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Abstract

This thesis presents a set o f optimization-based strategies to assist network planners and 

operations support engineers in planning and managing the capacities o f mesh-based survivable 

transport networks in the face o f demand uncertainty. While there have been many works on 

network design, consideration o f demand uncertainty into network design models has remained 

one o f the least explored areas. The extent o f uncertainty in planning problems in general has 

been already classified by others as follows: Level I: A Clear-Enough Future, Level II:

Alternative Futures, Level III: A Range o f Futures and IV: True Ambiguity. We have followed 

this schema and propose a set o f new optimization models for the three levels where uncertainties 

are more pronounced:

• For Level II: A two-part, stochastic programming-based optimization model is 

developed for incorporating demand uncertainty and network survivability into a single 

capacity-planning formulation. While almost all published studies on the design of 

survivable networks are based on a specific demand forecast (i.e. Level I) and optimize 

capacity cost for a single target planning view, the two-part formulation explicitly 

incorporates a set o f plausible demand scenarios and optimizes both present and future 

long-term capacity investment. We also extend the two-part formulation to capture the 

modularity and economy-of-scale effects and show significant capacity cost savings of 

the new models over traditional single-forecast design methods.

• For Level III: A framework, based on the concepts o f Pattern Forecast Accuracy 

(PFA) and Servability, is designed for assessing the robustness o f the ability o f various 

survivable networks to cope with uncertainty in the demand forecast. This framework 

serves as an evaluation tool for network operators to effectively identify robust 

survivable network designs from any given sets o f cost-optimal designs.
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•  For Level IV: We develop two operational strategies, namely, max-profit demand 

loading and re-optimization strategies, for managing as-built capacities o f any mesh 

survivable transport networks. The value o f the demand loading formulation is to help 

service providers to identify and route a set of demands that could generate the 

maximum profit, taking the provisioning cost and service revenue into consideration. 

Multiple quality-of-protection (multi-QoP) service classes (i.e. protected, unprotected 

and preemptible classes) are also considered in the demand loading formulation. As 

another valuable tool for network operators, re-optimization strategy is used to improve 

a network’s ability to carry future traffic, through rearranging solely the existing spare 

capacities or with the latitude o f also rearranging in-service paths.

With the fact that the expenditure on transport capacity is in the order of millions and even 

billions of dollars, the potential capital savings from these optimization models can be substantial.
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Preface

Composing this thesis has been an interesting yet challenging process. The first challenge 

was to identify my intended readers. My supervisor and examining committee members are, of 

course, the primary readers. Industry professionals such as network planners, operations support 

engineers, network software developers come to mind as secondary readers, for these are the 

people who might apply the new concepts developed in this thesis to their daily planning tools 

and network operations. This secondary audience influenced the content selections in the 

introductory chapters and explains why the core chapters are presented in a rather solution- 

oriented approach.

As committee members and industry often have their own preferences in terms of the level 

of detail and how each chapter benefits their own research environment, the materials in this 

thesis are organized into three modules that sequentially address the questions o f why, what and 

how. The first module, covered by Chapter 2, attempts to provide cross-disciplinary and general 

views on the issues of telecommunications economics, network survivability and demand 

uncertainty. Specifically, this module presents facts and figures to show the importance o f the 

research area and to help address open-end questions such as: Why do we care about network 

survivability in general? Why are we particularly interested in designing networks to protect 

against fiber cuts? What are the limitations of any given survivable network capacity plans? It is 

expected that, after reading this chapter, interesting yet unanswered questions will arise.

The second module, which consists of Chapters 3 and 4, sets the overall problem scope of 

the research problems and, particularly, pinpoints what decision variables and input parameters 

should be modeled in the context of transport networking. Chapter 4 goes further into each 

research problem and analyzes the existing literature classified by the problem objectives, 

problem statements and modeling methodologies. This module also identifies what thesis-related
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problems researchers have been trying to solve, how they solve them, and other open questions 

that have not yet been investigated.

Chapters 5 to 8 summarize the key research work published from September 2002 to May 

2005 as part of my doctoral program. In that final module, each chapter is presented in a logical 

progression beginning with a short introduction, specific research questions, new modeling 

concepts, optimization formulations and, finally, concluding with experimental results. As 

motivational paragraphs and background information o f each study have been thoroughly covered 

in the previous two modules, each chapter in the final module is meant to be problem-specific and 

solution-oriented. Mathematical formulations and results are detailed and descriptive with 

respect to the corresponding problem statements. By reading the final module, it is also my hope 

that network planners and system engineers will find these new concepts applicable to their 

existing research work.
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1 Introduction

As is the case in planning and operating any public transport infrastructures, the design and 

management o f telecommunication transport networks can be highly complex and capital- 

intensive. Hundreds o f millions and even billions of US dollars have been spent on building and 

managing these “backbone” networks; researchers and engineers are constantly responding to the 

needs and developing new modeling tools to support network carriers in making these cost- 

effective planning and operational decisions.

This is also the key objective of this thesis: To develop a set of optimization models and 

design principles for network planners and operational support engineers to incorporate into their 

existing planning and network management tools. We must note that these models would not 

(and should not) be directly comparable to existing commercial design tools1, but new concepts 

and principles discovered by these models could expand the functionality of the existing software 

tools, and influence how survivable transport networks could be planned and operated.

1.1 Contributions

The proposed optimization models can be classified generally into two problem areas of 

transport networking: capacity planning and capacity management. Considerations of network 

survivability and demand uncertainty add specific dimensions to this study and make this thesis 

unique. Based on the existing literature from universities and industry, the main contributions of 

this thesis include:

• Stochastic programming-based optimization models are formulated to incorporate 

demand uncertainty and network survivability into the capacity-planning problem of 

mesh-based survivable transport networks, specifically, span-restorable and p-cycle 

networks. Realistic aspects of optical networking, including modularity and economy- 

of-scale effects, are also captured in the models for studying the trade-off between 

making the capacity investment immediately and in the future.

• A unified framework is proposed for assessing the robustness of span-restorable and 

path-protected transport network architectures to cope with uncertainty in the demand 

forecast. The notion of Pattern Forecast Accuracy (PFA) is suggested for quantifying

1 VPIsystems’ VPItransportMaker Mesh™, RSoft Design Group’s Metro WAND™ and Optiwave’s 

OptiPlanner are examples for network design tools, while Cramer Systems’ Cramer5, MetaSolv’s 

Inventory Management and NetCracker's Asset Management are examples for operations system support 

tools.

1
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pattern errors in the demand forecast, and Servability is introduced as a single measure 

used for evaluating the inherent robustness of various survivability options to forecast 

variations.

•  A demand loading formulation is suggested for operators to identify potential demand 

service pairs that could generate the maximum profit, provided any provisioning cost, 

service revenue and demand models. The service-oriented aspects of multiple 

survivability or quality of protection (multi-QoP) classes are also included in the 

formulation. Specifically, three types of services, protected, unprotected and 

preemptible, are considered.

•  Several re-optimization strategies are proposed to determine a capacity configuration 

that has a better ability to adapt to uncertain traffic. The span-restorable network is 

used as the basis of the formulations and the benefits of rearranging spare capacity only 

and with the latitude of also rearranging in-service paths, are both evaluated. These 

strategies suggest a way to serve demand growth while deferring unnecessary capital 

investment for transport capacity.

1.2 Overview

In the preface, we briefly described the organization of this thesis into three modules. Here 

we provide a short summary and also illustrate key highlights of subsequent chapters.

C hapter 2 covers the main themes of the thesis, namely telecommunications economics, 

network survivability and demand uncertainty. This chapter begins by explaining the economic 

implications of transport capacity design problems from an investment, decision-making 

perspective. Several definitions of network survivability are then presented in Section 2.3, and 

we also underline the importance of planning transport networks against fiber cuts. Section 2.4 

first presents several demand forecasting models and then attempts to identify the root causes of 

demand uncertainty. Finally, we point out the different types of capacity planning problems in 

Table 2.3, and we end with some fundamental questions that set the scope of problems we 

address throughout the thesis.

C hapter 3 contains background and assumptions on modeling survivable transport 

networks. We begin by explaining the concepts of layering, transport node, transport demands, 

working and spare capacities, as well as the necessary topologies required for the capacity design 

of survivable transport networks. Key survivability schemes, span restoration, yj-cycles and 

shared backup path protection, are discussed in Section 3.3.1. Additional design assumptions and 

design objectives are presented in next two sub-sections.

2
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Chapter 4 presents a complete literature review on the capacity planning and management 

problems considered in this thesis. First, we cover the prior work on the capacity planning for 

mesh survivable networks, in particular on the basic spare capacity placement problem. Relevant 

published works on the problem of mesh capacity design under demand uncertainty are analyzed 

and compared in Table 4.2. Finally, related works on demand loading and the problems of 

reconfiguration, and re-optimizations are discussed in Section 4.4.

Chapter 5 introduces two integer linear formulations that are used to evaluate the 

robustness of span-restorable and path-protected networks to withstand changes in the demand 

forecast. The evaluative framework based on Pattern Forecast Accuracy (PFA) and Servability is 

also explained in this chapter. Overall, this framework suggests a descriptive approach to 

demand uncertainty, where we should analyze the uncertainty as a separate evaluative process, 

but not incorporate uncertainties into the capacity design process.

Chapter 6 presents the stochastic programming-based models from which we explicitly 

express demand uncertainty and survivability constraints in a unified capacity design model. An 

important concept to focus on is the idea of treating capacity planning as a two-part investment 

problem. The effects of modularity and economy-of-scale are discussed in Section 6.4. The new 

formulations are tested against existing models; pertinent insights and findings are offered in 

Section 6.7.

Chapter 7 presents an integer program model for demand loading where multiple quality- 

of-protection (multi-QoP) services are considered. Of special attention is how we define the 

provisioning cost and revenue for each service class in Section 7.3. Under any cost model and 

subject to any demand scenarios, the max-profit formulation can be used to reveal strategies 

about which specific demands would be most profitable, as well as to provide routing and 

protection solutions for each service demand.

Chapter 8 introduces four re-optimization strategies, devised from a master integer 

program formulation. Span restorable mesh networks are used in this study, and we exploit the 

options of rearranging only spare capacity and re-optimizing the combined working and spare 

capacities to achieve the best utilization. In facing random arrival of new demands, results show 

that all strategies can be used to improve the overall blocking performance, and also suggest 

deferral of new capacity addition to support demand growth.

Chapter 9 summarizes the entire thesis and publications, and presents several new topics 

for future research.
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2 Telecommunications Economics, Survivability and 

Demand Uncertainty

2.1 Introduction

This chapter constitutes the first module of the thesis. Herein we aim to provide 

background on three core subjects, namely, telecommunications economics, network survivability 

and demand uncertainty. Each subject is related to the general problem of transport capacity 

planning. We also present facts and figures from various sources to provide motivational 

thoughts on specific questions. For instance, what are the implications and limitations associated 

with a transport capacity design? Why should we be concerned about network survivability and 

especially fiber cuts in a transport network design? Why should demand uncertainty be 

considered in the capacity planning process? It is our intention that, after reading this chapter, 

readers will have a good grasp of why this thesis topic was chosen. It is the combined 

consideration of transport network planning, network survivability and demand uncertainty that 

makes this thesis unique.

2.2 Economic Implications of Capacity Planning of Transport Networks

According to Oxford’s Dictionary of Economics, economics is the study of how scarce 

resources are or should be allocated [Oxf02], It also involves the efficient allocation of scarce 

resources among multiple competing ends [Lit79]. At a personal human level, the scarce 

resource might be personal savings that we must choose whether and how to spend them (for 

example, on mortgages, transportation, investments, or our children’s education.) At a corporate 

level, a company faces similar choices: it must choose among various alternatives and make the 

best investments within a limited budget. Because of the scarcity of resources and virtually 

unlimited desires, it is not always possible to obtain all choices simultaneously. Hence, 

economics is often called the “science o f choice.”

A similar decision-making process exists in the capacity planning of transport network. 

Given a limited resource, network planners must determine where and how much capacity should 

be allocated over the network. And because of the huge amount of capital expenses involved in 

building such networks, decisions of capacity allocation correspondingly have much greater 

economic implications than choices we make at the personal level. Capital expenditures of 

hundreds o f millions and even billions o f US dollars spent on transport infrastructure alone (not 

including other major costs such as rights-of-way, land and property, operational cost,
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maintenance cost, etc.) are not uncommon [Thr00][Lev02], Such investments are partially or 

completely irreversible; that is, the initial cost of investment is at least partially sunk and cannot 

be recovered.

The notions of “scarcity” in economics and the “science of choice” apply to all capacity 

design problems in this thesis. In other words, if one ignores these concepts in the first place, we 

could have designed an optical network with direct point-to-point cable among all cities, and each 

cable fills with maximum capacity to support future demands and network survivability. With 

capital investment o f this great magnitude, a capacity plan should be designed with cost- 

effectiveness as one of the major objectives. In a detailed capacity plan, this objective should 

then guide us in deciding how much and where to allocate the capacity resources.

While every capacity plan might have significant economic implications, its monetary 

impact on the overall network design must not be over-emphasized. No matter how accurate and 

detailed a capacity plan might be, it can only represent a piece of the overall problem. For 

example, construction cost, property cost and operational cost are aspects that a capacity plan 

would not be able to capture and address, yet they represent considerable portions of the overall 

cost o f the network infrastructure. The following table shows an example of a cost breakdown 

from Level (3) Communications’ 2002 annual report [Lev02]:

Cost (dollars in millions)
Land and Mineral Properties S 178
Facility and Leasehold Improvements:

Communications 1,260
Information Services 28
Coal Mining 65
CPTC (California Private Transportation 92
Company)

Network Infrastructure 4,106
Operating Equipment:

Communications 1,386
Information Services 81
Coal Mining 78
CPTC 19

Network Construction Equipment 34
Furniture, Fixtures and Office Equipment 133
Construction-in-Progress 73
Total 7,533

Thus with reference to the cost of the network infrastructure (which comprises over 50% of the 

total budget), an optimally-designed capacity plan should give the benefits from the capital 

investment standpoint.
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In this thesis, we propose a collection of new optimization-based models to help network 

planners in making capacity planning decisions. For example, capacity planning models can 

provide guidelines for planners to determine where, what and how much transport capacity should 

be allocated to create a cost-effective, survivable and future-proof network. These methods can 

be implemented as a set of decision-support tools to provide design insights about network 

planning and architecture, and also serve as benchmarks to compare against existing capacity 

design methodologies. For planners who might implement these new concepts, it is important to 

fully understand the assumptions and limitations of each model and correctly apply them to their 

own design environment.

While specific questions o f where, what and how much are addressed throughout this 

thesis, readers who think strategically will be curious to know why, whether and when the 

capacity investment should be made. For example, should we make a capacity investment in the 

first place, and why? Is it worthwhile to make survivability investments in existing networks? 

When are the best times to make such investments, or should we defer them? These are all 

important and interesting questions that we cannot address in this thesis. To tackle these 

fundamental problems, in fact, would require a diverse knowledge of economics, finance, 

technology, regulation and policy [Sha00][A1102][AlN99][DiP94][Lit79][NaN04], This will be 

commented upon the end of Chapter 9.

2.3 Need for Network Survivability

In the previous section, we generally discussed the implications and relations of economics 

to transport capacity planning. In this section, we discuss another central area of the thesis -  

namely, network survivability.

Depending on the context and targeted audience, there are many ways to define network 

survivability. A standards development organization, the Alliance for Telecommunications 

Industry Solutions (ATIS), defines network survivability [ATI01] as (1) the ability of a network 

to maintain or restore an acceptable level of performance during network failures by applying 

various [post-failure] restoration techniques, and (2) prevention or mitigation of service outages 

from network failures by applying preventive techniques. The concern of network survivability 

begins early in the communications network for the military [WIL63][MiL80]. In the context of 

military data networks, survivability includes protecting assets, hiding them, and duplicating them 

for redundancy. It also emphasizes the “endurance” [NRC85] -  the assurance that those assets 

that do survive can continue to perform in a battle environment for as long as needed (generally 

months rather than hours). “Restoral” means the ability to restore some of the damaged assets to
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operating status. “Reconstitution” refers to the ability to integrate fragmented assets into a 

surviving and enduring network [NRC85], These networks must also function, albeit at a reduced 

level of performance, after many nodes and links have been destroyed [NRC85]. While our 

notion of network survivability is different from that in the military context, the ability of a 

network to protect against unexpected failures has become an increasingly important issue in 

today’s environment where network operators, service providers and customers are constantly 

emphasizing the need for reliable communication. Numerous research studies have been 

conducted to enhance the survivability of networks and to plan for unexpected events, such as 

facility outages, power outage, capacity overloads and natural disasters.

Although specific definitions of survivability vary depending on the type o f network 

considered, from a planning standpoint, there are essentially three common aspects in the process 

of designing survivable networks: (1) Identification of the types of attacks, failures, or accidents 

impacting a network; (2) Anticipation of the impact or risk due to the failure; and (3) Design of 

strategies to recover, mitigate, or eliminate the impact of the failures. In this section we will 

discuss these three aspects in general. The specifically defined scope of network survivability in 

this thesis will be proposed in Section 2.3.1.

The terms “attacks,” “failures,” or “accidents” are often used interchangeably, while 

[EFL99] has clearly defined the differences among them. In [EFL99], attacks refer to potentially 

damaging events orchestrated by an intelligent adversary, such as intrusions, probes, denial of 

service, or even nuclear bombardment [WIL63]. Failures are potentially damaging events caused 

by deficiencies in the system or in an external element on which the system depends. Examples 

of failures are software design errors, hardware degradation, human errors, or corrupted data. 

Accidents describe the broad range o f randomly occurring and potentially damaging events such 

as natural disasters. Because various kinds of network failures exist, it is an important 

requirement to first identify and narrow down the specific types of failures we are trying to plan 

against.

Another important requirement of network survivability is to qualitatively describe, and if 

possible, quantitatively measure the impact or outage created by the failures. To most people, 

network outages are often associated with some costs, which can be quantified monetarily. For 

example, a report written by AT&T in co-operation with the Economist Intelligence Unit (EIU) 

indicated that the following statistics are necessary to give an enterprise some idea of losses due 

to network outages [ATT04]:
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Table 2.1. Typical losses due to network outages. From [ATT04].

Industry Business ODeration Average cost/hour of downtime
Financial Brokerage operations S6.5M
Financial Credit card1 sales authorizations S2.6M

Media Pay-per-view television S1.1M
Retail Home shopping (TV) $113,000
Retail Home catalogue sales $90,000

Transportation Airlines reservations $89,500

Although that report and the set o f values do not explicitly correlate the impacts with the 

causes of the failures (which might be software bugs, traffic overload, hardware failures, human 

errors, or fiber cable cuts), the potential revenue loss arising from a network disruption is clearly 

huge. As a result, today’s service providers have been putting great emphasis on the importance 

of network survivability, from both the disaster recovery standpoint as well as the more proactive 

strategy for ensuring business continuity.

Financial losses from network outages might be part of the reason why network 

survivability is significant. At times, however, outages o f the backbone networks cannot even be 

justified financially. The September 11 terrorist attack and the more recent Hurricane Katrina are 

tragic events that caused severe outage in telecommunications infrastructures, as well as access to 

lifeline 911 services, and such damages go beyond purely financial losses. If  we think of 

telecommunications networks in the same way as other basic infrastructures, such as roads, water 

and power, failures in telecommunications networks could lead to significant societal impacts. In 

fact, triggered by the September 11 tragedy, both the Canadian and the US governments have 

subsequently launched similar programs to assess and manage risks to the society’s critical 

infrastructures2, and telecommunications network is considered to be one of them. These 

programs encourage investigation o f the possible cross-disciplinary impacts among different 

infrastructures, in terms of the health, safety, security and economic well-being of the nations and 

the effective functioning of governments [MCF03] [NSE04], The key motivation of these studies 

is to identify and prioritize risk protection strategies, and finding ways of prioritizing resource 

allocations: “Essentially the problem facing the federal government is to minimize, with a 

limited amount of resources, the expected impact on the nation’s critical infrastructure of any 

future terrorist attack. Impacts could be measured in lives lost, economics dislocations, loss of

2 In [NSE04], these critical infrastructures are grouped into ten sectors: Energy and Utilities, 
Communications and Information Technology, Finance, Health Care, Food, Water, Transportation, Safety, 

Government and Manufacturing.
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military capability, loss of national morale (measured perhaps by polling), or some combination” 

[MCF03]. As expected, the value of the networks shall only increase as our dependency on these 

networks increases. The potential impacts due to the unexpected network failures, whether it is 

due to natural disasters, intended intrusions, or human errors, will only emphasize our societal 

needs for network survivability.

So far our discussions more or less describe network outages in a “qualitative” sense. The 

literature on network survivability standards indicates that there has been much work on 

characterizing outages quantitatively. The Network Performance, Reliability, and Quality of 

Service Committee (formerly T1 A l) of the Alliance for Telecommunications Industry Solutions 

(ATIS) is one o f the leading organizations that develop standards for quantifying network 

outages. They propose a framework for quantifying the severity of failure events and methods for 

calculating the “outage index” considering different types of networks (such as wireline, wireline, 

cable TV and satellite) that carry telephony services [T1A01]. Generally speaking, this outage 

index takes the following data items into consideration: number of customers potentially 

affected, outage duration, start time (i.e., time of day the outage began), and the types of services 

affected (i.e., intraLATA intraoffice, intraLATA interoffice, interLATA interoffice and 911 

services). The aim of creating the index is to provide network carriers and users a common 

ground for interpreting the overall severity of an outage3. This idea is similar to that o f the 

Richter scale, which provides a rough estimation of the actual impact of an earthquake while 

hiding all the technical details from the mass population. One must realize that the proposed 

index calculation is limited to voice traffic but does not take data traffic into account. Thus, to 

determine what kind of additional metrics should be incorporated in today’s multi-service, data- 

centric environment might be a challenging future research topic.

Once the network failures and their potential impacts have been understood, quantified, 

and prioritized, the ultimate objective is to develop survivability strategies that would proactively 

prevent and reactively recover the failures, so that the impact from such failures could be 

minimized. Although this thesis considers network survivability strategies strictly from a 

capacity planning perspective, the reader should be informed that a complete network 

survivability strategy always require that we consider the operational issues (e.g., restoration 

procedures from fault identification to recovery actions, training personnel and field engineers on 

network-level trouble shooting, cooperation among network administrators, efficient design of 

operation support systems) as well as implementation aspects (e.g., types of cross-connect

3 Two examples of outage index calculation are included in the Appendix D [T1A01].
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employed, type of fiber used [ChV98], collaborations among multi-vendor, multi-technology 

network management systems [Mis04]). Only a high level of coordination between these 

solutions could provide truly survivable network infrastructure and sustainability o f services.

2.3.1 Survivability Planning for Fiber Cuts

If we are asked to identify the causes or potential vulnerability o f fiber-based backbone 

networks, cable cuts are the most frequent. In 1992, the Federal Communications Commission 

(FCC) required exchange and inter-exchange service providers to begin reporting outages of 30 

minutes or more that potentially affected 30,000 users. Outages affecting major airports, 911 

service, nuclear power plants, major military installations and key government facilities must be 

reported regardless o f the number o f customers affected. The FCC has published a report 

assembling approximately one year o f outage statistics (failures occurred between March 1, 1992 

and February 4,1993 [NRI93]) showing that fiber cuts represent a majority o f outages with great 

impacts. Some of the findings in that report are shown in Figure 2.1 to 2.4 inclusive [DaK95],

80 72 ■  Baseline Y ear 

H I Report Y ear

5 5 4
1 1

Facility CCS Sw itch Tandem CO Nat. Overload Other
Ftower D sas te r

Figure 2.1. Number of outages by failure category. From [DaK95].
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■  Report Y ear1543

0
Facility CCS Sw itch Tandem CO Nat. Overload Other

Row er D isaster

Figure 2.2. Outage index by failure category. From [DaK95].
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Figure 2.3. Number of outages within the “Facility” failure sub-category. From [DaK95],

■  Baseline Y ear

■  Report Y ear

Fiber Cut DU Fiber Cut NDU O ther DCS Equip. Synchronization Internal Fbw er

Figure 2.4. Outage index within the “Facility” failure sub-category. From [DaK95].

Figures 2.1 and 2.2 categorize the occurrences o f  the outages and their indices (as 

described in the previous section) by various types of failures. The frequency and impact o f the 

“facility” outage are the highest among all categories. Figures 2.3 and 2.4 show the further 

breakdown within the facility category. We can see that fiber cut dig-ups (DU) and fiber cut non 

dig-ups (NDU) are the major contributors to both outage severity and frequency (as high as 54 

fiber cuts within a one-year period). This is much higher than damage due to cross-connect 

equipment or power failures, where stringent redundancy requirement might have been enforced 

by FCC at that time. In the United States alone, FCC published findings that metropolitan 

networks annually experience 13 cuts for every 1000 miles o f fiber, and long-haul networks 

experience 3 cuts for 1000 miles of fiber [VeP02]. Similarly, the statistics o f network failures at 

Bell Canada has reported that cable cuts is the type o f failure that occurs most frequently 

[FOE89], The original report by Crawford [NRI93] provides additional details of the root causes 

-  such as digging error, inadequate notification, inaccurate location, shallow cable -  to fiber cable

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dig-ups and recommends best practices for reducing their occurrences. These practices cover the 

areas of engineering and construction, the so-called “call-before-you-dig” as standard operating 

procedure, effective cable location and other preventive measures.

In the past decade, despite the fact that fiber optic construction companies and network 

carriers have done their best to implement these best practices, fiber failures have continued to 

occur. Indeed, these failures were sometimes beyond the control of the network operators.

On September 21, 1999, an undersea fiber cable near Taiwan in the Asia-Pacific Cable 

Network (APCN) was damaged by an earthquake. Subscribers were unable to access sites 

outside Singapore, and several electronic commerce and portal companies, which rely on U.S. 

sites to provide content such as banner advertisements, were affected for several hours4.

On November 21,2000, one of the world's busiest and longest undersea cables, SEA-ME- 

WE 3 undersea communications cable, was cut 40 miles off the coast of Singapore, 80 feet 

underwater. The cause was unclear, but officials believed it was a ship's anchor or a sand dredge 

that damaged the cable. This failure caused traffic disruption on hundreds of Australian Internet 

service providers, including Telstra, Australia's largest ISP with more than 650,000 subscribers 

that rely on the cable for 60 per cent of its traffic for international access. This failure also took 

about a week to be fixed and for Internet traffic to return to normal5.

On February 9,2001, a major undersea fiber optic cable linking China to Japan and the U.S 

was severed by a fishing vessel. It is the only direct fiber-optic link between China and the US. 

The cable houses bandwidth used by international and domestic carriers in China. And because 

the resilient loop construction has fallen behind schedule, a cable ship was sent to repair the 

cable. It took about ten days before the connectivity was fully recovered6.

On June 13,2002, a fiber optic line owned by Ameritech Michigan was down in Berrien 

County, Michigan. The cause of the failure is unknown, but certainly many modem and ISDN 

Internet customers in the 616 and 231 area codes lost connectivity for more than 14 hours. The 

down line also disabled four out of five 911 dispatch centers for up to five hours7.

Whether it is human error or an external factor that causes the fiber cuts, the economic and 

societal impacts due to the failures give them a top priority to be addressed. Indeed, the 

significance of protecting fiber cuts will grow as traffic-carrying capability (aggregate) of a fiber

4 Source: IDG News Service, Singapore Bureau, www.idg.com.sg

5 Source: Mercury News, www.mercurynews.com

6 Source: People's Daily Online, english.people.com.cn

7 Source: Discount Long Distance Digest, www.thedigest.com
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and the value of the information being transported over these cables increases. Our scope of the 

thesis is to focus on the capacity planning strategies to provide network survivability against fiber 

cuts. As discussed previously, equally important issues related to implementation and operational 

procedures should also be considered to provide a complete survivability solution.

Before proceeding to the next section, let us present an example that illustrates several 

central ideas of the capacity planning problem of survivable networks. The intention here is to 

provide a preview and head start to the specific studies in Chapters 5 to 8.

Assume we are in the position of a transport capacity planner. Our goal is to determine the 

capacity requirement for supporting a given demand forecast (in a matrix) as shown in Figure 2.5. 

Each entry in the demand matrix represents aggregated, bi-direction traffic flows between any 

two cities. In addition, a physical network topology is provided. Currently we must solve two 

questions:

Table 2.2. A sample point-to-point transport demand matrix. Traffic is measured in Gbps.
Traffic City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8
City 1 - 3 1 3 2 5 2 3
City 2 - - 4 2 8 6 3 3
City 3 - - - 7 2 3 3 6
City 4 - - - 5 2 2 2 2
City 5 - - - - 2 5 5 5
City 6 - - - - - 3 6 2
City 7 - - - - - - 1 3
City 8 - - - - - - - 4

Figure 2.5. A sample network topology.

(1) If  we want to support all the predicted demand, how many units o f transport 

capacity should we allocate on each span in the network?

(2) Protection against fibers cuts is also a requirement of the capacity design. In this 

case, how many extra capacity units do we need to protect against any fiber cut? 

And where should we place them?
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One approach to the first question is to determine a routing plan (e.g., based on the shortest 

distance route) between each city-pair, and route each demand entry onto the network map. On 

each span, all demand flows can then be summed up to determine the corresponding total 

capacity. To answer the second question, we might simply scale the existing capacity units by 

some constant factor^, and hopefully that will provide enough redundant capacity for re-routing 

the potentially failed traffic.

The above solutions could undoubtedly provide feasible answers. However, with cost- 

effectiveness in mind we would try to minimize the total capacity required on the network. In 

such a case, how do we justify that they are indeed “good” solutions? How should we determine 

the appropriate factor .T? While we will re-visit this problem in much greater detail, this simple 

example enables us to illustrate the economic objectives as well as the aspect of survivability 

from a capacity design perspective.

2.4 Demand Forecasting and Uncertainty

Unlike network survivability, which has a relatively well-defined scope and definition, the 

notion of uncertainty in telecommunications is more subtle and difficult to conceptualize. In this 

section, we will first look at demand forecast and the possible causes o f demand uncertainty. In 

Chapter 4, we will then classify uncertainty specifically into four levels and relate this concept to 

the problems of capacity planning and capacity management.

2.4.1 Demand Forecasting

Before we describe uncertainty in demand forecasts, it helps to first discuss how a forecast 

is developed for transport network planning. Specifically, how do we obtain Table 2.2 in the first 

place? Based on three application types, namely voice, transaction data and Internet traffic, 

Dwivedi and Wagner [DwWOO] develop a traffic forecasting model for the design of long

distance optical transport networks. Each traffic type has different characteristics and has its own 

formula for modeling the traffic between cities i and j:

Transaction data traffic  (z, j )  =

Voice traffic ( i , j )

(2.4.1)

In ternet traffic (i, j ) =  K r ■ H i ■ H .
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Pi is the total population of city i, E, is the non-production business employees, //,• is the number 

of internet hosts, and Ay is the distance between the two cities of interest. Kv, KT and Kj are the 

proportionality constants that define, respectively, the traffic levels assuming 14 minutes o f long

distance voice traffic per person per day, 5 minutes of transaction modem use per non-production 

employee per day and 25 minutes of continuous modem access to the internet per host per day. 

Based on these formulas, the authors have estimated the projected demands for each application, 

aggregated them together to form a complete traffic forecast (in Gbps), and cross-checked with 

statistics published by FCC. From (2.4.1), it is interesting to note that the influence of the 

geographic distance on the generated traffic reduces as we move from voice to transaction data to 

the Internet traffic. Kazovsky et al. conducted a similar study to [KXD98] and considered four 

types o f applications (i.e., telephony, internet, digital video distribution and digital video 

communications). Nonetheless, the exact mathematics of forecasting models was not reported.

The above method represents one kind of forecasting technique, and in [Lee86], Lee 

discusses several kinds of forecasting methods: Intuitive forecasting, Trend forecasting, 

Normative forecasting, Iterative forecasting and Comparison forecasting are the popular ones.

We summarize only the first three here.

Intuitive forecasting, also known as the Delphi method, is a qualitative forecasting method 

based on independent inputs of selected experts, who contribute their subjective opinions on a 

particular issue. Typically, a series of questionnaires is provided to the experts, and they are 

encouraged to repetitively revise their answers in several round of questioning until they reach a 

consensus. It is believed that by going through several rounds of revisions, the group will 

eventually reduce the variance of the opinions.

Trend forecasting, or time-series forecasting, assumes that the future will have a 

predictable relationship with past statistics. An example is the use of least squares curve fitting to 

find a curve or a mathematical function that fits a set of data points. This function is then 

extrapolated to produce future demand values and to reflect a plausible relationship between 

demands and time.

Normative forecasting assumes that there will exist needs in the future, where these needs 

will directly influence the demands forecast. In other words, we do not use past demand values 

for prediction, but rather we use other (possibly more reliable) parameters to develop traffic 

forecasts. These parameters could be population of cities, gross national product (GNP), 

consumer index, interest rate, tariffs, disposable income per area, etc. The method [DwWOO] just 

described belongs to this forecasting technique.
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To provide some detailed examples of the above forecasting methods, readers can refer to 

the February 1995 issue o f IEEE Communications magazine entitled “Traffic and Service 

Forecasts for the Years 2000 -  2005.” Stordahl and Murphy [StM95] use a combination of trend 

forecasting and Delphi methods to predict the demand forecasts particularly for wideband and 

broadband services in the European residential market. Hopkins et al. [HLB95] propose several 

approaches, such as statistical analysis of historical data for existing services, modeling of the 

diffusion of demand for new services, assessment of overall telecommunications spend as a 

proportion o f gross domestic product (GDP), to predict the trend of broadband services in the 

United Kingdom. Wasem et al. [WGT95] explain a two-step solution for predicting broadband 

demand between geographic areas. Using demographics and market research data, the authors 

first produce an aggregate forecast for each data service, and for each geographical area. Then, 

based on the assumption that demand flow among industry groups is proportional to the flow of 

money between industry groups, these aggregate forecasts are combined to determine forecasts of 

demand within and between the geographical areas. The following example can be used to 

illustrate the key concepts of this approach:

Edm Cal Van

Edm X 0 O'

Cal 0 y 0 (2.4.2)

Van 0 0 z

Edm Cal Van

Edm "0.3 0.5 0.2"

Cal 0.3 0.4 0.3 (2.4.3)

Van 0.1 0.4 0.5

Edm Cal Van

Edm 0.3x 0.5x 0.2x

Cal 0 3 y  O Ay  0.3 y (2.4.4)

Van O.lz 0.4z 0.5z

Matrix (2.4.2) is the result from step one, where the aggregated forecast demand, x, y  and z, for 

each geographical area is found. [WGT95] goes into the detailed methodology of transforming 

demand data from number of devices currently installed (total o f 12 device categories are 

considered), to application demand (total of 14 applications), and eventually to service demand 

(total o f 11 services), say in Gbps. Matrix (2.4.3) comes from step two, where each entry
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represents the “proportion” of money flows between the node pairs. For example, the first row 

implies that 30% of the money flows within Edmonton, 50% to Calgary and 20% to Vancouver, 

and the row sums to unity. Multiplying the two matrices leads to the matrix (2.4.4), that is, the 

model of the demand forecast we assume throughout this thesis.

2.4.2 Macro Factors Causing Demand Uncertainty

Although practicing forecasters have proposed numerous techniques for making accurate 

demand prediction, only a few techniques have been proven to be successful for a specific time 

frame, or for a specific application [FiK02], Indeed, both the causes and impacts of uncertainty 

are difficult to identify and, at times, difficult to quantify. If we examine the telecommunications 

industry from a broad perspective, we will see that uncertainties exist not only in the 

mathematically-detailed level, but also in regulatory, economic and technological levels 

[BeW93]. As in the case of regulation, operating a network in a deregulated, competitive 

environment or in a government-owned monopoly environment (e.g., as happened during the 

1980’s [ShaOO]) would have different impacts on how customers choose between carriers and 

hence would affect subsequent traffic usage and pricing policies. Consequently, the pricing 

structure o f telecommunications services and price elasticity of demand would influence user 

reactions and how much demand would be exchanged between cities, etc.

On the technological side, the rapid innovation and delivery of new communications 

services and the limited amount o f historical data available have constantly imposed challenges to 

traditional forecasting techniques, as we explained in the previous section. In the October 2002 

issue of the International Journal of Forecasting, Fildes and Kumar [FiK02], Madden et al. 

[MSC02] and Islam et al. [IFM02] provide reasons on why traditional forecasting techniques fail. 

For example, lack o f historical data due to rapid developments of new technologies forms a 

constant barrier to adopting any kinds of time-series or normative forecasting techniques. The 

demise of the monopolistic service providers imposes another challenge to practicing forecasters 

[FiK02], Indeed, the traffic characteristics of telecommunication services have changed 

dramatically over the years. Chung et al. [CCF98] have observed that call-holding time for a 

typical voice call has increased from 3 minutes to over 30 minutes for an Internet session; daily 

traffic patterns from predictable busy and off-peak hours have become busy at almost all times 

[CCF98]; traffic flow has changed from a geography-dependent pattern to a geography- 

independent pattern [CCF98][DwW00][Dwi03].

As expected, uncertainties in regulation, economy and technology will continuously affect 

the predictability o f the demand forecast. The questions of what variables to model and how each
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variable affects the others and relates to the demand forecast deserve in-depth research in its own 

right. In this thesis, our intent is not to invent new forecasting techniques (as discussed in Section 

2.4.1) to produce a more accurate demand forecast, but we treat demand uncertainty as some 

input (e.g., from a perfect forecast to a range of future scenarios) to the model. Our main goal is 

to provide a set of strategies for decision makers to choose from, and to apply each strategy in 

accordance with uncertain situations.

2.4.2 Capacity Planning and Capacity Management under Uncertainty

Capacity planning has always been a central problem of many businesses. It generally 

refers to a problem of ensuring sufficient capacity and a cost-effective plan to meet anticipated 

demands. Capacity management, which requires a different emphasis from an operational 

standpoint, considers the management of capacity resources to ensure that the capacity is well 

utilized for existing and upcoming demands.

In the general context of transport network planning, a time scale is an effective metric of 

distinguishing among different types or categories of problems. A report by Eurescom, one of the 

leading European telecommunications organizations, has classified planning o f optical networks 

into three categories: long-term planning (LTP), medium-term planning (MTP) and short-term 

planning (STP) [EUROOa], A LTP problem is typically characterized by a long planning period 

and a high level of uncertainty. Topological (e.g., determine the physical network topology, 

location of network nodes) and technological (e.g., select appropriate types of transport 

technologies, choose between mesh versus ring network architecture) as well as physical 

dimensioning (e.g., determine the number of cables needed, power requirement) decisions are 

addressed in LTP. Deciding whether to introduce a new node or a new physical span on a given 

network topology would be another example of long-term issues. LTP is also referred as 

“greenfield” or fundamental planning [Gro04], and is the most strategic and capital-intensive of 

the three categories. The business aspect of network planning as mentioned in Section 2.2, as 

well as the regulatory and organizational issues discussed in the previous section, directly affect 

this problem space.

MTP concerns installation, allocation, and upgrading of transport equipment systems to 

support demand forecast in a moderate degree of uncertainty. MTP decisions might be made in a 

single period or in multiple periods. To determine where to install new capacity modules in a 

particular fiber route to support upcoming traffic growth is one example o f the MTP problem.

STP departs from MTP in that routing of the transmission demands must be satisfied within the 

already-installed capacities, where additional capacity investment is not an option. The time
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period considered in STP is much less than MTP. Our earlier descriptions of capacity planning 

would normally fall within the scope of MTP, whereas the notion of capacity management could 

span the scopes MTP and STP, depending on whether we allow “add or remove” to the existing 

capacity in the network.

LTP, MTP and STP clearly address a variety of questions and issues, and different 

decision-making tools should be used to address different problems. The demand forecast is a 

common input parameter for all three, and the associated degree of uncertainty affects all 

planning processes. In LTP, the demand forecast, which is usually used as the basis of a revenue 

forecast, provides a key piece o f information for decision makers to determine an “invest or not to 

invest” type of highly strategic question. Along the lines of this decision, the degree of 

uncertainty of a demand forecast would affect the timing of the investment, essentially posing a 

question of “when to invest.” Combining uncertainty with certain financial values (e.g., project’s 

current net cashflow, time over which the decision may be made, risk-free rate, variance of 

present value of project’s cashflow), the real option technique8 might suggest whether the 

capacity investment should be deferred, executed, committed in stages, or even abandoned 

altogether [A1N99][A1102].

In MTP, we have a different problem scope. Here we need to determine where, when and 

how much transport capacity and equipment to install on the network, and both the demand level 

as well as the distribution o f a demand forecast are the sensitive parameters to the network 

implementation. In contrast to the demand forecast used in LTP, the demand prediction of MTP 

is usually performed on an annual basis. Therefore, MTP is relatively more accurate and closer to 

the actual traffic scenario. In addition, the demand forecast of MTP contains more detail in terms 

of the traffic distribution between the nodes (or cities), and optimization and simulation-based 

techniques are typically used to support these capacity allocation decisions. Note that the 

decisions made in the MTP can also affect LTP process strategically. For example, a significant 

increase or decrease in the cost of the transport capacity could directly affect overall network cost 

and therefore the decisions of whether or when to make the capacity investment.

The issues of re-configuration and re-optimization of the network to adapt near-term traffic 

(i.e., traffic requests predicted a month or more in advance) fall within the scope of STP. Here 

both distribution and demand level of the forecast are usually unknown but bounded within some 

ranges, and the goal is to determine efficient ways to re-route or re-organize some existing 

connections in such a way that existing capacity can be better utilized. As in the case of the

8 Further discussion on real options will be provided in Section 9.3.
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relationships between MTP and LTP, decisions from STP can also affect MTP to some extent. 

For instance, a reconfiguration process might suggest putting more capacity on certain spans 

within an existing network.

Table 2.3 provides a concise summaiy of the three planning processes, and serves as a 

conceptual framework for Chapters 5 to 8. Our focus in this thesis falls directly within the MTP 

and STP categories, and we refer these two problems as the capacity planning and capacity 

management problem, respectively.

Table 2.3. Illustrating the differences among long-term, medium-term, and short-term
planning.

Planning
Horizon

Long Term 
Planning (LTP)

Medium Term 
Planning (MTP)

Short Term Planning 
(STP)

Forecast Period Long
(e.g., 3+ years)

Medium 
(e.g., 1 -  3 year)

Short
(e.g., every month or 
week)

Forecast
Uncertainty

High Moderate Low

Important
Forecast
Characteristics

Demand level or 
demand volume

Demand level and 
demand distribution

Demand level and 
demand distribution

Problem Nature Business / Strategic Strategic / Tactical Tactical / Operational
Problem
Addressed

Investment decision; 
go vs. no-go decision 
and why; buy vs. 
lease capacity; 
optimal timing to 
make investment; 
network topology, 
node location

Where, how much, 
when, what capacity 
modules to be installed, 
upgraded, removed

Demand routing 
decision; traffic 
management; 
reconfiguration, 
routing re-optimization 
policies within a given 
set of capacity

We conclude this section by re-examining the capacity planning problem that we addressed 

at the end of Section 2.3.1. The intention here is to show the overall problem of planning 

survivable transport networks under demand uncertainty.

Suppose we already had a capacity design that ensures (1) all predicted demands in Table 

2.2 are served, and (2) all demands are protected against span failures, and this design costs total 

of Y dollars. Recognizing that there might be several plausible demand forecasts, instead of a 

single forecast we initially had expected, we must now address two additional questions besides 

(1) and (2):

(3) Given a set of possible demand scenarios, how much extra capacity do we need 

to “future-proof’ our capacity design? In other words, how much contingency
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(e.g., an additional of 20%, 50% or 200% of Y) should we incorporate into the 

initial capacity design?

(4) If  the actual demand goes far below or exceeds our original design, what will be 

the financial or other impacts? If we build the original network, is there a way to 

re-configure the existing capacity configuration to improve its ability to cope 

with actual future demands?

An answer to question (3) would affect the initial cost of the network directly. On one 

hand, we do not want to put in too much extra capacity up-front; on the other hand, an under

capacitated design might lead to the expensive penalty o f not serving or coping with the future 

demands. Therefore, there should exist some optimal balance that will determine the amount of 

capacity we invest now or in the future. Question (4) brings up a different issue. It almost forces 

us to accept the fact that we will be making an inaccurate capacity investment in any case. Here 

our strategy is to take whatever capacity configuration we have, and find ways to maximize its 

value. These four questions are fundamental to this thesis, and solutions will be treated in the 

following chapters.

2.5 Summary

From the fundamental capacity design problem, we have touched on and united different 

issues of economics, network survivability and demand uncertainty. This chapter obviously 

cannot cover each subject area in detail, but the facts and figures should give readers general 

background to justify why this thesis is a timely and interesting one.
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3 Modeling Survivable Transport Networks

3.1 Introduction

Chapters 3 and 4 constitute the second module of this thesis. Containing concepts in 

transport networking and background on network survivability, this chapter aims to provide a 

modeling foundation for optimization formulations, specifically, what variables and parameters to 

model. We begin by explaining the concepts o f layering, transport node, transport demands, 

working and spare capacities, as well as possible network topologies for the design of survivable 

transport networks. The key survivability mechanisms, span restoration, p-cycles and shared 

backup path protection, are also described from the capacity modeling and routing behavioral 

perspective. In this chapter our focus is to identify what to model, and in Chapter 4, 

mathematical programming techniques will be explained concerning the question of how to put 

the decision variables and parameters together.

3.2 Model of Transport Networks

In the most general sense, a transport network is a network that can be used to facilitate the 

movement of people, goods or information from one place to another. While our research only 

considers the transport of information over circuit-based telecommunications networks, terms 

such as topologies, nodes, links, routes, demands, and capacities are common in many types of 

facility-based networks including rail transport, road transport and air transport. In this section, 

we will discuss each of these terms with particular reference to optical transport networks and, 

based on their characteristics, we identify the key parameters and variables of general capacity 

planning problems.

3.2.1 The Concepts o f  Layering, Transport Node, Transport Demand, Working 

and Spare Capacity

To explain the concept of layering, it is useful to first present a general hierarchy o f the 

access, metropolitan and long-haul networks, as shown in Figure 3.1. Starting from the end 

users’ proximity, the access networks are responsible for providing a variety of services, with 

data rates ranging from leased lines of 1.5 Mbps to full wavelength capacities of several gigabits 

per second, to residential users as well as large private corporations, governments, and 

educational institutions. To serve the needs of a wide range of customers, access networks offer a 

wide range of broadband services, such as Internet, telephony, cable television, etc. to more

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



enterprise-specific services such as FDDI (Fiber Distributed Data Interface), ESCON (Enterprise 

System Connectivity) and Fiber Channel.
Lono4uul Nvtworfcs

MtnpitrMtonai

Long-haul/
imtro

Metropolitan Networks

'“V 'c o i » n ^ o r » ~  lnt«r*<n«tro^r ^.'< ^TconrSctl^j ' ~ "  
, . " connections • '

Access Networks/Clients
Frame

IP RouterSONET 0

Residential x*OSL or 
cable modem networks

PSTN/cellular Regional ISP Corporate 
enterprise clients

Figure 3.1. Long-haul, metropolitan, access network hierarchy. From [SorOO].

While the access network is responsible for delivering services from the service provider’s 

facility to user’s homes or businesses, metropolitan (or metro) networks generally provide 

connections between the businesses and offices within cities, as well as connect to/from points of 

presence of long-haul networks. In terms of transmission media, the technologies used by the 

metro area (and long-haul networks) are predominantly fiber-based to carry the aggregation of 

various kinds of services, while the media of access networks can be wireless, optical or copper.

Also commonly known as “backbone” or the “carrier’s carrier” networks, long-haul 

networks connect large trans-national and global carriers, and their coverage spans both regional 

and international regions. Figures 3.2 and 3.3 show the network maps from two long-haul 

network carriers [Rea04][Glo05]. As in the case of metro networks, long-haul networks can be 

used to transport data services with rates up to the order o f hundreds of Gbps. To efficiently and 

cost-effectively provide bulk connections from one point to another is always one of the main 

objectives of designing the long-haul networks.
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Figure 3.2. Asian network map from Reach, one o f  the Asian largest international carriers. From [Rea04],

Figure 3.3. North American network map from Global Crossing, a US-based network carrier. From
[Glo05],

While we can classify networks in terms of their physical and geographic coverage, from a 

modeling perspective, we can think of the network architecture as consisting of two layers: The 

bottom transport network layer, is responsible for providing connections to the upper logical 

layer, or service network layer [Sat96]. The service network layer (or simply service layer) 

consists of various kinds of data service networks, and each of which is dedicated to a specific
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service, from connection-oriented traffic such as voice and video, to bursty data traffic, such as 

the Internet. The transport layer, on the other hand, provides the fabric o f transmission “pipes” 

that transport the aggregated flows of the service traffic. Represented by a set of nodes and 

spans, the transport network is capable of switching, multiplexing, routing and providing 

survivability to withstand physical failures.

From a technology-specific standpoint, we can further break down the service layer down 

to a typical three-layer, IP/ATM/SONET structure. As the top layer, today’s Internet Protocol 

(IP) is probably the most commonly used wide-area networking technology, as this packet-based 

technology is designed to support a wide variety of applications such as the Internet. IP is 

capable of running over many kinds o f networks below it, such as the Asynchronous Transfer 

Mode (ATM) layer [Mau99], ATM is an international standard design for which multiple service 

types such as voice, video, and data can be transported over a unified platform. ATM attempts to 

resolve the conflict between circuit-switched networks and packet-switched networks by mapping 

both bit-streams and packet-streams onto a stream of small fixed-sized “cell” of 53 bytes, which 

is a compromise between the conflicting requirements of voice and data applications [RaS02].

To overcome the best-effort, indeterminate performance nature of IP transport, one of the key 

advantages of ATM is its ability to provide quality-of-service (QoS) guarantees, or guaranteed 

performance, throughput, latency bounds, to applications such as streaming multimedia, IP 

telephony and mission-critical applications.

One layer below ATM is typically the Synchronous Optical Network (SONET) layer. 

SONET is the North American standard for communicating digital information over an optical 

fiber, and has been used as a transport technology in metro and long-haul networks for more than 

two decades. One of the main characteristics of SONET is its ability to access any tributary or 

low-bit-rate signal without demultiplexing the entire high-bit-rate transmission signal, where an 

atomic (or master) reference clock is used to synchronize all sources o f tributary signals. Ease of 

signal extraction was not always possible with the earlier transport technology based on 

Plesiochronous Digital Hierarchy (PDH), where different parts of the network were not perfectly 

synchronized. Other important advantages of SONET include its compatibility with equipment 

from various vendors, its ability to offer operation, administration, maintenance and provisioning 

(OAM&P)9 and survivability functions, and its compatibility with any service mix including

9 Operation, Administration, Maintenance and Provisioning (OAM&P) is a general term used to describe a 

group of management functions that provide system or network fault indication, performance monitoring, 

security management, diagnostic functions, configuration and user provisioning [AiP94],
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ATM, IP and emerging services. The basic SONET signal operates at 51.84 Mbps and is 

designated as STS-1 or synchronous transport level-one signal. The STS-1 is the basic building 

block signal of SONET, and higher rates can also be time-division multiplexed (TDM) to form 

the next levels o f the SONET hierarchy as STS-«, where n is an exact multiple of 51.84 Mbps.

For further discussion on the IP, ATM and SONET technologies, readers can refer to 

[Sat96][Nor96][Mau99][RaS02],

In contrast to the service layer, the transport network is not service- or client-specific, for 

it serves as a united platform to carry various kinds of networks. To maximize transport 

efficiency, the transport layer is responsible for providing transmission paths that have the 

flexibility o f adapting to unpredictable demand growth, and have built-in survivability functions 

for handling physical network failures. With the invention of wavelength division multiplexing 

(WDM) technology and node equipment having robust switching and management capabilities, 

the fiber optical technology has been adopted by the transport networks to support existing IP, 

ATM, SONET and emerging services such as wavelength services, fiber connection (FICON) and 

Gigabit Ethernet (GbE). For these reasons, the transport network is frequently referred to as the 

optical transport network (OTN).

As a core transport technology, WDM is a multiplexing scheme that allows several optical 

carrier signals to be simultaneously sent along a single fiber by using different optical frequencies 

(or wavelengths). Conceptually, this scheme is identical to the frequency division multiplexing 

(FDM) used in microwave radio and satellite systems. The wavelengths in both schemes must be 

properly spaced to avoid interchannel interference. Combined with the time division 

multiplexing (TDM) technique, which provides high-speed transmission on a per time slot 

channel basis, WDM is able to combine multiple wavelengths and transport traffic at a rate of 

terabits per second (Tbps) over a single fiber. Thus, when the demand exceeds the capacity in 

existing fibers, WDM can provide a more cost-effective solution to expand capacity than to 

install or bury additional fibers, especially in long-haul regions where the cost of transmission 

cables often dominates the overall network cost. More discussion of the WDM technologies can 

be found in [Muk00][Gre01][RaS02],

The International Telecommunication Union (ITU) provides a general definition of OTN. 

Such a network is composed of a set of optical elements connected by optical fiber links, and is 

able to provide the functions of transport, multiplexing, routing, management, supervision and 

survivability of optical channels carrying client or service signals [ITU05]. Generally, the optical 

network elements refer to optical cross-connects (OXC) or optical add-drop multiplexers 

(OADM). The main functions of these transport nodal devices include: (1) providing interfaces

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to the service or tributary signals, (2) multiplexing the service signals into wavelengths, (3) 

routing wavelengths from source to destination node, (4) switching the wavelengths of various 

frequencies from any input to any output ports, (5) monitoring signal performance and (6) 

providing fault management functions when network failures occur.

The functionalities of the switching equipment might seem straightforward to implement, 

yet over the past few years node equipment vendors have tried to compete by advancing their 

technologies to integrate all these functions at the lowest cost possible. Choosing a technology 

for optical switch implementation, for example, has been debated in terms of cost and switching 

architecture. Some vendors argue that network carriers should deploy solely optical, or optical- 

optical-optical (OOO) switches, so that data can be switched optically to increase the scalability 

of the data processing rate, while others see the advantage of implementing a more manageable 

optical-electrical-optical (OEO) switches where the signal undergoes electronic processing 

between the optical input and output and provides build-in OAM&P functions. Table 3.1 

provides a snapshot of the technology tradeoff published in 2002.

Table 3.1. Comparing OEO vs. OOO switching architectures. From [JaB02].

Feature OEO OOO
Data format dependence Yes No
Cost/space/power independent of rate No Yes
Upgradability to higher rate No Yes
Subwavelength switching Yes Future
Waveband switching No Yes
Performance monitoring Bit error rate Optical signal degradation
Wavelength conversion Built in Currently electronic

As technology continues to evolve, it can be expected that new technology will provide the 

best of both worlds. At the time of this writing, we have already seen a new switching 

technology that claims to reduce the cost of OEO processing, yet providing a scalable switching 

architecture [Mel04], For the reader’s interest, further discussion on this debate can be found in 

[Sha96] [JaB02] [IEC04].

Therefore, to make valid assumptions for the modeling of transport networks, it is essential 

to first understand the implications of the type of equipment. For instance, if  none of the 

switching equipment has OEO wavelength conversion capability, then a connection must use the 

same wavelength traversing different links on a network. This can limit the full use of the 

available capacity. Such a limitation imposes a constraint, known as the wavelength continuity 

constraint [RaS95][Muk97], and would ultimately affect how we formulate our capacity models. 

Recognizing future technological trends and knowing the capability of current cross-connect
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equipment, we can assume that transport nodes will be capable of (1) multiplexing various 

services into wavelengths, (2) switching incoming wavelength signals from any input to any 

output, and (3) detecting and isolating network link failures. These are also the functional 

requirements envisioned by ITU concerning future optical transport networks.

To model transport demands, we assume that all IP, ATM, FICON, and other services 

are aggregated into transmission-level demands, quantified by the number of transmission paths 

or circuits required to carry the services at suitable levels of performance. If  the granularity of the 

demands is in wavelengths, we refer to them as Iightpaths or wavelength services. The 

demands can also be quantified by the number of time-division connections, e.g., in OC-12 or 

STS-3 granularity, or in general terms o f any number of managed units of transmission capacity 

that the aggregation of traffic requires. Therefore, from the modeling standpoint, STS-based, 

OCn-based or wavelength-based demands are logically equivalent as long as they are represented 

by discrete values. Each demand unit is also differentiated by its origin and destination nodes as 

well as other requirements such as the level of protection. It is also important to note that these 

aggregated demands have characteristics very different from those o f service-layer traffic. For 

example, while in telephone traffic we model the stochastic behaviors (e.g., Poisson arrival rate 

with negative exponential holding time10) to determine the size of a trunk group or a server, the 

stochastic traffic model should not be used for modeling optical demands because each transport 

demand has its origin and destination, specific survivability requirement and relatively static 

duration.

From a provisioning standpoint, an OD transport demand can be viewed as a circuit whose 

attributes might include a unique ITU-T compliant circuit name, service order identification 

number, the customer who owns or leases the circuit, the date the circuit was put into service or is 

expected to be put into service, the customer account number to which the circuit is billed, and so 

on [Cis03][Mis04], Because transport circuits have generally much longer holding time (e.g., in 

the orders of weeks or months) than service demands and the routing information is often 

available from network management systems, it is possible to reroute or re-optimize these circuits 

at regular intervals to enhance the utilization efficiency of the network [SDC94].

10 Statistical characterization of lightpath requirements remains an open-ended issue. While many 

researchers assume lightpath service connections behave as traditional phone calls (i.e., Poisson arrival 

with negative exponential holding time) [RaS95][ZaM01][ZJS01][SSS02], others have assumed non- 

Poisson traffic models in their studies, especially with the objective of quantifying the benefit of placing 

wavelengths converters over WDM networks [SSA97][SpB98][YRL99].
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As in the case of modeling transport nodes and demands, it is essential to identify 

properties of the transport capacities. Figure 3.4 shows a point-to-point WDM transport system. 

A channel is generated by a pair of transmitter and receiver and each channel is dedicated to a 

specific wavelength. These channels are then multiplexed for transmission, amplified for 

extending transmission distance and finally demultiplexed for retrieving each channel.

Power am plifier Line; am plifier

Mux
IX'inux

Transmiltcr Receiver

Receiver

ReceiverTransmitler

Figure 3.4. Point-to-point transport system. From [RaS02].

From a capacity planning perspective, we often model the aggregation of all point-to-point 

channels between adjacent cross-connects as a span. For the design of survivable networks, 

certain channels may be assigned or entirely reserved as protection or “spare” capacities, such 

that in the event of a .fiber or node failure, these spare channels can be used to restore the failed 

connections. For these reasons, the terms working and spare channels are frequently used to 

distinguish between active links that carry actual demand units and redundant links that are used 

for failed demand units11. Akin to the idea that a path (or lightpath) is a concatenation of 

individual logical channels (or wavelength channels), a route is a concatenation of physical spans 

on the fiber network map.

The models o f transport nodes, spans, demands and transmission paths described above 

enable us to extract details and capture network management issues such as routing, capacity 

management and survivability planning. Figure 3.5 summarizes the transport network model that 

we use throughout this thesis.

11 In Chapter 7, we will see that both working and spare capacity can be used to cany traffic of different 

service classes. For now, we will treat spare capacity as the redundant, idle protection channels.
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- Wavelength

Services
Supported:
-IP
-ATM
- SONET
- FICON

Node: Cross-connect supporting various services, wavelength 
switching and wavelength conversion

Span: WDM links containing both working and spare links that 
sum up to the capacity of the span

Path: Transmission paths in some logical unit of capacity (e.g., in 
wavelength or any finite granularity)

Figure 3.5. Generic survivable transport network model used in this thesis.

3.2.2 Topologies fo r  Survivable Transport Networks

To protect against a cable-basednetwork failure such as a fiber span cut, the physical 

facilities graph must be designed so that it is inherently survivable. Figures 3.6 to 3.9 illustrate 

four kinds of network topologies of different survivability implications.

In Figure 3.6 we have a tree-like backbone topology connecting all seven nodes. This 

topology cannot withstand physical failure because any node or span failure would disconnect the 

network into two parts. In contrast, the ring-like topology illustrated in Figure 3.7 can survive 

any node or span failure, because it has at least two fully node-disjointed paths between each 

node pair. It is often referred as a bi-connected topology. There is another, less restricted set of 

topologies, called two-connected topologies, wherein disjoint paths between some nodes are only 

span-disjoint but not fully disjointed because they might share a common node. Figure 3.8 

illustrates an example o f the two-connected topology, wherein a failure in node 5 can break the 

graph into two parts.
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71

Figure 3.7. Ring topology.Figure 3.6. Star-like network topology.

Figure 3.9. Bi-connected topology.Figure 3.8. Two-connected topology.

One can further improve the network connectivity, and therefore the inherent survivability, 

by adding more physical spans to form a mesh-like topology as seen in Figure 3.9. This mesh

like topology is able to provide fully disjoint path pairs between all nodes. An advantage of 

increasing the route diversity is that this topology allows the more efficient use of transport 

capacity. However, a network of higher physical connectivity also implies an increase in the 

overall network cost, owing to factors such as construction cost for laying additional physical 

cables (including rights-of-way acquisition, installation of ducting, power, etc.), physical cost for 

installing more intelligent nodal equipment, and operational cost for managing the more complex 

network. The design of the physical topology is frequently treated as a separate problem, as it 

includes many historical or geographical factors that cannot be captured or easily quantified by 

mathematical means. In this thesis, the physical network topology is thus always treated as given. 

In addition, all networks used in this thesis are at least two-connected in order that they be 

survivable under any single span failures.

Nodal degree is another common term used to differentiate topologies o f various degrees 

of connectivity. It is equal to 2*S/N, where S is the total number of spans and N is the total 

number of nodes of any two- or bi-connected network. For instance, Figures 3.7,3.8 and 3.9 

have nodal degrees o f 2,2.3 and 3.7, respectively. As a general observation, the nodal degrees of 

today’s backbone network topologies range approximately from 2.2 to 4.5. North American
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networks tend to be sparsely connected. In contrast, European and Asian networks are highly 

connected. The geographical distances between cities might explain such an observation. In the 

case of metro-networks, ring-based transport architectures are commonly deployed with four or 

five nodes [LuD89]. Networks with low connectivity seem to favor ring and point-to-point based 

survivability strategies, as they tend to involve the lowest overall construction and network 

management costs [DML94]. And as the number of nodes increases, the benefits or practicality 

of rings decreases [LuD89][TCK90], relative to the kind of mesh networks we consider.

3.3 Model of Mesh-based Survivability Schemes and Performances

Now we will discuss three specific survivability schemes -  namely, span restoration (SR), 

shared backup path protection (SBPP) and p -cycles (p-cycles). Any of these schemes can be 

deployed over any mesh topologies with intelligent cross-connect nodes. These are the schemes 

we consider throughout this thesis. Our goal here is to provide a general sense of the routing 

behavior of each scheme upon a span failure. Such routing behavior is the fundamental factor 

that dictates the overall capacity requirement and allocation for a survivable network. Specific 

advantages, disadvantages, mathematical models and references of each scheme (along with a 

few other survivability schemes) will be discussed in Section 4.2.

3.3.1 Span Restoration, p-Cycles and Shared Backup Path Protection

Span restoration is one approach to survivability that occurs when a fiber cable is cut in 

network topology, as illustrated in Figure 3.10. Upon span failure, the end nodes of the failed 

span react locally and provide a set of detouring paths to reroute the failed channels. For 

instance, if span [4-5] containing four working channels fails, nodes 4 and 5 might provide a 

single or a set o f paths (i.e., [4-2-5], [4-6-5], [4-1-2-5], [4-6-7-5], etc.) for diverting each failed 

link in the span. From the capacity modeling perspective, one of our requirements for 

survivability is that spare capacity links are efficiently allocated (e.g., on span [1-4], [2-4], [4-6], 

etc.) and sufficient to accommodate the restoration paths upon span failure.

Eligible restoration paths
Figure 3.10. Span restoration under a span failure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As a special type of span restoration scheme, p-cycles offer an alternative to SR, using pre

connected spare-capacity structures for speeding up the restoration process. Like SR, p-cycles is 

a localized recovery scheme wherein the end nodes of the immediate failed span are designed to 

detect, isolate and initiate the restoration process. Unlike SR principle, where spare links on each 

span can be freely used by any failed working connection, p-cycles pre-connect spare links into a 

set o f cycles and each cycle is restricted to protecting against only a pre-defined set of link 

failures.

single restoration path for protecting failed link in either span [2-4], [4-6], [6-5] or [5-2] (i.e., the 

“on-cycle” failures), or provide two restoration paths [4-2-5] and [4-6-5] for protecting two 

working channels in span [4-5] (i.e., the “straddling” failure). From the capacity design 

standpoint, although the pre-connected nature ofp-cycles may lead to slightly higher redundant 

designs (i.e., more spare capacities required to protect the same set of working links) than SR, the 

/7-cycles has the potential to enable faster restoration process, which is a valuable aspect of any 

mesh-based restoration schemes.

Path-based restoration schemes provide another class of survivability options. Path 

restoration (PR) and Shared Backup Path Protection (SBPP) are examples. In contrast to span- 

based schemes, which use localized recovery actions, path-based schemes recover failed working 

connections from an end-to-end, origin-destination (OD) node pairs’ perspective. When a span 

failure occurs in a path-protected network, the network management system must first identify 

which specific OD pairs (or working paths) are affected by the failure before the actual 

restoration process begins. Figure 3.12 illustrates path-based restoration. Upon failure of span 

[4-5], the end nodes (1,3) and (3,6) are responsible for providing end-to-end restoration paths to 

recover the failed working paths [1-4-5-3] and [6-4-5-3]. Under the PR scheme, these restoration 

paths can be any paths connecting the end nodes, without traversing the failed span [4-5]. In

Eligible cycles for 
protection

Figure 3.11. p-Cycles protection under a span failure.

Figure 3.11 shows a possible single-channelp-cycle, [2-4-6-5-2]. This cycle can provide a
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SBPP, which is a specific case of PR, one and only one fully (both node and span) disjoint 

restoration (or backup) path could be used to recover each failed working path. In terms of spare 

capacity requirements, the SBPP is generally less efficient than PR, but more efficient than span- 

based restoration schemes such as SR and p-cycles. As far as the “routing behaviors” of these 

survivability schemes go, we provide additional discussions in Section 4.2.

Failed service (or working) 
paths

~~— \  a 7/jl Eligible restoration
 ----•—   (backup) paths

Figure 3.12. Illustration of the path restoration scheme.

3.3.2 Given Occurrence o f Failure Model

The judgment o f how much redundancy or spare capacity is required for a transport 

network generally depends on two parameters. The first is the set of anticipated failures that we 

would like protection from, and the second is the network survivability level that we would like 

to achieve. As to an insurance investment, where we pay more for a bigger coverage, investment 

for network survivability has the same concept. At one extreme, we can choose not to put any 

spare capacity on the network, as there might simply be no reason for network survivability. At 

the other extreme, one can allocate a huge amount o f spare capacity to protect against 

simultaneous span/node failures or multiple network failures, provided there is a need or benefit 

for doing so. For the problem of capacity planning, the fundamental issue here is that the 

occurrence set ofgiven failures is always assumed, or deterministic in the sense that the modelers 

can choose which specific types of failures he/she would like to plan for. In other words, it does 

not matter exactly how likely each failure is. Consequently, this class of models is referred to as 

Given Occurrence o f Failure (GOF) [T1A01]. Another survivability planning model, Random 

Occurrence of Failure (ROF), assumes that failures can be characterized by random variables 

with given probability distribution functions and probabilistic survivability measures such that the 

availability of the network can then be determined by analytical approximations or by 

simulations. In this thesis, only the GOF model is considered. In all the studies and discussions,
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the GOF target is limited to non-simultaneous, single-span failures. Therefore, regardless of the 

type of survivability schemes used, a fundamental requirement o f all survivable network designs 

is to ensure that there is enough spare capacity in the network to protect against non-simultaneous 

single span failures.

3.3.3 Design Objectives and Basic Metrics

There are several criteria that we use to quantify and compare the effectiveness of 

survivable capacity designs. In this section, we describe each of the performance measures that 

relate specifically to survivable transport networks in the context of capacity planning to a given 

demand set.

Network redundancy is a measure of architectural efficiency for a survivable network 

design [Gro04], and it is sometimes referred as the Efficiency Ratio [T1A01]. For a specific set 

of failure scenarios (e.g., all possible non-simultaneous span failures), a typical definition of 

network redundancy refers to the amount of spare capacity required to achieve a target level of 

restoration over the possible network failures, usually expressed as a ratio of total spare channels 

to total working channels of the network. Mathematically,

where Span is the set of spans in the network, w, is the number o f working channels on span i to 

accommodate a given demand set under normal conditions, and s, is the number of spare channels 

used for protection under failure conditions. This basic definition of redundancy can be extended 

to reflect various distances or costs of the spans by multiplying both s-t and w,- by a distance- 

specific coefficient, C,-, for each span i.

The ability to estimate the total asset value or total cost of the transport network is of 

interest but in academic research, exact cost data are usually not available. Total capacity, i.e., 

Ew; +  Zs,-, is therefore often used to give a coarse approximation to the total capacity cost of the 

network. Because installation, operation and maintenance of transmission are often related to the 

distances of network span (e.g., cost per kilometer of transmission infrastructure) [EUROOb], it is 

common to use the available geographic distances of the spans, and come up with a better 

approximation to the total capacity cost of the network:

Redundancy = -----
2L,

Total Distance Capacity = ^  [C ;
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For the medium-term capacity planning problem (MTP), where our goal is to determine where 

and how much working and spare capacity we need to place into the network, a typical design 

objective is to minimize the above total distance-capacity expression.

In addition to finding minimum-cost capacity designs, in situations where the capacity is 

already in place, it is important to evaluate the robustness of such a design and to quantify the 

utilization of the network. Routability and restorability are common performance metrics used 

to measure the effectiveness of as-built capacity plans to a given set of demand scenarios.

Given a set of point-to-point demands and a set of working capacity, routability measures 

the percentage o f demands that can be served within the fixed capacity set, without taking 

network survivability into the account. For example, if we have 50 demand units to be served, 

80% routability means that 40 units could be served. In parallel to the network redundancy 

calculation, where we could assign specific cost or distance to each channel, we can assign 

“priority,’ to each OD node pair based on their route distances or other specified utility measures. 

Thus the definition of routability can be extended to:

where OD pair is the set of origin-destination node pair in the network, d_requestr is the number 

o f demands requested from each OD pair r, d_server is the number of demands served for each 

pair r, and Ar corresponds to the weighting factor (e.g., route distances) specifically in relation to 

each OD pair r.

Restorability [Gro04] or restoration ratio [T1A01] is another quantitative performance 

measure specific to survivable networks. A simple definition of restorability is the fraction of 

working channels that can be restored within a given survivable design, specific to a given failure 

scenario. For example, if a failure scenario X results in 5 (out of 50) working channels to be 

unrestorable by the span-restorable design, the restorability of this design under this failure 

scenario is 90%. The same definition can also be applied to a path-based survivable network.

We can combine the measure o f restorability to each specific failure scenario to a more general 

measure over all failure-independent scenarios. Later in this thesis, it is a strict requirement that 

all survivable designs must be fully restorable (i.e., restorability = 1) against any single span 

failure.

Servability can be thought of as an extended concept o f routability, and considers all 

demands as “protected demands.” Given a network with working and spare capacities, 

servability measures the fraction of demands that can be both routed and protected, and it can be

Routability =
serve.

reO D  pair

y  Ar • d  _  requestr
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a singie measure for comparing any survivable networks (including ring-based, SR, SBPP,/?- 

cycles, etc.) in terms of their ability to withstand changes in the demand forecast. This new 

concept will be discussed further in Chapter 5.

3.4 Summary

In this chapter, we have identified and defined the key elements of a capacity planning 

design, including transport nodes, spans, demands, paths, routes, spans and links. It is crucial to 

note the difference between demands in the service- and transport-layer. Uncertainty in the 

transport demands (or aggregation o f the service demands) is what we try to accommodate 

throughout the thesis. The routing behaviors o f span-based and path-based restoration schemes 

have been discussed, with general comments on their relative capacity efficiencies. Finally, key 

design objectives -  such as network redundancy and total capacity cost, plus performance 

measures of routability, restorability and servability -  are explained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37



4 Literature Review

4.1 Introduction

In this chapter, our objective is to review existing mathematical frameworks or tools used 

to model survivable network design. This literature review is composed of four basic topics. The 

first topic relates to the capacity planning problem of mesh-based survivable networks. From 

that, we narrow down to more specific problems of capacity planning under demand uncertainty. 

The conceptual modeling of uncertainty into four different levels will be given in Section 4.3.1.

It is this key framework that ultimately unifies our optimization strategies under uncertainty in 

coherent ways. Finally, literature related to the topics o f demand loading and reconfiguration are 

offered.

4.2 Capacity Planning for Mesh-based Survivable Transport Networks

For nearly two decades, researchers have proposed various approaches for solving the 

capacity planning problems of mesh survivable transport networks. The spare capacity placement 

(SCP) or spare capacity assignment (SCA) problem, in particular, has been a popular research 

topic. In a SCP problem, the objective is to minimize the amount of the spare capacity placed on 

transport networks to protect against an assumed set o f network failures. Effective allocation of 

the spare capacity over the network is an essential prerequisite to the functioning of any 

restoration mechanism.

Sakauchi [SNH90][SOH92], Grover [GVS90][GVB91][VGM93], Doverspike 

[Dov91 ][DoW94] [DML94] [KDP95], Miyazaki [MCK92], Medhi [MeK95] and Herzberg 

[HeB94][HBU95] are some of the researchers who saw the potential benefit of the cross-connect- 

based mesh architecture in terms of capacity efficiency and flexibility in restoration routing, 

compared to traditional route-constrained, dedicated-spare survivability techniques such as Rings 

and Automatic Protection Switching (APS) systems. These developments inspired subsequent 

contributions to solving SCP problems with the use of integer / linear programming (IP/ILP) 

techniques.

Despite detailed differences in the proposed ILP models, all SCP optimization problems 

share a common objective -  to minimize the total amount o f spare capacity for protecting a given 

set of working capacities on spans. Specifically, given a network topology and a set of working 

capacity w; on each span i, the goal of the ILP model is to determine how much and where to 

place the spare capacity s,- so that (i) the total number (or associated cost) of spare capacity is 

minimized and (ii) these spare capacities are sufficient to support restoration via replacement
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paths that reroute the failed working capacity upon a network failure. As described in Section 

3.3, the restoration paths are circuit-oriented connections, and each logical path is composed of a 

concatenation o f spare channels.

Various ILP models can be formulated for solving the SCP problem. We can identify three 

main classes of formulations, namely Node-Arc, Arc-Path, and the Cut-Oriented formulation 

[KeL01][BMS02][Gro04], Our goal in this section is to explain the Node-Arc and Arc-Path 

formulations, which are the most commonly used ILP models for SCP and also most relevant to 

our thesis work. For the Cut-Oriented approach, readers are referred to [SNH90][SOH92] 

[VGM93][Gro04].

4.2.1 Node-Arc Formulation for Spare Capacity Placement Problem

The Node-Arc formulation has its origin in a class of problems termed Network Flow 

Problems. An important concept underlying these types of problems is the notion of a “network 

flow.” Given a transport topology (or an undirected graph in graph theory terminology), a 

network flow is associated with the edge (or span) over which the flow is transported. For 

example, flow variable xq represents the total flow over the edge between node i and node j .  

Generally in transportation problems, every node in the network must either be a source node, a 

sink node or trans-shipment node, whose total incoming flow must equal total outgoing flow. 

Each flow variable has a directional attribute (i.e., jCy is different from xJt,) and is integer valued. 

The following integer program formulation is an example of a Node-Arc representation for the 

SCP problem [Gro04],

Objective: M inimize E C i j S i j  (4-2.1)
V ( / .y ) e S

Subject to:

wSJ if  i = s ,t
Vz e N,  V (s ,f) e S (4.2.2)

0 otherwise

V(z, j )  *  (s, t) e S, V(s, t ) s S  (4.2.3)

V (z, j )<e S, V ( j , / ) 6 S (4.2.4)

integer V(z",y) e S (4.2.5)
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Working Capacity, ws t

Spare Capacity, S ,j

— ►
S  tNetwork Flow Xj-

Figure 4.1. Node-arc representation of the SCP problem.

To help appreciate this formulation, we will use the same figure from Section 3.2.2. Given 

the network topology (with set of nodes, i eN  and set of spans, (ij) eS) and a set of working 

capacity ws,t, the objective (4.2.1) of the model is to minimize the total cost o f the spare capacity, 

where cy  is the cost of a unit capacity on span (ij) and s;j is the spare capacity assigned to (ij).

To assure full restoration upon every failed span (s,t), the top part of constraint set (4.2.2) 

ensures the net total network flow outgoing from source node s (or incoming to sink node t) is
S  tequal to the number o f working links on the failed span. The variables x }j  represent the network

flow from node i to j  in response to the failure of span (s,t). Suppose we have 6 working links on 

the failed span 4-5. We basically ensure that (1) the sum of the flows on spans 1-4,2-4 and 4-6 

must be equal to 6, and (2) the sum of the flows on spans 2-5, 3-5, 6-7, 5-7 must also be equal to 

6. The bottom part of (4.2.2) is simply a condition for the tran-shipment nodes (i.e., the nodes 

other than 4 and 5 in this example) where each must have zero net total flow.

Constraint (4.2.3) determines the spare capacity required on each span (ij). The inequality 

sign in this constraint ensures that the spare capacity is dictated by the largest restoration flows 

across each span over all (s,t) failure scenarios. Finally, constraint (4.2.4) asserts the symmetrical 

or “bi-directional” nature of restoration flows (as well as working capacity) on each span.

An important characteristic of the Node-Arc SCP formulation is that the decision variables 

do not directly prescribe the routes of the restoration flow. That is, upon the failure of span (s,t),

the variables X*j and . only tell us that there is enough spare capacity to support the

restoration flows on each surviving spans, but they do not explicitly tell us what direction or 

replacement paths should be taken. The exact restoration route information is a crucial piece of 

information for circuit provisioning and assurance purposes, and the Node-Arc based formulation 

has its limitation to capture the routing aspect of transport design.
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4.2.2 Arc-Path Formulation for Spare Capacity Placement Problem

In contrast to the Node-Arc approach, where each network flow is described on a span 

basis, the Arc-Path formulation associates each network flow explicitly to a given route. Note 

that any Node-Arc network flow problem can be formulated in a corresponding Arc-Path version, 

and vice versa. Thus, the objective of the SCP problem remains unchanged, but the mathematical 

notions of the variables are now different. Let us use the same example to illustrate the Arc-Path 

representation of the SCP problem.

Objective: M inimize (4.2.6)

As before, a network topology and a set of working capacities are given. The difference 

now is that the set of nodes is no longer part of the formulation. A single index, i or j ,  is used to 

describe the set of spans S. Therefore, to minimize the total cost o f the spare capacity, we now 

have cj multiplying Sj, where cj is the cost of a unit capacity on span j  and Sj is the spare capacity 

assigned to span j. The notation of “eligible routes” is a special characteristic of the Arc-Path 

formulation, denoted by P„ where P  is a set of alternative detouring routes specific to the

VjeS

Subject to:

V i e S (4.2.7)

V i e S, Vp e Pt 

integer V / e S

(4.2.8)

(4.2.9)

(4.2.10)

Working Capacity, Wi 

Spare Capacity, S ■

/
1  Network Flow

Figure 4.2. Arc-path representation of the SCP problem.
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restoration flows upon the failure of span /. Hence, the variable f p is simply the total 

restoration flow assigned to the p !h route upon the failure o f  span i.

For each non-simultaneous span failure, constraint (4.2.7) assigns the restoration flows to 

fully restore the failed working capacity w;. Recall that every network flow here is associated 

with a route. Suppose we have six bi-directional working links on span 4-5. The f p solution 

might indicate that 4 units are restored via route 4-2-5, while the other 2 units are routed via 4-1- 

6-5. In parallel to constraint (4.2.3), constraint (4.2.8) determines the size of the spare capacity

on each span j .  The parameter essentially provides the explicit information of the eligible

routes for the restoration of span i. This binary variable has a value of 1 if span j  is part of the p'h 

route for the restoration of span /; otherwise, it is zero.

Thus the Axc-Path approach provides a better route visualization and route pre-selection 

option than the Node-Arc approach. The downside of the Arc-Path formulation is that the pre

generation o f all eligible restoration routes can become a computationally intensive process when 

the size or nodal degree of the network increases. Carelessly limiting the size of the eligible 

routes would affect the latitude of how spare capacity is shared on the network and therefore 

increase the total capacity of the network. With regards to this tradeoff between optimality and 

computational complexity, researchers such as Herzberg et al. [HeB94][HBU95] and Murakami 

et al. [MuK95] have proposed ways to reduce the size of the input eligible route set while still 

maintaining the quality of the optimal solution. The computational aspects of formulations will 

be discussed in subsequent sections.

4.2.3 Extensions o f  the Spare Capacity Placement Problem

Earlier we showed how Node-Arc, Arc-Path formulations can be used to solve the spare 

capacity placement problem. At times, from a research perspective, it is of value for us to 

identity the motivation and understand “why” the problem is an issue in the first place.

Identifying the motivation and the reasoning behind the problems suggests a way to classify the 

literature. Furthermore, such a classification might develop a roadmap of future topics and new 

concepts that could be investigated by other researchers.

Recall the common objective o f any SCP problem is to minimize the amount of spare 

capacity (or redundancy of transport equipment) to achieve a given survivability measure. A 

naturally raised question is to see if there are alternative survivability mechanisms that might 

further enhance the efficient use of spare capacity over the network. The goal o f minimum-spare 

design has inspired many researchers to go beyond the original span-based survivability scheme, 

and to investigate other possible survivability routing principles such as path restoration, shared
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backup path protection, segmented-based restoration, etc., to create more efficient, cost-effective 

spare capacity plans.

An ILP model by Iraschko et al. [Ira96][IMG96][IMG98] and a heuristics algorithm by 

Veerasamy et al. [W S95] demonstrate the capacity benefits of path-based over span-based 

restoration. Path-based restoration, as we briefly mentioned in Section 3.3.1, is a class of 

survivability schemes, which recover failed working paths from an end-to-end, per origin- 

destination (OD) pair basis. When we consider the overall spare capacity required to protect 

against non-simultaneous single span failure, this kind of restoration routing principle leads to a 

better sharing of spare capacity, and hence reduces the overall network redundancy. Based on 

five test networks of different sizes and nodal degrees, Iraschko et al. have shown that the path 

restoration12 scheme can practically lead to a design with the least possible spare capacity. 

Veerasamy et al. also showed that the capacity efficiency of path restoration based on the test 

results of 50 randomly created network topologies.

Besides the span-based and path-based restoration schemes, there exist other mesh 

survivability schemes, and each is designed for certain specific purposes. Meta-mesh [GrDOla], 

for example, refines the idea o f span restoration for improving the capacity efficiency on spare 

physical facilities graphs. By intelligently selecting some “express” demand flows to be restored 

at nodes outside of a degree-two chain of the network (in contrast to re-routing flows inside the 

degree 2 chain, where at least 100% spare capacity is required), the meta-mesh concept can save 

the overall spare capacity requirement over the traditional span restorable design. As another 

example, shared backup path protection (SBPP) can be considered to be a simplified version of 

path restoration, where a single disjoint backup route is preplanned for each working (or primary) 

route, and the spare capacity to form backup paths is shared over multiple disjoint working paths 

without the consideration of stub release. Similarly, segment-based survivability schemes are 

particularly suitable for the kind of networks (known as translucent networks) where OXC, path 

switchover occurs only at a few but not all the nodes. In terms of capacity efficiency, segment- 

based schemes are usually better than span-based schemes and comparable to path-based schemes 

[HoM01][HoM02][OMZ02][ShG04], Comparative studies on the capacity efficiency of span- 

based, path-based, segment-based survivability schemes can be found in [DoW94][DoG01]

12 To be precise, given a set of working capacity to be protected, path restoration with stub release gives the 

most efficient design. By stub release, we mean that the unaffected or remaining links of a failed working 

path can be used as spare capacity to restore traffic. See [Ira96][IMG96][IMG98][Gro04] for details.
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[GDC02][ShG04]. They are o f value to researchers and planners for comparing against other 

survivability metrics, such as fault management cost and speed of restoration.

One assumption of all SCP problems considered thus far is that the working capacity on 

each span (i.e., wSit in Node-Arc formulation or Wj in Arc-Path formulation) is always given. This 

assumption might be true in the context of an incremental transport capacity planning problem, 

where the set of working capacity represents the connections that are already in place and serving 

some on-going traffic. For a “greenfield” capacity planning problem, instead of a given set of 

working capacities, a point-to-point demand forecast is usually provided. In this problem context, 

the set of working capacities, required to support the demands, becomes decision variables. The 

objective o f this problem is then to determine how much and where we should allocate both 

working and spare capacity over the network in order to accommodate all the demands as well as 

to ensure network survivability.

This is the key idea of a “joint design” or “joint working and spare capacity placement 

(JCP) problem.” Here we try to determine how much and where to place the working and spare 

capacity over the network, such that the total capacity cost is minimized with respect to a given 

demand forecast. Both Murakami and Kim [MuK95] and Iraschko [Ira96] have used the Arc- 

Path approach to formulate an optimization model to solve the JCP problem. Specifically, 

[MuK95] proposes a linear program (LP) to minimize the total capacity for a span-restorable 

network, and [Ira96] suggests an ILP to jointly minimize the capacity for both path-restorable and 

span-restorable networks. Based on a linear cost model and testing the LP over two networks, 

[MuK95] showed that the joint capacity plan can save 7 to 10 percent o f the total capacity relative 

to the non-joint span-restorable design. Similarly, in [Ira96][IMG96][lMG98] Iraschko et al. test 

the ILP over 5 test networks and show that path-restorable networks with “stub release” can 

reduced by an average of 7% in total capacity cost when jointly optimizing the placement of spare 

and working capacity. Similar “joint versus non-joint” arguments are applicable to any kind of 

mesh survivable capacity design.

In addition to a predefined set o f the failure scenarios, a point-to-point demand forecast is 

another crucial piece of input information for the survivable network capacity design. In most of 

the survivable design literature (including all references previously mentioned), a perfect demand 

forecast is always assumed. Previous research work allows us to formulate optimization models 

and come up with an accurate capacity allocation plan, knowing the optimal working and spare 

transport links to be placed on the network. However, in the presence of increasing forecast 

uncertainty, these single-forecast models might no longer be descriptive enough and optimal in
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the sense that the capacity plan might be over-built or under-built, and incur some penalty cost to 

cope with the unexpected.

The notion o f demand uncertainty thus opens up a new dimension and presents challenges 

to the traditional survivable capacity design framework. How should one look ahead and take 

such uncertainty into consideration and come up with a more future-proof, uncertainty-aware 

capacity plan? How should we define forecast uncertainty and future-proof in the first place? 

How should we optimize as-built network capacity to cope with uncertainty? We will separate 

this particular problem and discuss the details in the next section. We will also review the 

literature illustrating the different approaches taken by researchers to date.

Table 4.1 summarizes a possible view of roadmapping the SCP problem from solving a 

basic span-based SCP problem, to more sophisticated path- and segment-based SCP problems. 

Jointly optimized capacity placement problems (JCP) were proposed to further reduce the overall 

capacity of the network, and lead to the solution of JCP problems considering additional aspects 

of demand uncertainty. This thesis attempts to advance this research area beyond the capacity 

modeling perspective. Note that there are other researchers who push the capacity planning 

problems in other directions. Examples include designing heuristic algorithms or decomposition 

methods to improve computational efficiency and enhance the scalability from the ILP approach 

[Yam95] [VVS95] [Ke W98] [KeLO 1 ] [MBBO1 ] [LTSO1 ] [PiM04], and designing capacity plans with 

various kinds of survivability requirements or GOF targets, such as multiple span failures, node 

failures, or other specific shared risk link group (SRLG) environment 

[MCK92] [LiTO 1 ] [Ros02] [C1G02] [DoG02] [ShG03].

Table 4.1. Research advances on the spare capacity placement problem.
Extensions to Spare Capacity 
Placement (SCP) Problem

Proposed Solutions and Concepts

Improve spare capacity 
efficiency

Path restoration, Shared backup path protection (SBPP), 
Segmented-based restoration, Meta-mesh

Reduce overall capacity 
requirements

Joint optimized working and spare capacity designs (JCP)

Plan for demand uncertainty in 
survivable capacity design

Stochastic programming, Robust optimization, Simulations, 
Distribution Forecast Accuracy

4.3 Capacity Planning of Mesh-based Survivable Transport Networks in 

Face of Demand Forecast Uncertainty

In Sections 2.4 and 4.2, we explained the limitations of current capacity design models and 

the motivation for a new modeling framework to deal with demand uncertainty. We will now 

discuss the conceptual models for classifying demand uncertainty and the different approaches for
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quantifying it. We will then explain the methodologies used to incorporate uncertainty into the 

capacity planning problems. The literature considering capacity planning of survivability and 

uncertainty will be reviewed, and we will briefly explain our strategies and present them in detail 

in Chapters 5 to 8.

4.3.1 Modeling Uncertainty in Demand Forecast

An important aspect of planning under uncertainty is to define the scope of demand 

uncertainty, since that would determine the strategy or mathematical technique to be used for the 

support of decision making. To narrow down the possible types of demand uncertainty in the 

capacity planning problem, we adopt a general framework (proposed by Courtney, Kirkland and 

Viguerie [CKV97]) that captures and classifies the notion of uncertainty into four different levels:

Level I: A Clear-Enough Future -  In this case, one can develop a single forecast of the 

demand that is precise enough for the capacity design problem. In the past, where telephony 

was dominant in transport networks and exhibited (as it still does) a virtually certain 3 or 4% 

per annum growth, this assumption might be acceptable and traditional methods can be used 

to obtain optimal solutions.

Level II: Alternative Futures -  Here the future can be described as one characterized by 

relatively few different outcomes or discrete alternate future scenarios. These unique 

scenarios represent the few possibilities; each of which is associated with a probability 

measure even though the probability might be difficult to quantify.

Level III: A Range of Futures -  A range of plausible futures can be identified, and the range 

of possibilities should define the boundaries of the demand space in which the network is 

expected to serve. What distinguishes this form of uncertainty from Level II is that there may 

be a near continuum of finely differentiated discrete future scenarios, many times larger than 

in Level II.

Level IV: True Ambiguity — This is the most uncertain and often considered the most 

undesirable level of uncertainty to try to plan for, since multiple dimensions of uncertainty 

interact to create an environment that is virtually impossible to predict. There is simply no 

basis to forecast the future at the time of decision-making.
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Level I  is the simplest case o f all, where a single demand forecast is considered for the capacity 

planning problem. Most existing work on the design of survivable networks is based on this 

assumption that we optimize routing, working and spare transport capacity assignment for a 

single target planning view. Level II  captures uncertainty by a limited set of scenarios. In a 

capacity planning problem, these scenarios might correspond to a distinct set o f demand forecasts 

or “what i f ’ scenarios, and each is associated with a probability estimate. A more rigorous 

characterization of uncertainty falls into Level III, where a range of potential futures might be 

identified but there are no natural discrete scenarios. By increasing the uncertainty to Level IV, it 

is impossible to identify a range or the domain of potential outcomes.

In the context o f medium-term or short-term capacity planning problems (as discussed in 

Section 2.4.2), the uncertainty of the demand forecast can typically be classified in Level II. This 

is a level of uncertainty we consider in Chapter 6. We recognize that Level III might seem to 

give a better description with the continuum of future demand scenarios, but in practice most 

planners would assume Level II uncertainty and work with a smaller number of 

“characteristically different” scenarios, due to the fact that the complexity of dealing with too 

many scenarios tends to hinder decision making [CKV97][DKR91][KOL03][HBB03] and 

renders the problems intractable [KaW94][Ku95][MVZ95]. Various approaches to quantify these 

“characteristically different” demand patterns for the evaluation of robustness of a survivable 

network will be discussed in Chapter 5. Another point worthy of mention is that while in the area 

of operations research or computing science the challenge is to improve the algorithm component 

to efficiently handle a large number of scenarios and periods, the business challenge is to produce 

a reasonable number of distinct scenarios that capture the possible tendencies of the forecast 

uncertainty.

Finally, Level IV uncertainty often prohibits us from vigorously planning but encourages 

us to adapt as best we can. In Chapters 7 and 8 we will propose re-optimization and demand 

loading models to cope with uncertainty, and use them to exploit the best use of existing capacity 

assets.

4.3.2 Stochastic Programming and Robust Optimization

Having identified the scope of demand uncertainty, we will now consider how to model it, 

or, more specifically, how to integrate uncertainty into the problem of survivable capacity 

planning. Recall that the aim of the capacity placement problem is to determine the minimum 

capacity cost of a network, given a set of input parameters such as a network topology, a demand 

forecast, and subject to a set o f technical constraints. In the absence of demand uncertainty, the
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capacity design problem has traditionally been formulated as a linear program (LP) or integer 

linear program (ILP). The difference between the two is that some of the variables in the latter 

are restricted to pure integers. A general formulation of LP/ILP can be stated as follows:

Minimize cTx 

Subject to Ax = b, 

x > 0

The objective is to find a set o f decision variables x  that minimize (or maximize) some sort 

o f budget (or revenue). The constraint Ax = b represents a variety of restrictions on our decision 

variables such as technical limitations, administrative policies, or other constraints. Because all 

input parameters A, b, cT are assumed to be either fixed or known with certainty, LP and ILP are 

often classified as the “deterministic” approach [KaW94][BiL97],

Dantzig [Dan55] was probably the first to demonstrate a way of incorporating uncertainty 

into a two-stage linear program. This two-stage modeling framework later became known as 

stochastic programming with recourse [KaW94], Unlike the traditional LP approach that 

optimizes resources at a single point in time, stochastic programming (SP) provides a more 

sophisticated framework to incorporate uncertainty into the planning process and allows a planner 

to deal with a situation where some of the input parameters, or essentially “the uncertainties,” are 

characterized by probability distributions or a set of scenarios. The basic concept of SP modeling 

can be explained as a two-stage decision problem, where the first stage of the model determines 

the actions to be taken now and the second stage allows a corrective or “recourse” action to be 

taken after the uncertainty is realized. The general form of SP can be explained as follows.

Stage 1: Minimize CTX + E wQ (x ,  w)

Subject to Ax =  b 

x > 0

Stage 2: where Q (x , w )  = Minimize d ^ y

Subject to Bwx  +  Cwy  = ew 

y >  0
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Here Ew is the expectation, and w denotes a scenario of all possible outcomes w  e  Q. The 

variables x  are called the first-stage variables since they must be decided before the actual 

outcome w is observed. The variables y  are the second-stage (or recourse) variables that are 

determined based on knowledge of the actual outcome w  and the first-stage decisions x. When a 

discrete probability distributionp(w) (where £  p(w) = 1) is available for the discrete variables, 

i.e.,

EWQ(X>w) = X  P(W)Q(X>W)
we£l

we can formulate a large-scale LP representing a deterministic equivalent problem of the two- 

stage problem:

Deterministic Equivalence: Minimize CTX + ^  P ( w )d „ y w
weQ.

Subject to Ax =  b

B x + C v —e Vwe Qw w s  w w v rr

Note that unlike the basic LP model, the objective here is no longer a single one but an 

optimal decision x  that minimizes the sum o f first-stage costs and expected second-stage costs. 

The above constraint sets comprise a deterministic portion (i.e., the first constraint) and a portion 

with stochastic parameters (i.e., the second constraint).

In the context of transport network planning, the uncertainty of demands is often 

represented by a set of demand scenarios w e  Q. In the first stage, a decision x  is selected which 

minimizes the network costs under constraints imposed by the network structure and the 

probability of meeting demand. Once the allocation of available capacity x  is found and a 

demand outcome ew is realized, the second-stage decisions y w can be interpreted as the extra cost 

to satisfy the expected demand scenario w.

Once the SP problem is transformed into a large-scale linear program, existing LP 

optimization software and decomposition techniques, such as Benders decomposition and 

Lagrangian Relaxation, might be used to solve these kinds of problems. However, in cases where 

the problem size (e.g., the size of scenarios) becomes large, the deterministic equivalence of SP 

problem can become enormous. For these cases, sampling methods, such as stochastic quasi

gradient method, importance sampling and stochastic decomposition, might be used to reduce the 

complexity of the problems and to make them computationally tractable. Finding ways to break 

large problems down to manageable sub-problems -  thereby reducing the computation time — has
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always been an active topic in the operations research (OR) community [DaW60][SwM79] 

[AHK80] [BM084] [HiS91] [Ran92][KaW94] [MuR95] [BiL97] [MaS98] [SAG05], We do not 

directly address the computing issue in this thesis, but instead focus on the modeling aspect 

specifically for the capacity planning problem of survivable mesh networks.

A well-known alternative to stochastic programming is Robust Optimization (RO). Like 

SP, RO explicitly incorporates uncertainty into the modeling framework and has been used to 

solve problems relating to financial asset allocation and electric power capacity planning 

[PKR91][MaZ94][Mul96][Mul96][BCM97]. Unlike SP, RO allows modelers to address risk 

aversion directly by using some kind of utility function U(.) which can be non-linear or 

piecewise-linear. The critical difference betwen SP and RO is their objective functions, where SP 

models only the first moment of the distribution of the objective value y(w) while RO 

characterizes higher moments and the decision maker’s attitude toward risk:

S.P.: Min J ]  p ( w ) y ( w )  R.O.: Min J ]  p ( w ) U ( .y O ))

If we compare these objectives in the context of capacity planning, SP would minimize the 

number of unserved demands, while the RO approach might suggest minimizing the impact 

caused by the unserved demands. Less apparent difference is the notion of recourse: the solution 

of SP would explicitly tell us that we need Y units of capacity to augment the initial decision X  

when demand scenario D  arises, but for RO, solely minimum-penalty (also termed “regret” in 

[KOL03]) capacity design is found. The sense of “correcting” or “augmenting” the initial design 

through future decisions is not modeled in RO.

For problems where it is not possible or straightforward to alter (e.g., adding or removing 

capacity from) the current outcome after it is decided, RO does offer more flexible ways to 

describe the penalty (due to uncertainty) than SP. Thus, depending on whether the present 

decisions can be corrected and how we measure the impact of future consequences, both SP and 

RO have their merits in each inherent framework to deal with uncertainty. Mulvey et al. provide 

some motivational examples where RO is preferred over SP [Mul96][MVZ95][BCM97].

The use of SP and RO to deal with uncertainty is well recognized. They have been applied 

to solve problems in the electric utility [SSM84][PKR91][MaZ94][GaR99][MaS98], 

semiconductor [HBB03], finance [Mul96][Dup02] and logistic industries [SeG80][SAG05]. Yet 

the application of these approaches to the capacity design of transport network in face of 

uncertainty has been minimal. What follows are some related prior works on the capacity design 

problem that consider demand uncertainty, and with a limited work that take network 

survivability into account.
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Ouvevsi et al.

In [OuT95][OSW98], Ouveysi et al. propose a LP formulation to design a network to 

support a given multi-hour traffic profile. The traffic profile, modeled by a set of traffic matrices 

or scenarios, represents the usage patterns over several time periods of a day. The objective of 

the multi-hour network dimensioning problem is to minimize the total capacity cost while the 

capacity set satisfies all demand matrices, at any time during the day. Note that this is a related 

problem and the problem of demand forecast uncertainty. The multi-hour model typically 

considers capacity design that serves all demand matrices, whereas the capacity design with 

uncertainty might not (and should not) satisfy all demand forecasts. Otherwise, the solution 

would become a “fat solution” [KaW94], that serves all possibilities and is the most expensive. 

Other approaches to multi-hour network design problems can be found in 

[Dut94][Med95][MeT98][PiM04], and none of these studies consider the aspect of network 

survivability.

Sen et al.

In [SDC94], Sen et al. formulate a two-stage SP for the capacity allocation design of 

private line services network with random demand [SDC94], Given a total capacity budget, 

network topology and the random demand, which is characterized by a set of point-to-point 

demand matrices, the objective of the SP is to determine a capacity allocation plan such that the 

expected number of unserved requests (with equal priority) is minimized. Mathematically, in the

standard form of the SP structure, only ^  P ( w )d]vy w is considered in the objective function.

Because the number of demand scenarios considered is large or might be considered as Level III 

uncertainty (e.g., 582 involving approximately 82 OD pairs with each pair having 5-10 possible 

outcomes), a sampling-based algorithm called stochastic decomposition [HiS91] is chosen to 

solve this large-scale linear program. Although this study uses the SP as the fundamental 

framework to deal with demand uncertainty, the solution of this problem does not actually 

provide any recourse or corrective actions to be taken when the uncertainty unfolds. In other 

words, although we know how many demand requests are unserved for a given demand scenario, 

we have no idea of what corrective actions should be made to the current capacity plan. Another 

observation of [SDC94] is that this study addresses a capacity allocation problem with a known 

total budget, in contrast to the capacity sizing or dimensioning problem that we will consider later 

in Chapter 6. Other network planning problems using SP can be found in [Gai95][LOV99] 

[RiA02], These studies put great emphasis on how to solve the SP problem efficiently from an
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algorithmic perspective (e.g., [RiA02] suggests the use o f L-shaped solution procedure while 

[LOV99] describes the advantages of using the Analytic Center Cutting Plane Method), but less 

weight on what variables should be modeled from a capacity design standpoint. Network 

survivability has not been considered in any o f these studies.

Kennington et al.

Closely related to capacity planning with demand uncertainty and network survivability, 

Kennington et al. is probably the only group that proposes optimization models for explicitly 

capturing uncertainty and survivability in a capacity design problem.

In [KLO01][KOL03], Kennington et al. adopt Mulvey’s idea o f RO [MVZ95] and 

formulate integer linear programs for solving routing and provisioning problems over DWDM 

networks with uncertain demands. Given a fixed budget, a network topology, a few sets of 

demand scenarios, their model is to determine the “least regret” design that also minimizes total 

equipment used to support the demands. By “regret,” the authors refer to the expected penalty 

caused by the mismatches between the infrastructure created and the actual demand for services. 

For example, if  X  number of unexpected demand pairs cannot be served, it might imply a penalty 

or regret value of Y. This regret-mismatch relation is a key input to the RO model. A two-phase 

procedure is proposed to find the min-regret design. In the first phase, an ILP is used to 

determine a design that gives the minimum regret. At this stage, an overall budget is given and 

the design does not necessarily have the minimal cost. Once the optimal regret target is obtained 

and set as a fixed parameter, a second phase ILP is then used to determine the minimum cost 

design subject to this fixed regret value. This procedure ensures that no other design can achieve 

this min-regret value with lower cost, and alternatively, any lower cost design must have higher 

regret.

As will be seen from our formulations in Chapter 6, Kennington et al.’s approach to 

demand uncertainty is different from ours in several significant ways. First, the objective of their 

ILP formulation is to minimize regret, whereas in our SP approach, the goal is to minimize the 

overall design cost (i.e., the cost of initial design construction and the expected cost o f possible 

augmentations or “recourse” actions required in the future, adapting the network to accommodate 

various actual future demands). Thus a min-regret solution can still lead to a highly expensive 

design, as reported in [KLO01][KOL03]. In addition, the RO model does not consider corrective 

actions to cope with the future but to solely find a one-time solution that gives the minimum 

regret from the undesirable outcomes.
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The regret-versus-demand mismatch function is relatively difficult to obtain in practice 

(i.e., how should one quantify the demand pair-specific penalty cost Y  o f not serving X  units of 

demands?). In contrast to our approach, the notion of a capacity link-related corrective cost has a 

more explicit and direct meaning (e.g., the corrective cost of adding X  channels next year on span 

A-B is Y  times the current cost).

Recent work by Birkan and Kennington et al. [BKO03] combines demand uncertainty and 

network survivability into a single optimization model. Building upon the same two-phase robust 

optimization framework, Birkan and Kennington extend it to include network survivability aspect 

with protection schemes, including 1+1 dedicated protection, shared backup path protection, and 

/7-cycles protection. They demonstrate that integer programming modeling techniques and 

optimization software can be used to solve difficult, real-world DWDM design problems, despite 

the fact that many designers have been reluctant to use optimization because of its reputation of 

having excessively long run times.

As we discussed earlier, while both the SP and RO approaches provide the mathematical 

framework for incorporating uncertainty into the decision modeling, we believe that a minimum- 

cost, recourse-based SP approach is capable of reflecting the capacity planning problem more 

realistically and precisely from a network operator or planner’s standpoint. Operators would 

generally prefer a minimum cost solution (especially for a greenfield design, where initial design 

cost is required upfront.) In face of demand uncertainty, it is also beneficial to know where and 

how much link capacity to augment in order to serve the growing number o f customers.

Multi-period Optimization

Another area of survivable network planning strategy is called Multi-period Planning. It 

considers incremental capacity and/or topology expansions over a period of years. In most of 

these studies, the demand forecast for each period is assumed to be known with certainty. By 

taking the entire time evolution of known traffic demand and the cost data into account, the multi

period planning approach can provide more comprehensive and cost-effective solutions than 

solving a series of single-period problems. Multi-period models can be used to address capacity 

expansion decisions over a period of time (e.g., up to 10 years) while addressing issues such as 

discounting and capacity deferral. A typical objective is to minimize the present worth of the 

total network cost along a given planning horizon.

Nevertheless, in the presence of uncertainty, the argument that multi-period planning is 

superior to sequential single-period planning might no longer hold true since the multi-period 

planning technique is as dependent on assumed perfect future forecasts as other traditional single-
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period methods. In fact, the effect of demand uncertainty can only increase as the length of the 

planning horizon increases, and that somewhat defeats the purpose of using any kind of multi

period optimization models under a long planning horizon. For these reasons, although our SP 

capacity planning framework can be extended and formulated into a multi-period planning 

problem, in this thesis we do not consider this approach to address which period transmission 

capacity should be installed. The questions of which period (or when if we consider a continuous 

timeline) should be considered with other strategic factors (e.g., the ones mentioned in Section 

2.4) that might not even be quantified by mathematical models. For general survey and 

discussion on the multi-period capacity expansion problems, readers can refer to 

[Yag73][Zad74][Lus82][Che88] [DuL92][ChG95][PiM04]. For specific studies that also 

consider network survivability, please see [WCB91][PiD99][GAD01a][PiM04].

4.3.3 Descriptive Approach to Capacity Planning under Demand Uncertainty

What we present next offers a more “descriptive” or responsive view of handling 

uncertainty. Instead of explicitly incorporating the defined uncertainty into the mathematical 

model and trying to find an optimal design, the goal of the descriptive approach is to evaluate the 

effect due to such uncertainty and to possibly identify a single or several robust designs. As a 

complementary approach to prescriptive methods (e.g., SP and RO), descriptive approaches 

provide a different philosophical and strategic treatment to cope with demand uncertainty and 

make the overall study more complete.

The RO and SP approaches to the capacity planning problem discussed previously are all 

“prescriptive” in nature, i.e., these approaches lead to well-structured problems with unique 

objectives, data requirements, plus technical and physical constraints. In the context of capacity 

planning for survivable networks, solutions from these approaches provide us with clear 

directions on the location and quantity of the capacity placement, as well as working and 

restoration routing details. One might notice that such complete prescriptions o f these models, 

however, come at a price and impose computational limitations. As the dimension of the demand 

uncertainty increases, so too does the size and complexity of the optimization problem. Solving a 

capacity design problem with thousands or more demand scenarios, for example, would require 

rigorous decomposition procedures and parallel computing power to make the problem 

manageable. The key to using these prescriptive approaches is to identify and to strike a balance 

among exhaustive descriptions and computational tractability. Another point to remember 

concerning these prescriptive techniques is that the robustness of the optimal solutions is still 

highly dependent on the scope or the defined set of uncertainty in the problem. These
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mathematically rigorous techniques enjoy the precision and comprehensiveness of modeling 

frameworks; paradoxically, such frameworks have their own limitations on the degree of 

uncertainty that can be modeled.

In contrast to the prescriptive methods, “descriptive” or “evaluative” [CHS98] methods 

such as simulation can provide a “softer,” more flexible approach to analyzing the capacity 

planning problem under uncertainty [Ku95]. Unlike optimization techniques, simulation is driven 

by a different set of goals; it is not to find the optimal solution but to run many exploratory 

experiments with randomly generated values until some statistical patterns can be obtained. 

Scenario analysis, sensitivity analysis, and Monte Carlo simulation are some examples of 

descriptive tools. Generally, simulation is considered a complementary tool to optimization, 

when the model or nature of uncertainty becomes too complex to be analyzed or captured in a 

single analytical model (e.g., combined uncertainties due to cost and demand, or uncertainty due 

to network topology changes.) Unlike optimization, the routing algorithms used in simulation are 

usually straightforward and require fewer computational resources. Because of the relaxation of 

the problem, simulation usually can only produce non-optimized, non-minimum cost capacity 

designs. Nevertheless, simulation does suggest a valuable means for comparing given designs in 

terms of their robustness to cope with uncertainty and to identify non-rohust ones, as we will see 

in Chapter 5. In the following, we will review some representative studies that use simulation to 

tackle the capacity design problem considering both demand uncertainty and network 

survivability aspects. For those that do not consider network survivability, the reader can refer to 

[CHS98] [Mau02a] [Mau02b].

Geary et al.

To evaluate the robustness of optical network designs under uncertainty, Geary et al. first 

quantify demand forecast uncertainty or forecast error in terms of volume and distribution 

[GADlb][GAM03][Gea03], The former corresponds to the total traffic growth in time, while the 

latter refers to the distribution changes in a demand matrix. To quantify the distribution pattern 

errors, the authors introduce a metric called Distribution Forecast Accuracy (DFA), which is 

determined by taking a linear correlation between the actual and the expected demand matrices. 

Thus, if the two matrices are identical, we would have a DFA of 1. As the actual matrix departs 

from the expected, the value o f DFA decreases from 1 to -1 . An in-depth discussion o f Geary’s 

DFA measure and some examples will be presented in Section 5.3.

In [GAD lb], Geary et al. explain the procedures to assess the robustness of a given 

capacity-protected design. In step one, a minimum-cost capacity design is created, in relation to
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an estimated or nominal demand forecast. In the second step, random variations of demand 

forecast or a set of actual demand patterns is generated, and each demand pattern is associated 

with a total demand volume (i.e., the sum of point-to-point demand entries) and a DFA measure. 

Finally in step three, a heuristic-based routing algorithm is used to route each demand pattern 

over the already-dimensioned network, and to record the number of demands that could not be 

routed.

To assess the impact of DFA on the robustness o f a given network, the actual matrices are 

grouped into three DFA bands (i.e., 0.95 < DFA < 0.98; 0.75 < DFA < 0.85; 0.65 < DFA < 0.75) 

and the probability of unrouted demands is measured for each one. The results have shown that 

when we have the actual matrices whose total volume is close to the expected one, the number of 

unrouted traffic varies significantly with their DFA values. The same 3-step procedure is 

repeated to test the robustness of the original test network and the one with two added spans. As 

might be expected, the better routing performance favors the network with a higher connectivity. 

[GAM03] is a similar to [GADOla], except that the recourse cost (i.e., the extra investment cost 

required to carry the unrouted demands) is used as a measure of robustness, and both studies only 

consider 1+1 path protection, where the minimum-cycle algorithm is used to find the primary and 

backup paths.

Readers should note that none of these simulation-based studies has addressed uncertainty 

as explicitly as the prescriptive SP or RO approach, nor are they meant to. Demand uncertainty is 

only considered after the initial network is designed. In contrast, SP and RO approaches 

explicitly incorporate demand uncertainty, recourse costs, and penalty factors into the 

optimization models. These factors influence the initial design and specifically the amount of 

“future-proof’ capacity to be allocated in the first place.

Verbrugge et al.

Verbrugge et al. have shown the advantage of using probability theory for handling the 

demand uncertainty in a capacity planning problem. In this approach, each demand entry in a 

matrix is represented as a random variable with an associated probability distribution. With a 

sufficient number of demand samples and a known confidence level, a probabilistic approximated 

value of the network capacity can be determined.

In [VHT02], the probabilistic model is compared with a model based on possibility theory, 

a theory of uncertainty closely related to fuzzy set theory. Under the assumption that demand 

values have a Gaussian distribution, the results have shown that the probabilistic approach is able 

to come up with a more cost-effective capacity plan than the possibility approach. The capacity
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requirements between 1:1 dedicated path protection and shared backup path protection (SBPP) of 

each approach are evaluated on a 27-node, 40-span network. The results show that the total (i.e., 

working and spare) capacity requirement o f a SBPP design is about 25% less than that from a 1:1 

dedicated path protected design13.

In a similar study [VCP03], Verbrugge et al. contrast the same probability model with a 

posteriori adjustment and a priori adjustment approaches (commonly known as the “safety 

margin” approaches to uncertainty). A posteriori adjustment simply adds a safety margin to a 

deterministic result, while a priori adjustment adds a safety margin to the demand input prior to 

the capacity calculation. Based on the same network topology used in [VHT02] and the Gaussian 

distributed demands, the results have shown that it is difficult to come up with an appropriate 

value for the safety margin for both a posteriori and a priori approaches, which are widely used in 

practice today. A wrong choice of this safety value can easily lead to over-capacitated network 

designs. For the case of survivable designs, the over-dimensioning effect was even worse.

Unlike Geary’s studies [GADlb][GAM03] discussed earlier, Verbrugge et al. have 

suggested ways to incorporate uncertain demand parameters in a capacity design. These 

simulation-based approaches are different from the RO or SP modeling framework where they 

might not be used to generate optimized, minimum-cost capacity plans. Table 4.2 summarizes 

related studies on the capacity planning problem under demand uncertainty. Each study is 

associated with the technique used, survivability consideration and the way demand uncertainty is 

defined. Based on the literature, Geary’s [GAD01b][GAM03] are the most relevant to our work 

in Chapter 5, but we use ILP approaches to compare the robustness of span-restorable and SBPP 

networks. The robust optimization models by Kennington et al. [KL001][KOL03][BK003] are 

comparable to our stochastic programming models in Chapter 6, and we have already explained 

the differences of the two approaches.

13 Note that since only the shortest path routing algorithm is used to find both primary path and the 

corresponding backup path [VHT02], none of these designs is optimal. The network redundancy and spare 

capacity requirement were not reported in the publication.
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Tabic 4.2. Summary of prior work on capacity planning under demand uncertainty.
Authors Modeling Technique Survivability

Considered
Uncertain Demand Forecast 
Characterization

Reference

Ouveysi and Tham Proposed LP, solved by heuristic No Multi-hour profile, Scenario-based TOuT951
Ouveysi et al. ILP No Multi-hour profile, Scenario-based rOSW981
Dutta IP with decomposition techniques No Multi-hour profile. Scenario-based TDut941
Medhi and Tipper ILP with decomposition techniques No Multi-hour profile, Scenario-based |McT981
Sen et al. SP with decomposition techniques No Statistical-based rSDC941
Gaivoronski SP with decomposition techniques No Statistical-based TGai951
Lisser et al. SP with decomposition techniques No Statistical-based ILOV991
Riis and Andersen SP with decomposition techniques No Statistical-based fRiA021
Kennington et al. RO No Scenario-based [KLOOl]

TKOL031
Birkan et al. RO Yes, SBPP, 1+1 path 

protection, ^-cycles
Scenario-based [BKO03]

Wu et al. Heuristic Yes, ring and point-to- 
point systems

Multi-period scenarios, demand 
uncertainty not considered

[WCB91]

Pickavet and 
Demeester

Proposed IP, solved by heuristic Yes, 1+1 path protection Multi-period scenarios, demand 
uncertainty not considered

[PiD99]

Geary et al. Heuristic Yes, 1+1 path protection Multi-period scenarios, demand 
uncertainty not considered

[GADOla]

Carpenter et al. Simulation No Statistical-based TCHS981
Mauz Simulation No Statistical-based [Mau02a]

[Mau02bl
Geary et al. Simulation Yes, 1+1 path protection Statistical-based, but uncertainty is 

not considered in the design
[GADOlb]
TGAM031

Verbrugge et al. Simulation and by safety factors Yes, 1:1 path protection 
and SBPP

Statistical-based [VHT02]
[VCP031

00



4.4 Capacity Management Strategies of Mesh-based Survivable Transport 

Network to Cope with Demand Uncertainty

In this section, we will now shift the focus from capacity planning to an operation-related 

problem for dealing with uncertainty. First, let us point out some key distinctions between the 

planning and operational problems. Recall from our earlier discussions in Sections 4.3 and 2.4.2 

that the link capacities in MTP capacity planning problems are typically variables, and the goal is 

to determine a minimum-cost capacity placement strategy subject to a demand forecast. In 

contrast, the link capacities (or capacity inventory) in the operational context are usually known 

or given as parameters, and these problems are also o f operational or business support relevance. 

For example, with an arbitrary set of demands, how should a service provider determine and 

select an optimal demand subset that would lead to a maximum profit (i.e., service revenue minus 

the cost of provisioning)? Given a poorly utilized network, how should a network operator re

configure existing demands and their corresponding routes in order to improve the network’s 

potential to carry future traffic? These problems, also generally referred as capacitated problems 

[PiM04], will be addressed in Chapters 7 and 8.

The first question relates to the class of demand loading problems. These problems 

involve the selection of a subset of demands that give the maximal profit (or revenue if 

provisioning cost is not considered), as well as the respective routing and protection within a 

mesh network that has a finite capacity. Insights from the demand loading problems can be 

useful for operators to design admission control systems or for business planners to reveal 

strategies for service pricing and promotions. The second question belongs to the more general 

issue of reconfiguration or re-optimization. Reconfiguration considers the various aspects of 

transforming a current logical (or virtual) topology to a new one with better capacity utilization, 

subject to the capacity resource constraint and the constraint that limits the degree of route 

changes from existing connections. Combined with a single-vendor network management or the 

so-called multi-vendor “back office” [Lev03][0ke04] inventory management support systems, an 

effective reconfiguration strategy can provide the direction and alleviate the “stranded” capacities 

on the network, and possibly defer the capital expenses to support demand growth.

In the face of a completely uncharacterized demand profile, both demand loading and re

optimization strategies encourage one to make the best use of existing capacity assets. A well- 

designed demand loading strategy can provide valuable operations support for service providers 

to ensure maximal profit under any demand circumstances. Likewise, a capacity re-optimization 

strategy suggests a means to better utilize existing assets and defer unnecessary additional
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capacity investment to support incremental demand growth. In the next two sections, we will 

survey and analyze some of the prior work that is related to the problems of demand loading and 

reconfiguration. In particular, we pay careful attention to those that also consider the network 

survivability aspect.

4.4.1 Related Work on the Demand Loading Problem

Before we analyze the literature on demand loading, it would be helpful to first describe 

the various dimensions of the problem, namely demand modeling, revenue and cost modeling and 

optimization criteria, so that we could identify essences and differentiate it from previous work. 

Demand modeling relates to the types of parameters used to describe a demand or the attributes of 

a transport service. For example, a wavelength or private line service is, at minimum, associated 

with its origin node, destination node, service distance, bandwidth requests, service duration and 

the level of protection14 [CoW03][CCF98][Dri04], The revenue of the service, from a service 

provider standpoint, is closely related to these parameters, plus some other so-called 

“nonrecurring” charges, which are one-time charges that apply to specific operational activities 

(i.e., installation of new service, moves and rearrangements of installed services, administrative 

charge, design and central office connection charge and customer connection charge) [Dri04], 

Setting up these services also comes at a cost or the cost o f provisioning, which basically consists 

of fixed components (e.g., administrative charge per order), distance-related components (e.g., 

total channel mileage required for unprotected or protected services) and quantity-related portion 

(e.g., optical amplifiers required per location, regenerators required per circuit).

In addition, existing work on demand loading differ with respect to the optimization 

objectives and constraints considered in the models. Lee et al. [LMS89] propose an integer linear 

program formulation whose objective is to minimize the total costs of routing a given set of 

demands onto a capacitated network. Since the cost is associated with each working path, this 

formulation tends to load demands with the higher costs and leaves lower costs demand unserved. 

Lee et al. also extend this model into a multi-period formulation where the incremental demand 

matrix for each time period is also given. In other closely related set of literature on static routing 

and wavelength assignment (RWA) problems, the objective is typically to maximize the number 

of connections to be established within given capacitated networks [RaS95][ZJM00], to minimize 

the number o f blocked wavelengths from a fixed set of demands [CGK92], or to minimize the 

number of wavelengths used under some wavelengths and optical hardware constraints

14 Later we refer to it as the Quality of Protection (QoP).
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[BaM96][BaB97], But none of these studies has considered network survivability, the demand 

revenue and cost modeling altogether as described above. Our study in Chapter 7 is 

comprehensive and unique from this modeling perspective. The studies covered below are some 

exceptions to the literature that selectively consider the aspects o f revenue, cost and network 

survivability models.

Anand et al.

Anand et al. [AKQOOa] propose an ILP and heuristic that solve the routing and wavelength 

assignment problem, with an objective of maximizing profit. In this study, the revenues (defined 

per each connection) and the costs (defined per each link) are assumed to be normally distributed, 

and do not relate to service distances and topological span distances in any way. In terms of 

demand modeling, only unprotected services are considered.

Anand et al. show that while the prominent minimum-cost RWA models can indirectly 

lead to some demand loading and demand selection solutions, the max-profit approach can 

explicitly indicate which subset of profitable demands to be served. The authors extend this study 

to consider incremental traffic in [AKQOOb], where the connection requests come in one-by-one 

and, once a connection is setup, it stays in the network for a long period of time. Protected 

services were not considered in this study.

Kabranov et al.

Similar to [AKQOOa], Kabranov et al. propose an ILP for solving a problem with a max- 

profit objective [KMC01], But this work differs in that the ILP is formulated in such a way that it 

can only be used as a simulation tool, rather than a demand selection decision support tool.

Given a set o f demands and its associated revenue, the objective is to maximize the profit, i.e., 

revenue minus the cost o f serving all demands, and satisfy the demand routing and capacity 

constraints. In other words, if the set of demands exceeds the available capacity, the formulation 

would become infeasible. Consequently, the authors tested the ILP against different demand 

scenarios and analyzed the revenue generated and cost associated with each feasible and 

infeasible demand set.

A unique aspect o f this study is how service revenue is modeled based on the concept of 

“demand elasticity.” In economics, elasticity, E, is a measure of the responsiveness of demand 

(or supply) to changes in price, p. Specifically, it is calculated as the percentage change in 

demand quantity, d, in response to a percentage change in price [Oxf02], or E  = - (Ad/d) / (Apip). 

For example, if  a fall in the price of a transport service by 10% would cause an increase in service
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demand by 20%, we would have an elasticity value of 2, or -2  to be mathematically precise. For 

a constant elasticity value, we can relate the demand quality d, pricing of the service p, and

potential [KMC01][CoW03].

From this general function, assuming the elasticity is identical for all demand pairs ieK, 

we can derive a formula for the total revenue, R, and incorporate this into the objective function

Note that in solving the ILP model, all E, A and d-, are known parameters. The unknown of 

this model is to determine how each demand is routed over the network, under the condition that 

the capacity must be sufficient to accommodate all demands.

Although this study does not consider the demand selection aspect, the max-profit 

optimization model has led to some interesting conclusions. First, compared to using the shortest 

path algorithm to route the demands, the proposed method suggests more effective routing 

solutions with higher profit. Second, the profit from operating a network is not necessarily 

proportional to the number of demands served. In a subsequent study [KaM02], the authors show 

that from elasticity E  = 1.0 to E=  2.0, the formulation leads to very different RWA solutions. 

Network operation under high elasticity values tends to serve all possible demands and remain 

profitable, whereas in the case of low elasticity values, only a small set of the demand scenarios is 

profitable.

Sridharan and Somani

Sridharan and Somani [SrSOO] are probably the first researchers that consider protected, 

best-effort and unprotected services in a max-revenue demand loading problem. The shared 

backup path protection (SBPP) is assumed for the protected demands, and each is guaranteed 

with a primary and backup path. For the best-effort services, each demand might be assigned a 

backup path only if  capacity resources are available.

Given the network topology, a demand matrix of multi-class services and a set of “already 

existing” connections, the authors propose an ILP to find a subset of demands that maximize the

elasticity £  by a general function d  = A*p'E, where the constant A is known as the demand

of the ILP:
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revenue15, which consists of three terms. The first and second terms denote the revenue generated 

from primary paths and backup paths, respectively; the last term denotes a penalty term for 

disrupting the currently working connections. We should point out that the revenue modeling in 

this ILP is rather simple since all primary paths (or all backup paths) are assumed to have the 

same revenue. The cost modeling or the cost of utilizing capacity is not included in this study. 

Because of the complexity of the SBPP formulation, a three-stage decomposition approach was 

implemented to solve a 14-node, 21-span network example and to find a feasible solution. The 

results show the potential gain in revenue, by serving additional best-effort demands after the 

fully protected and unprotected services have been served. Note that our study in Chapter 7 

differs from all we discussed thus far in the sense that the multi-QoP demand service framework 

considered in our modeling framework covers a more complete service mix (i.e., protected, 

unprotected and preemptible services) with more realistic revenue and cost modeling details (e.g., 

revenue and cost of services are distance- and class-dependent). As will be seen later, our 

demand loading model is highly applicable to an environment even if demand, revenue and cost 

are uncertain, yet we are able to provide the optimal demand selections that maximize potential 

profit.

4.4.2 Related Work on Re-configuration and Re-optimization Problems

In this final review section, we will discuss the literature related to the problems of 

reconfiguration and re-optimization. As in the previous sections, the intent here is to identify and 

classify the dimensions of the problem so that they become a basis of comparison to our work in 

Chapter 8. Let us first group the existing works by the problem inputs and objectives:

Type A: Given a current and a targeted logical topology, the objective is to determine the 

proper procedures of migrating from one topology to another, so that the disruptive effects 

due to the reconfiguration process can be minimized.

[LHA94][BaR99][IAM03] are examples that consider the transition phase from 

transforming a current logical topology A to a new one A ’. In the context of lightwave network 

[LHA94], Labourdette et al. indicate that simultaneously retuning all transmitters and/or receivers 

involved in the logical topology is not always possible (e.g., limited by the speed at which a laser

15 While the authors refer the objective criterion as revenue, it might be more appropriate to think of it as 

net revenue, i.e., total revenue from services minus the service disruption cost.
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or a receiver cannot be re-tuned to a new wavelength within a short period of time). Therefore, to 

reduce potential performance degradation (such as packet delay, packet loss and packet de

sequencing), the transition from topology A to A ’ must be carefully orchestrated and managed so 

to minimize disruption. Labourdette et al. propose an operation, called branch-exchange, that 

ensures only two links can be changed during a single operation. Three different algorithms are 

also suggested for searching the sequence of branch-exchange operations that lead to the minimal 

reconfiguration time.

In [LAM03], Ishida et al. propose five procedures (i.e., switch, append, backup, release and 

delete operations) to reconfigure logical topologies in SBPP-based WDM mesh networks. The 

idea of this study is to allow the use of backup lightpaths to accommodate traffic and to minimize 

the number of delete operations (also referred as the number of traffic loss occurrences) during 

the reconfiguration process. Note that the demand matrix is typically not part of the Type A 

problem, and the targeted topology A ' is also known as an input parameter.

Type B: Given a current topology and a targeted demand profile, the objective is to 

determine an optimal topology that serves the demand while minimizing the changes required 

to obtain the new topology from the current one.

[BaM97][RaR00] describe problems of this kind as optimization problems. Given a 

targeted demand matrix, Baneq'ee and Mukheijee [BaM97] propose a 2-step procedure that first 

finds a min-cost16 logical configuration and then tries to minimize the number of reconfiguration 

steps involved. To help explain this procedure, let us denote the old and new topologies as A and 

A ’, original and new demand matrices as D  and D  ’, and the objective value of a min-cost problem 

on the two matrices as P  and P  In step 1, two separate min-cost capacity planning problems are 

solved, based on D  and D  ’, resulting in objective values P  and P ’. In step 2, instead of solving a 

min-cost capacity planning problem, a new optimization model is used. The new objective is to 

minimize the number logical connection changes (i.e., lightpaths that are added or removed) from 

A to A ’, and the objective value P ’ (from solving D *) is fixed and used as a constraint to this 

problem.

Ramamurthy and Ramakrishnan [RaROO] modify the approach from [BaM97] and 

introduce two metrics to quantify the ‘changes’ in reconfiguration, referred as the number of

16 In [BaM97], minimizing cost refers to minimizing the average hop distance in the network. One can also 

interpret this as the average hop-weighted capacity required to accommodate the target demands.
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reconfiguration steps (Av) and disruption (Ap). The former is the same as the one used in 

[BaM97]. It indicates the number of lightpaths that would have to be removed or new lightpaths 

that have to be added to establish the new topology. Ap measures the change in routing of 

existing lightpaths. In practice, it is also this route changing aspect of reconfiguration that is 

relatively difficult to realize (compared to adding or dropping a lightpath along the same route.) 

Four different objective functions are considered (including the one minimizing the average 

number of hops [BaM97]), and two new constraints on (Av) and {Ap) are added to the formulation 

by [BaM97], Basically, these constraints explicitly specify the upper bound values of how many 

reconfiguration steps and how much disruption is allowed during the reconfiguration process. 

These constraints would allow traffic engineers to directly control the amount o f change due to 

reconfiguration and to evaluate the trade-off between the reconfiguration penalty Av (or Ap) and 

benefits gained from better objective values.

Work by Bouillet et al. also falls into this problem type, except that the targeted demand 

remains unchanged throughout the entire re-optimization process and the objective is to reduce 

the capacity required to support the same demand set [BML02][BLR05], Shared backup path 

protected networks are considered in these studies and the authors propose two heuristic 

algorithms.to perform re-optimization. The first algorithm performs a complete re-route on both 

primary and backup paths, while the second considers re-routing the backup paths only for 

minimizing service interruption. In terms of cost saving (or the total distance-weighted channels 

required to support the demand set), simulation results have shown that the complete re

optimization could achieve a cost saving from 3% to 5%. Most of the improvement can be 

achieved by re-optimizing the spare capacities alone. In [BLR05], the authors extend the work of 

[BML02] by considering the scenarios of changing infrastructure, such as adding new spans in 

physical topology and new links to existing spans. Experimental results on real carrier’s 

networks have shown that more substantial cost savings from re-optimization can be achieved.

Type C: Only a current topology is given; the objective is to determine a new logical 

topology that enhances the network’s potential traffic carrying ability based on some 

statistical demand traffic assumptions. A single targeted demand matrix is not given and 

the logical topology is the unknown in this problem.

In contrast to the previous two problem types, reconfiguration problem of this type is more 

forward-looking. In this setting, the target demand scenario is not precisely defined, but rather

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



some statistically-characterized demand sets are used as the inputs to simulate the demand 

uncertainty and to evaluate the effectiveness of a given reconfiguration strategy.

Herschtal and Herzberg pose a reconfiguration problem in this context. In [HeH95], 

reconfiguration is defined as a strategy that “switches traffic between paths in order to put the 

network in a better state for acceptance of future demands.” Three LP-based reconfiguration 

models were proposed, and two principles were used to devise the objective functions. The first 

principle is to keep the overall network usage as low as possible by routing demands via short- 

distance paths; the second is to keep the minimum unused capacity over all spans as high as 

possible. Based on an 11-node, 23-span network tested under fairly loaded dynamic traffic 

scenarios17, all reconfiguration strategies have shown that about 1% to 3% improvement in 

blocking (calculated as the total bandwidth of all blocked demands divided by the total bandwidth 

of all offered demands) can be achieved. Results show that the exact improvement in blocking 

depends on how frequently the reconfiguration procedure is performed. Generally, the more 

frequently the reconfiguration is performed, the lower the blocking rate. A good, capacity-state 

aware routing algorithm used for dynamic traffic requests (with certain statistical arrival rate and 

holding times) also minimizes the blocking and reduces the number of global reconfigurations 

required during the life of network operation.

The study presented in Chapter 8 can be classified as a problem of this type. One major 

difference from [HeH95] is that we include the aspect of network survivability in our study. 

Motivated by the Bouillet et al.’s work [BML02], we see the needs and benefits of re

optimization as a strategy to relieve the accumulation of “stranded” capacities by rearranging 

existing working and spare capacities. But unlike [BML02], our model does not assume any 

expected or known traffic patterns and our objective is to determine a new logical topology that 

has a better readiness to adapt to different kinds of incremental traffic.

A final note before we leave this section is that other studies are also concerned with 

reconfiguration policies and address the question of when reconfiguration algorithms should be 

executed. Genpata and Mukheijee [GeM03], Golab and Boutaba [GoB04] provide 

comprehensive reviews to this type of problem, which we will not discuss in this thesis. Answers 

to the problems discussed, on what logical topology should be targeted, how to migrate from one 

topology to another, when and how often reconfiguration should be triggered, should suggest a 

comprehensive solution to improve the utilization and performance o f any given network.

17 Initial blocking percentages (i.e., benchmark case before reconfiguration) of 14% to 16% are assumed.
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4.5 Summary

This chapter reviewed the literature on four relevant problems: the capacity planning of 

mesh-based survivable networks, the same planning problem in the presence of demand 

uncertainty, the demand loading problem, and issues relating to reconfiguration and re

optimization. Previous work on these problems have motivated us to move the research on these 

topics forward. Classification of the literature helps us not just to find new mathematical methods 

to solve these problems, but more importantly, to identify what research problem should be 

solved in the first place. Identifying new problem dimensions and adopting new ways to solve 

the problems highlight the originality of this thesis.
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5 Evaluation of Inherent Robustness of Survivable

Transport Designs against Uncertainty in the Demand 

Forecast

5.1 Introduction

Chapter 5 is the first chapter of the final module, and it summarizes one of my initial 

studies conducted in 2002 [LeG02]. In this study, we developed two optimization models that 

can be used to evaluate the robustness of span-restorable (SR) and path-protected (SBPP) 

networks to withstand changes in the demand forecast.

As mentioned in the preface, this chapter (as well as the following three chapters) follows a 

results-oriented and common “problems-formulations-results” structure. We try not to repeat the 

motivation and background portions of the studies covered by the first two modules (e.g., we will 

not comment on the general routing behaviors of SR or SBPP, or discuss the basics of the arc- 

path formulation of the spare capacity placement problem), and the original publication.

Two new concepts are introduced in this chapter, namely, Pattern Forecast Accuracy 

(PFA) to characterize the distribution errors arising in demand forecasts, and the notion of 

Servability, a single measure that can be used to evaluate the inherent robustness of different 

survivability options to forecast variations. The SR servability formulation serves a basis for the 

demand loading formulation to be discussed in Chapter 7.

As SR and SBPP have been the two leading schemes in mesh-based survivable transport 

networking, simulation studies have been conducted on these two network types to compare their 

servability performances in the sense of how well they withstand departures of the actual demand 

pattern from the forecast demand to which they were designed. In over 90% of the 5000 test 

cases, we found that SR networks have the same or slightly better servability (with average about 

3%) than the SBPP designs.

5.2 Research Questions

In previous chapters, we have seen that a limitation of all optimization methods is that an 

optimal capacity design is only “optimal” with respect to an assumed demand forecast or a given 

set of demand scenarios. Recognizing the high probability that the actual demand pattern will be 

different from that predicted, network planners should be equipped with testing tools to evaluate 

the robustness, in terms of the sensitivity to changes in the demand forecast, of any given capacity
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designs o f different survivability architectures. This study attempts to address two specific 

questions in this regard:

(1) How can we mathematically characterize the error of an actual demand pattern 

relative to the forecast on which a design was based?

(2) Given the optimal SR or SBPP capacity design with an original demand forecast, 

how can we measure, and if possible compare, the robustness of these networks 

to forecast errors?

The next three sections explain a possible solution framework to address these questions. Section

5.3 is devoted to proposing a metric called Pattern Forecast Accuracy (PFA) for quantifying 

pattern errors in the demand forecast, and explaining its behavior relative to correlation-based 

measures first proposed by Geary et al. in [GADOlb]18. In Sections 5.4, we define the notion of 

servability and comment on its relevance to the measures o f routability and restorability. The key 

optimization formulations of measuring servability will be explained in Section 5.5, and the 

experimental results are offered in Section 5.6.

5.3 The Concept of Pattern Forecast Accuracy (PFA)

We now explain the metric called Pattern Forecast Accuracy (PFA) to quantify the degree 

to which an actual future demand pattern differs from that which was forecast. We refer to the 

forecast as the nominal demand matrix and the one that actually occurs as the actual demand 

matrix. A perfect forecast means that the actual and nominal demand patterns are identical. In 

addition, for better understanding of the impact of specific types of forecast changes, we choose 

to separate scalar errors in forecasting the total growth volume from the effects of errors in 

forecasting the pattern of the growth. It is the change in patterns, not a simple uniform overload 

on the whole network, that we try to analyze in terms of its impact on the capacity designs.

To isolate pattern error from the volume error, we assume that the nominal and actual 

demand matrices have the same volume, V. Any bulk scalar error is normalized to reveal only the 

structural difference in demand patterns or distributions. To measure this, we define the PFA of 

the actual matrix relative to the nominal as:

114 - 3 1
PFA = 1 -  -=—iss--------- —  (5.3.1)

[F-m in(c(.)]x2

18 Readers might refer to Section 4.3.3 for a complete review of [GADOlb].
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where D  is the set of (unidirectional) demand values on node pairs, d t is the demand quantity o f 

the r'-th pair in the nominal demand matrix, dt is the demand quantity of the z’-th pair in the actual 

demand matrix, V = ' ^ d i is the total volume of the nominal (and the actual) demand matrix, and
/ <=D

min{dt) is the minimum value of dj from the nominal demand matrix, including zero.

PFA is based on a certain notion o f the worst possible pattern of errors in a forecast and, 

then asks how much total pair-wise error the actual pattern embodies relative to this worst 

possible error pattern. Table 5.1 illustrates the concept with a nominal forecast and four actual 

demand matrices in rows. Each matrix is composed o f three bi-directional demand pairs and has 

a total volume of six demand units.

Table 5.1. An example to illustrate the concept of Pattern Forecast Accuracy (PFA).
Nominal demand matrix 

( Total volume, V= 6 )
OD pair 1 OD pair 2 OD pair 3 PFA

2 3 1
Actual matrix 1 2 3 1 1
Actual matrix 2 2 2 2 0.8
Actual matrix 3 1 2 3 0.6
Actual matrix 4 0 0 6 0

In the first actual matrix, every OD pair demand is identical to nominal, so the numerator 

of (5.3.1) is zero and the PFA is unity, representing the perfect forecast. At the other extreme, 

actual matrix 4, by construction, is the “least-similar” actual demand pattern of the same total 

volume. This worst-case forecast is conceptually the case where all the demand is on only one 

pair and every other demand pair thus experiences the most discrepancy (i.e., | di -  dt |) that it

could possibly generate under a common total volume. The only non-zero value is generating the 

maximum error. PFA reflects this as the least accurate forecast with a PFA value of zero19. Thus, 

PFA considers the ratio of total absolute error on demand quantities relative to that of the 

singular-value, least-match demand pattern. Since we consider the absolute total error, the 

corresponding factor o f two is needed in the denominator. Note that the basic definition of PFA 

treats all OD pairs equally; different topology-dependent impacts among OD pairs can also be 

simply reflected by attaching a parameter a: to the demand values dt in (5.3.1). For example,

weights can be assigned according to the distances o f the OD pair.

19 In the example, the numerator of (5.3.1) is |2-0|+|3-0|+|1-6| = 10 and in the denominator, we have 

[(2+3+1) - min (2,3,1)] x 2 = 10.
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Recall from Section 4.3.3 that Geary et al. introduced a correlation-based metric called the 

Distribution Forecast Accuracy (DFA) [GADOlb]. Using the following example, we show the 

difference between the two measures of pattern errors.

DFA, by Geary’s definition, is calculated based on the correlation coefficient between the 

actual (A) and forecast (F) demand matrices, or mathematically, DFA =  cov(F, A) /  a (F ) ‘cr(A) 

where covQ is the covariance function and cr() is the standard deviation. In Table 5.2, we have a 

nominal demand matrix and three actual demand patterns. Each is composed of 15 OD pairs and 

has a total volume of 20. We compute both the PFA and DFA values (or correlation coefficient) 

for each pattern.

Table 5.2. An example comparing the PFA and the correlation m etric introduced by Geary
et al.

N1 N2 N3 N4 N5 N6
N1 0 4 1 1 1
N2 - 2 0 2 0
N3 - - - 2 2 0
N4 - - - 1 1
N5 3
N6

Actual pattern 1

N1 N2 N3 N4 N5 N6
N1 _ 0 4 1 1 1
N2 - - 2 0 2 0
N3 - - - 2 1 1
N4 - - - - 1 1
N5 3
N6 -

Nominal cemand matrix from [GADOlb]

N1 N2 N3 N4 N5 N6
N1 _ 0 12 0 0 0
N2 - - 0 0 0 0
N3 - - - 0 0 0
N4 - - - - 0 0
N5 8
N6

Actual pattern 3

N1 N2 N3 N4 N5 N6
N1 _ 1 3 1 1 0
N2 - 2 0 2 0
N3 - - - 2 3 2
N4 - - - - 1 1
N5 - - - - - 1
N6 -

Actual pattern 2

Indicates a mis-forecast demand quantity

Method Actual 
pattern 1

Actual 
pattern 2

Actual 
pattern 3

PFA 0.95 0.80 0.35
Correlation (DFA) 0.95 0.61 0.81

In comparing the results of the first, second and third patterns with respect to the forecast, 

we see a PFA indicating a progressively worse pattern error, whereas DFA first drops to 0.61 on 

pattern 2 and then rises back to 0.81 on pattern 3. And yet, it seems apparent by the shaded area 

that actual matrix 3 is the most severe case of forecast error, and PFA is able to more strongly 

distinguish the pattern error. When the most individual values are mis-forecast, PFA shows the
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lowest value, whereas the DFA value actually rises in the example. This illustrates what we 

found in general while working with correlation measures, namely, that pure mathematical 

correlation can be rather at odds with a more intuitive notion of how far the actual matrix is from 

the forecast. Other minor differences are that PFA can be used to reflect OD pairs’ priority and is 

{0,1} bounded rather than {1,-1} bounded. Thus, we find PFA to be preferable to correlation 

measure for its more intuitive and direct responsiveness to the notion of pattern mismatch.

While it is appealing to analyze the mathematical differences between PFA, DFA, or any 

other possible measures, readers should note the underlying reason for defining such measures: 

there is a huge number o f ways in which an actual pattern can deviate from the nominal forecast. 

Therefore, we always need some form of compact measure that is representative for large groups 

of actual patterns that are different in detail, but equivalent in the range of forecast error they 

represent.

An interesting aside of PFA is that we have been able to show that for a nominal matrix of 

D  node pairs and a total volume of V demand units (where D  and V are both integers), the total 

number of distinct matrices with the same volume is:

D - \ f v
No. o f  Possible Scenarios = ]^[ • +  1

i
(5.3.2)

In the example of Table 5.2 (V = 20, D = 15), there are -14  billion different possible 

demand patterns. One of these is the “PFA = 1” case. Another case (or a few cases) represent 

“PFA = 0.” In between, many different actual matrices will share the same characteristic PFA 

values. Obviously, given the number of individual cases, any test for design robustness must rely 

on representative samples of characteristic forecast error levels.

5.4 The Concept of Servability

In Section 3.3.3, we provided definitions of routability and restorability, as they are 

commonly used to measure network utilization given a capacitated network. Now we define a 

new measure called servability, a generic metric that can be used to compare any kind of 

survivable capacity design.

Servability is defined as the fraction of all actual demands for which it is feasible to both 

route and protect within a capacitated network. Conceptually, it helps to think of a situation 

where a survivable network is given, and we ask the question of how many protected demands 

we would be able to serve within the set of as-built capacities. In this study, a protected demand 

is referred to as a demand unit that is fully restorable to any single span failure. In addition, we
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assume that the demand unit o f any given OD pair is identical or has the same priority to be 

served.

Independent of the underlying survivable architecture and capacity designs, whether it is 

SR, SBPP, ̂ -cycles or rings, servability therefore can be a single measure for comparing 

robustness of any kinds of survivable architectures to forecast errors. It is this basic concept of 

servability that inspired us to come up with the multiple quality-of-services classes (multi-QoP) 

demand loading formulations to be presented in Chapter 7.

5.5 Optimization Models for Servability Measures

Two integer programs were developed for the evaluation of maximal servability. Unlike 

most existing methods that use heuristics (e.g., [CHS98][GADlb][Mau02a][GAM03]) as a 

performance evaluation technique, our max-servability approach aims to provide fair, optimal and 

repeatable comparisons. Such rigorously defined formulations help us obtain basic insights about 

the inherent relative abilities of SR and SBPP to cope with the forecast error. It also enables us to 

collect specific statistics, such as the most frequently used restoration route sets, the most 

frequently unserved OD demand pairs, etc., if necessary.

5.5.1 Maximum Servability for Span Restorable (SR) Networks

What follows is an explanation of the two integer linear program formulations. The first is 

for SR networks (SR-MS) followed by that for SBPP networks (SBPP-MS). The objective of 

each is to minimize the total number of “unservable” demand units, or equivalently, to maximize 

the total number of protected demands served. In both cases, the servability is maximized within 

the as-built capacities, from the corresponding minimum-cost capacity design on the nominal 

demand.

Sets:

S Set of all spans in the network, indexed by j  or i

D  Set of all origin-destination (OD) pairs in a demand matrix, index r

C f  Set of pre-determined eligible working routes for OD pair r, index q

Pi Set of pre-determined eligible restoration routes available upon the failure of

span i, index p

Parameters:

Cjr,q Equal to one if the q h eligible route for demands between node pair r uses span j , 

zero otherwise
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S jf  Equal to one if the p h eligible restoration route for span i uses span j ,  zero otherwise

Tj Total as-built capacity for span j  from the minimum-cost (or any given) design to

serve the nominal demand matrix 

d  Number of demand units of OD pair r  in an actual (target) demand matrix

d  Optional parameter for setting priority among different OD pair r

Variables:

ur Number of unserved demand units for OD pair r  in the actual demand matrix

wj Number of working capacity units required on span j

sj Number of spare capacity units required on span j

gr,q Working flow assigned on the q!h working route to serve OD pair r

f p Restoration flow assigned on the p th restoration route upon the failure of span i

SR-MS: Minimize ' u
r e D

Subject to:

Y J g r'q = d r - u r

H e r
r e D q e Q '

pzp,

I ' * - :
peP,

S j + W j < Tj

0 < u r < d r

Servability (%°/^ = 1 -

V r e  D  

V / e  S  

Vi<=S

V ( i , j ) e S 2; i *  j

V j e S

V r e  D

(5.5.1)

(5.5.2)

(5.5.3)

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)

(5.5.8)

Given the total as-built capacity of each span, 7], and the current actual demand pattern, d ,  

constraint set (5.5.2) allocates the demand flows gr'q of OD pair r  on different working routes in 

Q . In this study, we will assume that each demand is routed via a single shortest route, i.e., there 

is only one eligible working route for each OD pair r  in Q , and the demand flowg ‘q is simply
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equal to the demand value d .  Constraint set (5.5.3) determines the working capacity wj needed 

on each span to simultaneously serve the demand flows. Constraints (5.5.4) and (5.5.5) 

correspond to the generation of restoration flows f f  and spare capacity Sj needed to support all 

restoration scenarios. Constraints (5.5.6) ensure that the sum of the working and spare capacities 

on each span j  is within the capacities 7}, while constraints (5.5.7) ensures that the number of 

unserved demand units d  of each OD pair r does not exceed its demand value. Once we obtain 

the optimal solution from the formulation, the overall servability is computed by equation (5.5.8). 

As already mentioned, the objective function can be easily extended to account for different 

priorities amongst demand pairs simply by weighting u with multiplicative factors, d , 

corresponding to the priority class of the demand. In this study, the parameters i/a re  set to unity.

5.5.2 Maximum Servability for Shared Backup Path Protected (SBPP) 

Networks

Sets D  and S, parameters d ,  d  and 7}, and variables u , wj, Sj are not restated as we have 

previously defined. The following additional sets, parameters and variables are defined for the 

SBPP case.

Additional

Pr

f t  

S ,/

Additional

SBPP-MS:

Subject to:
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Input Sets and Parameters:

Set of eligible end-to-end backup routes, indexed by b. These backup routes are also 

span-disjoint from the corresponding working routes of OD pair r.

Equal to one if span i is on the working path for OD pair r, zero otherwise 

Equal to one if the bth backup route uses span j  for protecting OD pair r, zero 

otherwise 

Variables:

Equal to one if the b'h backup route is used to protect OD pair r, zero otherwise 

A positive fractional number which indicates the portion of demand units of OD pair 

r  that is being served and protected by the b'h backup route

Minimize (5.5.9)
r e D

' ^ f t < d r - u r) = wi y / e S  (5.5.10)
r e D
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Z * * =1
b * p r

V r e D (5.5.11)

S j i ’E ’E K - f ' s d ' - z ;
r e D  b<=Pr

\ / ( i , j ) e S 2; i *  j (5.5.12)

z rb > x rb - ( u r l d r) V r e  D;VZ> e  Pr (5.5.13)

z b > 0 \ f r  <= D ;\/b  e  Pr (5.5.14)

S j + W j < T j V j e S (5.5.15)

0 < u r < d r V r e D  (5.5.16)

Under SBPP, the given capacity of each span, 7], is conceptually the same as above but 

comes from a prior cost-optimal SBPP design for the nominal demand pattern. The 7j values and 

the total capacity are, therefore, not necessarily identical for SR and SBPP servability problems. 

This is so because we want to measure servability of the corresponding capacity and underlying 

survivability architecture as it would have been built for the same nominal forecast.

The working capacity constraint (5.5.10) plays essentially the same role as that for (5.5.2) 

and (5.5.3), and assumes that each demand is pre-routed via a single shortest route. Unlike span 

restoration that allows multiple detour paths to be used for each span failure, an operating 

principle of SBPP is that there is only one span-disjoint, end-to-end backup route for each 

working path, which is reflected in (5.5.11). Constraints (5.5.12) allocate spare capacity Sj on 

each span j  only for those failures where (i) the working route of demand r is affected by the 

failed span i (i.e., J3[ = 1); (ii) the span j  on the backup route b is used to protect the same demand 

r (i.e., Sj'b ~ 1), and (iii) z /  has a non-zero value. The role of zbr is to allow partial restorability of 

the demand on a certain OD pair if that is possible. The value of z {  is determined by (5.5.13) and 

(5.5.14). If backup route b is not used to protect OD pair r (i.e., xbr = 0), the combined condition 

of (5.5.13) and (5.5.14) will force the variable z /  to zero so that no spare capacity is required in 

(5.5.12). On the other hand, if backup route b is indeed used to reroute all or part of demand for 

the OD pair r (i.e., xhr = 1), the value of zhr will become a positive fraction, or unity (if u = 0), 

representing the portion of demands that requires spare capacities allocation. Constraints (5.5.15) 

and (5.5.16) are identical to (5.5.6) and (5.5.7) respectively. Equation (5.5.8) once again evaluates 

the overall servability of the SBPP network.
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5.6 Experimental Design and Results

This section explains the experimental comparison o f SR and SBPP servability under 

various amounts of forecast error. First, for each nominal demand forecast, we obtain the 

minimum-capacity SR and SBPP network designs. These solutions are obtained by solving 

separate spare capacity placement problems as discussed in Section 4.2 (or see [DoG00][GIZ00] 

for the SR design methods and [DoGOl] for the SBPP capacity designs).

With these optimal capacity design models, we can produce the reference networks that set 

the 7} capacities, representing the as-built capacities based on the forecast. A series of PFA test 

cases are required and generated for the input to the simulation studies. Based on these random 

test demand patterns, servability of each test case can be evaluated using the SR-MS and SBPP- 

MS formulations as we have just explained. Once we obtain the set of servability results, we will 

compare the robustness of the two survivability schemes to demand uncertainty.

5.6.1 Test Networks and Reference Capacity Designs for the Nominal Demand 

Forecasts

Three test network topologies and the initial nominal demand forecasts are shown in Figure

5.1 and Table 5.3, respectively. The Metro network is a simple 6-node 10-span artificial network 

created for manual validation of the servability formulations. The Germany network is a German 

backbone network provided in [BaKOO]. The US network is from [RBS01] and has the lowest 

degree of connectivity. Detailed descriptions of these topologies can also be found in Appendix 

A.

/
/

(c) US(b) Germany

Figure 5.1. Test network topologies for servability study.
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Table 5.3. The nominal demand forecasts' characteristics for servability study.
Network No. of 

(nodes, 
spans)

Avg.
nodal

degree

Avg.
span

distance

No. of 
O-D 
pairs

Demand units 
(sum, max, min)

Constant 
in (5.6.1)

Metro (6, 10) 3.33 191 15 (38, 6,1) 41
Germany (14,24) 3.43 110 43 (126, 8,2) 30

US (17,24) 2.82 119 60 (208, 10, 2) 60

The nominal forecast is created based on a gravity-based demand model by Doucette et al. 

[DoGOO] as shown in Equation (5.6.1). The gravity-based demand model mimics a situation 

where major centers tend to attract demand, but with some tendency for demand to be inversely 

dependent on distance. The span distances are proportional to the Euclidean distances as drawn 

with the mean span distances and demand generating constants detailed in Table 5.3.

demand (a,b) = int

In the SBPP reference designs and servability trials, we used five eligible span-disjoint 

backup routes (Pr) for each OD pair. To control the computational times for the SBPP-MS 

formulation, it was necessary to reduce the number of OD pairs in the two larger networks. For 

instance, approximately half of the total pairs (i.e., 43 out o f  91 OD pairs) are removed from the 

original matrix in the Germany network. Similarly, we reduced 136 OD demand pairs to 60 

demand pairs for testing the US network. The reduced demand sets were then used in both SR 

and SBPP servability trials.

Six reference networks were created: two for each topology corresponding to the SR and 

SPBB reference designs. The total capacity o f each reference network and other design details 

are summarized in Table 5.4. In all these designs and in the servability solution, each working 

demand pair is restricted to route over its single shortest route so that the working capacities of 

the SBPP and SR reference designs are identical. In addition, the same sets of eligible restoration 

(or backup) routes used in the SR (or SBPP) reference designs are used for the subsequent 

servability problems, such that the servability of the reference designs under the nominal forecast 

matrix is always 100%. Note that, in one case, the total capacity of the SR design is 11% more 

than that of the SBPP design. This difference in initial capacity arises because the intent is to 

measure the servability loss of each architecture relative to its own nominal (and optimal) design. 

If the differences were much larger, however, we would have to consider additional factors in the 

study design, since it would be reasonable to expect that a much larger initial investment in 

capacity should produce some corresponding benefit in retention of servability.
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Table 5.4. Capacity requirements and routing details of the reference networks.
Optimal
design

Network Eligible restoration/ 
backup routes in 
optimal capacity 

design models

Total
working
capacity

Total
spare

capacity

Total 
overall 

capacity 
(relative % to 
SBPP design)

SBPP

Metro All possible routes for 
each OD pair 46 30 76

(100%)

Germany 5 shortest backup 
routes per OD pair 185 137 322

(100%)

US
5 shortest backup 

routes per OD pair 334 238 572
(100%)

SR

Metro All possible routes for 
each span 46 27 73

(96%)

Germany All possible routes for 
each span 185 148 333

(103%)

US
All possible routes for 

each span 334 301 635
(111%)

5.6.2 Generation o f Test-case Demand Patterns

Once we have the reference networks, the next step is to generate random demand patterns 

with progressively worse PFA values. One thousand test demand patterns were randomly 

generated for the Metro network while two thousand test patterns were created for each Germany 

and US network. The actual demand patterns were generated as deviations from the nominal 

matrices by random swap and random add/subtract operations on elements of the nominal 

demand matrix, so that total volume remains constant. PFA is not directly controlled in the 

synthesis of different forecast error cases. Rather, random-walk sequences of evolution away 

from the nominal demand patterns are generated and actual patterns are sampled during the 

process. The PFA of each is calculated to quantify the amount of forecast error they embody.

5.6.3 Results and Discussion

The SR and SBPP maximum servability models were implemented in AMPL [FGK93] and 

solved with Parallel CPLEX 7.1 MIP Solver [ILO04] on a four-processor Ultrasparc at 450 MHz 

and 4 GB of RAM running Sun Solaris 8 OS. For each actual demand pattern, we obtained the 

optimal servability result to a MIPGAP of under 10-4 (i.e., within 0.01% of optimal). Getting the 

whole set of 2000 data points for SR servability took less than 20 minutes on the US network, but 

as long as three days to solve for the corresponding SBPP servability solutions. This follows the
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same pattern as the reference design problems. Obtaining optimal SBPP designs has always been 

a challenge to researchers, especially on large networks20.

The servability results on the three test networks are shown in Figures 5.2,5.3 and 5.4. 

Each figure contains two sets of curves corresponding to the servability results from the SR and 

SBPP designs. For each design, there are three curves indicating the mean, and the 95th and 5th 

percentile servability values over all test cases of each PFA value. The actual PFA values were

100

SR-msan
 SR-95
 SR-05

SBPP-mean
SBPP-95
SBPP-05

0.95 0.85 0.8 0.75 0.7 0.651 0.9

100

95

90

>.
=  85

o
V)

80

75
SBPP-mean
SBPP-95
SBPP-05

SR-mean
 SR-95
 SR-05

70
0.73 0.680.95 0.89 0.84 0.781

Pattern Forecast Accuracy (PFA) Pattern Forecast Accuracy (PFA)

Figure 5.2. Servability vs. PFA results from the Figure 5.3. Servability vs. PFA results from the 
Metro network. Germany network.

100

95 - -

=  90

i SR-mean
 SR-95
 SR-05

SBPP-mean
SBFP-95
S8FP-05

0.96 0.92 0.88 0.84 0.8 0.76 0.72 0.68 0.641

Pattern Forecast Accuracy (PFA)

Figure 5.4. Servability vs. PFA results from the US network.

20 The large number o fx / 1/0 decision variables is one of reasons that make solving the optimal SBPP 

design problems so difficult [KeW98][Gro04],
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put into bins within +/- 0.05 o f exact 2-digit PFA values for the percentile calculations. For 

example, the mean, 95th and 5th percentiles for PFA= 0.78 are actually formed over all individual 

PFA values from 0.775 to 0.785.

As generally expected, the servability in all cases drops as the PFA decreases. What was 

less expected is the almost linear average-case loss of servability of all schemes with decreasing 

PFA. Based on the comparison of mean servability curves, it appears that there is no significant 

difference between the two schemes in terms of their average servability over the sets of 1000 or 

2000 PFA trials. On average, the servability of the SR designs was about 3% higher than that of 

the SBPP designs.

Besides the mean values, we can analyze the top and bottom envelope curves o f  Figures

5.2 to 5.4 and consider the range of best- and worst-case outcomes that could arise from the mis- 

forecasts. In the PFA region from 0.82 to 0.65, we see that SR networks can generally retain 

higher servability than SBPP networks. The worst individual cases of servability loss all arise 

under SBPP. To further examine the body of statistical trials from this viewpoint, we generate a 

scatter plot of the individual differences between SR and SBPP servability over the all (i.e., 5000) 

actual demand trials represented in Figures 5.2 to 5.4.

10

8

6

Q.
4

2

0

■2

-4
0.77 0.72 0.67 0.620.92 0.87 0.820.97

Pattern Forecast Accuracy (PFA)

Figure 5.5. Scatter plot of Serv(SR) - Serv(SBPP) versus test case PFA over all 5000 trials.

The scatter plot in Figure 5.5 is skewed above zero, indicating there are more individual 

cases where SR servability remained higher that that of SBPP, especially in the low PFA region. 

In over 90% of the 5000 test cases, SR has the same or slightly higher servability than the SBPP 

design, where the difference in servability averages approximately 3%.
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5.7 Summary

The concepts o f Pattern Forecast Accuracy (PFA) and Servability have been explained. 

Based on the two concepts, we proposed a general framework for assessing the robustness o f the 

ability of various transport network architectures to cope with uncertainty in the demand forecast. 

Two integer linear programs are formulated to determine the optimal servability solutions for 

both span restorable (SR) and shared backup path protected (SBPP) networks. We found that in 

over 90% of all test cases, the minimum-capacity SR designs are able to serve more mis-forecast 

protected demands than the corresponding minimum-capacity SBPP designs. However, because 

the largest differences are under 10% and average only about 3%, we can reasonably conclude 

that SR and SBPP minimum-capacity designs are essentially equally “future-proof.”

While the basic framework, using PFA to characterize forecast error and maximum 

servability to assess robustness, is suggested as a general methodology for the study of robustness 

of various survivable transport architectures, researchers are encouraged to develop other metrics 

and frameworks for future contributions to this problem. Instead of using servability to assess 

robustness, for example, one might adopt the idea of recourse cost (e.g., the extra cost required to 

carry the mis-forecast demands) or the notion of regret (described in Section 4.3.2) as a metric to 

quantify robustness. Other non-PFA, non-DFA concepts could also be investigated to better 

characterize errors in the demand patterns. Advances on this research topic would provide 

additional tools for network planners to evaluate and compare possible designs and effectively 

identify those that are robust.

In the next chapter, we will introduce a complementary approach, based on the modeling 

framework of Stochastic Programming, to incorporate demand uncertainty into a single design 

formulation. The combined use of this method with the evaluative PFA-Servability framework 

might provide the most complete methodologies for decision makers to plan against and to 

evaluate the negative effects due to uncertainty in the demand forecast.
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6 Capacity Planning of Mesh-based Survivable Transport 

Networks Under Demand Uncertainty

6.1 Introduction

This chapter presents a unique approach to the capacity-planning problem on mesh 

survivable networks under uncertainty. Related works [LeG04a][LeG04b][LeG05] have been 

published, the key findings of which are summarized in this chapter.

In Sections 4.2 and 4.3 we provided a comprehensive literature review on the capacity 

planning problem of survivable mesh networks. We have seen that almost all published studies 

on the design of survivable networks is based on a specific demand forecast, to which one 

optimizes routing and transport capacity assignment for a single target planning view. Generally, 

these single-forecast models are used repetitively by a planner to consider a range of different 

scenarios individually, and to develop intuition about how to proceed. In coping with demand 

uncertainty, these models can only treat the present capacity investment and future corrective 

actions as two separate problems. We presented such a possible “descriptive” approach in 

Chapter 5 to evaluate the servability of survivable networks to withstand changes in the demand 

forecast. However, this is not the same as having a planning method that inclusively and 

explicitly considers a range of possible futures all at once.

The key objective o f this chapter is to develop new capacity planning models based on a 

well-known Stochastic Programming framework, which allows us to incorporate demand 

uncertainty and network survivability into a single design formulation. Two integer program 

formulations are developed, both of which try to minimize the cost of initial design construction 

and the expected cost of possible augmentations or “recourse” actions required in the future, 

adapting the network to accommodate different actual future demands. In practice, these recourse 

actions might include lighting up a new DWDM channel on an existing fiber, pulling-in 

additional cables, or leasing additional capacity from third party network operators, and so on. 

Realistic aspects of optical networking, such as modularity and economy-of-scale effects, are 

considered in one of the proposed formulations. These are not only important practical details to 

reflect in planning, but also give the “future-proof’ design problem for such networks some 

unique aspects.
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6.2 Research Questions

Recognizing that virtually all traditional methods for the capacity design of survivable 

networks, for both ring- and mesh-based transport designs, are based on a specific target of an 

assumed future demand matrix and motivated by the needs for a more complete tool to plan under 

uncertainty, we try to address these specific questions in the following sections:

(1) How can we incorporate the aspects of demand uncertainty, modularity and economy- 

of-scale of capacities into existing survivable capacity designs, such as span restorable 

(SR) and other capacity planning models?

(2) What are the benefits and limitations of adopting such a design approach, rather than 

using the conventional single-forecast, least-cost capacity design techniques?

The reminder of this chapter is arranged as follows. Section 6.3 introduces the concept of 

viewing capacity planning as a two-part investment problem, while section 6.4 reviews the 

aspects of modularity and the economy-of-scale from the capacity planning perspective. In 

Section 6.5, we present the two integer programs: one aims at the design of future-proof SR 

without the modularity aspect (TP-SR), and the other considers both modularity and economies- 

of-scale (TP-MSR). Finally, Sections 6.6 and 6.7 present the experimental results and discusses 

the significance of the new formulations.

It is important to note that since we have already explained the general difference between 

Stochastic Programming (SP) and Robust Optimization (RO), as well as made detailed 

comparisons between our work to the closely related work [KL001][KOL03][BK003] by 

Kennington et al. in Section 4.3.2, we will not repeat the justification of why SP is a more 

preferable technique than RO in modeling these research problems.

6.3 The Notion of Capacity Planning as a Two-Part Investment Problem

An important concept that sets this work apart from traditional survivable design methods 

is the modeling of capacity planning as a two-part investment problem, based on the 

mathematical framework of stochastic programming (SP) with linear recourse [KaW94]21. The 

concept of SP with linear recourse can be explained as a “two-part” investment decision process. 

Note that while the term “two-stage” is generally used in the Stochastic Programming literature, 

here we choose to use “two-part” to avoid confusion with the predominance of other work in 

network design, where “two-stage” implies that two successive computational “stages” are used. 

As we will see later in the formulation, it is solved in a single computational stage or step.

21 Readers might refer to Section 4.3.2 for more complete explanations.
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The first part considers the budgets  to be invested at present and the second part 

represents the corrective or “recourse” action Y  to take place in future when uncertainty unfolds. 

Compared to the traditional approach, the two-part model better reflects the complete life-cycle 

investment costs associated with capacity planning by facilities-based service providers22 today. 

For the simplest assumption, the recourse costs might refer to the cost of “lighting up” (i.e., fully 

equipping and commissioning) new fiber system and / or additional single channels on those 

systems needed for either protection or working capacity. Time value of money can also be 

reflected by discounting the recourse costs with respect to the present cost. Other less-obvious 

future costs such as the construction cost associated with pulling in new cables, labor-related 

operational and maintenance costs required to support new services, and the penalty cost of 

leasing capacity from third-party network operators, etc ... could also be captured by the recourse 

cost parameters. In this regard, economy of scale (EoS) effects can be appreciated as important 

factors in future-proof planning. Without the EoS effects, for example, we may prefer many 

small capacity modules (e.g., OC-48s and/or single wavelengths) to minimize the present costs. 

However, if certain OD demands increase unexpectedly, the extra cost of adding more capacity in 

small modules in future may exceed the cost of having large-capacity modules (e.g., OC-192s 

and/or whole multi-wavelength waveband equipment) in the first place.

One form of future recourse that we do not consider here is any changes to the physical 

network topology itself. As we mentioned in Section 2.4.2, changing the network topology 

generally belongs within the scope of the long-term planning (LTP) problem and involves major 

strategic factors in network planning, such as physical rights-of-way acquisition, installation of 

ducting, power and so on. Thus our two-part design model should only be applicable to medium- 

term (MTP), or short-term (STP) capacity investment problems, where under all future scenarios, 

the physical graph topology remains constant as given in the initial network.

Another comment related to this two-part design methodology is that demand uncertainty 

is classified in Level II (as discussed in Section 4.3.1), or is characterized by a set of plausible 

demand scenarios and each is associated with a probability measure. Under circumstances where 

the uncertainty goes beyond Level II, it is better to use more “descriptive” approaches (e.g., the 

framework suggested in Chapter 5) to evaluate the effect o f uncertainty, but not incorporate the 

massive set o f possible outcomes into a single planning model.

22 By facilities-based providers, we refer to the ones that own or lease a substantial portion of the plant, 

property and equipment necessary to provide a broad range of integrated communications services. Level 3 

Communications, Global Crossing and Qwest Communications are some examples.
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Finally, while we acknowledge that there are many other different kinds of mesh-based 

survivability schemes in general (e.g., path restoration, meta-mesh, SBPP, p-cycles, etc.), the 

primary objective of this work is to propose and develop a basic framework using the span- 

restorable (SR) network as a vehicle for research, so that such a framework and associated 

principles can later be adapted to other survivability architectures as well.

6.4 The Combined Concept of Modularity and Economy of Scale

The incorporation of modularity and economy-of-scale (EoS) effects into optimal span- 

restorable capacity designs was first introduced by Doucette and Grover in [DGM99][DoG00] 

and later by Kennington and Lewis [KeLOl] to the designs of path-restorable networks. In both 

studies, the researchers realized that available capacity increments of actual transmission systems 

are usually modular in nature, and in addition, the costs o f increasing modular size follow some 

stair-step function versus capacity. For instance, typical module sizes in SONET may be OC-3, 

OC-12, OC-48, OC-192, etc. and an OC-192 will generally cost significantly less than four times 

the cost of an OC-48. The EoS captures the non-linear cost-capacity relationships in transmission 

capacity. These are the effects to be modeled in the following two-part capacity design 

formulations, and when network planners include these factors, the benefit of greater present 

expenditure on a large module might be warranted and produce somewhat forward-looking 

solution to reduce future recourse costs. This proposition might be especially valid when 

significant economy-of-scale effects are present. It is reasonable to expect that the combined 

effect of modularity and EoS may have an impact on reducing both present and future recourse 

costs.

6.5 Optimization Models for Span-Restorable Network Design under 

Uncertainty

We will now present the optimization model, including definition of the mathematical 

means through which we can capture the notion of future recourse to repair any shortcoming in 

the initial design in the face of future demand that is different from the nominal forecast. As 

mentioned, we work with span-restorable networks. In this regard, our starting point is to use the 

arc-path formulation introduced by Herzberg and Bye [HeB94] (presented in Section 4.2.2) for 

minimizing the total spare capacity cost of a fully span-restorable network, and then extend the 

model to create a jo int design formulation. Recall from Section 4.2.2 that in the joint model, the 

routing of demands is simultaneously optimized with the placement of spare capacity such that 

the overall working capacity plus spare capacity is minimized in a survivable network.
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6.5.1 Two-Part Span-Restorable Design (TP-SR) without Modularity

The key concept for the two-part span-restorable design is as follows. In the first part, a 

budget X  is invested initially while the second part considers the cost o f a corrective action Y(k) if 

a future scenario k  (modeled by a set of scenarios k  e U )  occurs. In our problem, the present 

outlay X  is the cost of an initial network design that is assured to serve and protect all demands of 

the defined nominal forecast, k0. The expected recourse cost Y  is the mathematical expectation of 

recourse costs over all future scenarios k  that are possible and differ from k0. Note that the 

nominal forecast can itself be arbitrarily certain -  in many applications o f this model -  it can 

represent the current actual demand pattern. Under the assumption that for medium-term 

planning problems, the number of significantly different demand scenarios is typically in the 

order of tens (i.e., Level II uncertainty model), the original stochastic program can, in practice, be 

represented as an integer program of the deterministic equivalent form, for which standard solvers 

can be used. The two-part span-restorable capacity design (TP-SR) is as follows:

Sets:

S  Set of all spans in the network, indexed by j  or i

U Set o f all possible future demand scenarios to be considered, index k

D  Set o f all origin-destination (OD) pairs in a demand matrix, index r

C[ Set of pre-determined eligible working routes for OD pair r, index q

Pi Set of pre-determined eligible restoration routes available upon the failure of

span i, index p

Parameters:

Cj Present cost of a unit capacity placed on span j

Rj Recourse cost of placing an extra unit capacity on span j  to cope with the unfolding 

of demand uncertainty. Rj can simply be a multiplicative value of Cj, or any other 

absolute value specific for each span j  

Pk Probability estimate for demand scenario k

d f  Magnitude of the bi-directional (integer) demand on node pair r  in scenario k

Cjr'q Equal to one if the qth eligible route for demands between node pair r  uses span j,

zero otherwise

S jf  Equal to one if the p'h eligible route for span i uses span j ,  zero otherwise 

Variables:

Wj Number of working capacity units on span j  for the design
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sj Number of spare capacity units on span j  for the design

yj,k Number of additional working capacity units that would have to be placed on span j

in future to cope with scenario k  

Ztf Number of additional spare capacity units required on span j  under future demand 

scenario k

g k q Working flow assigned on the q'h working route to serve OD pair r  in scenario k

f ,kp Restoration flow assigned on the p h restoration route upon the failure of span i in

scenario k

TP-SR: Minimize X  Ci  ' (wj
je-S

+ + (y  j ,k  + Z j,k  ) 
je S  k=U

(6.5.1)

Subject to:

E Vr e  D;\fk e  U (6.5.2)

I I
r*D qzQr

V j e S ; V k e U (6.5.3)

Y j f i pk = wi + y ^ V/ eS;Vk e U (6.5.4)

PZP,
V(i,y) e S 2;i* j - y k&U (6.5.5)

yj,k =  o, =o k=0;\ / j  € S (6.5.6)

The objective is to minimize the total cost of the network design, i.e., the present cost 

denoted by the first term in (6.5.1) plus the expected value of the future costs to augment the 

design to serve each possible demand scenario k  e U. The parameter Q  is the present cost of a 

unit capacity on span j ,  and Rj is the recourse cost if extra working capacity yjy and/or spare 

capacity zJk must be added to span j  in the future under scenario k.

In the general cost model, where recourse costs are specific to each span to reflect practical 

realities, such as dark fiber existing on some spans but not on others, the cost of leasing capacity 

on particular spans or routes from a third party carrier, and so on. For comparative study, we will 

use a common recourse cost factor for all spans, i.e., Rj -  a*Cj, and hereafter we refer a  as the 

recourse cost factor.

In each scenario k, constraint (6.5.2) allocates the demand flows gr'q o f OD pair r onto 

working routes q in Q , representing a set of pre-determined eligible routes for the demands. 

Constraint (6.5.3) determines the working capacity Wj required on each span to simultaneously
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serve the demand flows. £f‘q is an input parameter that is 1 if  the q h working route for OD pair r 

uses span j ,  or zero otherwise. For any scenario k where there is a mismatch between the level of 

demands and the initially installed working capacities, extra working capacities are added to 

serve the unexpected demands in the future design23.

Constraints (6.5.4) and (6.5.5) correspond to the network survivability constraints based on 

span restoration. Note that other span-based restoration schemes (such as ̂ -cycles) can be 

adapted to this formulation by employing a corresponding set of constraints that are specific to 

the particular restoration mechanism used24. Constraint (6.5.4) ensures that the total of all 

restoration flow assigned to the eligible routes in P, when span i fails, satisfies the restoration 

requirement for that failure scenario (i.e., the total working capacity affected). Constraint (6.5.5) 

generates the required spare capacities sj to support the largest of all simultaneously imposed 

restoration flows crossing each span under each failure scenario and in every demand scenario. If 

there is a shortage in spare capacity Sj on span j  under possible scenario k, extra spare capacities 

Zj'/c would be added.

An important detail in this model is how we ensure that the nominal forecast must be 

satisfied. For all other scenarios, we consider only their cost of repair should they arise. This is 

done simply by imposing y ^  = 0 and zjfk = 0 for k0 in constraint (6.5.6), which states that there can 

be no “extra” capacity of either type associated with ensuring the mutability and restorability 

constraints above. This forces the design to contain adequate “present capacities,” wj and sj, for 

the nominal scenario k0. The corresponding constraints can, for all other scenarios, be satisfied 

by the admission of “non-zero” possible future additional capacities, yjj, and Zjj: . As a result of 

this effect, two other relevant types of design that can also be obtained by the same formulation:

Min-Expected Total Cost Design: If constraint (6.5.6) is deleted, we would obtain the network 

that represents the least expected (total) cost strategy over all possible futures. In this case, what

23 Note that the “extra” working capacities yJik (and later zJtk for spare capacities) take only zero or positive 

values. This means that no removal of initially installed capacity is ever anticipated. This does not imply, 

however, that the future demand scenarios only represent growth in demands. Under each future scenario 

here, some demands decrease while others increase. If, under a given future scenario, some initially placed 

capacity is unused, this would be accepted as an implication of what was an optimum overall strategy. On 

the other hand, if any present capacity is folly and efficiently re-used by the solver under every future 

scenario (before new recourse costs are added), such a capacity set simply implies a great built-in tendency 

not to have very much unused capacity in future scenarios.

24 In Appendix C, we will illustrate how the two-part concept can be adapted to p-cycles capacity designs.
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is built “today” is in effect the component of all possible future networks required. This is 

common enough to the range of future outcomes to be worth investing in at present, given the 

cost of capacity at present is less than in future (or with recourse cost factors >1). Conversely, if 

the recourse cost factor is less than 1, the optimal present network cost can in fact be zero, since it 

becomes obvious and economical to wait and build the network when uncertainty unfolds.

Most-Expensive Total Cost Design: If  constraint (6.5.6) is asserted for all recourse capacity 

variables, i.e., = zjik = 0 for all span j  and all scenarios k, we would end up with the design that

is guaranteed at initial construction to serve all defined future scenarios. In the language of 

Stochastic Programming [KaW94][BiL97], this brute-force kind of future-proofing solution is 

referred as the “fat solution”: it serves all possible future scenarios by its basic design, but is the 

most expensive strategy in general. Under an unreasonably high recourse scenario (e.g., R >

100), the optimal solver would produce a design that is close to the “fat solution,” since the cost 

for possible recourse is so much higher than the cost of investing today.

In Section 6.6, we will make various comparisons between the main TP-SR design model 

and the two related extremes that can be easily derived from it simply by variants on Constraint 

(6.5.6). Unlike the traditional span-restorable design, whose objective is to minimize solely the 

initial total capacity, this two-part model allows us to minimize the present investment as well as 

the expected consequences and risk (characterized by Rj) of the present decision. It is important 

to address that an associated output from this model is not only full of details of the present 

network to build, but also each of the specific future recourse actions (through yJik and zjk)  that 

are required to cope for whatever demand scenario actually arises. Explicitly captured by this 

model, the coping or adaptation information not only tells us where to add capacities, how to 

route the unexpected (relative to nominal) working demand, and how to make updates to the 

restoration routing plans, but it may also suggest changes in the routing of one or more existing 

paths as part of the overall future adaptation or re-optimization plan.

6.5.2 Two-Part Span-Restorable Design with Modularity and Economy o f  

Scale Effects (TP-MSR)

Based on the same two-part modeling framework, we now construct a more complete 

optimization model that combines modularity and economy-of-scale effects. This model (TP- 

MSR) requires some new notations, which are shown as follows. All previously defined sets, 

parameters and variables continue to apply.
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Additional Set:

M  Set of module capacities, indexed by m

Additional Parameters:

Z”1 Number of capacity units for the m'h module size (e.g., 3, 12,48, 192)

C f  Cost of a module of size m placed on span j  and is used to reflect different degrees

of economy-of-scale 

R f  Recourse cost factor of a module of size m placed on span j  relative to C f

Additional Variables:

n f  Number of modules of type m placed on span j  for the initial design

ej.)f Number of extra modules of type m required on span j  to cope with the uncertain

demand scenario k

TP-MSR: Minimize Z  X  C7 ' " J  + Z  X  Z  P* ' R ” ' el*  (6.5.7)
meAf j e S  meM j€Sk= U

Subject to (6.5.2), (6.5.3), (6.5.4), (6.5.5) and

wi + -  E  Z ” ' nl  V7 e  S  (6.5.8)
me A/

y j .k  + z j .k  £  Z  z m ’' e 7.k v 7 e  S ; \ /k  e  U  (6.5.9) ■
mdM

emjk  = 0  k  =  0; V/ e  S ' f Jk  e  U  (6.5.10)

The new objective function (6.5.7) minimizes the total of the cost of all modules initially 

placed plus the expected cost of extra capacity module placements in future. C f  is the cost of 

placing a single module m on span j  at present, and R f  is the cost of placing new modules m on 

span j  in the future as needed. Constraint (6.5.8) asserts that the capacity of the set of initially 

placed modules is adequate for the current demands and their protection. Constraint (6.5.9) relates 

the presently placed modular capacities to the unfulfilled requirements that are implied under 

each future outcome scenario, which collectively determine the expected recourse cost in the 

second part of the objective function. Constraint (6.5.10) plays the same role as (6.5.6), ensuring 

that the design is a fully feasible for the nominal demand forecast (or presently existing demand).
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6.6 Experimental Design

6.6.1 Economy o f  Scale Model for Capacity

Let us now define a general model for module costs (i.e., C f  parameter) under various 

economies-of-scale assumptions. Given the cost o f a minimum common-factor module, the cost 

of a larger module size (size2) is:
log(size2/sizel)

For cost scheme m  x nx: Cost(size2) = C ost(sizel) • w Ios<m) (6.6.1)

where m and n characterize the economy of scale effect in that we obtain “m times capacity for n 

times the cost.” This is denoted “mxnx.” economny of scale. For example, the cost of 48-channel 

module under 4x2x economy of scale is 120, provided that the cost of a 3-channel module is 30 

(i.e., sizel = 3; Cost(sizel) = 30; size2 = 48; m = 4, n = 2). O f course if we set any m = n, we will 

have a model where the cost is simply linear to the capacity. Table 6.1 lists the actual economy 

of scale cost-capacity progressions generated by this model and used in our following test cases.

Table 6.1. Cost of modules under various economy-of-scale scenarios.
Economy of Scale Module 

Size 3
Module 
Size 12

Module 
Size 48

Module 
Size 192

2x2x 30 120 480 1920
3x2x 30 72 173 414
4x2x 30 60 120 240
6x2x 30 51 88 150

500
-©— 3x2x 
A  6x2x

400

C/3
oo
3

•a
o2

300

200

100

200100 1500 50

Module size

Figure 6.1. Differences in module cost among various economies-of-scale.
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6.6.2 Test Networks and Nominal Demand Forecast

A well-documented pan European network, COST239 network [SGA02], is used to 

implement both non-modular and modular design formulations. This network has 11 nodes and 

26 spans with an average nodal degree of 4.7. The topology is shown in Figure 6.2. The next 

step is to generate a nominal demand forecast and a set of plausible demand scenarios. For the 

nominal forecast, we chose to create it based on a gravity-based demand model (defined in 

Equation 5.6.1), and we repeat it here for convenience. We realize that although this demand 

model may not reflect the present real-world demand traffic, it does allow us and other 

researchers to reproduce the exact starting demand forecast or other repeatable demand scenarios 

for future comparative studies. The distances in Equation (6.6.2) refer to Euclidean distances 

between any two nodes (a,b) and the constant is simply a uniform scaling factor for adjusting the 

traffic to the desired volume level. Table 6.2 summarizes the properties of the network and 

nominal demand forecast.

Figure 6.2. The COST239 network topology.

demand {a, b) = int
nodal degreea x nodal degree h 

distance„ ,
constant (6.6.2)

Table 6.2. Topology and nominal forecast characteristics.
Nodes Spans Span distance 

[min, avg, max]
No. of OD 

pairs
Demand unit 

per pair
Total

demand
Constant 
in (6.6.2)

11 26 [210, 579, 13101 55 9.76 547 60

6.6.3 Alternate Futures for the Test Case

To reflect the alternative futures, a set of 20 future demand scenarios was generated, where 

one represents the “kg’ nominal forecast, and the other 19 demands patterns are generated by 

random variation around the values of the kg demand matrix and assigned a decreasing probability
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P(k) based on their total absolute value difference from the k0 demand scenario, as shown in 

Figure 6.3. Note that although 20 scenarios were used for this particular study, one can always 

increase or reduce the number for different levels of uncertainty characterization. However, in 

order to solve a large-scale stochastic formulation (e.g., scenarios are in the order of thousands), 

stochastic sampling or decomposition techniques, as discussed in Section 4.3, might be required 

to break the problem down into manageable blocks.

Table 6.3 summaries the characteristics of the demand scenarios. For research purposes, we 

generate these future scenarios in a systematic way. In practice, however, network planners 

might substitute the actual “what i f ’ scenarios that they are most interested in or concerned about, 

as the suite of scenarios given to the model. Note that these can be the same set o f detailed what- 

if scenarios the planners may already typically develop for separate study with conventional 

single-forecast design tools.

0.08,

0.07 

0.05

fo .0 5  
<0 
£
£ 0.04 
>.

|  0.03
os.

0.02 

0.01

°0 50 100 150 200 250 300 350 400
Norm || Nominal Forecast • Random Demand Scenario II

Figure 6.3. Probability assignment for input demand scenarios.

Probability Estimate Assigned to Each Random Demand Scenario
i i i i i _  i i

J_______ I_______ I_______ I_______ I_______ I_______L
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Table 6.3. Characteristics of the input demand scenarios.
Demand 

Scenario, k
Total

Demand
Volume,

Relative
Demand
Volume,

reD reZ)

Pattern
Forecast

Accuracy,
PFA

Assigned
Probability,

Pk

0 (nominal) 547 1.00 1.00 0.079
1 146 0.27 0.85 0.063
2 299 0.55 0.85 0.066
3 457 0.84 0.85 0.072
4 597 1.09 0.87 0.072
5 744 1.36 0.85 0.071
6 955 1.75 0.91 0.067
7 911 1.67 0.81 0.065
8 1107 2.02 0.86 0.061
9 1287 2.35 0.85 0.057
10 1358 2.48 0.81 0.051
11 1546 2.83 0.85 0.045
12 1571 2.87 0.85 0.043
13 1874 3.43 0.86 0.042
14 1878 3.43 0.84 0.039
15 2187 4.00 0.88 0.030
16 2088 3.82 0.83 0.029
17 2217 4.05 0.86 0.021
18 ■ -2367 4.33 0.86 0.019 -
19 2718 4.97 0.86 0.0072

Min 146 0.27 0.81 0.0072
Mean 1343 2.53 0.85 0.05
Max 2718 4.97 0.91 0.079

6.6.4 Eligible Routes for the Design Formulations

The final experimental aspect is the generation of eligible route sets (i.e., Q  and P,). While 

we can enumerate all distinct routes to form our eligible route sets, short-distance routes are often 

preferred to meet physical specifications such as optical signal path quality and restoration speed 

[Gro04]. The study by Herzberg and Bye [HeB94] shows that screening out the unnecessarily 

long routes helps speed up the computation process without losing true optimality. Hence for the 

following experiment; 5 shortest working routes (by distance) for each OD pair and 10 shortest 

restoration routes (also by distance) for each span are selected as the eligible route sets. These 

result in a complete set of 275 eligible working routes and 260 eligible restoration routes.
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6.7 Results and Discussion

The two formulations were implemented in AMPL [FGK93] and solved with CPLEX 9.0 

MIP Solver [ILO04] on a four-processor Ultrasparc at 450 MHz and 4 GB of RAM running Sim 

Solaris 8 OS. For the TP-SR formulation, all designs were obtained to a MIPGAP of 1% 

(guaranteed to be within 1% of the optimum) and within twenty minutes o f run time. For the TP- 

MSR designs, run times were considerably longer due to the additional dimension of modularity 

M. The MIPGAP was therefore relaxed to 10%.

6.7.1 General Observations o f Two-Part Capacity Planning Strategy

Table 6.4 shows the results of the TP-SR (non-modular) formulation and compares them to 

the conventional span-restorable design with four different recourse costs.

Table 6.4. Comparisons between conventional and two-part designs (cost in thousands).
Design Conv. TP-SR Conv. TP-SR Conv. TP-SR Conv. TP-SR

Recourse 
Cost 

Factor, a
1 2 3 5

Initial
Cost 532 533 532 942 532 1,308 532 1,527

Expected
Future

Cost
557 557 1,115 620 1,672 488 2,787 503

Total 1,089 1,090 1,647 1,562 2,204 1,796 3,319 2,030
Difference 0.09% 5.16% 18.51% 38.84%

In the “conventional” approach, we consider a minimum-cost span-restorable mesh design 

based solely on the nominal forecast. The cost of this conventional design refers to the “initial 

cost.” The initial cost for TP-SR designs is the cost to build the first part, which might include 

certain initially built-in added capacities to hedge against possible future costs of recourse. The 

“expected future cost” for both cases refers to the probability-weighted cost of adding needed 

capacity to adjusting the initial design to cope with future requirements, i.e.,

YLnkYRj-iyjt+Zj*).
jsS  k=U

At low recourse cost (i.e., when Rj = CJ), the advantage of the two-part design is 

insignificant because it costs the same in the future to take recourse as it does to build it in now. 

However, as the recourse cost increases, the long-term benefit o f building a more “future proof’ 

network initially, and paying less in the future for recourse, becomes obvious. At a recourse cost 

factor of 3, the two-part design has an expected whole life cost that is approximately 19% lower
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than the strategy of building a currently optimal network to an assumed known forecast, and 

augmenting it as needed in the future. The cost benefit of the two-part design increases as the 

recourse cost assumption increases.

In Figure 6.4, we compare the two-part designs to conventional designs that attempt to 

have some future-proofing by considering demand matrices other than the nominal forecast. The 

“expected forecast” is the probability-weighted demand pattern calculated based on the 20 

scenarios and the “maximum forecast” is where each OD pair takes the maximum demand of all 

the scenarios. We see that TP-SR approach always outperforms these pre-tuning forecast 

attempts with the conventional model. At low recourse cost, the “maximum forecast” design 

tends to over-build the capacity initially and fails to exploit the advantage of building in future. 

The “expected forecast” design also suffers from paying an expensive penalty in the high 

recourse region.

9

-e— Optimal TP-SR Design 

-B— Conv. Design for Nominal Forecast 

Conv. Design for Expected Forecast 

■*— Conv. Design for Maximum Forecast

8(O"c
o
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Q.
X
LU

1  2
CD

C
1

0
3 6 9 12 150

R ecourse Cost Factor, RJj]

Figure 6.4. Cost-benefit of the (non-modular) future-aware designs over various conventional designs.

Thus, with no consideration of the recourse in advance and unconsciously making an investment 

plan targeted on single demand forecast, any single-period, snap-shot approaches can easily lead 

to a capacity plan that will suffer from either severe capacity surplus or deficiency.

While it is important to portray in general how the recourse factor affects the overall long

term cost, it is also meaningful to show the tradeoff between the long-term cost and the initial 

design cost under various recourse assumptions, as illustrated in Figure 6.5. As should be
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expected, at a recourse factor of one (or less), the optimal initial design is simply the one 

designed for the ko nominal forecast alone with conventional methods. I f  we increase the cost of 

the initial designs (i.e., the successive points to the right), we will end up over-building the 

capacity unnecessarily. This makes sense because under the low recourse assumption, we are 

encouraged to build only what is needed now, and wait for the future as there is so little penalty to 

add more later. As the recourse cost factor increases, however, we can optimize the present 

investment and come up with a capacity configuration that has the least expected repair cost to 

cope with future scenarios. For the highest recourse, the top curve indicates that the optimal 

initial design cost to invest is about $2.66 million, where the expected future cost is zero. In fact, 

this corresponds to an initial design that completely satisfies all of the possible scenarios without 

any future additions (i.e., the “fat solution” mentioned in Section 6.5.1).
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Figure 6.5. Total versus initial cost of future-aware designs at varying recourse cost factors.

6.7.2 Effects o f  Modularity and Economy-of-Scale: Results with TP-MSR

For tests with the modular capacity design formulation, we used the input demand sets 

described in Section 6.6. Four module sizes, namely Size-3, Size-12, Size-48 and Size-192, as 

well as three economies-of-scale (2x2x, 3x2x, 4x2x) were assumed. The associated module costs 

are listed in Table 6.1. Although in practical systems the absolute capacity values may differ 

from those used here, the total range of capacities represented and the number of such module
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types are quite characteristic of actual SONET OC-n line systems that are commercially 

available.

Tables 6.5 to 6.7 compare the results of the conventional (Conv.) and TP-MSR designs 

under different economy of scale assumptions. Similar to the finding of the non-modular designs 

in the previous section, the two-part modular model shows significantly lower expected total life 

cost than traditional designs. For a recourse cost factor less than one (i.e., a  < 1), the optimal 

designs are equivalent to the conventional designs that are strictly built for the nominal forecast. 

In cases where a  = 3 or a  = 10, the TP-MSR designs result in a total expected cost reduction of 

-22%  and -63% (on average) compared to the conventional designs that are faced with the same 

range of possible futures. In particular, under the 3x2x model, the cost reductions are the greatest.

Table 6.5. Comparisons between conventional and TP-MSR designs under the 2x2x model.
Design Conv. TP-MSR Conv. TP-MSR

Recourse Cost Factor 3 10
Initial Cost 5,407 13,740 5,407 18,953

Expected Future Cost 17,299 4,746 57,290 4,556
Total 22,706 18,486 62,697 23,509

Difference 18.59% 62.50%

Table 6.6. Comparisons between conventional and TP-MSR designs under the 3x2x  model.
Design Conv. TP-MSR Conv. TP-MSR

Recourse Cost Factor 3 10
Initial Cost 2,397 3,850 2,397 5,183

Expected Future Cost 4,640 1,008 15,526 603
Total 7,037 4,858 17,923 5,786

Difference 30.96% 67.72%

Table 6.7. Comparisons between conventional and TP-MSR designs under the 4x2x model.
Design Conv. TP-MSR Conv. TP-MSR

Recourse Cost Factor 3 10
Initial Cost 1,559 2,459 1,559 3,068

Expected Future Cost 2,023 493 6,741 294
Total 3,582 2,952 8,300 3,362

Difference 17.59% 59.49%

Figure 6.6 identifies a complete set of optimal designs. Each graph in the matrix 

corresponds to the optimal initial design for a unique recourse and economy-of-scale 

combination. The optimal designs are arranged with increasing recourse cost factors for each 

column and classified by different economies of scale in each row. As we move from the left to 

right column, we see that higher recourse costs generally encourage the building more expensive 

initial designs to reduce the expected penalty in the future. Moving from the top to the bottom
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row, we also see how economy of scale generally favors the installation of large-size capacity 

modules. In the case where a  < 1, the largest size modules change from 179 size-3 modules, to 

23 size-48 modules, to 12 size-192 modules. For higher recourse cost factors, the benefit of 

deploying large size systems is even more obvious (i.e., the optimal size jumps from size-3 to 

size-192). Probably the most interesting scenarios are where we have the strongest economy-of- 

scale and high recourse cost assumption, i.e., the 4x2x(a=3) and 4x2x(a=10) designs. In such 

cases, the optimal initial designs consist o f only the largest modules.
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6.8 Summary

We have developed two integer program formulations for the design of non-modular and 

modular span-restorable networks under demand uncertainty. Stochastic programming was used 

as the mathematical framework to model the formulations that minimize the initial cost of 

network building and the expected value of future recourse actions to augment the design to serve 

the possible “what i f ’ demand scenarios. One significant finding is that if the cost of building 

future capacity is greater than that of building it now, the notion of taking the recourse cost and 

future demand scenarios into a two-part capacity design becomes vital, since such a design could 

lead to huge long-term cost savings, compared to traditional designs that consider only a single 

nominal forecast. For the non-modular design under a recourse cost factor of 3, an approximately 

19% cost reduction is observed. Under the 3x2x economy of scale model, the two-part modular 

design leads to 31% saving o f the expected total life cost. Another interesting observation is that 

when modularity and moderate economy of scale (i.e., 3x2x or stronger) are considered, the most 

future-proof designs tend to deploy large modular systems rather than many small-size modules.

While we work with span-restorable networks in this study and assume a uniform recourse 

cost factor for all spans, the two-part formulations can be adapted to other survivable network 

architectures. The recourse costs can be set specifically for each span to reflect the cost of 

lighting up a new fiber system or leasing capacity from a third-party carrier or any other practical 

realities. In this regard, we will illustrate how the two-part framework can be adapted to a p- 

cycles design scheme in Appendix C, with the corresponding AMPL implementation shown in 

Appendix B.5.

Finally, some issues about recourse costs warrant specific comments. One general view of 

the future is that “capacity is always on an ever-decreasing cost curve” -  so would recourse cost 

factors always be less than one? If this were so, then the optimum strategy is always just to build 

the minimum that is needed right now, and add anything else that is needed in the future. Given 

the economic hardships the telecom industry has recently endured, a common attitude is, perhaps 

understandably, to minimize costs now regardless of the future consequences.

However, from an operational and network management perspective, channels cannot be 

easily and cost-effectively added one at a time just when needed, and at ever decreasing cost 

[AiP94][IL001][Mis04]. Clearly where actual installation of cables is involved, there is a very 

high recourse cost associated with pulling in more cable, or even digging up streets a second time. 

Similarly, simply adding a single wavelength system often involves labor-intensive costs, 

including performance monitoring, security management, configuration and provisioning costs.
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Incremental growth in physical equipment to support new capacities can unconsciously exceed 

the space, power requirements, the maximum port counts on a cross-connect, etc. from an initially 

inadequate first installation and trigger a large recourse cost (R »  1) to upgrade the infrastructure 

in the future. Thus, when assigning recourse costs in this type of foreword-looking model, it is 

important for planners to take all factors into account, and to consider all possible physical and 

“hidden” operational costs required by the existing capacity plan to adapt the future network.

Even if the transmission equipment itself was given away by vendors, there are always significant 

operational and business costs associated with having to take corrective actions. This planning 

model provides a tool for planners to find the right balance between putting off some 

eventualities into the future, while building to accommodate others right now.
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7 Max-Profit Demand Loading Strategy for Multi-QoP 

Survivable Mesh Networks

7.1 Introduction

This chapter presents a type o f capacity management strategy, called Demand Loading, and 

summarizes the recent work published in [LeG05b]. Of particular interest, we develop an integer 

program model for the optimal selection of the demand pairs to maximize the net economic 

return, given a set of per-channel costs and a set available demands requiring different protection 

service classes and corresponding prices.

A unique concept that emerges in this chapter is that of “preferred demands,” which the 

model identifies and that can guide service planning and market development efforts towards the 

most profitable mix o f routes and demand types with which to load the network. Unlike the 

capacity planning problems, in which the objectives are to find the least-cost, minimum-capacity 

designs to strictly serve a given set of demands, the demand loading problem assumes that the 

capacity design is a given and operators have the freedom to choose which demands should be 

served. The issues of demand loading are therefore more tactical and operational in the sense that 

the objective is to determine how to utilize as-built capacity assets to maximize the profits from 

the available set of potential demands.

This work also attempts to gain insights into strategies for pricing and offering wavelength 

services of various protection classes over a span-restorable (SR) transport network. With span 

restoration, the cost of providing survivability to different paths is less than the cost of 

duplication, yet can be specific to each node-pair involved. This makes the problem of demand 

loading for maximum profit complex.

The service-oriented aspects of multiple survivability or quality of protection (multi-QoP) 

classes are also captured in the formulation. Specifically, three types of services -  protected, 

unprotected and preemptible -  are considered. Based on three case studies, we show the 

applicability of the formulation and illustrate how business planners and marketing groups can 

use it to compare strategies under different revenue, cost and demand assumptions. A novel 

strategy identified with the model is to combine preemptible service offerings with protected 

services. The overall profit can be the same as with protected-only services at higher prices.
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7.2 Research Questions

Because the research questions are closely associated with the classification of multi-QoP 

service classes, we will explain the concept for the first time in this thesis and state the specific 

research questions at the end o f this section.

7.2.1 Concept o f  Multi-QoP Service Classes in Wavelength Services

Wavelength-based transport services are expected to offer cost-effective and flexible 

solutions for many high-bandwidth applications, including storage area networking, data 

mirroring and grid computing applications. Unlike the era of dark fiber or private networks, it is 

believed by different equipment vendors and service providers that a dynamic wavelength- 

services solution should allow customers to lease only the bandwidth they need in a much shorter 

contract period (in the order of months) and effect an easier service provisioning process 

[NdFOO][Gau03][Hun03][FPS03][MaG03].

As for the current wavelength service profile, many service providers have only offered a 

single type of wavelength service, the unprotected services, or at most two service types including 

protected services. Because new applications do not normally require the same level of 

survivability (for example, unprotected services, may be sufficient for most Internet traffic, but 

fully protected services are usually needed for critical traffic connecting storage area networks), 

the ability to offer multiple protection classes can be one of the differentiators among competing 

network carriers.

In this study, our goal is to consider wavelength services with multiple quality-of- 

protection (multi-QoP) classes [GeS01][GrC02] -  namely, protected, unprotected and 

preemptible classes -  and to design a profit-maximizing service provisioning model. By 

protected services, we refer to a set of working paths or capacities that must be restored against 

any single span failure. In other words, these are the “guaranteed” failure-proof services. In a 

lower priority, unprotected services are working channels that do not receive any restoration 

efforts nor are they subject to any preemption for other failures. At the lowest priority class, 

preemptible services use spare capacity for transporting low-priority traffic, and if  any of the 

protected services fails, it will seize the spare capacity to satisfy its own restoration requirement.

From the research literature, the optimal capacity design model o f span restorable (SR) 

mesh network to support multi-QoP services was first proposed by Grover and Clouqueur in 

[GrC02]. The authors proposed an integer linear program formulation and showed that there was 

a surprisingly high potential to support preemptible services over the conventional spare capacity 

of a mesh network. In other words, that work revealed the possibility o f designing a SR network
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where no truly idle protection capacity was needed. By properly routing both protected and 

preemptible services, the protection needs of the former class could be entirely met by 

preemption of the latter. Such findings motivate us in this study to go beyond the capacity 

planning problem of finding minimum-cost design to serve all multi-QoP demands, to a 

maximum net-revenue standpoint, or an optimal “preferred demand” standpoint.

In the “demand loading” context, we assume circumstances where operators have their 

already-deployed existing infrastructure with capacity limits. They have the latitude to choose 

which demands (node pairs and service types) they want to serve, from a set of potential 

demands. The cost to serve the selected demands should also be associated with the provisioning 

cost to serve each additional wavelength channel as well as the capacity resources required for 

service protection. Not all demands necessarily need to be served, nor in general would it be 

possible to serve all demands with the existing network from an operational perspective.

With the multi-QoP model formulated, we will try to address the following questions in 

three separate case studies in Section 7.5:

(1) How do the channel cost and the relative pricing of protected over unprotected 

service influence the preferred demand loading principles?

(2) How does the distance of multi-QoP services influence the preferred demand 

loading?

(3) What will be the potential benefit if network carriers introduce preemptible services 

into the service mix?

In the next section, we discuss the revenue and cost models used, followed by the demand loading 

formulation in Section 7.4. Section 7.5 provides the details of the experimental design, the three 

case studies, and discussion of the results. Concluding remarks are offered in Section 7.6.

7.3 Models for Cost and Revenue of Multi-QoP Services

An essential aspect to develop the demand loading formulation is the relative pricing 

policy (or the potential earnings) of the multi-QoP services. The difference in service distances 

obviously comes into play and influences what types o f demands are best to try to serve. One 

model is a “flat rate” pricing scheme, where the revenues o f all wavelength services are identical 

and insensitive to their distances. This is very much like the Internet today, but sheer distance 

independence may be hard to accept for some time when it comes to whole lightpath services 

(where the cost of the transponders used, and cost of optical amplifiers really do rise with 

distance [MaG03][CoW03][Dri04]). We will therefore consider a range o f scenarios, where the 

cost and price of transport services depend in different ways on distance as well as service level.
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Let us now define our meanings of cost and revenue used in the model. C[j] is the cost 

incurred when a new channel is provisioned on span j .  The cost of an additional equipped 

channel on a span is the same regardless of what type of service path is used to support and also 

the same whether it is used as a working or protection (“spare”) channel. For our experiments, 

we assume that the cost scales directly with the length of a span, which is a common convention 

used in many capacity design problems. The next definition is the revenue earned from an 

unprotected service path for demand pair r, RJ. This serves as a reference benchmark for the 

revenue models of the protected, R j ,  and preemptible classes, RJ. The subscripts “+,” “o” and 

are used to indicate the protected, unprotected and preemptible classes, respectively. In 

addition, we define three different schemes for pricing each unprotected service on origin- 

destination (OD) pair r. This ranges from a distance-independent rate or “flat-rate” to “zone-rate” 

to a “linear” distance pricing assumption.

For flat-rate, the revenue for a given service class is identical for all demand pairs and is 

independent of the service distance. The zone-rate scheme assumes pricing of the demand pairs 

are classified in zones. For example, node pair r with service distance D that is within X] miles 

in radius, i.e., D < Xj might cost Pi, and if Xi < D < X2, it might cost P2 (> Pi), and so on. For 

linear-rate, the revenue of the demand pair is simply linearly proportional to its service distance. 

Note that these are models o f revenue, not cost.

Next we must parameterize the ratio between protected and unprotected service revenues. 

We do this with a=R+r / RJ. As a reasonable assumption, a  is considered to be between 1 and 2 

(see the pricing report by Drilling [Dri04]). In general, this could also be demand-pair specific. 

Finally, we define a parameter to use in varying the assumed price of preemptible to that of the 

unprotected services. This we denote by P  -  RJ I RJ. Obviously, the range for p  is from near 0 

to a maximum of one. Varying P  lets us explore how the discount for preemptible service affects 

global net revenue. The effect is not obvious in advance because a lower P  also lowers revenue 

for that service class. Under some circumstances, however, varying p  in a multi-QoP mesh 

restorable network might suggest some alternative pricing strategies to reduce the revenue of 

protected services while keeping the total profit unchanged. Thus, a  and p  are the relative ratios 

that have direct impact on the optimal demand loading solutions. Note that these ratios apply per 

unit distance and per unit time to the respective service types they describe.

7.4 Economically Optimum Demand Loading Formulation

We now present the integer program for loading multi-QoP wavelength services onto span- 

restorable network with maximized revenue over costs. As a starting point, we adopt the
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constraint sets of the multi-QoP span-restorable capacity design model from [GrC02], We then 

adapt and extend the model to have fixed span capacity limits, and set the objective to maximize 

the profit from the demand pairs and services chosen, but not to minimize cost to serve all 

demands. The max-profit multi-QoP demand loading (MP-QoP-DL) formulation is as follows:

Sets:

S  Set of all spans in the network, index i or j

C Set of multi-QoP service classes, index c in the set {“+” for protected, “o” for

unprotected, ” for preemptible}

Dc Set o f all origin-destination (OD) pairs, index r

Q  Set o f pre-determined eligible working routes for OD pair r, index q

Pi Set o f pre-determined eligible restoration routes available upon the failure of

span index p

Parameters:

Rcr Revenue from serving OD pair r of service class c

Cj Cost of provisioning or using a channel on span j

dcr Number of lightpath requests of class c that may be served between OD pair r

Tj The maximum number of channels that can be provisioned on span j

£f’q Equal to one if the q'h eligible route for demands between node pair r  uses span j ,

zero otherwise

S jf  Equal to one if the p ‘h eligible route for span / uses span j ,  zero otherwise

Variables:

Xc Number of the lightpaths o f class c that will be served on OD p a irT h e y  are the

“preferred demands.”

w f  Number of working channels used on span j  for routing the demands of class c

Sj Number of spare channels used on span j  either for protecting the working links,

or for routing the preemptible demands 

gc’q Number of working paths assigned on the q,h working route to serve OD pair r of

class c

f p Number of restoration paths assigned on the p'h eligible route for failure o f span /'

MP-QoP-DL:
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The objective is to determine a subset, xcr, of the pool of available demands, dcr, to be

served on each node pair in each service class such that the total revenue less total cost o f the 

working and spare channels used (i.e., profit) is maximized. It is useful to identify the xcr 

solutions to this problem as “preferred demands” because if the latitude exists, then these are the 

subset of node pairs and service types that the network operator would most like to be asked to 

select and serve. It is important to realize that when there is a cost directly associated with 

equipping each incremental channel to provision a new path, the preferred demands are not 

always the full set of demands, nor a subset of demands that simply maximizes capacity 

utilization.

Constraints (7.4.2) and (7.4.3) determine the required working channels w f  on each span to 

simultaneously support the protected, unprotected and preemptible demands. The variables gcr'q 

are the demand flows for each OD pair r and are specific to each service class. Constraints

(7.4.4) and (7.4.5) correspond to the network survivability constraints based on span restoration. 

Constraint (7.4.4) ensures that the restoration flows f p are always assigned for the recovery of the 

protected class traffic. With a preemptible service class considered, constraint (7.4.5) determines 

the spare capacities, Sj, required to support the restoration flows, recognizing that channels 

carrying the preemptible traffic on the same span are equivalent to spare channels from the 

standpoint of restoring protected class services. Constraint (7.4.6) ensures that the total working 

and spare capacities on each span in this loading plan are less than the available capacity 7}.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Finally, constraint (7.4.7) prevents the solution from routing more the maximum available 

demands in each class on each node pair, dcr.

Within this model, changing the values of the revenue for each demand, Rcr, and the span- 

specific provisioning costs, Q, can represent different sub-problems. If  we do not consider the 

channel provisioning cost, i.e., setting C7- to zero, we then have a max-revenue demand loading 

model, where every demand served contributes to an increase in the revenue. This might apply to 

an existing network where it is already fully provisioned in terms of all its channels being turned 

up on each span as a result of some prior sunk cost investment. At the other extreme, if  we set Q  

high enough (relative to /?/), then at some point, the optimal loading solution would prefer not to 

serve any demand in order to keep the overall profit at zero rather than permit a negative value. 

The use of this model in the middle regimes can give insights about minimum revenue 

requirements to be profitable and identify the “preferred demands,” xcr, as defined above.

Various Rcr assumptions may also greatly affect the preferred choice o f potential demands to 

serve in the network. This can be used under any demand scenarios, any cost and any revenue 

assumptions to identify preferred (i.e., most theoretically profitable) city pairs to serve, and with 

what types of services. It is this intrinsic relationship of Rcr and Cj to which we mainly address 

our experiments.

7.5 Experimental Design and Case Studies

The above formulation gives us a research framework within which Q, Rcr, Tj, a  and j i  can 

be varied to represent a large number of possible or “what i f ’ scenarios. In the following, we 

present three case studies that illustrate the potential use o f the formulation and address the 

specific questions we stated at the end of Section 7.2. Now let us introduce the test topology and 

initial capacity assumption used for all case studies.

Span Lengths
(in arb itrary  units), L-,
Mean 119.26
Total 2862.27
Std. Dev. 55.20
Min 37.22
Max 259.74

Service Distances, Wr
Max 583.19
Min 37.22
Mean 304.64
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Figure 7.1. 17-node, 24-span test network reported with span and service distances.

Figure 7.1 is a sample network topology used in this study. It is identical to the one we 

used in Section 5.6 (i.e., the US network [RBS01]). This network has 17 nodes and 24 spans with 

an average nodal degree of 2.82. Lengths o f span j ,  Lj, and service distances (based on shortest 

path route), W , between node pairs r are also summarized on the side tables. Both Lj and W  are 

used for the numerical values to determine the provisioning costs, Cj, and the revenues, R e

in  all experiments, we have assumed that there may be a maximum of 128 lightwave 

channels on each span (i.e., 7} = 128 for all span j), and that each node is capable of performing 

wavelength conversion or has enough wavelength converters to make wavelength blocking 

negligible. We note that in real world situations, the maximum number of channels per span 

should be unevenly distributed over the network. In that case, one would simply adjust the 

parameters Tj to any capacity configuration. The fixed maximum plus the per-channel 

provisioning cost represents the situation in an optical network where the investment for basic 

DWDM infrastructure has been made (i.e., fiber, WDM mux, demux, optical amplifiers, common 

equipment) but each channel added has a direct provisioning cost (i.e., administrative charge per 

order, distance-related charge for channel transmitters, receivers, etc.).

In terms of the eligible route sets required by the demand loading formulation (i.e., the sets 

Q  and Pi), we select the set of ten shortest working routes (by distance) as the eligible working 

route choices for each OD pair, and then set of ten successively-shortest distinct routes (also by 

distance) as the eligible route set for restoration flow assignment (of protected services only).

This results in all problems having a total o f 1360 eligible working routes and 240 eligible 

restoration routes. The formulation was implemented in AMPL and solved with CPLEX 9.0 MIP 

Solver on a four-processor Ultrasparc at 450 MHz and 4 GB of RAM running Sun Solaris 8 OS. 

All solutions were obtained to a MIPGAP of 0.01% (guaranteed to be within 0.01% of the 

optimum) and within three minutes of run time. We now present the individual case studies.

7.5.1 Case Study 1: Effect o f  Channel Cost and Protected-to-Unprotected 

Revenue Ratio on the Preferred Demands

In this study, only protected and unprotected classes are considered. Our interest is to see 

how the preferred demands change with the relative cost of a channel. This is studied by 

providing a set of five demands of each service class on each node pair. An unprotected service 

is by definition assumed to provide revenue of R0r = W , which corresponds to the service 

distance, while a protected service earns twice this (a  = 2) on any node pair. We then vary the
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cost of a channel on each span to correspond to the different cost factors C e {0, 0.2, 0.4,..., 1.4} 

multiplying the length of the span, i.e., Q  = C %•. This creates conditions varying from one 

extreme (at C = 0) where the max-revenue solution tends to fill with mostly protected demands 

and unprotected ones to the other extreme (at C = 1.4) where the network reaches a “cutoff’ state 

that serves no demands, as shown in Figure 7.2.

We repeated the experiment with a  = 1.6 and a=  1.2, and plotted the results in Figures 7.3 

and 7.4. Similar results with three distinct loading regions were observed. Using Figure 7.3 as an 

example, when the provisioning cost is within the first regions (where C = 0.2 to 0.8), optimal 

demands of both types are served. As the cost keeps increasing and reaches the second region (C 

= 1), only the service class with sustainable profit (in this case protected services that can share 

protection capacity well) could be served. At C = 1.2 and up, the max-profit solution reaches the 

cutoff region where none of the demands can generate enough revenue to cover the provisioning 

cost.

Comparing Figures 7.2, 7.3, and 7.4, we see how a  generally influences the preferred 

demand types. For a high a  value, protected services are preferred, while unprotected services 

are relatively more profitable at a low a. Finally we plotted the net utilization of total capacity 

against the provisioning cost at a  = 1.2 in Figure 7.5. As might be expected, profit corresponds 

to high network utilization only when channel cost is much lower than unit revenue. As channel 

cost becomes more significant, simply managing for high network utilization correlates less and 

less with the net economic return.
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7.5.2 Case Study 2: Effect o f  Distance-Sensitive Pricing on Preferred 

Demands

This case study examines how different distance-related pricing strategies affect max-profit 

loading decisions. As in the previous section, only protected and unprotected services are 

considered. Again, five protected and five unprotected services are assumed to be possible for 

each node pair and the provisioning cost o f each span is fixed at Cj = C *Lj, where C is set to 0.4. 

The changing parameter is the revenue of the unprotected services, RJ, and thus also of the 

protected service R+ = a *  R0r. a  is set to 1.6 in these results. The particular selection of C = 0.4 

and a=  1.6 allows us a cross check against results we had in Figure 7.3. Three different pricing 

schemes, namely, Flat-rate, Zone-rate and Linear-rate, are modeled. The following table 

summarizes their parameters:

Table 7.1. Three distance-related revenue assumptions.
Distance Model Unprotected service revenue for node pair r, RJ
Flat-rate Ro — AvgrwH = 304.64
Zone-rate R0r {r | Wr <100} = 100;

Ro {r | 100< Wr <250} =200; 
Rar {r | 250 < Wr < 500} =250; 
Rar {r | Wr> 500} = 280

Linear-rate

£II‘•oft;

□  Rat - Unprotected 
O Zone - Unprotected
□  Distance - Unprotected

B  Rat - Protected
□  Zone - Protected
□  D'stance - Protected

0-100 100-200 200-300 300-400 400-500 500-600

Service Distance Range

Figure 7.6. Locality of preferred demand pairs under different distance-related revenue assumptions.

Figure 7.6 shows the breakdown of the preferred demands into six different distance 

regions. To understand the plot, node-pairs are grouped by their distances. Each pair of bars
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shows the fraction of these demands that are selected for node pairs in that distance range, under 

the three different revenue-distance models. It is important to understand that the preferred 

demands in each distance range are being selected in the presence o f  the simultaneously offered 

demands on node pairs of all other distances as well. They are not evaluated in isolation.

The results show that under flat-rate pricing, almost all demands o f both types are preferred 

on node pairs up to 300 in distance. Capacity is best used to serve those relatively local demands, 

and the drop-off in selected demands at longer distances thereafter is almost linear. At distance 

500, almost no node-pairs are selected because for each one such long path, several shorter reach 

services could have been provided for. And under flat rate, since each service served provides the 

same revenue, the number o f node pairs served is most important.

Zone-based pricing behaves similarly, except that at the shortest distance unprotected 

services are not fully served. This is probably due to the smallest zone earning of 100 for 

distances up to 100, not the mean value of distances as in the other zones, while costs are still 

distance-proportional. In other words, instead of using some capacity here as spare capacity on 

short protected services, it seems more profitable to use that capacity for working or protection 

purposes on service paths in the next-longer two zones. This may not be a general effect, but 

rather only an outcome of the specific zone-price model.

Finally, under distance-direct pricing we see the solver being extremely selective and 

careful across all distances. At no distance were all offered demands preferred. It makes sense 

that under linear-eamings with distance, the selected demands should be spread over all distances 

as they are because costs here are also linear; the two are basically in balance at all scales. This 

means that preferred demands of either type can be found across all distances. Also, at all scales, 

roughly the same numbers of protected and unprotected services were preferred, but in no case 

are all demands (or should be) picked up if one desires to achieve the maximum potential profit. 

Strategically, the solver is using capacity in very specific ways to make detailed choices of how 

to incur channel cost, how to make better trade-offs between spending directly for channels for an 

unprotected service here, and for protection capacity to enable two or three protected services 

there (which earn more), and so on.

7.5.3 Case Study 3: Effects o f  Preemptible Service on Preferred Demands

Most, if not all, service providers have included protected and unprotected services in their 

transport services portfolios. To our knowledge, preemptible services, which use protection (or 

spare) channels and get discarded when protected services fail, have not been as widely
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introduced in a mesh network context25. Here we analyze how preemptible services affect the 

preferred demands and impact on overall profit.

All three service classes are now considered and for the available demands, we have five 

possible demands to serve per node pair in each service class. The provisioning cost of each 

span, as before, is C, = 0.4 *Lj and the revenue of the unprotected services is R J  = W , which 

corresponds to the service distance. The parameters of relevance in this study are the revenue 

ratios, a  and P, as defined in Section 7.3.

Figures 7.7 to 7.9 show the preferred demands in each class as we increase a  from 1 to 2 

for every p. From these figures, we see that increasing a  (from left to right) generally increases 

our preference to serve more protected services and preemptible services, while it decreases the 

unprotected demands. Increasing ft  (from bottom to top), on the other hand, suggests that we 

should serve more protected and preemptible services, as a synergistic pair of services. What 

seems to be less intuitive is that when we increase ft  from 0, where we provide no incentive for 

serving any preemptible services, to P  of 0.2, there is an abrupt change in preferred demands. We 

prefer to serve less protected services while significantly serving more preemptible services, as 

shown in Figure 7.9. An increase in a  (for non-zero p) also has a positive influence on serving 

more preemptible services. The interpretation is that as a  increases, the max-revenue solution 

tends to serve more protected services. That requires more spare capacity and hence gives room 

and incentive to provision additional preemptible services because this effectively provides the 

spare capacity for the former.

Figure 7.10 shows an interesting aspect of the optimal profit strategies for all a  and p  

combinations. Assuming, from the curves a value for discussion of, say, total profit of a quarter 

million, we have more than one mix of preferred demands to meet this target. We can either set 

or to 1.9 (on p =  0) or introduce preemptible services with /?= 0.4 while reducing a  to 1.7. In 

other words, even a pricing decrease in the protected services can achieve the same profit goal, if 

we introduce preemptible services and charge accordingly (in this example, 40% of the 

unprotected services.) This may seem surprising, but it is an effect explained by the fact that with 

a  ~2 and P  =0, we earn more for protected services but we must bear the cost of conventional 

explicit spare channels for protection of those services. Evidently, we can earn just as much 

profit by lowering protection service costs and admitting an even more-discounted preemptible

25 In ring-based network, this might correspond to using the “extra traffic” feature of ring ADMs. In a 

mesh network, the dual use of protection capacity in this way is much more flexible and general than with 

rings [Gro04].
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service class, because the working channels of the latter effectively subsidize the provisioning of 

spare channels for the former.

7.6 Summary

We have provided a maximum-profit demand loading model for wavelength-service 

networks with multiple service classes and tested it in three case studies. This model can be used 

to gain insight and conduct research about many scenarios, strategies and “what ifs.” From an 

operational standpoint, its value lies in helping to identify and understand the “preferred 

demands” for a given network, cost, and revenue situation. Although a network operator cannot 

literally pick and chose individual demands as precisely as the maximum-profit solution suggests, 

studies with the optimization model can reveal strategies and insights about what would be most 

profitable, and ultimately guide and influence sales and marketing development.

An interesting case illustrating one possible use of the model is that we revealed a strategy 

option in which a mix of preemptible and protected service offerings can earn as much profit as 

an offering of only protected services. If  an operator’s business environment provided few 

customers willing to pay nearly twice the price for protection, then it would be useful to know 

that a mixed environment of preemptible and protected services at lower prices can achieve the 

same profit target. Combined with operations support “back office” systems, the maximum-profit 

model given might even be adapted as an on-line, powerful inventory-based, decision-support 

tool for service providers to guide their business planning in today’s competitive environment.
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8 Capacity Re-optimization of Mesh-based Survivable 

Networks

8.1 Introduction

This chapter summarizes the collaborative work conducted at Osaka University, by Dr. Arakawa 

and Professor Murata, investigating re-optimization issues for span restorable mesh networks. 

Through this summer program, co-sponsored by the Japan Society for the Promotion of Science 

(JSPS)26 and NSERC, we developed several re-optimization strategies that enhance the network’s 

potential to carry random incremental traffic. Full results were published in [LAM05],

Recall from Section 4.4.2 that we have classified some important related work on 

reconfiguration and re-optimization problems. The work in this chapter falls under the “type C” 

problem category, where a current topology is given. The objective is to determine a new logical 

topology or capacity configuration that has greater readiness to adapt to uncertain traffic. As we 

pointed out earlier, an important aspect o f this work is to exploit the possible use of protection or 

spare capacity to achieve the objective o f re-optimization. This option is particularly attractive to 

operators because idle protection capacity assignments in survivable networks can be re-arranged 

as often as one wishes, without affecting any working paths and always remaining in a restorable 

state.

We realize that one should never rearrange existing service paths (or active working 

channels) during the re-optimization process. However, for a complete analysis, we try not to 

make such an assumption and allow adjustment of in-service working paths. We do so because 

the synergetic rearrangement of both working and protection channels should theoretically give 

the best capacity performance. Indeed, some companies have reported that it is now possible to a 

“swap” or “bridge-and-roll” lightpath from one route to another (in a single administrative, 

single-vendor environment) without noticeable impact on services [Mer04], Thus, we consider 

re-optimization with and without permission to re-arrange in-service paths. It depends on the 

technological choice for the network management system (NMS), or it is up to the operators who 

quantify the cost-benefit of each possible operational strategy.

Another unique aspect of this work is that, without the precise knowledge of the future 

traffic, we could not re-optimize directly for enhanced measures o f routing efficiency or reduced

26 Website URL is provided here for academic researchers who might be interested in this program, 

http://www.jsps.go.jp/english/e-summer/.
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spare capacity in the existing networks. Rather, we try to maximize the traffic “carrying 

potential” of the network so that it indirectly enhances the blocking performance when faced with 

subsequent random-arrival growth in demand. We achieve this by the following model.

8.2 Models of Re-optimization on Span-Restorable Mesh Networks

We consider span restorable networks and develop four re-optimization strategies based on 

integer linear programs (ILP). Our goal here is to take any existing span restorable network 

configuration (comprised of demands already in service, spare channels pre-planned for span 

failure protection, and a remaining set of equipped but unused channels) and perform an offline 

re-optimization to create a configuration that not only serves and protects all existing demands, 

but also has a better readiness to serve continuing unpredictable growth in demands. There is one 

master ILP model within which the choice of objective function, and the latitude to re-arrange 

existing demands, provides the four different re-optimization strategies. We now provide a full 

explanation of the following formulation:

Sets:

S  Set of all spans in the network, indexed by j  or i

D  Set o f all origin-destination (OD) pairs in a demand matrix, index r

Q  Set of pre-determined eligible working routes for OD pair r, index q

Pi Set of pre-determined eligible restoration routes available upon the failure of

span i, index p

Parameters:

d

Tj

V
d

Variables:

xT 

2

120

Existing bi-directional demand on node pair r 

Total as-built capacity for span j  from any given design

Equal to one if  the q,h eligible route for demands between node pair r  uses span j ,  

zero otherwise

Equal to one if  the p ,h eligible route for span i uses span j ,  and zero otherwise 

Optional parameter for setting priority among different OD pair r

Projected bi-directional demand that could be served on node pair r

Largest possible number o f demand units that could be served uniformly on all OD

pair

Number o f working capacity units on span j  to support existing demand set
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wj Number of idle working capacity units allocated on span j  to support future demands

Sj Number of spare capacity units on span j  to support existing demand set

Sj Number of idle spare capacity units allocated on span j  to support future demands

g r'H Working flow assigned on the q h working route to serve OD pair r in existing

demand set (Note: g r'q becomes an input parameter if  rearranging working paths is 

not allowed)

^ r ,q  .

g  Potential working flow to be assigned on the q '' working route to serve OD pair r  in

future demand set

f j P Restoration flow assigned on the p'h restoration route upon the failure of span i in

existing demand set
✓N. p
/ ,  Potential restoration flow to be assigned on the p'h restoration route upon the failure

of span / in future demand set

M ax-Fair: Maximize /I (8.2.1)

Max-Vol: Maximize (8.2 .2)

Subject to:

V r e D (8.2.3)
q e Q r

(8.2.4)
r s D q S Q r

Vz e S (8.2.5)

(8.2 .6)

Vre£> (8.2.7)
q<LQr

(8 .2 .8)
r z D q z Q ’

Vi e S (8.2.9)
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A _ _  p
s jZ'ZS' j - f , (8 .2 .10)

p̂ p,

Sj + Wj + s j  +  wj  < Tj Vj e S (8 .2 .11)

x r > A V r e D (8 .2 .12)

The ILP model basically has two sets of constraints. Constraints (8.2.3) to (8:2.6) 

represent demand routing and restoration flow assignment plans to serve existing demands, d ,  

given the total capacity on each span is Tj. Constraints (8.2.7) to (8.2.10) characterize how a set 

of projected demand variables, xr, would be routed and protected in capacity that is not used by 

d .  It is important to emphasize that these “projected demands” are not known future demands. 

They only represent potential extra demands on each node pair that could be served. The 

hypothesis here is that maximizing these properties should lead to the enhanced readiness for 

future demand. We will test this hypothesis through simulations in the next section.

The two objective functions (8.2.1) and (8.2.2) express different goals for maximizing the 

future demand carrying potential. Coupled with constraint (8.2.12), Max-Fair re-optimizes 

existing routes and protection plans so that the largest minimum number 2  of new paths is 

possible on all demand pairs. For example, the new network state with 2  = 3 will support at least 

three new paths (with restorability guarantee) on every OD pair. In contrast, Max- Vol re

optimizes the capacity so that the bulk total volume of potential new paths is highest, with no 

consideration o f fairness between node pairs. By using a weighting parameter a in Max-Vol, we 

have the option to assign preferences to the most desirable node pairs and for which to create 

growth readiness. Thus, if there exist some historical data on which preferable OD pairs are 

available, the explicit parameterization o f d  would be valuable. As in the case of Max-Fair, we 

can exclude less important node pairs from constraint (8.2.12) if desired.

Two sets of variables (with and without arrow tops) distinguish between the current and 

projected demands and their corresponding routing and protection plans. Constraint (8.2.3) 

indicates the demand flows gr’q onto working paths q to support the current demands d  of each 

demand pair r. Constraint (8.2.4) generates the working capacity wj required on each span to 

simultaneously serve the demand flows. (8.2.5) and (8.2.6) are standard survivability constraints 

for span restoration. (8.2.5) ensures that there are enough restoration flowsf j  assigned to eligible 

restoration routes P, when span i fails, and (8.2.6) generates the required spare capacities Sj to 

support each single span failure.

Readers might notice that the constraints (8.2.3) to (8.2.6) are identical to those in the basic 

spare capacity design of span restorable network. However, in the context of re-optimization
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without rearrangement of in-service paths, the working paths gr,q are no longer variables but 

become fixed input parameters to the problem. In this case, only the restoration paths.//7 and 

assigned spare channel quantities sj are the variables in (8.2.5) and (8.2.6), and are altered during 

the re-optimization process. Similarly, constraints (8.2.7) to (8.2.10) deal with the demand 

routing and protection flow assignments sub-problem for the projected demands. Note that the 

variables ultimately of interest to the solution are not potential demand variables themselves (i.e., 

x1), but the changes made to current spare channel and working route assignments, sj, and J f, to 

maximize the potential if only protection rearrangement is considered, or variables wj, sj, gr'q,JT if 

complete rearrangement is allowed. The changes in these variables are the substance of the re

optimization actions to implement on the network itself.

8.3 Experimental Design and Results

The combination of the two objective functions (denoted by Max-Fair and Max-Vot) with 

and without in-service path rearrangement (denoted by Complete and SpareOnly) yields four 

distinct strategies. To evaluate the robustness of each one, we first create an initial capacity and 

routing configuration. The initial configuration (specifically d , gr,q and 7}) is then passed to the 

ILP for re-optimization. In the final phase, we generate random incremental requests to evaluate 

the blocking performance after the re-optimization changes are put into effect. By incremental 

traffic, we mean demands whose connection (e.g., lightpath) requests arrive sequentially from 

some random OD nodes. Once a lightpath is established for each connection, the lightpath 

remains in the network indefinitely. Readers therefore should not confuse these traffic 

characteristics with those of the “dynamic” traffic (as discussed in Section 3.2.1) in which 

lightpaths and capacity resources are released after some finite amount of time.

To create the initial capacity configuration, we use the basic minimum-cost span restorable 

mesh design with an average demand of 4.58 lightpaths per node-pair. The 11-node, 26-span 

COST239 network (also shown in Figure 6.2 and Appendix A.4) is used for the results. We 

assume that each span on the network has a total as-built capacity of 40 channels and each node is 

capable of performing wavelength conversion or has enough wavelength converters to make 

wavelength blocking negligible. The initial capacity scenario results in nearly half of the total 

capacity being used (493 out o f 1040 channels in total). The distribution of used capacity over 

the total is illustrated in Figure 8.1. The capacity utilizations after the four re-optimization 

procedures are shown in Figures 8.2 to Figure 8.5.

Carefully analyzing these figures, we see how each re-optimization strategy re-distributes 

the existing capacities. For the SpareOnly strategies, the distributions of the capacity seem to
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retain the characteristics and shape of the initial design. In fact, simple correlation calculation 

measures in Table 8.1 reflect that the Max-Vol-SpareOnly design has the least amount of capacity 

re-distributions. In contrast, both Max-Fair-Complete and Max- Vol-Complete strategies tend to 

re-distribute the existing capacities in such a way that they are more evenly spread over all spans, 

even if  more total capacity might be used.

Table 8.1. Capacity utilization before and after applying each re-optimization strategy.
Re-optimization

Strategy
Not

re-optimized
M ax-Fair-
SpareOnly

M ax-Fair-
Complete

Max-Vol-
SpareOnly

Max-Vol-
Complete

Total fixed capacity 1040 1040 1040 1040 1040

Total capacity used 
after re-optimization27 493 540 506 498 489

Total unused capacity 
after re-optimization 547 500 534 542 551

Correlation measure 
of re-optimized to 
initial design

1.00 0.82 0.70 0.94 0.72

Following each re-optimization method, we randomly generate 200 incremental requests as 

the future demands and load them onto each capacity configuration. The Max-Vol cases used d  = 

1 for all node pairs (assuming no prior knowledge of the OD pairs is given). In the incremental 

traffic model, each request is for one lightpath and its origin-destination nodes are selected 

uniformly. Such incrementally-arriving demands are then routed by solving an algorithm of 

finding the route that uses the minimum total (working plus spare) channels for protection.

27 Readers might question why the Max-Vol-Complete strategy could produce a configuration that has less 

overall capacity than the initial design, supporting the identical set of demands. It is so because the initial 

design is optimized based on minimizing capacity “cost,” whereas in our re-optimization formulations, the 

capacity cost is no longer a parameter to the model. In fact, we confirmed that the initial design still 

produces the lowest cost possible design of242405 cost units, wheareas the Max-Vol-Complete design cost 

264035 units, which is approximately 9% more costly than the initial design.
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Five eligible working routes are considered and ten eligible restoration routes are 

represented for span restoration in solving each of the incremental minimum-cost protected 

routing problems. If  the working path cannot be set up after trying all possible eligible routes, or 

if it cannot be fully protected within existing remaining capacity, then the request is blocked.

Table 8.2 shows the main results, in terms of the blocking performances of each strategy in 

coping with the continued random incremental growth, as well as the number of rearrangements 

that have taken place. Blocking is estimated from 12 trials of 200 demand-arrival experiments. It 

is interesting that even if only rearrangement of protection is allowed, the blocking improvements 

are still significant. Also, even though Max-Fair-SpareOnly and Max-Vol-SpareOnly have less 

total unused capacity (as indicated in Table 8.1), their blocking performances are still better than 

the non-optimized case. As expected, if re-arranging working paths is permitted, further 

improvement in blocking can be achieved by the Complete schemes. The Max- Vol-Complete 

gives the best overall blocking reduction, provided that the underlying network management 

systems are capable of re-routing nearly 15% of the OD pairs without significant impact.

Table 8.2. Blocking improvement from four re-optimization strategies.
Re-optimization

Strategy
Not

re-optimized
Max-Fair-
SpareOnly

M ax-Fair-
Complete

Max-Vol-
SpareOnly

Max-Vol-
Complete

Average blocking (%) 
in random demand 
arrival test

54.33 40.75 21.08 43.17 19.58

Standard dev. of 
blocking (%) 6.12 6.78 6.80 6.13 6.69

% improvement 
in blocking benchmark 25.00 61.20 20.55 63.96

Number o f node pairs 
experiencing working 
path rearrangement

0/55 0/55 13/55 0/55 8/55

Number of restoration 
flow assignments 
changed during re
optimization

0/114 53/114 64/114 46/114 48/114

8.4 Summary

We have presented an integer linear program formulation to characterize four re

optimization strategies for span-restorable mesh networks, and we showed that the potential 

improvement in blocking from each strategy to face random arrival of subsequent demands. Such 

blocking improvement might imply that one can serve demand growth while deferring 

unnecessary capital investment for transport capacity. Overall, the best strategy tends to re

optimize for maximum “volume” of potential future paths, with working paths rearrangement
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allowed. Re-optimization of only restoration flows and spare channels still gave a 20% reduction 

in blocking in the test cases presented here.

While this study might provide the numerical justification of why re-optimization should be 

warranted and what capacity configuration could maximize the readiness to adapt to uncertain 

demand growth, these questions only represent a part of the overall issue. For example, how to 

obtain an accurate view of existing network elements or capacity assets poses a difficult and real 

practical challenge on service providers, especially when the task is to get an updated, 

consolidated capacity view in multi-vendor, multi-administrative network environment. To 

optimize, one must have an accurate, central view on inventory of capacities as a prerequisite. 

Readers should note that this is also a key  assumption o f  this chapter for us to measure the 

“stranded” capacities, to manage and finally to optimize them accordingly.
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9 Concluding Remarks

9.1 Best Strategic Tool for Demand Uncertainty?

Given the new research tools presented in this thesis, a question might now be: What is the 

best strategy under demand uncertainty? An answer to this question is: it depends how much we 

know about the future. There is no single best, or “one-size-fits-all,” solution to this problem.

Recall that in Section 4.3.1, we have presented the conceptual framework by Courtney, 

Kirkland and Viguerie and classified the notion of uncertainty into Level I (A Clear-Enough 

Future), Level II (Alternative Futures), Level III (A Range of Futures) and Level IV (True 

Ambiguity). Our optimal selection on the type of strategies would depend on the level o f demand 

information available at the time of the decision-making.

Under circumstances where it is possible to identify clear trends on demand traffic and a 

single forecast is precise enough to capture the future, the use o f traditional planning approaches 

that optimize the routing and transport capacity assignment for a single target planning view is 

most appropriate. All capacity design methods in Section 4.2 provide possible design tools. In 

today’s highly competitive, multi-service environment, obtaining a single demand forecast might 

seem impossible. Indeed, in the past when the telecommunication industry was a monopoly, 

when telephony was the dominant traffic and exhibited constant growth in transport network, 

demand information was inherently knowable and precisely predictable.

At Level II, we assume that uncertainty can be described as a set of discrete, plausible 

demand scenarios. If  additional information is available, one can assign a probability measure to 

each of the outcomes. Based on such uncertainty assumptions, our stochastic programming (SP) 

based models in Chapter 6 can provide a more suitable planning strategy, compared to traditional 

ones where they might produce, at best, the same SP-based capacity design solution (when the 

recourse factor is less than or equal to 1), and, at worst, very expensive designs (when the 

recourse factor is above 1). These supporting results were fully discussed and illustrated in 

Figure 6.4.

When no distinct scenario can be identified, the strategies proposed in Chapter 5 can be 

used to evaluate the robustness of possible designs to the range of outcomes. The SP-based 

capacity methods are not recommended and might produce misleading solutions when Level III 

uncertainty is assumed. This is so because SP-based methods work best for suggesting optimal 

solutions based on a set of distinct scenarios. If we are forced to incorporate a full “range” of 

demand scenarios into a SP-based formulation, we will complicate the complexity of the
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problem, which leads to a design solution with only inconclusive insights (as discussed in Section 

4.3.1.) On the other hand, evaluative approaches based on the PFA-Servability framework (and 

the ones discussed in Section 4.3.3) enable decision makers to more effectively identify and 

compare robust designs that use traditional planning approaches. Another recommendation is 

that if capacity planning decisions can be postponed and it is possible to wait for more 

information on the demand until some discrete scenarios are revealed, Level II strategies could 

still be employed.

The demand loading and re-optimization strategies presented in Chapters 7 and 8 are the 

most suitable strategies for Level IV uncertainty, where there is simply no basis to forecast the 

future. From these strategies, we are no longer bounded by the precision o f the demand forecast 

(or the set of scenarios) as a crucial input parameter to the formulations, but rather we can apply 

them to whatever demand scenario might arise. In other words, the optimality from the demand 

loading or re-optimization solutions is always valid, regardless of the ambiguity of the demand 

forecast. If we happen to have a demand scenario that exceeds the available capacity provided by 

the existing network, the demand loading formulation can be used to select the most profitable 

demands to provision, specific to which node-pair and in which multi-QoP service class. For 

cases where the network has surplus capacity to support the already in-service demands, re

optimization strategy can be used to turn “stranded” working and spare capacities into productive 

ones for adapting the unforeseen future.

To conclude, we have presented a portfolio of strategic tools and ideas of how demand 

uncertainty can be handled in the planning and management of mesh survivable transport 

networks. We have also acknowledged the limitation and underlying implications of each 

strategy, so that network planners, researchers and decision makers can judiciously pick and 

choose the right model to be applied.

9.2 Summary of Publications

The following journal, magazine and conference papers have been published or have been 

accepted for publication during the course of my doctoral program (listed in chronological order).

1. D. Leung, W. D. Grover, “Maximum-Profit Model for Study o f Multi-QoP Wavelength 

Service Offerings in Survivable Mesh Networks,” in Proceedings o f the Optical Fiber 

Communication Conference & Exposition and the National Fiber Optic Engineers 

Conference (OFC/NFOEC), Anaheim Convention Center, Anaheim, California, March 6-11, 

2005,
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2. D. Leung, S. Arakawa, M. Murata, W. D. Grover, “Re-optimization Strategies to Maximize 

Traffic-Carrying Readiness in WDM Survivable Mesh Networks,” in Proceedings of the 

Optical Fiber Communication Conference & Exposition and the National Fiber Optic 

Engineers Conference (OFC/NFOEC), Anaheim, California, March 6-11,2005.

3. D. Leung, W. D. Grover, “Capacity Planning of Survivable Mesh-based Transport Networks 

under Demand Uncertainty,” Accepted to Journal of Photonic Network Communications, 

February 14,2005.

4. D. Leung, W. D. Grover, “Capacity Design of p-Cycle Networks in Face of Demand 

Forecast Uncertainty,” in Proceedings of the 9th OptoElectronics and Communications 

Conference / 3rd International Conference on Optical Internet (OECC/COIN 2004), Pacifico 

Yokohama, Kanagawa, Japan, July 12-16,2004.

5. D. Leung, W. D. Grover, “Restorable Mesh Network Design under Demand Uncertainty: 

Toward ‘Future-proofed’ Transport Investments,” in Proceedings of the Optical Fiber 

Communication Conference (OFC 2004), Los Angeles, California, February 22-27,2004.

6. D. Leung, W. D. Grover, “Comparative Ability of Span Restorable and Path Protected 

Network Designs to withstand Uncertainty in the Demand Forecast,” in Proceedings of the 

18th National Fiber Optic Engineers Conference (NFOEC 2002), Dallas, Texas, Sept. 15-19, 

2002 .

7. W. D. Grover, J. Doucette, M. Clouqueur, D. Leung, D. Stamatelakis, “New Options and 

Insights for Survivable Transport Networks,” IEEE Communications Magazine, vol. 40, no.

1, January 2002.

8. M. Clouqueur, W. D. Grover, D. Leung, O. Shai, “Mining the Rings: Strategies for Ring-to- 

Mesh Evolution,” in Proceedings of the Third International Workshop on Design of Reliable 

Communication Networks (DRCN), Budapest, Hungary, October 2001.

9. W. D. Grover, M. Clouqueur, D. Leung, “Evolution of a Telecommunications Network from 

Ring to Mesh Structure,” U.S. Patent No. 60,301,120, June 28,2001, CDN Patent No. 

2,392,123, June 28,2002.

Some comments must be given on my contributions to the published works 7, 8 and 9 

above, related to the idea of “Ring Mining.” The idea of Ring Mining, originated from Dr.

Wayne Grover, suggests a potential strategy for network operators who operate ring-based fibre- 

optic networks. Without physically adding new capacity, operators could increase the network 

capacity of an existing ring-based fibre-optic network through an operational transformation from 

a ring-based to a mesh-based topology. Somewhat similar to the re-optimization strategies, the
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ring mining strategy might allow operators to serve future growth by efficiently utilizing their 

existing infrastructure, and hence, potentially postpone major capital additions for a significant 

period of time.

Results from 7, 8 and 9 are based on a project that I conducted in a graduate course entitled 

“Survivable Networks” in Fall 2000. In that project, I undertook the preliminary investigation of 

this idea and then developed two optimization models showing that this strategy could be 

beneficial. In several test cases, we found that the capacity of an existing ring-based network, 

when reclaimed and used by a mesh-based architecture, could support a demand up to 60% higher 

than the original demand served by the ring-based network. Because I had to complete three 

other courses in the subsequent winter term, this project was transferred to Matthieu Clouqueur, a 

past research engineer at TRLabs, and Ofer Shai, a past co-op student with TRLabs. Thus I only 

participated in the initial implementation and paper revision process, but not in the final writing 

of the joint publications.

9.3 Problems for Future Research

9.3.1 Long-Term Capacity Investment under Demand Uncertainty

Recall that in Table 2.3 we illustrated.the differences between the long-term, medium-term 

and short-term planning problems. While studies in this thesis are strictly within the scope of 

medium- and short-term capacity planning contexts, the effects of demand uncertainty on a long

term planning problem could be investigated. In the long-term context, both capacity and 

network topology (in particular, network spans) can be altered along with the demand evolution.

If an optimization-based approach is taken, the publication by Grover and Doucette [GrDOlb] and 

other references documented in the Master’s thesis by Ezema [Eze03] might provide a good 

starting point for tackling this problem.

If our question of interest is not to decide where and how much capacity needs to be 

allocated, but more strategically, to determine whether and when new capacity should be 

invested, an analytical technique called Real Options might be an appropriate approach for 

evaluating the time-discounted value of the capacity investment under uncertainty 

[DiP94] [AIN 99] [A1102].

In much of the real options literature (including [DiP94][AlN99][A1102]), the real options 

approach is compared to the discounted cash flow (DCF) analysis. In a basic DCF analysis, a net 

present value (NPV) is calculated based on summing a series of discounted cash flows (e.g., 

revenues and costs). From engineering economics, we learned that if NPV is greater than zero (or 

some threshold values), it implies that investment should be made. On the other hand, a negative
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NPV would suggest the investment should not be made at present (or in the future). One of the 

new dimensions o f real options (over traditional DCF analysis) is that this approach considers the 

possibility o f delay and makes the investment decision at a later time. Such a delay might have 

some value referred as “the option value o f waiting,” and might exploit the flexibility or option to 

defer, abandon, contract, switch and expand the investment. Another noticeable difference of the 

two approaches is the characterization of uncertainty in real options is more sophisticated than 

that in traditional DCF analysis. Dixit and Pindyck [DiP94] have given an excellent treatment to 

real options. Its applications to telecommunications can also be found in [A1N99][A1102].

9.3.2 Heuristics fo r Solving TP-SR, TP-MSR Formulations

Like any other integer program formulations, the stochastic programming-based 

formulations in Chapter 6 have their own limitations in terms of computational complexity. For 

many real-world network topologies that have tens of nodes and spans, heuristic or 

decomposition techniques are warranted to find approximate, sub-optimal solutions.

As mentioned in Section 4.3.2, decomposition techniques, such as Benders decomposition 

and Lagrangian Relaxation, might be used to break down large problems into more manageable 

sub-problems. Sampling methods, such as the stochastic quasi-gradient method, importance 

sampling and stochastic decomposition, might be useful options.

In terms of heuristics, one obvious approach to tackling the two-part formulation is to first 

solve the joint capacity placement (JCP) problem for each demand scenario, and then combine all 

capacity designs with recourse-aware factors. Another possibility is to use the set of demand 

scenarios as input and generate a master demand matrix. From this, we then solve the joint 

capacity placement problem. Note that the reduction in computation time with heuristic 

approaches will also affect the capability of completely characterizing the variables in the original 

model.

9.3.3 Re-configuration Policies for Transport Capacity Management

In Section 4.4.2, we described various types of re-configuration problems. An interesting 

extension to our study of re-optimization might be to look into the questions of when and how 

often re-optimization processes should be triggered. Event-triggered, periodic-based, threshold- 

based reconfiguration policies (as discussed at the end of Section 4.4.2) might be possibilities 

well worth investigating. Recall that in our study, only incremental demand arrivals are 

considered. Dynamic demands, with traffic arrivals and departures, can be studied within this 

problem scope.
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Appendix A: Detailed Descriptions of Test Networks

We show all test topologies -  namely, Metro, Germany, US and COST 239 networks -  

used in this thesis. Precise descriptions o f each are also presented.

A.1 M etro Networks (6 nodes, 10 spans)

N2

Nl

N6

Node X-coord. Y-coord. Nodal Size
N l 87 161 3
N2' 400 70 •3 '
N3 213 195 4
N4 116 283 4
N5 517 221 3
N6 420 346 3

Span Origin Destination Length
SI Nl N2 212
S2 Nl N3 121
S3 N2 N3 147
S4 Nl N4 125
S5 N3 N4 147
S6 N2 N5 226
S7 N3 N6 191
S8 N4 N6 237
S9 N5 N6 161
S10 N4 N5 346
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A.2 Germany Networks (14 nodes, 24 spans)

,N2<

N8
N9

N6'

N11N10

N12 N13
N14

Node X-coord. Y-coord. Nodal Size
Nl 363 53 2
N2 261 80 4
N3 416 116 5
N4 299 174 4
N5 187 201 3
N6 205 248 4
N7 343 249 4
N8 379 224 3
N9 485 236 3
N10 279 322 3
N il 403 319 4
N12 255 394 3
N13 311 397 3
N14 427 414 3

Span Origin Destination Length
SI Nl N2 106
S2 Nl N3 82
S3 N2 N3 159
S4 N3 N4 131
S5 N2 N4 101
S6 N2 N5 142
S7 N4 N5 115
S8 N3 N9 138
S9 N3 N8 114
S10 N8 N9 107
S ll N8 N7 44
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S12 N4
S13 N5
S14 N6
S15 N6
S16 N6
S17 N10
S18 N7
S19 N10
S20 N12
S21 N il
S22 N il
S23 N13
S24 N9

N7 87
N6 50
N7 138
N12 154
N10 105
N12 76
N il 92
N il 124
N13 56
N13 121
N14 98
N14 117
N14 187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150



A.3 US Networks (17 nodes, 24 spans)

N13

N14

N12,N4

N15N2i

N16N5

N3
NS

N17

N11

Node X-coord. Y-coord. Nodal S
N l 112 151 3
N2 95 273 3
N3 119 359 3
N4 195 236 3
N5 173 330 2
N6 181 375 2
N7 271 270 5
N8 370 181 2
N9 378 339 2
N10 357 405 " 3
N il 376 437 2
N12 441 235 5
N13 597 169 2
N14 580 213 3
N15 573 263 2
N16 560 323 2
N17 542 394 4

Span Origin Destination Length
SI N l N2 123
S2 Nl N4 119
S3 N2 N4 107
S4 N2 N3 89
S5 N3 N5 61
S6 N3 N6 64
S7 N5 N7 115
S8 N4 N7 83
S9 Nl N8 260
S10 N8 N12 89
S ll N6 N10 179
S12 N10 N il 37
S13 N7 N10 160
S14 N7 N9 127
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S15 N il N17 171
S16 N9 N17 173
S17 N7 N12 174
S18 N12 N17 188
S19 N12 N13 169
S20 N12 N14 141
S21 N13 N14 47
S22 N14 N15 50
S23 N15 N16 61
S24 N16 N17 73
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A.4 COST 239 Networks (11 nodes, 26 spans)

N1C'
N7

'N4

N3.

N2

Node X-coord. Y-coord. Nodal
Nl 140 281 6
N2 315 350 4
N3 304 298 5
N4 356 235 5
N5 447 308 4
N6 417 161 5
N7 242 159 5
N8 250 214 5
N9 185 208 5
N10 128 143 4
N il 344 50 4

Span Origin Destination Lengtl
SI Nl N2 820
S2 Nl N3 600
S3 Nl N6 1090
S4 Nl N8 400
S5 N l N9 300
S6 N l N10 450
S7 N2 N3 320
S8 N2 N5 820
S9 N2 N9 930
S10 N3 N4 565
S ll N3 N5 730
S12 N3 N8 350
S13 N4 N il 740
S14 N4 N5 320
S15 N4 N6 340
S16 N4 N8 730
S17 N5 N6 660
S18 N6 N il 390
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S19 N6 N7 660
S20 N7 N il 760
S21 N7 N8 390
S22 N7 N9 210
S23 N7 N10 550
S24 N8 N9 220
S25 N9 N10 390
S26 N10 N il 1310
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Appendix B: AMPL Formulations

B .l Maximum Servability for Span Restorable Network (SR-MS Formulation)

# Maximum Servability for Span Restorable Network Formulation
i t
TT

# November 30, 2001 by Dion Leung
# Copyright (C) 2001 TRLabs, Inc. All Rights Reserved.
# Model File: SR-MS.mod

# Given a capacitated capacity design and test demand scenario, this
# formulation (minimizes) maximizes the (un-)servability of a span-
# restorable network.
 # ------------------------------------------------------------------------------------------------------------------

# ------------------------------------------------------------------------------------------------------------------
# SET

# set of all spans: 
set SPANS;

# set of all demands: 
set DEMANDS;

# set of eligible working routes for each demand pair r: 
set WORK_ROUTES{r in DEMANDS};

# set of eligible restoration routes for each span i: 
set REST_ROUTES{i in SPANS};
 # -----------------------------------------------------------------------------------------------------------------------
# PARAMETERS
f -----------------------------------------------------------------------------------------------------------------------

# number of existing capacity units on span j : 
param Totalcap{j in SPANS};

# the test demand pattern: 
param DemUnitsfr in DEMANDS};

# equal to 1 if qth eligible working route for demand pair r crosses 
span j, 0 otherwise:
param Zeta{j in SPANS, r in DEMANDS, q in WORK_ROUTES[r]} default 0;

# equal to 1 if pth restoration route for failure of span i uses span j 
and 0 otherwise:
param Delta{i in SPANS, j in SPANS, p in REST_ROUTES[i]} default 0;
 # -----------------------------------------------------------------------------------------------------------------------
# VARIABLES
 # -----------------------------------------------------------------------------------------------------------------------
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# total number of un-served demands for OD pair r 
var unserved{r in DEMANDS} >= 0, <= 100000 integer;

1 working flow required by qth working route for demand between node 
pair r:
var workflow{r in DEMANDS, q in WORK_ROUTES[r] , k in SCENARIOS} >=0, 
<=200000 integer;

# restoration flow through pth restoration route for failure of span i: 
var restflow{i in SPANS, p in REST_ROUTES[i], k in SCENARIOS} >=0, 
<=200000 integer;

# number of spare links placed on span j : 
var spare{j in SPANS} >=0, <=300000 integer;

# number of working links placed on span j : 
var work{j in SPANS} >=0, <=300000 integer;

! ----------------------------------------------------------------------------------------------------------------------
# OBJECTIVE AND CONSTRAINTS
 # ----------------------------------------------------------------------------------------------------------------------

minimize UNSERVABILITY:
sum{r in DEMANDS} unserved[r];

subject to ROUTABILITY{r in DEMANDS}:
sum{q in WORK_ROUTES[r]} workflow[r,q] = DemUnits[r] - unserved[r];

subject to WORKING_CAPS{j in SPANS}:
sumfr in DEMANDS, q in WORK_ROUTES[r]} Zeta[j,r,q] * workflow[r,q] 
<= work[j];

subject to RESTORABILITY{i in SPANS}:
sum{p in REST_ROUTES[i]} restflow[i,p] = work[i];

subject to SPARE_CAPS{i in SPANS, j in SPANS: i <> j}:
sparefj] >= sum{p in REST_ROUTES[i]} Delta[i,j,p] * restflow[i,p];

subject to LIMITED_TOTAL_CAPS{i in SPANS}: 
work[i] + spare[i] <= Totcap[i];

subject to UNSERVED_UPPERBOUND{r in DEMANDS}:
DemUnits[r] >= unserved[r};
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B.2 Maximum Servability for SBPP Network (SBPP-MS Formulation)

# Maximum Servability for Shared Backup Path Protected (SBPP) Network
# Formulation
ir

# November 30, 2001 by Dion Leung
# Copyright (C) 2001 TRLabs, Inc. All Rights Reserved.
# Model File: SBPP-MS.mod

# Given a capacitated capacity design and test demand scenario, this
# formulation (minimizes) maximizes the (un-)servability of a SBPP
# network.

# Additional Notes:
# (1) Each OD demand unit is routed over a single shortest working
# route (from WORKING_ROUTES pathsets).
# (2) When there is any span failure, the affected OD pairs are
# restored over their corresponding span-disjointed backup paths.
J l ____________________________________________ ___ _____________ ___ ___________
7t -------------------------------------------------------------------------------------------------------------------------------- ------  ---------

 # -------------------------------------------------------------------------------------------------------------------
# SET

# set of all spans: 
set SPANS;

# set of all demands: 
set DEMANDS;

# set of eligible span-disjoint backup routes for each demand pair r: 
set BACKUP ROUTES{r in DEMANDS};

# PARAMETERS

# number of existing capacity units on span j : 
param Totalcap{j in SPANS};

# the test demand pattern: 
param DemUnits{r in DEMANDS};

# equal to 1 if b-th backup path of the OD pair r uses span j, 0 
otherwise
param Delta{r in DEMANDS, j in SPANS, b in BACKUP_ROUTES[r]} default 0;

4 equal to 1 if the primary path of the OD pair r uses span i, 0 
otherwise
param Beta{r in DEMANDS, i in SPANS} default 0;
 # -----------------------------------------------------------------------------------------------------------------------
# VARIABLES
 # -----------------------------------------------------------------------------------------------------------------------
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# total number of un-served demands for OD pair r 
var unserved{r in DEMANDS} >= 0, <= 100000 integer;

# equal to 1 if the backup path for demand r uses the b-th route, 0 
otherwise
var backup_flow {r in DEMANDS, b in BACKUP_ROUTES[r ]} >=0, <=1 integer;

# number of spare links placed on span j : 
var spare{j in SPANS} >=0, <=300000 integer;

# number of working links placed on span j : 
var work{j in SPANS} >=0, <=300000 integer;

# a fractional number which indicates the portion of demand units of OD 
pair r that is being served and protected by the bth backup route
var restore fraction {r in DEMANDS, b in BACKUP_ROUTES[r]} >=0, <=1;

# OBJECTIVE AND CONSTRAINTS
 # ------------------------------------------------------------------------------------------------------------------------

minimize UNSERVABILITY:
sum{r in DEMANDS} unservedfr];

subject to WORKING_CAPS {j in SPANS}:
sum{r in DEMANDS} Beta[r,j] * (DemUnits[r]-unserved[r]) <= work[j];

subject to SINGLE_BACKUP_ONLY {r in DEMANDS}:
sum{b in BACKUP_ROUTES[r]} backup_flow[r,b] = 1;

subject to SPARE_CAPS {i in SPANS, j in SPANS: i <> j}: 
sum {r in DEMANDS, b in BACKUP_ROUTES[r]}
Delta[r,j,b]* Beta[r,i] * DemUnits[r] * restore_fraction[r,b] <= 
spare[j];

subject to RESTORABILITY {r in DEMANDS, b in BACKUP_ROUTES[r]}: 
restore_fraction[r,b] >=
(backup_flow[r,b] - unserved[r] /DemUnits[r]);

subject to LIMITED_TOTAL_CAPS {i in SPANS}: 
work[i] + spare [i] <= Total_caps[i];

subject to UNSERVEDJJPPERBOUND {r in DEMANDS}: 
unserved[r] <= DemUnits[r];
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B.3 Two-Part Span Restorable Capacity Design (TP-SR Formulation)

# Two-Part Span Restorable Capacity Design Formulation (based on
# Stochastic Programming framework)
4 1
7T

# July 21, 2003 by Dion Leung
# Copyright (C) 2003 TRLabs, Inc. All Rights Reserved.
# Model File: TP-SR.mod
 # -----------------------------------------------------------------------------------------------------------
# Given a set of discrete forecast scenarios, this formulation
# minimizes the initial design cost plus the expected recourse
# costs to cope with the demands.

# Additional Notes:
# (1) Nominal demand scenario is denoted as "01".
# (2) RecourseCost[j] should always be relative to the present Cost[j].
 # -----------------------------------------------------------------------------------------------------------------------

SET

# set of all spans 
set SPANS;

# set of all restoration paths for each span failure: 
set REST_ROUTES{i in SPANS}’;

# set of all demand pairs or node pairs: 
set DEMANDS;

# set of all working routes for each demand pair r: 
set WORK_ROUTES{r in DEMANDS};

# set of possible forecast scenarios: 
set SCENARIOS;

# PARAMETERS

# cost of span j : 
param Cost{j in SPANS};

# recourse cost for each span j, relative to Cost[j]: 
param RecourseCost{j in SPANS};

# number of demand units between OD pair r in forecast scenario k: 
param DemUnits{k in SCENARIOS, r in DEMANDS};

# equal 1 if pth restoration route for failure of span i uses span j, 0 
otherwise:
param Delta{i in SPANS, j in SPANS, p in REST_ROUTES[i]} default 0;
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# equal 1 if qth working route for demand between node pair r uses span 
j, 0 otherwise:
param Zeta{j in SPANS, r in DEMANDS, q in WORK_ROUTES[r]} default 0;

# probability estimate of each demand scenario k: 
param Prob{k in SCENARIOS};
 # -----------------------------------------------------------------------------------------------------------------------
# VARIABLES
 # -----------------------------------------------------------------------------------------------------------------------

# number of working links placed on span j in the present design: 
var work{j in SPANS} >=0, <=300000 integer;

# number of spare links placed on span j in the present design: 
var spare{j in SPANS} >=0, <=300000 integer;

# working capacity required by qth working route for demand between 
node pair r:
var workflow}r in DEMANDS, q in WORK_ROUTES[r], k in SCENARIOS} >=0, 
<=200000 integer;

# restoration flow through pth restoration route for failure of span i: 
var restflow{i in SPANS, p in REST_ROUTES[i], k in SCENARIOS} >=0, 
<=200000 integer;

# additional working capacity needed to support demand scenario k: 
var extrawork{j in SPANS, k in SCENARIOS} >=0, <=300000 integer;

# additional spare capacity needed to support demand scenario k: 
var extraspare{j in SPANS, k in SCENARIOS} >=0, <=300000 integer;

# total capacity of span j in the present design: 
var totalcap{j in SPANS};

# total cost of the present or initial capacity design: 
var initialcost;

# total expected recourse cost required to cope with all scenarios: 
var totalrecourse;

# total initial plus future expected cost (objective value): 
var totalcost;

# OBJECTIVE AND CONSTRAINTS

minimize INITIALplusEXPECTED_FUTURE_COST:
sum{j in SPANS} Cost[j] * ( work[j] + spare[j] ) +
sum{j in SPANS, k in SCENARIOS} Prob[k] * RecourseCost[j] *
( extrawork[j,k] + extraspare[j,k] );

subject to ROUTABILITY {r in DEMANDS, k in SCENARIOS}:
sum{q in WORK_ROUTES[r]} workflow[r,q,k] = DemUnits[k,r];

subject to WORKING_CAPS {j in SPANS, k in SCENARIOS}:
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work[j] + extrawork[j,k] >= sum{r in DEMANDS, q in WORK_ROUTES[ 
Zeta[j,r,q] * workflow[r,q,k];

subject to RESTORABILITY {i in SPANS, k in SCENARIOS}: 
sum{p in REST_ROUTES[i]} restflow[i,p,k] = 
work[i] + extrawork[i,k];

subject to SPARE_CAPS {k in SCENARIOS, i in SPANS, j in SPANS: i <> 
spare[j] + extraspare[j,k] >=
sum{p in REST_ROUTES[i]} Delta[i,j,p] * restflow[i,p,k];

subject to SERVE_NOMINAL_SPARE {j in SPANS, k in SCENARIOS}: 
extraspare[j,"01"] = 0;

subject to SERVE_NOMINAL_WORK {j in SPANS, k in SCENARIOS}: 
extrawork[j,"01"] = 0;

subject to EVALUATE_TOTALCAP {j in SPANS}: 
totalcap[j] = work[j] + spare[j];

subject to EVALUATE_INITIAL_COST:
initialcost = sum{j in SPANS} Cost[j] * ( work[j] + spare[j] );

subject to EVALUATE_TOTALRECOURSE:
totalrecourse = sum{j in SPANS, k in SCENARIOS} Prob[k] * 
RecourseCost[j ] * ( extrawork[j,k] + extraspare[j,k] );

subject to EVALUATE_OVERALL_COST:
totalcost = sum{j in SPANS} Costfj] * ( workfj] + spare[j] ) + 
sum{j in SPANS, k in SCENARIOS} Prob[k] * RecourseCost[j] *
( extrawork[j,k] + extraspare[j,k] );

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.4 Two-Part Span Restorable Modular Capacity Design (TP-MSR Formulation)

# Two-Part Span Restorable MODULAR Capacity Design Formulation (based
# on Stochastic Programming framework)
itir
# July 21, 2003 by Dion Leung
# Copyright (C) 2003 TRLabs, Inc. All Rights Reserved.
# Model File: TP-MSR.mod
 # --------------------------------------------------------------------------------------------------------------------
# Given a set of discrete forecast scenarios, this formulation
# minimizes the initial design cost plus the expected recourse
# costs to cope with the demands. Modularity and economy-of-scale
# effects are considered.

# Additional Notes:
# (1) Nominal demand scenario is denoted as "01".
# (2) RecourseCost[m,j] should always be relative to the present
# modular Cost[m,j].
 # -----------------------------------------------------------------------------------------------------------

# -----------------------------------------------------------------------------------------------------------
# SET

# set of all spans 
set SPANS;

# set of all restoration paths for each span failure: 
set REST_ROUTES{i in SPANS};

# set of all demand pairs or node pairs: 
set DEMANDS;

# set of all working routes for each demand pair r: 
set WORK_ROUTES{r in DEMANDS};

# set of possible forecast scenarios: 
set SCENARIOS;

# set of capacity modules: 
set MODULES;

i  PARAMETERS
# ------------------------------------------------------------------------------------

# cost of each module type m on span j : 
param Cost{m in MODULES, j in SPANS};

# recourse cost of each module m on span j : 
param RecourseCost{m in MODULES, j in SPANS};

# maximum capacity supported by each module type m: 
param ModType{m in MODULES};
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# number of demand units between OD pair r in forecast scenario k: 
param DemUnits{k in SCENARIOS, r in DEMANDS};

# equal 1 if pth restoration route for failure of span i uses span j, 0 
otherwise:
param Delta{i in SPANS, j in SPANS, p in REST_ROUTES[i]} default 0;

# equal 1 if qth working route for demand between node pair r uses span 
j, 0 otherwise:
param Zeta{j in SPANS, r in DEMANDS, q in WORK_ROUTES[r]} default 0;

# probability estimate of each demand scenario k: 
param Prob{k in SCENARIOS};

# VARIABLES

# number of working links placed on span j in the present design: 
var work(j in SPANS} >=0, <=300000 integer;

# number of spare links placed on span j in the present design: 
var spare{j in SPANS} >=0, <=300000 integer;

# working capacity required by qth working route for demand between 
node pair r:
var workflow{r in DEMANDS, q in WORK_ROUTES[r], k in SCENARIOS} >=0, 
<=200000 integer;

# restoration flow through pth restoration route for failure of span i: 
var restflow{i in SPANS, p in REST_ROUTES[i], k in SCENARIOS} >=0, 
<=200000 integer;

# number of modules of type m placed on span j in the present design: 
var modules{j in SPANS, m in MODULES} >=0, <=10000 integer;

# additional working capacity needed to support demand scenario k: 
var extrawork{j in SPANS, k in SCENARIOS} >=0, <=300000 integer;

t} additional spare capacity needed to support demand scenario k: 
var extraspare{j in SPANS, k in SCENARIOS} >=0, <=300000 integer;

# additional modules of type m placed on span j needed to support 
demand scenario k:
var extramodules{k in SCENARIOS, j in SPANS, m in MODULES} >=0, <=10000 
integer;

# total cost of the present (initial) design: 
var initialcost;

# total expected recourse cost to cope with all scenarios: 
var totalrecourse;

# total initial plus future expected cost (objective value): 
var totalcost;
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tF -------------------------------------------
# OBJECTIVE AND CONSTRAINTS

minimize INITIALplusEXPECTED_FUTURE_COST:
sum{m in MODULES, j in SPANS} Cost[m,j] * modules[j,m] + 
sum{m in MODULES, j in SPANS, k in SCENARIOS} Prob[k] *
RecourseCost[m, j] * extramodules[k,j,m];

subject to ROUTABILITY {r in DEMANDS, k in SCENARIOS}:
sum{q in WORK_ROUTES[r]} workflow[r,q,k] = DemUnits[k,r];

subject to WORKING_CAPS {j in SPANS, k in SCENARIOS}:
work[j] + extrawork[j,k] >= sum{r in DEMANDS, q in WORK_ROUTES[r]}
Zeta[j,r,q] * workflowfr, q, k] ;

subject to RESTORABILITY {i in SPANS, k in SCENARIOS}: 
sum{p in REST_ROUTES[i]} restflow[i,p,k] = 
work[i] + extrawork[i, k];

subject to SPARE_CAPS {k in SCENARIOS, i in SPANS, j in SPANS: i <> j}: 
spare[j] + extraspare[j,k] >=
sum{p in REST_ROUTES[i]} Delta[i,j,p] * restflow[i,p, k];

subject to MODULARITY{j in SPANS}:
spare[j] + work[j] <= sum{m in MODULES} ModType[m] * modules[j,m];

subject to MODULARITY_FOR_EXTRACAP{j in SPANS, k in SCENARIOS}: 
extraspare[j,k] + extrawork[j,k] <= 
sum{m in MODULES} ModType[m] * extramodules[k,j,m];

subject to SERVE_NOMINAL_CONSTRAINT {k in SCENARIOS, j in SPANS, m in
MODULES}:

extramodules["01",j,m] = 0;

subject to EVALUATE_INITIALCOST: 
initialcost =
sum{m in MODULES, j in SPANS} Cost[m,j] * modules[j,m];

subject to EVALUATE_TOTALRECOURSE:
totalrecourse = sum{m in MODULES, j in SPANS, k in SCENARIOS} 
Prob[k] * RecourseCost[m,j] * extramodules[k,j,m];

subject to EVALUATE_TOTAL_COST:
totalcost = sum{m in MODULES, j in SPANS} Cost[m,j] * modules[j,m]+ 
sum{m in MODULES, j in SPANS, k in SCENARIOS} Prob[k] *
RecourseCost[m,j] * extramodules[k,j,m];
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B.5 Two-Part /7-Cycles Capacity Design (TP-PC Formulation)

# Two-Part p-Cycles Capacity Design Formulation (based on Stochastic
# Programming framework)
Jl
7T

# May 19, 2004 by Dion Leung
# Copyright (C) 2004 TRLabs, Inc. All Rights Reserved.
# Model File: TP-PC.mod
 # ------------------------------------------------------------------------------------------------------------------
# Given a set of discrete forecast scenarios, this formulation
# minimizes the initial design cost plus the expected recourse
# costs to cope with the demands.

# Additional Notes:
# (1) Nominal demand scenario is denoted as "01".
f (2) RecourseCost[j] should always be relative to the present Cost[j].

# ------------------------------------------------------------------------------------
# SET
 # ------------------------------------------------------------------------------------

# set of all spans 
set SPANS;

# set of eligible cycles for protection: 
set PCYCLES;

# set of all demand pairs or node pairs: 
set DEMANDS;

# set of all working routes for each demand pair r: 
set WORK_ROUTES{r in DEMANDS};

# set of possible forecast scenarios: 
set SCENARIOS;

# PARAMETERS

# cost of span j : 
param Cost{j in SPANS};

# recourse cost for each span j, relative to Cost[j]: 
param RecourseCost}j in SPANS};

# number of demand units between OD pair r in forecast scenario k: 
param DemUnits{k in SCENARIOS, r in DEMANDS};

# equal 1 if qth working route for demand between node pair r uses span 
j, 0 otherwise:
param Zeta{j in SPANS, r in DEMANDS, q in WORK_ROUTES[r]} default 0;
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# equal 2 if the failed span i is a straddling span, 1 if it is an on-
cycle span, 0 if it has no relationship to the eligible p-cycles:
param Xpi{p in PCYCLES, i in SPANS} default 0;

# equal 1 if p-cycle p uses span j, 0 otherwise, i.e., if Xpi[p,j] = 1,
then p-cycle p crosses span j :
param pCrossesj{p in PCYCLES, j in SPANS} = if Xpi[p,j] = 1 then 1 else 
0;

# probability estimate of each demand scenario k: 
param Probfk in SCENARIOS};
 # -----------------------------------------------------------------------------------------------------------------------
4 VARIABLES
# --------------------------------------------------------------------------------------------------------------------------------------------

4 number of working links placed on span j in the present design: 
var work{j in SPANS} >=0, <=300000 integer;

4 number of spare links placed on span j in the present design: 
var spare(j in SPANS} >=0, <=300000 integer;

# working capacity required by qth working route for demand between 
node pair r:
var workflow{r in DEMANDS, q in WORK_ROUTES[r], k in SCENARIOS} >=0, 
<=200000 integer;

4 copies of cycle p used for protecting demands in scenario k:
var p_cycle_usage{p in PCYCLES, k in SCENARIOS} >=0 integer, <=100000;

# additional working capacity needed to support demand scenario k: 
var extrawork{j in SPANS, k in SCENARIOS} >=0, <=300000 integer;

4 additional spare capacity needed to support demand scenario k: 
var extraspare{j in SPANS, k in SCENARIOS} >=0, <=300000 integer;

4 total capacity of span j in the present design: 
var totalcaplj in SPANS};

# total cost of the present or initial capacity design: 
var initialcost;

4 total expected recourse cost required to cope with all scenarios: 
var totalrecourse;

4 total initial plus future expected cost (objective value): 
var totalcost;

4 -----------------------------------------------------------------------------
4 OBJECTIVE AND CONSTRAINTS
 # -----------------------------------------------------------------------------------------------------------------------

minimize INITIALplusEXPECTED_FUTURE_COST:
sum{j in SPANS} Cost[j] * ( workfj] + spare[j] ) +
sum{j in SPANS, k in SCENARIOS} Prob[k] * RecourseCost [j] *
( extrawork[j,k] + extraspare[j,k] );
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subject to ROUTABILITY {r in DEMANDS, k in SCENARIOS}:
sum{q in WORK_ROUTES[r]} workflow[r,q,k] = DemUnits[k,r];

subject to WORKING_CAPS {j in SPANS, k in SCENARIOS}:
workfj] + extrawork[j,k] >= sum{r in DEMANDS, q in WORK_ROUTES[ 
Zeta[j,r,q] * workflow[r,q,k];

subject to RESTORABILITY {i in SPANS, k in SCENARIOS}: 
sum{p in PCYCLES} Xpi[p,i] * p_cycle_usage[p,k] >= 
work[i] + extrawork[i,k];

subject to SPARE_CAPS {k in SCENARIOS, i in SPANS, j in SPANS: i <> 
sparefj] + extraspare[j,k] >=
sum{p in PCYCLES} pCrossesj[p,j] * p_cycle_usage[p,k];

subject to SERVE_NOMINAL_SPARE {j in SPANS, k in SCENARIOS}: 
extraspare[j,"01"] = 0;

subject to SERVE_NOMINAL_WORK {j in SPANS, k in SCENARIOS}: 
extrawork[j,"01"] = 0;

subject to EVALUATE_TOTALCAP {j in SPANS}: 
totalcap[j] = work[j] + spare}j];

subject to EVALUATE_INITIAL_COST:
initialcost = sum{j in SPANS} Cost[j] * ( work[j] + spare [j] );

subject to EVALUATE_TOTALRECOURSE:
totalrecourse = sum{j in SPANS, k in SCENARIOS} Prob[k] * 
RecourseCost[j] * ( extrawork[j,k] + extraspare[j,k] );

subject to EVALUATE_OVERALL_COST:
totalcost = sum{j in SPANS} Cost[j] * ( work[j] + spare[j] ) + 
sum{j in SPANS, k in SCENARIOS} Prob[k] * RecourseCost[j] *
( extrawork[j,k] + extraspare[j,k] );
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B.6 Maximum-Profit Multi-QoP Demand Loading (MP-QoP-DL Formulation)

f --------------------------------------------------------------------------------------------------------------------
# Maximum Profit demand loading over span-restorable mesh with multi-
# QoP demand services
#
# October 1, 2003 by Dion Leung
# Copyright (C) 2003 TRLabs, Inc. All Rights Reserved.
# Model File: MP-QoP-DL.mod

# Given a capacitated network, cost and revenue models, this
# formulation selects the specific demands such that they generate the
# greatest net profit(or greatest revenue if cost is ignored).

# Additional Notes:
# Multi-QoP are considered.
# "protected" services - both 100% routed and restorable
# "unprotected" services - only routed but not protected
# "preemptible" services - use spares for demands, and preempt for
# restoring Protected Services

* SET

# set of all spans: 
set SPANS;

# set of all demands: 
set DEMANDS;

# set of adjacent demands:
set ADJ_DEMANDS within DEMANDS;

1 set of non-adjacent demands:
set NON_ADJ_DEMANDS := DEMANDS diff ADJ_DEMANDS;

# set of multi-QoP service classes: 
set CLASSES;

# set of eligible working routes for each demand pair r: 
set WORK_ROUTES{r in DEMANDS};

# set of eligible restoration routes for each span i: 
set REST ROUTES{i in SPANS};

1 PARAMETERS
f -------------------------------------------------------------------------------------------------------------

# the relative revenue for a particular demand pair r of class c: 
param Revenue{r in DEMANDS, c in CLASSES};

# the cost of provisioning a channel on span r: 
param Cost{i in SPANS};
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# the shortest path distance between demand pair r: 
param Distance{r in DEMANDS};

# equal to 1 if r is an adjacent demand pair, 0 otherwise: 
param Adjacency{r in DEMANDS} default 0;

# the distance of each span r: 
param SpanLength{i in SPANS};

# the desired demand requests to be served: 
param DemandList{r in DEMANDS, c in CLASSES};

# number of existing capacity units on span j : 
param Totalcap{j in SPANS};

# equal to 1 if qth eligible working route for demand pair r crosses 
span j, 0 otherwise:
param Zeta{j in SPANS, r in DEMANDS, q in WORK_ROUTES[r]} default 0;

# equal to 1 if pth restoration route for failure of span i uses span j 
and 0 otherwise:
param Delta{i in SPANS, j in SPANS, p in REST ROUTES[i]} default 0;

# VARIABLES
 # ----------------------------------------------------------------------------------------------------------------------

# number of demand units for demand pair r:
var demandselected{r in DEMANDS, c in CLASSES} >= 0, <= 10000000 
integer;

# working flow on route q for demand service r of class c:
var workflow{r in DEMANDS, c in CLASSES, q in WORK_ROUTES[r]} >= 0, 
<=100000 integer;

# flow on route p for restoration of span i:
var restflow{i in SPANS, p in REST_ROUTES[i]} >=0, <=2500000 integer;

# number of working capacity units used by a service class c on span j : 
var work{j in SPANS, c in CLASSES} >=0, <=250000 integer;

# number of total working capacity units on span j : 
var totalwork{j in SPANS} >=0, <=250000 integer;

# number of spare capacity units on span j : 
var spare{j in SPANS} >=0, <=250000 integer;

# the operational cost for provisioning the demands: 
var opex >= 0;
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# OBJECTIVE AND CONSTRAINTS

maximize PROFIT:
sum{r in DEMANDS, c in CLASSES} Revenue[r,c] * demandselected[r,c] 
- opex;

subject to WORKING_FLOW{r in DEMANDS, c in CLASSES}:
sum{q in WORK_ROUTES[r]} workflow[r,c,q] = demandselected[r,c];

subject to WORKING_CAPS{j in SPANS, c in CLASSES}:
work[j,c] = sum{r in DEMANDS, q in WORK_ROUTES[r]} Zeta[j,r,q] * 
workflow[r,c,q];

subject to TOTAL_WORKING_CAPS{j in SPANS}:
totalwork[j] = sum{c in CLASSES} work [j, dr-

subject to RESTORATION_FLOW_FOR_PROTECTED{i in SPANS}:
sum{p in REST_ROUTES[i]} restflow[i,p] = work[i,"protected"];

subject to USE_SPARE_CAPS_WITH_PREEMPT{i in SPANS, j in SPANS: i o j }: 
spare[j] + work[j,"preemptible"] >= sum{p in REST_ROUTES[i]} 
Delta[i,j,p] * restflow[i,p];

subject to TOTAL_CAPS{j in SPANS}:
totalwork[j] + spare[j] <= Totalcap[j];

subject to DEMAND_UPPERBOUND{r in DEMANDS, c in CLASSES}: 
demandselected[r,c] <= DemandList[r,c];

subject to TOTAL_OPERATING_COST:
sum{j in SPANS} Cost[j]*(totalwork[j] + spare[j]) <= opex;
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B.7 Maximum-Fairness Re-optimization Model (Max-Fair Formulation)

# -----------------------------------------------------------------------------------------------------------------------
# Max-Fair Re-optimization Formulation for Span-restorable Networks
ii7T
# July 28, 2004 by Dion Leung (at Osaka University, Osaka, Japan)
# Copyright (C) 2004 TRLabs, Inc. All Rights Reserved.
# Model File: Max-Fair.mod
 # -----------------------------------------------------------------------------------------------------------------------
# Given a capacitated span-restorable network and an existing capacity
# configuration (comprised of demands already in service, spare
# channels pre-planned for span failure protection, and a remaining set
# of equipped but unused channels), this formulation re-configures
# existing (working and/or restoration) routes such that the new
# configuration has a better ability to serve incremental future
# demands (tested in a separate step).

# ----------------------------------------------------------------------------------------
# SET
 # ----------------------------------------------------------------------------------------

# set of all spans 
set SPANS;

# set of all demand pairs or node pairs: 
set DEMANDS;

# set of all working routes for each demand pair r: 
set WORK_ROUTES{r in DEMANDS};

# set of all restoration paths for each span failure: 
set REST_ROUTES{i in SPANS};
 # ----------------------------------------------------------------------------------------
# PARAMETERS

# total as-built capacity units on span j : 
param Totalcap{j in SPANS} default 40;

# existing or in-service demand on node pair r: 
param DemUnits{r in DEMANDS};

# equal to 1 if q-th eligible working route for demand pair r crosses 
span j, 0 otherwise:
param Zeta{j in SPANS, r in DEMANDS, q in WORK_ROUTES[r]} default 0;

# equal to 1 if p-th restoration route for failure of span i uses span 
j and 0 otherwise:
param Delta{i in SPANS, j in SPANS, p in REST_ROUTES[i]} default 0;
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# VARIABLES FOR EXISTING DEMANDS
 # -----------------------------------------------------------------------------------------------------------------------

# working flow assigned on the q-th working route to serve OD pair r in
# existing demands (Note: these become input parameters if
# re-arrangement of working paths is not allowed:
var existing_workflow{r in DEMANDS, q in WORK_ROUTES[r]} >=0, <=10000 
integer;

# restoration flow assigned on the p-th restoration route upon the 
failure of span i in existing demands:
var existing_restflow{i in SPANS, p in REST_ROUTES[i]} >=0, <=2500000 
integer;

# number of working capacity units on span j to support existing 
demands:
var existing_work{j in SPANS} >=0, <=250000 integer;

# number of spare capacity units on span j to support existing demands: 
var existing_spare{j in SPANS} >=0, <=2500000 integer;

# VARIABLES FOR PROJECTED DEMANDS

# projected demands that could be served on node pair r: 
var future_demand{r in DEMANDS} >=0, <=10000 integer;

# working flow to be assigned on the q-th working route to serve OD 
pair r for projected demands:
var future_workflow{r in DEMANDS, q in WORK_ROUTES[r]} >=0, <=10000 
integer;

# restoration flow to be assigned on the p-th restoration route upon 
the failure of span i for projected demands:
var future_restflow{i in SPANS, p in REST_ROUTES[i]} >=0, <=2500000 
integer;

# number of idle working capacity units allocated on span j to support 
projected demands:
var future_work{j in SPANS} >=0, <=250000 integer;

# number of idle spare capacity units allocated on span j to support 
projected demands:
var future_spare{j in SPANS} >=0, <=2500000 integer;

# largest possible number of demand units could be served uniformly on
# all OD pair:
var lambda >=0, <=1000 integer;
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# OBJECTIVE AND CONSTRAINTS
 # -----------------------------------------------------------------------------------------------------------------------

maximize MAX_FAIRNESS: lambda;

subject to Demand_Routing_for_Existing_Demands {r in DEMANDS}:
sum{q in WORK_ROUTES[r]} existing_workflow[r,q] = DemUnits[r];

subject to Demand_Routing_for_Future_Demands {r in DEMANDS}:
sumfq in WORK_ROUTES[r]} future_workflow[r,q] = future_demand[r];

subject to Working_Capacity_for_Existing_Demands {j in SPANS}: 
sum{r in DEMANDS, q in WORK_ROUTES[r]} Zeta[j,r,q] * 
existing_workflow[r,q] <= existing_work[j];

subject to Working_Capacity_for_Future_Demands {j in SPANS}: 
sum{r in DEMANDS, q in WORK_ROUTES[r]} Zeta[j,r,q] * 
future_workflow[r,q] <= future_work[j];

subject to Restoration_for_Existing_Demands {i in SPANS}:
sum{p in REST_ROUTES[i]} existing_restflow[i,p] = existing_work[i];

subject to Restoration_for_Future_Demands {i in SPANS}:
sumfp in REST_ROUTES[i]} future_restflow[i,p] = future_work[i];

subject to Spare_Capacity_for_Existing_Demands {i in SPANS, j in SPANS: 
i <> j }:

existing_spare[j] >= sum{p in REST_ROUTES[i]} Delta[i,j,p] * 
existing_restflow[i,p];

subject to Spare_Capacity_for_Future_Demands {i in SPANS, j in SPANS: i
<> j}:

future_spare[j] >= sum{p in REST_ROUTES[i]} Delta[i,j,p] * 
future_restflow[i,p];

subject to Total_Capacity {i in SPANS}:
existing_work[i] + future_work[i] + existing_spare[i] + 
future_spare[i] <= Totalcap[i];

subject to Demand_Fairness {r in DEMANDS}: 
future demand[r] >= lambda;
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B.8 Maximum-Volume Re-optimization Model (Max-Vol Formulation)

I -------------------------------------------------------------------------------------------------------------------
# Max-Volume Re-optimization Formulation for Span-Restorable Networks
#
# July 28, 2004 by Dion Leung (at Osaka University, Osaka, Japan)
# Copyright (C) 2004 TRLabs, Inc. All Rights Reserved.
# Model File: Max-Vol.mod

# Given a capacitated span-restorable network and an existing capacity
# configuration (comprised of demands already in service, spare
# channels pre-planned for span failure protection, and a remaining set 
tt of equipped but unused channels), this formulation re-configures
i existing (working and/or restoration) routes such that the new
# configuration has a better ability to serve incremental future
# demands (tested in a separate step).

# ----------------------------------------------------------------------------------------
# SET
f --------------------------------------------------------

# set of all spans 
set SPANS;

# set of all demand pairs or node pairs: 
set DEMANDS;

# set of all working routes for each demand pair r: 
set WORK_ROUTES{r in DEMANDS};

# set of all restoration paths for each span failure: 
set REST ROUTES{i in SPANS};

# PARAMETERS

# total as-built capacity units on span j : 
param Totalcap{j in SPANS} default 40;

# existing or in-service demand on node pair r: 
param DemUnits{r in DEMANDS};

# equal to 1 if q-th eligible working route for demand pair r crosses 
span j, 0 otherwise:
param Zeta{j in SPANS, r in DEMANDS, q in WORK_ROUTES[r]} default 0;

# equal to 1 if p-th restoration route for failure of span i uses span 
j and 0 otherwise:
param Delta{i in SPANS, j in SPANS, p in REST_ROUTES[i]} default 0;

# weight factor for prioritizing OD pairs r [optional]: 
param DemandPriority{r in DEMANDS} default 1;
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# VARIABLES FOR EXISTING DEMANDS

# working flow assigned on the q-th working route to serve OD pair r in
# existing demands (Note: these become input parameters if
# re-arrangement of working paths is not allowed:
var existing_workflow{r in DEMANDS, q in WORK_ROUTES[r]} >=0, <=10000 
integer;

# restoration flow assigned on the p-th restoration route upon the 
failure of span i in existing demands:
var existing_restflow{i in SPANS, p in REST_ROUTES[i]} >=0, <=2500000 
integer;

# number of working capacity units on span j to support existing 
demands:
var existing_work{j in SPANS} >=0, <=250000 integer;

# number of spare capacity units on span j to support existing demands: 
var existing_spare{j in SPANS} >=0, <=2500000 integer;

# VARIABLES FOR PROJECTED DEMANDS

# projected demands that could be served on node pair r: 
var future_demand{r in DEMANDS} >=0, <=10000 integer;

# working flow to be assigned on the q-th working route to serve OD 
pair r for projected demands:
var future_workflow{r in DEMANDS, q in WORK_ROUTES[r]} >=0, <=10000 
integer;

# restoration flow to be assigned on the p-th restoration route upon 
the failure of span i for projected demands:
var future_restflow{i in SPANS, p in REST_ROUTES[i]} >=0, <=2500000 
integer;

# number of idle working capacity units allocated on span j to support 
projected demands:
var future_work{j in SPANS} >=0, <=250000 integer;

# number of idle spare capacity units allocated on span j to support 
projected demands:
var future_spare{j in SPANS} >=0, <=2500000 integer;
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# -------------------------------------------
# OBJECTIVE AND CONSTRAINTS

maximize MAX_VOLUME:
sum{r in DEMANDS} DemandPriority[r] * future_demand[r];

subject to Demand_Routing_for_Existing_Demands {r in DEMANDS}:
sum{q in WORK_ROUTES[r]} existing_workflow[r,q] = DemUnits[r];

subject to Demand_Routing_for_Future_Demands {r in DEMANDS}:
sum{q in WORK_ROUTES[r]} future_workflow[r,q] = future_demand[r];

subject to Working_Capacity_for_Existing_Demands {j in SPANS}: 
sum{r in DEMANDS, q in WORK_ROUTES[r] } Zeta[j,r,q] * 
existing_workflow[r,q} <= existing_work[j];

subject to Working_Capacity_for_Future_Demands {j in SPANS}: 
sum{r in DEMANDS, q in WORK_ROUTES[r] } Zeta[j,r,q] * 
future_workflow[r,q] <= future_work[j];

subject to Restoration_for_Existing_Demands {i in SPANS}:
sum{p in REST_ROUTES[i]} existing_restflow[i,p] = existing_work[i];

subject to Restoration_for_Future_Demands {i in SPANS}:
sum{p in REST_ROUTES[i]} future_restflow[i,p] = future_work[i] ;

subject to Spare_Capacity_for_Existing_Demands {i in SPANS, j in SPANS: 
i <> j }:

existing_spare[j] >= sum{p in REST_ROUTES[i]} Delta[i,j,p] * 
existing_restflow[i,p];

subject to Spare_Capacity_for_Future_Demands {i in SPANS, j in SPANS: i
<> j }:

future_spare[j] >= sum{p in REST_ROUTES[i]} Delta[i,j,p] * 
future_restflow[i,p];

subject to Total_Capacity {i in SPANS}:
existing_work[i] + future_work[i] + existing_spare[i] + 
future_spare[i] <= Totalcap[i];
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Appendix C: Two-Part ̂ -Cycles (TP-PC) Capacity Design

In Section 6.5, we presented the two-part span restorable (TP-SR) capacity design 

formulation. The same two-part concept can be applied to /^-cycles capacity design, which we 

now demonstrate. For the complete set of results and explanation of the optimal p-cycles design 

model, readers can refer to [LeG04b]. O f particular note is that the set P, parameters xpj  and Spj, 

and the variable npJl are replacing P„ 8 ,f  and f /  in TP-PC formulation from Section 6.5.1. The 

constraint sets (C.4) and (C.5) are substituted for (6.5.4) and (6.5.5) to reflect the restorability 

restriction by />-cycles.

Sets:

S  Set of all spans in the network, indexed by j  or i

U Set of all possible future demand scenarios to be considered, index k

D Set of all origin-destination (OD) pairs in a demand matrix, index r

Q  Set of pre-determined eligible working routes for OD pair r, index q

P  Set of pre-determined eligible cycles available upon the failure of span i, index p

Parameters:

Cj Present cost of a unit capacity placed on span j

Rj Recourse cost of placing an extra unit capacity on span j  to cope with the unfolding

of demand uncertainty. Rj can simply be a multiplicative value of Cy, or any other 

absolute value specific for each span j  

Pk Probability estimate for demand scenario k

dk Magnitude of the bi-directional (integer) demand on node pair r in scenario k

C['q Equal to one if the q h eligible route for demands between node pair r  uses span j ,  

zero otherwise

xPj  Equal to one if failed span i is part of the cycle p; equal to two if span i straddles

cycle p; equal to zero if there is no relationship between span i and cycle p.

5Pj  Equal to one if if cycle p  passes over span j; zero otherwise 

Variables:

Wj Number of working capacity units on span j  for the design

sj Number of spare capacity units on span j  for the design

yjjk Number of additional working capacity units that would have to be placed on span j  

in future to cope with scenario k
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Zj'k Number of additional spare capacity units required on span j  under future demand 

scenario k

gk’q Working flow assigned on the qth working route to serve OD pair r in scenario k  

nP'k Number of copies of cycle p  used in the j?-cycle design in scenario k

TP-PC: Minimize + + (C.l)
j<=S je S  k=V

Subject to:

L  = d rt
qeQ”

V r e D; V k < = U (C.2)

r z D q(=Qr
V j € S ; V k z U (C.3)

w i + y i , k ^  - n p,k
peP

V/ e S ; \ / k e U (C.4)

s j + z j . k ^ H s p j - n P,k
peP

Vy eS; Vk<=U (C.5)

y j , k > z j . k = o k  =  0;Vy e  S (C.6)

The objective function (C.l) plus constraint sets (C.2), (C.3) and (C.6) are identical to 

those explained in the TP-SR formulation. The only differences in this model are the restorability 

asserting and spare capacity generating constraints, which are now based on the p-cycle network 

design. xpj and Spj are pre-determined input parameters for each cycle in set P  indicating the 

number of protection relationships cycle p  provides to span j .  xpj can be {0, 1 or 2}; xPJ= 1 if 

span j  is part of the cycle p; xpj= 2 if  span j  straddles cycle p\ xpj= 0 if there is no relationship 

between span j  and cycle p. Like (6.5.4), constraint (C.4) ensures that the sum of all cycles np& 

provides sufficient pre-connected spare capacity for protecting every span failure i; similarly, 

constraint (C.5) determines the spare capacities Sj necessary to support a protecting cycle set. Spj  

takes a value of one if the cycle p  uses the span j;  it is zero otherwise.
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Appendix D: Examples of Outage Index Calculation

The outage index is defined as a measure of the impact of the failure on customer 

experiences. Essentially the higher the index, the greater the impact on the customer. The index 

values are always positive, and small outage would have an index near zero. Note that the 

formulas, especially the weights from the index calculation, are based on empirical data available 

from or estimated from actual outage reports. It is important to note that these calculations only 

consider outages in Public Switched Telephone Networks (PSTN). Today’s data services, such 

as the Internet and enterprise’s data traffic, had not been taken into the account, and that might 

warrant some future research and investigations.
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Example 1: Dedicated (Local Switch) Partial Services Outage Example with Same Service

Outage Durations. From [T1A01].

Report Data:

Start T im e:......................................................3:00 am, August 10, 1995 (Thursday)

Number of Lines Affected:............................ 42,291

Types o f Services Affected:...........................IntraLATA Interoffice, InterLATA Interoffice, 911

Duration of Outage:....................................... 34 minutes (same for all services affected)

Number of Blocked Calls:.............................9,000

Outage Category:........................................... Local Switch (Adjunct Processor Failure).

Outage Index Calculation:

Method Used:.................................................Lines

Time Factor Used:......................................... 0.1 (IntraLATA Interoffice, InterLATA services),

1.0 (911 Service).

Table D .l. Example 1: Outage Index Calculation. From [T1A01]

Method
Used Service

Weights Product
Service

(Ws)
Duration

(WD)
Magnitude

(WM)
w s w Dw lM

Lines 911 3 1.05 0.477 1.50

Lines IntraLATA
Intraoffice N/A N/A N/A N/A

Lines IntraLATA
Interoffice 2 1.05 0.00477 0.0100

Lines
InterLATA
Interoffice 2 1.05 0.00477 0.0100

Block Calls All services 
except 911 N/A N/A N/A N/A

Outage Index = Sum of Products = 1.52
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Example 2: Diversified (Facilities, Fiber) Outage Durations. From [T1A01].

Report Data:

Start Tim e:......................................................4:30 pm, August 9, 1995 (Wednesday)

Number o f Lines Affected:........................... Not Reported

Types of Services Affected:.......................... InterLATA Interoffice

Duration of Outage........................................10 hours and 47 minutes (same for all services

affected)

Number o f Blocked C alls:............................ 102,144

Outage Category:...........................................Facilities (Fiber Cable).

Outage Index Calculation:

Method Used:.................................................Blocked Calls

Time Factor Used:......................................... N/A.

Table D.2. Example 2: Outage Index Calculation. From [T1A01].

Method
Used Service

Weights Product
Service

(Ws)
Duration

(Wd)
Magnitude

(Wm)
w s w Dw M

Lines 911 N/A N/A N/A N/A

Lines IntraLATA
Intraoffice N/A N/A N/A N/A

Lines IntraLATA
Interoffice N/A N/A N/A N/A

Lines InterLATA
Interoffice N/A N/A N/A N/A

Block Calls All services 
except 911 2 2.32 0.309 1.44

Outage Index = Sum of Products = 1.44
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