INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{n} \times 9^{n}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600
UMI'

University of Alberta

The Units of Modular Group Algebras

by

Leo Creedon (C)

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Doctor of Philosophy
in

Mathematics

Department of Mathematical Sciences

Edmonton, Alberta
Fall 2000

Acquisitions and Bibliographic Services

395 Wellington Street

 Otawa ON K1A ON4 CanadaBibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON KIA ON4 Canada

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Canadä

University of Alberta

Library Release Form

Name of Author: Leo Creedon

Title of Thesis: The Units of Modular Group Algebras

Degree: Doctor of Philosophy

Year this Degree Granted: 2000

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the thesis, and except as hereinbefore provided neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatever without the author's prior written permission.
(Signed)

Leo Creedon
"Sheelin", Ballinveltig, Carigrohane, Co. Cork, Ireland

Date: September 18,0000

UNIVERSITY OF ALBERTA

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled The Units of Modular Group Algebras submitted by Leo Creedon in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics.

Dr. M. Shirvani (Supervisor)

Lichtman

Dr. Alexander Lichtman
 (University of Wisconsin, Kenosha)

Date: Septerriber 15,2000

Abstract

Let K be a field and G a group. Let $K G$ be the group algebra and $U(K G)$ its group of units. In this thesis we investigate the existence and explicit construction of free groups in $U(\kappa G)$ and examine the consequences of the existence of these free groups. We place special emphasis on the modular case, where K has positive characteristic p and G contains elements of order a power of p.

As motivation, we start by giving a technique for the construction of free semigroups in group algebras with some restrictions.

We use a new method of constructing units to explicitly construct generators of free groups in $U(K G)$ and give examples in group algebras where previous techniques do not apply.

This construction relies heavily on the abundance of non-commuting pairs of elements in the finite group ring $F_{p} G$. We use combinatorial techniques to see precisely how scarce these commuting pairs of elements are.

Next we study criteria for the existence of free groups in group algebras. For a finite group G and a field K which is not algebraic over its prime subfield F_{p} we show that $U(K G)$ does not contain free groups $\Leftrightarrow G^{\prime}$ is a p-group $\Leftrightarrow U(K G)$ is soluble \Leftrightarrow the torsion subset of $U(K G)$ forms a group $\Leftrightarrow K G / J(K G)$ is isomorphic to a direct sum of fields \Leftrightarrow the transvections of $K G$ are contained in $1+J(K G)$. We also

explore connections between $U(K G)$ and the finite group $U\left(F_{p} G\right)$. The locally finite analogues of these results are also given.

The existence or absence of free groups thus leads to an important dichotomy in the structure of the group algebra, in the spirit of the Tits Alternative.

We give similar results on $U(K G)$ where G is either an FC group or is locally nilpotent. After studying a newly defined chain of unit groups we finish by proving some results on the Jacobson radical of $K G$.

ACKNOWLEDGEMENTS

I would like to extend my deepest thanks to my supervisor Dr. Mazi Shirvani for his cheerful guidance throughout the preparation of this thesis.

I am indebted to my Committee and especially the chair Dr. Sudarshan K. Sehgal for sharing his knowledge of this subject.

I am very grateful to Dr. Desmond MacHale for introducing me to my two great mathematical interests: history and algebra, and for inspiring me to pursue graduate studies.

Thanks also to my family and friends for their encouragement and especially to Lori Petruskevich for all of her support.

Contents

1 Introduction 1
1.1 Introduction 1
1.2 Background Results 4
2 GBUs and free groups 9
2.1 Free Semigroups 9
2.2 Elementary Results 13
2.3 Generalised Bicyclic Units 16
3 Commutativity of the group algebra 22
4 Infinite Fields 27
4.1 Introduction 27
4.2 Finite Groups 31
4.3 Locally Finite Groups 37
4.4 Nilpotent and FC groups 40
$4.5 U_{n}$ 46
4.6 Corollaries 49
4.7 The Jacobson Radical 57
5 Examples 67
Bibliography 73
A Appendix 77

Chapter 1

Introduction

1.1 Introduction

For all the work that has been done on group rings in the last fifty years the subject is in many ways still in its infancy. A counterexample to the Isomorphism Problem for integral group rings was only found in the last decade. We have little idea what the units (or zero-divisors) of an arbitrary group ring look like in terms of the group or coefficient ring.

On the other hand, we can often construct bicyclic units, Bass cyclic units and alternating units (given minor restrictions on the group algebra), and these can be used for various constructions in the group algebra.

One of the more obvious approaches to studying group rings (and more general rings) is to consider the existence of polynomial identities. The torsion and commutativity of rings can be examined in this way. It is natural to suspect that the group identities of the unit group will have some bearing on the polynomial identities of the group algebra. The existence of a free group (of rank 2) in the unit group would quickly put an end to this line of reasoning. These free groups have become
the object of my affections.

In this section and the next we give some of the notation and results needed to understand the ideas presented in later chapters. The main theme of the thesis is the existence and explicit construction of free groups in group algebras, and the consequences of the existence of these free groups. As motivation, we start in Section 2.1 by giving a technique for the construction of free semigroups in group algebras with some restrictions. We then develop some of the theory needed to study the applications of a new construction of units (the GBUs). In Section 2.3 we use these GBUs to construct free groups in group algebras where previous techniques do not apply. This construction relies heavily on the abundance of non-commuting pairs of elements in the finite group ring $F_{p} G$. In Chapter 3 we use combinatorial techniques to see precisely how scarce these commuting pairs of elements are. (We also briefly mention the proportion of invertible elements of $F_{p} G$.)

In Chapter 4 we study criteria for the existence of free groups in group algebras $K G$ (especially where G is locally finite). In Theorems 31 and 32 we see that the existence or absence of free groups in the group algebra leads to an important and surprising dichotomy in the structure of the group algebra. This is done in the spirit of the Tits Alternative and suggests that the most important question to ask of a group algebra is whether or not it contains free subgroups. In Section 4.4 we consider some results on $U(K G)$ where G is not periodic. In the following section we define a new chain of unit groups and investigate their properties. In Section 4.6 we chronicle some of the consequences of the preceding results. The Jacobson radical is used throughout the chapter, and is studied in its own right in the final section. In Chapter 5 we apply our techniques to some of the examples which motivated this work and which, as far as the author is aware, are not readily studied using existing methods. An Appendix includes some of the more tedious calculations which were
performed using the software package GAP.

Notation and Conventions

Definition: Given a group G and a ring R, the group ring $R G$ is the set of elements $\Sigma r_{i} g_{i}$ where $r_{i} \in R$ and $g_{i} \in G$ and the summation is over all elements of G (with only finitely many $r_{i} \neq 0$). So $R G$ is a free R-module with the obvious addition, and it becomes a ring if we use the multiplication of the group to define multiplication.
N is the set of natural numbers, Z the integers, Q the rationals and C the complex numbers.
$F_{p^{n}}$ is the finite field of p^{n} elements.
G is a group, k is a (commutative) field.
$o(x)$ is the order of an element x of G.
C_{p} denotes the cyclic group with p elements.
$G_{p}=S_{p}(G)$ denotes the sylow p-subgroup of the group $G . G * H$ denotes the free product of the groups G and H.
S_{n} is the symmetric group on n symbols.
A regular element of a ring is any element which is not a zero-divisor.
$k G$ is the group algebra.
Define the augmentation map $\omega: k G \rightarrow k$ by $\sum a_{g} g \rightarrow \sum a_{g}$. Clearly this is a k algebra epimorphism. ω has kernel $\Delta(G)=\langle x-1 \mid x \in G\rangle_{k G}$, called the augmentation ideal of $k G$.

* $: k G \rightarrow k G$ is the involution $\sum \alpha_{g} g \rightarrow \sum \alpha_{g} g^{-1}$.
$t r: k G \rightarrow k G$ is the trace map defined by $\operatorname{tr}\left(\sum a_{g} g\right)=a_{1}$.
$\mathcal{U}=\mathcal{U}(k G)$ is the (multiplicative) group of units of $k G$.
$V=V(K G)$ is the group of units of augmentation 1.

If $\alpha \in \mathcal{U}$ has finite order n then $\hat{\alpha}$ is the element $1+\alpha+\alpha^{2}+\cdots+\alpha^{n-1}$ of $k G$. A bicyclic unit of $k G$ is an element of the form $1 \pm \hat{x} y\left(1-x^{i}\right)$ or $1 \pm\left(1-x^{i}\right) y \hat{x}$, where $x, y \in G, o(x)=n<\infty$ and $i \in\{0,1, \ldots, n-1\}$. Note that such an element must be a unit of order p if char $k=p>0$.
By a free group I shall mean a non-cyclic free group.
$\Lambda(G)=\left\{g \in G \mid\left[H: C_{H}(g)\right]<\infty\right.$ for every finitely generated subgroup H of $\left.G\right\}$.
$\Lambda^{+}(G)=\{g \in \Lambda(G) \mid g$ is a torsion element $\}$.
Note $\Lambda^{+}(G) \triangleleft \Lambda(G) \triangleleft G$ and $\Lambda(G) / \Lambda^{+}(G)$ is a torsion-free abelian group.
$J(R)$ is the Jacobson radical of the ring R.
If $\alpha=\sum \alpha_{g} g \in k G$ then the support of α is the set $\left\{g \in G \mid \alpha_{g} \neq 0\right\}$.
If H is a subset of G then $\pi_{H}: k G \rightarrow k G$ is the natural projection down to the subset of elements whose support lies in H.
If q is a prime number then π_{q} will denote the projection π_{H}, where H is the set of q-elements of G.

If $V=M_{n}(D)$ then the Schur index of V is the square root of the dimension of the division algebra D over its center.

1.2 Background Results

A considerable amount of progress has been made on the question of the existence of free subgroups of $\mathcal{U}(k G)$. The Tits Alternative [35] is a powerful tool here. So let us review what is known about these free groups.

Theorem 1 (Tits Theorem / Tits Alternative [35]) Let G be a finitely generated linear group over a (commutative) field. Then either G is soluble-by-finite or G contains free groups.

Note that the proof does not exhibit the free group explicitly or constructively.

Theorem 2 (Wedderburn-Artin Theorem) [8, p.38-9] Every semisimple algebra is isomorphic to a direct product of matrix algebras over division algebras. Conversely, a direct product of matrix algebras over division algebras is a semisimple algebra. This decomposition is unique, up to permutation of the direct factors.

Theorem 3 (Wedderburn-Malcev Theorem) Let G be a finite group. Then

$$
K G \simeq \frac{K G}{J(K G)} \oplus J(K G)
$$

as vector spaces.

Proof:

By [8, p.107], it suffices to show that $\frac{K G}{J(K G)}$ is separable, that is $\oplus M_{n_{i}}\left(K_{i}\right)$ is separable. Thus, by [8, p.105], we need only show that the K_{i} are separable algebras. By the definition of separable algebras [8, p.104], we need only show that for every extension L of the field $K_{i}, K_{i} \otimes L$ is semisimple, and this is true by [8, p. 7.5 Corollary 4.3.6].

Theorem 4 [33, p.64-5] Let G be a finite group and F a field that contains the algebraic closure of the rationals if F has characteristic 0 . Then every irreducible FG-module has Schur index 1.

From the proof of this result we see that if our field K^{\prime} has characteristic $p>0$ then every finite dimensional simple image of $K G$ is of the form $M_{n}(F)$, with F a commutative field containing K, where K has finite index as a subfield of F. This fact will be used in subsequent chapters.

Sehgal [32, p.200] and then Hartley and Pickel [15] proved

Theorem 5 Let G be soluble-by-finite, and suppose $\mathcal{U}(Z G)$ does not contain a free group of rank 2. Then
i) every finite subgroup of G is normal in G,
ii) the torsion subset T of G is a subgroup and is either abelian or the direct product of an elementary abelian 2-group and a quaternion group of order 8 (i.e. a non-abelian Hamiltonian 2-gp).

In the finite case we have the following situation:

Theorem 6 [15, Theorem 2 p.1342] If G is finite then exactly one of the following occurs:
i) G is abelian,
ii) $\quad G$ is a non-abelian Hamiltonian 2-group, and $\mathcal{U}(Z G)=\{ \pm g: g \in G\}$,
iii) $\mathcal{U}(Z G)$ contains a free group.

For k a field, Gonçalves [12] showed
Theorem 7 If G is finite and k is a field of characteristic 0 then $\mathcal{U}(k G)$ contains a free group if and only if G is non-abelian.
and

Theorem 8 If G is finite and k is a field of characteristic $p>0$ then $\mathcal{U}(k G)$ does not contain a free group if and only if one of the following occurs:
i) $\quad G$ is abelian,
ii) $\quad k$ is algebraic over its prime field F_{p},
iii) $S_{p}(G)$, the p-Sylow subgroup of G, is normal in G, and $G / S_{p}(G)$ is abelian.

In [3], Bovdi gives perhaps the most comprehensive survey of the problem to date:
Theorem 9 Let k be a field of characteristic $p \geq 0$ and suppose that $\mathcal{U}(k G)$ does not contain a free group. Then one of the following conditions holds:

1. G is abelian;
2. G is a torsion group, $p>0$ and k is algebraic over its prime subfield F_{p};
3. $p=0$ and
a. $\Lambda^{+}(G)$ is an abelian subgroup and each of its subgroups is normal in G;
b. the centralizer $C_{G}\left(\Lambda^{+}(G)\right)$ contains all elements of finite order of G;
c. for every $a \in \Lambda^{+}(G)$, which is not central in G, k contains no root of unity of order equal to $o(a)$;
4. $p>0, k$ is not algebraic over its prime subfield F_{p} and
a. the p-Sylow subgroup P of $\Lambda^{+}(G)$ is normal in G and $A=\Lambda^{+}(G) / P$ is an abelian group;
b. the centralizer $C_{G / P}(A)$ contains all torsion elements of G / P;
c. if A is noncentral in G / P and G / P is non-torsion, then the algebraic closure L of F_{p} in k is finite and for all $g \in G / P$ and $a \in A$ there exists a natural number r such that gag $^{-1}=a^{p^{r}}$. Furthermore, each such r is a multiple of $\left[L: F_{p}\right]$.
5. G is not a torsion group, $p>0, k$ is algebraic over its prime subfield F_{p} and
a. the p-Sylow subgroup P of $\Lambda^{+}(G)$ is normal in G and $A=\Lambda^{+}(G) / P$ is an abelian group;
b. if A is noncentral in G / P then the algebraic closure L of F_{p} in k is finite and for all elements g of infinite order in G / P and $a \in A$ there exists a natural number r such that gag $^{-1}=a^{p^{r}}$. Furthermore, each such r is a multiple of $\left[L: F_{p}\right]$.

Note however that the above conditions are not sufficient for $U(K G)$ to not contain a free group; for example the possibility that G is a free group is not excluded.

Chapter 2

GBUs and free groups

We investigate the existence (and construction) of free pairs of units in the unit group of a (modular) group algebra $K G$. We generalise a result of Gonçalves and Passman [14] to do this, and use the programming package GAP to investigate the units of $F_{2}(t) D_{10}$, where F_{2} is the Galois field of order 2 and t is an element transcendental over F_{2}.
Z. Marciniak and S. Sehgal [23, 24] have constructed free groups in arbitrary integral group rings, where the group is non-abelian. Gonçalves and Passman [14] have used a similar construction for some group rings of the form $F_{p}(t) G$ where t is an element transcendental over the field F_{p}. Here we will be extending the work of Gonçalves and Passman.

2.1 Free Semigroups

A semigroup $G=\langle S\rangle$ is freely generated by the set S if it has the property that any mapping from the set S into a semigroup H can be extended to a homomorphism of
semigroups.
As motivation for the subsequent results on free groups, we give a result on the construction of free semigroups in group algebras. Comments and examples follow the proof.

Theorem 10 Let K be a field of characteristic zero, R a subring of $K G, y$ a unit of $K G$, and $X \in R$. Write $r^{\sigma}=y^{-1} r y$ for all $r \in R$. Assume that
i) $R y \subseteq y R$.
ii) The (non-negative) powers of y are right linearly independent over R.
iii) X is a regular element of R.
iv) For any positive integer n, the elements $\left(X^{r}\right)^{\sigma} X^{n-r}, r=0, \ldots, n$, are linearly independent over Q.

Then X and $Y=1+y$ generate a free subsemigroup of $K G$.

Proof:

Conditions i) and ii) clearly imply that the subring $R\left[Y^{Y}\right]$ generated by R and Y is isomorphic to $\oplus_{i=0}^{\infty} y^{i} R$ (a direct sum of R-modules), since we have the commutation rule $r y=y r^{\sigma}$.

Any element w of the free semigroup on $\{u, v\}$ may be written uniquely in the form $u^{i_{0}} v u^{i_{1}} v \ldots v u^{i_{m}}$ for integers $i_{j} \geq 0$. (For example, $v^{3}=u^{0} v u^{0} v u^{0} v u^{0}$.) We write $I=\left(i_{0}, \ldots, i_{m}\right)$ and $w_{I}(u, v)$ for the element w above. The length $L(I)$ of $I=\left(i_{0}, \ldots, i_{m}\right)$ is defined to be $m+1$, and we write $I^{\prime}=\left(i_{0}, \ldots, i_{m-1}\right)$. The identity element corresponds to the empty sequence.

Given an element $w_{I}(u, v)$ of the free semigroup, write $W(I)=w_{I}(X, Y) \in R[Y]$. We know that

$$
W(I)=\sum_{j=0}^{\infty} y^{j} W_{j}(I)
$$

where the $W_{j} \in R$ and the sum contains only finitely many terms (at most $L(I)$, since $W(I)$ only contains $L(I)-1$ occurrences of $Y)$. On the other hand, we have

$$
\begin{aligned}
W(I) & =\sum_{j=0}^{\infty} y^{j} W_{j}(I) \\
& =\sum_{j=0}^{\infty} y^{j} W_{j}\left(I^{\prime}\right)(1+y) X^{i_{m}} \\
& =\sum_{j=0}^{\infty} y^{j} W_{j}\left(I^{\prime}\right) X^{i_{m}}+\sum_{j=0}^{\infty} y^{j+1} W_{j}\left(I^{\prime}\right)^{\sigma} X^{i_{m}}
\end{aligned}
$$

whence $W_{0}(I)=W_{0}\left(I^{\prime}\right) X^{i_{m}}$ and $W_{j}(I)=\left(W_{j}\left(I^{\prime}\right)+W_{j-1}\left(I^{\prime}\right)^{\sigma}\right) X^{i_{m}}$ for all $j \geq 1$. We may now use induction on the length of I to prove that

$$
\begin{gathered}
W_{0}(I)=X^{n} \\
W_{1}(I)=\sum_{t=0}^{m-1}\left(X^{i_{0}+\ldots+i_{i}}\right)^{\sigma} X^{n-\left(i_{0}+\ldots+i_{t}\right)}
\end{gathered}
$$

and

$$
W_{m}(I)=\left(X^{i_{0}}\right)^{\sigma^{m}}\left(X^{i_{1}}\right)^{\sigma^{m-1}} \cdots\left(X^{i_{m-1}}\right)^{\sigma}\left(X^{i_{m}}\right)
$$

where $m=L(I)-1$ and $n=i_{0}+\ldots+i_{m}$. Note that assumption iii) implies that $W_{m}(I) \neq 0$, so $W(I)$ is a polynomial in y of degree exactly $m=L(I)-1$.

In order to show that X and Y generate a free semigroup, we must prove that, if I and J are sequences for which $W(I)=W(J)$, then $I=J$. Now $W(I)=W(J)$ is equivalent to $W_{j}(I)=W_{j}(J)$ for all $j \geq 0$. Moreover, $W(I)$ and $W(J)$ have exactly the same degree in y, and hence I and J have the same length. Write $I=\left(i_{0}, \ldots, i_{m}\right)$ and $J=\left(j_{0}, \ldots, j_{m}\right)$. The W_{0}-terms yield $i_{0}+\ldots+i_{m}=n=j_{0}+\ldots+j_{m}$, and then the W_{1}-terms simplify to

$$
\sum_{t=0}^{m-1}\left(X^{i_{0}+\ldots+i_{t}}\right)^{\sigma} X^{n-\left(i_{0}+\ldots+i_{t}\right)}=\sum_{t=0}^{m-1}\left(X^{j_{0}+\ldots+j_{t}}\right)^{\sigma} X^{n-\left(j 0+\ldots+j_{t}\right)}
$$

Let $\left\{i_{0}, i_{0}+i_{1}, i_{0}+\ldots i_{m-1}\right\}=\left\{r_{1}, \ldots, r_{p}\right\}$, where $r_{1}<r_{2}<\ldots<r_{p}$, and r_{i} occurs d_{i} times in the set of partial sums (remember that some of the i 's may be zero, so some of the partial sums may be equal). Similarly, write $\left\{j_{0}, j_{0}+j_{1}, j_{0}+\ldots j_{m-1}\right\}=$ $\left\{s_{1}, \ldots, s_{q}\right\}$, where $s_{1}<s_{2}<\ldots<s_{q}$, and s_{i} occurs e_{i} times in the set of partial sums. The above equation, therefore, becomes

$$
\sum_{i=0}^{p} d_{i}\left(X^{r_{i}}\right)^{\sigma} X^{n-r_{i}}=\sum_{j=0}^{q} e_{j}\left(X^{s_{j}}\right)^{\sigma} X^{n-s_{j}}
$$

Assumption iv) now implies that $p=q, d_{i}=e_{i}$, and $r_{i}=s_{i}$ for all i. So, to begin with, we have

$$
r_{1}=i_{0}=i_{0}+i_{1}=\ldots=i_{0}+\ldots+i_{d_{1}-1}=j_{0}=j_{0}+j_{1}=\ldots=j_{0}+\ldots+j_{d_{1}-1}
$$

whence $i_{t}=j_{t}$ for $0 \leq t \leq d_{1}-1$. Next, using r_{2}, we find that $i_{t}=j_{t}$ for $d_{1} \leq t \leq d_{2}-1$, and so on (this can be readily set up as an inductive argument). Thus $I=J$, as required.

Example 1 We now show how this result can be applied. The simplest choice is $y=\alpha g$, where $\alpha \in K$ is a suitable scalar, and $g \in G$. For R, we may choose $Q H$, where H is a subgroup of G satisfying $H^{g} \subseteq H$. The choice of $X \in R$ would then be dictated by the above data.

For example, suppose $x \in G$ is an element such that

$$
H=\left\langle x, x^{g}, \ldots, x^{g^{m}}, \ldots\right\rangle
$$

is an ordered abelian group with $g x \neq x g$. Assume, moreover, that no power of g belongs to H. Then $y=g$ and $R=Q H$ satisfy i) and ii) of the theorem. Also, by
the Malcev-Neumann Theorem [29, Theorem 2.11 p.601], R is an integral domain, so iii) is satisfied for any non-zero $X \in R$. To see what condition iv) imposes on a given X, let $u=X^{g} / X$ in F, where F is the quotient field of R. It is then immediate that

$$
\left(X^{r}\right)^{\sigma} X^{n-r}=u^{r} X^{n}
$$

for all r, so condition $i v$) is simply the requirement that u be transcendental over Q. Since Q is algebraically closed in F, it is sufficient to have $u \notin Q$. In other words, if X is chosen such that X^{g} is not a rational multiple of X, then X and $1+g$ generate a free semigroup. The simplest choice is $X=1+x$, where $x^{g} \neq x$, since $1+x^{g}=q(1+x)$ for some $q \in Q$ implies that either $x^{g}=x$ or $x^{g}=1$, both of which are contradictions.

Note: Condition iv) is determined by the choice of Y as $1+y$. More complicated choices for Y lead to more involved conditions of a similar nature.

2.2 Elementary Results

Let us restrict our attention to finite groups G for the remainder of the chapter. Gonçalves [12] has shown that $F_{p}(t) G$ contains a (non-abelian) free group inside its group of units precisely when either the Sylow- p subgroup $S_{p}(G)$ is not normal in G or $G / S_{p}(G)$ is non-abelian. His proof was non-constructive.

The Gonçalves/Passman construction [14] uses bicyclic units, that is, units of the form $1+(1-g) h \hat{g}$ or $1+\hat{g} h(1-g)$, where $g, h \in G, g$ has order n and $\hat{g}=1+g+g^{2}+\cdots+g^{n-1}$. This Gonçalves/Passman construction only works when you can find $g, h \in G$ such that $\langle g\rangle^{h} \neq\langle g\rangle$ and $\left\langle g, g^{h}\right\rangle$ has no elements of order p. For example, it works for most non-abelian p^{\prime}-groups.

However, consider a group ring like $F_{2}(t) G$, where $G=D_{2 m}=\langle x, y| x^{m}=y^{2}=$ $\left.1, y x y=x^{-1}\right\rangle$. Now the unit group will contain a free group (as $S_{2}\left(D_{2 m}\right)$ is not normal in $D_{2 m}$), but the Gonçalves/Passman construction cannot be used since when $u, v \in D_{2 m}$, and $\langle u\rangle^{v} \neq u$, the group $\left\langle u, u^{v}\right\rangle$ always contains 2-elements.

We develop a method of construction of free pairs which will apply to such group algebras and in Section 2.2 we take an example, $F_{2}(t) D_{10}$, and using Theorem 19 we exhibit a free group in its unit group.

Lemma 11 Let $H \subset G, \alpha, \beta \in k G, \beta \in \mathcal{U}(k G)$. If $H^{\beta}, H^{\beta^{-1}} \subset H$ then $\pi_{H}\left(\beta^{-1} \alpha \beta\right)=$ $\beta^{-1} \pi_{H}(\alpha) \beta$. (In particular this holds if $H<G$ and $H \triangleleft \mathcal{U}(k G)$.)

Proof:

Let $\alpha_{0}=\pi_{H}(\alpha)$ and $\alpha=\alpha_{0}+\alpha_{1}$. Then $\beta^{-1} \alpha \beta=\beta^{-1}\left(\alpha_{0}+\alpha_{1}\right) \beta=\beta^{-1} \alpha_{0} \beta+\beta^{-1} \alpha_{1} \beta$. $\operatorname{supp}\left(\beta^{-1} \alpha_{0} \beta\right) \subset \operatorname{supp}\left(\beta^{-1} H \beta\right)=\operatorname{supp} H=H$. Thus $\pi_{H}\left(\beta^{-1} \alpha_{0} \beta\right)=\beta^{-1} \alpha_{0} \beta$ (i.e. "all of" $\beta^{-1} \alpha_{0} \beta$ appears in $\pi_{H}\left(\beta^{-1} \alpha \beta\right)$.)

Claim: $\operatorname{supp}\left(\beta^{-1} \alpha_{1} \beta\right) \cap H=\phi$ i.e. "none of" $\beta^{-1} \alpha_{1} \beta$ appears in $\pi_{H}\left(\beta^{-1} \alpha \beta\right)$. Assume not, i.e. $\alpha_{1}=a g+a_{1} g_{1}+\ldots$ with $g, g_{1}, g_{2}, \ldots \in G \backslash H$ and $\operatorname{supp}\left(\beta^{-1} g \beta\right) \cap H \neq \phi$. Say $\beta^{-1} g \beta=a_{1} h_{1}+\ldots+a_{\mathrm{r}} h_{r}+b_{1} g_{1}+\ldots+b_{s} g_{s}$, with $r \geq 1, k \ni a_{i} \neq 0$ for $i=1, \ldots, r$, with $h_{1}, \ldots, h_{r} \in H$ and $g_{1}, \ldots, g_{s} \in G \backslash H$. Then

$$
\begin{aligned}
G \backslash H \ni g & =\beta\left(\beta^{-1} g \beta\right) \beta^{-1} \\
& =a_{1} \beta h_{1} \beta^{-1}+\ldots+a_{r} \beta h_{r} \beta^{-1}+b_{1} \beta g_{1} \beta^{-1}+\ldots+b_{s} \beta g_{s} \beta^{-1} \\
& =a_{1} h_{r+1}+\ldots+a_{r} h_{2 r}+b_{1} g_{1}^{\beta^{-1}}+\ldots+b_{s} g_{s}^{\beta^{-1}}
\end{aligned}
$$

with $h_{r+1}=\beta h_{1} \beta^{-1}, \ldots, h_{2 r}=\beta h_{r} \beta^{-1} \in H$.

Note $\operatorname{supp}\left(g_{1}^{\beta-1}\right) \cap H=\ldots=\operatorname{supp}\left(g_{s}^{\beta-1}\right) \cap H=\phi$. Indeed, if $h \in \operatorname{supp}\left(g_{1}^{\beta-1} \cap H\right.$ then, say, $g_{1}^{\beta-1}=c_{1} h+\ldots \Rightarrow g_{1}=c_{1} h^{\beta}+\ldots=c_{1} h^{\prime}+\ldots$ with $h^{\prime} \in H\left(\right.$ as $\left.H^{\beta} \subset H\right), \mathrm{a}$ contradiction as $g_{1} \in G \backslash H$.

Thus $a_{1} h_{r+1}+\ldots+a_{r} h_{2 r}=\pi_{H}(g)=0$. Recall $h_{r+i}=\beta h_{i} \beta^{-1}$. Assume $\beta h_{i} \beta^{-1}=$ $\beta h_{j} \beta^{-1}$ for $i \neq j$, so $h_{i}=h_{j}$ for $i \neq j$, a contradiction. Thus $h_{r+1}, \ldots, h_{2 r}$ are all different. Thus $a_{1}=\ldots=a_{r}=0$, contradicting our assumption. This proves the claim and hence the theorem.

Corollary 12 Let $\alpha \in k G, \beta \in \mathcal{U}(k G)$. Then $\operatorname{tr}\left(\beta^{-1} \alpha \beta\right)=\operatorname{tr}(\alpha)$.

Proof:

$1 \triangleleft \mathcal{U}(k G)$, so $\pi_{1}\left(\beta^{-1} \alpha \beta\right)=\beta^{-1}\left(\pi_{1} \alpha\right) \beta=\operatorname{tr}\left(\alpha\left(\beta^{-1} \beta\right)=\operatorname{tr}(\alpha)\right.$.

Note the alternative definition for $\operatorname{trace}: \operatorname{tr}(\alpha):=\pi_{1}(\alpha)$. Also, $\operatorname{tr}(\alpha) \neq 0 \Leftrightarrow 1 \in$ $\operatorname{supp}(\alpha)$. Thus $\pi_{1}(\alpha \beta)=\pi_{1}(\beta \alpha)$.

Corollary 13 Let $\alpha \in k G, \beta \in \mathcal{U}(k G)$. Then $\pi_{Z(G)}\left(\beta^{-1} \alpha \beta\right)=\beta^{-1} \pi_{Z(G)}(\alpha) \beta$.

Proof:

$Z(G) \varangle \mathcal{U}(k G)$.

Recall that ω is the augmentation map. For the main theorem of the chapter we will need the following

Lemma 14 Let $\alpha, \beta \in k G$. If H is a subset of G with $H^{x} \subset H$ for all $x \in \operatorname{supp}(\alpha)$ then $\omega\left(\pi_{H}(\alpha \beta)\right)=\omega\left(\pi_{H}(\beta \alpha)\right)$. (In particular, $H \triangleleft G$ works.)

Proof:

Let

$$
\alpha=\sum_{i=1}^{n} \alpha_{i} x_{i}, \quad \beta=\sum_{j=1}^{m} \beta_{j} y_{j} .
$$

Then $\alpha \beta=\Sigma \alpha_{i} \beta_{j} x_{i} y_{j}$. If $x_{i} y_{j} \in H$ then $\left(x_{i} y_{j}\right)^{x_{i}}=y_{j} x_{i} \in H$ by hypothesis. Thus $x_{i} y_{j} \in H \Leftrightarrow y_{j} x_{i} \in H$. So

$$
\pi_{H}(\alpha \beta)=\sum_{i, j \in I} \alpha_{i} \beta_{j} x_{i} y_{j} \Rightarrow \pi_{H}(\beta \alpha)=\sum_{i, j \in I} \alpha_{i} \beta_{j} y_{j} x_{i}
$$

where I is some subset of $[1, n] \times[1, m]$.

From the proof we see that the given hypothesis could be further weakened.

Example 2 Note that even if $H \triangleleft G$ then we can have $\pi_{H}(\alpha \beta) \neq \pi_{H}(\beta \alpha)$. Let $k G=F_{2} D_{2 p}$, where $D_{2 p}=\left\langle x, y \mid x^{p}=y^{2}=1, x^{y}=x^{-1}\right\rangle$. Let $\alpha=1+x y$ and $\beta=y$. Let H be the normal subgroup of $D_{2 p}$ containing p elements. Then $\pi_{H}(\alpha \beta)=x$ and $\pi_{H}(\beta \alpha)=x^{-1}$.

Note also that $\pi_{H}(\alpha \beta) \neq \pi_{H}(\alpha) \pi_{H}(\beta)$ [29, p.29 Exercise 5]. For example $\pi_{H}\left(\alpha \alpha^{-1}\right)=$ $1 \neq 0$, where $\operatorname{supp}(\alpha) \cap H=\phi$.

2.3 Generalised Bicyclic Units

Let us note that the proofs that Gonçalves gave for Theorems 7 and 8 were nonconstructive.

Recently free groups in $\mathcal{U}(k G)$ have been constructed using bicyclic units. Marciniak and Sehgal proved

Theorem 15 [23] If G is any group and $u \in \mathcal{U}(Z G)$ is a non-trivial bicyclic unit, then $\left\langle u, u^{*}\right\rangle$ is a non-abelian free group.
and
Theorem 16 [24, Theorem 1.7] Let G be any group. If $a \in Z G$ satisfies $a^{2}=0$ and $a \neq 0$ then $\left\langle 1+a, 1+a^{*}\right\rangle$ is a free group.

Motivated by Theorem 15, Gonçalves and Passman [14] used a similar idea to prove

Theorem 17 Let k be a field of characteristic $p>0$ containing an element transcendental over its prime subfield. Let G be a group with two elements $x, y \in G$ such that x has order $n<\infty,\langle x\rangle^{y} \neq\langle x\rangle$ and the subgroup $\left\langle x, y^{-1} x y\right\rangle$ has no p-torsion.

Defining

$$
a=(1-x) y \hat{x}, \quad b=\hat{x} y^{-1}\left(1-x^{\delta}\right), \quad \hat{x}=\sum_{i=0}^{n-1} x^{i},
$$

where $\delta=(-1)^{p}$, we have
$\mathcal{U}(k G) \supset\langle 1+t a, 1+t b a b, 1+t(1-b) a b a(1+b)\rangle \simeq C_{p} * C_{p} * C_{p}$.
Corollary 18 [14] If G is a non-abelian torsion p^{\prime}-group and k is not algebraic over its prime field F_{p}, then $\mathcal{U}(k G)$ contains a free group.

Note that in the general situation, if we somehow had access to (not necessarily trivial) units $\alpha, \beta \in \mathcal{U}(k G)$ with order $\alpha=n<\infty$, then letting

$$
a=(1-\alpha) \beta \hat{\alpha}, \quad b=\hat{\alpha} \beta^{-1}\left(1-\alpha^{-1}\right)
$$

$1+a$ and $1+b$ are again units. Indeed, β need not even be a unit. If β is an arbitrary element of $k G$ then defining

$$
a=(1-\alpha) \beta \hat{\alpha}, \quad b=\hat{\alpha} \beta\left(1-\alpha^{-1}\right)
$$

we again get two units $1+a$ and $1+b$. Let us call such units generalised bicyclic units (GBUs).

These units seem to have been unduly neglected, so we now turn our attention to them. We first determine whether there exist non-trivial GBUs.

Example $3 F_{5} S_{3}$ is semi-simple (by Maschke's Theorem) and non-commutative. Let us write $S_{3}=\left\langle x, y \mid x^{3}=y^{2}=(x y)^{2}=1\right\rangle$. Then \hat{S}_{3} and $\frac{1}{3} \hat{x}-\hat{S}_{3}=\hat{x}-\hat{x} y$ are central idempotents of $F_{5} S_{3}$. Thus $F_{5} S_{3} \hat{S}_{3} \simeq F_{5}$ and $F_{5} S_{3}(\hat{x}-\hat{x} y) \simeq F_{5}$ are direct summands of $F_{5} S_{3}$, so

$$
\begin{aligned}
F_{5} S_{3} & \simeq F_{5} \oplus F_{5} \oplus \text { non-commutative semi-simple piece of order } 5^{4} \\
& =F_{5} \oplus F_{5} \oplus M_{2}\left(F_{5}\right)
\end{aligned}
$$

By direct computation, $F_{5} S_{3}$ has 12 bicyclic units. But $M_{2}\left(F_{5}\right)$ has more than 12 GBUs (found using GAP), so there exist GBUs in $F_{5} S_{3}$ which are not bicyclic units.

Theorem 19 Let G be any group, let $\alpha, \beta \in \mathcal{U}\left(F_{p} G\right)$,o $(\alpha)=n<\infty,(p, n)=1$ and define $a=(1-\alpha) \beta \hat{\alpha}$, and $b=\hat{\alpha} \beta^{-1}\left(1-\alpha^{(-1)^{p}}\right)$. If $(b a)^{m} \neq 0$ for all integers m, then $\mathcal{U}\left(F_{p} G\right)$ contains a free group.

In fact,

$$
\langle 1+t a, 1+t b a b, 1+t(1+b) a b a(1+b)\rangle \simeq C_{p} * C_{p} * C_{p} .
$$

Proof:
$a^{2}=b^{2}=0$, so the result is immediate by the lemma in [14].

Now we can use our GBUs to generalise Theorem 17.
Theorem 20 Let k be a field of characteristic $p>0$, containing a transcendental element t over its prime subfield F_{p}. Let G be a group with $\alpha, \beta \in \mathcal{U}\left(F_{p} G\right), o(\alpha)=$ $n<\infty, \quad p \nmid n$, and $a=(1-\alpha) \beta \hat{\alpha}, b=\hat{\alpha} \beta^{-1}\left(1-\alpha^{(-1)^{p}}\right)$. Then if

$$
\begin{align*}
& p=2 \text { and } \omega \pi_{2}\left(\hat{\alpha} \beta^{-1} \alpha^{2} \beta\right) \neq \omega \pi_{2}(\hat{\alpha}) \text { or } \tag{2.1}\\
& p>2 \text { and } \omega \pi_{p}\left(\hat{\alpha} \beta^{-1}\left(\alpha+\alpha^{-1}\right) \beta\right) \neq 2 \omega \pi_{p}(\hat{\alpha})
\end{align*}
$$

then $\mathcal{U}(k G)$ contains a free group.
In fact, $\langle 1+t a, 1+1 b a b, 1+t(1+b) a b a(1+b)\rangle \simeq C_{p} * C_{p} * C_{p}$.

Proof:

By Theorem 19 it suffices to show that $b a$ is not nilpotent. If $b a$ is nilpotent then by [29, Lemma p.47], we must have $\omega \pi_{p}(b a)=0$.
Case i) $p=2$. Then

$$
\begin{aligned}
\omega \pi_{2}(b a) & =\omega \pi_{2}\left(\hat{\alpha} \beta^{-1}\left(1+\alpha^{2}\right) \beta \hat{\alpha}\right) \\
& =\omega \pi_{2}\left(\hat{\alpha} \hat{\alpha} \beta^{-1}\left(1+\alpha^{2}\right) \beta\right)(\text { by Lemma } 14) \\
& =\omega \pi_{2}\left(\hat{\alpha}\left(1+\beta^{-1} \alpha^{2} \beta\right)\right)(\text { as } n \text { is odd }) \\
& =\omega \pi_{2}(\hat{\alpha})+\omega \pi_{2}\left(\hat{\alpha} \beta^{-1} \alpha^{2} \beta\right) \\
& \neq 0 \text { by assumption } .
\end{aligned}
$$

Case ii) $p>2$. Then

$$
\begin{aligned}
\omega \pi_{p}(b a) & =\omega \pi_{p}\left(\hat{\alpha} \beta^{-1}\left(2-\alpha-\alpha^{-1}\right) \beta \hat{\alpha}\right) \\
& =n \omega \pi_{p}\left(\hat{\alpha}\left(2-\beta^{-1}\left(\alpha+\alpha^{-1}\right) \beta\right)\right)(\text { by Lemma 14 }) \\
& =n\left\{2 \omega \pi_{p}(\hat{\alpha})-\omega \pi_{p}\left(\hat{\alpha} \beta^{-1}\left(\alpha+\alpha^{-1}\right) \beta\right)\right\} \\
& \neq 0 \text { by assumption. }
\end{aligned}
$$

Note that variants of Theorems 20 and 19 will be appLicable in diverse settings. The ugly equations 2.1 are used to ensure that $b a$ is not nilpotent. These could be reformulated in terms of $\omega \pi_{n}$, where $n \neq p$. Indeed, if $\gamma=\sum c_{g} g$ is nilpotent of order r, with $r<p^{m}$ and fixing n, assume that $\operatorname{supp}(\gamma)$ contains no elements of order
dividing $p^{m} n^{m_{1}}$, for all $m_{1} \in Z$ (except the identity element). Then

$$
\begin{aligned}
0 & =\omega \pi_{n}(0)=\omega \pi_{n}\left(\gamma^{p^{m}}\right) \\
& =\omega \pi_{n}\left(\left(\sum c_{g} g\right)^{p^{m}}\right)=\omega \pi_{n}\left(\left(\sum c_{g}^{p^{m}} g^{p^{m}}\right)\right) \\
& \left(\text { as } \omega \pi_{n} \text { annihilates }[k G, k G]\right. \text { by Lemma 14) } \\
= & \omega \pi_{n}\left(\left(\sum c_{g}^{p^{m}} g\right)\right)=c_{g_{1}}^{p^{m}}+\cdots+c_{g_{s}}^{p^{m}} \text { say } \\
= & \left(c_{g_{1}}+\cdots+c_{g_{s}}\right)^{p^{m}}=\left(\omega \pi_{n}(\gamma)\right)^{p^{m}}
\end{aligned}
$$

If $p>0$ and G is finite then $F_{p} G \subset k G$ and $F_{p} G$ is finite, so if we choose our α, β in $F_{p} G$, we can check for nilpotency of $b a$ directly, using GAP say.

Example 4 Consider a group ring like $F_{2}(t) G$, where $G=D_{2 m}=\langle x, y| x^{m}=y^{2}=$ $\left.1, y x y=x^{-1}\right\rangle$. Now the unit group will contain a free group (as $S_{2}\left(D_{2 m}\right)$ is not normal in $D_{2 m}$), but the Gonçalves/Passman construction cannot be used as when $u, v \in D_{2 m}$, and $\langle u\rangle^{v} \neq u$, then the group $\left\langle u, u^{v}\right\rangle$ always contains $\mathscr{2}$-elements.

So let us take such an example, say $F_{2}(t) D_{10}$, and attempt to construct a free group in its unit group.

Let $G=D_{10}=\left\langle x, y \mid x^{5}=y^{2}=1, y x y=x^{4}\right\rangle$ and consider the group algebra $F_{2}(t) G$, where t is a transcendental field element over F_{2}. Define $\alpha=x+y+x y$ and $\beta=(1+x+\hat{x} y)^{2}$. Direct calculation (see the Appendix for details) shows that α and β are units of order 3 and 15 respectively. Using the notation of our theorem,

$$
a=(1+\alpha) \beta \hat{\alpha} \text { and } b=\hat{\alpha} \beta^{14}(1+\alpha)
$$

Now, direct calculation again shows that $0 \neq b a=(b a)^{2}$, so no power of ba is equal to zero, so Theorem 19 applies.
Thus, $\langle 1+t a, 1+t b a b, 1+t(1+b) a b a(1+b)\rangle=\langle T, U, V\rangle$, say, is isomorphic to
$C_{2} * C_{2} * C_{2}$.
So clearly, TU and TV generate a free group. That is,

$$
\begin{aligned}
& \langle(1+t a)(1+t b a b),(1+t a)(1+t(1+b) a b a(1+b))\rangle= \\
& \left\langle 1+t\left(x+x^{4}+x y+x^{2} y\right)+t^{2}\left(x^{2}+x^{4}+x^{2} y+x^{4} y\right),\right. \\
& \left.1+t\left(x y+x^{2} y+x^{3} y+x^{4} y\right)+t^{2}\left(x^{3}+x^{4}+x^{2} y+x^{3} y\right)\right\rangle
\end{aligned}
$$

is a free group of rank 2. The GAP file in the Appendix shows that this is not a stable free pair.

Chapter 3

Commutativity of the group
 algebra

When F and G are finite, an exhaustive search can be carried out (by hand or using computer software) to check the applicability of the criterion in Theorems 20 and 19 of the previous chapter. The speed of this check is influenced by the probability that two randomly selected elements of $F G$ commute. In this chapter we attempt to determine this probability for an arbitrary finite group algebra. If R is a finite ring, define this probability as $P(R)=\frac{1}{|R|^{2}} \sum_{x \in R}\left|C_{R}(x)\right|$. This is the total number of commuting pairs of elements divided by the total number of pairs of elements in the ring.

Desmond MacHale [21] has shown that for an arbitrary non-commutative finite ring $R, P(R) \leq 5 / 8$, with equality if and only if $[R: Z(R)]=4$.

Letting J represent the Jacobson radical of R, the number $P(R / J)$ can be computed using either of the following two results:

Theorem 21 (Frobenius) [16] If A is an $n \times n$ matrix over the field F, and if f_{1}, \ldots, f_{k} are its invariant factors, with $f_{i} \mid f_{i-1}$ for $i=2, \ldots, k$, then the dimension of $C_{M M_{n}(F)}(A)$ is $\sum_{i=1}^{k}(2 i-1) \operatorname{deg} f_{i}$.

We need to set up some notation for the following theorem:
Let us work with $n \times n$ matrices, and let $\pi(n)$ be any partition of n. Let $b_{i} \geq 0$ denote the number of times i appears in the partition, so that $n=b_{1}+2 b_{2}+3 b_{3}+\cdots$. Let $k(\pi)$ denote the total number of parts of π, that is, $k(\pi)=\sum_{i \geq 1} b_{i}$. Let q be a prime power. Let

$$
f(n, q)=f(n)=\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right) \cdots\left(1-\frac{1}{q^{n}}\right)
$$

for $n \geq 1$, and $f(0)=1$. Then:

Theorem 22 (Feit and Fine) [10]

$$
P\left(M_{n}\left(F_{q}\right)\right)=f(n) \sum_{\pi(n)} \frac{q^{k(\pi)}}{f\left(b_{1}\right) f\left(b_{2}\right) \ldots f\left(b_{n}\right)} .
$$

Lemma 23 If R_{1}, \ldots, R_{t} are finite rings, then

$$
P\left(R_{1} \oplus \cdots \oplus R_{t}\right)=P\left(R_{1}\right) \ldots P\left(R_{t}\right)
$$

Proof:

It suffices to prove the result for $t=2$. Here

$$
P(R)=P\left(R_{1} \oplus R_{2}\right)=\frac{1}{|R|^{2}} \sum_{\left(x_{1}, x_{2}\right) \in R_{1} \oplus R_{2}}\left|C_{R}(x)\right|
$$

$$
=\frac{1}{|R|^{2}}\left\{\begin{array}{l}
\sum_{\left(x_{1}, x_{2}\right) \in Z\left(R_{1}\right) \oplus R_{2}}\left|C_{R_{2}}\left(x_{2}\right)\right| \cdot\left|R_{1}\right| \\
+\sum_{\left(x_{1}, x_{2}\right) \in R_{1} \oplus Z\left(R_{2}\right)}\left|C_{R_{1}}\left(x_{1}\right)\right| \cdot\left|R_{2}\right| \\
+\sum_{\left(x_{1}, x_{2}\right) \in R_{1} \backslash Z\left(R_{1}\right) \oplus R_{2} \backslash Z\left(R_{2}\right)}\left|C_{R_{1}}\left(x_{1}\right)\right| \cdot\left|C_{R_{2}}\left(x_{2}\right)\right| \\
-\sum_{\left(x_{1}, x_{2}\right) \in Z\left(R_{1}\right) \oplus Z\left(R_{2}\right)}\left|R_{1}\right| \cdot\left|R_{2}\right|
\end{array}\right\}
$$

Now let $q_{1}=P\left(R_{1}\right)$ and $q_{2}=P\left(R_{2}\right)$. Note that

$$
q_{i}=\frac{1}{\left|R_{i}\right|^{2}} \sum_{x \in R_{i}}\left|C_{R_{i}}(x)\right|=\frac{\left|Z\left(R_{i}\right)\right| \cdot\left|R_{i}\right|+\left(\left|R_{i}\right|-\left|Z\left(R_{i}\right)\right|\right) m_{i}}{\left|R_{i}\right|^{2}}
$$

where m_{i} is the average of the sizes of the centralisers of the non-central elements of R_{i}. Therefore

$$
m_{i}=\frac{q_{i}\left|R_{i}\right|^{2}-\left|Z\left(R_{i}\right)\right| \cdot\left|R_{i}\right|}{\left|R_{i}\right|-\left|Z\left(R_{i}\right)\right|}
$$

for $i=1,2$ (when $q_{i} \neq 1$). Thus

$$
\begin{aligned}
& P(R)=\frac{1}{\left|R_{1}\right|^{2}\left|R_{2}\right|^{2}}\left\{\begin{array}{l}
q_{2}\left|R_{2}\right|^{2}\left|R_{1}\right|\left|Z\left(R_{1}\right)\right|+q_{1}\left|R_{1}\right|^{2}\left|R_{2}\right| \cdot\left|Z\left(R_{2}\right)\right| \\
+\left(\left|R_{1}\right|-\left|Z\left(R_{1}\right)\right|\right)\left(\left|R_{2}\right|-\left|Z\left(R_{2}\right)\right|\right) m_{1} m_{2} \\
-\left|Z\left(R_{1}\right)\right| \cdot\left|Z\left(R_{2}\right)\right| \cdot\left|R_{1}\right| \cdot\left|R_{2}\right|
\end{array}\right\} \\
& =\frac{1}{\left|R_{1}\right| \cdot\left|R_{2}\right|}\left\{\begin{array}{l}
q_{2}\left|R_{2}\right| \cdot\left|Z\left(R_{1}\right)\right|+q_{1}\left|R_{1}\right| \cdot\left|Z\left(R_{2}\right)\right| \\
+\left(q_{1}\left|R_{1}\right|-\left|Z\left(R_{1}\right)\right|\right)\left(q_{2}\left|R_{2}\right|-\left|Z\left(R_{2}\right)\right|\right) \\
-\left|Z\left(R_{1}\right)\right| \cdot\left|Z\left(R_{2}\right)\right|
\end{array}\right\}=q_{1} q_{2} .
\end{aligned}
$$

Lemma 24 Let R be a finite ring, J the Jacobson radical of R. If $J \subset Z(R)$ then $P(R)=P(R / J)$.

Proof:

Recall Theorem 3. There is a subring $S \simeq R / J(R)$ of R such that $R=S \oplus J$ as vector spaces. Let $x=x_{1}+x_{2}, y=y_{1}+y_{2} \in R$, with $x_{1}, y_{1} \in S$ and $x_{2}, y_{2} \in J$. Then
$x y=x_{1} y_{1}+\left(x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}\right)$, with $x_{1} y_{1} \in S$ and the second part in J. Computing $y x$ we see that $y \in C_{R}(x)$ if and only if $y_{1} \in C_{S}\left(x_{1}\right)$ and

$$
\begin{equation*}
x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}=y_{1} x_{2}+y_{2} x_{1}+y_{2} x_{2} \tag{*}
\end{equation*}
$$

Note that since $J \subset Z(R),(*)$ always holds here. Thus $y \in C_{R}(x)$ if and only if $y_{1} \in C_{S}\left(x_{1}\right)$. Without loss of generality, assume $q_{1}=P(S) \neq 1$. Let m be the average of the sizes of the centralisers of the noncentral elements of S. Now

$$
\begin{aligned}
P(R) & =\frac{1}{|R|^{2}} \sum_{x_{1} \in S, x_{2} \in J}\left|C_{S+J}\left(x_{1}+x_{2}\right)\right| \\
& =\frac{1}{|R|^{2}}\left\{\sum_{x_{1} \in Z(S), x_{2} \in J}\left|C_{S}\left(x_{1}\right)\right| \cdot|J|+\sum_{x_{1} \in S \backslash Z(S), x_{2} \in J}\left|C_{S}\left(x_{1}\right)\right| \cdot|J|\right\} \\
& =\frac{1}{|R|^{2}}\left\{|J|^{2} \sum_{x_{1} \in Z(S)}|S|+|J|^{2} \sum_{x_{1} \in S \backslash Z(S)}\left|C_{S}\left(x_{1}\right)\right|\right\} \\
& =\frac{1}{|S|^{2}}\{|Z(S)| \cdot|S|+(|S|-|Z(S)|) m\} \\
& =\frac{1}{|S|^{2}}\left\{|Z(S)| \cdot|S|+q_{1}|S|^{2}-|Z(S)| \cdot|S|\right\} \text { by the proof of Lemma } 23 \\
& =q_{1} .
\end{aligned}
$$

Lemma 25 In the notation of Lemma 24, if $S \subset Z(R)$ then $P(R)=P(J)$.

Proof:

We use the notation of the previous lemma. Again let $x=x_{1}+x_{2}, y=y_{1}+y_{2} \in R$, with $x_{1}, y_{1} \in S$ and $x_{2}, y_{2} \in J$. Recalling equation (*) from the previous proof, note that $y \in C_{R}(x)$ if and only if $y_{2} \in C_{S}\left(x_{2}\right)$. Without loss of generality, assume $q_{2}=P(J) \neq 1$. Again, let m_{2} be the average size of the centraliser of a noncentral element of J. Thus

$$
\begin{aligned}
P(R) & =\frac{1}{|R|^{2}}\left\{\sum_{x_{1} \in S, x_{2} \in Z(J)}\left|C_{S}\left(x_{1}\right)\right| \cdot\left|C_{J}\left(x_{2}\right)\right|+\sum_{x_{1} \in S, x_{2} \in J \backslash Z(J)}\left|C_{S}\left(x_{1}\right)\right| \cdot\left|C_{J}\left(x_{2}\right)\right|\right\} \\
& =\frac{1}{|R|^{2}}\left\{|S|^{2}|J| \cdot|Z(J)|+|S|^{2} \sum_{x_{2} \in J \backslash Z(J)}\left|C_{J}\left(x_{2}\right)\right|\right\} \\
& =\frac{1}{|J|^{2}}\left\{|J| \cdot|Z(J)|+(|J|-|Z(J)|) m_{2}\right\} \\
& =\frac{1}{|J|^{2}}\left\{|J| \cdot|Z(J)|+q_{2}|J|^{2}-|Z(J)| \cdot|J|\right\} \\
& =q_{2} .
\end{aligned}
$$

In a finite group ring $K G$, finding $P(K G / J)$ is easy, and finding $P(J)$ is often easy, especially when G is p -seperable.

We close the chapter by quoting two more computational results of a slightly different nature. Define $\delta(R):=|U(R)| /|R|$, the probability that a randomly selected ring element is a unit. The first result may be viewed as a generalisation of Wedderburn's Theorem.

Theorem 26 [22] Let R be a finite ring with unity $1(\neq 0)$. If $\delta(R)>1-\sqrt{\frac{1}{|R|}}$ then R is a field.

Theorem 27 [g] Let $F G$ be a finite group algebra with $|F|=p^{m}$ and $|G|=n$. Then

$$
\delta(F G)=\delta(F G / J)=\prod_{n, q}\left(1-q^{-1}\right)\left(1-q^{-2}\right) \ldots\left(1-q^{-n}\right)
$$

where the product extends over the family of ordered pairs (n, q) corresponding to the decomposition of $F G / J$ as the direct sum of matrix rings $M_{n}\left(F_{q}\right)$.

We will return to the consideration of $\delta\left(F_{p} G\right)$ in Lemma 73 and Example 6 in the next cheapter.

Chapter 4

Infinite Fields

Throughout this chapter let K denote a field of positive characteristic p which is not algebraic over F_{p}.

4.1 Introduction

Theorem 28 (Sehgal [32], Hartley \& Pickel [15]) Let G be a finite group. Then the following statements are equivalent:
i) G is abelian or a Hamiltonian 2-group.
ii) $U(Z G)$ is soluble
iii) $U(Z G)$ does not contain a free subgroup.

It is a natural and interesting problem to extend this result to more general group algebras. In Section 3 we prove the following theorem:

Theorem 29 Let G be a locally finite group, F a field whose characteristic is either 0 or $p>0$, provided that G contains no p-elements and F is not algebraic over F_{p}. Then the following statements are equivalent:
i) G is abelian
ii) $U(F G)$ is soluble
iii) $U(F G)$ does not contain a free subgroup.

The case where the coefficient field K is not algebraic over its prime subfield F_{p} and G contains p-elements is more complicated. Gonçalves gave the following result in 1984 [12]:

Theorem 30 Let $|G|<\infty, p$ any prime, K any field of characteristic p, not algebraic over F_{p}. Then the following are equivalent:
i) $U(K G) \not \supset$ free groups
ii) G^{\prime} is a $p-g r o u p$
iii) $U(K G)$ is soluble

In Section 2 we prove the following more detailed result for finite groups:
Theorem 31 Let $|G|<\infty, p$ any prime. Then the following are equivalent:
i) $U(K G) \not \supset$ free groups
ii) G^{\prime} is a $p-$ group
iii) $U(K G)$ is soluble
iv) $U\left(F_{p} G\right)$ is soluble and $F_{p} G$ is not equal to either Case ii) or iii) of Theorem 40.
v) $\frac{U\left(F_{p} G\right)}{1+J\left(F_{p} G\right)}$ is soluble and $F_{p} G$ is not equal to either Case ii) or iii) of Theorem 40.
vi) $U\left(\frac{F_{p} G}{J\left(F_{p} G\right)}\right)$ is soluble and $F_{p} G$ is not equal to either Case ii) or iii) of Theorem 40.
vii) $S_{p}(G) \triangleleft G$ and $G / S_{p}(G)$ is abelian.
viii) $G / O_{p}(G)$ is abelian.
ix) $\frac{K G}{J(K G)}$ is isomorphic to a direct sum of fields.
$x)$ The unit group of $K\left(G / O_{p}(G)\right)$ is soluble.
xi) $\frac{U(K G)}{1+J(K G)}$ is soluble.
xii) $\frac{U\left(K^{\prime} G\right)}{1+J\left(K^{\prime} G\right)}$ is abelian.
xiii) $\frac{U(K G)}{1+J(K G)}$ does not contain a free group.
xiv) The transvections of $K G$ are contained in $1+J(K G)$.
$x v) \frac{U(K G)}{1+J(K G)}$ is a $p^{\prime}-$ group.
xvi) $U\left(K^{\prime} G\right)^{\prime}$ is a nilpotent p-group.
xvii) The torsion subset of $U(K G)$ forms a group.

Note that for G finite, this gives us the following interesting result: provided that either G is not a non-abelian Hamiltonian 2-group or $p \neq 2$, we have i) $\Rightarrow i i) \Rightarrow$ $i i i) \Rightarrow i v$), where the statements $i) \ldots i v$) are given below:
i) $U(K G)$ contains a free subgroup for some field of characteristic $p>0$,
ii) $U(K G)$ contains free subgroups, where K is a field of any positive characteristic (except possibly one positive characteristic),
iii) $U(Z G)$ contains free subgroups,
$i v) U(F G)$ contains free subgroups for all fields F of characteristic 0 .

In Section 3 we prove a result analogous to the previous theorem, but for locally finite groups:

Theorem 32 Let G be a locally finite group, p any prime. Then the following are equivalent:
i) $U(K G) \not \supset$ free groups
ii) G^{\prime} is a p-group
vii) There exists a maximal $p-\operatorname{subgroup} P$ of G with $P \triangleleft G$ and G / P an abelian p^{\prime}-group.
viii) $G / O_{p}(G)$ is abelian (and therefore a p^{\prime}-group).
xi) $U(K G)$ is locally soluble.
xvii) The torsion subset of $U(K G)$ forms a group.

Also, if G^{\prime} is finite then i) is equivalent to each of the following:
iii) $U(K G)$ is soluble.
iv) $U\left(F_{p} G\right)$ is soluble and the two new exceptions in [5] do noot occur.

All of these results can be viewed as variations on Tits Alternative, applied to the unit group of a group ring. In Section 4 we define two new chains of unit groups, U_{n} and \tilde{U}_{n}, and examine their properties using the previous theorems. Section 5 lists corollaries of Theorems 2 and 3, including several results on t=he Jacobson radical.

We fix our notation as follows:
$O_{p}(G)=O_{p}$ denotes the group generated by all the normal p-subgroups of G.
$S_{p}(G)$ is a sylow- p-subgroup of G.
F_{p} is the field with p elements.
Let $H<G$ and K be a field. Then $I(H):=I(K H):=\omega(K H):=\Delta(H)$, the augmentation ideal of $K H$. Also, $\Delta(G, H):=K G \Delta(H)$.
$J(R):=$ the Jacobson radical of the ring R.
$L(R):=$ the sum of all the locally nilpotent ideals of R, called the Levitzki radical of R.
$N^{*}(R):=\{\alpha \in R \mid \alpha S$ is nilpotent for all finitely generated suabrings S of $R\}$.

In a ring R, if $y x=0$ and r is any element then the unit $1+x r y$ is called a transvection. It has inverse $1-x r y$ and has finite order n if $n=0$ in R.
Let H be a subgroup of G. We say that H has locally finite index in G if [V : $(V \cap H)]<\infty$ for any finitely generated subgroup V of G.

Define the following chains of subgroups:
$U_{0}:=\tilde{U}_{0}:=\bar{U}_{0}:=G$.
$U_{1}:=U\left(F_{p} G\right), U_{2}:=U\left(F_{p} U_{1}\right), \ldots, U_{n}:=U\left(F_{p} U_{n-1}\right)$
$\tilde{U}_{1}:=U(K G), \tilde{U}_{2}:=U\left(K U_{1}\right), \ldots, \tilde{U}_{n}:=U\left(K U_{n-1}\right)$
$\bar{U}_{1}:=U(K G), \bar{U}_{2}:=U\left(K \bar{U}_{1}\right), \ldots, \bar{U}_{n}:=U\left(K \bar{U}_{n-1}\right)$
Let $H<G$. Then define ${ }_{H} U_{0}:={ }_{H} \tilde{U}_{0}:={ }_{H} \bar{U}_{0}:=H$.
Define ${ }_{H} U_{1}:=U\left(F_{p} H\right), \ldots,{ }_{H} U_{n}:=U\left(F_{p H} U_{n-1}\right)$.
Similarly define ${ }_{H} \tilde{U}_{1}:=U(K H), \ldots,{ }_{H} \tilde{U}_{n}:=U\left(K_{H} U_{n-1}\right)$.
Lastly define ${ }_{H} \bar{U}_{\mathrm{l}}:=U(K H), \ldots,{ }_{H} \bar{U}_{n}:=U\left(K_{H} \bar{U}_{n-1}\right)$.
Thus $U_{n}={ }_{G} U_{n}$.

4.2 Finite Groups

We break up the proof of Theorem 31 into several lemmas. Parts $i v$) and v) of the following result were stated by Gonçalves in [12].

Lemma 33 Let $|G|<\infty, p$ any prime. Then the following are equivalent:
i) G^{\prime} is a $p-g r o u p$
ii) $G / O_{p}(G)$ is abelian
iii) $S_{p}(G) \triangleleft G$ and $G / S_{p}(G)$ is abelian
iv) $U(K G)$ does not contain free groups.
v) $U(K G)$ is soluble.

Proof:

i) $\Leftrightarrow i i): G^{\prime}$ is a p-group if and only if $G^{\prime} \leq O_{p}(G)$ if and only if $G / O_{p}(G)$ is abelian. $i i) \Leftrightarrow i i i): G / O_{p}(G)$ abelian implies that $G / O_{p}(G)$ is a $p^{\prime}-$ group, so $O_{p}(G)$ is a Sylow-p-subgroup of G. Conversely, $S_{p}(G) \triangleleft G$ implies that $S_{p}(G)=O_{p}\left(G^{\prime}\right)$.
$i i i) \Leftrightarrow i v)$: This was shown in [12].
$i i) \Leftrightarrow v$): This follows from [19, page 106].

Lemma 34 Let G be finite. Then the group algebra $F_{p}(t) G$ contains the group ring $F_{p}\langle t\rangle G \simeq F_{p}(\langle t\rangle \times G) \simeq\left(F_{p} G\right)\langle t\rangle$ with $J\left(\left(F_{p} G\right)\langle t\rangle\right)=J\left(F_{p} G\right)\langle t\rangle$.

Proof:

The statement about the radicals is just [32, page 128]. Note that in general, $R(G \times H) \simeq(R G) H \simeq(R H) G$.

Lemma 35 Let G be finite. Then the group $\frac{U(K G)}{1+J(K G)}$ is either abelian or contains a free group.

Proof:

$U(K G / J(K G)) \simeq \oplus M_{n_{i}}\left(K_{i}\right)$, where the K_{i} are fields containing K [33, p.64]. If all n_{i} equal 1 then we are in the abelian case, and if some $n_{i}>1$ then $U(K G / J(K G)) \supset$ $M_{2}(K)$, which is well known to contain free groups.

Lemma 36 Let G be a finite group. Then the transvections of $K G$ are contained in $1+J(K G)$ if and only if G^{\prime} is a p-group.

Proof:

Define θ to be the natural map $U(K G) \rightarrow U(K G / J(K G)) \simeq \oplus M_{n_{i}}\left(K_{i}\right)$, and let θ_{i} be the $\operatorname{map} U(K G) \rightarrow M_{n_{i}}\left(K_{i}\right)$.
\Leftarrow : Since G^{\prime} is a p-group, Lemmas 33 and 35 make $U(K G) /(1+J(K G))$ abelian, so that if $x y=0$ then $\theta(x) \theta(y)=0$, forcing x and y to have "disjoint projections" onto the sum of fields. Thus for any $r \in \mathbb{E} G$ we must have $\theta(1+x r y)=1+\theta(x) \theta(r) \theta(y)=$ 1 , proving the implication.
\Rightarrow : Conversely, assume that every transvection $1+x r y$ is contained in $1+J\left(K^{-} G\right)$. Now $x y=0$, so $\theta(x) \theta(y)=0 \in \oplus M_{n_{i}}\left(F_{i}(t)\right)$. Therefore $\theta(x)$ and $\theta(y)$ either have "disjoint projections" or there exists an i such that $\theta_{i}(x), \theta_{i}(y) \in M_{n_{i}}\left(F_{i}(t)\right)$, with $\theta_{i}(x r y)=0$ for all $r \in K G$. Without loss of generality, let $i=1$.
Claim 1: $\theta_{1}(x r y)=0$ for all $r \in K^{-} G$ implies that one of $\theta_{1}(x)$ or $\theta_{1}(y)$ is 0.
Proof of Claim 1: let $\theta_{1}(x):=\left[x_{i j}\right], \theta_{1}(r):=\left[r_{i j}\right]$, and $\theta_{1}(y):=\left[y_{i j}\right]$, all $n \times n$ matrices. Thus

$$
\theta_{1}(x r)=\left[\begin{array}{llll}
\sum_{i=1}^{n} x_{\mathbf{1} i} r_{i 1} & \sum x_{1 i} r_{i 2} & \ldots & \sum x_{i 1} r_{i n} \\
\ldots & \ldots & \ldots & \cdots \\
\sum x_{n i} r_{\bar{z} 1} & \sum x_{n i} r_{i 2} & \ldots & \sum x_{n i} r_{i n}
\end{array}\right]
$$

Thus we may choose r such that if $\theta_{1}(x)$ has a non-zero entry at, say $x_{i j}$, we can make the $i^{\text {th }}$ row of $\theta_{1}(x r)$ be anything we choose. Thus, as long as $\theta_{1}(y) \neq 0$, we can make the $i^{\text {th }}$ row of $\theta_{1}(x r y)$ be not all zeros. This proves Claim 1.

Thus, whenever $x, y \in K G$, with $x y=0$, we must have that $\theta(x)$ and $\theta(y)$ have "disjoint projections".

Claim 2: If for every $x, y \in K G$, with $x y=0$, we have $\theta(x)$ and $\theta(y)$ having "disjoint projections", then $\frac{K G}{J(K G)} \simeq \oplus$ fields.
Proof of Claim 2: Working by contradiction, without loss of generality assume that $\frac{K G}{J(K G)} \simeq M_{2}\left(F_{1}(t)\right) \oplus$ other factors. (The use of 2×2 matrices is for typographical convenience - note that $M_{2}\left(F_{1}(t)\right)$ will be a subring of whatever noncommutative
factor does occur.) Now let

$$
\theta(x)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], 0, \ldots, 0\right), \theta(y)=\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], 0, \ldots, 0\right) \in \frac{K G}{J(K G)}
$$

Note that since J is nil, we may lift $\theta(x)$ and $\theta(y)$ to orthogonal idempotents x and y of $K G$ [29, page 49]. Thus we have $x, y \in K G$ with $x y=0$, but with $\theta(x)$ and $\theta(y)$ not having disjoint projections. This contradicts our hypothesis and proves Claim 2. Thus $\frac{K G}{J(K G)} \simeq \oplus$ fields, so [19, pages $\left.100-101\right]$ and Lemma 33 give us that G^{\prime} is a p-group.

Lemma 37 Let G be a finite group. Then G^{\prime} is a p-group if and only if $\frac{U(K G)}{1+J(K G)}$ is a $p^{\prime}-$ group.

Proof:

\Leftarrow : We prove the contrapositive. Let G^{\prime} not be a $p-$ group. Then by Lemma 36 there is a transvection (and hence a p-element) in $U(K G) \backslash 1+J(K G)$, so $\frac{U(K G)}{1+J(K G)}$ is not a p^{\prime}-group.
\Rightarrow : Let G^{\prime} be a p-group. Then

$$
\frac{U(K G)}{1+J(K G)} \simeq U\left(\frac{K G}{J(K G)}\right) \simeq U(\oplus \text { fields of char } \mathrm{p})
$$

by Lemmas 33 and 35, say. Now if $\theta_{i}(U(K G))$ contains an element x of order p then $x^{p}=1$, so $(x-1)^{p}=0$, so $x=1$, a contradiction.

Lemma $38 G^{\prime}$ is a p-group if and only if $U(K G)^{\prime}$ is a nilpotent p-group.

Proof:

If G^{\prime} is a p-group then $U(K G) /(1+J)$ is abelian, so $U^{\prime}<1+J$, so U^{\prime} is nilpotent.

If G^{\prime} is not a p-group then $U\left(K^{\prime} G\right)$ contains free groups, and therefore so does its commutator, which cannot then be a nilpotent p-group.

Proof of Theorem 31:

i) $\Leftrightarrow i i)$, by Lemma 33.
i) $\Leftrightarrow i i i)$, by Lemma 33 .
i) $\Leftrightarrow i v)$, by Theorem 28 .
$i v) \Leftrightarrow v$), as $1+J$ is a normal nilpotent subgroup of $U\left(F_{p} G\right)$.
$v) \Leftrightarrow v i)$, as $U\left(F_{p} G\right) /(1+J) \simeq U\left(F_{p} G / J\right)$.
$i) \Leftrightarrow v i i)$, by Lemma 33 .
$i i i) \Leftrightarrow x$), by [19, page 100].
ii) $\Leftrightarrow i x)$, by [19, pages $100-101]$.
$i i) \Leftrightarrow v i i i)$: By Lemma 33 .
$i i i) \Leftrightarrow x i)$: since $1+J(K G)$ is a nilpotent normal subgroup of $U(K G)$.
$i x) \Leftrightarrow x i i)$: The quotient is the direct sum of fields \Leftrightarrow it is abelian.
$x i i i) \Leftrightarrow x i i)$: This was Lemma 35 .
$i i) \Leftrightarrow x i v)$: This was Lemma 36.
ii) $\Leftrightarrow x v$): This was Lemma 37 .
ii) $\Leftrightarrow x v i$): This was Lemma 38 .
i) $\Leftrightarrow x v i i)$: This will be proved later in Theorem 62 .

Example $5 J\left(F_{5} D_{10}\right)$ has dimension 8 over F_{5} by [18, p.459]. Thus $\frac{F_{5} D_{10}}{J\left(F_{5} D_{10}\right)} \simeq F_{5^{2}}$ or $F_{5} \oplus F_{5}$. In fact, by the group lattice diagram in Chapter 5 we know that $\frac{F_{5} D_{10}}{J\left(F_{5} D_{10}\right)} \simeq$ $F_{5} \oplus F_{5}$. In particular, it is commutative. Note that $U\left(F_{5} D_{10}\right)>D_{10}$, which is not nilpotent. This contradicts the Lemma in [2], although the Theorem in that paper is true (see [32, p.179]). Thus $F_{5}(t) D_{10}$ is an example of a group ring whose unit group is soluble but not nilpotent.

We now give some miscellaneous results for finite groups:

Theorem 39 Let $|G|<\infty$. Let $p \neq 2$ or 3 . Then $U\left(F_{p} G\right)$ is soluble $\Leftrightarrow U(K G) \not \supset$ free groups.

Proof:

$\Rightarrow: U\left(F_{p} G\right)$ is soluble $\Leftrightarrow G^{\prime}$ is a p-group [32, page 205] $\Leftrightarrow U\left(K^{\prime} G\right)$ is soluble $\Rightarrow U(K G) \not \supset$ free groups.
\Leftarrow : Case i.) $S y l_{p}(G) \notin G$. Here (by [12]), $U\left(K^{\prime} G\right) \supset$ free groups, so this implication is vacuously true.

Case ii.) Let $P=\operatorname{Syl}_{p}(G) \triangleleft G$. Here $U(K G) \not \supset$ free groups, so by [12] again, G / P is abelian, so $G^{\prime}<P$, so G^{\prime} is a $p-g r o u p$, so $U\left(F_{p} G\right)$ is soluble [32, page 205].

Note: If $p=2$ and $U(K G)$ does contain free groups then $U\left(F_{2} G\right)$ may or may not be soluble. Similarly for $p=3$. The following theorem describes the situation in detail.

We need the following definitions for the next result:
$P:=\left\langle a, b: a^{8}=1, b^{2}=1, b a b^{-1}=a^{3}\right\rangle$,
$D:=\left\langle a, b: a^{4}=1, b^{2}=1, b a b^{-1}=a^{-1}\right\rangle$,
$Q:=\left\langle a, b: a^{4}=1, a^{2}=b^{2}, b a b^{-1}=a^{-1}\right\rangle$.
When G is a $2-$ group, define $e(G):=\left(|G|-\left(G: G^{\prime}\right)\right) / 4$,
$r(G):=|\{N \triangleleft G: G / N \simeq P\}|$, and
$s(G):=\mid\{N \triangleleft G: G / N \simeq D$ or $Q\} \mid$.

Theorem 40 [27, Theorem p.211] Let F be a field (of any characteristic) and G be a finite group. Then $U(F G)$ is soluble if and only if one of the following conditions holds:
i.) $G \simeq G_{p} \rtimes A$, where A is an abelian group (i.e. G^{\prime} is a $p-g r o u p$. By definition, $G_{0}=1$.)
ii.) $F=F_{2}, G^{\prime}$ is not a $2-$ group and $G^{*}=G / O_{2}(G) \simeq\left(C_{3} \times \ldots \times C_{3}\right) \times C_{2}$ (with C_{2} acting by inversion on each element).
iii.) $F=F_{3}, G^{\prime}$ is not a $3-\operatorname{group}, G \simeq G_{3} \rtimes G_{2}$ and $e\left(G_{2}\right)=2 r\left(G_{2}\right)+s\left(G_{2}\right)$.

Theorem 41 Let G be a finite group. Then either $U\left(F_{p} G\right)$ is soluble or $U(K G)$ contains free groups, or both.
Both happen precisely when either case ii.) or iii.) of Theorem 40 occurs.

Proof:

By Lemma 33, at least one happens. Both happen $\Leftrightarrow U\left(F_{p} G\right)$ is soluble and $U(K G) \supset$ free groups $\Leftrightarrow U\left(F_{p} G\right)$ is soluble and G^{\prime} is not a p-group (by Lemma 33) \Leftrightarrow Case ii.) or Case iii.) of Theorem 40 happens.

4.3 Locally Finite Groups

Throughout this section let G be a locally finite group. Note that if F is a field of characteristic $p>0$ which is algebraic over F_{p} then $U(F G)$ is a torsion group. (Indeed, letting $u=\sum u_{g} g \in U(F G)$, we see that $u \in U(K H)$, where K is a finite field and H is a finite group, so u is contained in a finite group, and therefore is a torsion element.)

Proof of Theorem 29:

Clearly $i) \Rightarrow i i) \Rightarrow i i i)$. Let $p>0$. Assuming $i i)$, let $x, y \in G$. Then $U(K\langle x, y\rangle)$ is soluble and $\langle x, y\rangle$ is finite, so $[x, y]=1$ (by Theorem 31), which implies i). Assuming iii), we get that $U(K\langle x, y\rangle)$ does not contain free subgroups, so $[x, y]=1$, again by Theorem 31.

In the characteristic 0 case Theorem 7 and [32, Corollary 4.14 p.205] give the result.

Lemma 42 Let p be any fixed prime and let G be a locally finite group.
Then $U(K G) \not \supset$ free groups $\Leftrightarrow G^{\prime}$ is a $p-$ group.

Proof:

G^{\prime} is a $p-$ group $\Leftrightarrow H^{\prime}$ is a $p-$ group for all finitely generated subgroups H of G $\Leftrightarrow U\left(K^{\prime} H\right) \not \supset$ free groups for all finitely generated subgroups H of G (by Theorem 31)
$\Leftrightarrow U(K G) \not \supset$ free groups (indeed, if $\langle u, v\rangle$ generate a free subgroup of $U(K G)$, then letting $H_{1}:=\langle\operatorname{supp} u, \operatorname{supp} v\rangle$ we have $\left|H_{1}\right|<\infty$ and $U\left(K H_{1}\right)$ contains a free group, a contradiction).

Lemma 43 Let G be a locally finite group, p any prime, and let G^{\prime} be finite. Then $U(K G) \not \supset$ free groups $\Leftrightarrow U(K G)$ is soluble.

Proof:

Clearly $U(K G)$ soluble $\Rightarrow U(K G) \not \supset$ free groups. For the converse suppose first that $p \geq 3$. Then $U(K G) \not \supset$ free groups $\Rightarrow G^{\prime}$ is a finite p-group (by Lemma 42) $\Rightarrow U(K G)$ is soluble (by [5, Theorem 1]).

Next, let $p=2$. Then G^{\prime} a finite $2-$ group $\Rightarrow U(K G)$ is soluble [5, Theorem 2 with
$\left.G^{\prime}=N\right]$.

Lemma 44 Let p be any fixed prime, let G be a locally finite group with G^{\prime} finite. Then either $U\left(F_{p} G\right)$ is soluble or $U\left(F_{p}(t) G\right) \supset$ free groups, or both. Both happen precisely when one of the two new exceptions (in [5]) happens.

Proof:

Assume that $U\left(F_{p}(t) G\right) \not \supset$ free groups. Then $U\left(F_{p}(t) G\right)$ is soluble (by Lemma 43), so $U\left(F_{p} G\right)$ is soluble.

Note that both happen $\Leftrightarrow U\left(F_{p} G\right)$ is soluble $\& G^{\prime}$ is not a p-group (by Lemma 42). In this case we can reduce to G finite to get by Theorem 41 that $p=2$ or 3 . Now this is equivalent to one of the two new exceptions happening. [5]

Proof of Theorem 32:

i) $\Leftrightarrow i i)$: Lemma 42.
ii) $\Leftrightarrow v i i)$: Recall that for any group G and any subgroup $H, G^{\prime \prime}<H \Leftrightarrow H \triangleleft G$ $\& G / H$ is abelian. Thus, G^{\prime} is a $p-$ group $\Leftrightarrow G^{\prime}<P$ a maximal $p-s u b g r o u p$ of $G \Leftrightarrow P \triangleleft G \& G / P$ is abelian.
ii) $\Leftrightarrow v i i i)$: This is exactly as in the proof of Theorem 31.
i) $\Leftrightarrow x i$): Let V be a finitely generated subgroup of $U(K G)$. Then the support of the generators of V is a finite set, and hence generates a finite subgroup H of G. Thus $V<U(K H)$. Thus $U(K G) \not \supset$ free groups $\Rightarrow U(K H) \not \supset$ free groups $\Rightarrow U(K H)$ is soluble (by Theorem 31) $\Rightarrow V$ is soluble. Thus i) $\Rightarrow x i$), and the converse is trivial. $i) \Leftrightarrow x v i i)$: This will be proved later in Theorem 62 .

Assume that G^{\prime} is finite.
$i) \Leftrightarrow i i i):$ This was Lemma 43.
$i i i) \Leftrightarrow i v): U(K G)$ is soluble $\Leftrightarrow U(K G) \not \supset$ free groups, (as $i) \Leftrightarrow i i i)) \Leftrightarrow U\left(F_{p} G\right)$ is
soluble and the two new exceptions don't happen (by Lemma 44).

4.4 Nilpotent and FC groups

An FC group is a group in which each element has only finitely many conjugates. Define $T(G)$ to be the set of torsion (periodic) elements of the group G.

Lemma 45 i): Let G be an $F C$ group with $P=S_{p}(G) \triangleleft G$. Then $\Delta(G, P)=J(K G)$ is nilpotent.
ii): Let G be a locally soluble group. Then $J(K G)$ is locally nilpotent.

Proof: Note that $i i$) is just [20, Corollary 46.33 p.399].

$$
J\left(\frac{K G}{\Delta(G, P)}\right)=J\left(K^{\prime} \frac{G}{P}\right)=0
$$

by [20, page 401 Theorem 47.1.iii]. By [29, pages 317-8], $J(K P) K G \subset N^{*}(K G)$. But P is a locally finite p-group, so by Lemma $75 J\left(K^{\prime} P\right)=\Delta(P)$. Thus $\Delta(G, P) \subset$ $N^{*}(K G) \subset J(K G)$ [29, page 323 2nd paragraph]. Hence we get that $\Delta(G, P)=$ $J(K G)$ [20, page 18 iv]. Lastly, $J(K G)$ is nilpotent by [29, page 312] and [20, page 401 Theorem 47.1.iii].

Lemma 46 Let G be an FC group, T the torsion subgroup of G and $S_{p}(T)$ a sylow p-subgroup of $T .\left(S_{0}(T)\right.$ is defined to equal 1). Let F be any field of characteristic $p \geq 0$. If $p>0$ then assume that either F is not algebraic over F_{p} or that G contains a free abelian group of rank 2.
If $U(F G)$ does not contain free groups then
i) $T / S_{p}(T)$ is abelian and every subgroup of $T / S_{p}(T)$ is normal in $G / S_{p}(T)$. Conversely, if i) holds and $T / S_{p}(T)<Z\left(G / S_{p}(T)\right)$ then $U(F G)$ is locally nilpotent by - locally nilpotent and hence does not contain free groups.

Proof:

$T \triangleleft G[6$, page 201] and T is locally finite. Assume that $U(F G)$ does not contain free groups. We may assume without loss of generality that G is finitely generated. (As i) involves only local properties). Thus T is finite [36]. Thus $U(F T)$ does not contain free groups, so by Theorem $32, T^{\prime}$ is a p-group, so $S_{p}(T) \triangleleft T, S_{p}(T) \triangleleft G$ and $T / S_{p}(T)$ is abelian. If necessary, quotient out $S_{p}(T)$ to assume that G is a p^{\prime} group, it is FC , and T is a finite abelian subgroup of G. It remains to show that every subgroup of T is normal in G. Proceed as in [15, proof of Lemma 4]. Assume otherwise, so let H be a finite subgroup of G with $x \in G \backslash N_{G}(H)$. Define $e=|H|^{-1} \hat{H}$. Now e is an idempotent in $F H \subset F T$. Define $f=e\left(1-e^{x}\right)$. Note that supp $e e^{x} \subset H H^{x} \not \subset H$, so $e \neq e e^{x}$, so $f \neq 0$. Thus f is a non-zero idempotent of $F T$ with $f f^{x}=0=f^{x} f$. Define $e_{12}=f x, e_{21}=x^{-1} f, e_{11}=e_{12} e_{21}=f, e_{22}=e_{21} e_{12}=f^{x}$. Thus $e_{i j} e_{k l}=\delta_{j k} e_{i l}$, where $\delta_{j k}$ is the Kronecker delta function, $i, j, k, l \in\{1,2\}$. Since no $e_{i j}$ equals 0 , we have that $R:=\sum_{i, j=1}^{2} F e_{i j} \simeq M_{2}(F)$.

If F is not algebraic over F_{p} then $F G \supset R \simeq M_{2}(F)$ contains free groups, a contradiction.

Assume therefore that G contains a free abelian group of rank 2. Thus by [36, Theorem 1.7.ii) p.4] we may assume that G contains a central element y of infinite order such that (possibly replacing y by some power of y) $\langle y\rangle \cap\langle H, x\rangle=\{1\}$. Hence $F G \supset F\langle H, x, y\rangle \simeq F(\langle y\rangle \times\langle H, x\rangle) \simeq F\langle y\rangle \otimes_{F} F\langle H, x\rangle$ by [19, Corollary 1.4 p.12]. Now this contains $F\langle y\rangle \otimes_{F} M_{2}(F) \simeq M_{2}\left(F\langle y\rangle \otimes_{F} F\right)$ by [20, Proposition 16.8.i) p.97]. By [19, Corollary 1.2 p.11] this is isomorphic (as a F-algebra) to $M_{2}(F(y))$. Following
the proof of [11 , Theorem 2.5 p. 367] note that this matrix ring contains the matrices

$$
A:=\left[\begin{array}{ll}
y & 0 \\
0 & y^{-1}
\end{array}\right], \quad B:=P\left[\begin{array}{ll}
y & 0 \\
0 & y^{-1}
\end{array}\right] P^{-1}
$$

where

$$
P=\left[\begin{array}{ll}
1+y & y \\
-y & 1-y
\end{array}\right]
$$

Now A and B are elements of $S L_{2}(F\langle y\rangle)$. By [35, Proposition 3.12], some powers of A and B generate a free group.

Conversely, assume that i) holds and $T / S_{p}(T)<Z\left(G / S_{p}(T)\right)$. Again we may assume that G is finitely generated. Let $\bar{G}=G / S_{p}(T)$. Now \bar{G} is a finitely generated p^{\prime} FC group, and by [36] it is a subgroup of the direct sum of a finite group and an abelian group, so \bar{G}^{\prime} is finite, and therefore central. Thus $[\bar{G}, \bar{G}, \bar{G}]=1$, so \bar{G} is nilpotent (of class 2) and $\vec{T}<Z(\bar{G})$, so $U(F \bar{G})$ is nilpotent [32, Theorem 3.6 p.181-2]. By the previous Lemma $1+\Delta\left(G, S_{p}(G)\right)$ is also nilpotent, and since $U(F G) /(1+\Delta(G, P)) \simeq U(F \bar{G})$, we see that $U(F G)$ is nilpotent-by-nilpotent. Thus $U(F G)$ is locally nilpotent-by-nilpotent.

The characteristic 0 case is similar (and a little shorter). In the converse we get that $U(F G)$ is actually locally nilpotent.

The hypothesis that G contains a free abelian group of rank 2 is not as restrictive as it might appear. By [36, Theorem 1.7 p.4] this is equivalent to saying that G is not isomorphic to a subgroup of $G_{1} \times C_{\infty}$, where G_{1} is a periodic FC group.

Lemma 47 Let G be a locally nilpotent group, T the torsion subgroup of G and $S_{p}(T)$ a sylow p-subgroup of T. (Again $\left.S_{0}(T):=1\right)$. Let F be a field of characteristic $p \geq 0$.

If $p>0$ then assume that F is not algebraic over F_{p}. If $U(F G)$ does not contain free groups then
i) $T / S_{p}(T)$ is abelian and every subgroup of $T / S_{p}(T)$ is normal in $G / S_{p}(T)$. Conversely, if i) holds and $\frac{T}{S_{p}(T)}<Z\left(\frac{G}{S_{p}(T)}\right)$ then $U(F G)$ is locally nilpotent - by locally nilpotent and hence does not contain free groups.

Proof:

Let $P=S_{p}(T)$. Then

$$
\frac{U(F G)}{1+\Delta(G, P)} \simeq U\left(F \frac{G}{P}\right)
$$

Assume that $U(F G)$ does not contain free groups. Hence neither does $U(F T)$, and since T is locally finite ($[6$, Section 2$]$ and use a finitely generated argument) we have that T^{\prime} is a p-group. Thus $P \triangleleft G$ and T / P is abelian. Let $x \in T$.

Now, by Lemmas 74 and 75 we get that $J(F P)=\Delta(P)$ is a locally nilpotent ideal. A quick check (and the fact that $P \triangleleft G$) shows that $\Delta(G, P)$ must also be a locally nilpotent ideal. Hence $\Delta(G, P)$ is a nil ideal and we get that the preimage of a unit in $U\left(F \frac{G}{P}\right)$ (under the obvious map) is a unit in $U(F G)$. Thus we have that $U\left(F \frac{G}{P}\right)$ does not contain free groups and clearly $\frac{G}{P}$ contains no p-elements. If $\frac{\langle x\rangle}{P} \notin \frac{G}{P}$ then Theorem 17 gives a contradiction. Thus every subgroup of $\frac{T}{P}$ is normal in $\frac{G}{P}$ as required.

Next we prove the converse. Again note that by Lemmas 74 and 75 we have that $\Delta(G, P)$ is a locally nilpotent ideal, so by Lemma $71,1+\Delta(G, P)$ is a locally nilpotent group. Hence, without loss of generality we may assume that G is a finitely generated nilpotent group without p-elements and with $T<Z(G)$. Thus by [32, p.181-2] we have that $U(F G)$ is nilpotent as required.

Again the characteristic 0 case is similar and shorter. In the converse we get that $U(F G)$ is actually locally nilpotent.

Note that in Lemma 47 the restrictions on the field is not needed for the converse.

Theorem 48 Let G be a group which is either FC, locally nilpotent or locally finite. Let T be the torsion subgroup of G anad $S_{p}(T)$ a sylow p-subgroup of T. Let F be a field of characteristic $p \geq 0$. If $p>0$ then assume that F is not algebraic over F_{p}. If $U(F G)$ does not contain free groups theen
i) $T / S_{p}(T)$ is abelian and every subgroup of $T / S_{p}(T)$ is normal in $G / S_{p}(T)$. Conversely, if i) holds and $\frac{T}{S_{p}(T)}<Z\left(\frac{G}{S_{p}(T)}\right)$ then $U(F G)$ is locally nilpotent - by locally nilpotent and hence does not cointain free groups.

Proof:

Let G be a locally finite group. If $\omega(F G)$ does not contain free groups then by Theorem $32(i) \Leftrightarrow i i)), i$ above is satisfied. Conversely, assume that i) holds and $\frac{T}{S_{p}(T)}<Z\left(\frac{G}{S_{p}(T)}\right)$. Then G^{\prime} is a p-group. So Lemma 84 gives us that $F \frac{G}{O_{p}(G)}=\frac{F G}{J(F G)}$, which is commutative, so $\frac{U(F G)}{1+J(F G)}$ is abbelian. Also, Lemmas 74 and 71 give us that $1+J(F G)$ is locally nilpotent. The FC and locally nilpotent cases follows from Lemmas 46 and 47.

The characteristic 0 case is trivial.

We finish the section with a modest generalisation of a result of Coelho and Polcino Milies [6, Theorem 2.3 p.203]:

Theorem 49 Let G be either locally fivite or nilpotent or an $F C$ group. Let T be the set (in fact a group) of periodic elements of G anfd let F be any field of characteristic $p>0$. Then the periodic units of $U(F G)$ form a subgroup if and only if one of the
following conditions holds:
i) G is abelian
ii) $G=T$ and F is algebraic over its prime field F_{p}
iii) The set P of p-elements in G is a subgroup, $T^{\prime} \subset P$ and if T / P is non-central in G / P then Ω, the algebraic closure of F_{p} in F, is finite and, for all $x \in G$ and all p^{\prime}-elements $a \in T$, we have that $x a x^{-1}$ is of the form $x a x^{-1}=a^{p^{r}} y$, where $r \geq 0$ and $y \in P$. Furthermore, for every such an exponent r we have that $\left[\Omega: F_{p}\right] \mid r$.

Proof:

By [6 , Theorem 2.3 p.203] we need only prove the case where G is locally finite. If i) or $i i i$) occur then G^{\prime} is a p-group. Either F is algebraic over F_{p} or it is not. If not, then Theorem 62 gives us that the periodic units of $U(F G)$ form a subgroup. If F is algebraic over F_{p} then the ring $F G$ is locally finite, so its unit group is also locally finite, giving us that again the periodic units of $U(F G)$ form a subgroup.

Now assume that the periodic units of $U(F G)$ form a subgroup. We may assume that F is not algebraic over F_{p}, and hence by Theorem 62 we have that G^{\prime} is a p group, so that i) or $i i i$) holds.

The characteristic 0 version of this result is a little simpler:

Theorem 50 Let G be either locally finite or nilpotent or an $F C$ group. Let T be the set (in fact a group) of periodic elements of G anfd let F be any field of characteristic 0. Then the periodic units of $U(F G)$ form a subgroup if and orly if both of the following conditions hold:
i) T is abelian
ii) For each $t \in T$ and each $x \in G$ there exists a positive integer i such that $x x^{-1}=t^{i}$ and, for each non-central element $t \in T, F$ contains no root of unity of order $o(t)$.

Proof:

The nilpotent and FC cases are just quoted from [6, Theorem 3.2 p.204]. Assume that G is locally finite. If the periodic units of $U(F G)$ form a subgroup then [6 , Lemma3.1 p.203] implies that T is abelian, so i) and $i i$) hold. The converse is trivial since $G=T$ is abelian.

$4.5 \quad U_{n}$

All of the previous results relate the structure of G to that of the unit group $U\left(K^{\prime} G\right)$. This process can be repeated, as the definitions of U_{n}, \tilde{U}_{n} and \bar{U}_{n} suggest. This gives us a new method of constructing groups. A good deal of work has been done to investigate subgroups V of $U(K G)$ with the property that V is linearly independent over the field K [4]. In this case $K U\left(K^{\prime} G\right)$ contains $K V$, but the latter algebra can also be viewed as a subalgebra of $K G$. Hence we also get the chain of groups $V<U(K V)<U(K U(K V))<\cdots<U(K G)$. Note that if V is normal in $U(K G)$ then this chain is a normal series.

Proposition 51 Let G be finite and let n be a positive integer. Then U_{n} is nilpotent for some $n \geq 1$ if and only if U_{n} is nilpotent for all $n \geq 1$.

Proof:

It suffices to show that U_{1} nilpotent implies U_{2} nilpotent. So Letting U_{1} be nilpotent, it is soluble, so Theorem 31 gives us that G^{\prime} is a p-group. Thus the nilpotency of G gives us that $G=P \times H$, where $P=O_{p}(G)$ and H is a p^{\prime}, abelian group. Thus $F_{p} G \simeq\left(F_{p} H\right) P$, where $F_{p} H$ is a commutative coefficient ring. Thus, by Lemma 75,
$U\left(F_{p} G\right) \simeq(1+\Delta(P)) \times U\left(F_{p} H\right)$. Note that $1+\Delta(P)$ is a finite p-group and $U\left(F_{p} H\right)$ is a finite abelian p^{\prime}-group, so U_{1} is nilpotent and U_{1}^{\prime} is a p-group (Theorem 31). Repeating this process we see that U_{2} is nilpotent with U_{2}^{\prime} a p-group.

Proposition 52 Let G be finite and let G^{\prime} be a p-group. Then \tilde{U}_{n} and U_{n} are soluble for all n, and U_{n} is finite. (And thus U_{n}^{\prime} is a $p-$ group for all n (by Theorem 31))

Proof 1:

Since $U_{n}<\tilde{U}_{n}$, it suffices to show that \tilde{U}_{n} is soluble for all n. By Theorem $31 \tilde{U}_{1}$ is soluble. We proceed inductively, assuming that \tilde{U}_{n} is soluble. So Theorem 31 applies to U_{n-1}. Now $\tilde{U}_{n+1}=U\left(K U_{n}\right)$ is soluble

$$
\Leftrightarrow U\left(K \frac{U\left(F_{p} U_{n-1}\right)}{1+J\left(F_{p} U_{n-1}\right)}\right)
$$

is abelian $\Leftrightarrow \frac{U\left(F_{p} U_{n-1}\right)}{1+J\left(F_{p} U_{n-1}\right)}$ is abelian. But this is the case by Theorem 31. Thus \tilde{U}_{n+1} is soluble and our proof is completed.

Proof 2:

Let G be a finite group. We will show that the conditions of Theorem 31 apply if and only if U_{1}^{\prime} is a p-group. $U\left(F_{p} G\right) /(1+J)=U_{1} / O_{p}\left(U_{1}\right)$ [1, Theorem $4] \simeq \oplus G L\left(n_{i}, F_{i}\right)$. Now $p\left|\left|G L\left(n_{i}, F_{i}\right)\right| \Leftrightarrow n_{i}>1\right.$ (indeed, $\left(p, p^{n}-1\right)=1$ and $\left.\left|G L\left(2, F_{p}\right)\right|=\left(p^{2}-1\right)\left(p^{2}-p\right)\right)$. Thus, $U_{1} / O_{p}\left(U_{1}\right)$ is a $p^{\prime}-$ group \Leftrightarrow it is abelian $\Leftrightarrow U_{1}^{\prime}$ is a p-group.

Proposition 53 Let G be a locally finite group with G^{\prime} a p-group. Then for all $n \geq 0, U_{n}$ and \tilde{U}_{n} are locally soluble and U_{n} is locally finite. (Thus, by Theorem 32, U_{n}^{\prime} is a p-group).

Proof:

Note first that $U_{1}=U\left(F_{p} G\right)$ is locally finite. (Indeed, if $u_{1}, \ldots, u_{n} \in U_{1}$ then $H:=\left\langle\operatorname{supp} u_{1}, \ldots, \operatorname{supp} u_{n}\right\rangle$ is finite, so $u_{1}, \ldots, u_{n} \in U\left(F_{p} H\right)$, which is finite) Inductively, U_{n} is locally finite.

It remains to prove that \tilde{U}_{n} is locally soluble.

Proof 1:

By Theorem 32, it suffices to prove that U_{n}^{\prime} is a p-group for all n. To start our induction, note that $U_{0}^{\prime}=G^{\prime}$ is a p-group. Now our inductive hypothesis is that U_{n}^{\prime} is a p-group, and we will show that U_{n+1}^{\prime} is a p-group. Let $u=\left[u_{1}, v_{1}\right] \ldots\left[u_{m}, v_{m}\right] \in$ U_{n+1}^{\prime}, with $u, u_{i}, v_{i} \in U\left(F_{p} U_{n}\right)$. Defining

$$
H:=\left\langle\operatorname{supp} u_{1}, \ldots \operatorname{supp} u_{m}, \operatorname{supp} v_{1}, \ldots \text { supp } v_{m}\right\rangle
$$

we see that H is a finite subgroup of U_{n} and $u, u_{i}, v_{i} \in U\left(F_{p} H\right)$ and $u \in U\left(F_{p} H\right)^{\prime}$. Now $H<U_{n}$, so $H^{\prime}<U_{n}^{\prime}$, so by our inductive hypothesis H^{\prime} is a p-group. Therefore Theorem 31 gives us that $U(K H)^{\prime}$ is a p-group. Thus u is a p-element, so U_{n+1}^{\prime} is a p-group.

Proof 2:
We will show that \tilde{U}_{n} is locally soluble for all n. Let $u_{1}, \ldots, u_{m} \in \tilde{U}_{n}=U\left(K U_{n-1}\right)$. Now U_{n-1} is locally finite so $H:=\left\langle\operatorname{supp} u_{1}, \ldots, \operatorname{supp} u_{m}\right\rangle$ is finite, and $u_{1}, \ldots, u_{m} \in$ $U\left(K^{\prime} H\right)$. Now $H^{\prime}<U_{n-1}^{\prime}$ is a $p-$ group by inductive hypothesis, so $U(K H)$ is soluble by Theorem 31. Thus u_{1}, \ldots, u_{m} are elements of a soluble group, so \tilde{U}_{n} is locally soluble.

Corollary 54 Let G be locally finite with G^{\prime} a p-group. Then $J\left(K \tilde{U}_{n}\right)$ and $J\left(K U_{n}\right)$ are locally nilpotent.

Proof:

Just apply [20, p.399] to \tilde{U}_{n}.

4.6 Corollaries

Many of the results of this section are generalisations to the torsion subset of $U(K G)$ of results about periodic linear groups. In the characteristic 0 case, a result of Schur [37, Corollary 9.4 p.113] states that any periodic subgroup of $G L\left(n_{i}, F_{i}\right)$ is abelian-byfinite. As we will see below, the positive characteristic case is much more interesting.

Corollary 55 If G is a finite group then a subnormal subgroup V of $U(K G)$ is either soluble or contains a free group. If G is a locally finite group then a subnormal subgroup V of $U(K G)$ is either locally soluble or contains a free group.

Proof:

Apply Theorem 31 iii) and viii) and (11, Theorem 2.5].

Corollary 56 If G is a finite group with $G^{\prime \prime}=G$ then $U(K G) /(1+J(K G))$ contains a free group.

Proof:

Since $G^{\prime}=G, G$ is not nilpotent, so $G \nless 1+J(K G)$. Hence $\theta(G) \neq 1$, so $\theta(G)$ is a non-abelian subgroup of $U(K G) /(1+J(K G))$ (as G has no abelian images and
by the second isomorphism theorem). Thus $U\left(K^{\prime} G\right) /(1+J(K G))$ is a non-abelian group, so by Theorem 31 it contains a free group.

Note that this Corollary is also a consequence of Theorem 31 parts ii), xii) and xiii) as $G^{\prime}=G$ implies that G^{\prime} is not a p-group (otherwise G is a finite p-group and hence nilpotent, a contradiction).

The following lemma is a direct consequence of [5, Theorem 1].

Lemma 57 Let $p \neq 2$ or 3 , let K be any field of characteristic p and let G be a torsion group. Then $U(K G)$ is soluble $\Leftrightarrow G^{\prime}$ is a finite p-group.

Theorem 58 Let G be a locally finite group, let K be any field of characteristic $p>0$ and let V be a finitely generated subgroup of $U(K G)$. Then V satisfies the Tits Alternative, that is, either V is soluble-by-finite or it contains a free group.

Proof:

Since V is a finitely generated subgroup of $U(K G)$, we may consider G to be finite. Let

$$
\theta: U(K G) \rightarrow \frac{U(K G)}{1+J(K G)}
$$

be the natural map so that

$$
\theta(V):=\frac{(1+J(K G)) V}{1+J(K G)}
$$

Now $\theta(U(K G)) \simeq U\left(\oplus M_{n_{i}}\left(K_{i}\right)\right)$. Define θ_{i} to be the projection onto the $i^{t h}$ linear group. Thus $\theta_{i}(U(K G)) \simeq G L_{n_{i}}\left(K_{i}\right)$, a linear group. Thus, for all $i, \theta_{i}(V)$ satisfies
the Tits Alternative, so $\theta_{i}(V)$ is either a soluble-by-finite group or contains a free subgroup. Now if some $\theta_{i}(V)$ contains a free group then V must contain a free group (using the Second Isomorphism Theorem on $\theta(V)=\langle V, 1+J(K G)\rangle /(1+J(K G))$). Therefore we may assume that $\theta_{i}(V)$ is soluble-by-finite for all i. Thus $\theta(V) \simeq$ Π soluble-by-finite groups \simeq a soluble-by-finite group. But $1+J(K G)$ is nilpotent, so $\langle V, 1+J(K G)\rangle$ is soluble-by-finite, so V is soluble-by-finite.

Theorem 59 Let G be locally finite, K any field of characteristic $p>0$. Then the General Burnside Problem has a positive answer for $U(K G)$ (i.e. a finitely generated torsion subgroup of $U(K G)$ is finite $)$.

Proof:

Let V be a finitely generated torsion subgroup of $U(K G)$. Then by the preceding theorem, V is either soluble-by-finite or contains free groups. Therefore V is soluble-by-finite, i.e. there exists a soluble normal subgroup S of V such that $[V: S]<\infty$. But a subgroup of finite index of a finitely generated group is finitely generated [30, page 36], so S is a finitely generated soluble torsion group, and therefore S is finite. [30, page 147].

Lemma 60 Let G be finite. If the set of torsion elements T of $U(K G)$ forms a group then it is soluble and locally finite.

Proof:

By Corollary $55, T$ is soluble and by Theorem 59 it is locally finite.

Next we classify those locally finite groups G such that the torsion units $T U(K G)$ form a group. The characteristic 0 case has been done by S. Coelho and C. Polcino Milies:

Lemma 61 [6, Lemma 3.1] Let G be a group such that $T(G)$ is locally finite and let F be a field of characteristic 0. If $T U(F G)$ is a subgroup then $T(G)$ is abelian.

Theorem 62 Let G be a locally finite group. If $U\left(K^{\prime} G\right)$ does not contain free groups then the subset T of torsion elements of $U(K G)$ forms a locally finite, soluble normal subgroup of $U(K G)$. Conversely, if T is a subgroup of $U(K G)$ then $U(K G)$ does not contain free groups.

Proof:

Let $a_{1}, \ldots, a_{n} \in T$. Considering only the group $\left\langle\operatorname{supp}\left(a_{1}\right), \ldots, \operatorname{supp}\left(a_{n}\right)\right\rangle$, without loss of generality we may consider G to be finite. Assume that $o\left(a_{1} \ldots a_{n}\right)=\infty$. Then $o\left(\theta\left(a_{1} \ldots a_{n}\right)\right)=\infty$.
(Otherwise we get $\theta\left(a_{1} \ldots a_{n}\right)^{m}=1$ for some m, so $\left(a_{1} \ldots a_{n}\right)^{m} \in 1+J$, a p-group, contradicting the infinite order of $a_{1} \ldots a_{n}$.)
Thus $o\left(\theta_{i}\left(a_{1} \ldots a_{n}\right)\right)=\infty$ for some i. Now $\theta_{i}(K G)$ is a field, so $\theta_{i}\left(a_{1} \ldots a_{n}\right)^{s}=$ $\theta_{i}\left(a_{1}\right)^{s} \ldots \theta_{i}\left(a_{n}\right)^{s}=1$ for some large $s\left(s=L C M \Gamma o\left(a_{i}\right)\right.$ would work). This contradiction proves that $T \triangleleft U(K G)$. Lemma 60 completes the assertion.

To prove the converse we use a contrapositive argument. Assume that $U(K G)$ does contain free groups, so that G^{\prime} is not a p-group. Then choose $a_{1}, \ldots, a_{n} \in G$ such that $\left\langle\left[a_{i}, a_{j}\right] \mid i, j=1, \ldots, n\right\rangle$ has order $m p^{a}$, with $m \neq 1,(m, p) \neq 1$. Let $H=\left\langle a_{1}, \ldots a_{n}\right\rangle$. Then H is finite and H^{\prime} is not a $p-$ group. Thus

$$
\frac{U(K H)}{1+J(K H)} \simeq \oplus G L_{n_{i}}\left(K_{i}\right)>G L_{2}\left(K^{\prime}\right)
$$

Let t be a transcendental element of K over F_{p}. Define

$$
d:=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right], e=\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right]
$$

Then $d^{p}=e^{p}=1$, but

$$
d e=\left[\begin{array}{ll}
1+t^{2} & t \\
t & 1
\end{array}\right]
$$

Thus de cannot have finite order, since t is not algebraic oven F_{p}. Now any preimages of d and e in $U(K H$) will be p-elements (as $1+J$ is a p-group). Thus $U(K H)$ contains two elements of finite order which do not generate a torsion group. Hence T is not a subgroup of $U(K G)$.

Lemma 63 Let G be a locally finite group. Then
$x \in J(K G) \Leftrightarrow x \in J(K H)$ for all finite subgroups H of G with supp $x \subset H$.

Proof:

Let H be any finite subgroup of G. Then by [20, Lemma48.2.ii)], $N^{*}(K H)=N(K H)$. By Lemma $76 N^{*}(K H)=J(K H)$ and $N^{*}(K G)=J(K G)$. Thus by [20, Lemma 48.6]
$x \in J\left(K^{\prime} G\right) \Leftrightarrow x \in J\left(K^{\prime} H\right)$ for all finite subgroups H of G with supp $\mathrm{x} \subset H$.

Proposition 64 Let G be a locally finite group with G^{\prime} a p-group. Then $\frac{U(K G)}{1+J(K G)}$ is abelian. Consequently $U(K G) / O_{p}(U)$ is an abelian group without p-elements.

Proof:

Let $x \in U(K G)^{\prime}$, say $x=\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right]$. Let H be any finite subgroup of G containing the support of x. Define H_{1} to be the finite group generated by the set $\left\{H\right.$, supp $\left.a_{1}, \operatorname{supp} b_{1}, \ldots \operatorname{supp} a_{n}, \operatorname{supp} b_{n}\right\}$. Now H is a subgroup of $H_{1} . x \in U\left(K H_{1}\right)^{\prime}<$
$1+J\left(K H_{1}\right)$ by Theorem 31, as H^{\prime} is a p-group. Thus $x-1 \in J\left(K H_{1}\right) \cap K H \subset J(K H)$ by [20, Lemma 48.2.iii)]. Now by Lemma $63 x-1 \in J(K G)$, so $U(K G)^{\prime}<1+J(K G)$ as required.

It is therefore of interest to examine the sylow p-subgroups of $U(K G)$ when G is locally finite but G^{\prime} is not necessarily a p-group.

Lemma 65 Let G be locally finite and let P_{1} and P_{2} be sylow-p subgroups of $U(K G)$. If $H=\left\langle P_{1}, P_{2}\right\rangle$ is a torsion group then P_{1} and P_{2} are conjugate in H.

Proof:

Consider $H=\left\langle P_{1}, P_{2}\right\rangle<U(K G)$. Now for each $I, \theta_{i}(H)$ is a periodic linear group and has sylow p-subgroups $\bar{Q}_{1}>\theta_{i}\left(P_{1}\right)$ and $\bar{Q}_{2}>\theta_{i}\left(P_{2}\right)$. Now \bar{Q}_{1} is conjugate to \bar{Q}_{2} [7, p.163]. Thus there exists $h_{i} \in H$ such that $\bar{Q}_{1}^{\theta_{i}\left(h_{i}\right)}=\bar{Q}_{2}$. Since this is true for all i, there exist $Q_{1}, Q_{2}<U(K G)$ with $\theta_{i}\left(Q_{j}\right)>P_{j}$ and $h \in H$ with

$$
\frac{Q_{1}^{h}}{1+J}=\frac{Q_{2}}{1+J} .
$$

Now $\frac{Q_{i}}{1+J}$ is a p-group, so Q_{i} is a p-group. Thus $Q_{i}(1+J)>P_{i}(1+J)=P_{i}$, so $Q_{i}(1+J)=P_{i}$. Thus $P_{1}^{h}=P_{2}$.

Note that if G^{\prime} is a p-group then the p-elements of $U\left(K^{\prime} G\right)$ form a group, so trivially we get that the sylow-p subgroups of $U\left(K^{\prime} G\right)$ are conjugate. However, if $G^{\prime \prime}$ is not a p-group then as we saw in the proof of Theorem 62, the p-elements not only do not form a group, but do not even generate a torsion group. This limits the usefulness of Lemma 65.

Lemma 66 Let G be a finite group. Then G^{\prime} is a $p-g r o u p$ if and only if for all subgroups V of $U(K G), V^{\prime}$ is a $p-$ group.

Proof:

If V^{\prime} is a p-group for all subgroups V of $U(K G)$ then clearly G^{\prime} is a p-group.
If G^{\prime} is a p-group then $U(K G) /(1+J)$ is abelian, so $U\left(K^{\prime} G\right)^{\prime}<1+J$, a p-group, so V^{\prime} is a p-group for all subgroups V.

Proposition 67 Let G be a finite group of order $m p^{a}$, with $(m, p)=1$. Then every $p-$ subgroup of $U(K G)$ is locally finite, nilpotent-by-nilpotent with derived length \leq $\left[\sqrt{(m-1) p^{a}}\right]+m p^{a}-1$, and has finite exponent dividing $p^{e+e_{1}}$, where e is the least integer such that $p^{e} \geq m p^{a}$ and ϵ_{1} is the least integer such that $p^{e_{1}} \geq\left[\sqrt{m p^{a}-1}\right]$. In particular, the exponent divides $p^{3(m+a) / 2}$. (Here $[x]$ denotes the greatest integer $\leq x$.)

Proof:

Let P be a p-subgroup of $U(K G)$. So P is locally finite by Theorem 59 .
We start by calculating the exponent of P. First we calculate an upper bound for the exponent of $\theta(P)$. Note that $\theta(P)<\theta(U(K G))=\oplus G L_{n_{i}}\left(F_{i}\right)$. But $\theta(P)$ is a p-group, and since fields contain no p-elements, we need concern ourselves only with those $G L_{n_{i}}\left(F_{i}\right)$ with $n_{i}>1$. Since there is always at least one $n_{i}=1$ (see for example [20, equation 2 p.500]), we have that the sum of the dimensions of the $M_{n_{i}}\left(F_{i}\right)$ which are not fields is $\leq \operatorname{dim}(K G / J)-1=\left(m p^{a}-\operatorname{dim} J\right)-1 \leq\left(m p^{a}-\left(p^{a}-1\right)\right)-1$ $[20, \mathrm{p} .501]=(m-1) p^{a}$. By [37, p. 27 9.1.v $\left.)\right], \theta_{i}(P)$ has exponent dividing $p^{e_{1}}$, where $p^{e_{1}} \geq n_{i}$. Thus the exponent of $\theta(P)$ is maximised if we have one matrix ring of large dimension n_{i}. Note that

$$
p^{\frac{m+a}{2}} \geq\left(p^{m+a}-1\right)^{\frac{1}{2}} \geq\left[\sqrt{m p^{a}-1}\right] \geq n_{i}
$$

So the exponent of $\theta(P)$ divides $p^{(m+a) / 2}$.
It now remains to find an upper bound for the exponent of $1+J$. By [18, p.422], the nilpotency index of the ideal $J(K G)$ is $\leq \operatorname{dim} J+1$ and this in turn is $\leq|G|=m p^{a}$. (Obviously $J \neq K G$, as otherwise every element of $K G=1+J$ is a unit). Thus if $1+j \in 1+J$ and e is the least integer such that $p^{e} \geq m p^{a}$ then $(1+j)^{p^{e}}=1+j^{p^{e}}=$ 1 , showing that $1+J$ has exponent dividing p^{e}. Note that $p^{m+a} \geq m p^{a}$, so that $\exp (1+J) \leq p^{m+a}$. Finally

$$
\exp (P) \leq \exp (1+J) \exp (\theta(P)) \leq p^{e+e_{1}} \leq p^{\frac{3}{2}(m+a)}
$$

For nilpotency observe that $\theta_{i}(P)$ is nilpotent for all $i[37$, p. 112 9.1.v)], with nilpotency class $\leq\left[\sqrt{(m-1) p^{a}}\right]-1$. Thus $\theta(P)$ is nilpotent with nilpotency class $\leq\left[\sqrt{(m-1) p^{a}}\right]-1$. Now $1+J$ is nilpotent of class $\leq|G|=m p^{a}$ [1, Theorem 1]. But

$$
\theta(P) \simeq \frac{P(1+J)}{1+J} \simeq \frac{P}{P \cap(1+J)}
$$

Thus P is nilpotent-by-nilpotent and has derived length $\leq\left[\sqrt{(m-1) p^{a}}\right]-1+m p^{a}$ [31, p.39].

Corollary 68 Let G be a locally finite group and F a field. (of any characteristic). Then in any finitely generated subgroup of $U(F G)$ the orders of the periodic elements are jointly bounded.

Proof:

If V is a finitely generated subgroup of $U(F G)$ then it is a subgroup of $U(F H)$ for some finite subgroup H of G. Now $1+J(F H)$ is a p-group, so by Proposition 67 it has bounded exponent. A corresponding property of finitely generated linear groups
[26, Lemma 2.1.1 p.890] completes the proof.
We will give examples in the next chapter.

Theorem 69 Let G be a finite group. Let V be an arbitrary subgroup of $U(K G)$. Then V is either soluble-by-locally finite or it contains free groups.

Proof:

Just apply [37, Cor 10.17 p.145] and Lemma 72.

4.7 The Jacobson Radical

We start by examining the structure of $J(K G)$, where G is finite. We will need the following lemmas.

For completeness we record a proof of the following result (see [1, page 73]):

Lemma 70 Let N be a nilpotent ideal of a ring R. Then $1+N$ is a nilpotent normal subgroup of $U(R)$, of nilpotency class \leq the nilpotency index of N.

Proof:

If $x \in N$ with $x^{n}=0$ then $(1+x)^{-1}=1-x+x^{2}-x^{3}+\cdots \pm x^{n-1} \in 1+N$, so $1+N$ is a subgroup of $U(R)$ and is normal since N is an ideal.

We will prove by induction that for $u_{1}, \ldots, u_{n} \in 1+N,\left(u_{i}, \ldots, u_{n}\right)-1 \in N^{n}$ for all n. Here (,) denotes a group commutator and [,] denotes a Lie bracket. Write $u_{i}=1+n_{i}$, with $n_{i} \in N$ for all N. To start the induction, note that
$\left(u_{1}, u_{2}\right)=1+u_{1}^{-1} u_{2}^{-1}\left[u_{1}, u_{2}\right]$, so $\left(u_{1}, u_{2}\right)-1=u_{1}^{-1} u_{2}^{-1}\left\{\left(1+n_{1}\right)\left(1+n_{2}\right)-(1+\right.$ $\left.\left.n_{2}\right)\left(1+n_{1}\right)\right\}=u_{1}^{-1} u_{2}^{-1}\left(n_{1} n_{2}-n_{2} n_{1}\right) \in N^{2}$. Now assume the hypothesis for $n=k$ and we will prove it for $n=k+1$. $\left(u_{1}, \ldots, u_{k+1}\right)-1=\left(\left(u_{1}, \ldots, u_{k}\right), u_{k+1}\right)-1=$ $\left(u_{1}, \ldots, u_{k}\right)^{-1} u_{k+1}^{-1}\left[\left(u_{1}, \ldots, u_{k}\right), u_{k+1}\right]$ $=\left(u_{1}, \ldots, u_{k}\right)^{-1} u_{k+1}^{-1}\left[\left(u_{1}, \ldots, u_{k}\right)-1, u_{k+1}\right]=\left(u_{1}, \ldots, u_{k}\right)^{-1} u_{k+1}^{-1}\left[\alpha, u_{k+1}\right]$, with $\alpha \in$ $N^{k}=\left(u_{1}, \ldots, u_{k}\right)^{-1} u_{k+1}^{-1}\left(\alpha n_{k+1}-n_{k+1} \alpha\right) \in N^{k+1}$. This proves the induction and the Lemma.

Lemma 71 Let N be a nil ideal of a ring R. Then $1+N$ is a normal subgroup of $U(R)$. If R has characteristic $p>0$ then $1+N$ is a p-group. If N is locally nilpotent then $1+N$ is a locally nilpotent group.

Proof:

The first two statements are obvious and the third is proved as follows: Let $x_{1}, \ldots, x_{n} \in$ N, and let N_{1} be the ideal of R that they generate. Then N_{1} is nilpotent so by Lemma $70,1+x_{1}, \ldots, 1+x_{n} \in 1+N_{1}$, a nilpotent group.

Lemma 72 Let K be any field of characteristic p, let $|G|=p^{a} m<\infty$, with $(p, m)=$ 1 and let G^{\prime} be a $p-g r o u p$. Then
i) $J(K G)=\operatorname{lann}(\hat{P})=\left\{\sum_{x \in G} x_{g} g \in K G \mid \sum_{s \in P} x_{g s}=0 \forall g \in G\right\}$
$=\left\{\sum_{x \in G} x_{g} g \in K G \mid \sum_{r \in g P} x_{r}=0 \forall g \in G\right\}=\Delta(G, P)=K G J(K P)$.
ii) $U(K G) \simeq(1+J) \rtimes A$ for some abelian group A.
iii) $1+J$ is a normal nilpotent $p-$ subgroup of finite exponent in $U(K G)$.
$i v) \operatorname{dim}_{K} J(K G)=|G|-|G / P|=m\left(p^{a}-1\right)$
v) When $K=F_{p}$ we get $|1+J|=p^{m\left(p^{a}-1\right)}$.
vi) $K G / J(K G)$ is a semisimple commutative K-algebra of dimension m.
vii) $J(K G)$ is a nilpotent ideal.
viii) $1+J(K G)=O_{p}(U(K G))$ is a nilpotent normal subgroup of $U(K G)$.

Proof:

i) G is p-soluble (in fact G is soluble) [30, p.261]. Thus $J(K G)=\operatorname{lann}(\hat{P})$ [20, p.474] $=\left\{\sum_{x \in G} x_{g} g \in K G \mid \sum_{s \in P} x_{g s}=0 \forall g \in G\right\}=\left\{\sum_{x \in G} x_{g} g \in K G \mid \sum_{r \in g P} x_{r}=\right.$ $0 \forall g \in G\}=K G I(P)$ [29, p.68]. Recall that $I(P)$ is nilpotent [29, p.70].
Also, $J(K G)=K G J(K P)$ [20, p. 461 Prop 52.11.].
ii) Recall [20, p.337] that $R G / R G I(N) \simeq R \frac{G}{N}$ for all $N \triangleleft G$. Thus $K G / J(K G)=$ $K G / K I(P) \simeq K \frac{G}{P}=K A$ for some abelian group A. Thus $K G / J \simeq \oplus$ fields, so $U(K G) \simeq 1+J \rtimes A_{1}$, for some abelian group $A_{1}[25$, p.402].
iii) This was done in [1, Theorem 1].
iv) $\operatorname{dim}_{K} J(K G)=|G|-|G / P|[20$, p.459].
$v)$ Thus, if $|G|=p^{a} m$, with $(p, m)=1$, and $K=F_{p}$, then $|1+J|=p^{m\left(p^{a}-1\right)}$.
vi) Thus $K G / J(K G)$ is a semisimple K-algebra of dimension $p^{a} m-\left(p^{a} m-m\right)=m$ and is commutative by $i i$).
vii) This is shown in [20, page 357].
viii) See [1, Theorem 4 and first line of section 4] and Lemma 70.

Lemma 73 Let G be a finite group with $|G|=p^{a} m<\infty$, with $(p, m)=1$ and let G^{\prime} be a $p-$ group. Then $\left|U\left(F_{p} G\right)\right| \in\left[p^{m\left(p^{a}-1\right)}(p-1)^{m}, p^{m\left(p^{a}-1\right)}\left(p^{m}-1\right)\right]$.

Proof:

By Theorem 31, $U\left(F_{p} G / J\left(F_{p} G\right)\right) \simeq U\left(F_{p} G\right) /\left(1+J\left(F_{p} G\right)\right) \simeq U(\oplus$ fields $)$. But $F_{p} G / J\left(F_{p} G\right)$ is an F_{p}-algebra of cardinality $p^{p^{a} m} / p^{m\left(p^{a}-1\right)}=p^{m}$. So since it is a
direct sum of fields, the order of its unit group is in the interval $\left[(p-1)^{m}, p^{m}-1\right]$.

Example $6 G=D_{2 q}, p=q$. Thus $F_{p} G$ satisfies the conditions of Theorem 31 .
$|G|=q^{1} 2=p^{a} m$. Therefore $\left|U\left(F_{q} D_{2 q}\right)\right| \in\left[q^{2(q-1)}(q-1)^{2}, q^{2(q-1)}\left(q^{2}-1\right)\right]$.
In fact (see the following chapter), $\left|U\left(F_{q} D_{2 q}\right)\right|=q q^{q-1} q^{q-2}(q-1)^{2}=q^{2(q-1)}(q-1)^{2}$. This tells us that $F_{q} D_{2 q} / J\left(F_{q} D_{2 q}\right) \simeq F_{q} \oplus F_{q}$. So $\delta\left(F_{q} D_{2 q}\right)=\left(\frac{q-1}{q}\right)^{2}$.

We now turn our attention to the structure of $J\left(K^{\prime} G\right)$, where G is locally finite.

Lemma 74 Let G be a locally finite group and K a field of characteristic $p>0$. Then $J(K G)$ is loca!ly nilpotent and therefore nil, so $L(K G)=J(K G)$.

Proof:

Let H be a finitely generated subgroup of $G . H$ is a finite group so $J\left(K^{\prime} H\right)$ is a nilpotent ideal of $K H$ [20, page 357]. Hence it is locally nilpotent, so by [20, page 340] we find that $J(K G)$ is locally nilpotent. Since we always have $L(K G) \subset J(K G)$ [20, page 271], the local nilpotence of $J(K G)$ forces $L(K G)=J(K G)$.

Lemma 75 Let G be a locally finite p-group and R be a direct sum of fields. Then $J(R G)=\Delta(G)$, and $U(R G)=(1+\Delta(G)) \times U(R)$. Note that if $R=K$ is a field then $J(K G)=$ the zero-divisors of $K G$ and $U(K G)=K G \backslash \Delta(G)$, so $K G$ is a local ring.

Proof:

$\Delta(G)$ is locally nilpotent [20, Theorem 44.2 p.351] and therefore it is nil. Thus $\Delta(G) \subset J(K G)[20$, p. 21 Corollary 6.11$]$. Now $\frac{R G}{\Delta(G)} \simeq R=\oplus_{i=1}^{n} F_{i}$, where the F_{i}
are fields. Let π_{i} denote projection of $R G$ onto the $i^{t h}$ field F_{i}. Now the kernel N_{i} of π_{i} is a maximal ideal containing $\Delta(G)$. Thus $J(R G) \subset \cap_{i=1}^{n} N_{i}=\Delta(G)$. Hence $J(K G)=\Delta(G)$, so by Lemma $71,1+\Delta(G)$ is a group of units. Hence, $u+\Delta(G)$ is a set of units for all $u \in U(R)$. The remark about zero-divisors is a consequence of the fact that group algebras of locally finite groups are algebraic [29, Theorem 3.11 and Lemma 3.12 p.53].

Lemma 76 Let G be a locally finite group. Then $J(K G)=N^{*}(K G)$. Furthermore $K G / J(K G)$ is right artinian $\Leftrightarrow K G / J(K G) \simeq \oplus M_{n_{i}}\left(K_{i}^{\prime}\right) \Leftrightarrow\left[G: O_{p}(G)\right]<\infty$.

Proof:

Notice that since G is locally finite, every subgroup must have locally finite index. Thus, by [29, page 318], $N^{*}(K G)=J(K G) K G=J(K G)$. The rest now follows from [29, page 409] and [19, page 4].

Corollary 77 Let G be a locally finite group with $\left[G: O_{p}(G)\right]<\infty$. Then $O_{p}(U(K G))=$ $1+J(K G)$.

Proof:

$\theta: K G \rightarrow K G / J \simeq \oplus M_{n_{i}}\left(K_{i}\right)$ is defined as in the finite case. Let $P=O_{p}(U(K G))$. Now $\theta_{i}(P)=\theta_{i}\left(O_{p}(U)\right)=O_{p}\left(\theta_{i}(U)\right)=O_{p}\left(G L_{n_{i}}\left(K_{i}\right)\right)$. We claim that the latter group is a subgroup of $Z\left(G L_{n_{i}}\left(K_{i}\right)\right)=K_{i}^{*}$, a contradiction (unless $\theta_{i}(P)=1$) since K_{i} contains no elements of order p. This claim will finish the proof.

By [34, p.78], either $O_{p}\left(G L_{n_{i}}\left(K_{i}^{\prime}\right)\right)$ contains $S L_{n_{i}}\left(K_{i}\right)$ or $O_{p}\left(G L_{n_{i}}\left(K_{i}\right)\right)=G L_{2}\left(F_{2}\right)$ or $=G L_{2}\left(F_{3}\right)$. The first case does not happen as $S L_{n_{i}}\left(K_{i}\right)$ is not a p-group. Next $G L_{2}\left(F_{2}\right)$ is isomorphic to the dihedral group of six elements, so $O_{2}\left(G L_{2}\left(F_{2}\right)\right)=1$ and
we are done. Lastly, note that $G L_{2}\left(F_{3}\right)$ has order $2^{4} 3^{1}=48$. Both

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \text { and }\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

generate sylow 3-subgroups, but they are conjugate (under $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, say) and hence $O_{3}\left(G L_{2}\left(F_{3}\right)\right)=1$, completing the proof.

Corollary 78 If G is a locally finite group with G^{\prime} a p-group then $K G / J(\kappa G)$ is right artinian $\Leftrightarrow G / O_{p}(G)$ is a finite abelian p^{\prime}-group.

Proof:

Apply Lemma 76 and Theorem 32 parts $i i$) and viii).

Corollary 79 If G_{1} and G_{2} are locally finite groups then

$$
J\left(K\left(G_{1} \times G_{2}\right)\right)=J\left(K G_{1}\right) K G_{2}+K G_{1} J\left(K G_{2}\right)
$$

Proof:

Lemma 20 and [29, page 329].

Lemma 80 Let G be a locally finite group with $\left[G: O_{p}(G)\right]<\infty$. Then either $\frac{U\left(K^{G}\right)}{1+J(K G)}$ is abelian or it contains free groups.

Proof:

$$
\frac{U(K G)}{1+J(K G)} \simeq U\left(\oplus M_{n_{i}}\left(K_{i}\right)\right)
$$

where K_{i} is a field containing K. If some $n_{i}>1$ then $U\left(\oplus M_{n_{i}}\left(K_{i}(t)\right)\right) \supset M_{2}(K) \supset$ a free group by the usual construction.
Hence we may assume that all $n_{i}=1$, in which case the quotient is abelian.

Lemma 81 Let G be a locally finite group with $\left[G: O_{p}(G)\right]<\infty$. Then the transvections of $K G$ are contained in $1+J(K G) \Leftrightarrow G^{\prime}$ is a p-group.

Proof:

Proceed as in Lemma 36.
\Leftarrow : Let G^{\prime} be a p-group. By Theorem $32, U(K G)$ does not contain free groups, so by Lemma $80, \frac{U(\kappa G)}{1+J(K G)}$ is abelian, so $\frac{\kappa G}{J(K G)} \simeq \oplus$ fields (Lemma 76). The rest follows as before.
\Rightarrow : By Lemma 76 we may use the previous proof, using the fact that $J(K G)$ is nil (Lemma 74) to lift idempotents.

These results may be assembled to give:
Theorem 82 Let p be any prime, G be a locally finite group, with $\left[G: O_{p}(G)\right]<\infty$. Then the following are equivalent:
i) $U(K G) \not \supset$ free groups
ii) G^{\prime} is a $p-$ group
iii) $G / O_{p}(G)$ is abelian
iv) $S_{p}(G) \triangleleft G$ and $G / S_{p}(G)$ is abelian.
v) $U\left(F_{p}(t) G\right)$ is locally soluble
vi) $U(K G) /(1+J)$ is abelian
vii) The subgroup of $U(K G)$ generated by the transvections is contained in $1+J(K G)$ viii) $K G /(J(K G)) \simeq \oplus$ fields.

All of these results can be viewed as variations on Tits Alternative, applied to the unit group of a group ring.

Lemma 83 Let K be a field of characteristic $p>0$ and let G be an infinite locally finite group with $\left[G: O_{p}(G)\right]<\infty$. Then $J(K G)$ is not a nilpotent ideal.

Proof:

By [20, page 357], $J(K G)$ is nilpotent if and only if there exist subgroups P and H of G such that P is a finite normal p-subgroup of G, H has finite index in G and $J\left(K \frac{H}{P}\right)=0$. Now by [20, page 455], $J\left(K \frac{H}{P}\right)=0$ implies that $O_{p}(H / P)=1$, that is, $O_{p}(H)=P$. So choose any groups P and H satisfying these criteria. Now $O_{p}(G) \cap H<P$ because $P=O_{p}(H)$ (every p-subgroup of H which is normal in G is also normal in H). Now by the Second Isomorphism Theorem,

$$
\frac{O_{p}(G) H}{O_{p}(G)} \simeq \frac{H}{O_{p}(G) \cap H}>\frac{P}{O_{p}(G) \cap H}
$$

and since $\left[G: O_{p}(G)\right]<\infty$, we have that

$$
\left|\frac{H}{P}\right|<\left|\frac{H}{O_{p}(G) \cap H}\right|=\left|\frac{O_{p}(G) H}{O_{p}(G)}\right|<\infty .
$$

Thus, $|G|=[G: H][H: P][P: 1]<\infty$, a contradiction.

Thus for G locally finite we see that either
i) $\frac{\kappa G}{J}$ is semisimple, or
ii) $J\left(K^{\prime} G\right)$ is nilpotent, or neither, but not both.

This makes it impossible to proceed as in the case of G finite.

Example 7 Let F be any field of characteristic $p>0$. Let $G=P \times\left(Q_{1} \times Q_{2} \times \cdots\right)$, where the P is a finite p-group, the Q_{j} are p^{\prime}-groups with $\left|Q_{j}\right|$ finite and bounded and there are infinitely many Q_{j} 's. Then $J(F G)$ is a nilpotent ideal. Indeed, G / P is an $F C$ group, so by [20, Theorem 47.1 p.401], $J\left(F \frac{G}{P}\right)=0$. Hence we have the nilpotency of $J(F G)$ by [29, Corollary 1.14 p.312].

Recall that we already had that $J(K G)=\Delta(P) K G$ when G is finite.

Lemma 84 Let G be a locally finite group with G^{\prime} a $p-g r o u p$ and K a field of characteristic p. Let $P=O_{p}(G)$. Then $J(K(G / P))=0$ and $J(K G)=(J(K G) \cap$ $K P) K G=J(K P) K G=\Delta(P) K G$.

Proof:

The fact that $J(K G / P)=0$ is a consequence of [20, page 315 Thm 38.2] (and also a consequence of [20, page 349]).
By Theorem 32, G/P is a locally finite abelian $p^{\prime}-$ group. Now apply [20, pages 329330] and Lemma 75 to get that $J(K G)=(J(K G) \cap K P) K G \subset J(K P) K G=$ $\Delta(P) K G$. Now apply [29, page 317 Lemma2.5] to get $J\left(K^{*} P\right) K G \subset N^{*}\left(K^{\prime} G\right)$. Lemma 76 now gives us the result.

By Theorem 32 we knew that if G^{\prime} is a p-group and $O_{p}(G)$ is finite then $U(K G)$ is soluble. We can improve this result somewhat:

Lemma 85 Let G be a locally finite group with $O_{p}(G)$ finite. If G^{\prime} is a p-group then $J(K G)$ is nilpotent and $U(K G)$ is a nilpotent p-group - by - abelian p^{\prime}-group.

Proof:

Now $G / O_{p}(G)$ is an abelian p^{\prime}-group, so it is an FC-group and Lemma 84 gives us that $J\left(K \frac{G}{O_{p}(G)}\right)=0$. Hence [20, Proposition 44.15 p.357] implies that $J\left(K^{G} G\right)$ is nilpotent. Lemma 84 also gives us that

$$
K \frac{G}{O_{p}(G)} \simeq \frac{K G}{\Delta\left(O_{p}(G)\right) K G}=\frac{K G}{J(K G)}
$$

with an abelian p^{\prime} unit group.
Since $1+J\left(K^{\prime} G\right)$ is a nilpotent p-group we are done.

In particular, if G is locally finite with $O_{p}(G)$ finite then we have that the nilpotence of the unit group implies the nilpotence of the Jacobson radical.

Example 8 In Lemma 85 we cannot remove the condition that G^{\prime} is a p-group. If G^{\prime} is not a $p-$ group then $U(K G)$ contains free groups, and hence is not even soluble. However, Example 7 shows that J can still be nilpotent, even when $U(K G)$ contains free groups.

Chapter 5

Examples

Example 9 We study the group lattice of the unit group of certain dihedral groups. We start with $U\left(F_{p} D_{2 p}\right)$, where p is an odd prime. The results of the previous chapter will then be applied to this group and its infinite counterpart $U\left(K D_{2 p}\right)$.

$$
\text { Write } D_{2 p}=\left\langle x, y \mid x^{p}=y^{2}=1, x^{y}=x^{-1}\right\rangle
$$

We start by calculating the radical of $F_{p} D_{2 p} . J:=J\left(F_{p} D_{2 p}\right)=$ the left annihilator of the sum of the p-elements of $D_{2 p}=\operatorname{lann}(\hat{x})$ [20, page 473, Corollary 53.13]

$$
=\left\{\sum_{i=0}^{p-1} a_{i} x^{i}+\sum_{i=0}^{p-1} b_{i} x^{i} y \mid \sum_{i=0}^{p-1} a_{i}=0=\sum_{i=0}^{p-1} b_{i}\right\}
$$

Thus $|J|=p^{2(p-1)}$. Thus $\left|F_{p} D_{2 p} / J\right|=p^{2 p} / p^{2(p-1)}=p^{2}$, so $F_{p} D_{2 p} / J \simeq F_{p^{2}}$ or $F_{p} \oplus F_{p}$. Note that $F_{p} D_{2 p} / J$ is generated (as an F_{p}-space) by $1+J$ and $y+J$. But if $a, b \in F_{p}$ we have $(a+b y+J)^{p}=a^{p}+b^{p} y+J=a+b y+J$ (as $c^{p-1}=1 \forall c \in C_{p-1}$). Thus every element of $F_{p} D_{2 p} / J$ is either not a unit or has order dividing $p-1$. Thus $F_{p} D_{2 p} / J \neq F_{p^{2}}$, so $F_{p} D_{2 p} / J=F_{p} \oplus F_{p}$.

Thus $U\left(F_{p} D_{2 p}\right) \simeq(1+J) \rtimes\left(C_{p-1} \times C_{p-1}\right)$, and we will concentrate on $V\left(F_{p} D_{2 p}\right) \simeq$ $(1+J) \rtimes C_{p-1}$.

Note that $e:=\frac{1}{2}(1+y)$ and $f:=\frac{1}{2}(1-y)$ are orthogonal idempotents of $F_{p} D_{2 p}$, so $F_{p} D_{2 p} / J=F_{p} \frac{D_{2 p}}{\langle x\rangle}[19, p .14]=F_{p} \oplus F_{p}=F_{p} e \oplus F_{p} f=F_{p}(1+y) \oplus F_{p}(1-y)$. Thus
$F_{p} D_{2 p}$ has augmentation ideal $\Delta\left(D_{2 p}\right)=F_{p}(1-y)+J$. Note that not all elements of $1+\Delta(G)$ are units [19, page 42] and $J^{p}=0$ [20, top of page 462], so $1+J$ has exponent p.

We will calculate $C_{V}(x)=\{v \in V \mid v x=x v\}$. Let

$$
\alpha=\sum_{i=0}^{p-1} a_{i} x^{i}+\sum_{i=0}^{p-1} b_{i} x^{i} y \in C_{V}(x) .
$$

Then

$$
v x-x v=\sum_{i=0}^{p-1} a_{i} x^{i+1}+\sum_{i=0}^{p-1} b_{i} x^{i-1} y-\left(\sum_{i=0}^{p-1} a_{i} x^{i+1}+\sum_{i=0}^{p-1} b_{i} x^{i+1} y\right)=0
$$

so $\sum_{i=0}^{p-1} b_{i} x^{i+1}=\sum_{i=0}^{p-1} b_{i} x^{i-1}$. Thus $b_{i}=b_{i+2}$ for all i. Hence $b_{0}=b_{2}=b_{4}=\ldots=$ $b_{p-1}=b_{1}=b_{3}=\ldots=b_{p-2}=b_{0}$. Thus there exists $b \in F_{p}$ such that $b_{i}=b$ for all i. Thus $C_{V}(x)=\left\{\sum_{i=0}^{p-1} a_{i} x^{i}+b \sum_{i=0}^{p-1} x^{i} y \mid \sum_{i=0}^{p-1} a_{i}=1\right\}$.
Also,

$$
C_{V}(x) \simeq \prod_{i=1}^{p} C_{p}
$$

since $C_{V}(x)$ is abelian and being contained in $1+J$, it must have exponent p.
Note that $C_{U}(x)=C_{F_{p} D_{2 p}}(x) \backslash \Delta(G)$.
Now by [19, p.44] we have

$$
\begin{gathered}
N_{V}(\langle x\rangle)=N_{D_{2 p}}(\langle x\rangle) C_{V}(x)=D_{2 p} C_{V}(x)=C_{V}(x)+y C_{V}(x) \\
=1+\left\{\sum_{i=0}^{p-1} a_{i} x^{i}+b \sum_{i=0}^{p-1} x^{i} y \mid \sum_{i=0}^{p-1} a_{i}=0\right\}+\left\{a \sum_{i=0}^{p-1} x^{i}+\sum_{i=0}^{p-1} b_{i} x^{i} y \mid \sum_{i=0}^{p-1} b_{i}=0\right\} .
\end{gathered}
$$

Thus $\left|N_{V}(\langle x\rangle)\right|=2 p^{p}$. Obviously, $C_{V}(x) \triangleleft N_{V}(\langle x\rangle)$. Note that $Z(V)=C_{V}(x) \cap$ $Z\left(F_{p} D_{2 p}\right)=\left\{\sum_{i=0}^{p-1} a_{i} x^{i}+b \sum_{i=0}^{p-1} x^{i} y \mid \sum_{i=0}^{p-1} a_{i}=1 \& a_{i}=a_{-i} \forall i\right\} . T h u s|Z(V)|=p^{\frac{p+1}{2}}$.

Thus we get the following group lattice diagram:

Note that $1+J\left(F_{p} D_{2 p}\right)$ has exponent p. Proposition 67 gives us that $1+J$ has exponent $\leq p^{2+1+\left[\sqrt{1 p^{1}}\right]}=p^{3+[\sqrt{p}]}$. In K D_{6} we have that $1+J$ has exponent dividing $3^{3+1}=3^{4}$. Alternatively, note that $3^{2} \geq 6$ to see that $1+J$ has exponent dividing $p^{2+1}=3^{3}$.

Again use Proposition 67 to see that the exponent of $1+J\left(F_{2} D_{2 p}\right)$ is $\leq 2^{p+1+[\sqrt{2(p-1)}]}$. In $K D_{6}$ (char $K=2$) we have that $1+J$ has exponent dividing $2^{4+2}=2^{6}$. Alternatively, note that $2^{3} \geq 6$ to see that $1+J$ has exponent dividing $2^{3+2}=2^{5}$.

Example 10 Here we construct a pair of generators of a free subgroup of $U\left(K^{r} G\right)$, where G is the quaternion group of eight elements and K is a field of characteristic 3. This is of special interest bacause it is one of the few cases omitted in [13] in their construction of free pairs in group algebras. The construction in [13] relies on Theorem 17, which does not apply to hamiltonian groups because of its reliance on the non-triviality of the bicyclic units. However, we can construct non-trivial GBUs here. We write the quaternion group as $Q_{8}=\left\langle x, y \mid x^{4}=1, x^{2}=y^{2}, y^{-1} x y=x^{-1}\right\rangle$. Consider the element $\alpha:=x-x^{3}-y \in F_{p} Q_{8}$. Now letting $p=3$, we see that α is a unit of order 2. Define $a:=(1-\alpha) y \hat{\alpha}$ and $b:=\hat{\alpha} y^{-1}(1-\alpha)$. Now ba $=\hat{\alpha} y^{-1}\left(1-2 \alpha+\alpha^{2}\right) y \hat{\alpha}=$ $2+x+x^{2}+2 x^{3}+y+2 x^{2} y$ (see the appendix for the calculations in GAP). Thus $\omega \pi_{p}(b a)=\operatorname{tr}(b a)\left(\right.$ since Q_{8} is a 2 -group and $\left.p \neq 2\right)=2 \neq 0$. Thus by Theorem 20 we see that $\langle 1+t a, 1+1 b a b\rangle \simeq C_{3} * C_{3}$, where t is an element of K which is transcendental over F_{3}. By [28, p.371] this group is also isomorphic to

$$
\left\langle R=\left[\begin{array}{ll}
1 & -1 \\
1 & 0
\end{array}\right], S=\left[\begin{array}{ll}
0 & -1 \\
1 & 1
\end{array}\right]\right\rangle<P S L(2, Q) .
$$

Now

$$
R S=\left[\begin{array}{ll}
-1 & -2 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \text {, and } R^{2} S^{2}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right],
$$

and these two matrices are well known to generate a free group [17, p.92]. (The fact that we are in PSL $(\underset{\sim}{2}, Q)$ does not affect the freeness of the group. Indeed, considered as elements of $S L(2, Q), R S$ and $R^{2} S^{2}$ generate a free group of rank 2 , and this group contains no normal subgroup of order 2 (in particular it does not contain $\{I,-I\}$), so mapping $\left\langle R S, R^{2} S^{2}\right\rangle$ from $S L(2, Q)$ to $\operatorname{PSL}(2, Q)$ does not alter the structure of this subgroup. Thus $\left\langle(1+t a)(1+t b a b),(1+t a)^{2}(1+t b a b)^{2}\right\rangle$ is isomorphic to a free group.

The following observations may also be of use in constructing free groups in $F_{p} Q_{8}$. Note that for any characteristic $p \neq 5$ we have that $\alpha=x-x^{3}-y \in F_{p} Q_{8}$ is a unit.

Indeed, $\alpha^{2}=-2+3 x^{2} \in F_{p}\left\langle x^{2}\right\rangle=F_{p} C_{2} \simeq F_{p} \oplus F_{p}$. In this group algebra α^{2} is a unit with inverse $\frac{2}{5}+\frac{3}{5} x$. Note that every unit of $F_{p} C_{2}$ has order dividing $p-1$, so α has order dividing $2(p-1)$. Again define $a:=(1-\alpha) y \hat{\alpha}$ and $b:=\hat{\alpha} y^{-1}(1-\alpha)$. Now $b a=\hat{\alpha} y^{-1}\left(1-2 \alpha+\alpha^{2}\right) y \hat{\alpha}=\hat{\alpha}\left(-1+2 x+3 x^{2}-2 x^{3}+2 y\right) \hat{\alpha}=\hat{\alpha} \beta \hat{\alpha}$, say. Now if ba is nilpotent then $\omega \pi_{p}(b a)=\operatorname{tr}(b a)=0=\operatorname{tr}\left(\hat{\alpha}^{2} \beta=n \operatorname{tr}(\hat{\alpha} \beta)\right.$, where $n=o(\alpha)$. Thus $\operatorname{tr}(b a)=0$ implies $\operatorname{tr}(\hat{\alpha} \beta)=0$, since p does not divide n. But given the order of α, it is not a difficult matter to find $\operatorname{tr}(\hat{\alpha} \beta)$.

Claim:

$o(\alpha)=2 n$ for some n and $\operatorname{tr}(\hat{\alpha} \beta)=\sum_{j=0}^{n-1}(-5)^{j+1}$.
Proof: First note that since the augmentation map is a group homomorphism from $U(K G)$ to K^{*}, the fact that $\omega(\alpha)=-1$ forces α to have even order. Now let $o(\alpha)=2 n$. Now $\operatorname{tr}(\hat{\alpha} \beta)=\operatorname{tr}(\beta)+\operatorname{tr}(\alpha \beta)+\sum_{j=1}^{n-1} \operatorname{tr}\left(\left(\alpha^{2 j}+\alpha^{2 j+1}\right) \beta\right)=-1+$ $-4+\sum_{j=1}^{n-1} \operatorname{tr}\left(\left(\alpha^{2 j}(\beta+\alpha \beta)\right)\right.$. Note that $\operatorname{tr}\left(\left(\alpha^{2 j}(\beta+\alpha \beta)\right)=\operatorname{tr}\left(\alpha^{2 j} \pi_{\left(x^{2}\right\rangle}(\beta+\alpha \beta)\right)=\right.$ $\operatorname{tr}\left(\alpha^{2 j}\left(-1+3 x^{2}+-4+2 x^{2}\right)\right)=\operatorname{tr}\left(\alpha^{2 j}\left(-5+5 x^{2}\right)\right)=5 \operatorname{tr}\left(\alpha^{2(j-1)} \alpha^{2}\left(-1+x^{2}\right)\right)=$ $5 \operatorname{tr}\left(\alpha^{2(j-1)}\left(5-5 x^{2}\right)\right)=(-1)^{1} 5^{2} \operatorname{tr}\left(\alpha^{2(j-1)}\left(-1+x^{2}\right)\right)=(-1)^{j} 5^{j+1} \operatorname{tr}\left(-1+x^{2}\right)=$ $(-5)^{j+1}$, by an easy induction. Thus $\operatorname{tr}(\hat{\alpha} \beta)=-5+\sum_{j=1}^{n-1}(-5)^{j+1}=\sum_{j=0}^{n-1}(-5)^{j+1}$.

Example 11 Next we construct a pair of generators of a free subgroup of $U(K G)$, where $G=A_{5}$ is the alternating group on five elements and K is a field of characteristic 2. This will be of interest because the free pair generated will not be stable (fixed by the involution map), as compared with [13], where a technique based on Threoem 17 is given for the construction of stable free pairs in group algebras. Note also that Theorem 17 does not apply here since A_{5} has no subgroup of order 15 [38, p.138].

Consider the elements $x:=(1,2,3,4,5), y:=(1,2,4) \alpha:=(1,2,3) \beta:=1+$ $\hat{y}\left(x y x^{2}+x^{3}\right)(1+y) ; \in F_{p} A_{5}$. Now letting $p=2$, we see that β is a unit of order 2.

Define $a:=(1+\alpha) \beta \hat{\alpha}$ and $b:=\hat{\alpha} \beta(1+\alpha)$.
Now ba $=(3,4,5)+(2,3)(4,5)+(2,4,5)+(1,2)(4,5)+(1,2,3,4,5)+(1,2,4,5,3)+$ $(1,3,4,5,2)+(1,3)(4,5)+(1,3,2,4,5)+(1,4,5,3,2)+(1,4,5)+(1,4,5,2,3)$ (see the appendix for the calculations in GAP). Thus $\omega \pi_{p}(b a)=3=1 \neq 0$. Thus by Theorem 20 we see that
$\left\langle 1+t a, 1+1 b a b, 1+t(1+b)(a b a(1+b)\rangle \simeq C_{2} * C_{2} * C_{2}\right.$, where t is an element of K which is transcendental over F_{2}. By [28, p.371] this group is also isomorphic to

$$
\left\langle T=\left[\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right], U=\left[\begin{array}{ll}
1 & 1 \\
-2 & -1
\end{array}\right], V=\left[\begin{array}{ll}
-1 & -2 \\
1 & 1
\end{array}\right]\right\rangle\langle\operatorname{PSL}(2, Q) .
$$

Now in this notation

$$
C_{1}=T U V=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \text { and } D_{1}=T V U=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]
$$

and these two matrices are well known to generate a free group [17, p.92]. (The fact that we are in $\operatorname{PSL}(2, Q)$ does not affect the freeness of the group. Indeed, considered as elements of $S L(2, Q), T U V$ and TVU generate a free group of rank $\mathfrak{2}$, and this group contains no normal subgroup of order $\mathfrak{2}$ (in particular it does not contain $\{I,-I\})$, so mapping $(T U V, T V U\rangle$ from $S L(2, Q)$ to $P S L(2, Q)$ does not alter the structure of this subgroup. Thus $\langle c, d\rangle=\langle(1+t a)(1+t b a b)(1+t(1+b) a b a(1+b),(1+$ $t a)(1+t(1+b) a b a(1+b))(1+t b a b)\rangle$ is isomorphic to a free group. The appendix shows that c and d are not a stable free pair.

Bibliography

[1] J.M. Bateman. On the solvability of unit group of group algebras. Trans. Amer. Math. Soc., 157:73-86, 1971.
[2] J.M. Bateman and D.B. Coleman. Group algebras with nilpotent unit groups. Proc. Amer. Math. Soc., 19:448-449, 1968.
[3] A.A. Bovdi. Free subgroups of the group of units in group algebras. Publ. Math. Debrecen, 49:157-165, 1996.
[4] A.A. Bovdi and I.I. Hripta. Normal subgroups of the multiplicative group of a ring. Math. USSR Sbornik, 16(3):349-362, 1972.
[5] A.A. Bovdi and I.I. Khripta. Group algebras of periodic groups of a solvable multiplicative group. Mat. Zametki. (Translated in Math. Notes of the Acad. of Sciences of the U.S.S.R.), 22:421-432 (725-731), 1977.
[6] S. Coelho and C. Polcino Milies. Group rings whose torsion units form a subgroup. Proc. Edinburgh Math. Soc., 37:201-205, 1994.
[7] J.D. Dixon. The Structure Of Linear Groups. Van Nostrand Reinhold Company, London New York Cincinnati Toronto Melbourne, 1971.
[S] Y.A. Drozd and V.V. Kirchenko. Finite Dimensional Algebras. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest, 1994.
[9] H.K. Farahat. The multiplicative groups of a ring. Math. Zeit., 87:378-384, 1965.
[10] W. Feit and N.J. Fine. Paris of commuting matrices over a finite field. Duke Math. J., 27:91-94, 1960.
[11] J.Z. Gonçalves. Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings. Canad. Math. Bull., 27(3):365-370, 1984.
[12] J.Z. Gonçalves. Free subgroups of units in group rings. Canad. Math. Bull., 27(3):309-312, 1984.
[13] J.Z. Gonçalves, A. Mandel, and M. Shirvani. Free products of units in algebras ii. cyclic algebras. Journal of Algebra, to appear.
[14] J.Z. Gonçalves and D.S. Passman. Construction of free subgroups in the group of units of modular group algebras. Comm. Algebra, 24(13):4211-4215, 1996.
[15] B. Hartley and P.F. Pickel. Free subgroups in the unit group of integral group rings. Canad. J. Math., 32:1342-1352, 1980.
[16] N. Jacobson. Lectures in Abstract Algebra Volume II - Linear Algebra. Van Nostrand, Princeton New Jersey Toronto New York London, 1953.
[17] M.I. Kargapolov and Ju.I. Merzljakov. Fundamentals of the theory of groups. Translated from the second Russian edition by Robert G. Burns. Graduate Texts in Mathematics, 62. Springer Verlag, New York-Berlin, 1979.
[18] G. Karpilovsky. The Jacobson Radical of Group Algebras. North-Holland Mathematics Studies, 135. North-Holland Publishing Co., Amsterdam-New York, 1987.
[19] G. Karpilovsky. Unit Groups of Group Rings. Pitman Monographs and Surveys in Pure and Applied Mathematics, 47. Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York,, 1989.
[20] G. Karpilovsky. The Jacobson Radical of Classical Rings. Pitman Monographs and Surveys in Pure and Applied Mathematics, 53. Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York, 1991.
[21] D. MacHale. Commutativity in finite rings. Amer. Math. Monthly, 83(1):30-32, 1975.
[22] D. MacHale. Wedderburn's theorem revisited. Irish Math. Soc. Bull., (17):44-46, 1986.
[23] Z. Marciniak and S.K. Sehgal. Constructing free subgroups of integral group ring units. Proc. Amer. Math. Soc., 125:1005-1009, 1997.
[24] Z. Marciniak and S.K. Sehgal. Subnormal subgroups of group ring units. Proc. Amer. Math. Soc., 126:343-348, 1998.
[25] B.R. McDonald. Finite Rings with Identity. Marcel Dekker, Inc., New York, 1974.
[26] Y.I. Merzlyakov. Linear groups. Soviet J. Math., 14:887-921, 1980.
[27] K. Motose and Y. Ninomiya. On the solvability of unit groups of group rings. Math. J. Okayama Univ., 15:209-213, 1972.
[28] M. Newman. Some free products of cyclic groups. Michig. Math. J., 9:369-373, 1962.
[29] D.S. Passman. The Algebraic Structure of Group Rings. Wiley, New York, 1977.
[30] D. Robinson. A Course in the Theory of Groups. Number 80 in Graduate Texts in Mathematics. Springer-Verlag, New York, 1993.
[31] W.R. Scott. Group Theory. Dover, New York, 1987.
[32] S. K. Sehgal. Topics in Group Rings. Marcel Dekker, New York, 1978.
[33] M. Shirvani and B.A.F. Wehrfritz. Skew Linear Groups. Number 118 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1986.
[34] M. Suzuki. Group Theory I. Springer Verlag, Berlin Heidelberg New York, 1982.
[35] J. Tits. Free subgroups in linear groups. J. Algebra, 20:250-270, 1972.
[36] M.J. Tomkinson. FC-groups. Pitman Publishing Limited, Boston London Melbourne, 1984.
[37] B.A.F. Wehrfritz. Infinite Linear Groups. Springer-Verlag, New York Heidelberg Berlin, 1973.
[38] M. Weinstein. Examples of groups. Polygonal Publishing House, Passiac NJ, 1977.

Appendix A

Appendix

Here we use "LAG - Lie Algebras of Group Algebras", an extension package for GAP 3.4 developed by Richard Rossmanith (1997), to do many of the calculations mentioned in the examples. The examples are numbered in the order they appear in the thesis.

Example 4:

```
gap
Read("lag.g");
F:=GF(2);
G:=DihedralGroup(10);
FG:=GroupAlgebra(F,G);
e:=GroupAlgebraElement([()], [One(F)]);
x:=GroupAlgebraElement ([(1,2,3,4,5)], [One(F)]);
xhat:= e + x + x^2 + x^3 + x^4;
y:= GroupAlgebraElement([(2,5)(3,4)], [One(F)]);
```

```
yhat:= e + y;
# The elements of D10 look like this:
# e; Z(2) - 0*()+
#x; Z(2) - O*(1, 2, 3, 4, 5)+
#x^2; Z(2) ^ 0* (1,3,5,2,4)+
#x^3; Z(2) ~ 0* (1,4,2,5,3)+
#x^4; Z(2)~0*(1,5,4,3,2)+
#y; Z(2) - 0*(2,5)(3,4)+
#x*y; Z(2) - 0*(1,5)(2,4)+
#x~2*y; Z(2)~0*(1,4)(2,3)+
#x^3*y; Z(2) - 0* (1,3)(4,5)+
#x^4*y; Z(2) ^ 0* (1, 2)(3,5)+
beta := (e + x + y + x*y + x^2*y + x^^3*y + x^^4*y)^2;
#beta`15;
#n := 1;
#while n <= 2^10 and beta^n <> e do
# n := n+1;
# od;
#n;
# gap> n;
# 15
# Thus, beta is a unit in F2D10 of order 15.
alpha:=x+y+x*y;
alpha-3;
# Z(2)^0*()+ Thus alpha is a unit of order 3.
```

```
alphahat:=e+alpha+alpha-2;
a:=(e+alpha)*beta*alphahat;
b:= alphahat*beta^14*(e+alpha);
ba:=b*a;
ba+ba^2;
# Now (ba)=(ba)~2 <> 0, so ba is not nilpotent!!
# Note that
# <(1+ta)(1+tbab),(1+ta)(1+t(1+b)aba(1+b))\rangle=\langleTU,TV\rangle=\langlec1,c2\rangle say,
# is isomorphic to a free group. Now
# c1:= 1+t(a+bab)+t-2(abab),
# and d1:= 1+t(a+(1+b)aba(1+b))+t^2(a(1+b)aba(1+b)).
a+ba*b;
# = x+x 2 2*y+x-4+x*y
a*ba*b;
# = x - 4*y+x-2* x- 2* *y+x-4
a+(e+b)*a*b*a*(e+b);
# = x^4*y+x^3*y+x^2*y+x*y
a*(e+b)*a*b*a*(e+b);
# = x - 3*y+x^2* *y+x-3+x
# Thus, our free group equals
# < 1+t(x+x-4+x*y+x-2*y)+t` 2(x^2+\mp@subsup{x}{}{\wedge}4+\mp@subsup{x}{}{\wedge}-2*y+x-4*y),
# 1+t(x*y+\mp@subsup{x}{}{~}2*y+\mp@subsup{x}{}{~}3*y+\mp@subsup{x}{}{-}4*y)+t~2(\mp@subsup{x}{}{-}3+\mp@subsup{x}{}{-}4+\mp@subsup{x}{}{-}2*y+\mp@subsup{x}{}{-}3*y)}
# Note that this free pair is not stable (that is, not fixed under
```

\# the involution mapping) :

```
# Now c1star = 1+t(x+x-4+x*y+x^2*y)+t^2(x+x-3+x-2*y+x-4*y) and
# distar = 1+t(x*y+x^2*y+x^3*y+x^4*y)+t^2(x+x^2+\mp@subsup{x}{}{\wedge}2}2*y+\mp@subsup{x}{}{\wedge
# Thus c1*c1star = 1+t(c1start1)+
```



```
# (x+x^4+x*y+x^2*y)*(x*y+x^2*y+x^3*y+x^4*y)
```



```
(x+x-4+x*y+x-2*y)*(x+x}\mp@subsup{)}{}{~}4+x*y+\mp@subsup{x}{}{-}2*y)
# = 0.
# Similarly, d1*d1star = 1+t(0) +
# t~ 2(x+x^2+x^^3+x^4+(x*y+x^2* (y+x^3*y+x^4*y)*(x*y+x^2*y+x^3*y+x^4*y)
d1start2:=
x+x}\mp@subsup{|}{}{\wedge}2+\mp@subsup{x}{}{-}3+\mp@subsup{x}{}{\wedge}4+(x*y+\mp@subsup{x}{}{\wedge}2*y+\mp@subsup{x}{}{\wedge}3*y+x^4*y)*(x*y+\mp@subsup{x}{}{\wedge}2*y+\mp@subsup{x}{}{\wedge}3*y+\mp@subsup{x}{}{\wedge}4*y)
# =0.
# Coeff of t in c1*c1star:
(x+x^4+x*y+x^2*y) + (a+b*a*b);
# gap> (x+x^4+x*y+x~2*y) + (a+b*a*b);
# Lag.Zero()
# Coeff of t`2 in c1*c1star:
(a+b*a*b)*(x+x^4+x*y+x^2*y) + (a*b*a*b) + (x+x^^3+\mp@subsup{x}{}{\wedge}2* 2*+x^4*y);
gap> (a+b*a*b)*(x+x^4+x*y+x^2*y) + (a*b*a*b) + (x+x^3+x^2*y+x^^4*y);
Lag.Zero()
# Coeff of t-3 in ci*c1star:
(x+x^4+x*y+x^2*y)*(x+x^3+\mp@subsup{x}{}{\wedge}2*y+x^4*y)
+(x^2+\mp@subsup{x}{}{\wedge}4+\mp@subsup{x}{}{\wedge}2*y+x^4*y)*(x+\mp@subsup{x}{}{\wedge}4+x*y+x^2*y);
```

```
#gap> $+x*y+x^2*y);
#Lag.Zero()
# Coeff of t^4 in c1*c1star:
( }\mp@subsup{x}{}{\wedge}2+\mp@subsup{x}{}{\wedge}4+\mp@subsup{x}{}{\wedge}2*y+x^4*y)*(x+x^3+\mp@subsup{x}{}{\wedge}2*y+x^4*y)
# gap> (x^2+x^4+x-2*y+x^4*y)*(x+x^3+x^2*y+x^4*y);
# Lag.Zero()
# Thus c1*c1star = 1, so c1^{-1} = c1star.
# Coeff of t in d1*d1star:
(x*y+x^2*y+x^3*y+x^4*y) + (x*y+x^2*y+x^3*y+x^4*y);
gap> (x*y+x^2*y+x^3*y+x^4*y) + (x*y+x^2*y+x^3*y+x^4*y);
Lag.Zero()
# Coeff of t~2 in d1*d1star:
```



```
+ (x^3+\mp@subsup{x}{}{\wedge}4+\mp@subsup{x}{}{\wedge}2* 2*+x^3*y) + (x+x^2+\mp@subsup{x}{}{\wedge}2* 2* +x^3*y);
gap> $*y) + (x+\mp@subsup{x}{}{\wedge}2+\mp@subsup{x}{}{\wedge}2*y+\mp@subsup{x}{}{\wedge}3*y);
Lag.Zero()
# Coeff of t`3 in d1*d1star:
```



```
gap> $(x*y+x^2*y+x^3*y+x^4*y);
Lag.Zero()
# Coeff of t^3 in d1*d1star:
( }\mp@subsup{x}{}{\wedge}3+\mp@subsup{x}{}{\wedge}4+\mp@subsup{x}{}{\wedge}2* 2*+\mp@subsup{x}{}{\wedge}-3*y)*(x+\mp@subsup{x}{}{\wedge}2+\mp@subsup{x}{}{\wedge}-2*y+\mp@subsup{x}{}{\wedge}3*y)
gap> (x^3+x^4+x^2*y+x^3*y)*(x+x^2+x^2*y+x^3*y);
Lag.Zero()
# Thus d1*d1star = 1, so d1^{-1} = d1star.
```


Example 10:

```
gap;
Read("lag.g");
F:=GF(3);
p := 3;
x1 := [ [ Z(p) ^0, Z(p) ~0, ] ,
    [Z(p)~0, 2*Z(p)^0] ] ;;
y1 := [ [ 0*Z(p), Z(p)^0, ] ,
    [2*Z(p) }00,0*Z(p)] ] ;
G:=Group(x1, y1);
#GroupId(G); = Q8
FG:=GroupAlgebra(F,G);
x:=GroupAlgebraElement([x1], [One(F)]);
y:=GroupAlgebraElement([y1], [One(F)]);
e1:=x1~4;
e:=GroupAlgebraElement([e1], [One(F)]);
alpha:=x+(-1)*y+(-1)*x^3;
# Z(3)*[[0*Z(3), Z(3)~0], [ Z(3), 0*Z(3)] ]+
# [ [ Z (3) -0, Z(3) -0], [ Z(3)~0, Z(3)] ]+Z(3)*
# [ [ Z (3), Z(3) ], [ Z(3), Z(3)^0 ] ]+
#This is a unit of order 2.
alphahat:= (e+alpha);
a:=(e-alpha)*y*(alphahat);
b:=(alphahat)*y^(-1)*(e-alpha);
ba:=b*a;
```

```
# [ [ 0*Z(3), Z(3)~0], [ Z(3), 0*Z(3)] ]+Z(3)*
# [ [ 0*Z(3), Z(3)], [ Z(3)^0, 0*Z(3)] ]+Z(3)*
# [ [ Z(3)-0, 0*Z(3)], [ 0*Z(3), Z(3)-0 ] ]+
# [ [ Z(3)^0, Z(3)^0 ], [ Z(3)^0, Z(3)] ]+
# [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)] ]+
# Z(3)*[[ Z(3), Z(3)], [ Z(3), Z(3)~0 ] ]+
```

\# Now this has trace $=2$.

Example 11:

gap

Read("lag.g");
$\mathrm{F}:=\mathrm{GF}$ (2) ;
$\mathrm{G}:=$ AlternatingGroup (5);
FG:=GroupAlgebra(F,G);
$e:=$ GroupAlgebraElement ([()], [One(F)]);
alpha:=GroupAlgebraElement $([(1,2,3)]$, [One(F)]);
alphahat:= e + alpha + alpha~2;
$\mathrm{x}:=$ GroupAlgebraElement $([(1,2,3,4,5)]$, [One(F)]);
$y:=G r o u p A l g e b r a E l e m e n t([(1,2,4)]$, [One(F)]);
yhat:= $e+y+y^{\wedge} 2$;
xhat: $=e+x+x^{\wedge} 2+x^{\wedge} 3+x^{\wedge} 4$;
\# Use the idempotent trick (and xhat say) to come up with a
\# new unit for beta.
beta:= e+yhat*(x*y*x^2+x^3)*(e+y);

```
betahat:= e + beta;
a:=(e+alpha)*beta*alphahat;
b:=alphahat*beta*(e+alpha);
ba:=b*a;
# gap> ba;
# (3,4,5)+(2,3)(4,5)+(2,4,5)+(1,2)(4,5)+(1, 2, 3, 4, 5)+(1, 2,4,5,3)+
# (1,3,4,5,2)+(1,3)(4,5)+(1,3,2,4,5)+(1,4,5,3,2)+(1,4,5)+(1,4,5, 2,3)
# Note that when projected down to its 2-support, ba has
# augmentation =3 =1 neq 0 here !!!
```

\# a;
\# $(3,5,4)+(2,3,5)+(2,4,5)+(2,5,4)+(1,2)(3,5)+(1,2,3,5,4)+(1,2,4,5,3)+$
$\#(1,2,5,4,3)+(1,3,5,4,2)+(1,3,5)+(1,3,2,4,5)+(1,3,2,5,4)+(1,4,5,3,2)$
$\#+(1,4,5)+(1,4,5,2,3)+(1,4,2,5,3)+(1,4,3,2,5)+(1,4)(2,5)+(1,5,2)+$
\# $(1,5,3,4,2)+(1,5,3)+(1,5)(3,4)+(1,5)(2,3)+(1,5,2,3,4)+$
astar: =GroupAlgebraElement ([
$(3,4,5),(2,5,3),(2,5,4),(2,4,5),(1,2)(3,5),(1,4,5,3,2),(1,3,5,4,2)$,
$(1,3,4,5,2),(1,2,4,5,3),(1,5,3),(1,5,4,2,3),(1,4,5,2,3),(1,2,3,5,4)$,
$(1,5,4),(1,3,2,5,4),(1,3,5,2,4),(1,5,2,3,4),(1,4)(2,5),(1,2,5)$,
$(1,2,4,3,5),(1,3,5),(1,5)(3,4),(1,5)(2,3),(1,4,3,2,5)]$,
[One (F), One(F),
One (F), One (F),
One (F), One (F), One (F), One (F), One (F), One (F), One (F), One (F),
One (F), One (F), One (F), One (F), One (F), One (F)]);
\# astar:=
$\#(3,4,5)+(2,5,3)+(2,5,4)+(2,4,5)+(1,2)(3,5)+(1,4,5,3,2)+(1,3,5,4,2)+$
$\#(1,3,4,5,2)+(1,2,4,5,3)+(1,5,3)+(1,5,4,2,3)+(1,4,5,2,3)+(1,2,3,5,4)$

```
# +(1,5,4)+(1,3,2,5,4)+(1,3,5,2,4)+(1,5,2,3,4)+(1,4)(2,5)+(1,2,5)+
# (1,2,4,3,5)+(1,3,5)+(1,5)(3,4)+(1,5)(2,3)+(1,4,3,2,5);
# b;
# (3,5,4)+(2,3,5)+(2,4,5)+(2,4)(3,5)+(2,5)(3,4)+(1,2,3,4,5)+
# (1,2,3,5,4)+(1, 2,4,3,5)+(1,2,5,4,3)+(1,2,5)+(1,2,5,3,4)+
# (1,3,4,5,2)+(1,3,5)+(1,3,2,4,5)+(1,3)(2,5)+(1,3,2,5,4)+(1,4,3,5,2)
# +(1,4,5)+(1,4)(3,5)+(1,4,5,2,3)+(1,4,2,5,3)+(1,4,3,2,5)+
# (1,5,4,3,2)+(1,5,2)+(1,5,3,4,2)+(1,5,4)+(1,5) (3,4)+(1,5) (2,3)+
# (1,5,2,4,3)+(1,5,3,2,4)+
# bstar = b^* =
# (3,4,5)+(2,5,3)+(2,5,4)+(2,4)(3,5)+(2,5)(3,4)+
# (1, 5,4,3,2)+(1,4,5,3,2)+(1,5,3,4,2)+(1,3,4,5,2)+
# (1,5,2)+(1,4,3,5,2)+(1,2,5,4,3)+(1,5,3)+(1,5,4,2,3)+
# (1,3)(2,5)+(1,4,5,2,3)+(1,2,5,3,4)+(1,5,4)+(1,4)(3,5)+
# (1,3,2,5,4)+(1,3,5,2,4)+(1,5,2,3,4)+(1,2,3,4,5)+
# (1,2,5)+(1,2,4,3,5)+(1,4,5)+(1,5)(3,4)+(1,5)(2,3)+
# (1,3,4,2,5)+(1,4,2,3,5)
bstar:=GroupAlgebraElement([(3,4,5), (2,5,3), (2,5,4),
(2,4) (3,5),(2,5) (3,4), (1,5,4,3,2), (1,4,5,3,2),
(1,5,3,4,2),(1,3,4,5,2),(1,5,2),(1,4,3,5,2),(1,2,5,4,3),
(1,5,3),(1,5,4,2,3),(1,3)(2,5),(1,4,5,2,3),(1,2,5,3,4),
(1,5,4),(1,4)(3,5),(1,3,2,5,4),(1,3,5,2,4),(1,5,2,3,4),
(1,2,3,4,5),(1,2,5),(1,2,4,3,5),(1,4,5),(1,5)(3,4),
(1,5) (2,3),(1,3,4,2,5),(1,4,2,3,5)],
[One(F), One(F), One(F), One(F), One(F), One(F),
One(F), One(F), One(F), One(F), One(F), One(F), One(F),
One(F), One(F), One(F), One(F), One(F), One(F), One(F),
```

```
One(F), One(F), One(F), One(F), Ome(F), One(F), One(F),
One(F), One(F), One(F)]);
```

\# Recall that $\backslash \mathrm{mega}$ \pi_2 (ba) $=1$ \neq 0 here, so ba is \# not nilpotent and by Theorem 20 we get that U(KD10) \# contains free groups. In fact, it contains \# < $1+\mathrm{ta}, 1+\mathrm{tbab}, 1+\mathrm{t}(1+\mathrm{b}) \mathrm{aba}(1+\mathrm{b})$) , which is isomorphic \# to C2*C2*C2 in the obvious way. It is also isomorphic \# to $\{\mathrm{T}, \mathrm{U}, \mathrm{V}\}$ iso to gamma^3 (see Mcite[p.371]\{Newman\}. \# Here $T=$ the 2 X 2 matrix $[0,1,-1,0], \mathrm{U}=[1,1,-2,-1]$ and \# $V=[-1,-2,1,1]$. Here T, U and V are considered as \# matrices in PSL $(2, Q)$, \# i.e. $I=-I$. Note: $T^{\wedge} 2=U^{\wedge} 2=V^{\wedge} 2=-I=I$.
\# Now in Newman notation: $C_{-} 1=T U V=[1,3,0,1]$ and
\# D_1=TVU=[1, 0, 3, 1].
\# Thus <TUV, TVU> is well known to be isomorphic to a \# free group (again considered as a subgp of $\operatorname{PSL}(2, C)$), \# (The fact that we are in $\operatorname{PSL}(2, C)$ does not affect the \# freeness of the group as the matrices in the group \# have no negative entries, so goinng from $\operatorname{SL}(2, C)$ to \# PSL(2, C) does not alter the structure of this subgp).
\# Thus: < $(1+\mathrm{ta})(1+\mathrm{tbab})(1+\mathrm{t}(1+\mathrm{b}) \mathrm{aba}(1+\mathrm{b}))$,
\# $(1+\mathrm{ta})(1+\mathrm{t}(1+\mathrm{b}) \mathrm{aba}(1+\mathrm{b})) \leqslant 1+\mathrm{tbab})\rangle$
\# is isomorphic to a free group, <c,d>, say.
\# Now cstar=
\# (1+t(1+bstar)astar*bstar*astar(1+bstar))

```
# *(1+t*bstar*astar*bstar)(1+t*astar)
# and we already have astar and bstar, so we compute
# cstar as follows:
# Write cstar as (1+t*f)(1+t*g)(1+t*astar), where
f:=(e+bstar)*astar*bstar*astar*(e+bstar);
g:=bstar*astar*bstar;
# So cstar = 1+t(astar+f+g)+t~2(g*astar+f*astar+f*g)+
# t`3(f*g*astar) = 1+t*h+t` 2*i+t` 3*j, say, where
# h:=astar+f+g;
# (3,5,4)+(2,3)(4, 5)+(2,3,5)+(2,4,3)+(2,4,5)+(2,5,3)+
# (2, 5, 4)+(1, 2)(4,5)+(1, 2, 3)+(1, 2, 3,4,5)+(1, 2, 3, 5,4)+
# (1, 2, 4, 3,5)+(1, 2, 5,4,3)+(1, 2, 5)+(1, 2, 5, 3,4)+(1, 3,4)+
# (1,3)(2,5)+(1,4,5,3,2)+(1,4,2)+(1,4)(3,5)+(1,4)(2,5)+
# (1,5)(3,4)+(1,5)(2,3)+(1,5)(2,4)+
i:=g*astar + f*astar + f*g;
#()+(2,3,4)+(2,4,5)+(2,4)(3,5)+(1, 2)(3,4)+(1, 2, 3)+
#(1, 2, 3, 4, 5)+(1, 2, 4, 5, 3)+(1, 2, 5)+(1,3,2)+(1,3,4)+
# (1,3,5)+(1,3,5,2,4)+(1,3,4,2,5)+(1,4,5,3,2)+
# (1,4,3,5,2)+(1,4)(3,5)+(1,4,5,2,3)+(1,4,2,5,3)+
# (1,4)(2,5)+(1,5)(3,4)+(1, 5)(2,3)+(1,5,2,4,3)+
# (1,5,3,2,4)+
j:=f*g*astar;
# ()+(3,5,4)+(2,3)(4,5)+(2,3,4)+(2,4,5)+(2,4)(3,5)+
# (2,5,3)+(2,5)(3,4)+(1, 2)(4,5)+(1, 2)(3,4)+(1, 2,4)+
# (1, 2, 4, 3,5)+(1, 2, 5, 4,3)+(1, 2,5)+(1,3,2)+(1, 3,5,4,2)+
```

```
# (1,3)(2,4)+(1,3,2,4,5)+(1,3,2,5,4)+(1,3,4,2,5)+
# (1,4,5,3,2)+(1,4,3,5,2)+(1,4,3)+(1,4,5)+(1,4)(2,3)+
# (1,4,2,3,5)+(1,4,2,5,3)+(1,4)(2,5)+(1,5,2)+
# (1,5,3,4,2)+(1,5,4)+(1,5)(3,4)+(1,5,4,2,3)+(1,5)(2,3)+
# (1, 5, 2, 4,3)+(1, 5, 3, 2,4)+
# The interesting question is: "is cstar = c or d?"
# Let us begin to answer this:
# c:=(1+ta)(1+tbab)(1+t(1+b)aba(1+b)) =
# (1+t*a)(1+\tau*k) (1+t*m), say, where
k:= b*a*b;
m:=(e+b)*a*b*a*(e+b);
# Then c=1+t(a+m+k)+t~2(k*m+a*m+a*k)+t^3(a*k*m).
# Now compute h+(a+m+k);
# This is not equal to zero, so cstar <> c !!!
# Now let us ask: "is cstar = d?"
# d = (1+ta) (1+t(1+b)aba(1+b)) (1+tbab) =
# (1+t*a) (1+t*n)(1+t*o), say, where
n:=(e+b)*a*b*a*(e+b);
o:=b*a*b;
# Thus, d=1+t(a+n+0)+t^2(a*n+a*0+n*0)+t^3(a*n*0).
# Aside: c and d have the same coeff of t,
# (but not t^2 and t^3) as we see:
# gap> (a+n+o) +(a+m+k);
# Lag.Zero()
```

```
# Now to answer "is cstar = d?", we compute
(a+n+o)+h;
(a*n+a*o+n*o)+i;
(a*n*o)+j;
# None of these are zero, so we conclude that <c,d> is
# a non-stable free pair
# in F(t)A_5.
# Now <c,d>=F_2, so <cstar,dstar)=F_2 also.
# (Indeed, if w(cstar,dstar)=1
# then applying * we get w_*(c,d)=1.)
# Let us check to see if c*cstar = 1:
# Let us redefine c as c=1+tp+t^2q+t` 3r, where:
p:= a+m+k;
q:= k*m+a*m+a*k;
r:= a*k*m;
# Then we have c*cstar = 1 + t% +t^2% +... +t^6%.
# The coeff of t is:
p+h;
# This is <> 0, so c*cstar <> 1. Thus F_2=<c,d> is
# not a subgp of the orthogonal group
# D:={x\in KG | x*xstar=1 }.
# Now <c,d> is a free group, so <cstar,dstar> is also a
# free group. (Indeed, if w(cstar,dstar)=1 is a word in
# <cstar,dstar> then applying * we get w_*(c,d)=1 in
# <c,d>.)
```

