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A B S T R A C T

Let K  be a field and G  a group. Let K G  be the  group algebra and U (K G )  its 

group of units. In this thesis we investigate the existence and explicit construction 

of free groups in U (K G )  and exam ine the  consequences of the existence of these 

free groups. We place special emphasis on the m odular case, where K  has positive 

characteristic p and G contains elem ents of order a power of p.

As m otivation, we sta rt by giving a technique for the construction of free semi

groups in group algebras with some restrictions.

We use a new m ethod of constructing units to explicitly construct generators of 

free groups in U (K G )  and give examples in group algebras where previous techniques 

do not apply.

This construction relies heavily on the  abundance of non-commuting pairs of ele

m ents in the finite group ring FPG. We use com binatorial techniques to see precisely 

how scarce these commuting pairs of elem ents are.

Next we study criteria for the existence of free groups in group algebras. For a 

finite group G  and a field K  which is not algebraic over its prime subfield Fp we show 

th a t U (K G )  does not contain free groups -o  G' is a p-group (J(KG )  is soluble 

the torsion subset of U (KG )  forms a  group <£>• K G /J ( K G )  is isomorphic to a direct 

sum  of fields the transvections of K G  are contained in 1 +  J (K G ) .  We also
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explore connections between U (K G )  and the finite group U(FPG). The locally finite 

analogues of these results are also given.

The existence or absence of free groups thus leads to an im portant dichotomy in 

the structu re  of the group algebra, in the spirit of the Tits A lternative.

We give similar results on U {KG )  where G is either an FC group or is locally 

nilpotent. After studying a newly defined chain of unit groups we finish by proving 

some results on the Jacobson radical of KG .
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Chapter 1

Introduction

1.1 Introduction

For all the work th a t has been done on group rings in the last fifty years the  subject 

is in many ways still in its infancy. A counterexam ple to the Isomorphism Problem  

for integral group rings was only found in the last decade. We have little  idea what 

the units (or zero-divisors) of an arb itrary  group ring look like in term s of the group 

or coefficient ring.

On the other hand, we can often construct bicyclic units, Bass cyclic units and 

alternating units (given m inor restrictions on the group algebra), and these can be 

used for various constructions in the group algebra.

One of the more obvious approaches to studying group rings (and m ore general 

rings) is to consider the existence of polynomial identities. The torsion and com

m utativity of rings can be exam ined in this way. It is natural to suspect th a t the 

group identities of the unit group will have some bearing on the polynomial identities 

of the group algebra. The existence of a free group (of rank 2) in the unit group 

would quickly put an end to this line of reasoning. These free groups have become

1
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th e  object of my affections.

In this section and the next we give some of the notation  and  results needed 

to  understand the ideas presented in later chapters. The m ain  them e of the thesis 

is the existence and explicit construction of free groups in group algebras, and the 

consequences of the existence of these free groups. As m otivation, we s ta rt in Section

2 . 1  by giving a technique for the  construction of free semigroups in group algebras 

w ith  some restrictions. We then  develop some of the theory needed to study the 

applications of a new construction of units (the GBUs). In Section 2.3 we use these 

GBUs to construct free groups in group algebras where previous techniques do not 

apply. This construction relies heavily on the abundance of non-com m uting pairs of 

elem ents in the finite group ring FPG. In Chapter 3 we use com binatorial techniques 

to  see precisely how scarce these com m uting pairs of elem ents are. (We also briefly 

m ention the proportion of invertible elements of FPG.)

In  C hapter 4 we study criteria  for the existence of free groups in group algebras 

K G  (especially where G  is locally finite). In Theorems 31 and  32 we see th a t the 

existence or absence of free groups in the group algebra leads to  an im portan t and 

surprising dichotomy in the s truc tu re  of the group algebra. This is done in the spirit 

of th e  T its A lternative and suggests th a t the most im portan t question to ask of a 

group algebra is w hether or not it contains free subgroups. In Section 4.4 we con

sider some results on U (I\G )  where G is not periodic. In the following section we 

define a new chain of unit groups and investigate their properties. In Section 4.6 we 

chronicle some of the consequences of the preceding results. T h e  Jacobson radical 

is used throughout the chapter, and  is studied in its own right in  th e  final section. 

In C hapter 5 we apply our techniques to some of the examples which m otivated this 

work and which, as far as the au th o r is aware, are not readily stud ied  using existing 

m ethods. An Appendix includes some of the  more tedious calculations which were

2
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perform ed using the software package GAP.

N o ta tio n  and  C onventions

Definition: Given a  group G and a ring /?, the group  ring R G  is the set of ele

m ents where r,- 6  R  and <7,- 6  G  and the sum m ation is over all elements of G

(w ith only finitely many r,- ^  0). So R G  is a  free f2-module with the obvious addition, 

and it becomes a ring if we use the m ultiplication of the group to define multiplication.

N  is the set of natural numbers, Z  the  integers, Q the rationals and C  the com

plex numbers.

Fpn is the finite field of pn elements.

G  is a group, A: is a (commutative) field. 

o (x ) is the order of an element x  of G.

Cp denotes the cyclic group with p elements.

Gp — Sp(G) denotes the sylow p-subgroup of the group G. G * H  denotes the free 

product of the groups G and H .

S n is the sym m etric group on n symbols.

A regular element of a ring is any element which is not a zero-divisor. 

kG  is the group algebra.

Define the augm entation map uj : kG  —*■ k  by Y] aqg —»• Y 2 ag- Clearly this is a k- 

algebra epim orphism . u  has kernel A((?) =  (x — l|a; E G)kG, called the  augm entation 

ideal of kG.

“ : kG  —y kG  is the involution Y2 a g9 2  a g9~l •

tr  : kG  kG  is the trace m ap defined by tr(Y2 ag9) =  Qi-

U =lA{kG)  is the (multiplicative) group of units of kG.

V  = V (K G )  is the group of units of augm entation 1 .

3
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If a  E  U  has finite order n then a. is the element 1 +  a  +  a 2 +  • - • +  a 11-1 of kG.

A bicyclic unit of kG  is an elem ent of the form 1 dzxy(  1 — x l) or 1 ±  (1 — x l)yx. where 

x , y  E  G, o(x ) =  n <  oo and i E  { 0 ,1 ,. . .  , n — 1}. Note th a t such an element must

be a unit of order p if char k  = p > 0.

By a free group I shall m ean a non-cyclic free group.

A(G') =  {g E  G | [H : Cff(g)] < oo for every finitely generated subgroup H  of G}.

A+(G) =  {g E  A(G) | g  is a torsion element}.

Note A+(G) <3 A(G) < G  and A (G )/A +(G) is a torsion-free abelian group.

J (R )  is the Jacobson radical of the ring R.

If a  = a gg  E  kG  then the  support of a  is the set {g E  G | a g ^  0}.

If i f  is a subset of G then  tt#  : kG  —> kG  is the natural projection down to the subset 

of elements whose support lies in H.

If q is a prime num ber then  irq will denote the projection 7r#-, where H  is the set of 

g-elements of G.

If V  =  Mn(D) then the  Schur index of V  is the square root of the dimension of the 

division algebra D over its center.

1.2 Background Results

A considerable am ount of progress has been made on the question of the existence of 

free subgroups of L((kG). The T its Alternative [35] is a powerful tool here. So let us 

review what is known about these free groups.

T h eorem  1 (T its  T h eo rem  /  T its  A ltern ative  [35]) Let G be a finitely gener

ated linear group over a (commutative) field. Then either G is soluble-by-finite or G 

contains free groups.

4
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N ote th a t the proof does not exhibit the free group explicitly or constructively.

T h e o re m  2 ( W e d d e rb u r n - A r t in  T h e o re m )  [8, p .38-9] Every semisimple alge

bra is isomorphic to a direct product o f matrix algebras over division algebras. Con

versely, a direct product o f  matrix algebras over division algebras is a semisimple 

algebra. This decomposition is unique, up to permutation o f  the direct factors.

T h e o re m  3 (W e d d e rb u rn -M a lc e v  T h e o re m )  Let G be a finite  group. Then

K G ^ l

as vector spaces.

P ro o f :

By [8 , p .107], it suffices to  show th a t is separable, th a t is ® M ni(A',-) is sep

arable. Thus, by [S, p .105], we need only show that the A',- are separable algebras. 

By the definition of separable algebras [8 , p. 104], we need only show th a t for every 

extension L of the field A',-, AT, ® A is semisimple, and this is true  by [8 , p .75 Corollary 

4.3.6]. □

T h e o re m  4 [33, p .64-5] Let G be a finite group and F  a field that contains the 

algebraic closure o f  the rationals i f  F  has characteristic 0. Then every irreducible 

FG-module has Schur index 1 .

From the proof of this result we see th a t if our field I\ has characteristic p > 0 

then  every finite dim ensional simple image of K G  is of the form M n(F),  w ith F  a 

com m utative field containing K ,  where K  has finite index as a subfield of F.  This 

fact will be used in subsequent chapters.

Sehgal [32, p.200] and  then H artley and Pickel [15] proved

5
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T h e o re m  5 Let G be soluble-by-finite, and suppose U {ZG ) does not contain a free 

group o f  rank 2. Then

i ) every finite subgroup o f  G is normal in G,

ii) the torsion subset T  o f  G is a subgroup and is either abelian 

or the direct product o f  an elementary abelian 2-group and a 

quaternion group o f  order 8 (i.e. a non-abelian Hamiltonian 2-gp).

In the  finite case we have the following situation:

T h e o re m  6  [15, Theorem 2 p .1342] I f  G is finite then exactly one o f the following 

occurs:
i) G is abelian,

ii) G is a non-abelian Hamiltonian 2-group, and

U {ZG ) = { ± g :  g £  G},

Hi) IA{ZG) contains a free group.

For k  a field, Gongalves [12] showed

T h e o re m  7 I f  G is finite and k  is a field o f  characteristic 0 then ll{kG ) contains a 

free group i f  and only i f  G is non-abelian.

and

T h e o re m  8  I f  G is finite and k  is a field o f  characteristic p > 0 then U(kG) does 

not contain a free group i f  and only i f  one o f  the following occurs:

i) G is abelian,

ii) k  is algebraic over its prime field Fp,

Hi) S P(G), the p-Sylow subgroup o f  G, is normal in G, and

G / S P(G) is abelian.

6
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In [3], Bovdi gives perhaps the m ost comprehensive survey of the problem  to date:

T h eo rem  9 Let k be a field o f characteristic p >  0 and suppose that Id(kG) does not 

contain a free group. Then one o f the following conditions holds:

1. G is abelian;

2. G is a torsion group, p >  0 and k is algebraic over its prime subfield Fp;

3. p =  0 and

a. A+ ((j) is an abelian subgroup and each o f  its subgroups is 

normal in G;

b. the centralizer Cg(A+ (G)) contains all elements o f  finite 

order o f G;

c. fo r  every a E A+(G), which is not central in G, k  contains 

no root o f  unity o f order equal to o(a);

4- p > 0, k is not algebraic over its prime subfield Fp and

a. the p-Sylow subgroup P  o f  A +(G) is normal in G and

A  =  A+(G )/P  is an abelian group;

b. the centralizer C g / p ( A )  contains all torsion elements o f  G /P ;

c. i f  A  is noncentral in G /P  and G /P  is non-torsion, then the

algebraic closure L o f  Fp in k  is finite and fo r  all g  €  G f P

and a € A there exists a natural number r such that gag~l =  apT. 

Furthermore, each such r is a multiple o f  [L : Fp].
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5. G is not a torsion group, p > 0, k is algebraic over its prime subfield Fp and

a. the p-Sylow subgroup P of A +(G) is norm al in G and 

A  =  A +(G )/P  is an abelian group;

b. i f  A  is noncentral in G /P  then the algebraic closure L o f  Fp 

in k  is finite and fo r  all elements g o f  infinite order in G /P  

and a €  A there exists a natural number r such that gag~l =  a?r. 

Furthermore, each such r is a multiple o f  [L : Fp\.

Note however th a t the above conditions are not sufficient for U (K G )  to not contain 

a free group; for exam ple the possibility th a t G is a  free group is not excluded.

8
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Chapter 2

GBUs and free groups

We investigate th e  existence (and  construction) of free pairs of units in the  unit group 

of a (modular) group algebra I \G .  We generalise a result o f Gonsalves and Passman 

[14] to do this, and use the  program m ing package GAP to  investigate the units of 

F2( t)D l0, where F2 is the Galois field of order 2 and t is an  elem ent transcendental 

over F2.

Z. M arciniak and S. Sehgal [23, 24] have constructed free groups in arbitrary in

tegral group rings, where th e  group is non-abelian. Gongalves and Passman [14] 

have used a sim ilar construction for some group rings of th e  form  Fp{t)G  where t is 

an elem ent transcendental over the field Fp. Here we will be extending the work of 

Gongalves and Passm an.

2.1 Free Semigroups

A semigroup G = (S)  is freely generated by the set 5  if it has the  property  that any 

m apping from the  set S  into a  semigroup H  can be ex tended to  a homomorphism of

9
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semigroups.

As m otivation for the subsequent results on free groups, we give a result on the 

construction of free semigroups in group algebras. Com m ents and examples follow 

the proof.

T h eo rem  10 Let K  be a field o f characteristic zero, R  a subring o f  K G , y a unit o f

K G , and X  6  R. Write ra = y~ l ry  fo r  all r  £  R . Assume that

R y  Q yR-
ii) The (non-negative) powers o f  y  are right linearly independent over R.

Hi) X  is a regular element o f R .

iv) For any positive integer n, the elements { X r)aX n~r , r =  0 , . . .  , n, are linearly

independent over Q.

Then X  and Y  =  1 +  y generate a free subsemigroup o f  I \G .

Proof:

Conditions i) and ii) clearly imply th a t the subring R \Y \  generated by R  and Y  is 

isomorphic to ®{2.0y ‘R  (a direct sum  of /2-modules), since we have the com m utation 

rule ry  =  y ra.

Any element w of the free semigroup on {u, u} m ay be w ritten uniquely in the 

form u'°vutlv . . .  v u lm for integers ij > 0. (For exam ple, u3 =  u0v u 0vu°vu0.) We 

write I  =  (Zo,. . .  , i m) and W[ ( u , v )  for the elem ent w  above. The length L (I)  of 

I  =  (z'o,. . .  , im) is defined to b e m  +  1, and we write F =  (Zo,. . .  , Zm_!). The identity  

elem ent corresponds to the em pty sequence.

Given an element w i(u ,v )  of the free semigroup, write W {[)  =  wi(X,Y~)  € R\Y \. 

We know th a t

OO

j=o

1 0
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where the  Wj 6  R  and the sum contains only finitely m any terms (at most L(I) .  

since W { I)  only contains L (I)  — 1 occurrences of Y ) .  On the other hand, we have

OO

w(i) = xywtf/)
j= 0
oo

=  l +  ! / ) * '“
j = 0
oo oo

=  Y  yiwJii')x im +  Y  x '™,
j=0 j = 0

whence W0(I)  = WQ{ I ' ) X and W3(I)  = (W3{R) +  Wj . l ( I f)ir) X im for all j  > 1 . We 

may now use induction on the length of I  to prove th a t

Wo(I) = X n,

m —1

w. _ \p  ^ x io+- +i‘Y x n~{io+- +ic).
t = 0

and

Wm( I ) =  (X ioY m( X i l Y m 1 . . . ( X im~l Y ( X im),

where m  = L (I)  — 1 and n =  z’o +  . . .  +  im. Note th a t assum ption iii) implies th a t 

Wm(I)  ^  0, so W ( I ) is a  polynomial in y  of degree exactly m  =  L ( I ) — 1 .

In order to  show th a t X  and Y  generate a free semigroup, we m ust prove that, if 

I  and J  are sequences for which W (I )  =  W (J ) ,  then I  =  J .  Now W (I )  =  W {J)  is 

equivalent to W3(I)  =  W3(J)  for all j  > 0. Moreover, W (I )  and W { J ) have exactly 

the sam e degree in y, and hence I  and J  have the same length. Write /  =  (z0, . . .  , im) 

and J  =  ( jo ,. . .  ,im)- T he W0-term s yield i0 +  • • • +  im =  n = jo +  • • • + j m ,  and then 

the W i-term s simplify to
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m—1 m—1

+*t^ x n~(*o+—+*t) — ^  f x jo+'"+3't') Yn-(-7o+"'+Jt)
f=0 t=0

Let {z'o, io +  ii, io + . . .  im -i}  =  { n ,  • • • , ?>}, where r t < r 2 < . . .  < r p, and r,- occurs 

di times in the set o f partia l sums (rem em ber that som e of the  Vs m ay be zero, so 

some of the partial sum s m ay be equal). Similarly, w rite {jo, jo + j i ,  jo  +  - • - Jm -i} =  

{ sx ,...  , 5 ,} , where Si <  s 2 <  • • • <  sqi and si occurs e,- tim es in th e  set of partial 

sums. The above equation, therefore, becomes

p q
Y  di ( x r‘Y x n- r‘ = Y  ey ( x s' )  * X * ~ a> .
i=o y=o

Assumption iv) now implies th a t p = q, di = et-, and r,- =  s t- for all i. So, to begin 

with, we have

r i =  *o =  *0 +  H =  • • • =  zo +  • • • +  i d i - i  =  jo = jo +  j i  =  . . . =  jo +  ■■• +  j d i - 1 ,

whence i t =  j t  for 0 <  t < di — 1. Next, using r 2, we find th a t i t =  j t for 

d\ <  t < d2 — 1 , and  so on (this can be readily set up as an inductive argum ent). 

Thus I  =  J , as required. □

E x a m p le  1  We now show how this result can be applied. The simplest choice is 

y  =  ag, where a  E K  is a suitable scalar, and g E G. For R, we m ay choose Q H , 

where H  is a subgroup o f  G satisfying H 3 C H. The choice o f  X  E R  would then be 

dictated by the above data.

For example, suppose x  E G is an element such that

H = ( x , x 3, . . .  ,x*m, . . . )

is an ordered abelian group with gx ^  xg. Assume, moreover, that no power o f g 

belongs to H . Then y  =  g and R  = Q H  satisfy i) and ii) o f  the theorem. Also, by
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the Malcev-Neumann Theorem [29, Theorem 2.11 p.601], R  is an integral domain, 

so Hi) is satisfied fo r  any non-zero X  £ R . To see what condition iv) imposes on a 

given X ,  let u =  X 3/ X  in F, where F  is the quotient field of R. It is then immediate 

that

[ x rY  X n~r = u rX n

fo r  all r, so condition iv) is simply the requirement that u be transcendental over 

Q. Since Q is algebraically closed in F , it is sufficient to have u Q. In other 

words, i f  X  is chosen such that X 9 is not a rational multiple o f  X ,  then X  and 1 g 

generate a free semigroup. The simplest choice is X  =  1 +  x, where x 9 x, since 

1 +  x 9 =  q (l +  x) fo r  some q £ Q implies that either x 9 =  x or x 9 =  1, both o f  which 

are contradictions.

N o te : Condition iv) is determ ined by the  choice of Y  as 1 + y. More com plicated 

choices for Y  lead to more involved conditions of a sim ilar nature.

2.2 Elementary Results

Let us restrict our atten tion  to finite groups G  for the rem ainder of the chapter. 

Gongalves [1 2 ] has shown that Fp{t)G  contains a (non-abelian) free group inside its 

group of units precisely when either the Sylow-p subgroup SP(G ) is not normal in G 

or G /S P(G) is non-abelian. His proof was non-constructive.

The G ongalves/Passm an construction [14] uses bicyclic units, th a t is, units of the form

1+(1 —g)hg  or l + 5 rA (l— g), where g, h £  G, g  has order n  and g =  l+ g + g 2-\ Kgn~l -

This G ongalves/Passm an construction only works when you can find g ,h  £  G  such 

th a t (g)h 7^ (g) and (g ,g h) has no elements of order p. For example, it works for 

most non-abelian p'-groups.
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However, consider a group ring like F2 (t)G , where G =  Z)2m =  {x*.y\xm = y2 =  

l ,y £ y  =  a:-1). Now the unit group will contain a free group (as .?2 ( F 2Tn.) is not nor

m al in D2m), but the Gongalves/Passm an construction cannot be used since when 

u ,v  G F 2m, an(i (u )v ^  u i the group (u ,u v) always contains 2-elements.

We develop a m ethod of construction of free pairs which will apply to such group 

algebras and in Section 2.2 we take an example, F 2 (t)D  1 0 , and using Theorem 19 we 

exhibit a free group in its unit group.

L e m m a  1 1  Let H  C G, a ,  (3 G kG, (3 G U{kG). I f  H 0, H p~l C H  then 7TH(p~ lap) =  

j3~lTTff(a)(3. (In particular this holds i f  H  < G and H  <U{kG).)

Proof:

Let a 0  =  ~fr(a) and a  =  a 0  +  a i .  Then (3~l oc(3 =  (3~l {a0 +  ai)/3 =  (3~laQ(3 + j3~lcti(3. 

supp(0~la o/3) C supp{(3~1 H (3) =  suppH = H. Thus ttn{(3~la 0(3) =  f i~ la 0/3 

(i.e. “all o f’ 0 ~ lao(3 appears in

C la im : supp(f3~l&i/3) fl H  — d> i.e. “none o f’ /3~lai/3 appears in ~fj{(3~la(3). 

Assume not, i.e. Qi =  ag+a.igi+... w ith y, yi, y2, ... G G \ / /  and supp((3~lg(3)C\H ^  p. 

Say f3~lg(3 =  a : /ix + .. .  + arhr + b\gi - f ... +  bsgs, w ith r  >  1, k 3  a,- ^  0 for i =  1, ..., r, 

w ith h i , ..., hr £  H  and y l5  ...,y s G G \  H. Then

G \ H  3 g = (3{(3-'g(3)(3~'

— ai(3hiP 1 +  ... +  ar(3hr(3~l + b\f3g\(3~x + ... +  bs(3gs{3~1 

=  axhr+i -f ... +  arh 2r +  &ryf +  ... -j- 6 sy f

w ith h r + 1  =  f3hi(3~l , ..., h2r =  !3hrf3~l G if .
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Note supp(gf  ) PI H  =  ... =  supp(g& l ) D H  =  <f>. Indeed, if h E su pp(gf 1 PI H  

then, say, g f  = cxh +  ... => gt = c\hP -f =  C\h! +  ... w ith h' E H  (as H 13 C H ) , a 

contradiction as g± E G \  H.

Thus a.ihr+l +  ... +  arh2r =  ti’h ( 9 ) =  0. Recall hr+{ =  0h{0~1. Assume 0h{0 ~ 1 =  

0 h j 0 ~ l for i j ,  so h, =  hj for i ^  j , a contradiction. Thus hr+i , ..., h2r are all 

different. Thus a\ =  ... =  ar = 0, contradicting our assumption. This proves th e  

claim and hence the theorem. □

C o ro lla ry  12 Let a  E k G ,0  E lA(kG). Then t r (0 ~ la 0 )  =  f r (a ) .

P ro o f:

1 <U{kG ), so ~i(0 ~la 0 ) =  0 ~l {i~ia) 0  =  t r (a ( 0 ~l0 ) =  £r(a). □

Note the alternative definition for trace: t r (a )  :=  ^ ( q ) .  Also, tr(a) ^  0 1 E

supp(a). Thus 7ri.(a:/?) =  tt1 (/?q).

C o ro lla ry  13 Let a  E &G, 0  E IL(kG). Then itz(G){0~1&0) =  0 ~ 1ttz{g)(&)0.

P ro o f:

Z{G)<U{kG).  □

Recall tha t a; is the augm entation map. For the m ain theorem  of the chapter we 

will need the following

L e m m a  14 Let a, 0  E kG. I f  H  is a subset o f  G with H x C H  for all x  E supp(ac) 

then u:(TTH(a0)) = u,'(7Tff(0 a)).  (In particular, H  <G works.)
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Proof:

Let
n m

.•=1 j= i
Then a/3 =  S Qi/3jXiyj. If X{yj £  H  then (Xiyj)xi = yjX{ £  H  by hypothesis. Thus 

x.t/y £ H  y j x { £  H.  So

nH(a(3) = ^  CLifijXiyj => ~H((3oc) = ^  a ^ y j X i ,
i,j£i i.ie/

where /  is some subset of [1 , n] x [l,m ]. □

From the proof we see th a t the  given hypothesis could be fu rther weakened.

E x a m p le  2  Note that even i f  H  <1 G then we can have ~H(a/3) ^  -ff(/3a).  Let 

kG  = F2 D 2p, where D2p =  (x , y \ x p = y 2 =  l , x y =  a:-1 )- Let a  = 1 + x y  and (3 =  y.

Let H  be the normal subgroup o f  D2p containing p elements. Then -f[(aj3) = x  and 

nH(/3a) = x ~ l .

Note also that ~fi(a(3) ^  7r/f(a07r«’(/^) [29, p.29 Exercise 5]. For example =

1 ^  0, where supp(a)  D H  =  d>.

2.3 Generalised Bicyclic Units

Let us note th a t the proofs th a t Gonsalves gave for Theorem s 7 and S were non

constructive.

Recently free groups in Lt{kG)  have been constructed using bicyclic units. Marciniak 

and Sehgal proved

T h e o re m  15 [23] I f  G is any group and u £  ZA(ZG) is a non-trivial bicyclic unit,

then (u,u~) is a non-abelian free group. □
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and

T h eo rem  16 [24, Theorem 1.7] Let G be any group. I f  a E Z G  satisfies a2 = 0 and 

a 7^ 0  then ( 1  +  a, 1 +  a") is a free group.

M otivated by Theorem  15, Gonsalves and Passm an [14] used a sim ilar idea to 

prove

T h eo rem  17 Let k  be a field o f  characteristic p > 0 containing an element t tran

scendental over its prime subfield. Let G be a group with two elements x , y  £  G such 

that x  has order n <  oo, (x ) y 7  ̂ (x) and the subgroup (x, y ~ Lxy)  has no p-torsion. 

Defining
n— 1

a =  ( 1  — x )y x ,  b =  £y-1 (l — a;5), x  =  x%
i= o

where S =  (—l) p, we have

U {kG ) D ( 1  +  ta, 1  +  tbab, 1 +  £ ( 1  — 6 )a 6 a ( l  +  b)) ~  Cp * Cp * Cp. □

C orollary  18 [14] I f  G is a non- abelian torsion p'-group and k  is not algebraic over 

its prime field Fp, then U(kG)  contains a free group. □

Note that in the general situation , if we somehow had access to (not necessarily 

trivial) units a, (3 E U{kG ) w ith  order a  =  n < 0 0 , then le tting

a =  ( 1  — a ) 0 a,  b =  a(3~l ( 1 — a -1 ),

1 +  a and 1+ 6  are again units. Indeed, /? need not even be a  unit. If /3 is an arb itrary  

elem ent of kG  then defining

a =  ( 1  — o;)/3d, 6  =  ct(3{l — a -1 ),

we again get two units 1 +  a and  1 + 6 .  Let us call such units g en era lise d  b icy c lic  

u n its  (G B U s).
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These units seem to have been unduly neglected, so we now tu rn  our a tten tion  to 

them . We first determ ine whether there exist non-trivial GBUs.

E x a m p le  3 F5 S 3 is semi-simple (by Maschke’s Theorem) and non-commutative. Let 

us write S 3 =  (x , y \ x 3  =  y 2 =  ( xy ) 2 =  1 ). Then S 3 and ^x  — S 3 =  x  — x y  are central 

idempotents o f  F5 S 3 . Thus F5 S 3 S3 ~  F5 and FsSs^x — xy)  ~  F5 are direct summands  

o f  F5 S 3 , so

F5 S 3 ~  F5 © F5 © non-commutative semi-simple piece o f  order 54 

=  F5 © F5 © M 2 (T5 ) •

B y direct computation, F5 S 3 has 12 bicyclic units. But M 2 (F5 ) has more than 12 

GBUs (found using GAP), so there exist GBUs in F5 S 3 which are not bicyclic units.

T h e o re m  19 Let G be any group, let a,  (3 E U(FPG),  o(a) =  n <  0 0 , (p, n) =  1 and 

define a =  ( 1  — a )0 a ,  and b =  q / ? - 1 ( 1  — cd- l )p). I f  (ba)m ^  0 fo r  all integers m ,  then 

l t (F pG) contains a free group.

In fact,

( 1  4 - t a , 1 +  tbab, 1 +  f ( l  +  b)aba{l +  6 )) ~  Cp * Cp * Cp.

P ro o f:

a2 =  6 2 =  0, so the result is immediate by the lem m a in [14]. □

Now we can use our GBUs to generalise Theorem  17.

T h e o re m  20 Let k be a field of characteristic p >  0, containing a transcendental 

element t over its prime subfield Fp. Let G be a group with <*,/?£ IA(FPG ), o (a) =  

n < 0 0 , p fn ,  and a =  (1 — a)/3a, 6  =  a/?- I ( l  — Then i f

p =  2 and <u7r2 (d/?- 1a 2/?) 7  ̂0 ^ 2 (0 ) or (? 1)

p > 2 and unvp{o.j3~l {a + a ~ l )/3) 7  ̂ 2 cu7rp(&)
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then U.{kG) contains a free group.

In fact, ( 1  + ta, 1 +  lbab, 1 +  £(1 +  6 )a 6 a ( l  -f- 6 )) ~  Cp * Cp * Cp.

Proof:

By Theorem 19 it suffices to show th a t ba is not n ilp o ten t. If ba is nilpotent then by 

[29, Lemma p.47], we must have u ~ p{ba) =  0.

Case i) p =  2. Then

u,’7r2(6a) =  u;7t2(q;/?_1(1 +  a 2) p a )

=  cutt2 (q;q:/3-1 (1 + a 2 )P) (by L em m a 14)

=  u>7T2 ( & ( 1  +  (3~la 2(3)) (as n is odd)

=  u;7T2 (q:) -f- u}TT2 (aP~l a 2 (3)

4̂ 0  by assum ption .

Case ii) p >  2 . Then

uj-Kp{ba) = uj- p(6l(3~1{2 — a  — a ~ l )/3a)

= nu>-p(6c(2 — +  a ~ L)0))  (by L em m a 14)

=  n { 2 cj7rp(&) — u)~p( a 0 ~ 1(a + a ~ l )3)}

0  by assumption. □

Note th a t variants of Theorems 20 and 19 will be app licable in diverse settings. 

The ugly equations 2.1 are used to ensure that ba is not n ilpo ten t. These could be 

reformulated in term s of unrn, where n ^  p. Indeed, if y  — ^f,cgg is nilpotent of 

order r, with r < pm and fixing n, assume th a t supp{7 ) con tains no elements of order
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dividing pmn mi, for all m i £  Z  (except the iden tity  elem ent). Then 

0  =  o;7r„(0) =  u;7rn(7pm)

=  W7rn ( ( E Ĉ ) ?m) = ^ 7rn ( ( E cP’V m))
(as uTTn annihilates [k G , kG] by Lemm a 14)

= ^ ^ ( ( E  <%m9 ) ) = h— h sa^

=  ( c s i  4 ----------- +  C g , ) P =  ( ^ ~ n ( 7 ) ) P

If p >  0 and G is finite then FPG  C &G and is finite, so if vve choose our a,/3  

in FPG , we can check for nilpotency of ba directly, using GAP say.

E x a m p le  4 Consider a group ring like F2 {t)G, where G  =  D2m - ( x , y \ x m = y 2 =  

l . y x y  =  x -1). Now the unit group will contain a free group (as S z (D 2m) Is n°l 

normal in Dim), but the Gongalves/Passman construction cannot be used as when 

u, v  £  D^m, and {u )v ^  u, then the group (u: u v) always contains 2 -elements.

So let us take such an example, say F2 (t)Dio, and attempt to construct a free 

group in its unit group.

Let G = D\q =  (x , y \ x 5 =  y 2 =  l , y x y  =  x 4) and consider the group algebra

F2 {t)G, where t is a transcendental field element over F2 . Define 

a  =  x  + y  +  xy  and j3 — (1 + x  +  xy)2. Direct calculation (see the Appendix fo r  details) 

shows that  o; and (3 are units o f  order 3 and 15 respectively. Using the notation of  

our theorem,

a = ( 1  +  a)(3a and b =  a/3l4( 1 +  a ) .

Now, direct calculation again shows that 0 7  ̂ ba =  (ba)2, so no power o f  ba is equal 

to zero, so Theorem 19 applies.

Thus, (1 +  ta , 1  +  tbab, 1 +  t( 1  +  6 )a 6 a ( l  +  6 )) =  (T , U, V"), say, is isomorphic to

20

R e p r o d u c e d  with p e r m is s io n  o f  t h e  co p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .



Glo C 2 C2 *

So clearly, T U  and T V  generate a free group. That is,

( ( 1  -(- -(- t b a b ) ,  ( 1  -j- i c c ) ( l  -(- f ( l  -J- b ) a b a ( l  -f- 6 ) )  ) =

( 1 +  t (x  +  x 4  -+- x y  +  x 2 y) +  i 2 ( x 2 -f x 4 +  x 2y  +  x 4 y),

1 +  t{xy  +  x 2y  +  x 3y  +  x 4 y)  +  t 2 (x 3 +  x 4 + x 2y  -f- x 3 y) )

is a free group o f  rank 2. The G A P  file in the Appendix shows that this is not a stable 

free pair. □
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Chapter 3 

Commutativity of the group 

algebra

W hen F  and G are finite, an exhaustive search can be carried out (by hand or using 

com puter software) to check the applicability of the criterion in Theorems 20 and 

19 of the previous chapter. The speed of this check is influenced by the probability 

th a t two randomly selected elements of F G  com m ute. In this chapter we a ttem pt 

to determ ine this probability for an arb itrary  finite group algebra. If R  is a finite 

ring, define this probability as P { R ) =  \Cr {x )\- This is the to tal num ber

of com m uting pairs of elements divided by the to tal number of pairs of elem ents in 

the ring.

Desmond MacHale [21] has shown th a t for an arbitrary  non-com mutative finite 

ring R, P(R)  < 5/S, with equality if and only if [/2 : Z(R)] =  4.

Letting J  represent the Jacobson radical of R , the number P ( R / J )  can be com

puted using either of the following two results:
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T h e o re m  2 1  (F ro b e n iu s )  [16] I f  A  is an n x n matrix over the field F, and i f  

f h  - • • ; fk are its invariant factors, with for  i — 2 , . . .  , k, then the dimension

o f C Mn(F)(A) is Y ,L i ( '2i ~  l ) d e g f i .  □

We need to set up some no ta tion  for the following theorem :

Let us work w ith n x n  m atrices, and let " (n )  be any partition  of n.  Let 6 t- >  0 denote 

the num ber of tim es i appears in the partition , so th a t n =  &i 4- 262 +  363 +  - • • - Let 

k(~)  denote the  to ta l num ber of parts of ir, th a t is, k(~)  =  5 Zt>i <7 be a prim e

power. Let

f ( n ,  q) =  f ( n )  =  ( 1  _  i ) ( l  _  1 ) . . .  ( 1  -  ± )
q ql qn

for n >  1 , and /(0 )  =  1. Then:

T h eo rem  22 (F eit and F in e )  [10]

7r( n )

□

L em m a 23 I f  R i , . . .  , Rt are finite rings, then

P ( R i  © • • • © R t) = P (R i)  - - - P{Rt).

Proof:

It suffices to prove the result for t =  2. Here

P{R) =  P(R,  © fl2) = - i j  J 2  lc «MI
(xi,X2 )SRl@R2
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w

^(an,^ 2)6 Z'(Hi)©fl2 \ C * i * 2 ) \ W

+ ^ 2 ( x u x 2) e R i@ Z { R 2) |C,Kl(^l)|-|-R2|

+  H { x l,x2)eRi\Z(Ri)@R2\Z(R2) l(̂ fli(:ri)MCfl2(x2)| 

k ~ ' 5 2 ( x ux2)eZ{Rl )@Z(R2)

Now let qi = P{R i)  and q-i =  P ( R 2). Note th a t

1 , ,, \Z(Ri)\ . \Ri\  +  (|-R,-| — \Z{R-i)\)rrii
i =  \ R ^ 2L ,  = ------------------------- Vra*-----------------------

x£Ri m *

where m,- is the average of the sizes of the centralisers of the non-central elements of 

R i . Therefore

m,- =

for i =  1,2 (when <7,- ^  1 ). Thus

gi \R i \2 - \ Z { R i )\ . \Ri \ 
\ R i \ - \ Z { R i ) \  '

P { R )  =
1

\Rt f \R 2 \ 2

q2 \R 2 \2 \R l \ \Z{R l ) \ + q l \R l \2 \R2 \ . \Z{R2)\ 

+(|/2i| -  \Z{R^)\ ){ \R2\ -  \Z{R 2 ) \ ) m ,m 2

- \ Z { R i)\ . \Z{R2)\. \RMRi \

1

q2 \R2 \ . \Z (R l ) \ + q 1 \R l \ . \Z{R2)\

+ (q1 \R 1 \ - \ Z ( R l M q 2 \R2 \ - \ Z ( R 2)\) 

- I Z i R M Z i R * ) ] i
□

L e m m a  24 Let R  be a finite ring, J  the Jacobson radical of R. I f  J  C Z{R)  then 

P{R)  = P ( R f J ) .

P ro o f :

Recall Theorem  3. There is a subring S  ~  R / J ( R )  of R  such th a t R  = S  © J  as 

vector spaces. Let x = x \  + x 2, y  =  yi + y 2 £  R,  w ith x i, j/i £  5  and x 2, y 2 £  J ■ Then
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x y  = x iy i  + ( x i y 2 + x 2yi  + £ 2 ^2 )? with x iy i  E  S  and  the second part in J .  Com puting

yx  we see th a t y  E  Cr (x ) if and only if yi E  CsC^i) and

x i y2 +x 2y i + x 2y2 =  yix2+y2Xi+y2x 2. (*)

Note th a t since J  C Z ( R ), (*) always holds here. Thus y  E  Cr (x ) if and only if

j/i E  CsC^i)- W ithout loss of generality, assum e qi = P ( S ) 7  ̂ 1. Let m  be the

average of the  sizes of the  centralisers of the noncentral elements of S.  Now

P (R )  =  |/i|2 ^Zxles, x2eJ + ^ 2 )1

xi€Z(S), x?£j |Cs ( i i ) | . | J |  +  T,„£S\ZIS),„£J  |C s (* ,) |. |J |}

= WF {F P  Sr^zts) l l̂ +  l^l2 l^nes\z(s) |C?(xi ) l |
=  i5 |T { l^ ( 5 ) | . [ S H - ( |S |- |Z ( S ) |) m }

=  { |2 '(£ ,) |- |5 | +  9 i |5 ' | 2 — |Z (5 ) |. |5 [}  by the proof of Lemma 23

=  <7i- □

L e m m a  25 In the notation of Lemma 24, i f  S  C  Z ( R ) then P{R)  =  P(J)-  

P ro o f:

We use the notation  of the previous lemma. Again let x  =  x i  +  x 2, y  =  -f y2 E R , 

with x i , y i  E  S  and x 2 , y 2 E  J.  Recalling equation (*) from the previous proof,

note th a t y  E  C r ( x ) if and only if y 2 E  C s(x 2). W ithout loss of generality, assum e

<?2 =  P{J)  7  ̂ 1- Again, let m 2 be the average size of the centraliser of a  noncentral 

element of J . Thus

~  jHp x2 ez(j) |C5(2:i)|-|C'y(x2)| +  X ^ e s , x2eJ\Z{J) |C,s (x i)MC'./(x 2 ) | |

= (7  ̂{isiV U z WI + IS P E ^ a W 1̂ ) ! }
= w { \ A - \ Z ( J ) \  + i \ J \ - \Z (J ) \ )m2}
= PF {\A-\Z(J)\ + q2\J\2 -  \Z(J)\.\J\}

=  <?2 - □
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In a fin ite  group ring KG ,  finding P ( K G f J )  is easy, and finding P ( J ) is often easy, 

especially  when G is p-seperable.

We close the chapter by quoting two more com putational results of a slightly dif

ferent n a tu re . Define 5(R)  :=  |{7(il)|/|i? |, the probability th a t a randomly selected 

ring elem ent is a unit. The first result may be viewed as a generalisation of Wedder- 

b urn ’s Theorem.

T h e o r e m  26 [22] Let R  be a finite ring with unity 1 0). I f  S(R)  >  1 — then

R  is a jield. □

T h e o r e m  27 [9] Let F G  be a finite group algebra with |F | =  pm and \G\ = n. Then 

S (F G ) =  S ( F G / J )  =  J J ( 1  -  , - ‘)(l -  q~2) . . .  ( 1  -
n,q

where the  product extends over the family o f  ordered pairs (n , q ) corresponding to the 

decomposition of  F G / J  as the direct sum of  matrix rings M n(Fq). □

We will return  to the consideration of 5(FPG) in Lemm a 73 and Example 6  in the 

next ch.apter.
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Chapter 4

Infinite Fields

Throughout this chapter let K  denote a field of positive characteristic p which is not 

algebraic over Fp.

4.1 Introduction

T h e o re m  28 (S eh g a l [32], H a r t l e y  P ic k e l [15]) L e tG  be a finite group. Then 

the following statements are equivalent:

i) G is abelian or a Hamiltonian 2 -group.

i i ) U(ZG )  is soluble

iii)  U ( Z G ) does not contain a free subgroup.

It is a natu ra l and interesting problem  to extend this result to m ore general group 

algebras. In Section 3 we prove th e  following theorem:

T h e o re m  29 Let G be a locally finite group, F  a field whose characteristic is either 

0  or p > 0, provided that G contains no p-elements and F  is not algebraic over Fp. 

Then the following statements are equivalent:

27

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



i) G is abelian

i i ) U { F G ) is soluble

Hi) U(FG )  does not contain a free subgroup.

The case where the coefficient field. K  is not algebraic over its prim e subfield Fp 

and G  contains p-elements is more com plicated. Gonsalves gave the following result 

in 19S4 [12]:

T h e o re m  30 Let  |C?| <  oo, p any prime, K  any field of  characteristic p, not alge

braic over Fp. Then the following are equivalent:

i) U (K G )  free groups

ii) G' is a p — group 

Hi) U (K G )  is soluble

In Section 2 we prove the following m ore detailed result for finite groups:

T h e o re m  31 Let |G | < oo, p any prime. Then the following are equivalent:

i) U (K G )  f) free groups

ii) G' is a p — group 

Hi) U (K G )  is soluble

iv) U(FpG) is soluble and FPG is not equal to either Case ii) or Hi) o f  Theorem 40.
U( F  G)

v)   p - - is soluble and FPG is not equal to either Case ii) or Hi) o f  Theorem
1 +  J{FPG) 

40 .

vi) U ( p ) is soluble and FPG is not equal to either Case ii) or Hi) o f  Theorem
\ J ( F PG) J

40 .

vii)  S P(G) <1 G and G / S P{G) is abelian.

vii i)  G /O p(G) is abelian.
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I \G
i x ) Tj-ri\ 25 isomorphic to a direct sum o f  fields.

/ ( A G )
x ) The unit group o f  K ( G /O p(G)) is soluble.

xi)  i  + (j ( f c )  is s o iM e -

xii)  —^  w A,. is abelian.
’ 1 +  / ( A G )

Or(K G )  ,
:mz) ------------ ^  does no£ contain a free group.'  1 +  / ( A G )  j v e
x iv)  The transvections of  K G  are contained in 1 + J ( K G ) .  

, U (K G )  . ,
x v ) L +  ls a P - 9 roup.
xvi)  U (K G ) '  is a nilpotent p-group.

xvi i)  The torsion subset o fU ( K G )  forms a group.

Note th a t for G finite, this gives us the following interesting result: provided th a t 

either G is not a  non-abelian Ham iltonian 2 -group or p ^  2 , we have i) =f> ii)

Hi) =>- iv), where the statem ents i ) .. . iv )  are given below:

z) U (K G )  contains a free subgroup for some field of characteristic p >  0,

ii) U (KG )  contains free subgroups, where K  is a  field of any positive characteristic

(except possibly one positive characteristic),

Hi) U(ZG)  contains free subgroups,

iv) U(FG)  contains free subgroups for all fields F  of characteristic 0.

In Section 3 we prove a result analogous to the previous theorem , but for locally 

finite groups:

T h e o re m  32 Let G be a locally finite group, p any prime. Then the following are 

equivalent:
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i) U ( K G ) ~f> free groups

ii) G' is a p — group

v i i ) There exists a maximal p — subgroup P  o f  G with P  <1 G and G / P  an abelian 

p'-group.

viii)  G /O v(G) is abelian (and therefore a p'—group),

xi) U (K G )  is locally soluble.

xvi i)  The torsion subset o f  U (KG )  forms a group.

Also, i f  G' is finite then i) is equivalent to each o f  the following:

Hi) U (KG ) is soluble.

iv) U(FpG) is soluble and the two new exceptions in [5] do ncot occur.

All of these results can be viewed as variations on T its  A lte rn a tiv e , applied to the 

unit group of a group ring. In Section 4 we define two new chains of unit groups, 

Un and Un , and examine their properties using the previous thaeorems. Section 5 lists 

corollaries of Theorems 2 and 3, including several results on t;he  Jacobson radical.

We fix our notation as follows:

Op(G) =  Op denotes the group generated by all the norm al p — subgroups of G.

Sp(G) is a sylow-p-subgroup of G.

Fp is the field with p elements.

Let H  < G and K  be a  field. Then 1(H) := I(I<H)  :=  c ^ ( K H )  := A (H ) ,  the 

augm entation ideal of K H .  Also, A ( G ,H )  := K G A ( H ) .

J (R )  :=  the Jacobson radical of the ring R.

L(R)  :=  the sum of all the  locally nilpotent ideals of R , called the Levitzki radical of 

R.

N~(R)  :=  {a  £  R  | a S  is nilpotent for all finitely generated smbrings S  of i?}.
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In a ring /?, if  y x  =  0 and r  is any elem ent then the unit 1 +  x r y  is called a transvec- 

tion. It has inverse 1 — x r y  and has finite order n if n  =  0 in R.

Let H  be a subgroup o f G. We say th a t H  has locally finite index in G if [V" : 

( V  fl H)\ < oo for any finitely generated subgroup V  of G.

Define the following chains of subgroups:

U0 :=  Uq :=  Uo :=  G.

Ut := U(FPG), U2 := U(FpUi), . . . ,u n := U{FpUn- i )

Ul :=  U {K G ),  U2 := U (K U i) ,  . . . , U n := U{KUn- X)

(ft : =  U ( K G ), U2 :=  U ( K U i ) , . . .  ,Un :=  U(KU n- i )

Let H  < G. Then define h Uq :=  h Uq '■= h Uq :=  H.

Define HUi :=  U(FPH ) , . . .  , HUn :=  U(FpHUn- 1 ).

Sim ilarly define h &i ■= U ( K H ) , . . .  , /ff7n :=  U ( K h Uti- i )- 

Lastly define h U\ :=  U { K H ) , . . .  , h Uu :=  U{I\ nUn-i)-  

Thus Un = gUu.

4.2 Finite Groups

We break up the proof of Theorem  31 into several lemmas. P arts  iv)  and v ) of the 

following result were s ta ted  by Gonsalves in [12].

L e m m a  33 Let  |G | <  oo, p any prime. Then the following are equivalent:

i) G' is a p—group

ii) G / O p(G ) is abelian

Hi) Sp(G) < G and G / S P(G) is abelian

iv) U{KG) does not contain free groups.

v) U (K G )  is soluble.
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P ro o f:

i) ii): G' is a p —group if and only if G' < Op(G ) if and only if G /O p(G) is abelian.

ii) Hi): G / O p(G) abelian implies th a t G / O p{G) is a p'—group, so Op(G) is a 

Sylow-p-subgroup of G. Conversely, S P(G) < G  implies th a t SP(G) = 0 P(G).

Hi) <=> iv): This was shown in [12].

ii) <t=>- v): This follows from [19, page 106]. □

L e m m a  34  Let G be finite. Then the group algebra Fp(t)G contains the group ring

Fp(t)G  ~  Fp((t) x G) ~  (FpG)(t) with J ( (F pG)(t)) = J ( F pG)(t).

P ro o f:

The sta tem en t about the radicals is ju st [32, page 12S]. Note tha t in general,

R(G  x H)  ~  ( R G ) H  ~  (RH)G.  □

U  7v"C?)
L e m m a  35 Let G be finite. Then the group   25 either abelian or contains

1 +  J ( K G )
a free group.

P ro o f:

U ( K G / J ( K G ) )  ~  ©M ni(/vt), where the AT,- are fields containing I\ [33, p .64]. If all 

ni equal 1 then  we are in the abelian case, and if some n t- >  1 then U ( K G /  J { I \G ))  D 

M 2 (AT), which is well known to contain free groups. □

L e m m a  36 Let G be a finite group. Then the transvections of  K G  are contained in 

1 +  J ( K G )  i f  and only if  G' is a p-group.
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P ro o f:

Define 6  to be the natural m ap U ( K G ) —> U ( K G / J ( K G ) )  ~  ©M ni(/\,) , and let 

be the m ap U(KG)  —> M ni(K{).

<$=: Since G' is a p-group, Lemmas 33 and 35 make U ( K G ) / (  1 + J (K G ) )  abelian, so 

th a t if x y  =  0  then 6(x)9(y) =  0 , forcing x  and y  to have “disjoint projections” onto 

the sum of fields. Thus for any r  E K G  we must have 9(1 + x r y )  =  1 + 9(x)9(r)9(y) = 

1 , proving the implication.

=>: Conversely, assume th a t every dransvection 1 +  x r y  is contained in 1 + J  (KG ).  

Now x y  = 0, so 9(x)9(y) =  0 E ©_/V/n.(F t-(f)). Therefore 9(x)  and 6 (y) either have 

“disjoint projections” or there exisds an i such th a t 9t-(x), 9{(y) E M nt(F{(t)), w ith 

9i(xry) =  0 for all r  E I \G .  W ith o u t loss of generality, let i =  1.

C la im  1: 9x(xry)  =  0 for all r  E ICG  implies th a t one of 9x(x) or 9x(y) is 0.

P ro o f  o f  C la im  1 : let 9x(x) := [xiy],0i(r) :=  [r,-y], and 9x(y) :=  [t/,-y], all n x n

matrices. Thus

53t=l 53 •EltT'«2 • • • 53
9i(xr) = . . .  . . . ............... ...............

53 •^nir% 1 53 7”t’2 ■ • • 53 '^ n if 'in

Thus we may choose r  such tha t i f  9x(x) has a non-zero en try  at, say x,y, we can 

make the i th row of 9x(xr)  be a n y tlin g  we choose. Thus, as long as 9x(y) ^  0, we 

can make the i th row of 9x(xry)  be n o t all zeros. This proves Claim 1.

Thus, whenever x , y  E K G , with x y  =  0, we m ust have th a t 9(x ) and 9(y) have

“disjoint projections” .

C la im  2: If for every x, y E K G ,  widh x y  =  0, we have 9(x)  and 6 (y ) having “disjoint 

projections” , then j^?g) — ® fields.

P ro o f  o f  C la im  2: Working by condradiction, w ithout loss of generality assume th a t 

— M 2 (Fx(t))(B other factors. (The use of 2 x 2 m atrices is for typographical 

convenience - note tha t M 2 (Fx(t)) will be a subring of whatever noncom m utative
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factor does occur.) Now let 

9{x) =

1or—H
1

0  0IIoo

0  0 0  1

K G
J ( K G ) '

Note th a t since J  is nil, we may lift 6 ( x ) and 6 (y) to orthogonal idem potents x  and 

y of K G  [29, page 49]. Thus we have K G  w ith  x y  =  0, but w ith 0{x) and 6 {y)

not having disjoint projections. This contradicts our hypothesis and proves Claim  2. 

Thus ~  © fields, so [19, pages 100-101] and  Lemma 33 give us th a t G' is a

□
J(ftTG)

p-group.

L e m m a  37  Let G be a finite group. Then G' is a p —group i f  and only i f  

is a p'—group.

U (K G )
1 +  J { K G )

P ro o f:

<=: We prove the contrapositive. Let G' not be a p—group. Then by Lem m a 36 there
Ui.is a transvection (and hence a p—elem ent) in U{I\ G) \  1 +  J {K G ) .  so  ------ is

1 +  J ( I \  G)
not a p'—group.

=>: Let G'  be a p —group. Then

1 + f ( A 'G )  -  u  { j W g ] )  -  u  (®M d s  0f Char P) 

by Lemmas 33 and 35, say. Now if 6 i (U (KG))  contains an element x  of order p then 

x p =  1, so (x — l ) p =  0 , so x =  1, a  contradiction. □

L e m m a  38 G' is a p-group i f  and only i f  U (K G ) '  is a nilpotent p-group.

P ro o f:

If G' is a p-group then U ( K G ) / ( 1  +  J ) is abelian, so U' < 1  +  J ,  so U' is nilpotent.
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If G' is not a p-group then U ( K G ) contains free groups, and therefore so does its 

com m utator, which cannot then be a n ilpotent p-group. □

P r o o f  o f  T h e o re m  31:

i) O  ii), by Lemma 33.

/) <£=>• Hi), by Lemma 33. 

i) iv),  by Theorem  28.

iv)  <=>■ v), as 1  + J  is a norm al nilpotent subgroup of U(FPG).

v) <s> vi),  as U{FpG)/{ 1 + J )  ~  U(FpG f  J ) .

i) vii ) ,  by Lemma 33.

Hi) x) ,  by [19, page 100].

ii) ix) ,  by [19, pages 100-101].

ii) <£=>• viii): By Lemma 33.

Hi) O  xi): since 1 +  J ( K G )  is a n ilpotent norm al subgroup of U (I \G ) .

ix)  O- xii):  The quotient is the direct sum  of fields it is abelian.

xi i i )  <=>• xii):  This was Lemma 35.

ii) ^  xiv):  This was Lemma 36.

ii) xv):  This was Lemma 37.

ii) xvi):  This was Lemma 38.

i) <=>- xvii):  This will be proved later in Theorem  62. □

E x a m p le  5 J { F 5 D W) has dimension 8  over F5 by [18, p.459]. Thus  

or F5 ® F 5. In fact, by the group lattice diagram in Chapter 5 we know that —

F$ ® F5 . In particular, it is commutative. Note that U(F5D 1 0 ) >  Dio, which is not 

nilpotent. This contradicts the Lemma in [2], although the Theorem in that paper is 

true (see [32, p .179]). Thus F^{t)D10 is an example o f  a group ring whose unit group 

is soluble but not nilpotent. □
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We now give some miscellaneous results for finite groups:

T h e o re m  39 Let \G\ < oo. Let p ^  2  or 3. Then U(FPG) is soluble 43- U(KG)  

free groups.

P ro o f:

=4*: U(FpG) is soluble O  G ' is a  p -  group [32, page 205] U{KG)  is soluble 

=>■ i f  (KG) f) free groups.

<t=: Case i.) Sy lp(G) G. Here (by [12]), U (I\G)  D free groups, so this implication 

is vacuously true.

Case ii.) Let P  =  S y lp(G ) <1 G. Here U ( K G ) free groups, so by [1 2 ] again, G f P  

is abelian, so G' < P , so G' is a p — group , so U(FPG ) is soluble [32, page 205]. □

N o te : If p =  2  and U (KG )  does contain free groups then U(F2 G) may or may

not be soluble. Sim ilarly for p = 3. The following theorem  describes the situation in 

detail.

We need the following definitions for the next result:

P  :=  (a, b : a8 =  1, b2 =  1, bab~l =  a3), 

D := {a, b : a 4 =  1 , b2 =  1 , bab~l = a -1), 

Q :=  (a, b : a 4 =  1 , a 2 =  6 2, bab~L =  a~l).

W hen G is a 2 — group , define e(G) :=  (|(?| — (G : G '))/4 , 

r(G') :=  \ {N  < G :  G / N  ~  P } |, and 

s(G)  :=  \ {N  < G :  G / N  ~  D  or Q}\.
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T h e o re m  40 [27, Theorem p.211] Let F  be a field (o f  any characteristic) and G be 

a finite group. Then U ( F G ) is soluble i f  and only i f  one o f  the following conditions 

holds:

i.) G  ~  Gp x A, where A is an abelian group (i.e. G' is a  p — group.  By definition, 

Go =  1 .)

ii.)  F  = F2, G' is not a 2 — group and G “ =  G / 0 2 {G) ~  (C 3 x . . .  x C3 ) x C2 (with 

C -2 acting by inversion on each elem ent).

iii.) F  = F3, G' is not a 3 — group, G ^  G3 x G2 and e(G2) — 2r(G2) +  s(G2). □

T h e o re m  41 Let G be a finite group. Then either U(FPG) is soluble or U{KG)  

contains free groups, or both.

Both happen precisely when either case ii.) or iii.) o f  Theorem fO occurs.

P ro o f:

By Lemma 33, a t least one happens. Both happen U(FPG ) is soluble and 

U (K G )  D free groups ^  U{FPG) is soluble and G' is not a  p-group (by Lemma 

33) <=> Case ii.) or Case iii.) of Theorem  40 happens. □

4.3 Locally Finite Groups

Throughout this section let G b e a  locally finite group. Note th a t if F  is a field of char

acteristic p >  0 which is algebraic over Fp then U (FG)  is a  torsion group. (Indeed, 

letting u = Y] ugg  G U(FG),  we see th a t u  £  U ( I \ H ), where K  is a finite field and H  

is a finite group, so u is contained in a finite group, and therefore is a  torsion element.)
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P r o o f  o f  T h eo rem  29:

Clearly i) =>- ii) =>• iii).  Let p > 0. Assum ing ii), let x , y  £  G. Then U ( K ( x , y ) )  is 

soluble and (x , y ) is finite, so [x,y] =  1 (by Theorem  31), which implies i). Assuming

i ii),  we get th a t U (K ( x ,y ) )  does no t contain free subgroups, so [a;,?/] =  1, again by 

Theorem  31.

In the characteristic 0 case Theorem  7 and [32, Corollary 4.14 p.205] give the 

result. □

L em m a  42 Let p be any fixed pr ime and let G be a locally finite group.

Then U (K G )  f> free groups G' is a p — group.

P roof:

G’ is a  p — group H'  is a p — group  for all finitely generated subgroups H  of G 

<&■ U { K H )  f> free groups for all finitely generated subgroups H  of G  (by Theorem

31)

U (K G )  f> free groups (indeed, if (u ,v )  generate a free subgroup of U (K G ) ,  then 

letting  Hi  :=  (supp u ,supp v) we have |/7 i| <  oo and U (K H i)  contains a free group, 

a contradiction). □

L em m a 43 Let G be a locally f inite group, p any prime, and let G' be finite. Then 

U{I\G)  ~£> free groups U{I\G) is soluble.

P roof:

Clearly U (K G )  soluble ^  U{KG) if) free groups. For the converse suppose first 

th a t p > 3. Then U (KG ) f> free groups =$■ G' is a finite p — group  (by Lemm a 42) 

U (K G )  is soluble (by [5, Theorem  1 ]).

Next, let p =  2 . Then G' a finite 2  — group  =*► U (K G )  is soluble [5, Theorem  2  with
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G' = N]. a

L e m m a  44  Let p be any fixed prime, let G be a locally finite group with G' finite. 

Then either U(FPG) is soluble or U{Fp[t)G) D free groups, or both. Both happen 

precisely when one o f  the two new exceptions (in [5]) happens.

P ro o f:

Assume th a t U{Fp{t)G) free groups. Then U(Fp(t)G)  is soluble (by Lemma 43),

so U(FPG) is soluble.

Note th a t both happen <=>■ U(FPG) is soluble & G' is not a p — group  (by Lemma 42). 

In this case we can reduce to  G finite to get by Theorem  41 th a t p =  2 or 3. Now 

this is equivalent to  one of the  two new exceptions happening. [5] □

P r o o f  o f T h e o re m  32:

i) 44- ii): Lemma 42.

ii) <£4 vii): Recall th a t for any group G and any subgroup H, G' < H  H  < G 

& G / H  is abelian. Thus, G' is a p — group 4$ G' < P  a m axim al p — subgroup of 

G 44 P  <1 G & G j P  is abelian.

ii) <£4 viii): This is exactly as in the proof of Theorem  31.

i) xi): Let V  be a finitely generated subgroup of U (K G ) .  Then the support of the 

generators of V  is a finite set, and hence generates a finite subgroup H  of G. Thus 

V  < U (K H ) .  Thus U{KG) ~£> free groups U { I \H )  free groups => U {I \H )  is 

soluble (by Theorem  31) V  is soluble. Thus i) x i) ,  and the converse is trivial. 

i) xvii):  This will be proved later in Theorem 62.

Assume th a t G‘ is finite.

i) iii): This was Lemma 43.

iii) iv): U{I\G)  is soluble <*=>• U(KG) ~f) free groups, (as i) i ii)) U(FPG) is
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soluble and the two new exceptions don’t happen (by Lemm a 44). □

4.4 Nilpotent and FC groups

An FC group is a  group in which each element has only finitely m any conjugates. 

Define T (G ) to be the set of torsion (periodic) elem ents of the  group G.

L e m m a  45 i): Let G be an FC group with P  = S P(G ) <  G. Then A  (G, P') = J ( I \G ) 

is nilpotent.

ii): Let G be a locally soluble group. Then J ( K G )  is locally nilpotent.

Proof: Note th a t ii) is just [20, Corollary 46.33 p.399].

' (wy)=' (4)=0
by [20, page 401 Theorem  47.l.iii]. By [29, pages 317-8], J ( K P ) K G  Cl N"(KG) .  

But P  is a locally finite p-group, so by Lemma 75 J ( K P )  =  A (P ). Thus A(G', P)  C 

N ‘ (KG)  C J ( K G ) [29, page 323 2 nd paragraph]. Hence we get th a t A .(G ,P )  =  

J ( K G ) [20, page 18 iv]. Lastly, J ( K G )  is nilpotent by [29, page 312] an d  [20, page 

401 Theorem  47.l.iii]. □

L e m m a  46 Let G be an FC group, T  the torsion subgroup o f G and S P( T)  a sylow 

p-subgroup o f T .  (So(T) is defined to equal \ ) .  Let F  be any field o f characteristic 

p >  0. I fp  > 0 then assume that either F  is not algebraic over Fp or that G  contains 

a free abelian group o f rank 2 .

I f  U{FG) does not contain free groups then
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i) T / S P(T)  is abelian and every subgroup o f T  f  S P(T)  is normal in G / S P(T) .  

Conversely, i f  i) holds and T / SP(T) < Z ( G / S P(T))  then U ( F G ) is locally nilpotent - 

by - locally nilpotent and hence does not contain free groups.

P roof:

T  <  G  [6 , page 201] and T  is locally finite. Assume th a t U(FG)  does not contain 

free groups. We may assume w ithout loss of generality that G is finitely generated. 

(As i) involves only local properties). Thus T  is finite [36]. Thus U ( F T )  does not 

contain free groups, so by Theorem  32, T '  is a p-group, so S P(T)  <  T,  SP{T ) < G and 

T / S P(T)  is abelian. If necessary, quotient out SP( T ) to  assume th a t G is a p' group, it 

is FC, and T  is a finite abelian subgroup of G. It rem ains to show tha t every subgroup 

of T  is norm al in G. Proceed as in [15, proof of Lem m a 4]. Assume otherwise, so let 

H  be a finite subgroup of G w ith x  £  G \  N g( H) .  Define e =  \H\~l H.  Now e is an 

idem potent in F H  C F T .  Define /  =  e ( l — ex ). Note that supp eex C H H x <(_ H,  

so e ^  eex, so /  ^  0. Thus /  is a non-zero idem potent of F T  w ith f f x =  0 =  f xf .  

Define e12 =  f x , e 2 1 =  x -1 / ,  en  =  e1 2 e2i =  / ,  e22 =  e2 ie 12 =  f x . Thus e{jeki = Sjkeu, 

where Sjk is the Kronecker delta  function, i , j , k , l  £  { 1 , 2 }. Since no e,-j equals 0, we 

have th a t R  :=  S ~  M 2 (F).

If F  is not algebraic over Fp then  F G  D R  — M 2 (F)  contains free groups, a 

contradiction.

Assume therefore th a t G contains a free abelian group of rank 2. Thus by [36, 

Theorem  l.T.ii) p.4] we may assume th a t G  contains a central element y  of infinite 

order such th a t (possibly replacing y  by some power of y) (y) fl ( H , x )  =  {1}. Hence 

F G  D F ( H , x , y )  ~  F((y)  x ( H.x ) )  ~  F{y)  F ( H , x )  by [19, Corollary 1.4 p .12]. 

Now this contains F(y)<g>p M 2 {F) ~  M 2 (F(y)  <2 >f F)  by [20, Proposition 16.S.i) p .97]. 

By [19, Corollary 1.2 p .11] this is isomorphic (as a F-algebra) to M 2 (F(y)) .  Following
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the proof of [1 1 , Theorem  2.5 p.367] note th a t this m atrix  ring contains the m atrices

A  := y 0
, B : = P

y 0

0 y ~ l 0 y ~ l

5 - 1

P  =

where
l + y  y 

- y  i  -  y

Now A  and B  are elements of S L 2 (F(y)) .  By [35, Proposition 3.12], some powers of 

A  and  B  generate a free group.

Conversely, assume th a t i) holds and T  /  S P(T)  < Z ( G / S P(T)).  Again we may 

assum e th a t G is finitely generated. Let G =  G / S P(T).  Now G is a  finitely generated 

p' FC group, and by [36] it is a subgroup of the direct sum of a finite group and 

an abelian group, so G'  is finite, and therefore central. Thus [G, G, G] =  1 , so 

G is nilpotent (of class 2 ) and T  < Z ( G ), so U ( F G ) is nilpotent [32, Theorem 

3.6 p .181-2]. By the previous Lemma 1 +  A (G , S P(G)) is also nilpotent, and since 

U ( F G ) / (  1  +  A(G , P )) ~  U(FG) ,  we see th a t U { F G ) is nilpotent-by-nilpotent. Thus 

U( FG)  is locally nilpotent-by-nilpotent.

The characteristic 0 case is sim ilar (and a little  shorter). In the converse we get 

th a t U{FG)  is actually locally nilpotent. □

The hypothesis th a t G contains a free abelian group of rank 2  is not as restric

tive as it m ight appear. By [36, Theorem  1.7 p.4] this is equivalent to saying th a t G 

is not isomorphic to a subgroup of G\  x Goo, where G\  is a periodic FC group.

L e m m a  47  Let G be a locally nilpotent group, T  the torsion subgroup o f G and SP{T) 

a sylow p-subgroup o f T .  (Again Sq{T)  :=  1). Let F  be a field o f characteristic p >  0.
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I f  p >  0 then assume that F  is not algebraic over Fp. I f  U(FG)  does not contain free 

groups then

i ) T / S P{T) is abelian and every subgroup o f  T  /  S P{T) is normal in G / S P(T).  

Conversely, i f  i) holds and s ^ f)  ^  ^  ( s^T))  then U ( F G ) is locally nilpotent - by - 

locally nilpotent and hence does not contain free groups.

P roof:

Let P = S P(T).  Then

1 +  A (G ,P )  K P ‘

Assume th a t U(FG)  does not contain free groups. Hence neither does U( FT ) .  and 

since T  is locally finite ( [6 , Section 2] and use a  finitely generated argum ent) we have 

th a t T '  is a  p-group. Thus P  <  G and T f P  is abelian. Let x  E T.

Now, by Lemmas 74 and 75 we get th a t J ( F P )  =  A (P ) is a locally nilpotent 

ideal. A quick check (and the fact th a t P <1 G) shows th a t A (G , P)  must also be a 

locally n ilpotent ideal. Hence A(G', P)  is a nil ideal and we get th a t the preimage of 

a unit in U ( F p )  (under the obvious map) is a unit in U(FG) .  Thus we have that 

U ( F ^ )  does not contain free groups and clearly ^  contains no p-elements. If p  

then Theorem  17 gives a  contradiction. Thus every subgroup of -p is normal in p  as 

required.

Next we prove the  converse. Again note th a t by Lemmas 74 and 75 we have 

th a t A(G', P)  is a locally nilpotent ideal, so by Lem m a 71, 1 +  A (G , P)  is a locally 

n ilpotent group. Hence, without loss of generality we m ay assume th a t G is a finitely 

generated nilpotent group without p-elements and w ith T  < Z(G).  Thus by [32, 

p .181-2] we have th a t U(FG)  is nilpotent as required.

Again the  characteristic 0 case is sim ilar and shorter. In the converse we get that 

U( FG)  is actually  locally nilpotent. □
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Note th a t in Lemma 47 the restrictioni on the field is not needed for the converse.

T h e o re m  48 Let G be a group which is either FC, locally nilpotent or locally finite. 

Let T  be the torsion subgroup o f G a m i SP(T) a sylow p-subgroup o f T . Let F  be a 

field o f characteristic p >  0. I f  p > 0 ttfien assume that F  is not algebraic over Fp. I f  

U(FG)  does not contain free groups thzen

i) T / S P(T) is abelian and every subgro»up o f T / SP(T) is norm al in G / S P(T) .  

Conversely, i f  i) holds and s  ^  <  Z  then U(FG)  is locally nilpotent - by -

locally nilpotent and hence does not comtain free groups.

P ro o f:

Let G be a locally finite group. If IW(FG) does not contain free groups then by 

Theorem  32 (i) <&■ ii)), i) above is satisfied . Conversely, assum e th a t i) holds and 

Spfr) <  ^  ( sp^T))  • Then G' is a  p-groujp. So Lemma S4 gives us th a t F  Q^G-j =  j(pc) > 

which is commutative, so is albelian. Also, Lemmas 74 and 71 give us th a t

1 +  J ( F G )  is locally nilpotent. The FC and locally n ilpotent cases follows from 

Lemmas 46 and 47.

The characteristic 0 case is trivial. □

We finish the section with a m odest generalisation of a resu lt of Coelho and Pol- 

cino Milies [6 , Theorem 2.3 p.203]:

T h e o re m  49 Let G be either locally fim ite or nilpotent or an F C  group. Let T  be the 

set (in fa c t a group) o f periodic elementts o f G anfd let F  be any field o f characteristic 

p > 0. Then the periodic units o f U(F~'G) fo rm  a subgroup i f  and only i f  one o f the
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following conditions holds:

i ) G is abelian

ii) G = T  and F  is algebraic over its prim e field Fp

Hi) The set P  o f p-elements in G is a subgroup, T ' C P  and i f  T / P  is non-central 

in G /P  then Q, the algebraic closure o f Fp in F , is finite and, fo r  all x  E G and all 

p'-elem ents a €  T , we have that x a x ~ l is o f  the fo rm  x a x =  apTy, where r >  0  and 

y  £  P  ■ Furthermore, fo r  every such an exponent r we have that [11 : Fp] | r .

P roof:

By [6 , Theorem  2.3 p .203] we need only prove th e  case where G is locally finite. If i) 

or iii)  occur then  G' is a  p-group. E ither F  is algebraic over Fp or it is not. If not, 

then  Theorem  62 gives us that the periodic units of U(FG)  form a subgroup. If F  

is algebraic over Fp then the ring F G  is locally finite, so its unit group is also locally 

finite, giving us th a t again the periodic units of U( FG)  form a subgroup.

Now assume th a t the periodic units of U ( F G )  form a subgroup. We m ay assume 

th a t F  is not algebraic over Fp, and hence by Theorem  62 we have th a t G' is a p- 

group, so th a t i) or iii) holds. □

T he characteristic 0 version of this result is a  little  simpler:

T h eo re m  50 Let G be either locally finite or nilpotent or an FC group. Let T  be the 

set (in fa c t a group) o f periodic elements o f  G anfd let F  be any field o f characteristic 

0 . Then the periodic units o f U(FG)  fo rm  a subgroup i f  and only i f  both o f the 

following conditions hold:

i) T  is abelian

ii) For each t £  T  and each x  £ G there exists a positive integer i such that x tx ~ l =  t l 

and, fo r  each non-central element t £  T , F  contains no root o f unity o f order o(t).
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Proof:

The nilpotent and FC cases are ju st quoted from [6 , Theorem 3.2 p .204]. Assume 

th a t G is locally finite. If the periodic units of U(FG)  form a subgroup then [6 , 

Lemma3.1 p.203] implies th a t T  is abelian, so i) and ii) hold. The converse is trivial 

since G = T  is abelian. □

4.5 Un

All of the previous results relate the structure of G to that of the unit group U(KG) .  

This process can be repeated, as the definitions of Un, Un and Un suggest. This 

gives us a new m ethod of constructing groups. A good deal of work has been done 

to  investigate subgroups V  of U( KG )  w ith the property th a t V  is linearly indepen

dent over the field K  [4]. In this case K U ( K G )  contains K V ,  but the latter algebra 

can also be viewed as a subalgebra of K G .  Hence we also get the chain of groups 

V  < U ( K V )  < U ( I \ U ( K V ) )  <  • • • <  U(I \G) .  Note that if V  is normal in U( KG)  

then this chain is a  normal series.

P ro p o sitio n  51 Let G be fin ite  and let n be a positive integer. Then Un is nilpotent 

fo r  some n > 1 i f  and only i f  Un is nilpotent fo r  all n > 1 .

Proof:

It suffices to show th a t U\ n ilpotent implies U2 nilpotent. So Letting Ui be nilpotent, 

it is soluble, so Theorem  31 gives us th a t G' is a p—group. Thus the nilpotency of 

G  gives us th a t G =  P  x  H , where P  =  Op(G) and H  is a p', abelian group. Thus 

FPG ~  (FpH ) P , where FPH  is a  com m utative coefficient ring. Thus, by Lemma 75,
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U(FPG) ~  (1 +  A (P )) x U(FPH).  Note th a t 1 +  A (P ) is a finite p-group and U(FPH)  

is a finite abelian p'-group, so Ui is nilpotent and U[ is a p-group (Theorem  31). 

Repeating this process vve see th a t U2 is nilpotent with a p-group. □

P ro p o s i t io n  52 Let G be finite and let G' be a p—group. Then Un and Un are sol

uble fo r  all n, and Un is finite. (And thus U'n is a p—group fo r  all n (by Theorem 31))

P r o o f  1 :

Since U n < U n i it suffices to show th a t Un is soluble for all n. By Theorem  31 U i  is 

soluble. We proceed inductively, assuming th a t U n is soluble. So Theorem  31 applies 

to U n - 1 - Now U n + i =  U ( K U n ) is soluble

~ u ( k 1 +J( FPU ^ ) ,

is abelian O- is abelian. B ut this is the case by Theorem  31. Thus U n + i

is soluble and our proof is completed.

P r o o f  2 :

Let G be a  finite group. We will show that the conditions of Theorem  31 ap

ply if and only if U[ is a p — group. U(FPG)/(1  +  J)  =  U\_jOp[U\ ) [1, Theorem 

4] ~  @ GL(ni, Ffj. Now p\ \GL{rii, F i ) \  n,- >  1 (indeed, (p ,pn — 1) =  1 and 

\G L(2, Fp)| =  (p2 — l)(p 2 — p)). Thus, UifOp(Ui)  is a p' — group <=>■ it is abelian U[ 

is a p — group. □

P r o p o s i t io n  53 Let G be a locally fin ite group with G' a p —group. Then fo r  all 

n >  0 , Un and Un are locally soluble and Un is locally finite. (Thus, by Theorem 32, 

U'n is a p —group).
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Proof:

Note first th a t U\ = U{FPG) is locally finite. (Indeed, if n 1? , u n £  Ui then

H  :=  (supp u i , . . .  , supp un) is finite, so u l7. . .  , u n £  U{FpH) ,  which is finite) 

Inductively, Un is locally finite.

It rem ains to prove th a t Un is locally soluble.

P r o o f 1:

By Theorem  32, it suffices to prove th a t U'n is a  p—group for all n.  To sta rt our 

induction, note th a t Uq = G'  is a p —group. Now our inductive hypothesis is that U'n 

is a p—group, and we will show th a t U'n+l is a p—group. Let u =  [ult u i ] . . .  [um, vm] £ 

U'n+l, w ith u,Ui,Vi  £  U{FpUn). Defining

H  :=  (supp Ui,,. ..  supp um, supp vu . . .  supp vm),

we see tha t H  is a finite subgroup of Un and u,U{,V{ £  U{FPH)  and u £  U(FPH)'.  

Now H  < Un, so H ’ < U'n, so by our inductive hypothesis H ' is a p—group. Therefore 

Theorem 31 gives us th a t U ( K H ) '  is a p—group. Thus u is a p —elem ent, so U^+l is 

a p—group.

P r o o f 2:

We will show th a t Un is locally soluble for all n. Let u i , . . .  , U m  £  Un =  U ( K U n- i ) .  

Now Un-i is locally finite so H  :=  (supp u i , . . .  , supp um) is finite, and u l 5 . . .  ,u m £ 

U ( K H ) .  Now H ' < U ^-i is a p—group by inductive hypothesis, so U ( K H )  is soluble 

by Theorem  31. Thus u i , . . .  ,u m are elem ents of a soluble group, so Un is locally 

soluble. □

C orollary 5 4  Let G be locally finite with G' a p — group. Then J { K U n) a.nd J ( K U n) 

are locally nilpotent.
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P ro o f:

Just apply [20, p .399] to Un. □

4.6 Corollaries

Many of the results of this section are generalisations to  the torsion subset of U ( K G ) 

of results about periodic linear groups. In th e  characteristic 0 case, a result of Schur 

[37, Corollary 9.4 p .113] states tha t any periodic subgroup of GL(n{,  F{) is abelian-by- 

finite. As we will see below, the positive characteristic case is m uch more interesting.

C o ro lla ry  55 I f  G is a finite group then a subnormal subgroup V  o f U ( KG )  is ei

ther soluble or contains a free group. I f  G is a locally finite group then a subnormal 

subgroup V  o f  U( I \ G)  is either locally soluble or contains a free group.

P ro o f:

Apply Theorem  31 iii) and viii) and [11, Theorem  2.5]. □

C o ro lla ry  56 I f  G is a finite group with G' =  G then U ( K G ) / ( 1  + J ( K G ) )  contains 

a free group.

P ro o f:

Since G' =  G, G  is not nilpotent, so G ft  1 +  J ( I \ G ) .  Hence 6 {G) ^  1 , so 8 (G) is 

a non-abelian subgroup of U ( K G ) / (  1 +  J ( I \ G )) (as G  has no abelian images and
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by the second isom orphism  theorem ). Thus U{ KG ) / {  1 +  J ( K G ) )  is a  non-abelian 

group, so by Theorem  31 it contains a free group.

Note th a t this Corollary is also a consequence of Theorem  31 parts ii), x i i ) and 

x iii)  as G' = G  implies th a t G' is not a p-group (otherwise G is a finite p-group and 

hence nilpotent, a contradiction). □

The following lem m a is a direct consequence of [5, Theorem  1 ].

L e m m a  57 Let p /  2  o r 3, let K  be any field o f characteristic p and let G be a 

torsion group. Then U ( K G )  is soluble O- G' is a fin ite  p — group. □

T h e o re m  58 Let G  be a locally finite group, let I\ be any field o f characteristic 

p >  0 and let V  be a fin itely generated subgroup o f U ( K G ) .  Then V  satisfies the T its 

Alternative, that is, either V  is soluble-by-finite or it contains a free group.

Proof:

Since V  is a  finitely generated subgroup of U ( K G ) ,  we m ay consider G  to be finite. 

Let

be the natural m ap so th a t

( l  + J ( K G ) ) V  
H V )  -  1 +  J ( K G )  ■

Now 0 ( U ( K G ) )  cz. U ( © M n i ( K i ) ) .  Define 0,- to be the  projection onto the i th linear 

group. Thus Q i ( U ( K G ) )  ~  G L n i ( K i ) ,  a linear group. Thus, for all i, 6 { ( V )  satisfies
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the T its Alternative, so &i{V) is either a soluble-by-finite group or contains a free 

subgroup. Now if some Oi(V) contains a free group then  V  m ust contain a free group 

(using the Second Isomorphism Theorem  on 0 { V ) =  (V.  1  +  J { K G ) ) / {  1 +  J{KG)) ) .  

Therefore we may assume th a t OfiV) is soluble-by-finite for all i. Thus 6 {V) ~  

f|soiuble-by-finite groups ~  a soluble-by-finite group. B u t  1  J ( K G )  is nilpotent, 

so (V, I +  J { K G )) is soluble-by-finite, so V  is soluble-by-finite. □

T h e o re m  59 Let G be locally finite, K  any field, o f characteristic p > 0. Then the 

General Burnside Problem has a positive answer fo r  U { K G )  (i.e. a finitely generated 

torsion subgroup o f U{I \G)  is finite).

P ro o f:

Let V  be a  finitely generated torsion subgroup of U { K G ) .  Then by the preceding 

theorem, V  is either soluble-by-finite or contains free groups. Therefore V  is soluble- 

by-finite, i.e. there exists a soluble normal subgroup S  o f  V  such th a t [V : 5"] <  oo. 

But a subgroup of finite index of a finitely generated group  is finitely generated [30, 

page 36], so 5  is a finitely generated soluble torsion g roup , and therefore S  is finite. 

[30, page 147]. □

L e m m a  60 Let G be finite. I f  the set o f torsion elements T  o f U { K G )  form s a group 

then it is soluble and locally finite.

P ro o f:

By Corollary 55, T  is soluble and by Theorem 59 it is locally  finite. □

Next we classify those locally finite groups G such th a t th e  torsion units T U ( K G )  

form a group. The characteristic 0 case has been done b y  S. Coelho and C. Polcino 

Mi lies:
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L e m m a  61 [6 , Lemma 3.1] Let G be a group such that T ( G ) is locally fin ite  and let 

F  be a field o f characteristic 0. I f  T U ( F G )  is a subgroup then T(G)  is abelian. □

T h e o re m  62 Let G be a locally fin ite group. I f U ( K G )  does not contain free groups 

then the subset T  o f torsion elements o f U ( K G )  fo rm s a locally finite, soluble normal 

subgroup o f U ( K G ) .  Conversely, i f T  is a subgroup o f U ( K G )  then U ( K G ) does not 

contain free groups.

P ro o f:

Let a i , . . .  , a„ E T . Considering only the  group (supp(a ,supp(an)), w ithout

loss of generality we may consider G  to  be finite. Assume th a t o ( a i . . . a n) =  oo. 

Then o(9{ai . . .  an)) =  oo.

(Otherwise we get Q(ai. . .  an)m =  1 for some m , so (ai . .. an)m E 1 +  / ,  a  p—group, 

contradicting the infinite order of . . .  an.)

Thus o(9{(ai . . .  an)) =  oo for some i. Now 0,-(/yG') is a field, so . . .  an)s =

9i(ai)s . . .  9i{an)s =  1 for some large s {s — L C M  o(ai) would work). This contradic

tion proves th a t T  <1 U{I\G).  Lemma 60 com pletes the assertion.

To prove the converse we use a contrapositive argum ent. Assume th a t U ( K G ) 

does contain free groups, so th a t G'  is not a  p —group. Then choose a* ,. . .  , an £  G

such th a t {[ai,af\ \ i , j  =  1 , . . .  ,n )  has order m p a, w ith m  1 , (m ,p) 7  ̂ 1. Let

H  =  ( a i , . . .  an). Then H  is finite and H '  is not a  p —group. Thus

Let t be a transcendental element of K  over Fp. Define

1 t 1 0II , e =
0  1 t 1
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de =

Then dv =  ep =  1, but
r  1 +  f2  t 

t 1

Thus de cannot have finite order, since t is not algebraic oven Fp. Now any preim 

ages of d and e in U ( K H ) will be p—elements (as 1 +  J  is a p—group). Thus U ( K H )  

contains two elem ents of finite order which do not generate a torsion group. Hence 

T  is not a  subgroup of U(I\G) .  □

L e m m a  63 Let G be a locally finite group. Then

x  E J ( K G )  x  E J ( K H )  fo r  all finite subgroups H  o f G with supp x C H . 

P ro o f:

Let H  be any finite subgroup of G. Then by [20, Lemma4S.2.ii)], N ~ (K H)  =  N ( K H ) .  

By Lemma 76 N ' ( K H )  = J ( K H ) and N m( K G ) =  J ( I \ G ) .  Thus by [20, Lemm a 

4S.6]

x  G J ( K G )  O  x £  J ( K H )  for all finite subgroups H  of G with supp x C H.  □

P ro p o s i t io n  64  Let G be a locally finite group with G' a p-group. Then 7s

abelian. Consequently U ( K G ) / O p(U) is an abelian group without p-elements.

P ro o f:

Let x  E U ( K G ) ' , say x  =  [al5 6 i ] . . .  [an, 6 n]. Let H  be any finite subgroup of G  

containing the support of x.  Define Hi to be th e  finite group generated by the set 

{H,  supp a i, supp b i , . . .  supp an, supp bn}. Now H  is a subgroup of H i. x  E U ( K H i ) '  <

53

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



l + J ( K H i )  by Theorem 31, as H'  is a  p-group. Thus x — 1 e J ( K H i ) D K H  C J ( K H )  

by [20, Lemma4S.2.iii)j. Now by Lemma 63 x — 1 6  J ( K G ), so U( KG) '  < 1 + J ( K G )  

as required. □

It is therefore of interest to examine the sylow p-subgroups of U ( K G )  when G  is 

locally finite but G' is not necessarily a p-group.

L em m a 65 Let G be locally finite and let Pi and P2 be sylow-p subgroups o f U ( K G ) .  

I f  H  = (Pi: Pf) is a torsion group then Pi and P2 are conjugate in H .

Proof:

Consider H  =  (Pi , P 2 ) < U(KG) .  Now for each I,  0 i (H ) is a periodic linear group 

and has sylow p-subgroups Qi > Oi(Pi) and Q 2 > 9{(P2). Now Q Y is conjugate to Q2 

[7, p .163]. Thus there exists hi €  H  such th a t Q6̂ 11̂  = Q 2. Since this is true for all

i, there exist Q i, Q 2 <  U(KG)  with d f Q j )  > Pj and h £  H  with

Qi _ Q 2

1 + J  1 + J '

Now is a p-group, so Qi is a p-group. Thus Qi( l  +  J)  > P ;(l +  J)  =  Pi, so

Q ,(l +  J)  = Pi. Thus P* =  P2. □

Note tha t if G'  is a p-group then the p-elements of U ( K G ) form a group, so trivially 

we get th a t the sylow-p subgroups of U ( K G ) are conjugate. However, if G' is not a 

p-group then as we saw in the proof of Theorem 62, the p-elements not only do not 

form a group, but do not even generate a torsion group. This lim its the usefulness of 

Lemma 65.
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L e m m a  6 6  Let G be a finite group. Then G' is a p—group i f  and only i f  fo r  all 

subgroups V  o f U(KG) ,  V ' is a p —group.

P ro o f :

If V ' is a p—group for all subgroups V  of U ( KG )  then clearly G'  is a p—group.

If G'  is a  p —group then U ( K G ) / ( 1  +  J )  is abelian, so U ( K G ) '  <  1  +  J ,  a p—group, 

so V ' is a p —group for all subgroups V . □

P r o p o s i t io n  67 Let G be a fin ite  group o f order m pa, with (m ,p ) =  1 . Then every 

p —subgroup o f U(KG)  is locally fin ite, nilpotent-by-nilpotent with derived length < 

[y / (m — l)p a] + m p a — 1 , and has fin ite  exponent dividing pe+ei, where e is the least 

integer such that pe >  m pa and e\ is the least integer such that pei > [\/m pa — 1J. 

In particular, the exponent divides p3(T71+a)/2. (Here [x] denotes the greatest integer 

<  x .)

P ro o f:

Let P  be a p—subgroup o f U ( KG) .  So P  is locally finite by Theorem  59.

We s ta rt by calculating the exponent of P.  First we calculate an upper bound for 

the exponent of 6 (P).  Note th a t 0(P)  < 9 ( U ( K G )) =  @GLnt(F{). But 9(P)  is a 

p —group, and since fields contain no p —elements, we need concern ourselves only with 

those G L ni(F{) with n,- >  1 . Since there is always at least one n t- =  1 (see for example 

[20, equation 2 p.500]), we have th a t the sum  of the dimensions of the Mni(F{) which 

are not fields is <  d i m ( K G f  J )  — 1  =  (mpa — d i mJ)  — 1  <  (mpa — (pa — I)) — 1 

[20, p .501] =  (m — l)p “. By [37, p .27 9.1.v)], 9{(P) has exponent dividing pei, where 

pei >  n,-. Thus the exponent of 0(P)  is m aximised if we have one m atrix  ring of large 

dimension n,-. Note th a t

p i  >  (pm+a — 1 ) ? >  [ \/m p a — 1 ] >  n{.
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So the exponent of 9{P)  divides p(Tn+a)/2.

It now rem ains to find an upper bound for the exponent of 1 +  J .  By [IS, p .422], the 

nilpotency index of the ideal J ( K G ) is <  d i m j  +  1 and this in tu rn  is <  |G | =  mpa. 

(Obviously J  K G , as otherw ise every elem ent of K G  =  1 +  J  is a un it). Thus if 

1 + J  £ l + J  and e is the least integer such th a t pe > m pa then  (1 +  j ) p* =  1 +  i p'  =  

1 , showing th a t 1 +  J  has exponent dividing pe. Note th a t pm+a > m pa. so that 

ea:p(l +  J )  < pm+a. Finally

exp(P)  <  exp(  1 +  J) exp(9(P) )  <  pe+ei <

For nilpotency observe th a t 9i (P)  is nilpotent for all i [37, p .112 9 . 1 .v)], w ith nilpo

tency class <  [ \/{m  — l)p a] — 1. Thus 9{P)  is nilpotent w ith nilpotency class 

<  [ \/{m  — l)p “] — 1 . Now 1  +  J  is nilpotent of class <  \G\ =  m p a [1, Theorem 

1]. But

i  +  J  P  n  ( i  +  j )

Thus P  is nilpotent-by-nilpotent and has derived length <  [■\ / { m  — l)p a] — 1 +  m pa 

[31, p.39]. □

C o ro lla ry  6 8  Let G be a locally fin ite  group and F  a field (o f any characteristic). 

Then in any finitely generated subgroup o f U ( F G )  the orders o f  the periodic elements 

are jo in tly  bounded.

P ro o f:

If V  is a finitely generated subgroup of U ( F G ) then it is a subgroup of U ( F H )  for 

some finite subgroup H  of G. Now 1 +  J ( F H ) is a p-group, so by Proposition 67 it 

has bounded exponent. A corresponding property of finitely generated  linear groups

56

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .



[26, Lemma 2.1.1 p.890] completes the proof. 

We will give examples in the next chapter.

□

T h e o re m  69 Let G be a finite group. Let V  be an arbitrary subgroup o f U{KG).  

Then V  is either soluble-by-locally fin ite or it contains free groups.

P ro o f :

Ju st apply [37, Cor 10.17 p .145] and Lemma 72. □

4.7 The Jacobson Radical

We s ta rt by exam ining the structure of J ( I \ G ), where G is finite. We will need the 

following lemmas.

For completeness we record a proof of the following result (see [1 , page 73]):

L e m m a  70 Let N  be a nilpotent ideal o f a ring R . Then 1 +  iV is a nilpotent normal 

subgroup o f U ( R ) ,  o f nilpotency class < the nilpotency index o f N .

P ro o f:

If x  E N  w ith x n =  0 then (1 + x ) - 1  =  1 — x + x 2 — x3  +  • • • ± x n_I E 1 +  N ,  so 1 +  N  

is a subgroup of U(R)  and is normal since N  is an ideal.

We will prove by induction that for u i , . . .  ,u n E 1 +  iV, (u,-,. . .  , u n) — 1 E N n 

for all n. Here ( , ) denotes a group com m utator and [ , ] denotes a  Lie bracket. 

W rite Ui =  1 +  ra,-, w ith n,- E N  for all N.  To s ta rt the induction, note that
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(wl 5 U2 ) =  1 +  «i l u 2 1 [u1 , u 2], so (« i ,u 2) — 1  =  u l lu 2 1 { ( 1  +  n r )(l +  n 2) — ( 1  +  

ra2)( l  +  n L)} =  u ’[ lu 2 l {riin2 — n 2n i) E iV2. Now assum e the hypothesis for n  =  k  

and we will prove it for n = k  + 1 . (ii1?. . .  , Uk+i) — 1  =  ( ( ^ i , . . . .  Uk), u t+1) — 1 =  

( U ! ,  . .  - , ,  Uk), U f c + l ]

=  (u l5. . .  ,ujb)~1u ^ : 1 [(u1, . . .  , u k) -  l , u k+i] =  (w x,..- with q €

N h =  (u l5. . .  , Uk)~lu ^ 1 (ank+i — nk+iOc) E N k+1. This proves the induction and the 

Lemma. □

L e m m a  71 Let N  be a nil ideal o f a ring R . Then  1 +  N  is a normal subgroup o f  

U(R) .  I f  R  has characteristic p > 0 then 1 + N  is a p-group. I f  N  is locally nilpotent 

then 1 + N  is a locally nilpotent group.

P ro o f:

The first two statem ents are obvious and the th ird  is proved as follows: Let x i , . . .  , x n E 

N , and let N i be the ideal of R  that they generate. Then N i is nilpotent so by Lemma 

70, 1 +  x i , . . .  , 1 +  x n E 1 +  N i, a nilpotent group. □

L e m m a  72 Let K  be any field o f characteristic p , let |C?| =  pam  <  oo, with (p, m ) =

1 and let G' be a p—group. Then

i) J ( K G )  = l ann(P)  = £ KG\ £ aeP x„  =  0 Vg € G}

= x,g € KG\ £ r« P i , = o v j e C }  =  a(G, P) =  k g  J(KP).
ii) U( KG)  ~  (1 +  J)  xi A  fo r  some abelian group A .

vii) 1 + J  is a normal nilpotent p — subgroup o f fin ite  exponent in U{KG).

iv) d i m x J i K G )  = \G\ — \G/P\  =  m(pa — 1 )

v) When K  =  Fp we get |1 +  J\ =  pm(p“~1).

vi) K G f J ( K G )  is a semisimple commutative K-algebra o f  dimension m .
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v i i ) J ( K G ) is a nilpotent ideal.

v iii)  1 + J ( K G )  =  Op( U (K G) )  is a nilpotent norm al subgroup o f U ( K G ) .

P ro o f :

i) G  is p — soluble (in fact G  is soluble) [30, p .261]. Thus J ( I \ G )  =  lann(P)  [2 0 , 

p.474] =  { ^ Z ^ G xgg  €  K G \ £ s€p Z as =  0 Vg E G} =  { £ xeG e  K G \ T ,re3 P x «• = 

0 Vg E G} =  I \G  I {P)  [29, p .6 8 ]. Recall that T(P)  is n ilpotent [29, p .70].

Also, J ( K G )  = K G J ( K P )  [20, p.461 Prop 52.11.].

ii) Recall [20, p.337] th a t R G /R G  I ( N )  ~  R §  for all N  < G.  Thus K G / J { K G ) = 

K G / K  l ( P )  — K ^  =  K A  for some abelian group A.  T hus K G / J  ~  ©fields, so 

U ( K G )  ~  1 + J  x A i, for some abelian group Ai [25, p.402].

i i i ) This was done in [1, Theorem  1].

ii?) d i m KJ ( K G ) =  \G\ -  \G/P\  [20, p.459].

u) Thus, if |G| =  pam, with (p, m) =  1 , and K  =  Fp, then | 1  +  J\  =  pm(p°-1h

vi)  Thus K G /  J ( K G )  is a semisimple /v-algebra of dim ension p“m — (pam  — m ) = m  

and is com m utative by ii).

vi i)  This is shown in [20, page 357].

v iii)  See [1, Theorem  4 and first line of section 4] and Lem m a 70. □

L e m m a  73 Let G be a fin ite  group with |G| =  pam  < oo, with  (p, m ) =  1 and let G' 

be a p —group. Then |£/(FPG)| E [pm p̂°-1^(p — l ) m, pm(pa-1)(pm — 1)].

P ro o f :

By Theorem  31, U(FPG / J ( F PG)) ~  U{FpG)f{  1 +  J{ FPG))  ~  {/(©fields). But 

FPG / J ( F PG)  is an Fp-algebra of cardinality ppam/p m(p°-1 ) =  pm. So since it is a
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direct sum of fields, the order of its un it group is in the interval [(p — l ) m, pm — 1 ]. □

E x a m p le  6  G = D2q. p = q. Thus FPG satisfies the conditions o f Theorem 31.

|G | =  q l 2  =  pam . Therefore \U(FqD 2q)\ £  [<?2 ( ? - 1 ) (<7 — l ) 2, q2 q̂~^ (q 2 — 1 )].

In fact (see the following chapter), \U{FqD 2q)\ =  qqq~lqq~2{q — l ) 2 =  q2̂ q~l\ q  — l ) 2. 

This tells us that FqD2q/ J ( F qD 2q) — Fq © Fq. So 5 {FqD 2q) =  ^

We now tu rn  our attention to the struc tu re  of J ( K G ), where G is locally finite.

L e m m a  74 Let G be a locally fin ite  group and K  a field o f characteristic p > 0. 

Then J ( K G )  is locally nilpotent and therefore nil, so L ( KG )  = J ( K G ) .

P roof:

Let H  be a finitely generated subgroup of G. H  is a  finite group so J ( K H )  is a 

nilpotent ideal of K H  [20, page 357]. Hence it is locally nilpotent, so by [20, page 

340] we find th a t J ( K G ) is locally nilpotent. Since we always have L ( K G )  C J ( K G )  

[20, page 271], the local nilpotence of J ( K G )  forces L ( K G ) =  J ( I \ G ) .  □

L e m m a  75 Let G be a locally finite p  — group and R  be a direct sum  o f fields. Then 

J {RG)  =  A (G ), and U(RG)  =  ( 1  +  A (G )) x U(R).  Note that i f  R  =  I\ is a field 

then J { I \ G )  =  the zero-divisors o f K G  and U ( KG )  =  I \ G  \  A(G) ,  so K G  is a local 

ring.

Proof:

A (G ) is locally nilpotent [20, Theorem  44.2 p .351] and therefore it is nil. Thus 

A (G ) C J ( K G )  [20, p.21 Corollary 6.11]. Now ~  R  = ©[LjF,-, where the F t-
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are fields. Let denote projection of R G  onto the i th field F,-. Now the kernel Ni 

of tt{ is a  m axim al ideal containing A (G).  Thus J ( R G )  C n"=1 iVt- =  A (G ). Hence 

J ( K G )  =  A (G ), so by Lemma 71, 1 +  A (G) is a group of units. Hence, u +  A (G ) is 

a set of units for all u £  U(R).  The rem ark about zero-divisors is a consequence of 

the fact th a t group algebras of locally finite groups are algebraic [29, Theorem  3.11 

and Lemma 3.12 p.53]. □

L em m a 76 Let G be a locally finite group. Then J ( K G )  = N ’ (KG) .  Furthermore 

K G  I  J ( K G )  is right artinian K G / J ( K G ) ~  © (A' -) <=> [G : 0 P{G)\ < oo.

Proof:

Notice th a t since G  is locally finite, every subgroup must have locally finite index. 

Thus, by [29, page 318], N ' ( K G )  = J ( K G ) K G  = J{I<G). The rest now follows 

from [29, page 409] and [19, page 4]. □

C orollary  77  Let G be a locally finite group with [G : Op{G)\ < oo. Then Ov( U { K G )) 

1 +  J ( K G ) .

Proof:

9 : I \ G  —> K G / J  ~  ®Mni(A',) is defined as in the finite case. Let P  =  Op(U(KG)) .  

Now 9{(P)  = 6 i(Op(U)) = Op(9i(U)) = Op{GLni{Ki)).  We claim tha t the latter 

group is a subgroup of Z(GLnf K i )) =  /v,*, a contradiction (unless 9;(P) =  1 ) since 

Ki  contains no elements of order p. This claim will finish the proof.

By [34, p .78], either Op{GLnt( K t)) contains S L ni( K {) or Op{GLn,f K {)) =  G L 2 {F2) 

or =  G L 2 (F3). The first case does not happen as S L ni(K{) is not a p-group. Next 

G L 2 {F2) is isomorphic to the dihedral group of six elements, so 0 2 (GL 2 (F2)) =  1 and
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we axe done. Lastly, note th a t G L 2 {F$) has order 243L =  48. Both

1 0 1 1
and

1 1 1 0

generate sylow 3-subgroups, but they are conjugate (under 

Oz{GL2 (Fz)) =  1 , com pleting the  proof.

0  1 

1 0

, say) and  hence 

□

C o ro lla ry  78  I f  G is a locally fin ite group with G ' a p-group then K G / J ( K G )  is 

right artinian G / O p(G) is a fin ite  abelian p'-group.

P ro o f:

Apply Lem m a 76 and Theorem  32 parts ii)  and v iii) .  □

C o ro lla ry  79  I f  G i and G2 are locally finite groups then

7(A '(G i x G2)) =  J ( K G l ) K G 2 +  K G i J ( K G 2).

P ro o f:

Lemma 20 an d  [29, page 329]. □

L e m m a  80 Let G be a locally fin ite group with [G : Op{G)\ < 0 0 . Then either 

1+J(KG) *s a^eHan OT it contains free groups.

P ro o f:

*7(A'G)
1 +  J ( K G )

62

^ U ( e M n, ( K {)),

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i te d  w i th o u t  p e rm is s io n .



where K{ is a field containing K .  If some n t- >  1 then U(@ Mnt (Kf i t ) ) )  D Mz( K)  D 

a  free group by the usual construction.

Hence we m ay assume th a t all n,- =  I, in which case the quotient is abelian. □

L e m m a  81 Let G be a locally fin ite group with [G  : Op(G)\ < oo. Then the transvec- 

tions o f K G  are contained in 1 J ( K G )  <t=>- G' is a p—group.

P ro o f:

Proceed as in Lemma 36.

<f=: Let G' be a p—group. By Theorem 32, U(I \G)  does not contain free groups, so 

by Lemma 80, is abelian, so j ^ g) — ©fields (Lem m a 76). The rest follows

as before.

=£*: By Lemma 76 we may use the previous proof, using the fact th a t J ( K G )  is nil 

(Lem m a 74) to lift idem potents. □

These results m ay be assembled to give:

T h eo rem  82 Let p be any prime, G be a locally finite group, with [G : Op(G)\ < oo. 

Then the following are equivalent:

i ) i f  ( KG)  free groups

ii) G' is a p  — group

iii)  G / O p(G) is abelian

iv) SP(G) <1 G and G / S P(G) is abelian.

v) U(Fp(t)G) is locally soluble

vi) U ( I \ G ) / (  1 +  J)  is abelian

vii) The subgroup o f U ( K G )  generated by the transvections is contained in 1 + J ( K G )

v iii)  K G / ( J ( K G ) )  ~  © fields. □
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All of these results can be viewed as variations on Tits A lternative, applied to  the 

unit group of a  group ring.

L e m m a  83 Let K  be a field o f characteristic p > 0 and let G be an infinite locally

fin ite  group with [G : 0 P(G)\ <  oo. Then J ( K G )  is not a nilpotent ideal.

P ro o f:

By [20, page 357], J{ I \G)  is nilpotent if and only if there exist subgroups P  and

H  of G such th a t P  is a  finite norm al p —subgroup of G , H  has finite index in G

and =  0. Now by [20, page 455], J ( K ^ )  =  0 implies tha t Op( H / P )  =  1,

tha t is, Op(H) = P.  So choose any groups P  and H  satisfying these criteria. Now

Op(G) fl H  < P  because P = Op( H ) (every p—subgroup of H  which is norm al in G

is also norm al in H ). Now by the Second Isomorphism Theorem,

Op{G)H H  P
Op(G) ~  Op(G) D H >  Op(G) n H'

and since [G : Op(G)] < oo, we have th a t

H
<

H Op{G)H
P Op(G) n  H 0 P(G)

Thus, \G\ = [G : H][H : P ][P  : 1] <  oo, a contradiction. □

Thus for G  locally finite we see th a t either

i) is semisimple, or

ii) J ( K G )  is nilpotent, 

or neither, bu t not both.

This makes it impossible to proceed as in the case of G finite.
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E x a m p le  7 Let F  be any field o f characteristic p >  0. Let G =  P x (Q i x  Q 2 x  ■ ■ • ), 

where the P  is a finite p-group, the Qj are p'-groups with \Qj\ finite and bounded and 

there are infinitely many Q j ’s. Then J ( F G )  is a nilpotent ideal. Indeed, G /P  is an 

FCgroup, so by [20, Theorem J7.1 p.401], J (F j [ )  =  0. Hence we have the nilpotency 

o f J ( F G )  by [29, Corollary 1.14 p .312].

Recall th a t vve already had that J ( K G ) =  A ( P ) K G  when G  is finite.

L em m a  84  Let G be a locally finite group with G' a p—group and K  a field o f char

acteristic p. Let P  =  Op(G). Then J ( K ( G / P )) =  0 and J ( K G ) =  (J ( K G ) ft 

K P )I< G  = J{K P )I< G  =  A ( P ) K G .

Proof:

The fact th a t J ( K G / P )  =  0 is a consequence of [20, page 315 Thm3S.2] (and also a 

consequence of [20, page 349]).

By Theorem  32, G [ P  is a locally finite abelian p' — group. Now apply [20, pages 329- 

330] and Lemma 75 to get that J { K G )  = ( J ( K G )  fi K P ) K G  C J ( K P ) K G  =  

A (P )A 'G . Now apply [29, page 317 Lemma2.5] to get J ( K P ) K G  C N~(KG) .  

Lemm a 76 now gives us the result. □

By Theorem  32 we knew that if G'  is a p-group and Op(G)  is finite then U ( K G ) 

is soluble. We can improve this result somewhat:

L em m a  85 Let G be a locally finite group with Op(G) finite. I f  G' is a p-group then 

J ( K G )  is nilpotent and U ( K G ) is a nilpotent p-group - by - abelian p'-group.
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P roof:

Now G / O p{G) is an abelian p'-group, so it is an FC-group and Lemma 84 gives us 

th a t J { K q ) =  0. Hence [20, Proposition 44.15 p.357] implies that J { K G )  is 

nilpotent. Lemma 84 also gives us th a t

G K G  K G
VOp(G) ~  A {Op( G ) ) K G  ~  J ( K G )

w ith an abelian p' unit group.

Since 1  +  J ( K G )  is a n ilpotent p-group we are done. □

In particular, if G is locally finite w ith Op(G) finite th en  we have that the nilpo- 

tence of the unit group implies the nilpotence of the Jacobson radical.

E x a m p le  8  In Lemma 85 we cannot remove the condition that G' is a p —group. I f  

G' is not a p—group then U ( K G )  contains free groups, and hence is not even soluble. 

However, Example 7 shows that J  can still be nilpotent, even when U{I \G) contains 

free groups. □
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Chapter 5

Examples

E x a m p le  9 We study the group lattice o f the unit group o f certain dihedral groups. 

We start with U(FPD2p), where p is an odd prime. The results o f the previous chapter 

will then be applied to this group and its infinite counterpart U ( K D 2p) ■

Write D 2p =  (x , y \ x p = y 2 =  l , x y = x ~ l ).

We start by calculating the radical o f FpD 2p. J  :=  J ( FpD2p) =  the left annihilator o f 

the sum o f the p-elements o f D2p =  lann(x)  [20, page 473, Corollary 53.13]
p - i  p - i  p—i p - i

= ( J 2 aiX‘ + 5Z bix 'y \ G‘ = 0 = b{}-
t'=0 1=0 1=0 1=0

Thus \J\ = p 2̂ ' 1). Thus \FpD 2p/ J \  = p2p/ p 2̂  =  p2, so FpD2p/ J  ^  Fp2 or FP© FP. 

Note that FpD2p/ J  is generated (as an Fp-space) by 1 +  J  and y +  J .  But i f  a.b  G Fp 

we have (a + by + J )p =  ap +  bPy + J  = a + by + J  (as cp _ 1  =  1  Vc 6  Cp_ i) . Thus 

every element o f FpD 2p/ J  is either not a unit or has order dividing p — 1 . Thus 

FpD2p /J  ^  Fpi, so FpD 2p/ J  =  F p © Fp.

Thus U{FpD2p) ~  ( l  +  «/) x(C'p_i x C p_ i), and we will concentrate on V( FpD2p) ~

(1 +  J)  xi Cp—i-

Note that e :=  | ( 1  +  y) and f  :=  | ( 1  — y) are orthogonal idempotents o f FpD2p,

so FpD 2pI J  =  Fp^ [ 1 9 ,p .  14] =  Fp © Fp =  Fpe © Fpf  = Fp( 1 + y) © Fp(l -  y). Thus
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FpD 2P has augmentation ideal A (D 2p) =  ^p(l — y) +  J ■ Note that not all elements 

o f  1 +  A (G) are units [19, page 4%] and J p = 0 [20, top o f page 462], so 1 +  J  has 

exponent p.

We will calculate CV(x) =  {u E V\ v x  =  x v }. Let

p- i p - i
a  =  a,-x' +  ^  b{Xly  G CV(x).

i‘= 0 t= 0

Then

p- i p- i p- i p- i

vx  — x v  =  a,-xt+ 1  +  6 t-x‘ 1y — ( ^ 2  a l-x‘ + 1  +  6 t-x‘+1y) =  0 ,
z= 0  t= 0  1= 0 1= 0

so E -Jo1 6,x,+1 =  Ei=o 6,x'_1. ITius 6t- =  &,-+2 /o r  i- Hence b0 = b2 = b4 = . . .  = 

bp-i = bi =  63 =  . . .  =  bp- 2  =  6 0 . TVms £/iere exists b G Fp such that 6,- =  6 /o r  a// z. 

ITizzs Cv{x)  =  {E iJo1 aix ' + b T ,Pi=o x 'v\ EfJo1 ai -  i}- 

Also,
p

Cv ( x ) ~ l [ C p,
1 = 1

since C v ( x ) is abelian and being contained in 1 + J , it must have exponent p. 

Note that CV(x) = Cfpd2p(x ) \  N(G).

Now by [19, p .44] we have

N v ((x)) = N D ((x) )Cv(x)  =  D2pCv(x)  = Cv (x) + y C v ( x )

p- i

=  i + |  ^ 2  a ' x 1+ ^ ^ 2 x%
1 1 = 0

y
1 = 0

p- i p- i p- i

y y  a, =  0 > +  < a ^ 2  x 1 +  ^ 2  ^ y
t'=0 t'=0 t = 0

p - l

E 6' =  ° r -
1 = 0

Thus |A V ((^))| =  2pP. Obviously, C v ( x ) < Ny( (x) ) .  Note that Z ( V )  = C v ( x ) D 

Z ( FpD 2p) =  {Ei^o1 x 'y \ S iJo 1 a* = l &a* =  a-.Vz}- Thus \Z(V)\  = p ^ .

Thus we get the following group lattice diagram:
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U{FpD 2p)

Op-1

V ( FpD 2p)

p - 1

( l  + J  x (y)

1 +  J

p —I

n  c>

/
Z( V)

X

Note that 1 J ( F pD 2p) has exponent p. Proposition 67 gives us that 1 + J  has 

exponent < p2+l+[\/ipM =  p3 +[\/p] _ In I\ D 6  we have that 1 + J  has exponent dividing 

33+l =  34. Alternatively, note that 32 >  6 to see that 1 +  J  has exponent dividing 

p2+l =  33.

Again use Proposition 67 to see that the exponent o / l + J ( i 72 ^ 2p) is <  2p+l+^ 2 p̂-1^. 

In I\ D q (char K  = 2) we have that 1 + J  has exponent dividing 24+2 =  26. Alterna

tively, note that 23 >  6 to see that 1 +  J  has exponent dividing 23+2 =  2°.
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E x a m p le  10 Here we construct a pair o f generators o f a free subgroup o f U(KG) ,  

where G is the quaternion group o f eight elements and K  is a field o f characteristic 

3. This is o f special interest bacause it is one o f the few  cases omitted in [13] in 

their construction o f free pairs in group algebras. The construction in [13] relies on 

Theorem 17, which does not apply to hamiltonian groups because o f its reliance on the 

non-triviality o f the bicyclic units. However, we can construct non-trivial GBUs here. 

We write the quaternion group as Q$ = ( x , y \ xA — l , x 2 =  y 2 , y ~ l x y  = x ~ l ). Consider 

the element a  :=  x —x 3  — y  €  FpQ s- How letting p =  3, we see that a  is a unit o f order 

2. Define a := ( 1  — a ) y a  and b :=  m /- l ( l — a ) . Now ba — a y ~ 1( 1 — 2a  +  a 2)ya  =  

2 x  + x 2 2x3 +  y  +  2x 2y (see the appendix fo r  the calculations in G AP). Thus 

ump(ba) =  tr(ba) (since Qs is a 2 -group and p ^  2 J =  2  ^  0 . Thus by Theorem 

20 we see that ( 1  +  ta , 1 +  lbab) ~  C3 * C3 , where t is an element o f K  which is 

transcendental over F 3 . By [28, p .371] this group is also isom orphic to

^  < P S L ( 2 , Q ) .

Now 1
1 h-‘ 1 to

1

1 2
, and R 2 S 2 =

1 0
=

0 - 1 0 1 2 1

and these two matrices are well known to generate a free group [17, p .92]. (The fact 

that we are in PSL(2,Q ) does not affect the freeness o f the group. Indeed, considered 

as elements o f S L { 2 , Q ), R S  and R 2 S 2 generate a free group o f  rank 2 , and this group 

contains no normal subgroup o f order 2 (in particular it does not contain { I , —I}),  

so mapping (RS,  R 2 S 2) from  S L ( 2 ,Q ) to P S L ( 2 , Q )  does not alter the structure o f 

this subgroup. Thus ((1 +  ta)(  1 +  tbab), (1 -f ta)2( 1 +  tbab)2) is isomorphic to a free 

group.

The following observations may also be o f use in constructing free groups in FpQs. 

Note that fo r  any characteristic p  ^  5 we have that a  = x  — x 3 — y E. FPQs Is a unit.
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Indeed, a 2 — —2 +  3x2 € Fp{x2) =  FPC 2 — Fp © Fp. In this group algebra a 2 is a 

unit with inverse |  +  |x .  Note that every unit o f FpC 2 has order dividing p — 1, so a  

has order dividing 2(p — 1). Again define a :=  (1 — a ) y a  and b :=  d y -1 ( l  — a ) .  Now 

ba =  d y -1 ( l  — 2 a  +  a 2)ya =  d ( —1 +  2x +  3x2 — 2x3 +  2y )d  =  d/?d, say. /Vow z/6a 

is nilpotent then u-xp(ba) =  tr(ba) =  0 =  t r ( a 20  =  n  tr{a(3), where n =  o (a). 17ms 

tr(ba) =  0 implies tr(a(3) =  0, since p does not divide n. But given the order o f a ,  it 

is not a difficult m atter to find tr(a(3).

C la im :

o(a) =  2n  for some n and tr(a/3) = X^=o ( —5)J+1 .

P ro o f: F irst note th a t since the augm entation m ap is a group homomorphism

from U ( K G ) to K m, the fact tha t cu(a) =  — 1 forces a  to have even order. Now 

let o(a) =  2n. Now tr(a/3) =  tr(j3) +  tr(af3) +  Y '.j-i t r ( (a2j +  a 2j+l)/3) =  —1 +  

—4 -f- tr ( (a 2:i((3 +  otf3)). Note th a t i r ( ( a 2j(/? +  a/?)) =  t r ( a 2j~ ^ ( / 3  +  a/?)) =

£r(a2j"( —1 +  3x2 H 4 +  2x2)) =  £ r(a2j(—5 +  5x2)) =  ot r (a 2 Ĵ~ 1^a2( — 1 +  x 2)) =

5 /r (a 2b -1)(5 — 5x2)) =  (—l ) l52i r ( a 2̂ _1^(—1 +  x2)) - - (—l)-/5J+lir (  —1 -f x2) =  

(—5)J+I, by an easy induction. Thus tr(a/3) =  —5 +  52y=i (—5)J'+1 =  (— 5)J'+ I.

□

E x a m p le  11 Next we construct a pair o f  generators o f a free subgroup o f U(KG) ,  

where G = A 5 is the alternating group on five elements and K  is a field o f character

istic 2. This will be o f interest because the free pair generated will not be stable (fixed 

by the involution map), as compared with [13], where a technique based on Threoem 

17 is given fo r  the construction o f stable free pairs in group algebras. Note also that 

Theorem 17 does not apply here since A 5 has no subgroup o f order 15 [38, p .138].

Consider the elements x  :=  (1 ,2 ,3 ,4 ,5 ), y :=  ( l ,2 ,4 ) a  :=  (1,2,3)/? :=  1 +  

y(xyx2 +  x3)( l  +  y); €  FPA 5. Now letting p =  2, we see that (3 is a unit o f order 

2 .
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Define a :=  (1 +  a)j3a and b :=  afi( 1 -f- a ) .

A W  6a =  (3 ,4 ,5 ) +  (2,3)(4,5) +  (2,4,5) +  ( l,2 ) (4 ,5 )  +  ( l ,2 ,3 ,4 ,5 ) + ( l ,2 ,4 ,5 ,3 )  +  

(1 ,3 ,4 ,5 ,2 ) +  (1 ,3 )(4 ,5) +  (1 ,3 ,2 ,4 ,5 ) +  (1 ,4 ,5 , 3 ,2) +  (1 ,4 ,5 ) +  (1 ,4 ,5 ,2 ,3 ) (see the 

appendix fo r  the calculations in GAP). Thus ljttp(ba) = 3  =  1 ^ 0 .  Thus by Theorem  

20 we see that

(1 + ta, 1 +  I6 a6 ,1 +  £(1 +  6)(a6a(l +  6)} ~  C2 * C2 * C 2 , where t is an element o f 

I\ which is transcendental over F2 . By [28, p .371] this group is also isomoi'phic to

T  =

Now in this notation

0 1 1 1 - 1  - 2
, u  = , V  =

- 1  0 - 2  - 1 1 1
< P S L ( 2 , Q ) .

1 3 1 0
C x =  T U V  = and Dx = T V U  =

0 1 3 1

and these two matrices are well known to generate a free group [17, p.92]. (The fact 

that we are in PSL(2,Q ) does not affect the freeness o f the group. Indeed, consid

ered as elements o f SL (2 ,Q) ,  T U V  and T V U  generate a free group o f rank 2, and 

this group contains no normal subgroup o f order 2  (in particular it does not contain 

{ I , —I}) ,  so mapping ( T U V , T V U )  from S L( 2 ,Q )  to P S L ( 2 , Q )  does not alter the 

structure o f this subgroup. Thus (c,d) — ( ( l +  fa ) ( l  +  i6a6)(l +  f ( l +  6)a6a(l +  6). (1 +  

fa)( l  +  £(1 +  6)a6a(l +  6))(1 +  tbab)) is isomorphic to a free group. The appendix 

shows that c and d are not a stable free pair.
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Appendix A 

Appendix

Here we use “LAG - Lie Algebras of Group Algebras” , an extension package for GAP 

3.4 developed by R ichard Rossmanith (1997), to do m any of the  calculations men

tioned in the exam ples. The examples are numbered in the order they  appear in the 

thesis.

E x a m p le  4:

ga-p

R e a d (" la g .g " ) ;

F :=GF( 2 ) ;

G:=DihedralGroup(10);

FG:=GroupAlgebra(F, G) ;

e :=GroupAlgebraElement( [ ( ) ]  , [One(F)]);  

x :=GroupAlgebraElement( [ ( 1 , 2 , 3 , 4 , 5 ) ]  , [One(F)]);  

x hat:=  e + x + x~2 + x~3 + x"'4;

y :=  GroupAlgebreLElement ( [ (2 ,5 )  ( 3 , 4 ) ]  , [One(F)]);
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y h a t := e + y;

# The elements  o f  DIO look l i k e  t h i s :

# e; Z(2)~0*()  +

#x; Z ( 2 ) ~ 0 * ( 1 ,2 , 3 ,4 , 5 ) +

#x~2; Z ( 2 ) “0 * ( 1 , 3 , 5 , 2 , 4 ) +

#x~3; Z ( 2 ) ~ 0 * ( l , 4 , 2 , 5 , 3 ) +

#x“4; Z ( 2 ) ~ 0 * ( l , 5 , 4 , 3 , 2 ) +

#y; Z ( 2 ) ~ 0 * ( 2 ,5 ) (3 ,4 )+

#x*y; Z ( 2 ) ~ 0 * ( l , 5 ) (2 ,4 )+

#x~2*y; Z ( 2 ) ~ 0 * ( l , 4 ) (2 ,3)+

#x~3*y; Z ( 2 ) ~ 0 * ( 1 ,3 ) ( 4 ,5 ) +

#x~4*y; Z (2 ) ~ 0 * ( 1 ,2 ) ( 3 ,5 ) +

b eta  := (e  + x + y + x*y + x~2*y + x~3*y + x~4*y)~2;  

#beta~15;

#n := 1;

#while  n <= 2~10 and beta~n <> e do

# n := n+1;

# od;

#n;

# gap> n;

# 15

# Thus, b e ta  i s  a u n i t  in  F2D10 o f  order 15.

a lp h a :=x+y+x*y; 

alpha~3;

# Z ( 2 ) “0 * ( )+  Thus alpha i s  a un it  o f  order 3 .
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aJ.ph.ahat := e + a lp h a + a lp h a ~ 2 ;

a:= (e+alpha)*beta*alphahat; 

b:= a lphahat*beta~14*(e+alpha); 

ba:=b*a;

ba+ba~2;

# Now (ba) = (ba)~2 <> 0 ,  so ba i s  not n i l p o t e n t ! !

# Note that

# < ( l+ ta ) (1 + t b a b ) , ( l + t a ) ( l + t ( l + b ) a b a ( l + b ) )> = <TU,TV> = <c l ,c2>  say,

# i s  isomorphic to  a f r e e  group. Now

# c l : =  l+ t (a+b ab )+ t~2(ab ab ) ,

# and d l :=  l+ t ( a + ( l + b ) a b a ( l + b ) ) + t ~ 2 ( a ( l + b ) a b a ( l + b ) ) . 

a+ba*b;

# = x+x~2*y+x~4+x*y 

a*ba*b;

# = x~4*y+x~2+x~2*y+x~4 

a+(e+b)*a*b*a*(e+b);

# = x ‘'4*y+x''3*y+x“2*y+x*y 

a*(e+b)*a*b*a*(e+b);

# = x“3*y+x~2*y+x‘'3+x‘'4

# Thus, our f r e e  group equals

# < l+t(x+x~4+x*y+x'~2*y)+t“2(x~2+x~4+x''2*y+x~4*y) ,

# l+t(x*y+x~2*y+x~3*y+x~4*y)+t~2(x~3+x''4+x~2*y+x~3*y) >.

# Note th a t  t h i s  f r e e  p a ir  i s  not s ta b le  ( th a t  i s ,  not  f i x e d  under
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# t h e  in v o lu t io n ,  m app ing)

# Now c l s t a r  = l + t  (x+x~4+x*y+x~2*y)+f~2(x+x~3+x~2*y+x~4*y) and

# d i s t a r  = l+ t  (x*y+x~2*y+x~3*y+x~4*y)+t~2(x+x~2+x‘'2*y+x~3*y) .

# Thus c l * c l s t a r  = l + t ( c i s t a r t 1)+

# t ‘~2((x''2+x''4+x~2*y+x'~4*y) + (x~3+x~4+x‘'2*y+x~3*y) +

# (x+x~4+x*y+x~2*y) *(x*y+x~2*y+x~3*y+x"~4*y) 

c l s t a r t 2 :  = (x~2+x‘'4+x~2*y+x~4*y) + (x+x~3+x~2*y+x''4*y) + 

(x+x~4+x*y+x~2*y)* (x+x~4+x*y+x~2*y) ;

#  =  0 .

# S i m i l a r l y ,  d l * d l s t a r  = l + t ( 0 )  +

# t''2(x+x~2+x~3+x~4+(x*y+x~2*y+x~3*y+x~4*y)*(x*y+x~2*y+x~3*y+x~4*y)  

d l s t a r t 2 :=

x+x“2+x~3+x~4+(x*y+x'~2*y+x~3*y+x'~4*y)*(x*y+x~2*y+x~3*y+x~4*y) ;

# =0 .

# Coeff  o f  t  in  c l * c l s t a r :

(x+x~4+x*y+x~2*y) + (a+b*a*b);

# gap> (x+x~4+x*y+x''2*y) + (a+b*a*b);

# Lag.Zero()

# Coeff  o f  t~ 2  in  c l * c l s t a r :

(a+b*a*b)*(x+x''4+x*y+x~2*y) + (a*b*a*b) + (x+x"'3+x~2*y+x~4*y) ; 

gap> (a+b*a*b) * (x+x''4+x*y+x~2*y) + (a*b*a*b) + (x+x’~3+x~2*y+x~4*y) ; 

Lag.Zero()

# Coeff  o f  t~ 3  in  c l * c l s t a r :

(x+x~4+x*y+x~2*y) * (x+x~3+x~2*y+x~4*y)

+ (x~2+x~4+x~2*y+x'~4*y)*(x+x~4+x*y+x'~2*y) ;
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#gap> $+x*y+x~2*y);

#Lag.Zero()

# Coeff  o f  t “4 in  c l * c l s t a r :

(x~2+x~4+x~2*y+x~4*y) * (x+x~3+x~2*y+x~4*y) ;

# gap> (x~2+x''4+x~2*y+x''4*y)*(x+x‘'3+x''2*y+x~4*y) ;

# Lag.Zero()

# Thus c l * c l s t a r  = 1, so cl~-C-l]- = c l s t a r .

# Coeff  o f  t  i n  d l * d l s t a r :

(x*y+x~2*y+x~3*y+x“4*y) + (x*y+x~2*y+x~3*y+x~4*y) ; 

gap> (x*y+x“2*y+x~3*y+x~4*y) + (x*y+x~2*y+x~3*y+x~4*y) 

Lag.Zero()

# Coeff  o f  t ~ 2  in  d l* d l s t a r :

(x*y+x~2*y+x~3*y+x"4*y)* (x*y+x~2*y+x~3*y+x~4*y)

+ (x~3+x~4+x''2*y+x“3*y) + (x+x^Z+x^+y+x'S+y) ; 

gap> $*y) + (x+x‘'2+x‘'2*y+x''3*y) ;

Lag.Zero()

# Coeff  o f  t~ 3  in  d l* d l s t a r :

(x*y+x~2*y+x~3*y+x~4*y)* (x+x~2+x~2*y+x~3*y)

+ (x~3+x~4+x~2*y+x‘'3*y)* (x*y+x~2*y+x~3*y+x“4*y) ; 

gap> $(x*y+x~2*y+x“3*y+x~4*y);

Lag.Zero()

# Coeff  o f  t~ 3  in  d l* d l s t a r :

(x~3+x''4+x~2*y+x''3*y) *(x+x~2+x~2*y+x~3*y) ; 

gap> ( x “3+x‘'4+x~2*y+x~3*y)*(x+x~2+x“2*y+x~3*y) ;

Lag.Zero()

# Thus d l * d l s t a r  = 1, so dl~-C-l}- = d l s t a r .
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E xam ple 10:

ga-p;
Read("l a g . g " ) ;

F :=GF(3);

P := 3;

x l  := [ [ Z(p)~0,  Z(p)~0,  ] ,

[ Z ( p ) “0,  2 * Z (p )“0 ] ] ; ;

y i  := [ [ 0 * z ( p ) ,  Z(p)~0,  ] ,

[ 2*Z(p)~0,  0*Z(p) ] ] ;;

G:=Group(xl,  y l ) ;

#GroupId(G); = Q8 

FG:=GroupAlgebra(F,G);

x :=GroupAlgebraElement ( [ x l ]  , [One(F)] ) : 

y :=GroupAlgebraElement( [y1] , [One(F)] ) ;  

e l : = x l~ 4 ;

e :=GroupAlgebraElement([el] , [One(F) ] ) ; 

alpha := x + ( - l )* y + ( - l )* x ' '3 ;

# Z (3 )* [  C 0*Z(3) , Z(3) ~0 ] ,  [ Z(3) , 0*Z(3) ] ] +

# [ [ Z ( 3 ) “0,  Z(3) ~0 ] ,  [ Z(3)“0, Z(3) ] ]+Z(3)*

# [ [ Z(3) , Z(3) ] ,  [ Z(3) , Z (3 )“0 ] ] +

#This i s  a u n i t  o f  order 2. 

alphahat:= (e+ a lp h a ) ; 

a : = (e - a lp h a )* y * (a lp h a h a t ) ;

b :=(a lphahat)*y~( - 1 ) * ( e -a lp h a ) ; 

ba:=b*a;
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# [ c 0*Z (3 ) ,  Z ( 3 ) “0 ] ,  [ Z(3) , 0*Z(3) ] ]+Z(3)*

# C [  0*Z(3) ,  Z(3) ] ,  [  Z(3) ~0, 0*Z(3) ] ]+Z(3)*

# [ C Z(3)~0 ,  0*Z(3) ] ,  [ 0*Z(3) ,  Z(3) ~0 ] ] +

# C C Z(3) ~0 , Z(3) “0 ] ,  [ Z(3) ~ 0 , Z(3) ] ] +

# [ [ Z(3) , 0*Z(3) ] ,  [  0*Z(3) ,  Z(3) ] ] +

# Z (3 )* [  I  Z (3 ) ,  Z (3) ] ,  [ Z (3 ) ,  Z(3) ~0 ] ] +

# Now t h i s  has t r a c e  = 2.

E xam p le 11: 

gap

Read("l a g . g " ) ;

F : =GF(2);

G:=AlternatingGroup(5);

FG:=GroupAlgebra(F, G);

e:=GroupAlgebraElement([( ) ] , [O n e (F ) ] ) ;

a lp h a :=GroupAlgebraElement( [ ( 1 , 2 , 3 ) ]  , [One(F)]);

alphahat:= e + alpha + alpha~2;

x : =GroupAlgebraElement ( [ ( 1 , 2 , 3 , 4 , 5 ) ]  , [One(F)] ) ; 

y : =GroupAlgebraElement (11(1,2,4)] , [One(F)]) ; 

yhat:= e+y+y~2; 

xhat:= e+x+x~2+x~3+x~4;

# Use the  idempotent  t r i c k  (and xhat  say) t o  come up with

# new u n i t  f o r  b e ta .

beta :=  e+yhat*(x*y*x~2+x~3)*(e+y);
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b e ta h a t :=  e + beta;  

a: = (e+alpha) *bet a*alphahat; 

b :=alphahat*beta* (e+alpha) ; 

ba:=b*a;

# gap> ba;

# ( 3 , 4 , 5 ) + ( 2 , 3 ) ( 4 , 5 ) + ( 2 , 4 , 5 ) + ( l , 2 ) ( 4 , 5 ) + ( l , 2 , 3 , 4 , 5 ) + ( l , 2 , 4 , 5 , 3 ) +

# ( 1 , 3 , 4 , 5 , 2 ) +  ( 1 , 3 ) ( 4 , 5 ) + ( 1 , 3 , 2 , 4 , 5 ) + ( 1 , 4 , 5 , 3 , 2 ) + ( 1 , 4 , 5 ) + ( 1 , 4 , 5 , 2 , 3 )

# Note t h a t  when projected  down t o  i t s  2 -support ,  ba has

# augmentation =3 =1 neq 0 here ! ! !

# a;

# ( 3 , 5 , 4 ) +  ( 2 , 3 , 5 )  + (2 ,4 ,5 )  + ( 2 ,5 , 4 ) +  (1 ,2 )  ( 3 , 5) + ( l , 2 , 3 , 5 , 4 ) +  ( 1 , 2 , 4 , 5 , 3 )  +

# ( 1 , 2 , 5 , 4 , 3 ) +  ( 1 , 3 , 5 , 4 , 2 ) +  ( 1 , 3 , 5 ) +  ( 1 , 3 , 2 , 4 ,  5)+ ( 1 , 3 , 2 , 5 , 4 ) +  ( 1 , 4 ,  5 , 3 ,2 )

# + ( 1 , 4 , 5 ) +  ( 1 , 4 , 5 , 2 , 3 ) +  ( 1 , 4 , 2 , 5 , 3) + ( l , 4 , 3 , 2 , 5 ) +  (1 ,4 )  ( 2 ,5 ) +  ( 1 , 5 , 2 )  +

# ( 1 , 5 , 3 , 4 , 2 ) + ( 1 , 5 , 3 ) +  ( l , 5 ) ( 3 , 4 ) + ( l , 5 ) ( 2 , 3 ) + ( l , 5 , 2 , 3 , 4 ) +  

as t a r : =GroupAlgebraElement ( C

( 3 . 4 . 5 ) , ( 2 , 5 , 3 ) ,  ( 2 , 5 , 4 ) , ( 2 , 4 , 5 ) , ( 1 , 2 ) ( 3 , 5 ) , ( 1 , 4 , 5 , 3 , 2 ) , ( 1 , 3 , 5 , 4 , 2 ) ,

( 1 , 3 , 4 , 5 , 2 ) , ( 1 , 2 , 4 , 5 , 3 ) , ( 1 , 5 , 3 ) , ( 1 , 5 , 4 , 2 , 3 ) , ( 1 , 4 , 5 , 2 , 3 ) , ( 1 , 2 , 3 , 5 , 4 ) ,

( 1 , 5 , 4 ) , ( 1 , 3 , 2 , 5 , 4 ) , ( 1 , 3 , 5 , 2 , 4 ) , ( 1 , 5 , 2 , 3 , 4 ) , ( 1 , 4 ) ( 2 , 5 ) , ( 1 , 2 , 5 ) ,

( 1 . 2 . 4 . 3 . 5 ) , ( 1 , 3 , 5 )  , ( 1 , 5 ) ( 3 , 4 ) , ( 1 , 5 ) ( 2 , 3 ) , ( 1 , 4 , 3 , 2 , 5 ) ] ,

[One(F), One(F) ,

One(F), One(F), One(F), Qne(F), One(F) , One(F), One(F), One(F),

Qne(F) , One(F), One(F), Qne(F), One(F) , One(F), Dne(F) , Qne(F),

One(F), One(F), One(F), One(F), One(F), One(F)]) ;

# a s t a r :=

# ( 3 , 4 , 5 ) + ( 2 , 5 , 3 ) + ( 2 , 5 , 4 ) + ( 2 , 4 , 5 ) + ( l , 2 ) ( 3 , 5 ) + ( l , 4 , 5 , 3 , 2 ) + ( l , 3 , 5 , 4 , 2 ) +

# ( 1 , 3 , 4 , 5 , 2 ) + ( 1 , 2 , 4 , 5 , 3 ) + ( 1 , 5 , 3 ) + ( 1 , 5 , 4 , 2 , 3 ) + ( 1 , 4 , 5 , 2 , 3 ) + ( 1 , 2 , 3 , 5 , 4 )
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# + ( 1 , 5 , 4 ) +  ( 1 , 3 , 2 , 5 , 4 ) + ( 1 , 3 , 5 , 2 , 4 ) +  ( 1 , 5 , 2 , 3 , 4 ) +  (1 ,4 )  (2 ,5 )+  ( 1 , 2 , 5 )  +

# ( 1 , 2 , 4 , 3 , 5 ) + ( 1 , 3 , 5 ) +  ( 1 , 5 ) ( 3 , 4 ) + ( 1 , 5 ) ( 2 , 3 ) + ( 1 , 4 , 3 , 2 , 5 ) ;

# b;

# ( 3 , 5 , 4 ) +  ( 2 ,3 , 5 ) +  ( 2 , 4 , 5 ) + ( 2 , 4 ) ( 3 , 5 ) +  ( 2 , 5 ) ( 3 , 4 ) +  ( 1 , 2 , 3 , 4 , 5 )  +

# ( 1 , 2 , 3 , 5 , 4 ) +  ( 1 , 2 , 4 , 3 , 5 ) + ( 1 , 2 , 5 , 4 , 3 ) + ( 1 , 2 , 5 ) + ( 1 , 2 , 5 , 3 , 4 ) +

# ( 1 , 3 , 4 , 5 , 2 ) +  ( 1 ,3 , 5 ) +  ( 1 , 3 , 2 , 4 , 5 ) +  ( 1 ,3 )  ( 2 , 5) + ( l , 3 , 2 , 5 ,4) + ( l , 4 , 3 , 5 , 2 )

# + ( l , 4 , 5 ) + ( l , 4 ) ( 3 , 5 ) + ( l , 4 , 5 , 2 , 3 ) + ( l , 4 , 2 , 5 , 3 ) +  ( 1 , 4 , 3 , 2 , 5 ) +

# ( 1 , 5 , 4 , 3 , 2 ) +  ( 1 ,5 , 2 ) +  ( 1 , 5 , 3 , 4 , 2 ) + ( 1 , 5 , 4 ) +  ( 1 , 5 ) ( 3 , 4 ) +  ( 1 , 5 ) ( 2 , 3 )  +

# ( 1 , 5 , 2 , 4 , 3 ) + ( 1 , 5 , 3 , 2 , 4 ) +

# b s ta x  = b~* =

# ( 3 , 4 , 5 ) +  ( 2 ,5 , 3 ) +  (2 ,5 ,4 )+  ( 2 , 4 ) ( 3 , 5 ) +  ( 2 , 5 ) ( 3 , 4 )  +

# ( 1 , 5 , 4 , 3 , 2 ) +  ( 1 , 4 , 5 , 3 , 2 ) +  ( l , 5 , 3 , 4 , 2 ) + ( l , 3 , 4 , 5 , 2 ) +

# ( 1 , 5 , 2 ) +  ( 1 , 4 , 3 , 5 , 2 ) +  ( 1 , 2 , 5 , 4 , 3 ) +  ( 1 , 5 , 3 ) +  ( 1 , 5 , 4 , 2 , 3 )  +

# ( 1 , 3 ) ( 2 , 5 ) +  ( 1 , 4 , 5 , 2 , 3 ) +  ( 1 , 2 , 5 , 3 , 4 ) +  ( 1 , 5 , 4 ) +  ( 1 , 4 ) ( 3 , 5 )  +

# ( 1 , 3 , 2 , 5 , 4 ) + ( 1 , 3 , 5 , 2 , 4 ) +  ( 1 , 5 , 2 , 3 , 4 ) + ( 1 , 2 , 3 , 4 , 5 ) +

# ( 1 , 2 , 5 ) + ( 1 , 2 , 4 , 3 , 5 ) + ( 1 , 4 , 5 ) + ( 1 , 5 ) ( 3 , 4 ) + ( 1 , 5 ) ( 2 , 3 ) +

# ( 1 , 3 , 4 , 2 , 5 ) + ( 1 , 4 , 2 , 3 , 5 )

bstax:=GroupAlgebraLElement([(3,4,5) , ( 2 , 5 , 3 )  , ( 2 ,5 ,4 )  ,

( 2 , 4 ) ( 3 , 5 ) , ( 2 , 5 ) ( 3 , 4 ) , ( 1 , 5 , 4 , 3 , 2 ) , ( 1 , 4 , 5 , 3 ,  2 ) ,

( 1 , 5 , 3 , 4 , 2 ) , ( 1 , 3 , 4 , 5 , 2 ) , ( 1 , 5 , 2 ) ,  ( 1 , 4 , 3 , 5 , 2 ) , ( 1 , 2 , 5 , 4 , 3 ) ,

( 1 . 5 . 3 ) , ( 1 , 5 , 4 , 2 , 3 ) ,  ( 1 , 3 ) ( 2 , 5 ) , ( 1 , 4 , 5 , 2 , 3 ) , ( 1 , 2 , 5 , 3 , 4 ) ,

( 1 . 5 . 4 ) , ( 1 , 4 )  ( 3 , 5 ) , ( 1 , 3 , 2 , 5 , 4 ) , ( 1 , 3 , 5 , 2 , 4 ) , ( 1 , 5 , 2 , 3 , 4 ) ,

( 1 . 2 . 3 . 4 . 5 ) , ( 1 , 2 , 5 ) ,  ( 1 , 2 , 4 , 3 , 5 ) , ( 1 , 4 , 5 ) , ( 1 , 5 ) ( 3 , 4 ) ,

( 1 . 5 ) ( 2 , 3 ) , ( 1 , 3 , 4 , 2 , 5 ) , ( 1 , 4 , 2 , 3 , 5 ) ]  ,

[One(F), One(F), One(F), Qne(F), One(F) , One(F),

One(F), One(F), One(F), One(F), One(F), One(F), One(F),

Qne(F) , One(F) , Qne(F), Qne(F), One(F) , One(F) , One(F),
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One(F), One(F), One(F), One(F), 0 ® e ( F ) , One(F), One(F) , 

One(F), One(F), One(F)]);

# R e c a l l  th a t  \omega \ p i_ 2  (ba) =rL \neq  0 here,  so ba i s

# not n i l p o te n t  and by Theorem 20 we g e t  th a t  U(KD10)

# c o n ta in s  f r e e  groups. In f a c t ,  n t  conta ins

# < l+ ta ,  1+tbab, l+t(1+b)aba(l+b)  :>, which i s  isomorphic

# to  02*02*02 in  the obvious way. I t  i s  a l s o  isomorphic

# to  {T,U,V}- i so  to  gamma~3 ( se e  A c i t e  [p. 371] {Newman}-.

# Here T=the 2X2 m atr ix [ 0 , 1 , - 1 , 0 ]  , U = [ l , 1 , - 2 , - 1 ]  and

# V= [ - 1 , - 2 , 1 , 1 ]  . Here T,U and V ajre considered as

# m atr ices  in  PSL(2,Q),

# i . e .  I = - I .  Note: T~2=U“2 = V '2 = - I= I .

# Now in  Newman notat ion:  C_1=TUV= [ 1 ,3 , 0 ,1 ]  and

# D_ 1=TVU= [ 1 ,0 ,3 ,1 ]  .

# Thus <TUV, TVU> i s  w e l l  known t o  be isomorphic to  a

# f r e e  group (again considered as a subgp of  PSL(2,C)) ,

# (The f a c t  that  we axe in  PSL(2,C) does not a f f e c t  th e

# f r e e n e s s  of  the  group as the  m a t r i c e s  in  th e  group

# have no negat ive  e n t r i e s ,  so g o i n g  from SL(2,C) to

# PSL(2,C) does not a l t e r  th e  s t r u c t u r e  o f  t h i s  subgp) .

# Thus: < ( l+ ta )  (l+tbab) (l+t(1+b)afc>a(l+b)) ,

# (1+ta) ( l+ t ( l+ b )a b a ( l+ b ) )  C( 1+tbab)>

# i s  isomorphic to  a f r e e  group, < c ,d > ,  say.

# Now cs tar=

# ( l+ t ( l + b s t a r ) a s t a r * b s t a r * a s t a r ( ! + b s t a r ) )
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# * ( l+ t* b s ta r * a s ta r * b s ta r )  ( l+ t* a s ta r )

# and we a lr ea d y  have as tar  and b s t a r ,  so we compute

# c s t a r  as f o l l o w s :

# Write c s t a r  as ( l + t * f ) ( l + t * g ) ( l + t * a s t a r ) , where 

f : = (e+bstar) * a s ta r* b s ta r* a s ta r*  (e+bstar)  ;

g := b s t a r * a s ta r * b s ta r ;

# So c s t a r  = l + t  (a s ta r+ f+ g )+ t~2 (g * a sta r+ f  * a s ta r+ f  *g) +

# t~ 3 ( f* g * a s ta r )  = l+ t* h + t“2*i+t''3+j , sa y ,  where

# h:=astar+f+g;

# ( 3 , 5 , 4 ) + ( 2 , 3 ) ( 4 , 5 ) + ( 2 , 3 , 5 ) + ( 2 , 4 , 3 ) + ( 2 , 4 , 5 ) + ( 2 , 5 , 3 ) +

# ( 2 , 5 , 4 ) + ( 1 , 2 ) ( 4 , 5 ) + ( 1 , 2 , 3 ) + ( 1 , 2 , 3 , 4 , 5 ) + ( 1 , 2 , 3 , 5 , 4 ) +

# ( l , 2 , 4 , 3 , 5 ) + ( l , 2 , 5 , 4 , 3 ) + ( l , 2 , 5 ) + ( l , 2 , 5 , 3 , 4 ) + ( l , 3 , 4 ) +

# ( 1 , 3 ) ( 2 , 5 ) +  ( 1 , 4 , 5 , 3 , 2 ) +  ( 1 ,4 ,2 )+  ( 1 , 4 ) ( 3 , 5 ) + ( l , 4 ) ( 2 , 5 )  +

# ( 1 , 5 ) ( 3 , 4 ) + ( 1 , 5 ) ( 2 , 3 ) +  ( 1 , 5 ) ( 2 , 4 ) +

i := g * a s ta r  + f * a s t a r  + f*g;

# ( ) + ( 2 , 3 , 4 ) + ( 2 , 4 , 5 ) + ( 2 , 4 ) ( 3 , 5 ) + ( l , 2 ) ( 3 , 4 ) + ( l , 2 , 3 ) +

# ( 1 , 2 , 3 , 4 , 5 ) + ( 1 , 2 , 4 , 5 , 3 ) + ( 1 , 2 , 5 ) + ( 1 , 3 , 2 ) + ( 1 , 3 , 4 ) +

# ( l , 3 , 5 ) + ( l , 3 , 5 , 2 , 4 ) + ( l , 3 , 4 , 2 , 5 ) + ( l , 4 , 5 , 3 , 2 ) +

# ( l , 4 , 3 , 5 , 2 ) + ( l , 4 ) ( 3 , 5 ) + ( l , 4 , 5 , 2 , 3 ) + ( l , 4 , 2 , 5 , 3 ) +

# ( 1 , 4 ) ( 2 ,5 )  + ( l , 5 ) (3 ,4 ) +  (1 ,5)  ( 2 , 3 ) + ( l , 5 , 2 , 4 , 3 )  +

# ( 1 , 5 , 3 , 2 , 4 ) +

j : = f* g * a s ta r ;

# () + ( 3 ,5 ,4)  + ( 2 ,3 )  (4 ,5 ) +  ( 2 ,3 ,4 )+  ( 2 , 4 , 5 ) +  ( 2 ,4 )  ( 3 ,5 )  +

# ( 2 ,5 ,3 ) +  ( 2 , 5 ) ( 3 , 4 ) +  ( 1 , 2 ) ( 4 , 5) + ( l , 2) ( 3 ,4 ) +  ( 1 , 2 , 4 )  +

# ( 1 , 2 , 4 , 3 , 5 ) + ( 1 , 2 , 5 , 4 , 3 ) + ( 1 , 2 , 5 ) + ( 1 , 3 , 2 ) + ( 1 , 3 , 5 , 4 , 2 ) +
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# ( 1 ,3 )  ( 2 ,4 ) +  ( 1 , 3 , 2 , 4 , 5 ) +  ( 1 , 3 , 2 , 5 , 4 ) +  ( 1 , 3 , 4 , 2 , 5 )  +

# ( 1 , 4 , 5 , 3 , 2 ) +  ( 1 , 4 , 3 , 5 , 2 ) +  ( 1 , 4 , 3 ) + ( 1 , 4 , 5 ) +  ( 1 ,4 )  ( 2 ,3 )  +

# ( 1 , 4 , 2 , 3 , 5 ) + ( 1 , 4 , 2 , 5 , 3 ) + ( 1 , 4 ) ( 2 , 5 ) + ( 1 , 5 , 2 ) +

# ( 1 , 5 , 3 , 4 , 2 ) + ( 1 , 5 , 4 ) + ( 1 , 5 ) ( 3 , 4 ) + ( 1 , 5 , 4 , 2 , 3 ) + ( 1 , 5 ) ( 2 , 3 ) +

# ( 1 , 5 , 2 , 4 , 3 ) + ( 1 , 5 , 3 , 2 , 4 ) +

# The i n t e r e s t i n g  q uest ion  i s :  " is  c s t a r  = c or d?"

# Let us b eg in  to  answer t h i s :

# c: = ( l+ t a ) ( 1 + t b a b ) ( l + t ( l + b ) a b a ( l + b ) ) =

# ( l+ t* a )  ( l+ t*k )  (l+t*m) , say ,  where 

k:= b*a*b;

m:=(e+b)*a*b*a*(e+b) ;

# Then c=l+t(a+m+k)+t~2(k*m+a*m+a*k)+t~3(a*k*m) .

# Now compute h+(a+m+k);

# This  i s  not  equal to  zero ,  so c s t a r  <> c  ! [ !

# Now l e t  us ask: " is  c s t a r  = d?"

# d = (1+ta)  ( l + t  (1+b) aba(l+b) ) (1+tbab) =

# ( l + t * a ) ( l + t * n ) ( l + t * o )  , say ,  where 

n : = (e+b)*a*b*a*(e+b) ;

o:=b*a*b;

# Thus, d=l+t(a+n+o)+t~2(a*n+a*o+n*o)+t~3(a*n*o) .

# Aside:  c and d have the  same c o e f f  o f  t ,

# (but not t~ 2  and t~3)  as we see:

# gap> (a+n+o)+(a+m+k);

# Lag.Zero()
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# Now to  answer " i s  c s t a r  = d?", we compute 

(a+n+o)+h;

(a*n+a*o+n*o)+i;

(a * n * o )+ j ;

# None o f  th ese  are zero ,  so we conclude t h a t  <c,d> i s

# a n o n -s t a b le  f r e e  p a ir

# in  F ( t )A _ 5 .

# Now <c,d>=F_2, so <cs ta r ,d s ta r )= F _ 2  a l s o .

# (Indeed,  i f  w ( c s t a r ,d s t a r ) = l

# then applying * we g e t  w _ * ( c ,d ) = l . )

# Let us check to  se e  i f  c * c s t a r  = 1:

# Let us r ed e f in e  c as c= l+ tp+ f'2q+ t~3r ,  where: 

p:= a+m+k;

q: = k*m+a*m+a*k; 

r :=  a*k*m;

# Then we have c * c s ta r  -  l +  t.*/, +f'2% +. . . +t~6*/(.

# The c o e f f  of t  i s : 

p+h;

# This i s  <> 0, so c * c s ta r  <> 1. Thus F_2=<c,d> i s

# not a subgp of  th e  orthogonal  group

# 0 : = { x \ i n  KG | x *xs tar= l  3-.

# Now <c,d> i s  a f r e e  group, so < c s ta r ,d s ta r >  i s  a l s o  a

# f r e e  group. (Indeed, i f  w ( c s t a r ,d s t a r ) = l  i s  a word in

# < c s ta r ,d s ta r >  then applying * we g e t  w _ * (c ,d )= l  in

# < c ,d > .)
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