
U n iv ersity  o f A lb e r ta

X r e g i o n : A S t r u c t u r e - B a s e d  A p p r o a c h  t o  S t o r i n g  XM L D a t a  in

R e l a t i o n a l  D a t a b a s e s

by

M eng X ue ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial 
fulfillment of the requirements for the degree of M a ste r  o f Science.

Department of Computing Science

Edmonton, Alberta 
Fall 2004

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



1*1 Library and 
Archives Canada

Published Heritage 
Branch

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395 Wellington Street 
Ottawa ON K1A 0N4 
C anada

395, rue Wellington 
Ottawa ON K1A 0N4 
C anada

Y our file Votre re ference  
ISBN: 0-612-95884-1  
O ur file N otre reference  
ISBN: 0-612-95884-1

The author has granted a non
exclusive license allowing the 
Library and Archives Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque et Archives Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L'auteur conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou aturement reproduits sans son 
autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

Canada
R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



To My Family

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Acknowledgem ents

I would like to express my gratitude to my supervisor Prof. Li-Yan Yuan, for 
his unending guidance, advice, and motivation throughout the thesis research.

I would like to thank Dr. Mario A. Nascimento and Dr. Marek Reformat, 
for their valuable suggestions that improved the thesis.

To my dear husband Lin, thank you for your love, encouragement and support. 
Special thanks to my parents for their continuous love and support.

I would also like to thank Reza Sherkat, Stanley Oliveira, Gabriela Moise 
and all other lab mates for creating a pleasant environment in the database 
systems laboratory.

Special thanks to all my friends for various help that they have given me.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Contents

1 Introduction 1
1.1 M otivation..........................................................................................  1
1.2 C o n trib u tio n s .................................................................................... 2
1.3 Overview..............................................................................................  5

2 Background and R elated W ork 6
2.1 An Overview of XML D o cu m en ts ................................................  6
2.2 Related W o r k .................................................................................... 10
2.3 Generic Mapping Revisited.............................................................  11

2.3.1 Edge Based M app ing .......................................................... 12
2.3.2 X P a re n t ........................    15
2.3.3 X R e l ....................................................................................... 20
2.3.4 Monet M o d e l ....................................................................... 22

2.4 Other Mapping A p p ro ach es ..........................................................  22
2.5 Chapter Summary ..........................................................................  23

3 X region D ata M odel 25
3.1 XML Data T re e ................................................................................. 25
3.2 XML Structure T r e e .......................................................................  27
3.3 R eg io n .................................................................................................  28
3.4 Region Tree and Nested L e v e l .......................................................  29
3.5 Region In s ta n c e .................................................................................  30
3.6 Chapter Summary ..........................................................................  31

4 X region Storage Schem a 33
4.1 Basic Database Schema for X reg io n .............................................  33

4.1.1 Data T a b le s ..........................................................................  34
4.1.2 Meta T a b l e ..........................................................................  35

4.2 E x am p le ..............................................................................................  36
4.3 D iscussion........................................................................................... 38

4.3.1 Storing Different XML Documents ................................  38
4.3.2 Query E valua tion ................................................................. 38
4.3.3 Processing U p d a te s .............................................................  43

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



4.4 Chapter Summary .......................................................................... 44

5 Im plem entation 45
5.1 System O u t l in e ................................................................................  45
5.2 XML Parser M o d u le ......................................................................  46
5.3 Schema Generator M o d u le ............................................................. 47
5.4 Data Loader M o d u le ......................................................................  50
5.5 Chapter Summary .......................................................................... 51

6 Experim ents 52
6.1 Experimental S e tu p s ......................................................................  52

6.1.1 Data S e t s ..............................................................................  53
6.1.2 Query S e t ..............................................................................  54
6.1.3 Performance M easurem ent.................................................  54

6.2 Experimental R esu lts ......................................................................  55
6.2.1 Experiment on SH A K S........................................................  55
6.2.2 Experiment on DBLP ........................................................  58
6.2.3 Experiment on SY N 2G ........................................................  62
6.2.4 Schema Generation T im e ...................................................  64

6.3 Chapter Summary .......................................................................... 65

7 Conclusions and Future Work 66
7.1 C onclusions....................................................................................... 66
7.2 Future W ork....................................................................................... 67

Bibliography 69

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



List of Tables

2.1 A relational storage example using the Edge approach.............. 13
2.2 The XParent LabelPath table for the example XML document 16

4.1 The m eta.table...................................................................................  36
4.2 Table_2-1( course)...............................................................................  37
4.3 Table_3_l (section) .......................................................................... 37
4.4 Table_3-2 (TA) ................................................................................  38
4.5 Table.l _1 (root) .............................................................................  38
4.6 Two different XML documents share the table_3-l....................  39

6.1 Data sets inform ation....................................................................... 53
6.2 Logical I/O  blocks for querying the S H A K S ............................  57
6.3 Test data details for SH A K S.......................................................... 57
6.4 Sizes of resulting database tables for Xregion, XParent, Edge

and XRel schemas of SHAKS XML collection(7.65MB) . . . .  57
6.5 I/O  blocks for querying the DBLP ............................................. 59
6.6 Elapsed times for querying the DBLP (size 200MB) using Xre

gion, XParent and E d g e .................................................................  59
6.7 Sizes of resulting database tables and indexes for DBLP . . . .  61
6.8 Ratios of the elapsed times (Seconds) for querying the DBLP

vs SYN2G for Xregion s c h e m a s ....................................................  62
6.9 Query elapsed time for the SYN2G (size 2GB) using Xregion,

XParent and Edge ........................................................................... 63
6.10 I/O  blocks for querying the S Y N 2G ............................................. 63
6.11 The elapsed times for the schema generation process...............  65

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



List of Figures

1.1 An example for Xregion....................................................................  3

2.1 An example XML document for university courses...................  7
2.2 An XML t r e e .................................................................................... 8
2.3 An XML data graph of Edge m a p p in g ......................................  12
2.4 XParent schemas for the example XML d o cu m en t...................  17
2.5 Ancestor tracing route using X P a re n t.......................................... 18

3.1 An XML data t r e e ..........................................................................  26
3.2 An XML Structure t r e e .................................................................... 27
3.3 An example for Regions ................................................................  30
3.4 Instances of a r e g io n .......................................................................  31

4.1 Tuple order........................................................................................... 37
4.2 Ancestor tracing route for XParent vs X reg ion .......................... 42

5.1 The prototype of the XML importing system..............................  45
5.2 Schema Generator ..........................................................................  48
5.3 Cutting and Updating m eth o d ....................................................... 49
5.4 An instance of course region split by two instances of region

se c tio n .................................................................................................. 50

6.1 Query elapsed time for querying the S H A K S ............................. 56
6.2 Query elapsed time: Xregion, XParent and Edge for the DBLP

(size 200MB) ..................................................................................... 59
6.3 Query elapsed time: Xregion, XParent and Edge using SYN2G 63
6.4 Query elapsed time ratios for DBLP and SYN2G using Xregion,

XParent and Edge...............................................................................  64

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Chapter 1 

Introduction

1.1 M otivation

As a markup language designed for describing data, XML is becoming a pop

ular medium, and a major standard, for data representation over Internet. 

With the development of Web applications, increasing amount of data are 

now available in XML format, and the sizes of XML documents are grow

ing very quickly. It is imperative to store and query these XML documents 

efficiently in order to exploit the full power of this new technology.

The motivation for our research is the development of an XML repository 

system that is capable of storing a large number of heterogeneous XML docu

ments, which are well-formed but have no DTD (Document Type Definition) 

or for which the DTDs are not known beforehand.

One promising approach to managing XML documents is to store and 

query them in a relational database. In this approach, XML data must be con

verted into a set of tuples and stored in relational tables, due to the difference 

between relational database structure and the hierarchical structure of XML 

documents. Queries posed on XML documents then need to be translated into 

SQL statements against those relational tables, and the query results need to 

be reconstructed in the desired XML format, i.e., XML result publishing.

1

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



One of the XML-to-Relation mapping techniques, called generic mapping, 

involves designing relational database schemas for XML documents without 

the knowledge of DTD or XML Schema information. Multiple generic mapping 

techniques have been studied—for example, Edge mapping [12] and path-based 

mappings [22] [28] [14].

The basic idea behind existing XML generic mapping approaches is to 

model an XML document as a tree, and record the parent-child relationships 

among nodes in the XML tree as tuples in relational tables, with each tuple 

representing an edge or a node in the XML data tree. As a result of this 

decomposition, the hierarchical structure of an XML document is flattened to 

binary relationships scattered in the database tables. Although the generic 

mapping approach can be used to store any XML documents, with or without 

schema, into a relational database, query performances of existing generic 

mapping approaches are still far from satisfactory, especially for large XML 

documents.

There are two main reasons for this inefficiency. First, XML data are 

scattered in relation schemas with a very high degree of fragmentation. At 

query processing time, a large number of join operations are required to restore 

the hierarchical structure of an XML document. Second, only parent-child 

binary relationships are stored in relation schemas, making it very expensive 

to search ancestor information.

This thesis focuses on generic mapping approaches that are able to lower 

the fragmentation degree of XML data in relations, and our goal is to improve 

query performance.

1.2 Contributions

In this thesis, we propose a new generic mapping technique, called Xregion, to 

store XML data in relational databases. Our solution for reducing the frag-

2

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



mentation is simple, but very effective. We first partition an XML document 

into several disjoint regions according to the cardinalities of node occurrences, 

and we then store these regions, including their parent information, into sep

arate tables. An example for our mapping approach is given below.

The graph in Figure 1.1, called an XML structure tree, describes the struc

ture of a sample XML document for a university registration system. Each 

ellipse represents a distinct node—identified by its path—in the document, 

while a double ellipse represents a node with repeated occurrences under its 

parent node, i.e., a set-valued node. For example, each course has one course 

number and one title, but many sections and many TAs. Therefore, both 

“section” and “TA” node are represented by a double ellipse.

The above structure tree is then partitioned into four disjoint regions by 

three set-valued nodes, e.g., “course” , “section” and “TA” . Each region is 

mapped into a separate table, and each distinct node in a region is repre

sented by a separate column in the table for the region. For example, R 2 1  in 

Figure 1.1 is the region represented by the “course” node, and its correspond

ing relation schema is

umv course.

@cno ) (  title ) C  sections

section

@ sno) C  instructor

course (course, @ cno, title, sections)

Figure 1.1: An example for Xregion.

3

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



courseJable (course, @cno, title, sections).

The advantages to partitioning and storing XML documents based on car

dinality of node occurrences are as follows. First, since each region contains no 

further nested structure, i.e., no other set-valued nodes, it can be stored as a 

set of tuples in one table. Second, we avoid the very expensive join operations 

required for query evaluation by other approaches, because all children nodes 

except for the set-valued child nodes of an element are stored in the same 

relation as the element. Since regular relations do not support set-valued at

tributes, we create a separate relation for each set-valued element and all its 

descendants with one-to-one relationships to the element. So in our system, 

XML documents are decomposed according to the nested level of the data, 

rather than the binary relationships between nodes, which are widely used in 

the existing generic mapping methods.

We have implemented Xregion and several other existing generic mapping 

techniques, including XParent[14] and Edge[12]. We have conducted exten

sive experiments using the above approaches to store three XML data sets 

into an Oracle database, and then compare their performance by evaluating 

eighteen typical queries. Experimental results demonstrate that the proposed 

approach dramatically improves the performance of query evaluation on the 

XML data over the existing generic mapping technologies, by one or two or

ders of magnitude. The improvement is particularly striking for large XML 

documents.

In summary, the contributions of the thesis are as follows. We propose 

a new generic XML-to-Relation mapping approach, called Xregion. Exper

iments show that Xregion outperforms existing generic mapping techniques 

(such as Edge mapping and XParent) significantly—especially for complex 

queries involving multiple paths and conditions. This approach enjoys high 

performance even with large XML documents.

We have also implemented an XML importing system based on the pro

posed approach. This system can create database schema for any well-formed

4

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



XML document and load its data into the database automatically without 

user interventions. No DTD information is required for this mapping.

1.3 Overview

The rest of the thesis is organized as follows. In Chapter 2, we review the 

current state of generic mapping approaches. In Chapter 3, we give formal 

definitions of the XML data models used in our approach. Chapter 4 formalizes 

the proposed approach, Xregion, while Chapter 5 goes into the implementation 

details of the system. The experimental setup and results are described in 

Chapter 6. Finally, in Chapter 7 we provide a summary and outline future 

work.

5

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Chapter 2 

Background and R elated Work

2.1 An Overview of XML Docum ents

Extensible Markup Language (XML)[1], is becoming the standard for data 

interchange and representation on the Web and elsewhere. Its nested and self

describing nature makes its transmission, and presentation more intuitive than 

any other data standard. Figure 2.1 is an example XML document describing 

course information. Each pair of matching tags in an XML document, together 

with the enclosed XML data, forms an XML elem ent. The elem ent typ e  

of an element is identified by its corresponding tag name. Any XML element 

can contain other elements as sub elements. An element can also contain 

attributes, which are additional information included as part of the start tag 

of the element, and include attribute values in quotes, for example, Ccourse 

cno=“291”>. Different from some other markup languages, XML tags are 

not predefined; users need to define their own tags, which makes XML more 

flexible and adaptable for information identification.

Despite the flexibility in content, an XML document must be syntac

tically correct in format, i.e., well-formed. There are several rules that 

determine whether an XML document is well-formed. First, in an XML 

document, all tags must have a matching end tag or be themselves self-

6

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



<catalogue>
<univ>ABC</univ>
<course cno="291">

<title>Database Systems</title>
<sections>

<section sno="Hl" >
<instructor>Dr. Lin</instructor>

</section>
<section sno="H2" >

<instructor>Dr. Dean</instructor>
</section>

</sections>
</course>
<course cno="539">

<t itle >Programming</t itle >
<sections>

<section sno="Hl" >
<instructor>Dr. Hanks</instructor>

</section>
</sections>
<TA sid="123"> <lab>D01</lab> </TA>
<TA sid="112"> <lab>D02</lab> </TA>

</course>
</catalogue>

Figure 2.1: An example XML document for university courses

7

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



ending. Overlapping tags are not permitted, therefore all sub elements must 

be properly nested within their parent element. Furthermore, all XML doc

uments must contain a single tag pair to define the root element, e.g. the 

< catalogue> ....<  /catalogue> in the example XML document.

An XML document may have a DTD (Document Type Definition) or an 

XML Schema, which can be used to define and validate the data structure 

of the document. In this thesis, we focus on the problem for storing XML 

documents in relational databases without the knowledge of the DTDs or 

XML schemas.

catalogue o element 

A attribute&1
course

uni
text

course
&2 .&13.&3

@cno
TAiscctions titler sections

TA•ABC

'& 4 &5 &6 &15. &16 .&20. &23

'291 '539-
section @sid labsectioi sectii

'Database Systems Programming

&7 & t ( ) &22&17 &25.

•123 '112
@sno@sm instructor instructoristructor

•D01@sno, "D02
&8 &9 & 1 2 &J9

'HI'HI •H 2"

"Dr. Hanks""Dr. Lin" "Dr. Dean"

Figure 2.2: An XML tree (XPath model) for the example XML document

Because of the nested structure of XML, a well-formed XML document can 

be visualized as an ordered tree structure. Figure 2.2 is a graphic depiction

8

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



of an XML tree, which conforms to the definition of X Pathfll] model of the 

World Wide Web Consortium (W3C). Element node, text node and attribute 

node are the three major node types of the XPath model, which models the 

element, attribute and text content of an element, respectively.

XPath (XML Path Language) is a query language defined by W3C; its 

syntax and semantics are used in many proposed XML query languages. In this 

thesis, for simplicity, all example XML queries are written in XPath syntax.

XPath describes the navigation on an XML tree by paths. The path as

sociated with each node of an XML document is a sequence of tags starting 

from the root element to the node itself, e.g., the path of “TA” node in the 

above example XML document is /catalogue/course/TA  (Figure 2.2). A pred

icate, which may contain arithmetic, logical expressions or comparisons, can 

be added to any step of a given path as a query condition. The following are 

two simple XML queries using XPath expressions, and their expected results. 

Exam ple 1 Find the course number of the course with a title “Database Sys

tems” .

Q l: /catalogue/course[title= “Database Systems”]/@cno 

The expected query result is a string value:

<results>291</results>

Exam ple 2 List the information of courses instructed by Dr. Dean.

Q2: //course[sections/section/instructor/nam e=“Dr. Dean”]

The expected query result is a “course” element:

<results>
<course cno="291">

<title>Database Systems</title>
<sections>

<section sno="Hl" >
<instructor>Dr. Lin</instructor>

</section>
<section sno="H2" >

<instructor>Dr. Dean</instructor>
</section>

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



</sections>
</course>

</results>

2.2 Related Work

The nested and self-describing nature of XML provides simple and flexible 

means for exchanging data among applications. However, it is not designed to 

facilitate efficient data storage or retrieval. With the trend towards increasing 

the amount and size of XML documents, it is imperative to store and query 

them efficiently in order to exploit the full power of this new technology.

One of the methods used for XML storage and retrieval is the employ

ment of Relational Database Management Systems (RDBMS). Constructing 

an XML storage system using existing RDBMSs takes advantage of the mature 

technologies already provided in database systems, such as concurrency con

trol, query optimization and indexing techniques. Furthermore, the relational 

database systems are in wide-spread use, and a majority of web applications 

are already built on RDBMSs. Storing XML data in a RDBMS makes it possi

ble to query seamlessly across XML and existing relational data. Given these 

advantages, we believe integrating XML and RDBMSs will be a promising 

alternative to other approaches for storing XML documents.

When we look at mapping XML to a relational database, we are considering 

the difference between relational database structures and XML data structures. 

Conventional relational database systems do not support the inherent hierar

chical and semi-structured format of XML data. Instead, the nested XML 

data need to be transformed into tables according to the database schemas 

generated by mapping approaches.

The design of XML storage schema is crucial to the performance of query 

processing and result publishing, because it stipulates how XML data are

10

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



stored in the underlying relational database systems.

2.3 Generic M apping Revisited

To further understand XML relational storage models and their effectiveness 

in terms of query processing, we will now look at existing generic mapping 

approaches which have been described in the literature. Edge mapping [12] will 

be discussed first, followed by three other path-based mapping approaches— 

XParent [14], XRel [28] and Monet [22],

All the above mapping approaches transform an XML document into re

lational data through an XML tree or graph. The Edge approach was first 

proposed by Florescu and Kossmann in 1999 [12], and has been viewed as a 

representative of generic mapping approaches. It uses a single relational table 

to store all data of an XML document, with one record in the table repre

senting one edge on the graph of the document. Edge mapping is simple and 

capable of storing any semi-structured document tha t can be modeled as a 

graph. The simplicity, however, leads to inefficiency because of the additional 

joins and selections required to restore the hierarchical structures of XML doc

uments for query evaluations. For example, a very simple XPath expression 

/a /b /c  requires three selections and two joins.

Several alternative approaches, which store additional path information in 

relations (the Monet model [22], XRel [28] and XParent [14]), were proposed to 

improve query performance. Here we categorize them as path-based mapping 

approaches. Storing path expressions explicitly in the database schemas facili

tates queries such as simple node selections, but not, however, the complicated 

ones.

In this section, we will give a brief description of how these systems trans

late the XML queries into the SQL statements, and discuss the operations 

involved in these statements. Detailed experimental data will be presented in

11

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Chapter 7.

2.3.1 Edge Based Mapping

Florescu and Kossmann [12] proposed the Edge approach to model an XML 

document as a set of atomic structure units, which are edges on the data graph, 

and which store each unit as a tuple in a relational table of a RDBMS. They 

represented an XML document as an ordered and directed graph, in which 

every node is assigned an identifier oid and each edge is explicitly labeled by 

the name of incoming element type or attribute.

catalogue

course
unr ■course

&2 &3 &13.

'ABC' @cno
TA^sections titlor sections

TA

&23,\ & v  V & f/ \

"291" '̂ >ala^ase Systems, 
section'

&6 &14 \& 15/ V

Programming'

sectii

.&16, &20,

'539
section @sid lab

&7 &n> &17, &21 ,&22,

@sno
'1) 0 1 " 'D02@sm instructor instructoristructor

@sm

& 12 &18 &19,&8 &9 &11
"Hi" "Hr. Hanks""HI" "Dr. Lin " "H2" "Dr. Dean"

Figure 2.3: An XML data graph of Edge mapping

All edges of an XML data graph are stored in a single table called the Edge 

table, which has the following structure.

Edge (source, ordinal, target, label, flag, value).
Each tuple in the Edge table represents one edge in the directed graph. An

12

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



edge is defined by the source and target fields, which are oids of the two nodes 

connected by the edge. The label field records the label of an edge. The local 

order of the edge among its siblings is stored in the ordinal field. The flag 

field indicates whether the target node is an internal node ( “ref’) or a leaf 

node with a value ( “string” or “int” ). The data graph for the example XML 

document is shown in Figure 2.3; Table 2.1 is its corresponding Edge table.

Source Ordinal Target Label Flag Value
&0 1 h i catalogue ref
&1 1 h2 univ string ABC
h i 1 &3 course ref

1 hA @cno string 291
h3 1 &5 title string Database Systems
&3 1 &6 sections ref
&6 1 h7 section ref
h7 1 h8 @sno string HI
h7 1 h9 instructor string Dr. Lin
&6 h  10 section ref
&10 1 &11 @sno string H2
&10 1 &12 instructor string Dr. Dean
h i &13 course ref
&13 1 &14 @cno string 539
&13 1 &15 title string Programming
&13 1 &16 sections ref
&16 1 &17 section ref
h l l 1 &18 @sno string HI
h \7 1 &19 instructor string Dr. Hanks
&13 1 &20 TA ref
&20 1 &21 @sid string 123
&20 1 &22 lab string D01
&13 &23 TA ref
&23 1 &24 @sid string 112
h23 1 h25 lab string D02

Table 2.1: A relational storage example using the Edge approach.

Independent of XML DTDs, the Edge mapping approach can be applied to 

a wide range of XML documents or other semi-structured documents that have 

arbitrary graph structures. However, such a decomposition method makes 

the query evaluation very inefficient, in that a number of self-join operations

13

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



are needed to restore the hierarchical structure of the XML data at query 

processing time, due to the high fragmentation of the data in relations. The 

following example illustrates how XML queries are translated into SQL query 

statements for the Edge approach.

Exam ple 3 List the information of TAs for all courses. 

Ql:/catalogue/course/TA

SQL 1 A translated SQL query statement for Ql using Edge.

SELECT edge 3.t gt
FROM edge edgel, edge edge2, edge edge3
WHERE edgel.label=fcatalogue’
AND edge2.1abel=‘course’
AND edge3.label=‘TA’
AND edgel.tgt=edge2.src
AND edge2.tgt=edge3.src;

For such a simple node selection query, the Edge approach requires three 

selections on the label field and two self-joins in order to ensure the following 

edge connection: catalogue-^-course-^-TA. The number of joins and selections 

involved are determined by the depth of the desired nodes. Because all data 

are stored in the Edge table, a large amount of data irrelevant to a query has 

to be scanned at query processing time. Furthermore, since the size of the 

Edge table is proportional to the size of the input XML document, those join 

operations will be very expensive for querying a large XML document.

In addition to the effect on query processing, the process for constructing

the XML query result (XML result publishing) is also affected by this kind 

of data fragmentation. For example, at least two more joins and two label 

selections will be involved for the result publishing of Q l, whose expected 

query result is shown below.

The expected query result of Ql:

<result>
<TA sid="123"> <lab>D01</lab> </TA>
<TA sid='T12"> <lab>D02</lab> </TA>

</result>

14

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



In order to reduce the volume of data irrelevant to a query that has to be 

processed during querying time, Florescu and Kossmann [12] also proposed a 

variant of Edge mapping, called the Binary approach. For the Binary mapping 

schema, they propose the creation of separate tables for each different label in 

the XML data graph, and then store all edges with the same label in one table, 

identified by the label name. Each Binary table has the following structure: 

B inary^;(source, ordinal, target, flag, value).

Since some existing database systems still have limits on the total number of 

tables permitted, the Binary approach is probably not feasible for storing large 

collections of XML documents. Based on the above observations, we decide 

not to use the Binary approach in our experiment, which will be discussed in 

Chapter 7.

2.3.2 XParent

XParent [14] is a four-table path-based mapping system, which uses fixed 

schemas to store various XML documents according to the XPath model. El

em ent table and D ata table, respectively, are created for storing the element 

nodes and the values of attribute nodes and text nodes. Each tuple in these 

tables represents a node identified by its node identifier Did in the XML tree. 

The parent-child relationships among nodes are stored in the D ataP ath  table 

by recording the pairs of Dids of parent and child nodes. Another table, the 

LabelPath table, stores all distinct label-paths in the Path field, and their 

depth in the Len field. These four relational tables are as follows:

LabelPath (ID, Len, Path)

DataPath (Parentid, Childid)

Element (PathID, Did, Ordinal)

Data (PathID, Did, Ordinal, Value)

15

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Table 2.2 shows the LabelPath table for the example XML document (Fig

ure 2.1); other tables are listed in Figure 2.4.

L a b e lP a th  table___________________________________
Id Len Path
1 1 /catalogue
2 2 /  catalogue /  course
3 3 /  catalogue /  course /  @cno
4 3 /  catalogue/course/title
5 3 /  catalogue/course/sections
6 4 /  catalogue/course/sections/section
7 5 /  catalogue /  course/sections/section /  @sno
8 5 /  catalogue /  course/sections /  section/instructor
9 3 /  catalogue/course/TA
10 4 /catalogue/course/TA/@sid
11 4 /  catalogue /  course/TA/lab
12 2 /catalogue/univ

Table 2.2: The XParent LabelPath table for the example XML document

16

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



E lem ent table D ataP ath  table
ParentID ChildID

&0 &1
&1 &2
&1 &3
&3 &4
&3 &5
&3 &:6
&6 &7
&7 &8
&7 &9
&6 &10
&10 fell
&10 &12
&1 &13

&13 &14
&13 &15
&13 &16
&16 &17
&17 &18
&17 &19
&13 &20
&20 &21
&20 &22
&13 &23
&23 &24
&23 &25

PathID Ordinal Did
1 1 &1

12 1 &2
2 1 &3
3 1 &4
4 1 &5
5 1 &6
6 1 &7
7 1 &8
8 1 &9
6 &10
7 1 &11
8 1 &12
2 &13
3 1 &14
4 1 &15
5 1 &16
6 1 &17
7 1 &18
8 1 &19
9 1 &20
10 1 &21
11 1 &22
9 &23
10 1 &24
11 1 &25

D ata tab e
PathID Ordinal Did Value

12 1 &2 ABC
3 1 &4 291
4 1 &5 Database Systems
7 1 &8 HI
8 1 &9 Dr. Lin
7 1 fell H2
8 1 &12 Dr. Dean
3 1 &14 539
4 1 &15 Programming
7 1 &18 HI
8 1 &19 Dr. Hanks
10 1 &21 123
11 1 &22 D01
10 1 &24 112
11 1 &25 D02

Figure 2.4: XParent schemas for the example XML document

17

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Compared with the Edge mapping approach, path-based mapping speeds 

up the query processing on simple XML queries, by storing path expressions 

explicitly in relations. However, when processing queries with multiple paths 

or multiple conditions on different branches, such as the query 

/catalogue/course[sections/section/instructor= “Dr. Hanks”J/TA, 

a number of joins or self-joins are still needed to check node connections.

Two paths are involved in the above query, /catalogue/course/TA, point

ing to the desired nodes, and /catalogue/course/sections/section/instructor=  

“Dr. Hanks”, specifying the condition. Although, with the aid of the La- 

belPath table, XParent can easily locate the nodes represented by those two 

paths, several joins are required to ensure that the pairs of nodes, “TA” and 

“Instructor” , are connected by the same “course” nodes, which are their near

est common ancestor. The nearest common ancestor of two nodes is the node 

tha t connects them.

Figure 2.5 illustrates the tracing route of this ancestor searching process. 

Because only parent-child relationships are stored in XParent, three joins are 

needed to locate the courses that Dr. Hanks taught, as well as an additional 

join operation to find the TAs for the same courses.

catalogue

course

^talogiie/course/TA

@cno )  (  title )  C sections

section

instructor

/catalogue/course/sections/section/instructor

Figure 2.5: Ancestor tracing route using XParent

18

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



The number of joins needed in XParent for queries such as the one shown 

above is determined by the distance between related paths. We define the 

distance of two nodes as the sum of their distances from the nearest common 

ancestor, and the distance of a node from its ancestor as the depth difference 

between them. In the above example, the distance between the “instructor” 

node and the “TA” node is four, and the number of required joins is five.

The main reason for this inefficiency is that XML data are scattered in 

relation schemas with a very high fragmentation degree. The hierarchical 

structure of an XML document is flattened to binary parent-child relation

ships. This type of mapping strategy makes searching ancestor information 

very expensive.

As an example, SQL 2 demonstrates how XParent processes the above 

XML query.

Exam ple 4 Find the TAs who work with Dr. Hanks.
Q2: /  catalogue /  course [sections/section/instructor= “Dr. Hanks” ] /TA 
SQL 2: A translated SQL query statement for Q2 using XParent.

SELECT ta.did
FROM data ta, data inst,

labelpath lp_ta, labelpath lp_inst, 
datapath dp_ta, datapath dp_inst, 
datapath dp_section, datapath dp_sections 

WHERE lp_inst.path =
‘/catalogue/course/sections/section/instructor’

AND lp_ta.path = ‘/catalogue/course/TA’
AND ta.pathid = lp_ta.id 
AND inst.pathid = lp_inst.id 
AND inst.value = ‘Dr. Hanks’
AND inst.did = dp_inst.childid
AND dp_inst.parentid = dp_section.childid
AND dp_section.parentid = dp_sections.childid
AND ta.did = dp_ta.childid
AND dp_sections.parentid = dp_ta.parentid;

19

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



2 .3 .3  X R e l

XRel, proposed by Yoshikawa and Amagasa et al. [28], is a generic mapping 

approach that keeps both the simple path expressions and element positions 

in relations. The position of an element is recorded by the byte-offset of its 

start and end positions in the XML document. For example, the positions 

of node 1 (document root “catalogue” ) and node 19 ( “instructor” ) in the 

XML tree shown in Figure 2.3 are (0, 448) and (315, 323), respectively. 

The E lem en t table, A ttr ib u te  table and T ex t table are created for storing 

element nodes, attributes and text contents, respectively. As in the Edge and 

XParent approaches, each tuple in these relations represents one node in the 

XML tree. All path expressions are stored in the P a th  table. The basic XRel 

schemas are as follows:

Path(PathID, Pathexp)

Text (docID, pathID, start, end, value)

A ttribute (docID, pathID, start, end, value)

Element (docID, pathID, start, end, ordinal, reverse.ord).

A contribution of XRel was tha t the authors introduced a new format 

for representing paths. They proposed the use of two characters to sepa

rate steps in a path expression, e.g., ‘# /catalogue#/course’ instead of ‘/ca t

alogue/course’. The advantage of this transformation is that it simplifies the 

query translation process for simple queries on paths with wildcards, and guar

antees the correctness of string matching in query processing. For example, a 

simple XPath expression, /book/'/price, which queries the price of all kinds of 

books, can be translated correctly into an SQL query with a condition clause

WHERE pathexp LIKE 1 #/book#°/,/price ’

to find all tuples with the expected path expressions, such as ‘# /b o o k # /p ric e ’ 

( /book/price) or ‘# /b o o k # /n o v e l# /p rice ’ (/book/novel/price). However, if 

only one character is used as a step separator in the path string, the SQL 

clause

20

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



WHERE path L IK E  7book% /price’

may return some unwanted tuples, such as ‘/bookcase/color/price’, ‘/book

shelf/price’, and so on.

In XRel schemas, the containment relationships among nodes in an XML 

document can be captured by comparisons between start and end positions. 

Therefore, XRel sometimes does not need to verify all the intermediate edge 

connections, one by one, between two nodes, e.g., node a-^b^-c-^node d, and 

needs only to check whether one node (d) is reachable from the other node (a). 

Thus, XRel will use fewer join operations for searching ancestors of a node. 

However, this simplification in query processing does not improve the query 

performance as expected, and sometimes it deteriorates, especially for large 

documents. Different from other approaches, the join operations involved in 

checking containments are non-equijoins, which are executed as hash joins at 

runtime in most RDBMSs. Our experiments showed that, for some compli

cated queries, a Full Table Scan (FTS) and Merge Join Cartesian are involved 

when querying data in XRel schemas. An example for processing query Q2 is 

shown below.

Exam ple 5 Find the TAs who work with Dr. Hanks.

Q2: / catalogue/ course [sections/ section/ instructor= ” Dr. Hanks” ] / TA 

SQL 3: A translated SQL query statement for Q2 using Xrel.

SELECT eta.start, eta.end
FROM element eta, element ecrs, text inst, 

path pta, path pinst, path pcrs,
WHERE pinst.pathexp =

‘ #/catalogue#/course#/sections#/section#/instructor’
AND pta.pathexp = ‘ tt/cataloguett/coursett/TA’
AND pcrs.pathexp = ‘#/catalogue#/course’
AND inst.pathid = pinst.pathid 
AND eta.pathid = pta.pathid 
AND ecrs.pathid = pcrs.pathid 
AND inst.value = ‘ Dr. Hanks’
AND ecrs.start < inst.start

21

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



AND ecrs.end > inst.end 
AND ecrs.start < eta.start 
AND ecrs.end > eta.end;

Another drawback of the XRel mapping approach is the use of absolute 

positions in the document to describe a node. This makes some update opera

tions very expensive, although it is effective for XML query results publishing. 

A single change of value might result in the update of all the relational tuples 

of a document, which is not trivial for a large XML document. For example, 

if the value of an attribute node is changed from “291” to “c291” , the end 

positions of all nodes in the example document are one byte forward.

2.3.4 M onet M odel

Monet [22] is another path based XML relational storage model proposed by 

Schmidt et al. The basic idea is similar to that of the Edge mapping, which 

identifies parent-child relations from the XML data graph. At the mapping 

stage, a different approach is applied, which creates separate relational tables 

for every distinct path in the graph. Thus, data stored in the same table has a 

strong structural relation, and each table is relatively small, compared to the 

Edge approach. However, as with the Binary approach to Edge mapping, this 

approach might not be viable for large collections of XML documents due to 

the limit on the total number of tables in database systems. For example, the 

Monet approach created 2587 tables for a single XML document for Webster’s 

Dictionary [22],

2.4 Other Mapping Approaches

In addition to generic mapping approaches, which consider situations in which 

DTDs are not available, several other XML-to-Relation mapping techniques 

have also recently been investigated.

22

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Some of these approaches use XML DTDs or XML schemas information to 

generate relational schemas [25] [15] [18]. Considering that numerous sophisti

cated Web applications are based on flexible usage of XML documents and the 

demand for storage of various kinds of XML documents (which are well-formed 

but may have no associated DTDs or whose DTDs are not known at the pro

cessing stage), obviously, mapping strategies using DTDs or XML schemas are 

not appropriate for storing a large number of such structurally-variant XML 

documents.

Various other approaches, such as the STORED system [10] and a cost 

based system LegoDB [6], design database schema according to the analysis 

and statistics on frequent structure and query work load. However, it is diffi

cult for them to deal with XML data that has irregular structures. In addition, 

extra operations, such as gathering statistics and analyzing query workload, 

are also required.

Cooper, Sample, Franklin et al. pursue a different direction to improve the 

performance of querying XML data in databases. To facilitate the navigation 

and selection of nodes on the XML trees, they build a special index, Index 

Fabric [9], on top of RDBMSs, for storing path information (raw path), instead 

of using B-tree indexes. Their experimental results show that the fast index 

improves performance, but mainly for refined paths, which are specialized 

paths for tuning frequently occurring queries.

2.5 Chapter Summary

In this chapter, we continued to be motivated by the importance of designing 

database schemas for storing and querying XML data in RDBMSs. In the 

case that XML documents are very large, or occur in huge numbers, it is 

imperative to convert those data to a format where they can be retrieved 

effectively. Therefore, we analyzed the existing generic mapping techniques in

23

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



terms of effectiveness of query processing.

The generic mapping techniques do not rely on the DTD or XML Schema 

information to design relational database schema for XML documents, and can 

be applied to a wide range of XML documents. Most existing generic mapping 

techniques create relational schemas based on a local granular structure, such 

as an edge or a node in the XML tree, so that their relational schemas are 

general enough for storing arbitrary XML documents. However, this simplicity 

also results in high fragmentation of XML data in relations, which makes query 

processing and XML query result publishing very expensive.

24

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Chapter 3 

Xregion D ata M odel

In this chapter, we formally define the XML data tree, XML structure tree, 

region and nested level, which make up of the data model used in our mapping 

approach.

Given an XML document, we use El to denote the set of element names; 

Attr, the set of attribute names; Vert, the set of node identifiers; Str, the set 

of possible string value of elements or attributes. (Note that the symbol 

is added as the prefix of all attribute names.)

3.1 XML Data Tree

Following previous work on XML data, we model an XML document as a 

node-labeled tree, XML data tree, which is defined below. The XML data 

tree used in our approach is slightly different from the XPath tree models 

[11] discussed in Chapter 2. We model the text of an element as the value of 

that element node, rather than as a separate text node on the tree. For this 

reason, we adapt the formal definition of an XML data tree from XNF [3], by 

modifying the total function “ele” and adding a new function “val” . 

D efin ition  1 [3] An XML tree T  is defined as a tree (V, lab, ele, val, attr, 

root)-.

• VC Vert is a finite nonempty set of vertices.

25

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



catalogue

umv course course

ABC

title TA@cno fi)  (title  
"Database 

Systems"

TA

'291 " Programming

sectionsection section @sid @sid

'123 •112 "

"D02

lab

@sno @sno @sno 'D01

'HI" ^ -----*— ~^"H2
Constructor

"Dr. Lin"

'HI

"Dr. Hanks"

Figure 3.1: An XML data tree for the example XML document

•  lab:V^El.

• elt-.V-^V*

•  vahV-^-StrXJnull

• attr is a partial function VxAttr-^-Str. For each vE V, 

the set {alcA tt | attr(v, al) is defined} is a finite set.

•  rootE V  is the root of XML data tree T.

Every element in the document is modeled as a node, characterized by a unique 

node identifier. All attributes of an XML document are modeled as children of 

their associated element nodes. Given an XML data tree, a path of a node is 

a sequence of ancestor labels, starting from the root to the node. Figure 3.1 is 

a graphic depiction of the data tree for the sample XML document in Figure 

2 . 1 .

26

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



3.2 XML Structure Tree

An XML document contains both meta data and data itself, and its meta data, 

including all paths and other information, can be described by the structure 

tree.

The structure tree summarizes the hierarchical structure of an XML doc

ument by combining repeating structures in the XML data tree and marking 

all set-valued nodes explicitly. All nodes tha t have the same path information 

in a data tree are represented by exactly one node in the structure tree of the 

document.

D efin ition  2 Let Pt be the set of all paths in an XML data tree. An XML 

structure tree S  is defined as a tree (Vs, Pt, multi, r):

•  Vs-.Pt^-ElUAttr .

•  multi: Pt—>l\n.

• r e  Vs(Pt) is the root of XML structure tree S.

catalogue

courseumv

@ cno title sections

lab

@ sno instructor

Figure 3.2: An XML Structure tree

27

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



multi(ptx) shows the maximum cardinality of nodes identified by a path 

PtiEPt, in the data tree. The hierarchical structure of XML data is captured 

by paths. Figure 3.2 shows an XML structure tree for the example XML 

document. For simplicity, all multi-valued nodes that occur repeatedly under 

their parent nodes, {pti€.Pt\multi(pti j= n}, are identified by a double ellipse 

in this structure tree.

For example, each course has one course number and one title, but many 

sections and many TAs. Therefore, both course number “@cno” and “title” 

are represented by a single ellipse while “section” and “TA” are represented 

by a double ellipse.

Features of the XML structure tree are:

1. It represents the complete structure of a given XML document, i.e., it 

contains the structure of every element type in the XML document.

2. It is exactly as deep as the corresponding XML data tree.

3. Generally, the XML structure tree will be much smaller than the XML 

data graph.

From this graph, we can see that the structure information for an XML doc

ument includes not just path information, but also the cardinality of node 

occurrences. Because of the above features, we will use the structure tree as 

the basis for partitioning any given XML documents.

3.3 Region

The key idea of the proposed approach is to partition the input XML docu

ments into disjoint regions according to the cardinality of node occurrences. 

The definition of the region is given below.

28

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



D efin ition  3 A region in a structure tree S' is a subtree R  such that

1. the root of R  is either a set-valued node (i.e., a double ellipse) or the 

root of S, and

2. all the subtrees of R  rooted with a set-valued node (i.e., a double ellipse) 

are removed.

Obviously, a structure tree with N  double ellipses contains N  + 1 disjoint 

regions. Each region consists of all and only those descendants that have 

one-to-one relationships with the set-valued element (region root). Therefore, 

we can map all nodes in a region into one relation with every node in this 

region represented by a separate column in the relation. Another feature of 

a region is that the ancestors and cousins of all nodes in a region belong to 

the same region. Consequently, storing all the regions in separate tables may 

significantly reduce the number of joins needed for query evaluation. Figure 3.3 

shows all the regions for the sample document, and the corresponding relations 

for storing regions. For example, the relation for the region “course” is:

Relationxourse (course, @cno, title, sections)

3.4 Region Tree and N ested Level

In order to specify the table schema according to the regions, we define the 

region tree of a given document as the tree obtained from the structure tree 

by replacing each region with one node. Since each node in a region tree will 

be stored in one relation, a region tree is also called a relation tree. Figure 3.3 

(b) describes the relation tree for the sample document.

Given a region tree Tr, the nested level of a region is then defined as the 

depth of its corresponding region node in the region tree.

All nodes in a given region belong to the same nested level, although they 

are at different depths of the XML structure tree. For example, in Figure 3.3,

29

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Depth:

c a ta lo g u e )/

2— . ( umv course

@cno ) (  title sections A  i (LTA3—
■ 3,2

4— section

\  Q@sno instructor5—

Relation "root" 
(catalogue, univ)

Nested Level: 

— 1

Relation "course" 
(course, @ cno, title, sections)

R elation "section" 
(section , @ sno, instructor)

Relation "TA" 
(TA, @ sid, lab)

(a) R egions (b) Relation Tree

Figure 3.3: An example for regions. The structure tree is divided into four 
regions by its three set-valued nodes course, section and TA.

while the node “section”, “instructor” and “TA” are at different depths in the 

structure tree, they are at the same nested level —nested level 3.

Based on its topological position in the region tree, each region can then 

be labeled as R ij, where i denotes its nested level, and j  the order of regions 

in their respective level, with the leftmost as 1. Consider Figure 3.3 (b) again. 

Relation “root” is labeled as R i}i, Relation “course” as Relation “section” 

as R3}i, and Relation “TA” as f?3)2.

3.5 Region Instance

Given an XML data tree T, once all regions of T  are identified, T  can then be 

partitioned into a set of subtrees, each of which is an instantiation of a region. 

More formally, we define a region instance as follows:

D efin ition  4 Let T  be an XML data tree, and R  be a region of the XML 

structure tree of S. Then, an instance I  of R  is defined as a subtree I (T ,R )  

of T, such that each node (or an edge) in I (T, R) is an instantiation of a node 

(or an edge) in R.

30

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



On the data tree T, each occurrence of the root node of region R , and 

all its non-set-valued descendants forms an instance of R. For example, the 

Icourse- 1  and ICOurseJ2 , marked on the XML data tree shown in Figure 3.4, are 

two instances of the region “course” .

catalogue

/course_2

’/4fiC"'(univ coursecourse

sections^) j (title
’5 3 9 " " Programming

sections J  ■ TA TA/\_@ cno  

\J291" "Database Systems

title

section @sid @sidsection section

725 112
lab lab

@sno @sno "D01 'D02@sno

Instructor 'HI'HI

'Dr. Hanks'Dr. Dean

Figure 3.4: Two instances of region “course” .

Because the XML structure tree S  characterizes the meta data of T, it is 

not difficult to see that T  can be partitioned into the set of region instances. 

Furthermore, since all nodes (except the region root) in a region, are single

valued, each instance of a region can be stored as a tuple in the table for the 

region.

By partitioning an XML document into a set of region instances, the doc

ument can be then stored in a set of relational tables, one for each region.

3.6 Chapter Summary

In this chapter, we formally defined the data model used in our proposed XML 

relational mapping approach, Xregion.

31

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



An XML data graph is a tree structure that represents the topological 

structure and data of an XML document. The XML structure tree of an XML 

document is built by summarizing the structure of its XML data tree. It 

represents the complete hierarchical structure of the document, and identifies 

all multi-valued nodes in the document.

In the process of creating the database schema for an XML document, 

its structure tree will be partitioned into disjoint regions, with each region 

represented by a set-valued node. Each region is stored in a separate table, 

and every node within the region is represented by a separate field. Each 

occurrence of a region structure in the XML data tree is an instance of the 

region and is stored as a tuple in the table that represents the region.

32

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Chapter 4 

Xregion Storage Schema

In this chapter, we present the storage schema for Xregion, which specifies 

how to store the set of all region instances of any given XML document into 

a relational database system.

The basic idea of Xregion is to store all the instances of one region into 

one table. Because an XML database system will be used to store all types 

of XML documents, we shall establish a schema to assign an existing table 

(or to create a new table if necessary) to store a region from any given XML 

document.

4.1 Basic Database Schema for Xregion

The database schema for Xregion consists of one meta table, for storing all 

the meta information, such as edges, paths and document identifiers, and a 

limited number of data tables, one for a region.

Since a region instance will be stored as a tuple, i.e., a list of node values, 

all structured information in a region is not preserved in data tables. Thus, 

we use the meta table to store all such information.

Unlike all other generic mapping approaches, the Xregion storage schema 

separates the structured information from the value information. Rather than 

explicitly storing the edge and path information for each and every region

33

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



instance, we use the meta table to designate the structured information for all 

region instances. The advantages are two-fold. First, by using a meta table to 

store the structure information, we eliminate unnecessary redundancy. Second, 

without the structure information, one data table can be used to store different 

regions from different XML documents.

For simplicity, we assume that the number of nodes in any region is limited 

to n, say n — 20. Should the number of nodes exceed this limit, we can either 

increase the number of columns of the table for the region, or create a new 

table to store information for the extra nodes.

4.1.1 D ata Tables

Each data table is used to store all the instances of the corresponding region, 

as well as the data needed to identify the parent information of any node in 

the region.

Since a region does not contain any set-valued node, each region can be 

represented by a set of tuples of n columns, one for the value of each node in 

the region.

To uniquely identify each tuple in the region table, we will create one 

unique id, named tupleJd.

In Xregion, the parent of any node in a tuple of a given region table, is either 

in the same table, or is stored in the region table of the upper level (parent 

of the region root). Therefore, we also create a column, called parentJd, or 

p Jd  for short, to store the tupleJd of the parent instance of a given tuple in 

a region.

In order to preserve the order among all sibling nodes, we will use one 

column to record the ordinal position of the set-valued nodes, which are root 

nodes of each region. Finally, since a data table will be used to store multiple 

XML documents, we need a column to store the document name. The tupleJd, 

together with the doc-name field, will be the primary key for each data table.

34

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



In summary, each table designated as tableJ-j is defined as a table with 

n +  4 columns, that is,

table J - j (docmame, tupleJd , pJd , ordinal, coli, ..., coln_i, coln).

Where docjname is used to store the document name of the XML docu

ment, tupleJd is used to store the unique id of a tuple in the region, p Jd  is 

used to store the tupleJd of the parent node of the region root, ordinal is used 

to store the ordinal position of the tuple, and coli, for 1 <  i < n, is used to 

store the value of the corresponding node in the region.

For convenience, we simplify the table for root region R iti by removing 

the pJd , ordinal, since the root region does not have any parent and sibling. 

Therefore, the structure of the root table is:

table-1-1 (doc_name, tup leJd , coli, ..., coln_i, col„).

4.1.2 M eta Table

The meta table, named meta-table, is designed to store all the meta information 

from the document structure trees, one tuple for each path in the structure 

tree.

Since each path represents one node in the structure tree, and each node 

is mapped into a distinct column of its region table, for each path, we keep 

the names of its region table, its parent region table and its column name, as 

a tuple in the meta-table. We shall also store, for each tuple, the name of the 

XML document.

In summary, the meta table consists of five columns and its structure is: 

meta-table(doc-ndLme, path , tablemame, col_name, p_table).

It is easy to see that the aforementioned N  + 1 tables store all the information 

about an XML document.

35

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



4.2 Example

Given an XML document, the Xregion will first construct the XML structure 

tree. Once the structure tree is constructed, the Xregion will assign (or create if 

necessary) a table schema for each region, and then store the table assignment 

and path information in the meta table.

After the meta table is populated, by traversing the XML data tree in 

depth-first-order the Xregion will partition the XML data tree into region 

instances and store them in appropriate tables.

All the data tables and meta table for the sample document described in 

Figure 2.1 are shown in Tables 4.1 - 4.5.

doc-name Path table_name col-name p.table
course.xml /catalogue table.l _1 coll
course.xml /catalogue/univ tab le.l-1 col2
course.xml /catalogue/course table-2-1 coll table-1-1
course.xml /  catalogue/course /  @cno tableJLl col2 tab le .l-1
course.xml /catalogue/course/title table-2-1 col3 table.1-1
course.xml /  catalogue/course/sections table-2-1 col4 tab le .l-1
course.xml /  catalogue /  course /  sections /  section table-3_l coll table.2-1
course.xml /catalogue /  course/sections/section /  @sno table-3-1 col2 table.2-1
course.xml /  catalogue/course /  sections/section/instructor table-3-1 col3 table.2-1
course.xml /catalogue /  course/TA table-3-2 coll table-2_l
course.xml /catalogue /  course/TA /  @sid table-3-2 col2 table-2_l
course.xml /  catalogue /  course/TA/lab table-3-2 col3 table.2-1

Table 4.1: The meta_table.

The meta-table contains complete mapping information for all the element 

types and attributes of an XML documents. Each record of the meta-table 

is identified by a path and a document name. For example (Table 4.1), for 

the XML document “course.xml” , the “TA” element node, its attribute “@sid” 

and sub element node “lab” are stored in coll, col2 and col3 fields of tableS-2, 

respectively, and their parent table is table-2-1.

Every data table stores all region instances of the region represented by

36

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



the table. For example, both instances of the “course” region, ICOUrse-i and 

IcourseJi, illustrated in Figure 3.4, are stored as two tuples in table.2-1, which 

is shown in Table 4.2.

doc_name tupleJd pJd ordinal coll col 2 col3 col4
course.xml 2.0 1 1 course 1 291 Database System sectionsl
course.xml 5.0 1 2 courseS 539 programming sectionsS

Table 4.2: Table_2_l(course).

In this example, the values of the tupleJd of all the region instances are 

assigned based on the document order. Figure 4.1 describes the tuple orders 

for the example XML document. The tupleJd, together with the doc.name 

field, serves as the primary key for each data table. The “p Jd ” and “doc_name” 

fields work like a foreign key referring to the parent table in the upper level.

5.02.0
course_2course_l

,4.0 6.03.0 7.0

root

TATAse c t io nsec tio n

c o u rse c o u rse

se c t io n

7section_l 7course_2 fcourse  _3 7 tA„I 7 t A_2

Figure 4.1: Tuple order.

The corresponding tables for region “section” and region “TA” are shown 

in Figure 4.3 and 4.4, respectively.

docmame tupleJd pJd ordinal coll col2 col3
course.xml 3.0 2.0 1 sectionl HI Dr. Lin
course.xml 4.0 2.0 2 sections H2 Dr. Dean
course.xml 6.0 5.0 1 sections HI Dr. Hanks

Table 4.3: Table_3_l (section)

37

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



docjiame tupleJd pJd ordinal coll col2 col3
course.xml 7.0 5.0 1 TA1 123 D01
course.xml 8.0 5.0 2 TA2 112 D02

Table 4.4: Table_3_2 {TA)

The data table for the root region of the example XML document is shown 

in Figure 4.5.

docmame tupleJd coll col2
course.xml 1 catalogue ABC

Table 4.5: Table.l_1 (root)

4.3 Discussion

4.3.1 Storing Different XML Docum ents

It is not feasible to create different schemas for each individual XML document 

in a system that stores a large number of XML documents, due to the overhead 

and system limitations.

Despite the heterogeneous structures of different XML documents, the Xre

gion uses one specified database schema to store all types of XML documents. 

This is largely due to the separation of the the value content and structured 

information in the Xregion schema.

Table 4.6 is a snapshot of the table, tableS-1, in which the data of 

“course.xml” and “test.xml” are stored.

4.3.2 Query Evaluation

The meta-table of Xregion provides sufficient information to users to enable 

the development of a standard interface for query processing and XML query 

result publishing. The mapping information of all components of an XML

38

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



doc_name o .id p_id ord coll col2 col3

course.xml 3.0 2.0 1 sectionl HI Dr. Lin
course.xml 4.0 2.0 2 section2 H2 Dr. Dean
course.xml 6.0 5.0 1 sections HI Dr. Hanks
test.xml 4.0 3.0 1 hi j l
test.xml 6.0 3.0 2 h2 j2

Table 4.6: Two different XML documents share the table_3_l.

document is recorded as meta-data, identified by paths and document name in 

the meta_table. At query processing time, the system looks up the meta.table 

and translates XML queries to SQL statements against the relational tables 

in the database system.

In Xregion, every instance of a region is stored as a tuple in its corre

sponding region table. Any non-set-valued node in an instance is stored in the 

same tuple with its parent, while the parent of a set-valued node is stored in a 

record of its parent region table and is identified by the parentJd (p-id) of the 

set-valued node. Compared with other existing generic mapping approaches, 

therefore, Xregion is considerably more efficient in evaluating queries. First, 

queries on nodes within a region are simplified to one or a limited number 

of selections on one region table, without the need for join operations, which 

are otherwise required by other existing mapping approaches. For example, 

SQL 1, 2 and 3 are translated SQL statements of Xregion, Edge and XParent, 

respectively, for the XML query given below.

E x am p le  6 Given the example XML document in Figure 2.1, find the 

course title of the course with a course number “291” .

39

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Q l: /catalogue/course[@ cno=“291”]/title

SQL 1: A translated SQL query statement for Q3 using Xregion.

SELECT col3
FROM table_2_l
WHERE col2=‘291’

SQL 2 A translated SQL query statement for Q3 using Edge.

SELECT t it1e .value
FROM edge root, edge crs, edge cno, edge title
WHERE root.label=‘catalogue’
AND crs.label=‘course’
AND title.label=‘title’
AND cno.label=‘@cno’
AND root.tgt=crs.src
AND crs.tgt=title.src
AND crs.tgt=cno.src
AND cno=‘291’

SQL 3 A translated SQL query statement for Q3 using XParent.

SELECT title.value
FROM data cno, data title,

labelpath lp_cno, labelpath lp_title, 
datapath dp_cno, datapath dp_title 

WHERE lp_title.path = Vcatalogue/course/title’
AND lp_ta.path = ‘/catalogue/course/Ocno’
AND cno.pathid = lp_cno.id 
AND title.pathid = lp_title.id 
AND cno.value = ‘291’
AND title.did = dp_title.childid
AND cno.did = dp_cno.childid
AND dp_title.parentid = dp_cno.parentid

As we can see, both Edge and XParent approaches require join operations 

to ensure that the “@cno” nodes and “title” nodes belong to the same “course” 

elements. For Xregion, the “@cno” and its corresponding “title” are stored in 

the same tuple as “course” , therefore, only a single selection on “@cno” and a 

projection on “title” are required.

Furthermore, Xregion is more efficient than other approaches in searching

40

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



for ancestor information. Xregion transforms the hierarchical structure of an 

XML document into a relatively simple nested structure among regions (rela

tions), which are normally much shallower than the structure tree. Therefore, 

the process for searching ancestor of nodes is converted to searching ancestor of 

regions, which reduces the number of join operations for complicated queries. 

It is this feature that makes efficient query evaluations possible.

As an example, SQL 4, 5 is a translated SQL statement of Xregion and 

XParent, respectively, for the example XML query discussed in Chapter 2. 

Exam ple 7 Find the TAs who work with Dr. Hanks.

Q2:/catalogue/ course[sections/section/ instructor =  “Dr. Hanks” ]/TA

SQL 4: A translated SQL query statement for Q2 using Xregion.

SELECT ta.coll, ta.col2, ta.col3
FROM table_3_l inst, table_3_2 ta
WHERE inst.col3=‘Dr. Hanks’ AND

ta.p_id = inst.p_id

SQL 5: A translated SQL query statement for Q2 using XParent.

SELECT ta.did
FROM data ta, data inst,

labelpath lp_ta, labelpath lp_inst, 
datapath dp_ta, datapath dp_inst, 
datapath dp_section, datapath dp_sections 

WHERE lp_inst.path =
‘/catalogue/course/sections/section/instructor’

AND lp_ta.path = ‘/catalogue/course/TA’
AND ta.pathid = lp.ta.id 
AND inst.pathid = lp_inst.id 
AND inst.value = ‘Dr. Hanks’
AND inst.did = dp_inst.childid
AND dp_inst.parentid = dp_section.childid
AND dp_section.parentid = dp_sections.childid
AND ta.did = dp_ta.childid
AND dp_sections.parentid = dp_ta.parentid

Using Xregion, we only need to check whether the “instructor” and “TA” are

41

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



connected by the same instances of their parent region course. XParent, how

ever, requires a number of joins to check the connection 

instructor-^sectioni-sections-^- course—>TA, in order to ensure that the pairs 

of nodes, “TA” and “Instructor”, are connected by the same “course” nodes. 

Figure 4.2 is a graphical depiction of tracing the nearest common ancestor 

“course” under Xregion and XParent schemas, and shows that XParent is re

quired to check two more steps than is necessary with Xregion, for the example 

query.

catalogue

catalogue, univ

umv course

course, @cno, title, sections

@cno title sections TA

section @sid lab
TA, @sid, labsection, @sno, instructor

@sno instructor

(a) XParent

Figure 4.2: Ancestor tracing route for XParent vs Xregion

XML query result publishing is another important aspect in evaluating an 

XML-to-Relation mapping approach. Most XML query languages return the 

query result in XML format, which consists of the value of the satisfied element 

nodes, together with all their descendants.

Xregion also speeds up the XML query result publishing process. Because 

all children nodes (except for the set-valued child nodes) of an element are 

stored in the same relation as the element, under Xregion schema, transforming

42

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



the answer from the relational database to XML format, does not involve 

expensive operations. For example, shown in SQL 4, all the contents of “TA” 

elements can be retrieved from a single table. However, for other existing 

approaches, a number of join operations are still needed to construct the query 

result in XML format, due to the high fragmentation of the XML data stored 

in the database. For example, four more joins on the table Data and the 

table D ataPath are involved for answering the above query using the XParent 

approach.

The worst case of the Xregion approach is that each region of an XML 

documents contains only one structure node. In this case, the Xregion schema 

is similar to those of existing generic mapping approaches (i.e. every tuple in 

a Xregion table represents only one node), therefore, the performance of the 

Xregion is comparable to and not worse than those of the Edge and XParent 

approaches.

4.3.3 Processing U pdates

Xregion stores XML documents based on their document structures. When 

updates to a document occur, the cardinality of node occurrences may also 

change, e.g., some nodes become set-valued nodes.

One solution for the problem is not to modify the storage schema for 

new set-valued nodes, and store the data according to their original map

ping schema. This method is simple, but it will bring another problem of 

redundancy.

The other solution is to revise the partitions of regions and their corre

sponding storage schema dynamically according to the updates. Although the 

problem of updating Xregion storage schema is non-trivial, it is manageable. 

For each new set-valued node, at most one region (in which the node resides) 

will be affected. First, the region is split into two regions by the new set-valued 

node, and a new table is assigned to the new region represented by the new 

set-valued node. Then the meta_table is modified, and the data belonging to

43

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



the new region will be migrated to the new table.

4.4 Chapter Summary

In this chapter, we presented the mapping strategy of Xregion and its basic 

database schemas, as well as a detailed mapping example. We also discussed 

query evaluation, query result publishing and the issue of storing a large num

ber of different XML documents using Xregion schema in one system.

44

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Chapter 5 

Im plem entation

5.1 System  Outline

We have implemented an XML loading system, called XML Loader, based on 

the Xregion storage schema described in the previous chapter, for storing XML 

documents into relational databases. Figure 5.1 describes the architecture of 

our XML loading system.

XML Loader
X M L

P a r s e r
X M L

D o c u m e n t
XML Data D a t a  L o a d e r  

M o d u l e

S c h e m a
G e n e r a t o r Schema

Information

Updating
m eta_table

Importing 
XML data

RDBMS

Figure 5.1: The prototype of the XML importing system.

45

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



There are three main modules: XML Parser, Schema Generator and XML 

Data Loader. The XML Parser reads the input XML document (s), extracts 

the XML tag name and value of each node in the document, materializes the 

path for each node, and detects all the set-valued nodes. The Schema Gener

ator identifies regions for each set-valued node and creates the corresponding 

mapping schemas for the XML document. The Data Loader module takes the 

schema information generated in the Schema Generator module, composes tu

ples according to the relation assignment, and loads those tuples into their 

corresponding tables in the underlying database. The programs have been 

entirely written by us, using the JAVA programming language (Java™  2 Plat

form, Standard Edition, v 1.4.1) and JDBC (Java Database Connectivity 2.0).

5.2 XML Parser M odule

It is very important to parse XML documents efficiently, especially in appli

cations proposing to handle large volumes. Several types of XML parsing 

techniques are available, of which Document Object Model (DOM) and Simple 

A P I for XML (SAX) are two popular parsing mechanisms.

A DOM parser converts the entire XML document into a tree stored in 

memory, provides good navigation support, and allows the user to access an 

XML document at random positions. However, the problem of lack of enough 

memory resource arises when processing a very large XML document, since 

typically the DOM tree is an order of magnitude larger than the document.

In contrast to the DOM, a SAX parser works incrementally and fires off a 

series of events as it reads through the input XML document. For example, 

when the SAX encounters the start tag of an element, it will invoke the callback 

method, s ta r tE le m e n t( ) . The disadvantage of SAX is that it is more compli

cated than the DOM. The user is required to implement the callback methods

46

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



for handling incoming events, such as S ta rt-E le m e n t, E ndJE lem en t and 

C H A R A C T E R S .

In comparison with the DOM, the SAX parsing technique offers a great 

performance benefit, especially for large XML document. We therefore imple

ment our XML parser module based on the SAX interface.

The major output of the XML Parser module is the completed paths set 

and set-valued nodes set, i.e., the document structure tree, of the input XML 

document. Since our parser does one sequential scan over the input XML 

document, we cannot navigate back and forth to retrieve the ancestor infor

mation of a given element node. Therefore, in implementation, we use a path 

stack to trace the local hierarchical structure and node occurrence of an XML 

document. At any given time, the top of the stack is the parent information 

of the incoming node.

5.3 Schema Generator M odule

The Schema Generator module is the core component of our XML Loader sys

tem. Figure 5.2 shows a simplified view of the schema generation procedure. 

First, the XML document structure tree obtained from the XML Parser mod

ule is partitioned into regions by set-valued nodes. Then, relational tables are 

assigned to all regions according to their nested levels on the region tree. In 

the case that there is no corresponding table for a given region existing in the 

underlying database, a new table representing the region will be created in the 

schema generating process. At the end of the schema generation procedure, 

the meta-data table will be updated for this new XML document.

47

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



set-valued nodes set

meta schema

partition the document 
structure tree

build the region tree

assign or create a database 
table for each region

Figure 5.2: Schema Generator

48

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



In order to avoid unnecessary checking for cardinalities of children nodes, 

and speed up the region partitioning process, we process those set-valued el

ement nodes in order, from bottom to top, and update the structure tree 

automatically after processing each set-valued node, by removing the subtree 

(region) represented by the node from the whole structure tree.

Update Structure Tree
catalogue

umv course

umv course

@cno) (  title sections TA
@cno title sections

@sid )  ( labsection

@sid lab
New relation for the

region "section

(b) New Structure Tree(a) Original Structure Tree

Figure 5.3: Generating a relation for the deepest set-valued node section and 
updating the structure tree by cutting the section subtree off.

Figure 5.3 illustrates this cutting and updating schema generating process. 

For example, at the start we select the “section” node, which is one of the 

deepest set-valued nodes in the document structure tree, and we create a rela

tion for “section” and all its descendants. The structure tree is then updated 

by removing the subtree rooted by “section” node.

The advantage of this cutting and updating method is that no extra op

eration, such as checking for the cardinality of descendants, is required for 

partitioning. Because any descendant of the deepest set-valued node can

not be a set-valued node, all descendants can be included in its region and 

no checking is involved. Our cutting and updating algorithm maintains the 

document structure tree dynamically, and guarantees that, at any time, the 

set-valued node being processed is the deepest set-valued node.

49

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



5.4 Data Loader M odule

The Data Loader module reads the schema meta data generated by the Schema 

Generator Module, identifies region instances, composes tuples with tupleJd 

and parent information, and loads the tuples into their corresponding tables.

In our system, an XML document is loaded into the database incrementally 

by a one-pass sequential scan. It can, therefore, process very large XML 

documents, as long as the size of the document is supported by the underlying 

operating system.

An important feature of identifying region instances is that the procedure 

for constructing one region tuple may interleave the process of composing 

tuples of other regions, due to the nested structure of XML documents and 

sequential scan. For example, as shown in Figure 5.4, the construction of a 

course tuple, is interrupted by that of two section tuples.

<catalogue>

An instance of 

course region

r

@cno title sections

291 DBMS

v

"<course cno="29i”>
_<sections>

<section sno="Hl" > ~~
<instructor>Dr. Lin</instructor> 
</section> ___
<section sno="H2" > 

<instructor>Dr. Dean</instructor> 

</section>

_</sections>
<title>DBMSs</title>
</course>

An instance of 

section region

\
@sno instuctor

HI Dr. Lin

</catalogue>

Figure 5.4: An instance of course region split by two instances of region section 

In our implementation, we design a special stack to keep all ongoing region

50

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



instances, and pop out an instance from the stack only when the file reader 

encounters the end tag of its region root (the set-valued node), which indicates 

the completeness of this instance. As can be seen, the size of the stack is less 

than the depth of the region tree, which is much shallower than the XML data 

tree.

5.5 Chapter Summary

In this chapter, we first presented the architecture of our XML loading system, 

then briefly described three main modules—the XML Parser, Schema Gener

ator, and XML Data Loader. The programs have been entirely written by us, 

using the JAVA programming language and JDBC.

51

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Chapter 6 

Experim ents

To evaluate the effectiveness and scalability of the proposed XML generic 

mapping approach, Xregion, extensive experiments have been conducted. In 

this chapter, we compare the performance of Xregion with the Edge mapping 

and XParent approaches.

6.1 Experimental Setups

For the purpose of performance comparison, we implemented the Edge map

ping and XParent mapping approaches using Java programming language and 

SAX parser API. All experiments were conducted on a PIII/1GHZ PC with 

1G RAM, running Red Hat Linux release 7.1. The relational database system 

used in the experiments was Oracle 9i database standard edition release 2. 

We selected three different XML data collections, with sizes of 7.65M, 200MB 

and 2GB, respectively, as our data sets. In order to cover different aspects of 

XML queries over XML data, queries were selected for the corresponding data 

collections. Table 6.1 summarizes the features of the three XML collections in 

our experiments.

52

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Name Size #paths
SHAKS 7.65MB 57
DBLP 200MB 156
SYN2G 2GB 156

Table 6.1: Data sets information

6.1.1 D ata Sets

• SHAKS

SHAKS consists of 37 Shakespeare plays in XML document format with 

an average size of 277kB and 30,000 words. The maximum depth of 

nested XML tags is 5 (Play/Act/Scene/Speech/Line). The whole collec

tion, created by Jon Bosak, is available at 

http://metalab.unc.edu/bosak/xm l/eg/shaks200.zip.

•  DBLP

The DBLP data set is a large XML document downloaded from the 

DBLP server (h ttp://dblp.uni-trier.de/xm l/). The DBLP data set used 

in our experiments contained the data up to January, 2004, listing more 

than 470,000 articles. The size of this DBLP XML document is 200M.

• SYN2G

To test the scalability of these three XML relational mapping approaches, 

Xregion, Edge and XParent, we generated a synthetic XML document 

with the size of 2GB, from the DBLP data set.

The SYN2G XML document used in this experiment is constructed by con

catenating nine modified DBLPs with the original DBLP. The whole process 

is one sequential scan of the DBLP file, using SAX for java.

The rule used in modification is to keep numeric values unchanged, and 

modify only letters. In order to simulate the real distribution of authors and 

the numbers of their publications, we also keep the values of “author” elements 

unchanged. A randomly generated 5-letter dictionary is used to translate

53

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .

http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
http://dblp.uni-trier.de/xml/


each occurrence of any letter specified in the dictionary to its corresponding 

letter, each time creating a new version of DBLP. For example, a title “An 

Object-Based Approach to the B Formal Method” can be translated into “An 

Objezt-Based Ajjroazr to tre B Formal Metrod” , based on the following 5- 

letter dictionary.

Letter New Value
c z
h r
k 0
P j
V f

6.1.2 Query Set

For experiments on the DBLP and SYN2G XML documents, we used the 

queries from XParent [14] and those presented by F. Tian et al. [26] as query 

templates. The queries experimented on SHAKS data set were selected from 

XRel [28]. These queries test various aspects of query performance.

All benchmark XML queries in the experiment were translated by us into 

a set of SQL statements, one for each XML query. All SQL statements for 

each mapping approaches were tuned based on execution plans, and executed 

in the Oracle database under SQL trace mode (session setting SQLTRACE 

was enabled).

6.1.3 Performance M easurement

We compare Xregion with the Edge and XParent approaches, with respect to 

query performance, such as query elapsed times and I/O  blocks, as well as 

with the size of the resulting databases for these mapping schemas.

In all our experiments, the size of the database buffer is set to 32 MB, 

which is considerably less than the size of the DBLP and SYN2G XML doc

uments, but four times larger than the size of SHAKS. Indexes are properly

54

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



built on relational tables for all three mapping approaches. For Edge and 

XParent, we created indexes as proposed in [12] [14]. For Xregion, composite 

indexes are built on table J - j  (docmame, tupleJd), table-Lj (docrname, pJd), 

and metaJable(docmame, path). Indexes are also built on the value columns 

of data tables.

All benchmark data, such as total elapsed time and I/O  blocks of the 

translated SQL queries, were obtained from Oracle database trace files and 

formatted with the TKPROF utility provided by the Oracle RDBMS. The sizes 

of database tables and indexes were calculated from the statistics generated 

by the Oracle database.

6.2 Experimental Results

In this thesis, we present experimental results of XML queries on three dif

ferent XML collections with sizes of 7.65M, 200MB and 2GB, respectively. 

Experiments were conducted after warming up the database buffer by execut

ing all the query templates once in random order. The experimental results 

and discussion for each data set are given below .

6.2.1 Experim ent on SHAKS

The SHAKS data set has been used to test many XML Relational mapping 

approaches in literature. We experimented on SHAKS using the same queries 

presented in XRel [28], in order to check the correctness of our system, as 

well as to compare the performance of our proposed approach, Xregion, with 

other mapping approaches (Edge, XParent and XRel), for querying small XML 

documents.

The queries for the SHAKS XML collection are as follows.

• SQ1/PLAY/ACT

• SQ2 /PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR

55

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



• SQ3 //SCENE/TITLE

• SQ4 //ACT//TITLE

• SQ5 /PLAY/ACT/SCENE/SPEECH[SPEAKER= “CURIO”]

• SQ6 /PLAY/ACT/SCENE[//SPEAKER= “Steward”]/TITLE

By comparing the query results returned by these four mapping approaches 

with the results published by XRel [28], we conclude that both our system 

and our implementations for the Edge and XParent approaches are correct. 

The elapsed times of all queries for SHAKS are shown in the Figure 6.1 in 

logarithmic scale. Because the size of SHAKS (7.65MB) is far less than the 

database buffer size (32MB), all mapping approaches do not require physical 

reads for evaluating all benchmark queries. Table 6.2 shows the number of 

logical I/Os, which are the database buffer cache reads, involved in each query 

for all four mapping approaches.

■  Xregion ■  Xparent □  Edge H Xrel

SQ1 SQ2 SQ3 SQ4 SQ5 SQ6

Figure 6.1: Query elapsed time for querying the SHAKS (size 7.65MB) using 
Xregion, XParent, XRel and Edge

For all queries, Xregion outperforms other mapping approaches, and the 

elapsed time for each query is less than 0.01 seconds. XParent and XRel per-

56

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Query Xregion XParent Edge XRel ^tuples returned
SQl 20 202 598 18 185
SQ2 47 387 21685 49 618
SQ3 73 705 709 658 750
SQ4 96 930 29599 876 951
SQ5 10 33 64 116 4
SQ6 29 427 183 3952 6

Table 6.2: Logical I/O  blocks for querying the SHAKS using Xregion, XParent, 
XRel and Edge

form similarly for SQl, SQ2, SQ3 and SQ4, each of which contains only one 

path expression. However, for SQ5 and SQ6, which contain more than one 

simple path expression, XRel is much slower than other mapping approaches, 

because non-equijoins on element start and end positions are involved for eval

uating these two queries. The Edge approach consumes considerable time for 

SQ2 (a long path expression) and SQ4 (containing a “/ / ” in the middle of the 

path expression), since a number of joins are needed to check the connection 

of all possible steps on the path expressions.

#of element nodes 179,689
#of attribute nodes 0
# of text nodes 147,442
# of simple paths 57

Table 6.3: Test data details for SHAKS XML collection(7.65MB)

The details for the SHAKS, and the size of the resulting database tables

Approach Database size #rows #tables
XRel 10.1MB 327131 3
XParent 11.13MB 506820 4
Edge 8.45MB 179689 1
Xregion 8.37MB 177655 26

Table 6.4: Sizes of resulting database tables for Xregion, XParent, Edge and 
XRel schemas of SHAKS XML collection(7.65MB)

57

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



for each mapping schema are shown in Table 6.3 and 6.4, respectively.

6.2.2 Experim ent on DBLP

In testing the DBLP, we adopted as query templates the queries from XParent 

as well as those presented by F. Tian et al. [26], which test a variety of aspects 

of query performance. The following are seven query templates for the DBLP 

XML document.

•  Q l Select titles of conference papers by year and a keyword, such as 

“XML”.

• Q2 Select articles written by author A.

•  Q3 Select papers written by author A or author B.

• Q4 Select titles of papers published between year a and year 6, with

titles starting with a keyword, e.g., “Database” .

• Q5 Select journal papers by a label of a cite entry.

•  Q6 Select journal papers by author A quoted by papers published in a

given year.

•  Q7 Select journal papers by author M  that are quoted by author N. 

Q uery  R e triev a l

We ran each query template multiple times with different constants; for ex

ample, with Q2, Q3, Q6 and Q7, we experimented on 100 different authors. 

All the results reported were the average elapsed times of random executions 

for all variants of each query template.

The elapsed times for all queries are shown in Figure 6.2 (logarithmic scale) 

and Table 6.6; the number of I/O  blocks involved are shown in Table 6.5. 

These results show that Xregion dramatically improve the performance of 

query evaluation.

58

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Query Xregion XParent Edge
LIO PIO LIO PIO LIO PIO

Ql 266 113 147142 47599 182288 16344
Q2 253 134 1102 333 2125 268
Q3 380 171 1974 637 3132 357
Q4 1426 1399 338703 279199 9730 1438
Q5 6 5 21 9 19 8
Q6 1063 328 96668014 31770 38809339 2511464
Q7 919 103 54164 66404 19728401 1347270

Table 6.5: Database Buffer I/O  (LIO) Blocks and Disk I/O  (PIO) blocks for 
querying the DBLP (size 200MB) using Xregion, XParent and Edge

Query Xregion XParent Edge
Ql 0.16 20.34 25.52
Q2 0.505 1.87 2.321
Q3 0.621 3.02 1.57
Q4 0.83 28.035 12.32
Q5 0.03 0.08 0.05
Q6 0.652 1568.39 938.39
Q7 0.391 30.6 494.79

Table 6.6: Elapsed times for querying the DBLP (size 200MB) using Xregion, 
XParent and Edge

■  Xregion ■  Xparent □  Edge

ioooo r

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Figure 6.2: Query elapsed time: Xregion, XParent and Edge for the DBLP 
(size 200MB)

59

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



For queries that contain only simple path expressions and key search, such 

as Q2, Q3 and Q5, Edge and XParent perform comparably with Xregion, in 

that all are in the same magnitude.

For query Ql and Q4, which require text matching, e.g., ‘%XML%’, the 

performance of Edge and XParent are very inefficient because they need to 

search the entire Data or Edge table for this matching operation. For some 

other complicated queries, such as Q6 and Q7, Xregion outperforms Edge and 

XParent significantly.

For Q6, XParent performs even worse than Edge. Although XParent or 

other path-based mapping approaches can locate a node in the XML tree 

directly with the aid of path information stored in the relational schemas, 

they still require a number of joins tracing nearest common ancestors in order 

to process queries with multiple paths and predicates specified on different 

branches. For example, query Q6 contains four paths and three conditions. 

The following is Q6 using XQuery syntax.

Q6 Select journal papers by author Jim Gray quoted by papers published in 

1995.

<result>

LET $cite:= document (dblp. xml)/dblp/article [year=lT 9 9 5 1'] /cite 
FOR $journal IN document (dblp.xml)/dblp/article 
WHERE $journal/author="Jim Gray" and 

$journal/@key=$cite 
RETURN

$journal
>

</result>

XParent uses four path selections and ten joins to locate and check the connec

tions among nodes involved in the query. The Edge approach requires seven 

selections on edge labels and six self-joins for checking edge connections in 

order to evaluate Q6. Because Xregion stores XML documents by regions, 

which groups nodes with one-to-one relationships to each other in one relation

60

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



(e.g., the “year” and “cite” are stored in the same table as “article” ), it uses 

only two joins for connecting “author” relation with “article” relation.

D a tab ase  Size

The resulting database sizes of mapping schemas are also a critical issue, when 

storing large XML documents into RDBMSs. Table 6.7 shows the size of the 

resulting relational database tables and indexes for three mapping schemas.

Approach Size of tables #rows #tables Size of index
XParent 323MB 16472978 4 416MB
Edge 237MB 5643462 1 296MB
Xregion 176MB 2777916 47 115MB

Table 6.7: Sizes of resulting database tables and indexes for Xregion, XParent 
and Edge schemas of DBLP XML document.

The size of the DBLP XML document is 200 MB. We see that Xregion uses 

even less space than the original DBLP file. This is because all non-set-valued 

nodes of the XML document are stored in the same tuples as their parents. 

The total number of rows in the database of Edge schema shows that there 

are 5,643,462 nodes in the XML document, while that of the Xregion schema 

(2,777,916), shows that more than 50% of the nodes are inlined with their 

parent nodes.

The size of the database tables for XParent is more than 40% larger than 

the DBLP file, because it stores element nodes and their text values separately, 

and both tuples of an element node are bundled with position information. 

In addition, XParent also use another table—the DataPath table—to record 

the parent-child relationships between element nodes. The database size of 

XParent is therefore the largest of all three mapping approaches.

Xregion also uses less space for indexes, while XParent consumes more than 

twice the document size for indexes.

61

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



6 .2 .3  E xp erim en t on S Y N 2 G

In order to inspect the scalability of our mapping approach, we generate a 

synthetic XML document, SYN2G, by enlarging the size of the original DBLP 

XML document to 2GB. In generating the new test XML document, we keep 

the ratio of different elements and attributes in the original DBLP document.

We used the same query templates, Q l to Q5 of the DBLP data set, and 

the same set of author names, year and paper types for experiments on the 

SYN2G XML document using Xregion, XParent and Edge approaches. The 

size of the resulting database of each mapping approach scaled about 10 times 

the size of its corresponding database for DBLP data set.

Table 6.8 shows the query elapsed times ratio for Xregion on DBLP and 

SYN2G XML documents. The ratios for all queries except Q4 are around 10, 

which is the ratio of the size of DBLP and SYN2G.

Query DBLP(200MB) SYN2G(2GB) Ratio
Ql 0.16 2.01 12.5
Q2 0.505 4.74 9.4
Q3 0.621 7.93 12.7
Q4 0.83 13.42 16
Q5 0.03 0.17 5.6

Table 6.8: Ratios of the elapsed times (Seconds) for querying the DBLP vs 
SYN2G for Xregion schemas

The elapsed times of Ql to Q5 for all three mapping approaches are shown 

in Figure 6.3 (logarithmic scale) and Table 6.9, and the corresponding I/O s 

involved are displayed in Table 6.10.

62

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



II Xregion ■  Xparent □  Edge

10000

„  lOOOd <o 
c / i
r  100 s F
I  10
Q._ca

U3 1 

0.1
Q l Q2 Q3 Q4 Q5

Figure 6.3: Query elapsed time: Xregion, XParent and Edge using SYN2G

Query Xregion XParent Edge
Ql 2.01 444.52 433.5
Q2 4.74 72.98 350.72
Q3 7.93 79.63 904.54
Q4 13.42 3839.85 1028.9
Q5 0.17 55.74 268.64

Table 6.9: Query elapsed time for the SYN2G (size 2GB) using Xregion, XPar- 
ent and Edge

Query Xregion XParent Edge
LIO PIO LIO PIO LIO PIO

Ql 3435 397 1439117 438082 12100222 548497
Q2 3560 667 113921 111354 6181545 465415
Q3 5214 1120 115773 112317 17040575 1375609
Q4 17439 1839 9333852 2327792 18676595 1373851
Q5 26 24 109665 109599 7728209 464890

Table 6.10: Database Buffer I/O  (LIO) Blocks and Disk I/O  (PIO) blocks for 
querying the SYN2G (size 2GB) using Xregion, XParent and Edge

63

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



These results show that the scalability of the Xregion approach is superior 

to that of XParent and Edge. Most of the queries evaluated in the Xregion 

schema were running within 15 seconds, whereas the other two methods re

quired several minutes to execute a single query.

10000

Xregion 

X parent 

□  Edge

100

Ql Q2 Q3 Q4 Q5

Figure 6.4: Query elapsed time ratios for DBLP and SYN2G using Xregion, 
XParent and Edge.

Figure 6.4 shows the ratio of query elapsed time for DBLP and SYN2G 

using Xregion, XParent and Edge. The performances of XParent and Edge 

degrade dramatically on large XML documents. This is because data are 

scattered with a high fragmentation degree in relations, a number of joins 

are needed to trace ancestor information, and the data involved in the join 

operations are in very large volume.

6.2.4 Schema Generation Time

In addition to query performance, the time required to create database schema 

for a given XML document is also important for evaluating the proposed ap

proach, Xregion. Different from other existing approaches, which use fixed 

schemas for storing XML documents, Xregion needs an additional process to 

create or assign database schema to the input XML document according to its 

structure.

The schema generation times of the Xregion approach for all data sets in

64

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



our experiments are shown in Table 6.11.

Data set Size Schema Time Total Loading
SHAKS 7.65MB 4.965 Sec. 167.831 Sec.
DBLP 200MB 66.868 Sec. 1514.123 Sec.
SYN2G 2GB 412.569 Sec. 10080.69 Sec.

Table 6.11: The elapsed time for the schema generation process for all data 
sets using our XML Loader system running on a PIII/lG H Z PC with 1G 
RAM.

The data shown in the “Total Loading” column represents the fastest XML 

data loading time among the three mapping approaches in our experiments, 

i.e., Xregion, XParent and Edge. All the data were loaded using the Direct 

Path loading method of the Oracle SQL*Loader utility.

The results show that the process of storage schema creation for XML 

documents using the Xregion approach consumes less than 5% of the total 

XML data loading time, and can be done within several minutes, even for 

large documents.

6.3 Chapter Summary

In this Chapter, we presented the experimental results on three different XML 

data sets, which show that Xregion significantly outperforms other approaches. 

The test on SYN2G XML documents demonstrated that the scalability of Xre

gion is superior to XParent and Edge, and Xregion enjoyed high performance, 

even with XML data of large size.

65

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Chapter 7 

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have presented a new generic mapping approach, called Xre

gion, for storing XML data in relational database systems. Different from 

existing generic mapping approaches, Xregion takes into account the cardi

nality of node occurrences in XML documents. We first partition the XML 

document into several disjoint regions according to the cardinality of element 

nodes, and then store these regions, together with their parent references, in 

separate database tables. Each region is stored as a set of tuples in one table, 

with each column of the table representing a different element type or attribute 

belonging to the region. Xregion therefore lowers the fragmentation level of 

decomposed XML data in databases.

Our experiments show promising results indicating tha t Xregion outper

forms existing generic mapping techniques, such as Edge mapping and XPar- 

ent, especially for large XML documents. For example, every query on SYN2G 

in the Xregion schema consumes less than 15 seconds, while XParent or Edge 

require several minutes to evaluate a single query. The new approach keeps 

the nested structure of XML documents and stores all non-set-valued nodes in 

the same tuples with their parents, which in turn reduces the number of join 

operations required for complicated queries in query processing.

The proposed mapping method is a meta-data driven approach and no

66

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



relational schema assignments are hard-coded. The mapping information of 

all components of an XML document is recorded as a meta-data identified by 

paths and document name. This new mapping approach provides a standard 

interface for query processing and XML publishing. All changes of the rela

tional schema assignments for an XML document are transparent to the query 

processing module, since the interface for query processing is the meta-data 

stored in the meta-table.

We have implemented an XML loading system based on our proposed ap

proach. This system can create relational schema for any well-formed XML 

document, with or without DTD information, and load its data into the 

database automatically. The system can be easily built on top of off-the-shelf 

relational database management systems.

7.2 Future Work

The first future research topic to be investigate is the development of an effi

cient query translation technique to translate XML queries into corresponding 

SQL statements for the Xregion schema. Such a query translator should sup

port the core syntax of XQuery [7].

We will work on the design of XML benchmark databases and a well- 

designed class of XML queries that are able to investigate various aspects of 

performance of XML storage models.

In addition to tuning the database schema, another research direction, 

which focuses on creating more efficient indexes for paths, can be explored to 

further improve the query performance of Xregion.

Because the path of a node in an XML document is a sequence of tag 

names, starting from the root to the node, a large number of paths share the 

same prefix, a practice which are not favored by the traditional indexes of 

RDBMS, such as B-tree. Cooper, Sample, Franklin et al. proposed the Index

67

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Fabric approach [9], to build a special index for path information (raw path) 

instead of using a RDBMS B-tree index. Based on their experimental results, 

we expect that the performance of Xregion can be further improved by using 

the Index Fabric to store our meta data.

68

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Bibliography

[1] http://w w w .w 3.org/xm l/.

[2] Sihem Amer-Yahia and Divesh Srivastava. A mapping schema and inter
face for XML stores. In Proceedings of the fourth international workshop 
on Web information and data management, pages 23-30. ACM Press, 
2002 .

[3] Marcelo Arenas and Leonid Libkin. A normal form for XML documents. 
ACM  Transactions on Database Systems (TODS), 29(1):195—232, 2004.

[4] Anders Berglund, Scott Boag, Don Chamberlin, and et. al. 
XML Path Language (XPath) 2.0. W3C Working Draft, 
http://w w w .w 3.org/TR/xpath20/, November 2003.

[5] Philip Bohannon, Juliana Freire, Jayant R. Haritsa, Maya Ramanath, 
Prasan Roy, and Jerome Simeon. LegoDB: Customizing relational storage 
for XML documents. In the 28th International Conference on Very Large 
Data Bases, pages 1091-1094, 2002.

[6] Philip Bohannon, Juliana Freire, Prasan Roy, and Jme Simeon. From 
XML schema to relations: A cost-based approach to XML storage. In 
ICDE, 2002.

[7] Don Chamberlin. Xquery: An XML query language. IBM  Systems Jour
nal, 41(4):597-615, 2002.

[8] Sophie Cluet, Pierangelo Veltri, and Dan Vodislav. Views in a large scale 
XML repository. In Proceedings of the 27th International Conference on 
Very Large Data Bases, pages 271-280, 2001.

[9] Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and 
Moshe Shadmon. A fast index for semistructured data. In Proceedings 
of the 27th International Conference on Very Large Data Bases, pages 
341-350. Morgan Kaufmann Publishers Inc., 2001.

[10] Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing semistructured 
data with STORED. In Proceedings ACM  SIGMOD International Con
ference on Management of Data, pages 431-442, 1999.

[11] Mary Fernandez, Ashok Malhotra, and et al. XQuery 1.0 and XPath 
2.0 Data Model. W3C Working Draft, http://www.w3.org/TR/xpath- 
datamodel, 2003.

69

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .

http://www.w3.org/xml/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-


[12] Daniela Florescu and Donald Kossmann. Storing and querying XML data 
using an RDMBS. IEEE Data Eng. Bull., 22(3):27-34, 1999.

[13] Torsten Grust. Accelerating xpath location steps. In Proceedings of the 
2002 ACM  SIGMOD international conference on Management of data, 
pages 109-120. ACM Press, 2002.

[14] Haifeng Jiang, Hongjun Lu, Wei Wang, and Jeffrey Xu Yu. Path materi
alization revisited: An efficient storage model for XML data. In Xiaofang 
Zhou, editor, Thirteenth Australasian Database Conference (ADC2002), 
Melbourne, Australia, 2002. ACS.

[15] Gerti Kappel, Elisabeth Kapsammer, S. Rausch-Schott, and Werner Rets- 
chitzegger. X-ray - towards integrating XML and relational database sys
tems. In International Conference on Conceptual Modeling /  the Entity 
Relationship Approach, pages 339-353, 2000.

[16] Latifur Khan and Yan Rao. A performance evaluation of storing XML 
data in relational database management systems. In Proceeding of the 
third international workshop on Web information and data management, 
pages 31-38. ACM Press, 2001.

[17] Atakan Kurt and Mustafa Atay. An experimental study on query pro
cessing efficiency of native-xml and xml-enabled database systems. In 
Proceedings of the Second International Workshop on Databases in Net
worked Information Systems, pages 268-284. Springer-Verlag, 12 2002.

[18] S. Lu, Y. Sun, M. Atay, and F. Fotouhi. A new inlining algorithm for 
mapping XML DTDs to relational schemas. In Proc. of the 1st Interna
tional Workshop on XML Schema and Data Management, Lecture Notes 
in Computer Science, Chicago, Illinois, USA, October 2003.

[19] Jason McHugh, Serge Abiteboul, Roy Goldman, Dalian Quass, and Jen
nifer Widom. Lore: A database management system for semistructured 
data. SIGMOD Record, 26(3):54-66, 1997.

[20] Neoklis Polyzotis and Minos Garofalakis. Structure and value synopses 
for XML data graphs. In Proceedings of the 28th International Conference 
on Very Large Data Bases, pages 466-477, 2002.

[21] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu, M. Carey, 
and R. Busse. The XML benchmark project. Technical Report INS- 
R0103, CWI, April 2001.

[22] Albrecht Schmidt, Martin Kersten, Menzo Windhouwer, and Florian 
Waas. Efficient relational storage and retrieval of XML documents. Lec
ture Notes in Computer Science, 1997:137+, 2001.

[23] Albrecht Schmidt, Florian Waas, Martin Kersten, Daniela Florescu, 
Michael J. Carey, Ioana Manolescu, and Ralph Busse. Why and how 
to benchmark XML databases. SIGMOD Rec., 30(3):27-32, 2001.

70

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



[24] Jayavel Shanmugasundaram, Eugene J. Shekita, Jerry Kiernan, Rajasekar 
Krishnamurthy, Stratis Viglas, Jeffrey F. Naughton, and Igor Tatarinov. 
A general techniques for querying XML documents using a relational 
database system. SIGMOD Record, 30(3):20-26, 2001.

[25] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, 
David J. DeWitt, and Jeffrey F. Naughton. Relational databases for 
querying XML documents: Limitations and opportunities. In The VLDB 
Journal, pages 302-314, 1999.

[26] F. Tian, D. DeWitt, J. Chen, and C. Zhang. The design and performance 
evaluation of alternative XML storage strategies. SIGMOD Record SPE
CIAL ISSUE: Data management issues in electronic commerce, 31(1):5— 
10 , 2002 .

[27] Paul J. Wagner and Thomas K. Moore. Integrating XML into a database 
systems course. In Proceedings of the 34th SIGCSE technical symposium 
on Computer science education, pages 26-30. ACM Press, 2003.

[28] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. Xrel: A path- 
based approach to storage and retrieval of XML documents using rela
tional databases. ACM  Transactions on Internet Technology, 1 (1): 110— 
141, August 2001.

71

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .


