarn et al., 2008) for
machine transliteration. They achieve the best results in several language pairs in
the NEWS 2010 transliteration generation shared task (Li et al., 2010). They fur-
ther improve their model by introducing joint n-gram features (Jiampojamarn et al.,
2010). Since my proposed model is based on theirs, more details of their model
will be provided in Chapter 3.

2.2 Leveraging supplemental languages
The idea of taking advantage of data from additional languages for machine translit-
eration is first explored by Khapra et al. (2010). They are motivated by the need
to transliterate low-resource language pairs. They propose a bridge approach to
transliterating low-resource language pair (X, Y) by pivoting on an additional lan-
guage Z, where the pairwise data between (X,Z) and (Y, Z) is relatively large.

8

However, they show pivoting on Z results in less accuracy than directly transliter-
ating X into Y . Zhang et al. (2010) and Kumaran et al. (2010) combine the pivot
approach with the direct transliteration approach and achieve better performance
than using either of the two approaches alone.

Bhargava and Kondrak (2011) find transliterations from other languages help
Grapheme-to-Phoneme systems produce better phonetic transcriptions of names
through a re-ranking framework. Their intuition is that transliterations from other
languages alleviate the ambiguities in pronouncing names. They then generalize
this idea to improve transliteration by utilizing supplemental transliterations from
other languages and the phonetic transcriptions of the source language (Bhargava
and Kondrak, 2012). Specifically, they apply a Support Vector Machine(SVM) re-
ranker to re-rank outputs of a base spelling-based model, which are in the form of
n-best lists of candidates transliterations. They report large-margin transliteration
improvement on words with supplemental transliterations available over the base
models.

2.3 Transliteration Interlingua
Although an obvious interlingua in transliteration exists, i.e., the phonetic space,
the idea of transliteration interlingua is not well studied in terms of multilinguality.
Most previous phonetic-based works study the intermediate representation between
a single pair of languages but do not to generalize the representation for more than
two languages. Also, few works pursue how transliterations of different language
pairs can affect each other through the transliteration interlingua.

Yoon et al. (2007) propose representing each phoneme by a set of general
phonetic features together with a set of carefully designed pseudo features. They
use this representation as the phonetic transcription for five languages, e.g., En-
glish, Arabic, Chinese, Hindi and Korean. Then they apply this representation for
transliteration mining. They report impressive results in mining transliterations of
language pairs, for which training data is not available. For example, the model
trained on English-Chinese pairs and the model trained on English-Arabic pairs
can achieve close performance on the English-Arabic mining task. Note that the
pseudo features are based on pronunciation errors of English-learners; thus, their
work would not apply for language pairs without English involved.

Udupa and Khapra (2010) apply Canonical Correlation Analysis (CCA) (Harold,
1936) to find an interlingua representation for transliteration mining. They repre-
sent each source/target word in a feature vector based on character n-grams. CCA
is then applied to map the source vector and target vector to a common space where
they are maximally related. This common space is referred to as the interlingua
space. And the mapped vectors in the interlingua space can be considered as the
interlingua representation of the original words. Notice their interlingua representa-
tion is not phonetic and is derived automatically from the orthography of the source
and target languages. Khapra et al. (2011) further explore this idea under a multi-

9

lingual setting, where a bridge language is introduced to alleviate the lack of data
between the source and target language. CCA is applied to learn the interlingua
representation of these three languages.

Inspired by the CCA idea, Jagarlamudi and Daume III (2012) further eliminate
the need for pairwise transliteration data for transliteration mining. Their model
only requires transcription data for training. Similar to the CCA approach, the
interlingua space in their work is also implicit and uninterpretable to human. They
report improvement of transliteration mining by incorporating transcription data
from other languages.

We can see the major benefit brought by the transliteration interlingua is its
multilinguality. Simply put, it provides an elegant way for transliteration systems
to utilize resources from other languages. However, no previous work has applied
the interlingua idea in the task of transliteration generation, which is a focus of this
work.

10

Chapter 3

DirecTL+

DirecTL+ is a general discriminative string transducer developed by Jiampoja-
marn et al. (2010). By using it together with an unsupervised string aligner, M2M-
aligner (Jiampojamarn et al., 2007), they report the state-of-the-art performance
in the Grapheme-to-Phoneme (G2P) conversion task and the transliteration task of
several language pairs (Jiampojamarn et al., 2010). Since my entire work is built
upon DirecTL+, a detailed description of this model is provided in this chapter.

DirecTL+ requires its training data to be aligned pairs of words, as the one in
Figure 2.2. Thus M2M-aligner is used to preprocess unaligned data. I use M2M-
aligner as black box in this work. It has the following two properties: 1.it is able to
learn alignment out of unaligned data. 2.it allows many-to-many alignment, such
as the two letters N,E is aligned toネ in Figure 2.2.

DirecTL+ is composed of three components.

• A scoring model to score an aligned pair of source and target strings (S, T).

• A search algorithm for finding the highest scoring target string given a source
string.

• A training process to learn the weight parameters for scoring.

3.1 Scoring Model
The scoring model is represented as a linear combination of features α · Φ(S, T),
where Φ(S, T) is the feature vector and α is a weighting vector. Assume both the
input and output consist of m aligned substrings, such that Si generates Ti. The
scoring model extract features for each aligned substrings, and applies first-order
Markov assumption that Ti only depends on Ti−1. The scoring model can be then
rewritten as follows:

m∑
i

α · Φ(i, S, Ti, Ti−1)

11

context si−cti linear-chain si−cti−1ti
... ...
si+cti si+cti−1ti
si−csi−c+1ti si−csi−c+1ti−1ti
... ...
si+c−1si+cti si+c−1si+cti−1ti
... ...
si−c...si+cti si−c...si+cti−1ti

transition ti−1ti
joint n-gram si+1−nti+1−nsiti

...
si−1ti−1siti

si+1−nti+1−nsi+2−nti+2−nsiti
...

si−1ti−2si−1ti−1siti
...

si+1−nti+1−n...si−1ti−1siti

Table 3.1: Feature Template applied by DirecTL+ (Jiampojamarn et al., 2010)

Table 3.1 gives the feature template used by Φ(i, S, Ti, Ti−1). Only indicator fea-
tures are included, i.e., each feature takes on a binary value indicating its presence.
The context features express letter evidence in the input string S, centered around
the generator Si of each Ti. The parameter c specifies the size of the context win-
dow. The transition features enforce the cohesion on the output side. The linear-
chain features associate the context window surrounding Si with target transitions
Ti−1 and Ti, giving an extra degree of control. Finally, the joint n-gram feature
utilizes the joint information between the source and target substring pairs.

3.2 Searching
Suppose we have the weighting parameters α for the scoring model ready. Given an
input string, we need to search for the highest scoring target string. Notice there is
no requirement of the source string being segmented beforehand. All the possible
segmentations are enumerated efficiently by the search algorithm through Dynamic
Programming (DP) as shown below

Q(0, $) = 0

Q(j, t) = max
t′,t,j−N≤j′<j

α · φ(Sjj′+1, t
′, t) +Q(j′, t′)

Q(J + 1, $) = max
t′

α · φ($, t′, $) +Q(J, t′)

Q(j, t) is defined as the maximum score of the target sequence ending with tar-
get substring t, generated by the letter sequence S1...Sj . φ describes the features

12

extracted from the current generator substring Sjj′+1 of target substring t, with t′

to be the last generated target substring. N specifies the maximum length of the
source substring. The symbol $ represents the start and the end of a string. Suppose
the source string contains J characters, Q(J + 1, $) gives the score of the highest
scoring target string, which can be recovered through backtracking.

This search algorithm guarantees to give the optimal target string. However, it
can be slow in cases where the number of possible target substring t′. Therefore, a
beam search is also implemented to speedup the search by sacrificing the optimality
as follows

Q(0) = 0

Q(j) = max
t,j−N≤j′<j,t′∈Q(j′)

α · φ(Sjj′+1, t
′, t) +Q(j′)

where Q(j) is the maximum score generated by the letter sequence S1...Sj . Each
cell Q(.) also keeps track of the highest scoring target substring. For example,
t′ ∈ Q(j′) indicates t′ is the target substring that achieves the highest score at cell
Q(j′). Therefore Q(J) gives the score of the highest scoring target string under this
search. Notice the formula above assumes the beam size to be 1. Jiampojamarn
et al. (2010) report no significant accuracy decrease by replacing the exact search
with the beam search. They also show that the larger the beam size, the better
performance.

Notice both the exact search and the beam search do not insert null letters in the
source string, which means DirecTL+ does not support alignments in the training
data that contain null letters in the source string.

3.3 Training
The weighting parameters α are learned discriminatively in an online fashion. The
Maximum Infused Relaxed Algorithm (MIRA) (Crammer and Singer, 2003) is ap-
plied for learning α. MIRA updates the weighting parameters per training instance.
Given the training pair (Si, Ti) and the weighting parameters αi−1 trained on the
previous i − 1 instances, this update process can be described as the following op-
timization problem

α = min
αi

‖αi − αi−1‖

S.T. αi · (Φ(Si, Ti)− Φ(Si, T̂)) ≥ loss(Ti, T̂) ∀T̂ ∈ Tn
where Tn is a list of n-best outputs found under the current model parameterized
by αi−1. We can see this update process finds the smallest change in the current
weights αi−1 so that the new weights αi will separate the correct answer from each
incorrect answer by a margin determined by the loss function loss(Ti, T̂). The loss
function computes the Levenshtein distance between Ti and T̂ .

13

Since MIRA training requires the n-best answers Tn, both beam search and
exact search algorithms are modified to keep track of the n-best target substrings at
each cell Q(.) so that the n-best lists can be recovered from backtracking.

14

Chapter 4

Joint Consideration of Spellings and
Supplemental Information

In this chapter, I present the approach to machine transliteration by jointly consid-
ering orthography and supplemental information. I first show how DirecTL+ could
be modified to enable joint consideration of the spelling and the phonetic transcrip-
tion of a given source word. Then, I will discuss the issue of aligning triple strings
and how it affects the implementation of the proposed model. Next I show how to
generalize the above approach to jointly considering the spelling and arbitrary num-
ber of supplemental strings, such as supplemental transliterations, of a given source
word. After describing the model, I introduce additional ideas beyond the proposed
model that could further boost the transliteration performance. The experiments
and discussion about the results are presented at the end of this chapter.

4.1 Joint Consideration of Spellings and Phonemes
Phonetic transcriptions are in the form of phoneme strings. Thus, each training in-
stance contains a source string, a target string and an optional phoneme string. The
phoneme string is optional since transcriptions of some words are not available. Let
us assume there exists consistent character-level alignments between three strings
as shown in Figure 4.1. Below is how I modify each components of DirecTL+
to enable joint consideration of the spelling and the phoneme string of the source
word.

4.1.1 Scoring Model
The scoring model is extended to compute a linear combination of features from
three aligned strings α·Φ(S, T, P), where P is the phoneme string. Assume there are
m aligned substrings, such that (Si, Pi) generates Ti. Following the same Markov

15

Figure 4.1: The triple alignment between the English word aaron ,the Japanese

Katakanaア(A)ロ(RO)ン(N) and the phoneme string /e@r@n/

order assumption on the output side, the scoring model is then rewritten as
∑

i

α · Φ(i, S, P, Ti, Ti−1)

Besides the features from S and T , I extract three sets of features between P and T ,

i.e., context n-gram features, linear-chain features, joint n-gram features. Table 4.1

shows the feature templates for P and T . Since there is no joint feature between S
and P 1, the scoring model can be further rewritten as

∑

i

α · [Φ(i, S, Ti, Ti−1),Φ′(i, P, Ti, Ti−1)]

4.1.2 Searching
Given an unsegmented source string S and its unsegmented phoneme string P , I

need to search for the highest-scoring target string. The original DP-based search

algorithm can be generalized to achieve this goal by introducing an additional di-

mension to represent the segmentation of the phoneme string P

Q(0, 0, $) = 0

Q(j, k, t) = max
t′,t,j−N≤j′<j,k−N ′≤k′<k

α · [φ(Sj
j′+1, t

′, t), φ′(P k
k′+1, t

′, t)] +Q(j′, k′, t′)

Q(J + 1, K + 1, $) = max
t′

α · [φ($, t′, $), φ′($, t′, $)] +Q(J,K, t′)

Q(j, k, t) is defined as the maximum score of the target sequence ending with the

target substring t, generated by the letter sequence S1...Sj and the phoneme se-

quence P1...Pk. φ′ describes the features extracted from the current phoneme sub-

string P k
k′+1 that generates target substring t, with t′ being the last generated tar-

get substring. φ remains the same as that in the original DirecTL+. Suppose the

1I did experiments showing that joint features from (S, P) do not help.

16

context pi−cti linear-chain pi−cti−1yti
... ...
pi+cti pi+cti−1ti
pi−cpi−c+1ti pi−cpi−c+1ti−1ti
... ...
pi+c−1pi+cti pi+c−1pi+cti−1ti
... ...
pi−c...pi+cti pi−c...pi+cti−1ti

joint n-gram pi+1−nti+1−npiti
...

pi−1ti−1piti
pi+1−nti+1−npi+2−nti+2−npiti

...
oi−1ti−2pi−1ti−1piti

...
pi+1−nti+1−n...pi−1ti−1piti

Table 4.1: Feature template for extracting features between the phoneme string P
and the target string T

source string contains J characters and the phoneme string contains K phonemes,
Q(J + 1, K + 1, $) gives the score of the highest scoring target string.

Similarly, the beam search can also be modified for the same purpose.

Q(0, 0) = 0

Q(j, k) = max
t,j−N≤j′<j,k−N≤k′<k,t′∈Q(j′,k′)

α · [φ(Sjj′+1, t
′, t), φ′(P k

k′+1, t
′, t)]+Q(j′, k′)

where Q(j, k) is the maximum score generated by the letter sequence S1...Sj and
the phoneme sequence P1...Pk. Q(J,K) gives the score of the highest scoring target
string under this search.

We can see the time complexity of this modified DP-based search and beam
search is changed to their original complexity of two strings multiplied by the length
of the phoneme string K. This increase in time complexity becomes impractical
when it comes to a large amount of training data. In Section 4.2, I will discuss how
this increase can be alleviated by enforcing certain alignment between the source
word and the phoneme string.

Just like the original search algorithms, the modified ones do not insert nulls in
the source word nor the phoneme string, which means the training alignments that
contain null letters in the source word or the phoneme string are not supported.

17

4.1.3 Training
The same MIRA training is applied to update the weight parameters α per training

instance (Si, Pi, Ti):
α = min

αi

‖αi − αi−1‖

S.T. αi · (Φ(Si, Pi, Ti)− Φ(Si, Pi, T̂)) ≥ loss(Ti, T̂) ∀T̂ ∈ Tn

Since the search algorithms enumerate all the possible segmentations of both S and

P , it is very likely that most outputs T̂ in the top-n list Tn are identical but with

different segmentations of Si and Pi. This hinders the discriminative training from

moving the model towards the correct outputs and away from the incorrect ones.

Therefore, I need to increase the size of the top-n list, which leads to an increase in

training time.

4.2 Alignment and Implementation
Three pairwise alignments, i.e., A(S, T), A(S, P) and A(P, T) are defined as con-

sistent alignments if they satisfy the following constraint: if Si is aligned to Tj

in A(S, T) and Si is aligned to Pk in A(S, P), then Pk must be aligned to Tj in

A(P, T).
In order to train our model, we need to obtain triple alignments between the

source word S, the phoneme string P and the target word T . A straightforward

idea is to generate three pairwise alignments first and then merge them. This idea

requires the three pairwise alignments to be consistent. However, I find cases where

consistent pairwise alignments do not exist although each of them is precise. Let

us check the example in Figure 4.2 where abbey is the source English word with its

phoneme string /abi/ andアベイ is the target Japanese word. Figure 4.2 provides

three pairwise manual alignments between each pair. The English letter e is aligned

to the phoneme to /i/ in the first alignment and aligned to ベ(BE) in the second

alignment. However the phoneme /i/ is aligned to イ(I) rater than ベ(BE) in the

last alignment. This inconsistency is due to the fact that names are sometimes

transliterated based on orthography rather than their sounds.

Figure 4.2: Three pairwise alignments between the English word abbey, the

phoneme string /abi/ and the Japanese Katakanaア(A)ベ(BE)イ(I)

18

Although consistent pairwise alignments between triple strings may not exist,

we can enforce triple alignments in order to train the model by abandoning one pair-

wise alignment. In the following two subsections, I will show how to achieve triple

alignments by pivoting on either the target word or the source word respectively.

4.2.1 Pivoting on the target language
I align the source word and the phoneme string to the target word respectively,

and then merge the two resultant pairwise alignments based on the target word to

achieve a triple alignment. Specifically, I apply M2M-aligner to get a many-to-one

pairwise alignment between the source word and the target word, and many-to-one

pairwise alignment between the source phoneme string and the target word. Since

the maximum length of the aligned substrings in the target word is fixed to one,

these two pairwise alignments can be easily merged according to their overlaps on

the target word. Figure 4.3 gives an example of how this process works. In this

example, the aligned substring bbe in the source word and the aligned substring

/b/ in the phoneme string are aligned to the same target substringベ, thus bbe and

/b/ is considered as aligned to each other.

However, if the target word is longer than the source word or the phoneme

string, there will be null letters in the source word or the phoneme string, which

are not supported by either DirecTL+ or my modifications. Therefore, I have to

abandon these alignments, resulting in less training data. I can train the model

described in Section 4.1 directly using the resultant triple alignments and apply

the modified search algorithms to search for highest-scoring target word given an

unaligned pair of a source word and a phoneme string.

Figure 4.3: Achieve triple alignment by pivoting on the target word between

the source English word abbey, the phoneme string /abi/ and the target Japanese

Katakanaア(A)ベ(BE)イ(I)
.

4.2.2 Pivoting on the source language
Similarly, I align the source word to the phoneme string and the target word respec-

tively, and then achieve a triple alignment by merging the two resulted pairwise

alignments. Specifically, I apply M2M-aligner to get the pairwise many-to-many

19

alignment between the source word and the target word, and the pairwise one-to-
many alignment between the source word and the corresponding phoneme string.
Then I merge these two pairwise alignments by pivoting on the source word. Fig-
ure 4.4 provides an example of this process. In this example, the substring ベ
in the target word and the substring in the phoneme string /b/ are aligned to the
same substring b in the source word, thusベ and /b/ are treated as aligned to each
other. These resultant triple alignments would not contain null letters in the source
words regardless of the length of the target words because they are many-to-many
aligned. However, there will be null letters in the phoneme strings in cases where
the phoneme strings are shorter than the source words, which is not supported by
the model described in Section 4.1. I make further modifications to the search
algorithms so that null letters are allowed in the aligned phoneme strings.

The new search algorithms assume the source word and the phoneme string is
one-to-many aligned. It only needs to search through all the possible segmentations
on the source word to generate the target word. The triple alignment is then au-
tomatically achieved due to the one-to-many alignments between the source word
and phoneme string. Below is the new exact search algorithm

Q(0, $) = 0

Q(j, t) = max
t′,t,j−N≤j′<j

α · [φ(Sjj′+1, t
′, t), φ′(P k

k′+1, t
′, t)] +Q(j′, t′)

Q(J + 1$) = max
t′

α · [φ($, t′, $), φ′($, t′, $)] +Q(J, t′)

where P k
k′+1 is the corresponding aligned phoneme substring of Sjj′+1 in the one-

to-many pairwise alignment between the source word and the phoneme string. The
beam search version is as follows:

Q(0) = 0

Q(j) = max
t,j−N≤j′<j,t′∈Q(j′)

α · [φ(Sjj′+1, t
′, t), φ′(P k

k′+1, t
′, t)] +Q(j′)

where the notation P k
k′+1 is the same as that in the exact search. The time com-

plexity of these two search algorithms is independent of the length of the phoneme
string, which is the same as the original DirecTL+ model. Moreover, because I only
search the possible segmentations on the source strings, the issues of disallowing
null letters in the phoneme string and requiring a larger n-best list as discussed in
Section 4.1.3 are resolved.

4.3 Generalization for Jointly Considering Arbitrary
Number of Strings

Since the supplemental information to leverage can be transliterations from other
languages, each training instance is then represented as (S, T, {P1, ..., Pk}), where

20

Figure 4.4: Achieve triple alignment by pivoting on the source word between

the source English word abbey, the phoneme string /abi/ and the target Japanese

Katakanaア(A)ベ(BE)イ(I)
.

{P1, ..., Pk} is a list of supplemental transliterations of (S, T) in other languages.

The size of the list is not fixed because we may not have access to transliterations

in certain languages for certain source words. The model described above can be

easily extended to jointly consider multiple strings as follows:

• Scoring Model The scoring model for (S, T, {P1, ..., Pk}) is as follows

∑

i

α · [Φ(i, S, Ti, Ti−1),Φ′(i, P1, Ti, Ti−1), ...,Φ′(i, Pk, Ti, Ti−1)]

The feature template Φ′ is the same as the one described in Section 4.1.1.

• Searching and Alignment If I generalize the searching described in Sec-

tion 4.1.2, the resultant time complexity would expand exponentially in the

number of supplemental strings. Therefore, I generalize the idea in Sec-

tion 4.2.2 to achieve alignment among multiple strings, and thus maintain

the time complexity of searching to be independent of the number of supple-

mental strings.

• Training Naturally, the training is then modified as follows.

α = min
αi

‖αi − αi−1‖

S.T. αi · (Φ(Si, {Pj}, Ti)− Φ(Si, {Pj}, T̂)) ≥ loss(Ti, T̂) ∀T̂ ∈ Tn

where {Pj} is the list of supplemental transliterations.

4.4 Beyond the Joint Model

4.4.1 Language-specific preprocessing
Characters in some languages, for example Chinese and Japanese, are syllabic

rather than phonemic. Therefore, these languages have large sets of characters,

which increases the sparsity of the data for alignment and transliteration learning.

21

If we apply M2M-aligner on a sparse dataset, the resultant alignments are generally

poor and meaningless. Even languages with phonemic orthography have irregular

symbols that correspond to multiple phonemes, e.g., the symbol x in English is of-

ten pronounced as ks. Figure 4.5 gives an example of the alignment between an

English word, its phoneme string and the corresponding Japanese Katakana. It is

generated by pivoting on the source word. We can see the English letter x that is

supposed to align toク (KU) is aligned to the null letter in the pairwise alignment

between English and Japanese Katakana. Another awkward part of this alignment

is that although c is not pronounced, it is somehow aligned to a Katakana symbol.

My solution is to design language-specific methods to decompose syllabic sym-

bols or irregular symbols into phonemic symbols. I design such methods for En-

glish and Japanese, since they are the languages of concern in my experiments. For

Japanese, I replace Katakana symbols with the corresponding romanizations. For

instance,エクセル in the previous example is romanized to E KU SE RU. We could

seeク (KU) andル (RU) share the same vowel U andエ (E) andセ (SE) share the

same vowel E. Then I treat each symbol in the romanized form as an individual

symbol rather than as a part of a bigger symbol. In this way the sparsity problem is

alleviated. The size of the original Katakana alphabet is reduced from ∼50 to ∼20.

Figure 4.6 shows the resulting alignment by romanizing the Katakana symbols in

Figure 4.5. The new alignment makes more sense. However, in the resultant triple

alignment, the phoneme /s/ is aligned to K:U but not S. This is because the English

letter x does not correspond to a single phoneme but two phonemes, i.e., k and s
and x is aligned to K:U. Therefore, in order to solve this issue, I replace the letter x
in English with the letters k and s. Figure 4.7 shows the resultant alignment by re-

placing x with k and s of the example in Figure 4.6. We can see the triple alignment

makes more sense.

One side-effect of this preprocessing is the loss of orthographic information. I

will discuss this later in the experiment section.

4.4.2 Combining joint model with re-ranking
The re-ranking approach could boost the accuracy of the baseline system 2 but is

unable to improve the recall3 This prevents further improvement. Meanwhile, the

development experiment of applying the joint model4 shows promising improve-

ment in the recall with relatively small improvement in accuracy over the baseline

system. This suggest I should re-rank the result of the joint model, because the

increase in recall brought by the joint model will give the re-ranker extra room to

improve the accuracy. Therefore, this combination would presumably achieve the

highest accuracy while preserving improvement in recall of the joint model. I apply

2Otherwise specified, baseline system refers to DirecTL+ without utilizing supplemental infor-

mation.
3Recall is the fraction of n-best lists that contain the correct transliterations.
4I refer to my joint model as the model described from Section 4.1 to Section 4.3.

22

Figure 4.5: Poor triple alignment by pivoting on the source word between the source

English word excel, the phoneme string /iksel/ and the target Japanese Katakana

エ(E)ク(KU)セ(SEル(RU)
.

Figure 4.6: Better triple alignment by romanizing Japanese characters

.

exactly the same re-ranking algorithm described in (Bhargava and Kondrak, 2011)

except that my joint model is the base system for re-ranking.

4.4.3 Apply target-language lexicons
During the development phase, I found a significant number of the wrong translit-

erations generated by the joint model are actually very close to the correct ones.

These wrong transliterations are not valid words in the target language and are only

a few letters different from the correct ones. Cherry and Suzuki (2009) report

improvement in Japanese-to-English transliteration accuracy by utilizing a target-

language lexicon. Therefore, I propose to re-rank the outputs of the joint model

with a target-language lexicon.

A target-language lexicon is built from a monolingual target-language corpus.

23

Figure 4.7: Better triple alignment by romanizing Japanese characters and convert-
ing x to ks

.

It is a list of words together with their frequencies collected from the corpus. Fol-
lowing Cherry and Suzuki (2009), I encode the lexicon frequency information of a
given word into binary features according to coarse bins. Specifically, I chose 5 fre-
quency bins: [< 2000], [< 200], [< 20], [< 2], [< 1]. So a word with the frequency
194 will cause the features [< 2000] and [< 200] firing. The re-ranking algorithm
is the same as described in (Bhargava and Kondrak, 2011) except that the features
are extracted from the target-language lexicon.

4.5 Experiment and Discussion
Similar to the experimental set up in (Bhargava, 2011), I investigate the following
two tasks:

• Transliteration with phonetic transcriptions. Specifically, we conduct experi-
ments on English-to-Japanese transliteration with phonetic transcriptions for
English.

• Transliteration with supplemental transliterations for other languages. Specif-
ically, I investigate English-to-Japanese and Japanese-to-English translitera-
tion with supplemental transliterations from nine other languages.

4.5.1 Data
I use the phoneme strings provided in the Combilex English transcription lexi-
con (Richmond et al., 2009). By discarding all the diacritics and multiple-word
entries, the resultant lexicon contains 113,999 entries. I also remove the stress and
syllable symbols from each phoneme string.

24

Language Size Overlap
Bengali 13,624 2,152
Chinese 40,214 14,056
Hebrew 10,501 3,997
Hindi 13,427 2,507
Japanese 28,013 28,013
Kannada 11,540 2,170
Korean 7,778 7,773
Persian 12,368 4,047
Tamil 11,642 2,205
Thai 28,932 10,378

Table 4.2: The size of each pairwise NEWS dataset and the amount of common data
with the English-Japanese dataset. The source language of all datasets is English.

The transliteration data is from the transliteration shared task of the 2010 Named
Entities Workshop (Li et al., 2010). There are ten pairwise transliteration datasets
between English and each of ten other languages, including Japanese. The size of
each pairwise dataset and its overlap with English-Japanese dataset can be found at
Table 4.2

I implement the idea of utilizing a target-language lexicon in Japanese-to-English
transliteration experiment. The English lexicon is derived from the English giga-
word monolingual corpus(LDC2012T21). I first lowercase this corpus, and then
compute the unigram frequency counts. The resulting lexicons contain 7,466,441
words.

All the experiments use 80% of the dataset for training, 10% for development,
10% for held-out testing. The development set is used to tune parameters. The final
result is obtained on the held-out test set by combining the training and development
set as the final training set.

4.5.2 Improving Transliteration with Phonetics
As stated in Chapter 1, the phonetic transcription can help pronounce the source
word, thus is helpful for transliteration. I conduct experiments on English-to-
Japanese transliteration with the phonetic transcriptions for English. The dataset
I use is generated by providing each entry in the NEWS10 English-to-Japanese
pairwise dataset the corresponding English phoneme string, if it is available in the
Combilex lexicon. Thus each entry in the resultant dataset consists of an English
word, the corresponding Japanese transliteration and an optional phoneme string. I
then split this dataset into training, development and testing. The training dataset
contains 22,441 entries, 5,068 of which have phoneme strings. Following the the
setting in (Bhargava and Kondrak, 2011; Bhargava and Kondrak, 2012; Bhargava,
2011), I further remove the entries which have no phoneme strings from the test and
development sets, because I am only interested in words that have phoneme strings

25

Pivoting On WORD RECALL Time Per Training Iteration
Target 67.3 87.1 3.5 hours
Source 68.0 87.5 2 hours

Table 4.3: Pivoting on the target vs. Pivoting on the source on the development set

during testing. The resulting development set has 594 entries and the test set has
626 entries.

I evaluate each model by computing the 0-1 word accuracy (WORD) and frac-
tion of the 10-best lists that contain the correct transliterations (RECALL). The
parameters that require tuning are the number of MIRA training iterations and the
size the of context window for feature extraction. According to the development
experiments, I set the number of MIRA training iterations to 5 and apply a context
window of 11 letters on both spelling and phoneme strings.

I compare the model that implements the idea of pivoting on the target to the
model that pivots on the source at Table 4.3. We can see pivoting on the source gives
slightly better transliteration performance than pivoting on the target. However, it is
more important to see that the computation cost of the former is much smaller than
the latter, which put me in favour of the former idea. Therefore, I will always refer
to the joint model as the one pivoting on the source in the following experiments.

I use two baseline models for comparison: the original DirecTL+ model that
cannot utilize supplemental phoneme strings, and the re-ranking model that uses
DirecTL+ as its base system. Both the DirecTL+ model5 and the re-ranking model6

are available online. I tuned them on the development set as well. Table 4.4 com-
pares my joint models to these two baselines on the development set. My model
outperforms both baseline systems, especially in terms of RECALL. Table 4.4 also
shows the effect of the language-specific preprocessing of English and Japanese
with the joint model. We can see the preprocessing further boosts the performance
of the joint model. However, the improvements are not as significant as I expected.
This is probably due the large amount of training data, which alleviates the prob-
lems caused by the sparsity of symbols and the irregular symbols. The best perfor-
mance is achieved by combining re-ranking with the joint model. The increase in
RECALL brought by the joint model provides extra room for the re-ranking model
to push the accuracy.

Table 4.5 presents the results on the test dataset. The re-ranking approach and
the joint model achieve comparable word accuracy, but the latter has consistently
higher RECALL. The combination approach takes advantage of the RECALL im-
provement, resulting in 2 percent WORD improvement over the re-ranking ap-
proach.

5https://code.google.com/p/directl-p/
6http://www.cs.toronto.edu/ aditya/g2p-tl-rr/

26

Approach Preprocessing WORD RECALL
DirecTL+ None 61.3 84.7
Re-ranking None 66.5 84.7

JointModel

None 68.0 87.5
x→k,s 68.4 87.4
Katakana Romanization 68.4 86.7
Both 68.4 87.5

Combination None 68.7 87.5

Table 4.4: English-to-Japanese transliteration results on the development set. Di-
recTL+ is the baseline that cannot utilize phoneme strings. Re-ranking is the re-
ranking approach that uses supplemental phonemes to re-rank the output of Di-
recTL+. JointModel is the new model presented in this thesis. Combination uses
supplemental phonemes to re-rank the output of JointModel. The fourth row to the
sixth row present the results of applying language-specific preprocessing.

Approach WORD RECALL Training Time
DirecTL+ 63.1 86.4 8.5 hours
Re-ranking 67.7 86.4 88.5 hours
JointModel 67.4 89.6 10.0 hours
Combination 70.0 89.6 103.5 hours

Table 4.5: English-to-Japanese transliteration results on the test set. The last col-
umn provides the time spent on training each model.

27

of 0 1 2 3 4 5 6 7 8 9
Sup TLs
of data 9,516 5,628 5,396 3,056 1,754 1,002 654 547 315 145
entries

Table 4.6: The amount of data entries in English-Japanese dataset having certain
number of supplemental transliterations (Sup TLs)

4.5.3 Improving Transliteration with Supplemental Transliter-
ations

In this task, I attempt to improve transliteration by jointly considering the spelling
of the source word and supplemental transliterations from other languages. Specifi-
cally, I conduct experiments on English-to-Japanese and Japanese-to-English translit-
eration with supplemental transliterations from nine other languages. The training,
development and test datasets are generated similarly as the last experiment. Each
entry in the training may have at most nine supplemental transliterations, or may
not have any supplemental transliteration at all. Each entry in the development and
testing set has at least one supplemental transliterations. The sizes of the resultant
training, development testing set are 22,411 , 2,289 and 2,801, respectively. Ta-
ble 4.6 gives the amount of data entries having a certain number of supplemental
transliterations. There are 18,497 entries for which at least one transliteration from
a non-Japanese language is available.

The baselines models in this experiment for comparison are the same as the
two in the previous experiment. I also implement the idea of incorporating a tar-
get lexicon as described Section 4.4.3. Table 4.7 presents the development results
of both English-to-Japanese and Japanese-to-English transliteration. We can see
the joint model outperforms both baselines at all evaluation metrics. In English-to-
Japanese transliteration, the improvement of WORD is not big, i.e., 1 percent over
the re-ranking model, but the RECALL improvement is around 3 percents, which
provides more room for the re-ranking model to improve. Therefore, the combi-
nation idea further pushes WORD, resulting at 2 percents improvement over the
re-ranking model. In Japanese-to-English transliteration, the improvement is much
more impressive. The joint model almost doubles the WORD of the DirecTL+
model and achieves 8 percents improvement over the re-ranking approach. The
RECALL improvement is 20 percents, which allows the combination idea to bring
another 5 percents improvement of WORD.

Table 4.8 presents the results of incorporating a target-language lexicon on the
development set. Since I only have a lexicon for English, I only present the result
of incorporating a target lexicon for Japanese-to-English transliteration. We can see
the English lexicon provides a significant boost to the WORD for all the models.
The joint model with the combination idea and the lexicon idea gives the best per-
formance of Japanese-to-English transliteration, which is 20 percent improvement

28

Approach English-to-Japanese Japanese-to-English
WORD RECALL WORD RECALL

DirecTL+ 52.7 80.6 22.2 51.6
Re-ranking 56.5 80.6 32.9 51.6
JointModel 57.6 83.1 40.8 72.4
Combination 58.5 83.1 45.6 72.4

Table 4.7: Results of utilizing supplemental transliteration for English-to-Japanese
and Japanese-to-English transliteration on the development set

Approach WORD
DirecTL+ 34.5
Re-ranking 38.7
JointModel 50.1
Combination 53.6

Table 4.8: Results of incorporating an English lexicon for the Japanese-to-English
transliteration on the development set

of WORD over the re-ranking model in Table 4.7.
The difference of improvements between English-to-Japanese and Japanese-to-

English transliteration is probably due to the following two reasons: First, Japanese-
to-English transliteration is more difficult than English-to-Japanese transliteration
(the DirecTL+ model has WORD of 52.7 in the former task but only 22.2 in the
latter), which provides a bigger room for improvement. This difficulty is due to
the fact that most of names in our dataset are originally English names. Converting
these names back from Japanese into English is challenging because their Japanese
versions introduce extra vowels and removing these vowels is less predictable than
introducing them. Second, because the supplemental transliterations are actually
collected by pivoting on English, they presumably provide more information about
the English transliterations.

Table 4.9 presents the results of the joint model and baseline models on the
testing data. Most of our observations of the development dataset hold true in this
dataset. One exception is that our joint model does not outperform the re-ranking
model in English-to-Japanese transliteration.

4.5.4 Discussion
My joint model is shown to be more effective than the re-ranking approach in terms
of utilizing supplemental information for transliteration. This is mainly due to its
ability to consider the supplemental information during the transliteration genera-
tion process. This not only leads to improvement in recall, but sometimes improve-
ment in accuracy. The former means extra room for the re-ranking approach to
improve. I thereby further push the accuracy by re-ranking the outputs of the joint

29

Approach English-to-Japanese Japanese-to-English
WORD RECALL WORD RECALL

DirecTL+ 51.5 79.5 19.7 48.6
Re-ranking 56.8 79.5 30.3 48.6
JointModel 56.4 81.6 38.8 72.0
Combination 57.0 81.6 44.6 72.0
+Lexicon N/A N/A 53.1 72.0

Table 4.9: Results of utilizing supplemental transliterations for English-to-Japanese
and Japanese-to-English on the test set

model. Besides the accuracy and recall scores, the joint model costs less training
time than the re-ranking model does.

The idea of language-specific preprocessing, however, is not very effective. The
reason is probably that the sparsity of symbols is not a big issue when it comes to
a large training set, e.g., 20K instances. This may also suggest that the alignments
that look poor to human does not necessarily lead to negative transliteration results.

By introducing a lexicon of the target language, I am able to achieve additional
improvements. However, we should notice this only applies to cases where the
target transliterations are in the target lexicon.

30

Chapter 5

Transliteration with Interlingua as
Supplemental Information

In the previous chapter, I show both the joint model and the re-ranking model im-
prove the transliteration by utilizing supplemental transliterations from other lan-
guages. However, because both approaches draw features directly from the orthog-
raphy of all the supplemental languages, they have the following limitations:

• The feature space expands linearly in the number of supplemental languages.
In the re-ranking model and the joint model, I extract features by paring each
supplemental transliteration with the target transliteration. However, if I draw
feature from all possible pairs, the number of features will increase exponen-
tially.

• The feature weight learned for a character sequence of one language is not
shared to another character sequence in the same or other languages that has
similar sound. For example, say Japanese and Chinese are supplemental lan-
guages and English is the target language. Suppose the model has learned a
feature weight for the Japanese character ク(Ku) co-occurring with the En-
glish letter k. During testing, suppose the available supplemental transliter-
ations are Japanese characters キュ(Kju) and Chinese character 库(Ku), the
model cannot utilize the feature weight learned forク(Ku), although all these
characters sound similar and are strong indications of the target English letter
to be k.

• As a consequence of the last limitation, both the re-ranking model and the
joint model can only utilize transliterations from languages that are available
during its training. However, under a realistic setting, we may have access to
transliterations from new languages after the training is done. One solution
is to retrain the model if we have new languages. But it is possible that the
amount of transliterations from new languages are not enough for retraining.

In order to overcome these limitations, I propose to use a phonetic interlingua
to represent the supplemental transliterations from all other languages, and then

31

extract features from this interlingua representation instead of orthography. In this
way, the size of the feature space will be independent of the number of the lan-
guages, and information of phonetically-similar symbols across languages(including
new languages that are not available during training) will be shared, assuming we
know how to convert transliterations from each language into the interlingua repre-
sentation.

This chapter presents three approaches to inducing an phonetic interlingua for
transliteration generation, followed by the experiments and discussions.

5.1 IPA as Interlingua
The most straightforward way to create a phonetic interlingua is to apply the Inter-
national Phonetic Alphabet (IPA). IPA is an alphabetic system of phonetic notations
of the sounds of oral language. It is widely applied to represent phonetic transcrip-
tions of many languages. This approach consists of the following steps:

1. For each supplemental language, collect a transcription lexicon. Note the
transcription of each word should be represented by IPA.

2. Train a Grapheme-to-Phoneme (G2P) converter for each supplemental lan-
guage based on the collected transcription lexicon. I use DirecTL+ as the
G2P converter since it achieves the state-of-the-art G2P performance for sev-
eral languages (Jiampojamarn et al., 2010).

3. Apply the G2P converters to convert all the supplemental transliterations into
IPA strings.

4. Apply the joint model presented in Chapter 4 to learn and generate transliter-
ations with the supplemental information to be the generated IPA strings.

Figure 5.1(b) gives an example of this interlingua representation.

5.2 English as Interlingua
English is the most widely-used language in the world. It can be treated as the
ad-hoc interlingua, because names are usually transliterated into English first, and
then introduced into other languages. Besides, one sacrifice of using IPA as the
interlingua is the loss of orthographic information of supplemental transliterations.
Thus I hope I can somehow preserve the orthographic information through English.

This approach consists of the following steps:

1. For each involved supplemental language, collect the pairwise transliteration
data with English.

32

2. Train a transliteration model using DirecTL+ for each supplemental language.

3. Apply transliteration models to convert all the supplemental transliterations
into English.

4. Apply the joint model presented in Chapter 4 to learn and generate transliter-
ations with the supplemental information to be the generated English strings.

Figure 5.1(c) gives an example of this interlingua representation. Notice I do
not aim to convert the supplemental transliterations into the correct English corre-
spondences. Instead, I want to introduce variants that are not necessarily correct
English transliterations but preserves the phonetic and orthographic information of
the original supplemental transliterations.

Figure 5.1: Different interlingua representations. Korean and Thai are the supple-
mental languages. v(.) is the phonetic feature vector of a given IPA symbol. (a) The
original orthographic representations. (b) IPA as interlingua (c) English as interlin-
gua (d) Phonetic feature vectors as interlingua (e) Merged phonetic feature vector
as interlingua

33

5.3 Phonetic feature vector as Interlingua
One drawback of using IPA as interlingua is its ignorance of the similarity between
sounds1. This leads to two negative consequences. First, my model is not aware
that the consonant /b/ is closer to the consonant /p/ than to the vowel /o/. The
second and also the major negative consequence is that my model cannot utilize new
IPA symbols that are not seen during its training. My solution is to convert every
IPA symbol into a phonetic feature vector, each dimension of which represents
its value of a phonetic feature. I follow the phonological feature chart created by
Jason Riggle 2 for the conversion. Figure 5.2 (a) shows the phonetic feature vector
for the phoneme /p/. In practice, I convert this raw phonetic feature vector into a
binary-valued vector as shown in Figure 5.2 (b). This binary-valued representation
outperforms the raw representation in our preliminary experiments 3.

The steps in this approach are the same as the steps described in Section 5.1,
except that I convert each IPA symbol to the corresponding feature vector (as shown
in Figure 5.1 (d)) and I modify the joint model so that it can use the phonetic feature
vectors as the supplemental information.

Figure 5.2: The phonetic features of the phoneme /p/ and the actual feature vector
of /p/ for learning.

5.3.1 Merge Phonetic Feature Vectors
Figure 5.1 (d) provides an example of using phonetic feature vectors as interlingua,
which is generated by simply replacing each IPA symbol in Figure 5.1(b) with the
corresponding feature vector. Since I am interested in creating a phonetic repre-
sentation that cannot be pronounced but conveys the pronunciations of the same
word across different languages, I perform the following two successive merging
processes before proceeding to training the modified joint model.

1I use sounds, phonemes, IPA symbols interchangeably in this thesis
2https://dl.dropboxusercontent.com/u/5956329/Riggle/PhonChart_

v1212.pdf
3I refer to this binary-valued phonetic feature vector as phonetic feature vector in the rest of this

thesis.

34

1. For each aligned token that has more than one feature vectors, I merge all

the feature vectors inside that token into a single feature vector by taking

the average. For the example in Figure 5.1 (d), the Korean phonetic feature

vectors for /g/ and /W/ should be merged because they are aligned to the same

source letter g.

2. Then I merge the aligned feature vectors across the supplemental languages

into a single feature vector by taking the average.

Figure 5.1 (e) gives the result of merging the vectors in Figure 5.1 (d)). We can see

the pronunciation of the letter g is in someplace between /n/ and /g/. This is the

actual form used by the modified joint model. From a practical point of view, merg-

ing vectors saves time in feature extraction, because the number of feature vectors

is independent of the number of supplemental transliterations. For the example in

Figure 5.1 (d), the number of vectors is 5 × the number of supplemental transliter-

ations, while the number of vectors in Figure 5.1 (e) will always be 5 regardless of

the number of supplemental transliterations.

5.3.2 Joint Model Modification
I need to modify the joint model so that it can be trained on examples as shown in

Figure 5.1 (e). The feature extraction function Φ′() is the only component I need to

change. I change the parameters of this function to be the merged phonetic feature

vector sequence {Pl} and the current target symbol Ti. Suppose each phonetic

feature vector Pl is a set of feature/value pairs as follows:

Pl = {(flj : vlj)|0 ≤ j ≤ K}

where K is the number of phonetic features. Then Φ′() extracts a set of feature/value

pairs from {Pl} and Ti.

Φ′({Pl}, Ti) = {((flj, Ti, l − i) : vlj)|0 ≤ j ≤ K, i− c ≤ l ≤ i+ c}

where c is the size of the context window around current vector Pl. Notice each

feature in Φ′() is jointly defined by the phonetic feature flj , the target symbol Tj

and the offset to the current feature vector l − i. Also note that the feature values

are no not binary because of the merging process.

5.4 Experiments and Discussions
I evaluate my interlingua ideas on English-to-Japanese transliteration with supple-

mental transliterations from Hindi, Hebrew, Korean and Thai. I investigate the

following two aspects of each interlingua representation:

35

• Effectiveness Whether an interlingua representation can effectively encode
the supplemental transliterations to improve transliteration. Specifically, the
supplemental transliterations in the training set and test set are from the same
set of languages. Then I compare the models using interlingua representa-
tions to the model using orthography.

• Multilinguality Whether an interlingua representation is capable of utilizing
transliterations from new languages. Specifically, I train the models using
interlingua representations with one set of supplemental languages and test
with additional supplemental languages.

5.4.1 Data
The transliteration data is the 2010 Named Entity Workshop as introduced in Sec-
tion 4.5.1, which contains nine languages other than English and Japanese. I collect
the transcription data for each of the nine languages from Wiktionary4. However,
only the transcription data of Hebrew, Hindi, Korean and Thai is enough to train
G2P converters. Therefore, I only consider supplemental transliterations from these
four languages for the sake of comparison.

Following Section 4.5.1, I use 80% of the data for training, 10% for develop-
ment and 10% for held-out test in the following experiments.

5.4.2 Effectiveness
The transliteration data is generated similarly as described in Section 4.5.3. The
resultant training set contains 22,441 entries, 11,779 of which have at least one
supplemental transliterations. The development and testing set contains 1,393 and
1,412 entries respectively, all of which have at least one supplemental translitera-
tion.

Both the IPA as interlingua idea and the phonetic feature vector as interlin-
gua idea require G2P converters to convert supplemental transliterations into IPA
strings. These G2P converters are trained on the transcription data I collect from
Wiktionary. In order to train effective G2P converters, I split the transcription data
of each language into a training (90%) set and a development(10%) set to tune the
training parameters. Then the training and development sets are joined together
for the final G2P training using the tuned parameters. Table 5.1 presents the G2P
performance on the development transcription set for each language. Since the size
of the training data is small and the data from Wiktionary is very noisy, we can see
the G2P converters perform poorly even though they are tuned to fit the develop-
ment set. The G2P converter would perform presumably more poorly in converting
words in the transliteration dataset, because names are usually more difficult for
G2P conversion (Bhargava and Kondrak, 2012).

4http://en.wiktionary.org/wiki/Wiktionary:Main_Page

36

Language WORD Size of the data
Hebrew 21.3 475
Hindi 25.9 819
Korean 40.9 3,181
Thai 15.2 911

Table 5.1: G2P performance on the Wiktionary development set.

Language WORD Size of the data
Hebrew 24.7 9,585
Hindi 49.4 13,049
Korean 19.7 7,255
Thai 43.8 28,136

Table 5.2: The development results of applying DirecTL+ to transliterate each
supplemental language into English for the purpose of using English as interlingua

Using English as interlingua requires transliteration models to convert the sup-
plemental transliterations into English. These models are trained on the pairwise
transliteration data from the 2010 NEWS using DirecTL+. Following the same
training strategy as the G2P training, I tune the training parameters of each translit-
eration model by splitting the data into training and development sets. Table 5.2
presents the development results of transliterating each supplemental languages into
English. We can see the accuracy numbers are much better than those in the G2P
training except for Korean. However, unlike G2P training, I am not interested in
obtaining higher accuracy. Suppose if all the models achieve 100% accuracy, then
all the supplemental transliterations will be converted into the source English word;
Therefore, the English-to-Japanese transliteration would not benefit from this En-
glish interlingua.

The baseline model is the DirecTL+ model that cannot leverage supplemen-
tal transliterations. I compare different representations, including the orthographic
representation, of supplemental transliterations to see whether they are effective in
improving English-to-Japanese transliteration. The model that uses these represen-
tations is the joint model. Table 5.3 presents the results on the development set. IPA
is the only interlingua that outperforms the orthography while the other two interlin-
gua give worse results than the orthography. Although the improvement brought by
the IPA interlingua over the orthography is within one percent, it is very impressive
given the poor performance of the G2P converters and its ignorance of orthographic
information. This is mainly because supplemental transliterations from different
languages are able to share the feature weights during the machine learning process
through this common representation. The last row in Table 5.3 shows the result of
using both IPAs and orthography of the supplemental transliterations. We can see
further improvement in accuracy is achieved.

By looking at the English transliterations converted from the supplemental translit-

37

Representation WORD RECALL
N/A(Baseline) 54.7 82.3

Orthography 58.5 84.0

IL = IPA 59.4 84.0

IL = English 54.6 81.9

IL = Vector 56.5 83.1

IPA + Orthography 60.0 83.6

Table 5.3: Results of using different representations of supplemental transliterations

on the English-to-Japanese development set. The first row is the baseline DirecTL+

model that cannot leverage supplemental transliterations.The second row is the re-

sult of using the orthographic representation of supplemental transliterations. The

following three rows are the results of applying different interlingua representation

(IL) ideas. The last row is the result of using both orthography and IPAs of sup-

plemental transliterations. The transliteration model in this experiment is the joint

model.

erations, I found not only the orthographic information but also the phonetic infor-

mation is lost. Most of these converted English transliterations are only few letters

different from the correct ones. For example, the converted supplemental translit-

erations for the source word acosta are ecosta (Hebrew), acosta (Korean), akosta
(Thai). Therefore, they do not provide useful information for English-to-Japanese

transliteration.

Although the phonetic feature vector presentation is theoretically neat, it is quite

ineffective in improving transliteration. This is mainly due to three reasons. First,

the phonetic features are not optimal in encoding phonetic similarities between

phonemes. For example, according to these phonetic features, the most similar

phoneme to /z/ is /D/ while /ü/ or /ý/seems to be a better choice. Second, it is prob-

lematic to take the average for merging phonetic feature vectors. For example, the

phoneme closest to the average of /n/ and /g/ is neither /n/ nor /g/ , but /d/. Last, as

a side-effect of phonetic feature vector merging process, the original pronunciations

of the supplemental transliterations are lost.

Table 5.4 presents the results on the test set. IPA representation achieves compa-

rable performance to the orthographic representation. This confirms the poorly gen-

erated IPAs are as effective as the orthography in encoding supplemental transliter-

ations.

5.4.3 Multilinguality
The next aspect to investigate is whether the proposed interlingua representations

are capable of leveraging supplemental transliterations from new languages. Specif-

ically, I train English-to-Japanese transliteration models with supplemental translit-

erations from Hebrew, Hindi and Thai, but test with optional supplemental translit-

38

Representation WORD RECALL
N/A(Baseline) 54.5 81.5
Orthography 59.6 83.6
IL = IPA 59.0 83.3
IPA + Orthography 59.6 83.1

Table 5.4: Results of using different representations of supplemental translitera-
tions on the English-to-Japanese test set

Representation Supplemental transliterations WORD RECALL

Orthography
None 58.1 84.4
Hebrew, Hindi, Thai 59.0 84.7

IL = IPA
Hebrew, Hindi, Thai 58.8 85.7
Hebrew, Hindi, Thai, Korean 59.7 84.8
Korean 57.1 82.8

IL = English
Hebrew, Hindi, Thai 57.7 85.4
Hebrew, Hindi, Thai, Korean 56.5 83.8

IL = Vector
Hebrew, Hindi, Thai 54.6 80.2
Hebrew, Hindi, Thai, Korean 56.6 83.2

Table 5.5: Multilingual performance on the development set.The first two rows are
the results of using the orthographic representation of supplemental transliterations.
The rest rows are the results of applying different interlingua representation (IL)
ideas. The transliteration model in this experiment is the joint model.

erations from Korean. The training set is generated by removing the Korean translit-
erations from the training set in the last experiment. The development/test sets are
generated by removing the entries that have no Korean supplemental transliterations
from the development/test sets in the last experiment.

Table 5.5 presents the results of this experiment on the development set. IPA
still remains the most effective representation in terms of multilinguality. It achieves
better accuracy given additional Korean transliterations. I also present of results of
providing only Korean transliterations to the model with IPA interlingua. The accu-
racy drops and is even worse than the baseline that does not use any supplemental
transliterations. This is mainly due to noisy IPAs generated from Korean transliter-
ations.

Table 5.6 presents the results on the test set. The differences between the last
four rows are slight. However, by comparing the third row and the fourth row,
we can see IPA interlingua is still capable of leverage transliterations from new
languages to achieve improvement in WORD and RECALL.

39

Representation Supplemental transliterations WORD RECALL

Orthography
None 58.9 82.1

Hebrew, Hindi, Thai 60.0 83.9

IL = IPA

Hebrew, Hindi, Thai 59.7 83.9

Hebrew, Hindi, Thai, Korean 59.8 84.6

Korean 59.4 84.7

Table 5.6: Multilingual performance on the test set.

5.5 Discussion
The IPA interlingua is the only effective interlingua representation according to

my experiments. Although it only achieves comparable performance to the ortho-

graphic representation, the potential improvement it could bring is promising, given

its ignorance of orthographic information and the poor G2P performance in my ex-

periments. This may suggest that it is the phonetic information underneath the or-

thographic information of supplemental transliterations that actually helps improve

transliteration.

The reason why the English interlingua and phonetic feature vector interlingua

do not work is the absence of the original orthographic and phonetic information.

The transliteration models, which are applied by the English interlingua approach

for converting supplemental transliterations into English, tend to follow the English

orthography and phonology. Thus, both the original phonetic and orthographic

information are lost. The phonetic feature vector interlingua approach takes the av-

erage of the phonetic vectors across supplemental languages. This indeed creates

a fuzzy and theoretically neat representation, but it fails to preserve the original

pronunciations of the supplemental transliterations. The merge process also jeop-

ardizes the phonetic feature vector’s capability of leveraging phonemes that are not

seen in the training data. For the example discussed earlier of merging /g/ and /n/,
suppose /g/ is the unseen IPA, the merged phonetic vector is neither approximate to

/g/ nor to /n/, but to /d/. Therefore, the merged vector fails to encode the phonetic

information from the unseen phoneme /g/.

40

Chapter 6

Conclusion and Future work

In this thesis, I proposed a model that is capable of leveraging supplemental translit-
erations during the transliteration generation process. This model achieved not only
comparable accuracy to the state-of-the-art re-ranking model, but consistently bet-
ter recall. Since a better recall means a bigger for re-ranking to improve, I achieved
the highest accuracy by re-ranking the output of the joint generation model.

I further explored the idea of applying phonetic interlingua to represent supple-
mental transliterations. Notably, this is the first application of interlingua in translit-
eration generation to the best of my knowledge. I investigated in particular ideas
of using English, IPA and phonetic feature vectors as interlingua respectively. My
experiments show only IPA achieved comparable results to orthography. However,
given the poor G2P performance, I conclude that IPA has great potential in encoding
supplemental transliterations. The other two interlingua representation are shown
to be ineffective due to their incapability of preserving the original pronunciations
of the supplemental transliterations.

6.1 Future work
Both my work in this thesis and Bhargava and Kondrak (2012) show transliteration
models for a language pair can benefit transliterations for from other languages.
However, the models proposed in both works cannot achieve improvement if there
is no supplemental transliterations available. Therefore, I would like to eliminate
the need for available supplemental transliterations. The idea is to develop a model
that is able to jointly transliterate from an source language, say English, into multi-
ple target languages, such as Japanese and Chinese. During the transliteration pro-
cess, the model will generate both Japanese and Chinese transliterations, thereby
it can leverage each of the two transliterations to improve the other either through
re-ranking or the approach described in this work.

Regarding the interlingua representation, I would like to further push the results
of using IPA as interlingua by replacing the poor IPAs with golden standard ones
or applying a better G2P converter. The idea of using phonetic feature vectors is

41

neat, but it fails due to the merging process. Simply taking the average causes the
loss of original pronunciations of supplemental transliterations. Therefore, I will
investigate more elaborate and advanced techniques, such as representation learn-
ing, for the merging process. In addition, the manually-devised phonetic features
are not necessarily the optimal features for transliteration generation, I will apply
representation learning techniques to derive better features.

42

References
Nasreen Abduljaleel and Leah S. Larkey. 2003. Statistical transliteration for

english-arabic cross language information retrieval. In Proceedings of the
Twelfth International Conference on Information and Knowledge Management,
CIKM ’03, pages 139–146, New York, NY, USA. ACM.

M. Arbabi, S. M. Fischthal, V. C. Cheng, and E. Bart. 1994. Algorithms for arabic
name transliteration. IBM J. Res. Dev., 38(2):183–194, March.

Aditya Bhargava and Grzegorz Kondrak. 2011. How do you pronounce your
name? improving g2p with transliterations. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 399–408, Portland, Oregon, USA, June. Association for
Computational Linguistics.

Aditya Bhargava and Grzegorz Kondrak. 2012. Leveraging supplemental repre-
sentations for sequential transduction. In Proceedings of the 2012 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 396–406, Montréal, Canada, June.
Association for Computational Linguistics.

Aditya Bhargava. 2011. Leveraging supplemental transcriptions and translitera-
tions via re-ranking. Master’s thesis, University of Alberta.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L.
Mercer. 1993. The mathematics of statistical machine translation: Parameter
estimation. Comput. Linguist., 19(2):263–311, June.

Colin Cherry and Hisami Suzuki. 2009. Discriminative substring decoding for
transliteration. In Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pages 1066–1075, Singapore, August. Asso-
ciation for Computational Linguistics.

Michael A. Covington. 1996. An algorithm to align words for historical compari-
son. Comput. Linguist., 22(4):481–496, December.

Koby Crammer and Yoram Singer. 2003. Ultraconservative online algorithms for
multiclass problems. J. Mach. Learn. Res., 3:951–991, March.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from in-
complete data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL
SOCIETY, SERIES B, 39(1):1–38.

Wei Gao, Kam-Fai Wong, and Wai Lam. 2004. Improving transliteration with
precise alignment of phoneme chunks and using contextual features. In Pro-
ceedings of the 2004 International Conference on Asian Information Retrieval
Technology, AIRS’04, pages 106–117, Berlin, Heidelberg. Springer-Verlag.

43

Hotelling Harold. 1936. Relation between two sets of variables. Biometrica,
28:322–377.

Ulf Hermjakob, Kevin Knight, and Hal Daumé III. 2008. Name translation in sta-
tistical machine translation - learning when to transliterate. In Proceedings of
ACL-08: HLT, pages 389–397, Columbus, Ohio, June. Association for Compu-
tational Linguistics.

Jagadeesh Jagarlamudi and Hal Daume III. 2012. Regularized interlingual pro-
jections: Evaluation on multilingual transliteration. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 12–23, Jeju Island, Korea,
July. Association for Computational Linguistics.

K. S. Jeong, Sung-Hyon Myaeng, J. S. Lee, and K. Choi. 1999. Automatic identi-
fication and back-transliteration of foreign words for information retrieval. Inf.
Process. Manage., 35(4):523–540.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek Sherif. 2007. Applying
many-to-many alignments and hidden markov models to letter-to-phoneme con-
version. In Human Language Technologies 2007: The Conference of the North
American Chapter of the Association for Computational Linguistics; Proceed-
ings of the Main Conference, pages 372–379, Rochester, New York, April. As-
sociation for Computational Linguistics.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz Kondrak. 2008. Joint process-
ing and discriminative training for letter-to-phoneme conversion. In Proceed-
ings of ACL-08: HLT, pages 905–913, Columbus, Ohio, June. Association for
Computational Linguistics.

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou, Kenneth Dwyer, and Grze-
gorz Kondrak. 2009. Directl: a language independent approach to transliter-
ation. In Proceedings of the 2009 Named Entities Workshop: Shared Task on
Transliteration (NEWS 2009), pages 28–31, Suntec, Singapore, August. Asso-
ciation for Computational Linguistics.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz Kondrak. 2010. Integrat-
ing joint n-gram features into a discriminative training framework. In Human
Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 697–700, Los
Angeles, California, June. Association for Computational Linguistics.

Sung Young Jung, SungLim Hong, and Eunok Paek. 2000. An english to korean
transliteration model of extended markov window. In Proceedings of the 18th
Conference on Computational Linguistics - Volume 1, COLING ’00, pages 383–
389, Stroudsburg, PA, USA. Association for Computational Linguistics.

44

Byung-Ju Kang and Key-Sun Choi. 2000. Automatic transliteration and back-
transliteration by decision tree learning. In Proceedings of Language Resources
and Evaluation.

Sarvnaz Karimi, Andrew Turpin, and Falk Scholer. 2006. English to persian
transliteration. In Fabio Crestani, Paolo Ferragina, and Mark Sanderson, ed-
itors, String Processing and Information Retrieval, volume 4209 of Lecture
Notes in Computer Science, pages 255–266. Springer Berlin Heidelberg.

Sarvnaz Karimi, Falk Scholer, and Andrew Turpin. 2007. Collapsed consonant and
vowel models: New approaches for english-persian transliteration and back-
transliteration. In Proceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pages 648–655, Prague, Czech Republic, June.
Association for Computational Linguistics.

Sarvnaz Karimi, Falk Scholer, and Andrew Turpin. 2011. Machine transliteration
survey. ACM Comput. Surv., 43(3):17:1–17:46, April.

Brett Kessler. 2005. Phonetic comparison algorithms1. Transactions of the Philo-
logical Society, 103(2):243–260.

Mitesh M. Khapra, A Kumaran, and Pushpak Bhattacharyya. 2010. Everybody
loves a rich cousin: An empirical study of transliteration through bridge lan-
guages. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
pages 420–428, Los Angeles, California, June. Association for Computational
Linguistics.

Mitesh M. Khapra, Raghavendra Udupa, A. Kumaran, and Pushpak Bhttacharyya.
2011. Pr + rq ≈rp:transliteration mining using bridge language. In Proceed-
ings of the Twenty-Fourth AAAI Conference on Artificial Intellingence. AAAI
Press, July.

Kevin Knight and Jonathan Graehl. 1998. Machine transliteration. Computational
Linguisitics, 24(4), December.

A. Kumaran, Mitesh M. Khapra, and Pushpak Bhattacharyya. 2010. Composi-
tional machine transliteration. 9(4):13:1–13:29, December.

Phillippe Langlais. 2013. Mapping source to target strings without alignment by
analogical learning: A case study with transliteration. In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 684–689, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint source-channel model for
machine transliteration. In Proceedings of the 42Nd Annual Meeting on Asso-
ciation for Computational Linguistics, ACL ’04, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

45

Haizhou Li, A Kumaran, Min Zhang, and Vladimir Pervouchine. 2010. Report of
news 2010 transliteration generation shared task. In Proceedings of the 2010
Named Entities Workshop, pages 1–11, Uppsala, Sweden, July. Association for
Computational Linguistics.

Haibo Li, Jing Zheng, Heng Ji, Qi Li, and Wen Wang. 2013. Name-aware machine
translation. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 604–614, Sofia,
Bulgaria, August. Association for Computational Linguistics.

Wei-Hao Lin and Hsin-Hsi Chen. 2002. Backward machine transliteration by
learning phonetic similarity. In Proceedings of the 6th Conference on Natu-
ral Language Learning - Volume 20, COLING-02, pages 1–7, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various
statistical alignment models. Comput. Linguist., 29(1):19–51, March.

Jong-Hoon Oh and Key-Sun Choi. 2002. An english-korean transliteration model
using pronunciation and contextual rules. In Proceedings of the 19th Inter-
national Conference on Computational Linguistics - Volume 1, COLING ’02,
pages 1–7, Stroudsburg, PA, USA. Association for Computational Linguistics.

Vladimir Pervouchine, Haizhou Li, and Bo Lin. 2009. Transliteration alignment.
In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of
the AFNLP, pages 136–144, Suntec, Singapore, August. Association for Com-
putational Linguistics.

Korin Richmond, Robert Clark, and Sue Fitt. 2009. Robust lts rules with the com-
bilex speech technology lexicon. In Proceedings of Interspeech, pages 1259–
1298, Brighton, UK, September.

Tarek Sherif and Grzegorz Kondrak. 2007. Substring-based transliteration. In Pro-
ceedings of the 45th Annual Meeting of the Association of Computational Lin-
guistics, pages 944–951, Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Tao Tao, Su-Youn Yoon, Andrew Fister, Richard Sproat, and ChengXiang Zhai.
2006. Unsupervised named entity transliteration using temporal and phonetic
correlation. In Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, EMNLP ’06, pages 250–257, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Raghavendra Udupa and Mitesh M. Khapra. 2010. Transliteration equivalence
using canonical correlation analysis. In Proceedings of the 32Nd European
Conference on Advances in Information Retrieval, ECIR’2010, pages 75–86,
Berlin, Heidelberg. Springer-Verlag.

46

Su-Youn Yoon, Kyoung-Young Kim, and Richard Sproat. 2007. Multilingual
transliteration using feature based phonetic method. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, pages 112–
119, Prague, Czech Republic, June. Association for Computational Linguistics.

Dmitry Zelenko and Chinatsu Aone. 2006. Discriminative methods for translitera-
tion. In Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’06, pages 612–617, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Min Zhang, Xiangyu Duan, Vladimir Pervouchine, and Haizhou Li. 2010. Ma-
chine transliteration: Leveraging on third languages. In Coling 2010: Posters,
pages 1444–1452, Beijing, China, August. Coling 2010 Organizing Committee.

47

