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Abstract

(P < 0.005), compared to low viremic group.

knowledge of swine immunity.
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Background: Porcine circovirus 2 is the primary agent responsible for inducing a group of associated diseases
known as Porcine Circovirus Associated Diseases (PCVAD), which can have detrimental effects on production
efficiency as well as causing significant mortality. The objective of this study was to evaluate variation in viral
replication, immune response and growth across pigs (n=974) from different crossbred lines. The approach used in
this study was experimental infection with a PCV2b strain of pigs at an average of 43 days of age.

Results: The sequence of the PCV2b isolate used in the challenge was similar with a cluster of PCV2b isolates
known to induce PCVAD and increased mortality rates. The swine leukocyte antigen class Il (SLA/l) profile of the
population was diverse, with nine DOBT haplotypes being present. Individual viremia and antibody profiles during
challenge demonstrate variation in magnitude and time of viral surge and immune response. The correlations
between PCV2 specific antibodies and average daily gain (ADG) were relatively low and varied between - 0.14 to
0.08 for IgM and —0.02 and 0.11 for IgG. In contrast, PCV2 viremia was an important driver of ADG decline following
infection; a moderate negative correlation was observed between viral load and overall ADG (r=— 0.35, P <0.001).
The pigs with the lowest 10% level of viral load maintained a steady increase in weekly ADG (P < 0.0001) compared
to the pigs that had the 10% greatest viral load (P < 0.55). In addition, the highly viremic group expressed higher
IgM and IgG starting with d 14 and d 21 respectively, and higher tumor necrosis factor — alpha (TNF-a) at d 21

Conclusions: Molecular sources of the observed differences in viremia and immune response could provide a
better understanding of the host factors that influence the development of PCVAD and lead to improved

Background

PCV2 vaccination was proven successful in controlling
PCVAD. However, in a standard commercial operation,
while the majority of pigs are infected with PCV2b, only
a fraction will display PCVAD symptoms [1,2]. Cur-
rently, no diagnostic tool is available to identify pigs that
have potential susceptibility to PCVAD. As a result, the
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entire population must be vaccinated in order to protect
a fraction of the pigs leading to an increase in produc-
tion cost. In addition, a research by Cino-Ozuna et al.
[3] discovered that acute pulmonary edema, a novel
PCVAD syndrome, was associated only with pigs vacci-
nated for PCV2.

Several studies observed differences in PCVAD sus-
ceptibility in several breeds of pigs, with Landrace pigs
reported to have increased vulnerability to PCV2 infec-
tions compared to Large White, Yorkshire, Duroc and
Pietrain pigs [4-6]. Recent research has also shown that
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host genotype influences PCV2 susceptibility, specifically
PCV2 viremia and immune response in experimental in-
fections with PCV2b [7].

Availability of molecular diagnostic approaches that
will allow identification of susceptible animals could add
another layer of protection in swine operations that ex-
perience high pathogen exposure. As part of a research
program focused on the influence of swine host genetics
to two main viral pathogens (www.swineimprovement.
com), at University of Nebraska we initiated a study to
uncover phenotypic and genetic predictors of PCVAD sus-
ceptibility. Using an expansive array of swine germplasm
analyzed, covering a significant proportion of the North-
American maternal genetic crossbreds, in this study we
evaluated phenotypic profiles, intra-populational variations
and relationships between important indicators of PCV2
susceptibility. This represents an essential preliminary step
of the future research aimed at uncovering genetic variants
that influence the host’s ability to stimulate immune re-
sponse and reduce disease susceptibility.

Results and discussions

The resource population displayed substantial diversity at
SLAII locus

The swine leukocyte antigen class II (SLAI) is known to
be involved in antigen presentation and modulation of
immune system [8]. This locus is characterized by ex-
tended haplotypes and extremely polymorphic with dif-
ferences from population to population. The potential
role of SLAII region in immune response against swine
viral pathogens was recently demonstrated by Quantita-
tive Trait Loci (QTL) mapped to the SLAII region and
associated with PCV2 viremia [7] and with specific anti-
body response to Porcine reproductive and respiratory
syndrome virus (PRRSV) [9]. As a result, we hypothe-
sized that genetic diversity at this locus could result in
variation in immune response to PCV2 challenges. The
SLAII haplotypes were determined by sequencing the

Page 2 of 11

coding region of the DQBI gene, a member of SLAII
gene complex, in a sample of pigs (2n = 54) representing
all batches. Due to the various genetics used in this
study (Additional file 1: Table S1) the genetic profile at
this locus was more diverse than in other populations
[10] (Table 1). The population included all nine DQBI
class haplotypes (0IXX to 09XX) with the specific 0701
haplotype being predominant (27.8%). In comparison,
four to eight haplotypes were identified in a different
study across four outbred populations, most having
major haplotypes with frequencies ranging from 43.9 to
54.2% [10].

The genome of the PCV2b isolate is similar with a cluster
of PCV2b strains known to induce PMWS

Variation in strain virulence was demonstrated in natural
and experimental challenges with PCV2 [5,11,12]. The
PCV2b strain (UNL2014001) used in experimental inocula-
tion was collected from a pig that displayed clinical symp-
toms of Post-weaning Multisystemic Wasting Syndrome
(PMWS), a PCVAD syndrome. The viral DNA genome
was sequenced (accession number KP016747) and com-
pared with the genome sequences of a collection of PCV2
isolates reported by Gagnon et al. [13] using CLUS-
TALW?2 alignment software. The PCV2b viral sequence
had the highest similarity with a cluster of Quebec PCV2b
isolates (e.g., FMV-05-6507, FMV-05-6302, FMV-05-7389)
[7] known to induce PMWS and increased mortality rates.
The strain that displayed the highest genetic similarity
with the UNL strain was FMV-05-6507 strain; a single
synonymous nucleotide difference located in the last pos-
ition of the 42 codon of the capsid gene represents the
only variation (G to A) between the genome of the UNL
strain and FMV-05-6507 isolates. However, in addition to
PCV2, the PMWS cases associated with the cluster of
strains isolated from Quebec were found positive for other
swine pathogens such as PRRSV (30.8%), Swine Influenza
Virus (15.4%), Porcine parvovirus (38.5%), Swine hepatitis

Table 1 Proportion (%) of the DQB1 specific Swine leukocyte antigen (SLAII) haplotypes in UNL PCV2-challenged

resource population’ and other populations of outbred pigs>

Haplotypes UNL (2n=54) PCV? (2n =104) Big Pig? (2n = 186) KSU? (2n = 98) MY? (2n =24)
01XX 56 926 17.2 235 42
02XX 130 452 30.1 439 250
03XX 1.1 6.7 32 6.1 16.7
04XX 56 6.7 312

05XX 1.1 77 3.1

06XX 130 140

07XX 278 144 27 184

08XX 37 38 5.1 542
09XX 93 58 16

'Determined by sequencing the coding region of the DQBT gene in pigs representing all batches.
2Data from Ho et al. (2010); PCV, porcine circovirus; KSU, Kansas State University; MY, Meishan x Yorkshire cross.
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E virus (38.5%) and Swine torque teno virus (69.2%) [13].
As a result, coinfection could have been an important de-
terminant of these severe PMWS cases. It is known that
PCV2 infection of cells involved in the innate immune re-
sponse affect host recognition of viral and bacterial anti-
gens leading to susceptibility to secondary infections
[14,15]. It is possible that this cluster of strains is very effi-
cient in inhibiting host immune response increasing sus-
ceptibility to coinfection. During experimental infection in
the current study the mortality was 2.98%, with causes
other than PCV2b alone being the most likely sources of
death.

Due to inadequate biosecurity and the fact that inac-
tivation of PCV2 with common detergents and disinfec-
tants proved very difficult [16], multiple PCV2 isolates
could be identified simultaneously in the same herd [2].
In order to validate the genetics of PCV2b strain as a
consistent infectious isolate across batches, viral geno-
mic DNA from random, high and low viral load pigs
(n=18) representing most of the batches were com-
pletely sequenced. The sequences of this set of samples
were identical with the sequence of PCV2b isolate used
for experimental infection.

The passive IgG was higher in the piglets generated by
dams with five or more parities

All pigs receiving colostrum acquire antibodies that pro-
vide early immunity against PCV2 and other pathogens.
The effectiveness is dependent upon the concentration
and rate of antibody decline, which in the case of PCV2
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typically occurs between 5 to 18 weeks (wk) of age [6].
Previous studies have demonstrated an association bet-
ween titers of passive (maternal) IgG antibodies and the
extent of protection against PCV2 [17]. For instance,
low IgG titres were associated with an increased number
of PCV2 positive pigs while high IgG titres were asso-
ciated with lower numbers of PCV2 positive pigs. Un-
derstanding the influence of PCV2 specific antibodies in
dams and piglets could be useful to prevent disease pro-
gression. Analysis of passive antibodies from all candi-
date piglets prior to infection showed variation in IgG
levels. While not significant (P > 0.27) the level of passive
IgG tended to increase as the dam’s number of parities
increases, this was particularly evident after parity four
(Figure 1). As a result, PCV2 vaccination of pigs derived
from younger dams could be recommended early in life
due to lower level of passive IgG.

Growth rate during experimental infection with PCV2b

The wk 3 and wk 4 were the weeks associated with the
largest variation in ADG following PCV2b challenge
(Table 2). In the last week of challenge the pigs exhibited
the largest average ADG, as the immune system started
to clear the virus (Figure 2). Previous studies showed
that PCV2 vaccinated pigs exhibit consistent increased
in ADG during this development period [18]. In this
study, average ADG across time points indicates a de-
viation from this steady increased in weekly ADG due to
a plateau in growth observed during wk 3 (Figure 2).
This plateau could be a result of viral replication since it
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Figure 1 The influence of dam parity (X) on the level of passive IgG (Y) in experimental piglets. Concentration of passive IgG tended to
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Table 2 Means and standard deviations (SD) of the
indicator traits of PCVAD susceptibility following an
experimental infection with PCV2b

Trait Mean SD

ADG wk1 (kg) 037 0.10
ADG wk2 (kg) 045 0.13
ADG wk3 (kg) 048 0.17
ADG wk4 (kg) 0.58 0.18
ADG 0-28 d 047 0.10
Viremia d 7% 142 062
Viremia d 14* 359 0.76
Viremia d 21* 334 0.78
Viremia d 28* 263 0.75
igMd 7 0.59 0.07
IgM d 14 1.18 032
IgM d 21 145 046
IgM d 28 1.16 040
lgGd7 073 0.10
lgGd 14 0.82 0.19
IgG d 21 1.70 062
lgG d 28 2.24 0.73
Viral load 68.86 1235

*measured as number of PCV2 genome copy number/ml of serum (log10).
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coincides with the days characterized by the largest
viremia levels (Figure 3).

Viremia is the main driver of growth decline during
PCV2b challenge

Viremia began to increase at d 7, and peaked at d 14,
followed by a decline (Figure 3) with PCV2-specific anti-
bodies following the same trend (Figure 4). Similar pat-
terns were observed in other studies [5,19,20]. Individual
viremia profiles across time points demonstrate that viral
replication varies in the magnitude and time of viral surge
(Figure 5); a similar trend was observed for IgM (Figure 6).
As a result, viral load was also characterized by substantial
variation across pigs (Table 2). The time-point with the
largest variation in viremia was d 21. Individuals that
reached early the maximum viremic value tended the have
a lower overall viral load (P < 0.05). For example, the aver-
age viral load was lower in the pigs that reached the maxi-
mum viremia at d 14 (68.1) compared to those reaching
the maximum viremia at d 21 (70.4)(P < 0.05).

Pigs that expressed high ADG during the challenge
were less viremic. A moderate negative relationship was
detected between viral load and overall ADG (r = - 0.35,
P <0.0001)(Figure 7). The largest correlation between
viral load and weekly ADG was detected for ADG on wk
4 (r=- 0.39, P<0.001). Also, moderate negative pheno-
typic correlations were observed between weekly viremia
measures at at d 14, 21, and 28 and ADG on wk 3 and
wk 4, and overall ADG (r = - 0.30 to - 0.39; P <0.0001).
The largest correlation value between weekly measure-
ments was obtained between viremia at d 21 and ADG
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Figure 2 Variation across time points in ADG (kg) following experimental challenge with PCV2b.
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Figure 3 Variation across time points in PCV2b viremia* following experimental challenge with PCV2b. *measured as number of PCV2

21 28

on wk 4 (r=- 0.39, P<0.0001, Additional file 2: Table
S2). Decreased growth during challenge may be an effect
of the animal’s inability to clear the virus as a result of a
weak immune system, which increases the possibility of
acquiring a secondary infection. A study conducted by
Meerts et al. [21] indicated that levels of PCV2 viremia

influenced susceptibility to PMWS in both natural and
experimental PCV2 infections.

The viral strain used for the experimental infections
has a similar DNA sequence with a Canadian cluster of
strains known to induce high mortality rates [12,13]. We
expected that this pathogen would be responsible for

—1gG
—IgM

2.2
2.0+
1.8
1.6

1.4+

PCV2 antibodies

1.2+

1.0

0.8+

0.6+

7 14

Days post infection

Figure 4 Variation across time points in antibody response IgM and IgG following experimental challenge with PCV2b.
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Viremia

Days post infection

Figure 5 Individual profiles for PCV2b viremia* following experimental challenge with PCV2b. Individual profiles across time points
demonstrate variation in magnitude and time of viral surge. *measured as number of PCV2 genome copy number/ml of serum (log10).

.

declined growth during challenge and viremia would be
an indicator of susceptibility. The ADG profile across
time points was analyzed in pigs that expressed extreme
phenotypes for viral load. In the first week of challenge,
ADG was similar (P <0.60) in pigs that displayed the
lowest level of viral load (10%, n =100, 0.38 g/d) com-
pared to the pigs with the highest viral load (10%,

n =100, 0.39 g/d) (Figure 8). In the following weeks the
low viremic group had a steady increased in weekly
growth rate (P<0.0001) with fold change in ADG of
1.30 (wk 2), 1.47 (wk 3) and 1.78 (wk 4) compared to wk
1. In contrast, the highly viremic pigs maintained a simi-
lar ADG (P < 0.55) during challenge having a fold change
of 1.10 (wk 2), 0.94 (wk 3) and 1.09 (wk 4) compared to
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Figure 6 Individual profiles for PCV2b-specific IgM antibody following experimental challenge with PCV2b. Individual profiles across time
points demonstrate variation in magnitude and time of immune response.
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Figure 7 A moderate negative correlation was detected between PCV2b viral load - X and overall ADG - Y (r=—- 0.35, P <0.0001) here
represented as Z scores. Each dot represents an individual pig. Upper left group included pigs that maintained low PCV2b viral load and fast
growth and compared to the bottom right group which included pigs that expressed high viral load and slow growth during 28 d PCV2b challenge.

wk 1. Starting with wk 3 the individuals tend to form
separate clusters based on their viral load and ADG
(Figure 8).

The change in weekly ADG in the low viremic group
was best described as a linear function (P <0.05) as a

result of a consistent increased in ADG during chal-
lenge. In contrast, the change in ADG in the highly
viremic group was best described as cubic (P <0.01), as
a result of a lack of persistent pattern in ADG across
time points. The difference in ADG between the two

-
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Figure 8 Viral load influenced the decline in ADG following PCV2b infection. The pigs with the lowest 10% level of viral load maintained a
steady increased in weekly ADG (P < 0.0001) compared to the pigs that had the 10% largest viral load (P < 0.55). We predict that the growth of
highly viremic pigs will be compromised even after the virus will be cleared.
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groups varied from 0.08 kg/d on wk 2 (P <0.005),
0.19 kg/d on wk 3 (P <0.0001) and 0.25 kg/d on wk 4
(P <0.0001). As a result, it is expected that in the highly
viremic pigs the growth will be compromised even after
the virus would be cleared. This indicates that viremia is
the main driver of ADG decline following infection. In
addition, the highly viremic group expressed higher IgM
and IgG starting with d 14 and d 21 respectively, com-
pared to low viremic group (P < 0.0001).

In a recent study we found small to moderate positive
correlations between tumor necrosis factor — alpha (TNEF-
«) at d 21 and viral load (r =0.25, P < 0.0001) and viremia
(r=0.23 to 0.34, P < 0.0001) during last weeks of challenge
[22]. The TNF-«a increased over time, reaching the peak at
d 21. TNF-a is a pro-inflammatory cytokine involved in
the activation of adaptive immunity to viral infections
[23]. PCV2 infection reduces the capacity of plasmacytoid
dendritic cells to induce interferon-a(INF-a) and TNF-a
and as a result limits the maturation of associated myeloid
dendritic cells [14,15] and subsequent immune response.
At d 21 the highly viremic group showed higher level of
TNF-a compared to low viremic group (P < 0.005).

Anecdotal evidence suggested that, in general, slow
growth prior to the outcome of the disease challenge is
associated with susceptibility. However, our previous re-
search did not find significant relationships between
ADG prior to infection with viremia during the first two
weeks of challenge (r=0.01 to 0.03, P>0.63) or with
viral load (r = -0.02, P=0.73) [7].

PCV2b-challenged pigs expressed variation in immune
response

Previous reports indicated that most of the PCV2 in-
fected pigs demonstrate subclinical symptoms in both
natural and experimental infections since antibodies pro-
duced by the humoral immune response and other un-
explained mechanisms are able to clear the virus [21].
The profile of PCV2 specific antibodies, IgM and IgG,
were comparable with previous experimental infections
[5,11] (Figure 4).

Similar to viremia, individual profiles of IgM across
time points varies in the magnitude but also in the
time of induction of the humoral response to PCV2b
(Figure 6). The profile obtained for early responders pre-
cedes that of late responders by approximately one week.
The IgM titres in early responders began to increase at d
7, and peaked at d 14 followed by a period of decline. In
the late responders, IgM titres began to increase at d 14,
and peaked at d 21 followed by slowly declining titers.
Across all samples, the time point associated with the
largest variation in IgM occurred at d 21. Individuals
that reached early the highest IgM value tended to have
a lower overall viral load (P <0.009). For example, the
average viral load was lower in the pigs that reached the
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highest IgM at d 14 (66.3) compared to those reaching
the highest IgM at d 21 (69.7, P <0.001) and d 28 (69.9,
P <0.05).

Ig@G titres started to increase in most pigs at 14 dpi,
peaking at d 21 and d 28 (Figure 4). As expected, the
time point associated with the largest variation in IgG
occurred at d 28 (Table 2).

Pair-wise correlations between PCV2 specific antibodies
and ADG were relatively low and varied between - 0.14
(IgM d 28 and ADG wk 4, P <0.0001) and 0.08 (IgM d 14
and ADG wk 1, P < 0.05) for IgM and - 0.02 (IgG d 21 and
ADG wk 4, P<0.51) and 0.11 (IgG d 14 and ADG wk 3,
P <0.001) for IgG (Additional file 2: Table S2). Fort et al.
[24] showed that IgG was primarily associated with
neutralizing capacity (r=0.85, P<0.001) while IgM had
limited effect on PCVAD progression. Decreased levels of
neutralizing antibodies resulted in an increase in PCV2
viral replication and progression of PMWS [25].

As expected, positive moderate relationships were ob-
served between viremia and antibody response; signifi-
cant small to moderate correlations were determined
between viral load and IgG starting with d 21 (r = 0.26 to
0.27, P<0.0001) and IgM starting with d 14 (r=0.32,
P <0.0001) (Additional file 2: Table S2). While in the
current study the pigs were exposed only to PCV2b, we
hypothesize that variation in immune response could be
the source of reduced PCVAD susceptibility in some
pigs. Specifically, certain host genotypes may have the
ability to inhibit the role of PCV2 as an immunomodula-
tor, reducing susceptibility to coinfection.

Conclusions

There are numerous challenges in developing manage-
ment programs to prevent PCV2 infections. PCV2 is
exceptionally stable and disinfection is difficult. In ad-
dition, PCV2 is prevalent worldwide, and nearly every
swine operation in the United States has already been
exposed to the virus. The fact that PCV2 is extremely
stable and is present globally creates opportunities for
viral transmission, making it challenging to produce
specific-pathogen-free animals. The use of vaccines for
PCV2 has proven successful but increases the cost of
production. Moderate negative relationships were deter-
mined between viremia and ADG while the relationship
between PCV2 specific antibodies expressed by experi-
mental animals and ADG were limited. While some of
these relationships were reported by previous studies,
some of those experiments were limited in size and fo-
cused mainly on pure breeds. In contrast, this data set
has a size that provides sufficient power to estimate
accurate relationships between indicators of PCVAD
susceptibility. In addition, most of the genetics used in
this research represent the maternal side of produc-
tion herds, populations that are subjected to a more
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pathogen-challenging environment compared to nucleus
herds. Interestingly, this study uncovered substantial
variation in the time of initiation and magnitude of
viremia across a diverse range of the genetic resources
used in North America. Dissection of the underlying
molecular events responsible for the observed differ-
ences in viral replication and immune response could
provide a better understanding of the swine immune
system and the host factors responsible for PCVAD sus-
ceptibility. The mechanism of how certain pigs inhibit
viral replication is not well understood, and further re-
search is needed to gain a better understanding of the
role of host genetics in response to infection.

Methods

Experimental design: animals, diets, and housing

The experimental procedures used during this study
were reviewed and approved by the Institutional Animal
Care and Use Committee of the University of Nebraska-
Lincoln (UNL). The pigs used for the experimental chal-
lenge (n=974) were distributed over time in nine
batches (Bl to B9) ranging from 81 to 141 pigs per
batch. Barrows were used in all of the batches except B2
and B3, which consisted of both barrows and gilts. The
pigs originated from the UNL Swine Research Unit, and
members of the PigGen Canada Consortium, being ge-
nerated by seven different genetic programs. Pigs were
derived from 320 litters with an average representation
of 3.04 pigs per litter. The UNL Swine Research Unit
provided maternal and terminal crossbred pigs (Bl to
B4; n = 386) based on Large White, Landrace, and Duroc
from a commercial source as well as the Nebraska Index
Line (Additional file 1: Table S1), which has been selected
since 1981 mainly for traits related to increased litter size.
Five members of PigGen Canada consortium (www.
piggencanada.org) provided maternal crossbred pigs (B5
to B9, n=588) based on Large White and Landrace
genetics.

All experimental pigs were colostrum fed and raised
under similar conditions.

Dams of the experimental pigs were vaccinated for
PCVAD at 2-3 weeks of age. In addition, the source
farms have vaccination programs for Porcine parvovirus
(PPV), Erysipelothrix rhusiopathiae, Clostridium per-
fringens type C, Leptospirosis, Colibacillosis and regular
testing for Porcine reproductive and respiratory syn-
drome virus (PRRSV). Before experimental infection,
each pig was evaluated and tested negative for the pre-
sence of PCV2, based on PCV2-specific antibodies and
PCV2 viremia [7]. Specifically, each pig was tested for
levels of IgG and IgM PCV2 specific antibodies using
ELISA. Pigs used for the experimental infection had to
show a sample/positive ratio (S/P) lower than 0.3 for
passive (maternal) IgG antibodies and lower than 0.4 for
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IgM. High levels of passive antibodies were associated
previously with reduced susceptibility to PCVAD [17].
The pigs were also tested for the presence of viral DNA
using quantitative real-time PCR (qPCR) as described
[7]. Pigs that demonstrated negligible S/P levels and
tested negative for PCV2 viral DNA were transferred to
the UNL Animal Science Complex for the experimental
challenge.

Throughout the experimental infection, pigs were
housed in one experimental room containing identical
pens. Pigs were randomly assigned to a pen, which con-
sisted of both slatted and solid surface flooring. Each
pen provided approximately 0.65 square meters of floor
space per pig. All pigs were allowed ad libitum access to
a standard balanced diet that met or exceeded nutri-
tional requirements for the respective age. Upon arrival
at UNL facilities, each pig received a preventative dose
of 0.8 ml of Baytril 100 (Bayer Animal Health) to treat
for potential bacterial pathogens.

PCV2b isolate and experimental infection

The PCV2b strain (UNL2014001) used for the experimen-
tal infection was isolated from a pig with Post-weaning
Multisystemic Wasting Syndrome (PMWS) symptoms,
a PCVAD syndrome, and cultured in swine testicular
lines as described [7]. Experimental pigs were inocu-
lated with a titer of 10*° TCID5y/ml of the PCV2b strain
both intranasally and intramuscularly. The average age
of infection across all batches was 43 days of age. Daily
observations were conducted during the 28 days experi-
mental period to monitor and detect clinical symptoms.
In addition, weight and blood samples were collected a
0,7, 14, 21, and 28 days post infection (dpi).

Serology: PCV2-specific antibodies and viral DNA
quantification
Blood samples were collected in sterile Monoject red
stopper blood collection tubes containing no additives
(Tiger Medical) and separated into BD Vacutainer tubes
(Becton Dickinson) and Tempus blood RNA collection
tubes (Life Technologies). The serum was obtained by
centrifugation at 2,350 g for 15 minutes at 4°C.
Enzyme-linked immunosorbent assay (ELISA; Ingenasa)
was used to evaluate the levels of PCV2 specific anti-
bodies, IgG and IgM, in serum. The concentration of
PCV2 specific antibodies were normalized based on posi-
tive control values corrected by 0.3 fold for IgG and 0.4
fold for IgG. An IgG or IgM normalized value greater than
one differentiated PCV2 positive from negative pigs ac-
cording to the manufacturer of the ELISA kit. Protein
serum level of tumor necrosis factor — alpha (TNF-a) was
quantified using ELISA assays (R&D Systems, Inc.).
Viremia or estimates of viral copy counts in blood
were measured for each pig and time point as described
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[7]. Viral DNA was first isolated from serum samples
using QIAamp DNA Minikit (Qiagen) and was then
quantified by qPCR using TagMan Master Mix and ABI
7900 Real Time PCR System (Life Technologies). Area
under the curve (AUC) was used to evaluate the total
viral load for each pig throughout the entire experimen-
tal challenge period based on an algorithm that uses
viremia levels determined at each time point (0, 7, 14,
21, and 28 dpi) to fit a smooth curve over the 28 d infec-
tion period and summed the areas in increments of 0.01
time units [26].

PCV2b Sequencing

PCV2b viral genomic DNA was isolated using QIAamp
DNA Minikit and amplified using GoTaq Flexi DNA
Polymerase (Promega). The PCR products were puri-
fied using ExoSAP-IT (USB Corporation) and sequenced
using dye terminators and ABI PRISM 3100 Genetic
Analyzer (Life Technologies). The assembled sequence
(GenBank accession number: KP016747) was aligned to
the publicly available PCV2 genome sequences using
CLUSTALW?2 [27].

Following the experimental challenge, viral genomic
DNA was isolated from random, high and low viral load
pigs (n=18) representing most of the batches and se-
quenced to validate the genetics of PCV2b strain used
for experimental infection.

SLAII haplotyping

The Swine leukocyte antigen (SLAII) haplotypes were
determined by sequencing the coding area of the DQBI
gene, a member of SLAII gene complex, and compare
the obtained sequences to the reference haplotypes.
Specifically, the coding area of DQBI was amplified in
27 pigs representing all batches using GoTaq Flexi
DNA Polymerase. The PCR products were purified using
ExoSAP-IT and sequenced using dye terminators and
ABI PRISM 3100 Genetic Analyzer. Individual sequences
from each pig were compared to reference haplotypes
sequences obtained from Immuno Polymorphism Data-
base (www.ebi.ac.uk/ipd/mhc) and DQB1 SLAII-specific
haplotypes were assigned for each pig.

Statistical analysis

The means and measures of variability were estimated
for each trait across time points. The pair-wise cor-
relation between traits was performed using adjusted
phenotypes. The correction of the phenotypes was
based on residuals estimated from a linear mixed model
treating batch as a fixed effect, litter and pen as random
effects, age at infection and passive IgG as covariates.
Since the traits profiled were clearly related to each
other, the multiple testing was handled by conside-
ring the correlations significant if the P <0.0001. The
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influence of dam parity on the level of passive IgG in ex-
perimental piglets prior to infection was determined
based on a linear mixed model with batch and parity as
fixed effects, litter as random effect and age at infection
as a covariate.

Additional files

Additional file 1: Table S1. Genetics of the resource population used
in the experimental infection with PCV2b.

Additional file 2: Table S2. Pair-wise correlations between the adjusted
phenotypes of the indicator traits of PCVAD susceptibility following an
experimental infection with PCV2b.
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