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ABSTRACT

Let K be a field and G a group. Let K'G be the group algebra and U(KG) its
group of units. In this thesis we investigate the existence and explicit construction
of free groups in U(KG) and examine the consequences of the existence of these
free groups. We place special emphasis on the modular case, where A™ has positive
characteristic p and G contains elements of order a power of p.

As motivation, we start by giving a technique for the construction of free semi-
groups in group algebras with some restrictions.

We use a new method of constructing units to explicitly construct generators of
free groups in U(K G} and give examples in group algebras where previous techniques
do not apply.

This construction relies heavily on the abundance of non-commuting pairs of ele-
ments in the finite group ring F,G. We use combinatorial techniques to see precisely
how scarce these commuting pairs of elements are.

Next we study criteria for the existence of free groups in group algebras. For a
finite group G and a field K which is not algebraic over its prime subfield F}, we show
that U(KG) does not contain free groups < G’ is a p-group < U(KG) is soluble &
the torsion subset of U(KG) forms a group < KG/J(KG) is isomorphic to a direct

sum of fields < the transvections of K'G are contained in 1 + J(KG). We also
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explore connections between U(KG) and the finite group U(F,G). The locally finite
analogues of these results are also given.

The existence or absence of free groups thus leads to an important dichotomy in
the structure of the group algebra, in the spirit of the Tits Alternative.

We give similar results on U(KG) where G is either an FC group or is locally
nilpotent. After studying a newly defined chain of unit groups we finish by proving

some results on the Jacobson radical of KG.
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Chapter 1

Introduction

1.1 Introduction

For all the work that has been done on group rings in the last fifty years the subject
1s in many ways still in its infancy. A counterexample to the Isomorphism Problem
for integral group rings was only found in the last decade. We have little idea what
the units (or zero-divisors) of an arbitrary group ring look like in terms of the group
or coefficient ring.

On the other hand, we can often construct bicyclic units, Bass cyclic units and
alternating units (given minor restrictions on the group algebra), and these can be
used for various constructions in the group algebra.

One of the more obvious approaches to studying group rings (and more general
rings) is to consider the existence of polynomial identities. The torsion and com-
mutativity of rings can be examined in this way. It is natural to suspect that the
group identities of the unit group will have some bearing on the polynomial identities
of the group algebra. The existence of a free group (of rank 2) in the unit group

would quickly put an end to this line of reasoning. These free groups have become
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the object of my affections.

In this section and the next we give some of the notation and results needed
to understand the ideas presented in later chapters. The main theme of the thesis
is the existence and explicit construction of free groups in group algebras, and the
consequences of the existence of these free groups. As motivation, we start in Section
2.1 by giving a technique for the construction of free semigroups in group algebras
with some restrictions. We then develop some of the theory needed to study the
applications of a new construction of units (the GBUs). In Section 2.3 we use these
GBUs to construct free groups in group algebras where previous techniques do not
apply. This construction relies heavily on the abundance of non-commuting pairs of
elements in the finite group ring F,G. In Chapter 3 we use combinatorial techniques
to see precisely how scarce these commuting pairs of elements are. (We also briefly
mention the proportion of invertible elements of F,G.)

In Chapter 4 we study criteria for the existence of free groups in group algebras
K G (especially where G is locally finite). In Theorems 31 and 32 we see that the
existence or absence of free groups in the group algebra leads to an important and
surprising dichotomy in the structure of the group algebra. This is done in the spirit
of the Tits Alternative and suggests that the most important question to ask of a
group algebra is whether or not it contains free subgroups. In Section 4.4 we con-
sider some results on U(KG) where G is not periodic. In the following section we
define a new chain of unit groups and investigate their properties. In Section 4.6 we
chronicle some of the consequences of the preceding results. The Jacobson radical
is used throughout the chapter, and is studied in its own right in the final section.
In Chapter 5 we apply our techniques to some of the examples which motivated this
work and which, as far as the author is aware, are not readily studied using existing

methods. An Appendix includes some of the more tedious calculations which were

2
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performed using the software package GAP.

Notation and Conventions

Definition: Given a group G and a ring R, the group ring RG is the set of ele-
ments Yr;g; where r; € R and ¢g; € G and the summation is over all elements of G
(with only finitely many r; % 0). So RG is a free R-module with the obvious addition,

and it becomes a ring if we use the multiplication of the group to define multiplication.

N is the set of natural numbers, Z the integers, @ the rationals and C the com-
plex numbers.

Fpn is the finite field of p" elements.

G is a group, k is a (commutative) field.

o(z) is the order of an element = of G.

C)p denotes the cyclic group with p elements.

G, = Sp(G) denotes the sylow p-subgroup of the group G. G * H denotes the free
product of the groups G and H.

S, is the symmetric group on n symbols.

A regular element of a ring is any element which is not a zero-divisor.

kG is the group algebra.

Define the augmentation map w : kG — k by > a,9 — > a4. Clearly this is a k-
algebra epimorphism. w has kernel A(G) = (z — 1|z € G)ic, called the augmentation
ideal of £G.

*: kG — kG is the involution > a,g = > augt.

tr : kG — kG is the trace map defined by tr(3_ a,9) = a;.

U = U(kG) is the (multiplicative) group of units of k£G.

V = V(KQG) is the group of units of augmentation 1.
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If @ € U has finite order n then & is the element 1 + o+ a® + --- + o™ ! of kG.

A bicyclic unit of kG is an element of the form 1+ Zy(1 — z¢) or 1 & (1 — z‘)yZ, where
z,y € G,o(z) =n<ooand: € {0,1,... ,n — 1}. Note that such an element must
be a unit of order p if char £k =p > 0.

By a free group I shall mean a non-cyclic free group.

A(G)={g€ G|[H : Cu(g)] < oo for every finitely generated subgroup H of G}.
AT(G) = {g € A(G) | g is a torsion element}.

Note A*(G) « A(G) « G and A(G)/AT(G) is a torsion-free abelian group.

J(R) is the Jacobson radical of the ring R.

If a =3 ay9 € kG then the support of « is the set {g € G|y # 0}.

If H is a subset of G then wy : kG — kG is the natural projection down to the subset
of elements whose support lies in H.

If ¢ is a prime number then 7, will denote the projection mwg, where H is the set of
g-elements of G.

If V.= M, (D) then the Schur index of V is the square root of the dimension of the

division algebra D over its center.

1.2 Background Results

A considerable amount of progress has been made on the question of the existence of
free subgroups of U(kG). The Tits Alternative [35] is a powerful tool here. So let us

review what is known about these free groups.

Theorem 1 (Tits Theorem / Tits Alternative [35]) Let G be a finitely gener-
ated linear group over a (commutative) field. Then either G is soluble-by-finite or G

contains free groups.
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Note that the proof does not exhibit the free group explicitly or constructively.

Theorem 2 (Wedderburn-Artin Theorem) [8, p.38-9] Fvery semisimple alge-
bra is isomorphic to a direct product of matriz algebras over division algebras. Con-
versely, a direct product of matriz algebras over division algebras is a semisimple

algebra. This decomposition is unique, up to permutation of the direct factors.

Theorem 3 (Wedderburn-Malcev Theorem) Let G be a finite group. Then

L KG .

as vector spaces.

Proof:

By {38, p.107], it suffices to show that % is separable, that is &M, (K;) is sep-
arable. Thus, by [8, p.105], we need only show that the K are separable algebras.
By the definition of separable algebras [8, p.104|, we need only show that for every
extension L of the field K;, K;® L is semisimple, and this is true by [8, p.75 Corollary

4.3.6]. |

Theorem 4 [33, p.64-5] Let G be a finite group and F a field that contains the
algebraic closure of the rationals if F' has characteristic 0. Then every irreducible

FG-module has Schur indez 1.

From the proof of this result we see that if our field A" has characteristic p > 0
then every finite dimensional simple image of KG is of the form M,(F), with F a
commutative field containing A’, where K has finite index as a subfield of F'. This
fact will be used in subsequent chapters.

Sehgal [32, p.200] and then Hartley and Pickel [15] proved

(@]
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Theorem 5 Let G be soluble-by-finite, and suppose U(ZG) does not contain a free
group of rank 2. Then

1)  every finite subgroup of G is normal in G,
11) the torsion subset T of G is a subgroup and is either abelian
or the direct product of an elementary abelian 2-group and a

quaternion group of order 8 (i.e. a non-abelian Hamiltonian 2-gp).

In the finite case we have the following situation:

Theorem 6 [15, Theorem 2 p.1342] If G is finite then ezactly one of the following

ocecurs.

z) G is abelian,

1t) G is a non-abelian Hamiltonian 2-group, and
UZG) ={*g: g€ G},

12t) U(ZG) contains a free group.

For k a field, Gongalves [12] showed

Theorem 7 If G is finite and k is a field of characteristic O then U(kG) contains a
free group if and only if G is non-abelian.

and

Theorem 8 [f G is finite and k is a field of characteristic p > 0 then U(kG) does

not contain a free group if and only if one of the following occurs:

7) G is abelian,

1)k is algebraic over its prime field Fy,

iit)  Sp(G), the p-Sylow subgroup of G, is normal in G, and
G/Sp(G) is abelian.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In [3], Bovdi gives perhaps the most comprehensive survey of the problem to date:

Theorem 9 Let k be a field of characteristic p > 0 and suppose that U(kG) does not
contain a free group. Then one of the following conditions holds:

1. G is abelian;

2. G is a torsion group, p > 0 and k is algebraic over its prime subfield F,;

3. p=0 and

a. AY(G) is an abelian subgroup and each of its subgroups is
normal in G;

b. the centralizer Co(A1(G)) contains all elements of finite
order of G;

c. for every a € AT(G), which is not central in G, k contains

no root of unity of order equal to o(a);

4. p> 0, k is not algebraic over its prime subfield F, and

a. the p-Sylow subgroup P of A*(G) is normal in G and
A = AY(G)/P is an abelian group;

b. the centralizer Cg/p(A) contains all torsion elements of G/ P;

c. if A is noncentral in G/P and G/P is non-torsion, then the
algebraic closure L of F, in k is finite and for all g € G/P
and a € A there ezists a natural number r such that gag~™' = a® .

Furthermore, each such v is a multiple of [L : Fp).

-~!
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5. G is not a torsion group, p > 0, k is algebraic over its prime subfield F, and

a. the p-Sylow subgroup P of A*(G) is normal in G and
A =A% (G)/P is an abelian group;
b. if A is noncentral in G/P then the algebraic closure L of F,

in k is finite and for all elements g of infinite order in G/ P

and a € A there ezists a natural number r such that gag™' = a” .

Furthermore, each such r ts a multiple of [L : Fp).

Note however that the above conditions are not sufficient for U( K'G) to not contain

a free group; for example the possibility that G is a free group is not excluded.
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Chapter 2

GBUs and free groups

We investigate the existence (and construction) of free pairs of units in the unit group
of a (modular) group algebra K'G. We generalise a result of Gongalves and Passman
[14] to do this, and use the programming package GAP to investigate the units of
F3(¢)Dyg, where F;, is the Galois field of order 2 and ¢ is an element transcendental

over Fj.

Z. Marciniak and S. Sehgal [23, 24] have constructed free groups in arbitrary in-
tegral group rings, where the group is non-abelian. Gongalves and Passman [14]
have used a similar construction for some group rings of the form F,(¢)G where t is
an element transcendental over the field F,. Here we will be extending the work of

Gongalves and Passman.

2.1 Free Semigroups

A semigroup G = (5) is freely generated by the set S if it has the property that any

mapping from the set S into a semigroup H can be extended to a homomorphism of
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semigroups.
As motivation for the subsequent results on free groups, we give a result on the
construction of free semigroups in group algebras. Comments and examples follow

the proof.

Theorem 10 Let K be a field of characteristic zero, R a subring of KG, y a unit of
KG, and X € R. Write r° = y~!ry for all r € R. Assume that

i) Ry CyR.

i) The (non-negative) powers of y are right linearly independent over R.

iit) X is a regular element of R.

iv) For any positive integer n, the elements (X")° X" ", r=0,... ,n, are linearly
independent over Q).

Then X and Y = 1 + y generate a free subsemigroup of KG.

Proof:

Conditions i) and ii) clearly imply that the subring R[Y] generated by R and Y is
isomorphic to ®X,y' R (a direct sum of R-modules), since we have the commutation
rule ry = yr°.

Any element w of the free semigroup on {u,v} may be written uniquely in the
form uvuiv...vu'™ for integers i; > 0. (For example, v®* = u®vulvulvu®.) We
write [ = (i9,...,tm) and wy(u,v) for the element w above. The length L(I) of
I = (Z0,... ,im) is defined to be m + 1, and we write I’ = (Zp,... ,im-1). The identity
element corresponds to the empty sequence.

Given an element wr(u,v) of the free semigroup, write W(I) = wi(X,Y) € R[Y].
We know that

W(I)=>_ yW;(I),
=0

10
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where the W; € R and the sum contains only finitely many terms (at most L([),

since W(I) only contains L(I) — 1 occurrences of Y). On the other hand, we have

W) = > y¥wi)

7=0

= D yWi(HA+yX*

7=0
= > yYW(NX Yy W)X,
7=0 =0

whence Wo(I) = Wo(I') X*™ and W;(I) = (W;([') + W;1(I')°) X' for all j > 1. We

may now use induction on the length of / to prove that

Wo(l) = X,
m—1 o
Wy (1) = Z (Xio+...+i,) X Gotic)
t=0

and

W (1) = (X°)™ (X277 L (X)o7 (X ),

where m = L([) — 1 and n = iy + ... + i,,. Note that assumption iii) implies that
Wn(I) # 0, so W(I) is a polynomial in y of degree exactly m = L([) — 1.

In order to show that X and Y generate a free semigroup, we must prove that, if
I and J are sequences for which W(I) = W(J), then [ = J. Now W([) = W(J) is
equivalent to W;([I) = W;(J) for all j > 0. Moreover, W(I) and W (J) have exactly
the same degree in y, and hence [ and J have the same length. Write I = (7,... ,im)
and J = (Jo,--- yJm).- The Wy-terms yield ig+...+imn =n = jo+...+ Jm, and then
the Wi-terms simplify to

11
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m—1 m—1
Z ( Xio+---+it) 7 xrn—iot-tit) — z (on+...+j;) 7 xen—lo+etie)

t=0 t=0

Let {io,70 + t1,%0 + - - - tm—1} = {T1,.-. ,7p}, where r; <7y < ... < rp, and r; occurs
d; times in the set of partial sums (remember that some of the i’s may be zero, so
some of the partial sums may be equal). Similarly, write {j0,jo + J1;Jo+ ---Jm—-1} =
{s1,--.,84}, where s; < s2 < ... < sg, and s; occurs e; times in the set of partial
sums. The above equation, therefore, becomes

Zp: di (X)X = Zq: ej(x+) xme.

i=0 7=0
Assumption iv) now implies that p = q, d; = €;, and 7; = s; for all ;. So, to begin

with, we have
Mm=lg=tltih=...=%+... 4+l =Jo=Jo+ 1 =...=Jo+ .-+ Ja -1,

whence i, = j, for 0 < ¢t < d; — 1. Next, using r;, we find that 7, = j; for
dy <t <dy;—1, and so on (this can be readily set up as an inductive argument).

Thus [ = J, as required. O

Example 1 We now show how this result can be applied. The simplest choice is
y = ag, where o € K is a suitable scalar, and g € G. For R, we may choose QH,
where H is a subgroup of G satisfying H9 C H. The choice of X € R would then be
dictated by the above data.

For ezample, suppose z € G is an element such that
H=(z,z%...,29,...)

is an ordered abelian group with gz # zg. Assume, moreover, that no power of g

belongs to H. Then y = g and R = QH satisfy i) and ii) of the theorem. Also, by

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the Malcev-Neumann Theorem [29, Theorem 2.11 p.601], R is an integral domain,
so iit) is satisfied for any non-zero X € R. To see what condition iv) imposes on a
given X, let u = X9/X in F, where F is the quotient field of R. It is then immediate
that
(x) xmr =wxm

for all r, so condition iv) is simply the requirement that u be transcendental over
Q. Since Q is algebraically closed in F, it is sufficient to have u ¢ Q. In other
words, if X is chosen such that X9 is not a rational multiple of X, then X and 1+ g
generate a free semigroup. The simplest choice is X = 1 + z, where z9 # z, since
1 +z9 = q(1l 4+ z) for some q € Q implies that either 29 = = or z9 = 1, both of which

are contradictions.

Note: Condition iv) is determined by the choice of Y as 1 + y. More complicated

choices for Y lead to more involved conditions of a similar nature.

2.2 Elementary Results

Let us restrict our attention to finite groups G for the remainder of the chapter.
Gongalves [12] has shown that F,(¢)G contains a (non-abelian) free group inside its
group of units precisely when either the Sylow-p subgroup S,(G) is not normal in G

or G/S,(G) is non-abelian. His proof was non-constructive.

The Gongalves/Passman construction [14] uses bicyclic units, that is, units of the form
1+(l—g)hgor 14+gh(1l—g), where g,h € G, g has ordern and § = 1+g+¢2+---+g™ L.
This Gongalves/Passman construction only works when you can find g,h € G such
that (g)* # (g) and (g,¢") has no elements of order p. For example, it works for

most non-abelian p’-groups.

13
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However, consider a group ring like F5(¢)G, where G = Dy, = (z,ylz™ = y? =
l,yzy = z~!'). Now the unit group will contain a free group (as S2(Da2n) is not nor-
mal in D, ), but the Gongalves/Passman construction cannot be used since when

u,v € Dom, and (u)? # u, the group (u,u") always contains 2-elements.

We develop a method of construction of free pairs which will apply to such group
algebras and in Section 2.2 we take an example, F2(t) Do, and using Theorem 19 we

exhibit a free group in its unit group.

Lemma 11 Let H C G, o, 3 € kG, 8 e U(kG). I[fHP, H*™" C H then g (8~ aB) =
B tru(a)B. (In particular this holds if H < G and H «U(kG).)

Proof:

Let ap = my(a) and @ = ag+a;. Then f~'af = B~ ao+1)8 = B B+ 5~ ey 8.
supp(B~'aB) C supp(8~'HB) = suppH = H. Thus ng(B87'aoB) = B '
(i.e. “all of” B~1aoB appears in 7y (B8~ af).)

Claim: supp(8~'a18) N H = ¢ i.e. “none of” B~ '3 appears in mg(B~1af).
Assume not, i.e. o) = ag+a;g;+... with g, g1, g2, ... € G\ H and supp(B8~'gB8)NH # &.
Say 87198 = ah1+...+ah. +b1g1 +... + bogs, withr > 1, kD a; #0fori =1, ...,7,
with A{,...,h. € H and g;,...,9s € G\ H. Then

G\H>g =p(8"98)8""
= a1 fh1B7 + ..+ a4 fh BT+ 01887 + .+ b By ST
= a1hrsr + oo + Grhor + 017 4 ...+ bygP

with A,y = BRiB7Y, ..., ko, = Bh.B! € H.

14
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Note supp(¢’ )N H = ... = supp(¢°"') N H = ¢. Indeed, if h € supp(¢” " N H
then, say, gf_l =cqh+..m>gi=chP+..=ch'+..withh' € H (as HP C H), a
contradiction as g; € G\ H.

Thus ajhryr + ... + arhor = 7g(g) = 0. Recall h.y; = Bh;87'. Assume Bh;37! =
Bh;B~! for i # j, so h; = hj for ¢ # j, a contradiction. Thus h,4, ..., hy, are all
different. Thus a; = ... = a, = 0, contradicting our assumption. This proves the

claim and hence the theorem. O

Corollary 12 Let a € kG, € U(kG). Then tr(8'af) = tr(a).
Proof:

L aU(kG), so m(B~tafB) = 7 (ma)8 = tr(a(B87108) = tr(a). O

Note the alternative definition for trace: tr(a) := (). Also, tr(a) # 0 & 1 €
supp(a). Thus m(afB) = 71 (Ba).

Corollary 13 Let a € kG, 3 € U(kG). Then wz)(f'aB) = B 'wzc)(a)B.
Proof:

Z(G) «U(KG). O

Recall that w is the augmentation map. For the main theorem of the chapter we

will need the following

Lemma 14 Let o, 3 € kG. If H is a subset of G with H* C H for all z € supp(a)
then w(mg(afB)) = w(wg(Ba)). (In particular, H « G works.)

15
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Proof:
Let

n m
a=> oz, B=)_ Buy;
=1

i=1
Then of = Ya;fjzy;. If z;y; € H then (z;y;)™ = y;z; € H by hypothesis. Thus
I:Y; € H & Y;T; € H. So
ru(af) = Y aifiziy; = wu(Ba) = Y | aiby;ai,
i,5€l jel

where [ is some subset of [1,n] x [1,m]. a

From the proof we see that the given hypothesis could be further weakened.

Example 2 Note that even if H < G then we can have wg(afB) # wy(Ba). Let
kG = F3Dsp, where Doy = (z,yleP =y?* =1,2v = z7!). Leta=1+zy and B = y.
Let H be the normal subgroup of D, containing p elements. Then wg(afB) =z and
mr(Ba) =z~

Note also that my(af) # wu(a)wu(B) [29, p.29 Ezercise 5]. For ezample ng(aa™) =
1 # 0, where supp(a) N H = ¢.

2.3 Generalised Bicyclic Units

Let us note that the proofs that Gongalves gave for Theorems 7 and 8 were non-
constructive.
Recently free groups in ¢ (kG) have been constructed using bicyclic units. Marciniak

and Sehgal proved

Theorem 15 [23] If G is any group and u € U(ZG) is a non-trivial bicyclic unit,

then (u,u”) is a non-abelian free group. O

16
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and

Theorem 16 [24, Theorem 1.7] Let G be any group. If a € ZG satisfies a® = 0 and
a#0 then (1 +a,1 + a™) is a free group.

Motivated by Theorem 15, Gongalves and Passman [14] used a similar idea to

prove

Theorem 17 Let k be a field of characteristic p > 0 containing an element t tran-

scendental over its prime subfield. Let G be a group with two elements z,y € G such

that z has order n < oo, (z)¥ # (z) and the subgroup (z,y 'zy) has no p-torsion.
Defining

n—1
a=(l—z)yz, b=2zy'(1-2z%), z= T,
=0
where § = (—1)P, we have
U(EG) D (1 +ta,1 +tbab,1 + t(1 — b)aba(l + b)) ~ C, * Cp * C)p. a

Corollary 18 [14] If G is a non- abelian torsion p’-group and k is not algebraic over
its prime field F,, then U(kG) contains a free group. O

Note that in the general situation, if we somehow had access to (not necessarily

trivial) units , 8 € U(kG) with order @ = n < oo, then letting
a=(1—a),8&, b=&13_1(1_a—1)7

1+ a and 145 are again units. Indeed, B need not even be a unit. If 8 is an arbitrary

element of kG then defining
a=(1—a)sé, b=ap(l—a™t),

we again get two units 1 + a and 1 + b. Let us call such units generalised bicyclic

units (GBUs).

17
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These units seem to have been unduly neglected, so we now turn our attention to

them. We first determine whether there exist non-trivial GBUs.

Example 3 F5S3 is semi-stmple (by Maschke’s Theorem) and non-commutative. Let
us write Sz = (z,y | 2% = y® = (zy)? = 1). Then S5 and 13 — 53 = & — 2y are central
tdempotents of F5S3. Thus Fs538; ~ Fs and F5S53(2 —ty) ~ Fs are direct summands
of F553, so
F553 =~ F5 & F5 @ non-commutative semi-simple piece of order 5*
= F5 ® F5 & M(F3).

By direct computation, F5S3 has 12 bicyclic units. But M,(F5) has more than 12
GBUs (found using GAP), so there exist GBUs in F5S3 which are not bicyclic units.

Theorem 19 Let G be any group, let o, 8 € U(F,G), o(a) =n < oo, (p,n) =1 and
define a = (1 —a)Bé, and b = &B~ (1 —al=1%). [f (ba)™ # 0 for all integers m, then
U(F,G) contains a free group.

In fact,
(1 +ta,1+thad,1 +t(1 + b)aba(l+0b)) ~ C,*C,*C,.
Proof:
a? = b? = 0, so the result is immediate by the lemma in [14]. O

Now we can use our GBUs to generalise Theorem 17.

Theorem 20 Let k be a field of characteristic p > 0, containing a transcendental

element t over its prime subfield F,. Let G be a group with a,f3 € M(FPG), ola) =

n<oo, pfn,and a=(1—0a)Ba b=aB (1 —al"Y"). Then if
p =2 and wry(&B 1a?B) # wma(&) or

p > 2 and wrp(&B o+ a™1)B) # 2wry(&)

(2.1)

18
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then U(kG) contains a free group.
In fact, (1 +ta,1 + 1lbadb,1 + t(1 + b)aba(l + b)) ~ Cp * Cp * Cp.

Proof:
By Theorem 19 it suffices to show that ba is not nilpotent. If ba is nilpotent then by
[29, Lemma p.47], we must have wm,(ba) = 0.

Case i) p = 2. Then

wra(ba) = wma(&B~N(1 + a?)B4&)
= wm(@&B™(1 + o?)B) (by Lernma 14)
= wma(&(1 + B71a2B)) (as n is odd)
= wmy(&) + wra(6 02 B)

# 0 by assumption .
Case ii) p > 2. Then

wrplba) = wmy (3712 — a — a1)84)

nwmp(&(2 — 87 (a + a7 1)8)) (by Lemma 14)

= n{2wm,(&) — w38 (o + a~1)B)}

# 0 by assumption. a

H

Note that variants of Theorems 20 and 19 will be applicable in diverse settings.
The ugly equations 2.1 are used to ensure that ba is not nilpotent. These could be
reformulated in terms of wm,, where n # p. Indeed, if v = > ¢,g is nilpotent of

order r, with 7 < p™ and fixing n, assume that supp(y) contains no elements of order

19
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dividing p™n™, for all m; € Z (except the identity element). Then

0 =wma(0) = wra(+”™)
= wmn((3 c9)"") = wmn (3257 g77))
(as wrm, annihilates [kG, kG| by Lemma 14)
=wr((F"g)) = + -+ say,
= (cg + -+ ¢, )" = (wma(7))""
If p > 0 and G is finite then F,G C kG and F,G is finite, so if we choose our a, 3
in F,G, we can check for nilpotency of ba directly, using GAP say.

Example 4 Consider a group ring like F2(t)G, where G = Dy, = (z,ylz™ = y? =
Lyzy = z7'). Now the unit group will contain a free group (as Sa(Daom) is not
normal in Dy, ), but the Gongalves/Passman construction cannot be used as when
u,v € Dam, and (u)? # u, then the group (u,u”) always contains 2-elements.

So let us take such an ezxample, say Fy(t)Dio, and attempt to construct a free
group wn its unit group.

Let G = Do = (z,y|z® = y? = 1l,yzy = z*) and consider the group algebra
F5(t)G, where t is a transcendental field element over F,. Define
a=z+y+zyand 8 = (1+z+3y)?. Direct calculation (see the Appendiz for details)
shows that o and [ are units of order 3 and 15 respectively. Using the notation of

our theorem,

a=(1+a)Béa& and b = &B'*(1 + «).

Now, direct calculation again shows that 0 # ba = (ba)?, so no power of ba is equal

to zero, so Theorem 19 applies.

Thus, (1 + ta,1 + tbab,1 + ¢(1 + b)aba(l + b)) = (T,U, V), say, is isomorphic to

20
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C?_ * C'z * Cz.
So clearly, TU and TV generate a free group. That is,

((1+ta)(l + tbab),(1+ ta)(l +£(1 + b)aba(l + b)) ) =
(14 t(z+ z* + zy + 22y) + 3(2? + z* + 2%y + zty),
1 +t(zy + 2%y + 2% + 2ty) + 3(2® + 2t + 2Py + 2%) )
s a free group of rank 2. The GAP file in the Appendiz shows that this is not a stable

free pair. O
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Chapter 3

Commutativity of the group
algebra

When F' and G are finite, an exhaustive search can be carried out (by hand or using
computer software) to check the applicability of the criterion in Theorems 20 and
19 of the previous chapter. The speed of this check is influenced by the probability
that two randomly selected elements of F'G commute. In this chapter we attempt
to determine this probability for an arbitrary finite group algebra. If R is a finite
ring, define this probability as P(R) = [-}%Iy > rer|Cr(z)|. This is the total number
of commuting pairs of elements divided by the total number of pairs of elements in
the ring.

Desmond MacHale [21] has shown that for an arbitrary non-commutative finite
ring R, P(R) < 5/8, with equality if and only if [R: Z(R)] = 4.

Letting J represent the Jacobson radical of R, the number P(R/J) can be com-

puted using either of the following two results:

N
o
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Theorem 21 (Frobenius) [16] If A is an n x n matriz over the field F, and if
f1,---, fx are its invariant factors, with f;|fi_, for1 =2,...,k, then the dimension

of Caryry(A) is 5 (21 — 1)deg fi- O

We need to set up some notation for the following theorem:

Let us work with n x n matrices, and let #(n) be any partition of n. Let b; > 0 denote
the number of times ¢ appears in the partition, so that n = b; + 2b; + 3b3 4 ---. Let
k(7) denote the total number of parts of =, that is, k(7)) = 2121 b;. Let q be a prime
power. Let

1 1 1
f(n.q) = f(n) —(1—5)(1—5;)'--(1—q—n)

forn > 1, and f(0) = 1. Then:

Theorem 22 (Feit and Fine) [10]
)

PO = ) 2 557y 7B

Lemma 23 If R;,..., R: are finite rings, then
P(Ri®---® R)=P(R))... P(R).

Proof:

[t suffices to prove the result for ¢ = 2. Here

1
P(R) = P(R1 ® R2) = 535 |Cr(z)|
| R
(r1.22)ER1@R2

23
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> (erz2)eZ(R1)OR, |CR (T2)] - Rl
1 + 2 (zrm)eRiaZ(Ry) ICR (T1)]-| Rel
+ 2 (rrma) e RINZ(R )R\ Z(R2) | CR: (1) IC R, (22)]

- Z(Il.rz)GZ(Rl)eZ(Rz) | Ry || Re| )

\

Now let ¢ = P(R;) and g2 = P(R2). Note that

1 = ZR)LIB] + (1Re] — | Z(Ro))m
%= Tn > Cr(2)] = T

rER:
where m; is the average of the sizes of the centralisers of the non-central elements of

R;. Therefore
L @lRP —|Z(RILIR
l |R:| —|Z(R:)|
for : = 1,2 (when ¢; # 1). Thus

G| R2 2| Ril| Z(Ry)| + qu| Ry *|R:|.| Z(R2)|

1
P(R) = XA +(|Bi| = 1Z(R1)D([Re| — | Z(R2)[)mima
—|Z(R1)|-|Z(R2)|-|Bi|-| Bz]
) @2|Rol.|Z(R1)| + @1 R1]-|Z(Ra)|
= m +@| Ryl = |Z(R1)])(qe| Ro| — |Z(R2)]) = Q2.

—|Z(R1)]-|1Z(R>)|

Lemma 24 Let R be a finite ring, J the Jacobson radical of R. If J C Z(R) then
P(R) = P(R/J).

Proof:
Recall Theorem 3. There is a subring S ~ R/J(R) of R such that R = S & J as
vector spaces. Let z =z, +z2, y = y1 +y2 € R, with z,,y; € S and z2,y2 € J. Then

24
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Ty = z1y1 + (T1Y2 + T2y1 + T2y2), with z,y; € S and the second part in J. Computing
yz we see that y € Cr(z) if and only if y; € Cs(z,) and

T1Y2+T2yY1+T2Y2 = Y1T2+Y2Z1+Y2T2. (*)

Note that since J C Z(R), (*) always holds here. Thus y € Cg(z) if and only if
y1 € Cs(z1). Without loss of generality, assume q; = P(S) # 1. Let m be the

average of the sizes of the centralisers of the noncentral elements of 5. Now

P(R) = |Rl|2 dcies, mes [Csra(zy + z2)|
= T {21:162(5) nes 1Cs(z) |+ 23155\2(5) et [Cs(z1)]- IJI}
= i { WP Serezis) 151+ P Spemzs) ICs(an)l }
= &= UZ(S)LISI + (8] - 1Z(S))m}
= 2z {1Z(S)LISI + aulSI? — | Z(S)|.IS|} by the proof of Lemma 23
= q1- O

Lemma 25 In the notation of Lemma 24, if S C Z(R) then P(R) = P(J).

Proof:
We use the notation of the previous lemma. Again let z =z, + 22, y =y, + y2 € R,
with z,,y; € S and z3,y2 € J. Recalling equation (*) from the previous proof,
note that y € Cr(z) if and ounly if y, € Cs(z2). Without loss of generality, assume
g2 = P(J) # 1. Again, let m;, be the average size of the centraliser of a noncentral
element of J. Thus

P(R) = nies, mez) ICs@)CI @) + Tayes, maenzn ICs(@)]1Cu(w2) |
A { ISPITLIZ() + IS S,penzi [Cole2) |}
o UJLZD+ (] = 12()])m2}
L (T2 + @l = (2D}
q2.

ll

25
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In a finite group ring K'G, finding P(KG/J) is easy, and finding P(J) is often easy,

especially when G is p-seperable.

We close the chapter by quoting two more computational results of a slightly dif-
ferent mature. Define é(R) := |U(R)|/|R|, the probability that a randomly selected

ring element is a unit. The first result may be viewed as a generalisation of Wedder-

burn’s Theorem.

Theorem 26 [22] Let R be a finite ring with unity 1 (¥ 0). If6(R) > 1— ﬁ then
R is a field. a

Theorem 27 [9] Let FG be a finite group algebra with |F| = p™ and |G| =n. Then

§FG)=6(FGI) =1 -q )1 =q7%)...(L=q "),

where Ehe product extends over the family of ordered pairs (n,q) corresponding to the

decomposition of FG/J as the direct sum of matriz rings M,(Fy). O

We will return to the consideration of §( F,G) in Lemma 73 and Example 6 in the

next chrapter.
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Chapter 4

Infinite Fields

Throughout this chapter let K denote a field of positive characteristic p which is not

algebraic over Fj.

4.1 Introduction

Theorem 28 (Sehgal [32], Hartley & Pickel [15]) Let G be a finite group. Then
the following statements are equivalent:

t) G ts abelian or a Hamiltonian 2-group.

1) U(Z@G) is soluble

wt) U(ZG) does not contain a free subgroup.

It is a natural and interesting problem to extend this result to more general group

algebras. In Section 3 we prove the following theorem:

Theorem 29 Let G be a locally finite group, F' a field whose characteristic is either
0 or p > 0, provided that G contains no p-elements and F is not algebraic over Fj.

Then the following statements are equivalent:

27
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1) G s abelian
1) U(FQG) is soluble
w1) U(FG) does not contain a free subgroup.

The case where the coefficient field K is not algebraic over its prime subfield £,
and G contains p-elements is more complicated. Gongalves gave the following result

in 1984 [12]:

Theorem 30 Let |G| < 0o, p any prime, K any field of characteristic p, not alge-
braic over F,. Then the following are equivalent:

1) U(KG) P free groups

12) G' is a p — group

117) U(KG) is soluble

In Section 2 we prove the following more detailed result for finite groups:

Theorem 31 Let |G| < oo, p any prime. Then the following are equivalent:

1) U(KG) D free groups

11) G’ is a p — group

11) U(KG) is soluble

w) U(F,G) is soluble and F,G is not equal to either Case ii) or iit) of Theorem 40.

v) % is soluble and F,G is not equal to either Case ii) or iii) of Theorem
40.
. F,G . ) . .
vi) U is soluble and F,G is not equal to either Case it) or iit) of Theorem
J(FpG)
40.

vit) Sp(G) <4 G and G/S,(G) is abelian.
viit) G/O,(G) is abelian.
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KG

iz) K is isomorphic to a direct sum of fields.
z) The unit group of K(G/O,(G)) is soluble.
z1) —L[{G)— ts soluble.
1+ J(KG)
z11) ——M)— s abelian.
1 +;]({X’G)
z11) U(KG) does not contain a free group.

14+ J(KG)
ziv) The transvections of KG are contained in 1 + J(KG).
2v) U(KG)
1+ J(KG)
zvt) U(KG)' is a nilpotent p-group.

is a p’'—group.

zvit) The torsion subset of U(KG) forms a group.

Note that for G finite, this gives us the following interesting result: provided that
either G is not a non-abelian Hamiltonian 2-group or p # 2, we have 1) = ) =
11) = 1v), where the statements z)...7v) are given below:

1) U(K'G) contains a free subgroup for some field of characteristic p > 0,

12) U(K'G) contains free subgroups, where K is a field of any positive characteristic
(except possibly one positive characteristic),

w1) U(ZG) contains free subgroups,

1) U(FG) contains free subgroups for all fields F' of characteristic 0.

In Section 3 we prove a result analogous to the previous theorem, but for locally

finite groups:

Theorem 32 Let G be a locally finite group, p any prime. Then the following are

equivalent:
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1) U(KG) P free groups

11) G’ is a p — group

vii) There ezists a mazimal p — subgroup P of G with P <« G and G/P an abelian
p'-group.

viit) G/Oy(QG) is abelian (and therefore a p'—group).

z1) U(KG) is locally soluble.

zvit) The torsion subset of U(KG) forms a group.

Also, if G' is finite then 7) is equivalent to each of the followi ng:

1) U(KQG) is soluble.

w) U(F,G) is soluble and the two new ezceptions in [5] do not occur.

All of these results can be viewed as variations on Tits Alteernative, applied to the
unit group of a group ring. In Section 4 we define two new chains of unit groups,
U, and U,, and examine their properties using the previous tlkheorems. Section 3 lists

corollaries of Theorems 2 and 3, including several results on t-he Jacobson radical.

We fix our notation as follows:

O,(G) = O, denotes the group generated by all the normal p—subgroups of G.
Sp(G) is a sylow-p-subgroup of G.

F, is the field with p elements.

Let H < G and K be a field. Then I(H) := I[(KH) := cw(KH) := A(H), the
augmentation ideal of K H. Also, A(G,H) := KGA(H).

J(R) := the Jacobson radical of the ring R.

L(R) := the sum of all the locally nilpotent ideals of R, called the Levitzki radical of
R.

N*(R) := {a € R | aS is nilpotent for all finitely generated subrings S of R}.

30
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In a ring R, if yz = 0 and r is any element then the unit 1 + zry is called a transvec-
tion. It has inverse 1 — zry and has finite order n if n = 0 in R.

Let H be a subgroup of G. We say that H has locally finite index in G if [V :
(V N H)] < oo for any finitely generated subgroup V of G.

Define the following chains of subgroups:

Up:= Uy := Uy := G.

Uy :=U(F,G), Uy := U(FpUL), ... ,Un := U(FUn-1)

U, :=U(KG), Uy :=U(KU,),... ,Up :=U(KUn_,)

U, :=UKG), Uy :=U(KU,),... , U, :=U(KU,_;)

Let H < G. Then define gUs := glUo := gl := H.

Define yU, := U(F,H),... ,gUn :=U(FpouaUn_y).

Similarly define U, := U(KH),... ,qU, := U(KgU,_,).

Lastly define g0, := U(KH),...,qUs, :== U(KgU,_,).

Thus U, = gU.,.

4.2 Finite Groups

We break up the proof of Theorem 31 into several lemmas. Parts iv) and v) of the

following result were stated by Gongalves in [12].

Lemma 33 Let |G| < 0o, p any prime. Then the following are equivalent:
1) G' is a p—group

12) G/O,(G) is abelian

i77) Sp(G) < G and G/S,(G) is abelian

w) U(KG) does not contain free groups.

v) U(KG) ts soluble.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof:

) & 11): G' is a p—group if and only if G’ < O,(G) if and only if G/O,(G) is abelian.
i) & 11): G/O,(G) abelian implies that G/O,(G) is a p'—group, so O,(G) is a
Sylow-p-subgroup of G. Conversely, S,(G) < G implies that S,(G) = O,(G).

171) < iv): This was shown in [12].

i1) & v): This follows from [19, page 106]. a

Lemma 34 Let G be finite. Then the group algebra F,(t)G contains the group ring
Fy(6)G = F((t) x G) = (RGNt with J(F,G)E) = J(F,G)E).

Proof:

The statement about the radicals is just [32, page 128]. Note that in general,
R(G x H) ~ (RG)H ~ (RH)G. |
Lemma 35 Let G be finite. Then the group 1—:{%—) is either abelian or contains

a free group.

Proof:
U(KG/J(KG)) ~ &M, ,(K;), where the K; are fields containing K [33, p.64]. If all
n; equal 1 then we are in the abelian case, and if some n; > 1 then U(KG/J(KG)) D

M,(K), which is well known to contain free groups. ([

Lemma 36 Let G be a finite group. Then the transvections of KG are contained in

1+ J(KG) if and only if G' is a p-group.
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Proof:
Define 6 to be the natural map U(KG) —» U(KG/J(KG)) ~ &M,,(K;), and let §;
be the map U(KG) — M,,(K;).
<: Since G’ is a p-group, Lemmas 33 and 35 make U(KG)/(1 + J(KG)) abelian, so
that if zy = 0 then 6(z)0(y) = 0, forcing = and y to have “disjoint projections” onto
the sum of fields. Thus for any r € &G we must have 0(1 +zry) = 14+6(z)(r)0(y) =
1, proving the implication.
=: Conversely, assume that every transvection 1 + zry is contained in 1 + J(A'G).
Now zy = 0, so 6(z)d(y) = 0 € & M,,(Fi(t)). Therefore 8(z) and 8(y) either have
“disjoint projections” or there exists an ¢ such that 0;(z),0:(y) € M, (Fi(t)), with
O:(zry) =0 for all r € KG. Withowt loss of generality, let z = 1.
Claim 1: 6,(a2ry) = 0 for all r € K'G implies that one of ;(z) or 8,(y) is 0.
Proof of Claim 1: let 8,(z) := [zi],0:(r) = [ri], and 61(y) = [yi], all n x n
matrices. Thus
Sl TwiTi O TuTi2 ... D TiTin
0,(zr) = ..
Z TniTrl Z TniTi2 - .- Z TniTin
Thus we may choose r such that if 8;(z) has a non-zero entry at, say z;;, we can
make the i** row of ,(zr) be anything we choose. Thus, as long as 6,(y) # 0, we
can make the i** row of 4,(zry) be mot all zeros. This proves Claim 1.
Thus, whenever z,y € KNG, with &y = 0, we must have that 6(z) and f(y) have
“disjoint projections”.
Claim 2: Ifforevery z,y € KG, with zy = 0, we have 6(z) and 8(y) having “disjoint
projections”, then 7{;\6—@ ~ & fields.
Proof of Claim 2: Working by contradiction, without loss of generality assume that
RS - ~ M,(Fy(t))® other factors. (The use of 2 x 2 matrices is for typographical

T(KG)
convenience - note that M,(F)(t)) will be a subring of whatever noncommutative
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factor does occur.) Now let

1 0 0 0 KG
0(z) = ({0 O:I,O,...,O) y G(y)— ([0 1:,,0,...,0) Em.

Note that since J is nil, we may lift §(z) and 6(y) to orthogonal idempotents z and
y of K'G [29, page 49]. Thus we have z,y € K G with zy = 0, but with 6(z) and 6(y)
not having disjoint projections. This contradicts our hypothesis and proves Claim 2.

Thus 7(1}\—66—)— ~ @ fields, so [19, pages 100-101] and Lemma 33 give us that G’ is a

p-group. c

Lemma 37 Let G be a finite group. Then G' is a p—group if and onl; if______U(KG)
group- p—group if ana oniy [+ J(RG)

is a p'—group.

Proof:

<«=: We prove the contrapositive. Let G’ not be a p—group. Then by Lemma 36 there

. . R J(K

is a transvection (and hence a p—element) in U(KG)\ 1 + J(KG), so - i(JE[C\z)G) is

not a p'—group.
=: Let G’ be a p—group. Then

UKG)
I+ J(KG) —

KG
U (J(I\’G)) ~ U (pfields of char p)

by Lemmas 33 and 35, say. Now if 8;(U(KG)) contains an element z of order p then

z? =1,s0 (z —1)» =0, so z = 1, a contradiction. a

Lemma 38 G’ is a p-group if and only if U(KG)’ is a nilpotent p-group.

Proof:
If G’ is a p-group then U(KG)/(1 + J) is abelian, so U’ < 1+ J, so U’ is nilpotent.
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If G' is not a p-group then U(KG) contains free groups, and therefore so does its

commutator, which cannot then be a nilpotent p-group. a

Proof of Theorem 31:

1) & 1z), by Lemma 33.

1) & 1it), by Lemma 33.

1) & wv), by Theorem 28.

wv) & v), as 1 + J is a normal nilpotent subgroup of U(F,G).

v) & vi),as U(F,G)/(1 + J) ~U(F,G/J).

1) & vii), by Lemma 33.

121) < ), by [19, page 100].

it) & iz), by [19, pages 100-101].

12) <> vie): By Lemma 33.

121) < z1): since 1 + J(K'G) is a nilpotent normal subgroup of U(K G).
1x) & zi1): The quotient is the direct sum of fields < it is abelian.
z11t) & ziz): This was Lemma 35.

12) < zwv): This was Lemma 36.

12) & zv): This was Lemma 37.

12) < zvi): This was Lemma 38.

t) <> rviz): This will be proved later in Theorem 62. a

Example 5 J(F5D,0) has dimension 8 over Fs by [18, p.459]. Thus 75_%1?5 ~ Fs2
or F5@ Fs. In fact, by the group lattice diagram in Chapter 5 we know that 7(%?;%51?5 ~
F5 @ F5. In particular, it is commutative. Note that U(FsDo) > Do, which is not
nilpotent. This contradicts the Lemma in [2], although the Theorem in that paper is
true (see [32, p.179]). Thus Fs(t)Dyo is an example of a group ring whose unit group

is soluble but not nilpotent. a
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We now give some miscellaneous results for finite groups:

Theorem 39 Let |G| < co. Let p # 2 or 3. Then U(F,G) ts soluble & U(KG) 5

free groups.

Proof:

=: U(F,G) is soluble & G’ is a p — group [32, page 205] & U(A'G) is soluble
= U(KG) 7 free groups.

&: Case i.) Syl,(G) 4 G. Here (by [12]), U(KG) D free groups, so this implication
is vacuously true.

Case ii.) Let P = Syl,(G) < G. Here U(KG) P free groups, so by [12] again, G/P
is abelian, so G' < P, so G' is a p — group, so U(F,G) is soluble [32, page 205]. O

Note: If p = 2 and U(KG) does contain free groups then U(F>G) may or may
not be soluble. Similarly for p = 3. The following theorem describes the situation in

detail.

We need the following definitions for the next result:
P:=(a,b:a®=1,b* = 1,bab™! = a3),
D:={(a,b:a*=1,b* =1,bab~! = a1),

Q= (a,b:a*=1,a® =b% bab™" = a1).

When G is a 2 — group, define e(G) := (|G| - (G : G"))/4,
r(G):=|{N <1 G:G/N ~ P}, and
s(G):={N<1G:G/N ~Dor Q}.
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Theorem 40 [27, Theorem p.211] Let F be a field (of any characteristic) and G be
a finite group. Then U(FG) is soluble if and only if one of the following conditions
holds:

i.) G ~ G, x A, where A is an abelian group (i.e. G’ is a p — group. By definition,
Go=1.)

ii.) F=F,, G'is not a 2 — group and G~ = G/02(G) =~ (C3 X ... x C3) x C, (with
C, acting by inversion on each element).

ili.) F'= F3, G’ is not a 3 — group, G ~ G3 x G, and e(G2) = 2r(G2) + s(Gz). O

Theorem 41 Let G be a finite group. Then either U(F,G) is soluble or U(KG)
contains free groups, or both.

Both happen precisely when either case ti.) or iii.) of Theorem 40 occurs.

Proof:

By Lemma 33, at least one happens. Both happen < U(F,G) is soluble and
U(KG) D free groups <& U(F,G) is soluble and G’ is not a p-group (by Lemma
33) & Case ii.) or Case iii.) of Theorem 40 happens. O

4.3 Locally Finite Groups

Throughout this section let G be a locally finite group. Note that if F' is a field of char-
acteristic p > 0 which is algebraic over F, then U(F'G) is a torsion group. (Indeed,
letting u = > uy,g9 € U(F'G), we see that u € U(K H), where K is a finite field and H

is a finite group, so u is contained in a finite group, and therefore is a torsion element.)
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Proof of Theorem 29:
Clearly 7) = i) = 7). Let p > 0. Assuming i), let z,y € G. Then U(K(z,y)) is
soluble and (z, y) is finite, so [z,y] = 1 (by Theorem 31), which implies 7). Assuming
ii1), we get that U(K(z,y)) does not contain free subgroups, so [z,y] = 1, again by
Theorem 31.

In the characteristic 0 case Theorem 7 and [32, Corollary 4.14 p.205] give the

result. 0

Lemma 42 Let p be any fized prime and let G be a locally finite group.
Then U(KG) 2 free groups & G’ is a p — group.

Proof:

G'isa p —group & H'is a p — group for all finitely generated subgroups H of G
< U(KH) ? free groups for all finitely generated subgroups H of G (by Theorem
31)

& U(KG) P free groups (indeed, if (u,v) generate a free subgroup of U(KA'G), then
letting H, := (supp u,supp v) we have |H;| < co and U(K H;) contains a free group,

a contradiction). O

Lemma 43 Let G be a locally finite group, p any prime, and let G’ be finite. Then
U(KG) P free groups <& U(KQG) is soluble.

Proof:

Clearly U(KG) soluble = U(KG) 7 free groups. For the converse suppose first
that p > 3. Then U(KG) % free groups = G’ is a finite p — group (by Lemma 42)
= U(KG) is soluble (by [5, Theorem 1]).

Next, let p = 2. Then G’ a finite 2 — group = U(K Q) is soluble [5, Theorem 2 with
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G' = N]. O

Lemma 44 Let p be any fized prime, let G be a locally finite group with G’ finite.
Then either U(FpG) is soluble or U(F,(t)G) D free groups, or both. Both happen

precisely when one of the two new exceptions (in [5]) happens.

Proof:

Assume that U(F,(t)G) 2 free groups. Then U(F,(t)G) is soluble (by Lemma 43),
so U(F,G) is soluble.

Note that both happen & U(F,G) is soluble & G’ is not a p — group (by Lemma 42).
In this case we can reduce to G finite to get by Theorem 41 that p = 2 or 3. Now

this is equivalent to one of the two new exceptions happening. [5] O

Proof of Theorem 32:
1) & i7): Lemma 42.
12) < vit): Recall that for any group G and any subgroup H, G' < H & H 1 G
& G/H is abelian. Thus, G’ is a p — group & G’ < P a maximal p — subgroup of
G & P <G & G/P is abelian.
12) <> vizz): This is exactly as in the proof of Theorem 31.
1) < z1): Let V be a finitely generated subgroup of U(K'G). Then the support of the
generators of V' is a finite set, and hence generates a finite subgroup H of G. Thus
V < U(KH). Thus U(KG) % free groups = U(KH) 2 free groups = U(KH) is
soluble (by Theorem 31) = V' is soluble. Thus 7) = z7), and the converse is trivial.
1) < zvii): This will be proved later in Theorem 62.

Assume that G’ is finite.
t) < 1122): This was Lemma 43.
121) & 1w): U(KG) is soluble & U(KG) P free groups, (as t) & i12)) & U(F,G) is
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soluble and the two new exceptions don’t happen (by Lemma 44). a

4.4 Nilpotent and FC groups

An FC group is a group in which each element has only finitely many <onjugates.
Define T(G) to be the set of torsion (periodic) elements of the group G.

Lemma 45 i): Let G be an FC group with P = 5,(G) < G. Then A(G, P) = J(KG)
is nilpotent.

i1): Let G be a locally soluble group. Then J(KG) is locally nilpotent.

Proof: Note that i) is just [20, Corollary 46.33 p.399].

() -4 (55) =

by [20, page 401 Theorem 47.l.iii]. By [29, pages 317-8], J(KP)KG C N*(KG).
But P is a locally finite p-group, so by Lemma 75 J(K' P) = A(P). Thus A(G, P) C
N=*(KG) C J(KG) [29, page 323 2nd paragraph]. Hence we get that A(G,P) =
J(KG) [20, page 18 iv]. Lastly, J(K'G) is nilpotent by [29, page 312] and [20, page
401 Theorem 47.1.iii}. 8

Lemma 46 Let G be an FC group, T the torsion subgroup of G and S,(T) a sylow
p-subgroup of T. (So(T) is defined to equal 1). Let F be any field of characteristic
p > 0. If p > 0 then assume that either F is not algebraic over F, or that G contains
a free abelian group of rank 2.

IfU(FG) does not contain free groups then
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1) T/S5p(T) is abelian and every subgroup of T/S,(T') is normal in G/S,(T).
Conversely, if i) holds and T/S,(T) < Z(G/Sp(T)) then U(FG) is locally nilpotent -

by - locally nilpotent and hence does not contain free groups.

Proof:

T < G [6, page 201] and T is locally finite. Assume that U(FG) does not contain
free groups. We may assume without loss of generality that G is finitely generated.
(As 7) involves only local properties). Thus T is finite [36]. Thus U(FT) does not
contain free groups, so by Theorem 32, T is a p-group, so S,(T) < T, S,(T) < G and
T/S,(T) is abelian. If necessary, quotient out S,(7") to assume that G is a p’ group, it
is FC, and T is a finite abelian subgroup of G. It remains to show that every subgroup
of T' is normal in G. Proceed as in [15, proof of Lemma 4]. Assume otherwise, so let
H be a finite subgroup of G with z € G\ Ng(H). Define e = |H|"'H. Now e is an
idempotent in FH C FT. Define f = e(1 — €”). Note that supp ee* C HH* ¢ H,
so e # ee*, so f # 0. Thus f is a non-zero idempotent of FT with ff* =0 = f*f.
Define ej2 = fz,e01 = 271 f, €11 = e12e21 = f, €22 = ea1€12 = f*. Thus e;jerr = e,
where d;1. is the Kronecker delta function, 7,7, k,{ € {1,2}. Since no e;; equals 0, we
have that R := X2;_ Fe;; >~ My(F).

If F'is not algebraic over F, then FFG D R =~ M,(F') contains free groups, a
contradiction.

Assume therefore that G contains a free abelian group of rank 2. Thus by (36,
Theorem 1.7.ii) p.4] we may assume that G contains a central element y of infinite
order such that (possibly replacing y by some power of y) (y) N (H,z) = {1}. Hence
FG D F(H,z,y) ~ F({y) x (H,z)) ~ F(y) ®r F(H,z) by [19, Corollary 1.4 p.12].
Now this contains F(y) Qr Ma(F') ~ M,(F(y)®F F) by [20, Proposition 16.8.i) p.97].
By [19, Corollary 1.2 p.11] this is isomorphic (as a F-algebra) to M,(F(y)). Following
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the proof of [11, Theorem 2.5 p.367] note that this matrix ring contains the matrices

0 0
A=Y ] . B:==pP|"Y Pt
0 yt | 0 y !

where
1+
P = vy vy
-y l-y
Now A and B are elements of SL,(F(y)). By [35, Proposition 3.12], some powers of

A and B generate a free group.

Conversely, assume that ¢) holds and T/S,(T) < Z(G/S,(T)). Again we may
assume that G is finitely generated. Let G = G/S,(T). Now G is a finitely generated
p’ FC group, and by [36] it is a subgroup of the direct sum of a finite group and
an abelian group, so G’ is finite, and therefore central. Thus [G,G,G] = 1, so
G is nilpotent (of class 2) and T < Z(G), so U(FG) is nilpotent [32, Theorem
3.6 p.181-2]. By the previous Lemma 1 + A(G, S,(G)) is also nilpotent, and since
UFG)/(1+A(G, P)) ~ U(FG), we see that U(FG) is nilpotent-by-nilpotent. Thus
U(F @) is locally nilpotent-by-nilpotent.

The characteristic 0 case is similar (and a little shorter). In the converse we get

that U(F'G) is actually locally nilpotent. O

The hypothesis that G contains a free abelian group of rank 2 is not as restric-
tive as it might appear. By [36, Theorem 1.7 p.4] this is equivalent to saying that G

is not isomorphic to a subgroup of G; x C, where G, is a periodic FC group.

Lemma 47 Let G be a locally nilpotent group, T the torsion subgroup of G and S,(T)
a sylow p-subgroup of T. (Again So(T) :=1). Let F be a field of characteristic p > 0.
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If p > 0 then assume that F is not algebraic over F,. If U(F'G) does not contain free
groups then

1) T/Sp(T) is abelian and every subgroup of T/S,(T) is normal in G/S,(T).
Conversely, if 1) holds and % < Z (%) then U(F'G) is locally nilpotent - by -

locally nilpotent and hence does not contain free groups.

Proof:

Let P = S,(T). Then
UFG) G
1+ A(G,P) — U(FP)‘

Assume that U(F'G) does not contain free groups. Hence neither does U(FT'), and
since T is locally finite ( [6, Section 2] and use a finitely generated argument) we have
that T” is a p-group. Thus P < G and T/P is abelian. Let z € T'.

Now, by Lemmas 74 and 75 we get that J(F'P) = A(P) is a locally nilpotent
ideal. A quick check (and the fact that P < G) shows that A(G, P) must also be a
locally nilpotent ideal. Hence A(G, P) is a nil ideal and we get that the preimage of
a unit in U(F—g—) (under the obvious map) is a unit in U(F'G). Thus we have that
U(F —g—) does not contain free groups and clearly —g— contains no p-elements. If %l 4 %
then Theorem 17 gives a contradiction. Thus every subgroup of % is normal in % as
required.

Next we prove the converse. Again note that by Lemmas 74 and 75 we have
that A(G, P) is a locally nilpotent ideal, so by Lemma 71, 1 + A(G, P) is a locally
nilpotent group. Hence, without loss of generality we may assume that G is a finitely
generated nilpotent group without p-elements and with 7' < Z(G). Thus by (32,
p-181-2] we have that U(F'G) is nilpotent as required.

Again the characteristic 0 case is similar and shorter. In the converse we get that

U(F @) is actually locally nilpotent. O
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Note that in Lemma 47 the restriction: on the field is not needed for the converse.

Theorem 48 Let G be a group which is either FC, locally nilpotent or locally finite.
Let T' be the torsion subgroup of G ared S,(T) a sylow p-subgroup of T. Let F be a
field of characteristic p > 0. If p > 0 tMhen assume that F is not algebraic over F,. If
U(F'G) does not contain free groups theen

t) T/Sp(T) is abelian and every subgrosup of T/S,(T) is normal in G/S,(T).
Conversely, if i) holds and 555 < Z ((g;%-)) then U(FG) is locally nilpotent - by -

locally nilpotent and hence does not comntain free groups.

Proof:
Let G be a locally finite group. If W(F'G) does not contain free groups then by

Theorem 32 (z) & 1)), 7) above is sattisfied. Conversely, assume that ¢) holds and

T G . . G FG
5T < Z (W) Then G’ is a p-group. So Lemma 84 gives us that F5.& = 7rey
which is commutative, so 12-,.(11(: I_?();) is albelian. Also, Lemmas 74 and 71 give us that

1 + J(FG) is locally nilpotent. The FC and locally nilpotent cases follows from
Lemmas 46 and 47.

The characteristic 0 case is trivial. O

We finish the section with a modest generalisation of a result of Coelho and Pol-

cino Milies [6, Theorem 2.3 p.203]:

Theorem 49 Let G be either locally fimite or nilpotent or an FC group. Let T be the
set (in fact a group) of periodic elementts of G anfd let F' be any field of characteristic
p > 0. Then the periodic units of U(F"G) form a subgroup if and only if one of the
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following conditions holds:

1) G is abelian

12) G =T and F is algebraic over its prime field F,

122) The set P of p-elements in G is a subgroup, T' C P and if T/P is non-central

in G/P then ), the algebraic closure of F, in F, is finite and, for all z € G and all

p'-elements a € T, we have that zaz™! is of the form zaz™! = a® y, where r > 0 and
Yy

y € P. Furthermore, for every such an ezponent r we have that [Q : Fp] | r.

Proof:
By [6, Theorem 2.3 p.203] we need only prove the case where G is locally finite. If )
or 221) occur then G’ is a p-group. Either F is algebraic over F}, or it is not. If not,
then Theorem 62 gives us that the periodic units of U(F'G) form a subgroup. If F
is algebraic over F}, then the ring F'G is locally finite, so its unit group is also locally
finite, giving us that again the periodic units of U(F'G) form a subgroup.

Now assume that the periodic units of U(F'G) form a subgroup. We may assume
that F' is not algebraic over F,, and hence by Theorem 62 we have that G’ is a p-

group, so that 7) or 2:z) holds. O

The characteristic 0 version of this result is a little simpler:

Theorem 50 Let G be either locally finite or nilpotent or an FC group. Let T be the
set (in fact a group) of periodic elements of G anfd let F be any field of characteristic
0. Then the periodic units of U(F'G) form a subgroup if and only if both of the
following conditions hold:

1) T is abelian

12) For eacht € T and each = € G there exists a positive integer i such that ctz~! = t*

and, for each non-central element t € T, F' contains no root of unity of order o(t).
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Proof:

The nilpotent and FC cases are just quoted from [6, Theorem 3.2 p.204]. Assume
that G is locally finite. If the periodic units of U(FG) form a subgroup then [6,
Lemma3.l p.203] implies that T is abelian, so ¢) and 7z) hold. The converse is trivial

since G = T is abelian. a

4.5 U,

All of the previous results relate the structure of G to that of the unit group U(K'G).
This process can be repeated, as the definitions of U,, (7n and U, suggest. This
gives us a new method of constructing groups. A good deal of work has been done
to investigate subgroups V of U(KG) with the property that V is linearly indepen-
dent over the field A [4]. In this case KU(KG) contains K'V, but the latter algebra
can also be viewed as a subalgebra of K'G. Hence we also get the chain of groups
V <URV) < UKU(KV)) < --- < U(KG). Note that if V is normal in U(KG)

then this chain is a normal series.

Proposition 51 Let G be finite and let n be a positive integer. Then U, is nilpotent
for some n > 1 if and only if U, is nilpotent for alln > 1.

Proof:

It suffices to show that U; nilpotent implies U, nilpotent. So Letting U; be nilpotent,
it is soluble, so Theorem 31 gives us that G’ is a p—group. Thus the nilpotency of
G gives us that G = P x H, where P = O,(G) and H is a p’, abelian group. Thus

F,G ~ (F,H)P, where F,H is a commutative coefficient ring. Thus, by Lemma 75,
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U(F,G) ~ (1+A(P)) x U(FpH). Note that 1 + A(P) is a finite p-group and U(F,H)
is a finite abelian p’-group, so U; is nilpotent and U] is a p-group (Theorem 31).
Repeating this process we see that U is nilpotent with U} a p-group. a

Proposition 52 Let G be finite and let G' be a p—group. Then U, and U, are sol-
uble for all n, and U, is finite. (And thus U] is a p—group for all n (by Theorem 31))

Proof 1:

Since U, < (7,1, it suffices to show that U, is soluble for all n. By Theorem 31 U, is
soluble. We proceed inductively, assuming that U, is soluble. So Theorem 31 applies
to Un_y. Now Upnyy = U(KU,) is soluble

U(FpUn-1) >
1+ J(FpUnzy)

@U(K

is abelian & %%g% is abelian. But this is the case by Theorem 31. Thus Upny;

is soluble and our proof is completed.

Proof 2:

Let G be a finite group. We will show that the conditions of Theorem 31 ap-
ply if and only if U] is a p — group. U(F,G)/(1 + J) = U;/O,(U;) [1, Theorem
4] ~ @GL(n;, F;). Now p| |GL(n;, F;)| & n; > | (indeed, (p,p™ — 1) = 1 and
|GL(2, Fp)| = (p* —1)(p* —p)). Thus, U;/O,(U,) is a p’ — group & it is abelian < U]

Is a p — group. O

Proposition 53 Let G be a locally finite group with G’ a p—group. Then for all
n >0, U, and U, are locally soluble and U, is locally finite. (Thus, by Theorem 32,
U} is a p—group).
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Proof:
Note first that U; = U(F,G) is locally finite. (Indeed, if uy,...,u, € U; then
H := (supp u1,...,supp uy) is finite, so uy,...,u, € U(F,H), which is finite)
Inductively, U, is locally finite.

It remains to prove that U, is locally soluble.
Proof 1:
By Theorem 32, it suffices to prove that U}, is a p—group for all n. To start our
induction, note that Uy = G’ is a p—group. Now our inductive hypothesis is that U’
is a p—group, and we will show that U}, is a p—group. Let u = [uy,v1] ... [Um,Vm] €

U, .1, with u, u;,v; € U(F,U,). Defining

H := (supp uy,...SUpp Um, SUpp vi,...Supp vm),

we see that H is a finite subgroup of U, and u,u;,v; € U(F,H) and u € U(F,H)'.
Now H < U,, so H' < U}, so by our inductive hypothesis H' is a p—group. Therefore
Theorem 31 gives us that U(KH)' is a p—group. Thus u is a p—element, so U}, is
a p—group.

Proof 2:

We will show that U, is locally soluble for all n. Let uy, ... ,um € Uy = U(KUp-1).
Now U,_, is locally finiteso H := (supp wui,...,supp u,)isfinite, and uy,... ,um €
U(KH). Now H' < U] _, is a p—group by inductive hypothesis, so U(K H) is soluble
by Theorem 31. Thus u,...,u,, are elements of a soluble group, so U, is locally

soluble. O

Corollary 54 Let G be locally finite with G' a p—group. Then J(KU,) and J(KU,)

are locally nilpotent.
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Proof:
Just apply [20, p.399] to U,. a

4.6 Corollaries

Many of the results of this section are generalisations to the torsion subset of U(KG)
of results about periodic linear groups. In the characteristic 0 case, a result of Schur
(37, Corollary 9.4 p.113] states that any periodic subgroup of GL(n;, F;) is abelian-by-

finite. As we will see below, the positive characteristic case is much more interesting.

Corollary 55 If G is a finite group then a subnormal subgroup V of U(KG) is ei-
ther soluble or contains a free group. If G is a locally finite group then a subnormal

subgroup V of U(K Q) is either locally soluble or contains a free group.

Proof:
Apply Theorem 31 iii) and viii) and [11, Theorem 2.3]. a

Corollary 56 If G is a finite group with G' = G then U(KG)/(1+ J(KG)) contains

a free group.

Proof:
Since G' = G, G is not nilpotent, so G £ 1 + J(KG). Hence §(G) # 1, so 8(G) is
a non-abelian subgroup of U(KG)/(1 + J(KG)) (as G has no abelian images and
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by the second isomorphism theorem). Thus U(KG)/(1 + J(KG)) is a non-abelian

group, so by Theorem 31 it contains a free group.

Note that this Corollary is also a consequence of Theorem 31 parts 77), zi7) and
z121) as G' = G implies that G’ is not a p-group (otherwise G is a finite p-group and

hence nilpotent, a contradiction). a

The following lemma is a direct consequence of [5, Theorem 1].

Lemma 57 Let p # 2 or 3, let K be any field of characteristic p and let G be a
torsion group. Then U(KG) is soluble & G’ is a finite p — group. a

Theorem 58 Let G be a locally finite group, let K be any field of characteristic
p > 0 and let V be a finitely generated subgroup of U(KG). Then V satisfies the Tits

Alternative, that is, either V is soluble-by-finite or it contains a free group.

Proof:
Since V' is a finitely generated subgroup of U(K'G), we may consider G to be finite.

Let
— U(KG)
0:U(KG) — T+ J(KC)
be the natural map so that
(1+ J(KG))V
0 =
W) =T 7&e)

Now §(U(KQG)) ~ U(®M,,(K;)). Define 6; to be the projection onto the i** linear
group. Thus 0;(U(KG)) ~ GLn,(K;), a linear group. Thus, for all ¢, §;(V) satisfies
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the Tits Alternative, so 6;(V) is either a soluble-by-finite group or contains a free
subgroup. Now if some 6;(V') contains a free group then V' must contain a free group
(using the Second Isomorphism Theorem on 8(V) = (V, 1 + J(KG))/(1 + J(KG))).
Therefore we may assume that §;(V') is soluble-by-finite for all :. Thus (V) ~
[ [soluble-by-finite groups ~ a soluble-by-finite group. But 1 + J(K'G) is nilpotent,
so (V,1+ J(KQ)) is soluble-by-finite, so V is soluble-by-finite. d

Theorem 59 Let G be locally finite, K any field of characteristic p > 0. Then the
General Burnside Problem has a positive answer for U(KG) (i.e. a finitely generated
torsion subgroup of U(KG) is finite).

Proof:

Let V be a finitely generated torsion subgroup of U(K'G). Then by the preceding
theorem, V' is either soluble-by-finite or contains free groups. Therefore V is soluble-
by-finite, i.e. there exists a soluble normal subgroup S of V such that [V : S| < coc.
But a subgroup of finite index of a finitely generated group is finitely generated [30,
page 36], so S is a finitely generated soluble torsion group, and therefore S is finite.

[30, page 147]. O

Lemma 60 Let G be finite. If the set of torsion elements T of U(KG) forms a group

then it is soluble and locally finite.

Proof:
By Corollary 55, T is soluble and by Theorem 59 it is locally finite. a

Next we classify those locally finite groups G such that the torsion units TU(KG)

form a group. The characteristic 0 case has been done by S. Coelho and C. Polcino

Milies:
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Lemma 61 [6, Lemma 3.1] Let G be a group such that T(G) is locally finite and let
F be a field of characteristic 0. If TU(F'G) is a subgroup then T(G) is abelian. O

Theorem 62 Let G be a locally finite group. If U(KG) does not contain free groups
then the subset T' of torsion elements of U(KG) forms a locally finite, soluble normal
subgroup of U(KG). Conversely, if T is a subgroup of U(KG) then U(K'G) does not

contain free groups.

Proof:

Let a;,... ,a, € T. Considering only the group (supp(a.),... ,supp(a,)), without
loss of generality we may consider G to be finite. Assume that o(a;...a,) = oo.
Then o(6(a; - .-an)) = co.

(Otherwise we get 8(ay ...an)™ = 1 for some m, so (a;...a,)™ € 1 + J, a p—group,
contradicting the infinite order of a; ... a,.)

Thus o(6;(a;...an)) = oo for some i. Now §;(KG) is a field, so 8;(a;...a,)’ =
0:(a1)®...0:(a,)® =1 for some large s (s = LC M o(a;) would work). This contradic-
tion proves that 7' < U(K (). Lemma 60 completes the assertion.

To prove the converse we use a contrapositive argument. Assume that U(KG)
does contain free groups, so that G’ is not a p—group. Then choose a;,... ,a, € G
such that ([a;,q;]|i,j = 1,...,n) has order mp®, with m # 1, (m,p) # 1. Let
H = {(a,,...a,). Then H is finite and H’ is not a p—group. Thus

U(KH)

T+ I(EH = 8CIn(R) > GLa(K).

Let ¢ be a transcendental element of K over F,. Define

1 ¢t 1 0
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Then d? = e? =1, but
1+¢2 ¢

t 1

de =

Thus de cannot have finite order, since ¢ is not algebraic oven F,. Now any preim-
ages of d and e in U(K H) will be p—elements (as 1+ J is a p—group). Thus U(A H)
contains two elements of finite order which do not generate a torsion group. Hence

T is not a subgroup of U(KG). a

Lemma 63 Let G be a locally finite group. Then
z € J(KG) & € J(KH) for all finite subgroups H of G with supp z C H.

Proof:

Let H be any finite subgroup of G. Then by [20, Lemma48.2.ii)], N*(K H) = N(K H).
By Lemma 76 N*(KH) = J(KH) and N*(KG) = J(KG). Thus by [20, Lemma
48.6]

z € J(KG) & z € J(KH) for all finite subgroups H of G with supp x C H. O

Proposition 64 Let G be a locally finite group with G’ a p-group. Then %% is

abelian. Consequently U(KG)/O,(U) is an abelian group without p-elements.

Proof:
Let z € U(KG)', say z = [a1,b1]...[an,bn]. Let H be any finite subgroup of G
containing the support of z. Define H; to be the finite group generated by the set

{H,suppa,,suppb,...suppan,suppb,}. Now H is asubgroupof H,. z € U(KH,) <
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1+J(K H,) by Theorem 31, as H' is a p-group. Thusz—1 € J(KH,)NKH C J(KH)
by [20, Lemma 48.2.iii)]. Now by Lemma 63 z—1 € J(KG),so U(KG) < 1+J(KG)

as required. O

It is therefore of interest to examine the sylow p-subgroups of U(A'G) when G is

locally finite but G’ is not necessarily a p-group.

Lemma 65 Let G be locally finite and let P, and P, be sylow-p subgroups of U(KG).
If H = (P, P;) is a torsion group then P, and P, are conjugate in H.

Proof:
Consider H = (P, P,) < U(KG). Now for each [, 6;(H) is a periodic linear group
and has sylow p-subgroups Q, > ;(P,) and Q; > 6;(P2). Now Q, is conjugate to Q-

[7, p.163]. Thus there exists k; € H such that Q%) = Q,. Since this is true for all
i, there exist Q;, Q2 < U(K'G) with §;(Q;) > P; and h € H with
Qt _ @
1+J 1+J
Now TQ-FJ is a p-group, so Q; is a p-group. Thus Q:(1 +J) > P(l +J) = P, so
Qi1+ J) = P;.. Thus P! = P,. a

Note that if G’ is a p-group then the p-elements of U(K G) form a group, so trivially
we get that the sylow-p subgroups of U(KG) are conjugate. However, if G’ is not a
p-group then as we saw in the proof of Theorem 62, the p-elements not only do not
form a group, but do not even generate a torsion group. This limits the usefulness of

Lemma 65.
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Lemma 66 Let G be a finite group. Then G’ is a p—group if and only if for all
subgroups V of U(KG), V' is a p—group.

Proof:

If V' is a p—group for all subgroups V of U(KG) then clearly G’ is a p—group.

If G’ is a p—group then U(KG)/(1 + J) is abelian, so U(KG) < 1+ J, a p—group,
so V' is a p—group for all subgroups V. O

Proposition 67 Let G be a finite group of order mp*, with (m,p) = 1. Then every
p—subgroup of U(KG) is locally finite, nilpotent-by-nilpotent with derived length <
[V/(m — 1)p*] + mp® — 1, and has finite ezponent dividing p=*®', where e is the least
integer such that p® > mp® and e, is the least integer such that p®* > [\/mp® —1].
In particular, the ezponent divides p>(™+2)/2_ (Here [z] denotes the greatest integer

<z.)

Proof:

Let P be a p—subgroup of U(K'G). So P is locally finite by Theorem 59.

We start by calculating the exponent of P. First we calculate an upper bound for
the exponent of §(P). Note that §(P) < O(U(KG)) = &GLn,(F;). But §(P) is a
p—group, and since fields contain no p—elements, we need concern ourselves only with
those G L, (F;) with n; > 1. Since there is always at least one n; = 1 (see for example
[20, equation 2 p.500]), we have that the sum of the dimensions of the M, (£};) which
are not fields is < dim(KG/J) — 1 = (mp* —dimJ) -1 < (mp* — (p* — 1)) — 1
[20, p.501] = (m — 1)p®. By [37, p.-27 9.1.v)], 0:(P) has exponent dividing p°!, where
p®t > n;. Thus the exponent of §( P) is maximised if we have one matrix ring of large

dimension n;. Note that

P > (P —1)7 2 [Vmps — 1] > na.
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So the exponent of §( P) divides p(m+2)/2,

It now remains to find an upper bound for the exponent of 1 4+ J. By [18, p.422], the
nilpotency index of the ideal J(K'G) is < dimJ + 1 and this in turn is < |G| = mp®.
(Obviously J # KG, as otherwise every element of KG = 1 4+ J is a unit). Thus if
1+7 €1+ J and e is the least integer such that p* > mp® then (1 +7)?" =1+ 7" =
1, showing that 1 4+ J has exponent dividing p®*. Note that p™*% > mp®, so that
ezp(l + J) < p™*%. Finally

ezp(P) < exp(l + J) exp(8(P)) < ptter < pz(m+a),

For nilpotency observe that 8;( P) is nilpotent for all 7 [37, p.112 9.1.v)], with nilpo-
tency class < [{/(m —1)p?] — 1. Thus 6(P) is nilpotent with nilpotency class
< [\/(m—1)p*] = 1. Now 1 + J is nilpotent of class < |G| = mp® [l, Theorem

1]. But
P(1+J) P
1+J — PN(+J)

Thus P is nilpotent-by-nilpotent and has derived length < [\/(m — 1)p?] — 1 + mp*®
[31, p.39]. O

8(P) ~

Corollary 68 Let G be a locally finite group and F a field (of any characteristic).
Then in any finitely generated subgroup of U(FG) the orders of the periodic elements

are jointly bounded.

Proof:
If V' is a finitely generated subgroup of U(F'G) then it is a subgroup of U(F H) for
some finite subgroup H of G. Now 1 + J(F H) is a p-group, so by Proposition 67 it

has bounded exponent. A corresponding property of finitely generated linear groups
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[26, Lemma 2.1.1 p.890] completes the proof. g

We will give examples in the next chapter.

Theorem 69 Let G be a finite group. Let V' be an arbitrary subgroup of U(KG).
Then V is either soluble-by-locally finite or it contains free groups.

Proof:
Just apply [37, Cor 10.17 p.145] and Lemma 72. o

4.7 The Jacobson Radical

We start by examining the structure of J(A'G), where G is finite. We will need the
following lemmas.

For completeness we record a proof of the following result (see [1, page 73]):

Lemma 70 Let N be a nilpotent ideal of a ring R. Then 1+ N is a nilpotent normal
subgroup of U(R), of nilpotency class < the nilpotency indezx of N.

Proof:

Ifz € Nwithz" =0then (14+z)'=1-z+22—23+ .-zt €1+ N,s0l+ N
is a subgroup of U(R) and is normal since N is an ideal.

We will prove by induction that for u;,...,u, € 1 + N, (us...,un) — 1 € N®
for all n. Here ( , ) denotes a group commutator and [ , | denotes a Lie bracket.

Write u; = 1 + n;, with n; € N for all N. To start the induction, note that
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(ur,u2) = 1 + uilugtur, uz], so (up,us) = 1 = ulluy ' {(1 + n1)(1 + ny) — (1 +
n2)(1 +n1)} = urtus!(niny — nony) € N2 Now assume the hypothesis for n = &
and we will prove it for n = k + 1. (uy,... ,ux41) — 1 = (w1, ... sup)sugyr) — 1 =
(s - e ur) g (U s k), i

= (ug,.-., uk)‘lu,;l_l[(ul, ceesUk) — Liuggr] = (wy .- -, uk)‘lu;_l_l[a, Uks1], With o €
N* = (ug,... ,ug) ugl (@nigr —ngpa) € N6+ This proves the induction and the

Lemma. O

Lemma 71 Let N be a nil ideal of a ring R. Then 1 + N is a normal subgroup of
U(R). If R has characteristic p > 0 then 14 N is a p-group. If N is locally nilpotent
then 1 + N is a locally nilpotent group.

Proof:
The first two statements are obvious and the third is proved as follows: Let z;,... ,z, €

N, and let NV, be the ideal of R that they generate. Then V| is nilpotent so by Lemma

70,14+ z,...,1+z, €1+ N, a nilpotent group. O

Lemma 72 Let K be any field of characteristic p, let |G| = p*m < oo, with (p,m) =
1 and let G’ be a p—group. Then

i) J(KG) = lann(P) = {3,679 € KG| Y cp Tgs =0 Vg € G}

={DzecTe9 € KG| ) c,pzr =0Vg € G} = A(G, P) = KGJ(KP).

1) U(KG) ~ (1 4+ J) % A for some abelian group A.

117) 1 4+ J is a normal nilpotent p — subgroup of finite ezponent in U(KG).

w) dimg J(KG) = |G| - |G/P| =m(p* — 1)

v) When K = F, we get |1 + J| = p™(P*~1),

vi) KG[J(KQG) ts a semisimple commutative K-algebra of dimension m.
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vit) J(KG) is a nilpotent ideal.
vitt) 1 + J(KG) = O,(U(KG)) is a nilpotent normal subgroup of U(KG).

Proof:

i) G is p — soluble (in fact G is soluble) [30, p.261]. Thus J(KG) = lann(P) [20,
P47 = {3 ;e %99 € KG| 2 cpTes =0Vg € G} = {3, 6799 € KG| X cppar =
0Vg e G} = KGI(P) [29, p.68]. Recall that I(P) is nilpotent [29, p.70].

Also, J(KG) = KG J(KP) [20, p.461 Prop 52.11.].

i) Recall [20, p.337] that RG/RG I(N) ~ RE for all N < G. Thus KG/J(KG) =
KG/K I(P) ~ K& = KA for some abelian group A. Thus KG/J =~ &fields, so
U(KG) ~ 1+ J x A, for some abelian group A, [25, p.402].

221) This was done in [1, Theorem 1].

w) dimg J(KG) = |G| — |G/ P| [20, p.459].

v) Thus, if |G| = p®m, with (p,m) =1, and K = F,, then |1 + J| = p™®*~1).

vt) Thus KG/J(KG) is a semisimple K-algebra of dimension p*m — (p®*m —m) = m
and is commutative by z).

vit) This is shown in [20, page 357].

vii) See [1, Theorem 4 and first line of section 4] and Lemma 70. a

Lemma 73 Let G be a finite group with |G| = p*m < oo, with (p,m) =1 and let G’
be a p—group. Then |U(F,G)| € [p™®*~N(p —1)™, pm*-U(p™ —1)].

Proof:
By Theorem 31, U(F,G/J(F,G)) ~ U(F,G)/(1 + J(F,G)) ~ U(&fields). But
F,G/J(F,G) is an Fp-algebra of cardinality p**™/p™(*~1) = p™.  So since it is a
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direct sum of fields, the order of its unit group is in the interval [(p—1)™, p™ —1]. O

Example 6 G = Dy, p = q. Thus F,G satisfies the conditions of Theorem 31.

|G| = ¢*2 = p*m. Therefore |U(F,D3,)| € [¢?9~ V(g —1)?, ¢*e~V(q% - 1)].

In fact (see the following chapter), |U(Fy;D2,)| = qq* 1q772(q — 1) = ¢*l9U(g — 1)2.
2

This tells us that FyDay/J(FyDag) = Fy & Fy. So 8(FyDag) = (£2) . O

We now turn our attention to the structure of J(K'G), where G is locally finite.

Lemma 74 Let G be a locally finite group and K a field of characteristic p > 0.
Then J(KQG) is locally nilpotent and therefore nil, so L(KG) = J(KG).

Proof:

Let H be a finitely generated subgroup of G. H is a finite group so J(ANH) is a
nilpotent ideal of K'H [20, page 357]. Hence it is locally nilpotent, so by [20, page
340] we find that J(K'G) is locally nilpotent. Since we always have L(K'G) C J(K'G)
[20, page 271}, the local nilpotence of J(KG) forces L(KG) = J(KG). a

Lemma 75 Let G be a locally finite p — group and R be a direct sum of fields. Then
J(RG) = A(G), and U(RG) = (1 + A(G)) x U(R). Note that if R = K is a field
then J(KG) = the zero-divisors of KG and U(KG) = KG\ A(G), so KG is a local
ring.

Proof:

A(G) is locally nilpotent [20, Theorem 44.2 p.351] and therefore it is nil. Thus
A(G) c J(KG) [20, p.21 Corollary 6.11]. Now % ~ R = @, F;, where the F;
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are fields. Let m; denote projection of RG onto the :** field F;. Now the kernel V;
of m; is a maximal ideal containing A(G). Thus J(RG) C N2, N; = A(G). Hence
J(KG) = A(G), so by Lemma 71, 1 + A(G) is a group of units. Hence, u + A(G) is
a set of units for all v € U(R). The remark about zero-divisors is a consequence of
the fact that group algebras of locally finite groups are algebraic [29, Theorem 3.11
and Lemma 3.12 p.53]. a

Lemma 76 Let G be a locally finite group. Then J(KG) = N*(K'G). Furthermore
KG/J(KQG) is right artinian & KG/J(KG) =~ &M, (K;) & [G : 0,(G)] < oc.

Proof:

Notice that since G is locally finite, every subgroup must have locally finite index.
Thus, by [29, page 318], N*(KG) = J(KG)KG = J(KG). The rest now follows
from [29, page 409] and [19, page 4]. O

Corollary 77 Let G be a locally finite group with [G : Op,(G)] < co. Then O,(U(KG)) =
1+ J(KG).

Proof:
§: KG = KG/J ~ &My, (K;) is defined as in the finite case. Let P = O,(U(KQG)).
Now 0;(P) = 0:(0p(U)) = 0,(0:(U)) = Ox(GLy,(K:)). We claim that the latter
group is a subgroup of Z(GL,,(K;)) = K7, a contradiction (unless §;(P) = 1) since
K; contains no elements of order p. This claim will finish the proof.

By [34, p.78], either O,(GL,,(K;)) contains SL,,(K;) or Op(GLr,(K;)) = GL2(F2)
or = GLy(F3). The first case does not happen as SLn,(K;) is not a p-group. Next
G L,(F?) is isomorphic to the dihedral group of six elements, so O(G L2 (F3)) = 1 and
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we are done. Lastly, note that GL,(F3) has order 243! = 48. Both

1 0 1
and
11 1 0
. 01
generate sylow 3-subgroups, but they are conjugate (under |: :I , say) and hence
1
O3(GLy(F3)) = 1, completing the proof. a

Corollary 78 If G is a locally finite group with G’ a p-group then KG/J(KG) is
right artinian < G/0O,(G) is a finite abelian p'-group.

Proof:
Apply Lemma 76 and Theorem 32 parts iz) and vzzz). a

Corollary 79 If G, and G2 are locally finite groups then
J(K(G1 x G2)) = J(KGY)KG, + KGJ(KG>).

Proof:
Lemma 20 and [29, page 329]. a

Lemma 80 Let G be a locally finite group with {G : O,(G)] < oo. Then either

1_3-{.(1?1—?();) s abelian or it contains free groups.
Proof:
U(KG) -
T+ ARG = U(®Mx, (K3)),
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where K; is a field containing K. If some n; > 1 then U(@&M,,(K:(¢))) D M>(K) D
a free group by the usual construction.

Hence we may assume that all n; = 1, in which case the quotient is abelian. O

Lemma 81 Let G be a locally finite group with [G : O,(G)] < oo. Then the transvec-
tions of KG are contained in 1 + J(KG) & G’ is a p—group.

Proof:

Proceed as in Lemma 36.

&: Let G’ be a p—group. By Theorem 32, U(K'G) does not contain free groups, so
by Lemma 80, %’5 is abelian, so J—(’;f—G) ~ @fields (Lemma 76). The rest follows
as before.

=>: By Lemma 76 we may use the previous proof, using the fact that J(K'G) is nil

(Lemma 74) to lift idempotents. O

These results may be assembled to give:

Theorem 82 Let p be any prime, G be a locally finite group, with [G : O,(G)] < oo.
Then the following are equivalent:

1) U(KG) 2 free groups

11) G' is a p — group

122) G/O0,(G) is abelian

v) Sp(G) < G and G/S,(G) is abelian.

v) U(F(t)G) is locally soluble

vi) U(KG)/(1 + J) is abelian

vit) The subgroup of U(KG) generated by the transvections is contained in 1+ J(K Q)
viii) KG/(J(KG)) ~ & fields. O
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All of these results can be viewed as variations on Tits Alternative, applied to the

unit group of a group ring.

Lemma 83 Let K be a field of characteristic p > 0 and let G be an infinite locally
finite group with [G : 0,(G)] < co. Then J(KG) is not a nilpotent ideal.

Proof:

By [20, page 357], J(KG) is nilpotent if and only if there exist subgroups P and
H of G such that P is a finite normal p—subgroup of G, H has finite index in G
and J(KE) = 0. Now by [20, page 455], J(KZ) = 0 implies that O,(H/P) = 1,
that is, Op,(H) = P. So choose any groups P and H satisfying these criteria. Now
O,(G) N H < P because P = O,(H) (every p—subgroup of H which is normal in &G
is also normal in H). Now by the Second Isomorphism Theorem,

OG)H _  H P
0,(G) ~O0,(GNH  O,GnH

and since [{G : O,(G)] < oo, we have that

H < H _|O0.(G)H < o
P O,(GYNH| | 0,(G) ’
Thus, |G| =[G : H|[H : P][P : 1] < oo, a contradiction. a

Thus for G locally finite we see that either
?) "TG is semisimple, or

11) J(A'G) is nilpotent,

or neither, but not both.

This makes it impossible to proceed as in the case of G finite.
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Example 7 Let F be any field of characteristicp > 0. Let G =P x (Q; X Q2 x ---),
where the P is a finite p-group, the @Q; are p'-groups with |Q;| finite and bounded and
there are infinitely many Q;’s. Then J(FG) is a nilpotent ideal. Indeed, G/P is an
FC group, so by [20, Theorem 47.1 p.401], J(F$) = 0. Hence we have the nilpotency
of J(FQG) by [29, Corollary 1.14 p.312].

Recall that we already had that J(KG) = A(P)KG when G is finite.

Lemma 84 Let G be a locally finite group with G' a p—group and K a field of char-
acteristic p. Let P = O,(G). Then J(K(G/P)) = 0 and J(KG) = (J(KG) N
KP)KG=J(KP)KG = A(P)KG.

Proof:

The fact that J(KG/P) =0 is a consequence of [20, page 315 Thm38.2] (and also a
consequence of [20, page 349]).

By Theorem 32, G/P is a locally finite abelian p’ — group. Now apply [20, pages 329-
330] and Lemma 75 to get that J(AKG) = (J(KG) N KP)KG Cc J(KP)RKG =
A(P)KG. Now apply [29, page 317 Lemma2.5] to get J(NP)KG C N*(KG).

Lemma 76 now gives us the result. a

By Theorem 32 we knew that if G’ is a p-group and O,(G) is finite then U(A'G)

is soluble. We can improve this result somewhat:

Lemma 85 Let G be a locally finite group with O,(G) finite. If G' is a p-group then
J(KG) is nilpotent and U(KG) is a nilpotent p-group - by - abelian p’-group.
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Proof:
Now G/O,(G) is an abelian p’-group, so it is an FC-group and Lemma 84 gives us
that J(K(T,,C(;_GT) = 0. Hence [20, Proposition 44.15 p.357] implies that J(K'G) is
nilpotent. Lemma 84 also gives us that
K G ~ KG _ KG
A(O(G))KG  J(KG)

'
0,(G)
with an abelian p’ unit group.

Since 1 + J(A'G) is a nilpotent p-group we are done. a

In particular, if G is locally finite with O,(G) finite then we have that the nilpo-

tence of the unit group implies the nilpotence of the Jacobson radical.

Example 8 In Lemma 85 we cannot remove the condition that G' is a p—group. If
G’ is not a p—group then U(KG) contains free groups, and hence is not even soluble.
However, Example 7 shows that J can still be nilpotent, even when U(KG) contains

free groups. d
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Chapter 5

Examples

Example 9 We study the group lattice of the unit group of certain dihedral groups.
We start with U(F,D2,), where p is an odd prime. The results of the previous chapter
will then be applied to this group and its infinite counterpart U(K Ds,).

Write Dayp = (z,ylz? = y? = 1,2¥ = z71).
We start by calculating the radical of F,D,p. J := J(Fp,Dap) = the left annihilator of
the sum of the p-elements of Doy, = lann(Z) [20, page 473, Corollary 53.13]

p—1 p—1 p—1 p—1
= {z aizi -+ Z bixiy[ Z a;=0= Z bi}.

i=0 i=0 i=0 i=0

Thus |J| = p?®~Y). Thus |F,Dsp/J| = p?? [p*P~™V) = p?, s0 F,D2,/J ~ F,2 or F,&F,.
Note that F,D,,/J is generated (as an F,-space) by 1 +J and y+ J. But ifa,b € F,
we have (a + by +J)?P =a? +bPy+J =a+by+J (asc? ! =1Vee Cpy). Thus
every element of F,Ds,/J is either not a unit or has order dividing p — 1. Thus
FyDop|J # Fp2, so FyDop/J = F, & F.

Thus U(FpD2p) >~ (14 J) % (Cp—1 X Cp—y), and we will concentrate on V(F,Dzp,)
(14 J)xCpy.

Note that e := (1 +y) and f := L(1 — y) are orthogonal idempotents of FpDop,

50 FyDyp/J = F,722[19,p.14] = F, @ F, = Foe ® Fof = Fp(1 +y) @ Fp(1 —y). Thus
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F,Ds, has augmentation ideal A(D2p) = Fo(1 — y) + J. Note that not all elements
of 1 + A(G) are units [19, page 42] and JP = 0 [20, top of page 462], so 1 + J has
exponent p.

We will calculate Cy(z) = {v € V|vz = zv}. Let

p—1 p—1
a = Za,—z‘ + Zb,-a:‘y € Cy(z).
=0 =0

Then

p—1 p—1 p—1 p—1
vV — v = Z a;zt + Z b;:z:i_ly - (Z a;zt ! 4 Z b;:ci“y) =0,

1=0 =0 =0 i=0

so Y P75 Lp,zi+l = f__fol b;xz*~'. Thus b; = by, 5 for all i. Hence bg = by = by = ... =

bp_y =by =bz=...=b,_, = bg. Thus there exists b € F, such that b; = b for all 1.
Thus Cv(z) = {30 aiz’ + bS5 P ziy| SP  a; = 1}.
Also,

p

Cv(z) =~ [[ Cs.

=1

since Cv(z) is abelian and being contained in 1 + J, it must have exponent p.
Note that Cy(z) = CF,p,,(z) \ A(G).
Now by [19, p.44] we have

Nv((z)) = Np,,({(z})Cv(z) = D2 Cv(z) = Cv(z) + yCv(z)
=1+ {ia;xi+biziy ia; =O} + {az.z +bey Zb —0}
=0 =0 =0 =0 =0
Thus |Ny({(z))| = 2p®. Obviously, Cv(z) < Ny({(z)). Note that Z(V) = Cv(z) N

Z(F,Dap) = {000 aiz' +6 Y720 2iy| S0 ai = 1&a; = a_Vi}. Thus |Z(V)|=p™F
Thus we get the following group lattice diagram:
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. Cula)
D, 1I <, =
NS
(y) %) Z(V)

Note that 1 + J(F,D2p) has ezponent p. Proposition 67 gives us that 1 + J has
ezponent < p*t V1Pl = p3+IVAl In K Dg we have that 1 + J has ezponent dividing
33+ = 3% Alternatively, note that 32 > 6 to see that 1 + J has erxponent dividing

p2l = 33,

Again use Proposition 67 to see that the exponent of 1+J(F2D5p) is < gp+1+(y/2(p—1)]
In KDg (char K = 2) we have that 1 + J has ezponent dividing 2**% = 25. Alterna-

tively, note that 2° > 6 to see that 1 + J has ezxponent dividing 23%? = 25,
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Example 10 Here we construct a pair of generators of a free subgroup of U(KG),
where G is the quaternion group of eight elements and K is a field of characteristic
3. This is of special interest bacause it is one of the few cases omitted in [13] in
their construction of free pairs in group algebras. The construction in [13] relies on
Theorem 17, which does not apply to hamiltonian groups because of its reliance on the
non-triviality of the bicyclic units. However, we can construct non-trivial GBUs here.
We write the quaternion group as Qs = (z,yl|z* = 1,z2% =y, y~lzy = z7!). Consider
the element o := z—z3—y € F,Qs. Now letting p = 3, we see that a is a unit of order
2. Define a := (1 —a)ya and b := &y~ (1l — ). Now ba = &y~ (1 —2a + o?)yéa =
2+ 2+ 22+ 223 + y + 222y (see the appendiz for the calculations in GAP). Thus
wmp(ba) = tr(ba) (since Qs is a 2-group and p # 2) = 2 # 0. Thus by Theorem
20 we see that (1 + ta,l + 1bab) >~ Cs x C3, where t is an element of K which is
transcendental over Fs. By [28, p.371] this group is also isomorphic to

<R= Pt s |0t ><P5L(2,Q).

1 0 11
Now
-1 -2 1 2 9 2 1 0
RS = = , and R°S* = ,
0 -1 01 2 1

and these two matrices are well known to generate a free group [17, p.92]. (The fact
that we are in PSL(2,Q0) does not affect the freeness of the group. Indeed, considered
as elements of SL(2,Q), RS and R2S? generate a free group of rank 2, and this group
contains no normal subgroup of order 2 (in particular it does not contain {I,—1}),
so mapping (RS, R?*S?) from SL(2,Q) to PSL(2,Q) does not alter the structure of
this subgroup. Thus ((1 + ta)(1l + tbad), (1 + ta)?(1 + tbab)?) is isomorphic to a free
group.

The following observations may also be of use in constructing free groups in FyQs.

Note that for any characteristic p # 5 we have that « = z — z® — y € F,Qs is a unit.
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Indeed, o® = —2 + 3z% € F,(z?) = F,Co ~ F, ® F,. In this group algebra o® is a
unit with inverse % + g:z: Note that every unit of F,C, has order dividing p—1, so «
has order dividing 2(p —1). Again define a := (1 —a)yé and b := &y~ (1 — o). Now
ba = &y~ (1 — 2a + at)yd = &(—1 + 2z + 32?2 — 223 + 2y)& = &4B4, say. Now if ba
is nilpotent then wm,(ba) = tr(ba) = 0 = tr(&*B = n tr(&B), where n = o(a). Thus
tr(ba) = 0 implies tr(&f) = 0, since p does not divide n. But given the order of , it
is not a difficult matter to find tr(ag).

Claim:

o(a) = 2n for some n and tr(aB8) = Z}:é(—ii)j‘“ .

Proof: First note that since the augmentation map is a group homomorphism
from U(KG) to K=, the fact that w(a) = —1 forces a to have even order. Now
let o(a) = 2n. Now tr(aB) = tr(B8) + tr(aB) + ;:11 tr((e® + o¥t)3) = -1 +
—4 + ;‘;11 tr((a®(8 + afB)). Note that tr((a®(8 + aB)) = tr(a¥r 2y (B + af)) =
tr(a®(—1 + 322 + —4 + 2z?)) = tr(a¥ (=5 + 52?)) = 5tr(c®U~Va?(—~1 + z?)) =
5tr(a?U-1(5 — 52%)) = (=1)15%r(a?U~V(~1 + 2?)) = (=1)/5Fttr(—1 + 2?) =
(=5)*!, by an easy induction. Thus tr(&8) = —5 + 31—} (—5)7F! = Y "7 (—5)/*".
O

Example 11 Nezt we construct a pair of generators of a free subgroup of U(KG),
where G = As is the alternating group on five elements and K is a field of character-
istic 2. This will be of interest because the free pair generated will not be stable (fired
by the involution map), as compared with [13], where a technique based on Threoem
17 is given for the construction of stable free pairs in group algebras. Note also that
Theorem 17 does not apply here since As has no subgroup of order 15 [38, p.138].
Consider the elements z := (1,2,3,4,5),y := (1,2,4)e = (1,2,3)8 := 1 +
G(zyz? + 23)(1 + y); € F,As. Now letting p = 2, we see that 3 is a unit of order

2

e
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Define a := (1 + a)Bé& and b := &6(1 + a).

Nowba = (3,4,5)+(2,3)(4,5)+(2,4,5)+(1,2)(4,5)+(1,2,3,4,5)+(1,2,4,5,3) +
(1,3,4,5,2) + (1,3)(4,5) +(1,3,2,4,5) +(1,4,5,3,2) + (1,4,5) + (1,4, 5,2,3) (see the
appendiz for the calculations in GAP). Thus wrp(ba) =3 =1 # 0. Thus by Theorem
20 we see that

(L +ta,1+ 1bab, 1+ t(1 4 b)(aba(l + b)) =~ C, * Cy * C, where t is an element of
K which is transcendental over Fy. By [28, p.371] this group is also isomorphic to

< [0 1} [1 1 J {—1 —2J>
T = U= V= < PSL(2,Q).
~1 0 —2 -1 11

Now in this notation

|13 , 10
C,=TUV = and D, =TVU = ,
01 31

and these two matrices are well known to generate a free group [17, p.92]. (The fact
that we are in PSL(2,Q)) does not affect the freeness of the group. Indeed, consid-
ered as elements of SL(2,Q), TUV and TVU generate a free group of rank 2, and
this group contains no normal subgroup of order 2 (in particular it does not contain
{I.-1}), so mapping (TUV,TVU) from SL(2,Q) to PSL(2,Q) does not alter the
structure of this subgroup. Thus (c,d) = ((1+ta)(1l+tbab)(1+¢t(1+b)aba(l+5b),(1+
ta)(1 + t(L + b)aba(l + b))(1 + tbabd)) is isomorphic to a free group. The appendiz

shows that ¢ and d are not a stable free pair.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] J.M. Bateman. On the solvability of unit group of group algebras. Trans. 4mer.

Math. Soc., 157:73-86, 1971.

[2] J.M. Bateman and D.B. Coleman. Group algebras with nilpotent unit groups.
Proc. Amer. Math. Soc., 19:448-449, 1968.

[3] A.A. Bovdi. Free subgroups of the group of units in group algebras. Publ. Math.
Debrecen, 49:157-165, 1996.

[4] A.A. Bovdi and LI. Hripta. Normal subgroups of the multiplicative group of a
ring. Math. USSR Sbornik, 16(3):349-362, 1972.

[5] A.A. Bovdi and L.I. Khripta. Group algebras of periodic groups of a solvable
multiplicative group. Mat. Zametki. (Translated in Math. Notes of the Acad. of
Sciences of the U.S.S.R.), 22:421-432 (725-731), 1977.

[6] S. Coelho and C. Polcino Milies. Group rings whose torsion units form a sub-

group. Proc. Edinburgh Math. Soc., 37:201-205, 1994.

(7] J.D. Dixon. The Structure Of Linear Groups. Van Nostrand Reinhold Company,

London New York Cincinnati Toronto Melbourne, 1971.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[8] Y.A. Drozd and V.V. Kirchenko. Finite Dimensional Algebras. Springer-Verlag,
Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Bu-

dapest, 1994.

[9] H.K. Farahat. The multiplicative groups of a ring. Math. Zeit., 87:378-384,
1965.

[10] W. Feit and N.J. Fine. Paris of commuting matrices over a finite field. Duke

Math. J., 27:91-94, 1960.

[11] J.Z. Gongalves. Free groups in subnormal subgroups and the residual nilpotence

of the group of units of group rings. Canad. Math. Bull., 27(3):365-370, 1984.

[12] J.Z. Gongalves. Free subgroups of units in group rings. Canad. Math. Bull.,
27(3):309-312, 1984.

[13] J.Z. Gongalves, A. Mandel, and M. Shirvani. Free products of units in algebras
ii. cyclic algebras. Journal of Algebra, to appear.

[14] J.Z. Gongalves and D.S. Passman. Construction of free subgroups in the group
of units of modular group algebras. Comm. Algebra, 24(13):4211-4215, 1996.

[15] B. Hartley and P.F. Pickel. Free subgroups in the unit group of integral group
rings. Canad. J. Math., 32:1342-1352, 1980.

[16] N. Jacobson. Lectures in Abstract Algebra Volume II - Linear Algebra. Van

Nostrand, Princeton New Jersey Toronto New York London, 1953.

[17] M.I. Kargapolov and Ju.l. Merzljakov. Fundamentals of the theory of groups.
Translated from the second Russian edition by Robert G. Burns. Graduate Texts

in Mathematics, 62. Springer Verlag, New York-Berlin, 1979.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[18] G. Karpilovsky. The Jacobson Radical of Group Algebras. North-Holland Mathe-
matics Studies, 135. North-Holland Publishing Co., Amsterdam-New York, 1937.

[19] G. Karpilovsky. Unit Groups of Group Rings. Pitman Monographs and Surveys
in Pure and Applied Mathematics, 47. Longman Scientific & Technical, Harlow;
copublished in the United States with John Wiley & Sons, Inc., New York,, 1989.

[20] G. Karpilovsky. The Jacobson Radical of Classical Rings. Pitman Monographs
and Surveys in Pure and Applied Mathematics, 53. Longman Scientific & Tech-
nical, Harlow; copublished in the United States with John Wiley & Sons, Inc.,
New York, 1991.

[21] D. MacHale. Commutativity in finite rings. Amer. Math. Monthly, 83(1):30-32,
1975.

[22] D. MacHale. Wedderburn’s theorem revisited. Irish Math. Soc. Bull., (17):44-46,
1986.

[23] Z. Marciniak and S.K. Sehgal. Constructing free subgroups of integral group
ring units. Proc. Amer. Math. Soc., 125:1005-1009, 1997.

[24] Z. Marciniak and S.K. Sehgal. Subnormal subgroups of group ring units. Proc.

Amer. Math. Soc., 126:343-348, 1998.

[25] B.R. McDonald. Finite Rings with Identity. Marcel Dekker, Inc., New York,
1974.

[26] Y.L. Merzlyakov. Linear groups. Soviet J. Math., 14:887-921, 1980.

[27] K. Motose and Y. Ninomiya. On the solvability of unit groups of group rings.
Math. J. Okayama Univ., 15:209-213, 1972.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[28] M. Newman. Some free products of cyclic groups. Michig. Math. J., 9:369-373,
1962.

[29] D.S. Passman. The Algebraic Structure of Group Rings. Wiley, New York, 1977.

[30] D. Robinson. A Course in the Theory of Groups. Number 80 in Graduate Texts
in Mathematics. Springer-Verlag, New York, 1993.

[31] W.R. Scott. Group Theory. Dover, New York, 1987.
[32] S. K. Sehgal. Topics in Group Rings. Marcel Dekker, New York, 1978.

[33] M. Shirvani and B.A.F. Wehrfritz. Skew Linear Groups. Number 118 in London
Mathematical Society Lecture Note Series. Cambridge University Press, Cam-

bridge, 1986.
[34] M. Suzuki. Group Theory I. Springer Verlag, Berlin Heidelberg New York, 1982.
[35] J. Tits. Free subgroups in linear groups. J. Algebra, 20:250~-270, 1972.

[36] M.J. Tomkinson. FC-groups. Pitman Publishing Limited, Boston London Mel-
bourne, 1984.

[37] B.A.F. Wehrfritz. Infinite Linear Groups. Springer-Verlag, New York Heidelberg
Berlin, 1973.

[38] M. Weinstein. Ezamples of groups. Polygonal Publishing House, Passiac NJ,
1977.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A

Appendix

Here we use “LAG - Lie Algebras of Group Algebras”, an extension package for GAP
3.4 developed by Richard Rossmanith (1997), to do many of the calculations men-

tioned in the examples. The examples are numbered in the order they appear in the

thesis.

Example 4:

gap

Read("lag.g");

F:=GF(2);

G:=DihedralGroup(10);

FG:=GroupAlgebra(F,G);
e:=GroupAlgebraElement ([()], [One(F)l);
x:=GroupAlgebraElement ([(1,2,3,4,5)], [One(F)]);
Xxhat:= e + x + XxX72 + X"3 + x74;

y:= GroupAlgebraElement([(2,5)(3,4)], [One(F)1);

7
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yhat:= e + y;

# The elements of D10 look like this:
#e; Z(2)"0x()+

#x; 2(2)°0%(1,2,3,4,5)+
#x~2; 2(2)°0%(1,3,5,2,4)+
#x°3; Z(2)°0%(1,4,2,5,3)+
#x~4; Z(2)°0%(1,5,4,3,2)+
#y; Z(2)°0%(2,5)(3,4)+
#x*xy; Z(2)°0%(1,5)(2,4)+
#x"2*y; Z(2)"0%(1,4)(2,3)+
#x73*y; Z(2)70%(1,3)(4,5)+
#x"4x*xy; Z(2)°0%(1,2)(3,5)+

beta := (e + x + y + x*y + x"2%y + Xx"3%y + Xx"4*y)"2;
#beta”15;
#n := 1;

#while n <= 2710 and beta"n <> e do

# n := n+l;
# od;

#n;

# gap> n;

# 15

# Thus, beta is a unit in F2D10 of order 15.

alpha:=x+y+x*y;
alpha~3;
# 2(2)"0*()+ Thus alpha is a unit of order 3.
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alphahat :=e+alphatalpha™2;

a:= (e+alpha)*beta*alphahat;
b:= alphahat*beta~14*(e+alpha);
ba:=b*a;

ba+ba~2;

# Now (ba)=(ba)~2 <> 0, so ba is not nilpotent!!

# Note that

# <(1+ta) (1+tbab), (i+ta) (1+t(1i+b)aba(1+b))> = <TU,TV> = <ci,c2> say,
# is isomorphic to a free group. Now

# cl:= 1+t(at+bab)+t~2(abab),

# and di:= 1+t(a+(1+b)aba(i+b))+t~2(a(1+b)aba(l+b)).

at+baxb;

# = X+XT2¥y+xT4+x*y
a*bax*b;

# = XT4*y+xT2+x72*xy+x"4
a+(e+b)*axb*a*(e+b) ;

# = XT4¥y+x"3Fky+xT2*ky+X¥y
a*(e+b) *axb*a* (e+b) ;

# = X"3*y+x"2%y+x"3+x74

# Thus, our free group equals
# < 14t (X+XT4+x*y+x"2%y) +t72(X"2+X T4+ " 2%y +x "4*y) ,
# 1+t (X*y+X 2%y +x "Ry +XT4*y) +£72(X"34xT4+x 2%y +X"3%y) >.

# Note that this free pair is not stable (that is, not fixed under
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# the involution mapping)

# Now clstar = 1+t (X+x"4+x*y+x~2%y)+t~2(x+x"3+x"2*y+x~4*y) and
# distar = 1+t (X*y+x"2%y+X"3ky+x"4*y)+t " 2(X+X"2+x " 2*y+x"3*y) .

# Thus cl*clstar = 1+t(clstarti)+

# £ 2((x724x74+x"2%y+x"4*y) + (X"3+x74+x"2%y+x"3*y) +

# (X+X"4+x*y+X"2%y) ¥ (X*y+X" 2xy+xX"3*ky+x"4*y)
clstart2:=(x"2+x"4+x"2xy+x"4*y) + (X+x"3+x"2*y+x"4*y) +
(X+X"4+x*y+X " 2%y ) * (X+X"4+x*y+x~2%y) ;

# =0.

# Similarly, di*distar = 1+t(0) +

# t72(x+x"24x " 3+X "4+ (X*y+X " 2k y+X "Ry X "4k y) *k (X¥Y+X T 2%y +X " 3ky+x"4*y)
dlstart2:=

XX 24X 734X 74+ (X*y+X " 2%y +x " Bky+x " 4ky ) * (X*y+X " 2xy+x " 3*y+x"4*y) ;

# =0.

# Coeff of t in cl*clstar:

(x+x"4+x*y+x~2%y) + (a+b*a*b);

# gap> (x+x"4+x¥y+x"2%y) + (atb*a*b);

# Lag.Zero()

# Coeff of t~2 in cl*clstar:

(a+b*a*b)* (x+x"4+x*y+x"2*%y) + (a*b*a*b) + (x+x"3+x~2*y+x"4*y);

gap> (at+tb*axb)*(x+x"4+x*xy+x"2%y) + (axb*a*xb) + (x+x " 3+x"2%y+x~4%*y);
Lag.Zero()

# Coeff of t°3 in cl*cilstar:

(x+X"4+x*y+x" 2%y ) * (X+X"3+x"2%y+x"4*y)

+ (X"2+X74+X"2%y+x " 4*xy) ¥ (X+X"4+x*y+x"2%y) ;
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#gap> $+x*y+x"2*y);

#Lag.Zero()

# Coeff of t°4 in cl*cistar:
(X724x"4+x" 2%y +x"4*xy) * (X+X"3+X " 2*y+x"4*y) ;

# gap> (X"2+X"4+x"2*y+x"4*y) * (x+X"3+X"2%¥y+x"4*y) ;
# Lag.Zero()

# Thus cl*clstar = 1, so c1~{-1} = cilstar.

# Coeff of t in di*distar:

(x*xy+x"2%y+x"3*ky+x"4*y) + (X*y+X"2*y+xX"3*¥y+x"4*y);
gap> (X*y+x"2%y+x"3ky+x"4*y) + (X*y+x"2%y+x"3*ky+x"4*y) ;
Lag.Zero()

# Coeff of t72 in di*distar:

(x*y+x " 2% y+x " 3*y+x"4*y) * (x*y+X~ 2% y+X " 3*y+x"4*y)

+ (X73+X74+x7 2%y +x"3%y) + (X+XT2+X"2*y+x"3*y) ;
gap> $*y) + (x+xX"2+x~2*y+x"3*y);

Lag.Zero()

# Coeff of t°3 in di*distar:
(x*y+x~2%y+xX " 3*y+x"4%y) * (X+X"2+xX "~ 2%y +x"3*y)

+ (X734+X74+x7T 2%y +x " 3ky ) *k (Xky+X 2% y+X " 3ky+x"4*y) ;
gap> $(x*y+x~2*y+x"3*ky+x"4*y) ;

Lag.Zero()

# Coeff of t~3 in di*distar:

(X73+xX74+x " 2%y +x " 3*y) * (X+X"2+X " 2*y+x"3*y) ;

gap> (X"3+x74+xX"2%y+x " 3%y ) * (x+X"2+x " 2¥xy+x"3%y) ;
Lag.Zero{

# Thus di*distar = 1, so d1~{-1} = distar.
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Example 10:

gap;
Read('"lag.g");
F:=GF(3);
P = 3;
x1 := [ [ Z(p)~0, Z(p)-0, 1,
L z(p)-0, 2+Z(p)-01 1 ;;
yi1 := [ [ 0%xZ(p), zZ(p)~0, 1,

[ 2#Z(p)~0, 0*z(p) 1 1 ;;
G:=Group(x1, y1);
#GroupId(G); = Q8
FG:=GroupAlgebra(F,G) ;
x:=GroupAlgebraElement ([x1], [One(F)]):
y:=GroupAlgebraElement ([y1], [One(F)1);
el:=x1"4;
e:=GroupAlgebraElement ([el], [One(F)]);
alpha:=x+(-1)*y+(~1)*x"3;
# 2(3)*[ [ 0*z2(3), Z(3)"01, [ 2(3), 0*z(3) 1 1+
# [ [ 2(3)70, 2(3)"01, [ zZ(3)-0, 2(3) ] 1+Z(3)*
# [ [ 203, 231, [ 23, Z(3)"01] I+
#This is a unit of order 2.
alphahat:= (et+alpha);
a:=(e-alpha)=*y*(alphahat) ;
b:=(alphahat)*y~ (-1)*(e-alpha);

ba:=b*a;
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# [ [ 0%2(3), Z(3)°0 1, [ 2(3), 0%z2(3) ] 1+z(3)*
[ Coxz(3), 2(3) 1, [ Z(3)-0, 0*Z(3) ] 1+Z(3)+*
C [ z(3)0, 0«2(3) 1, [ 0%Z(3), Z(3)~0 1 1+

[ Lz@) 0,z 01, [z(3) 0, 2(3) 1 1+

C Lz, 0¥2(3) 1, [ 0#Z(3), Z2(3) ] 1+

# Z3)x[ [ 23, z3) 1, [z, z(3) 01 1+

#
#
#
#
# Now this has trace = 2.

Example 11:

gap

Read("lag.g™");

F:=GF(2);

G:=AlternatingGroup(5);

FG:=GroupAlgebra(F,G);
e:=GroupAlgebraElement ([()], [One(F)]1);
alpha:=GroupAlgebraElement([(1,2,3)], [One(F)]);
alphahat:= e + alpha + alpha™2;
x:=GroupAlgebraElement ([(1,2,3,4,5)], [One(F)]);
y:=GroupAlgebraElement ([(1,2,4)], [One(F)]1);

yhat:= e+y+y~2;

Xhat:= e+x+x"2+x " 3+x74;

# Use the idempotent trick (and xhat say) to come up with a
# new unit for beta.

beta:= e+yhat*(x*y*x~2+x"3)*(e+y);
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betahat:= e + beta;

a:=(e+alpha)*beta*alphahat;

b:=alphahat*beta*(e+alpha);

ba:=bx*a;

# gap> ba;
(3,4,5)+(2,3)(4,5)+(2,4,5)+(1,2)(4,5)+(1,2,3,4,5)+(1,2,4,5,3)+
(1,3,4,5,2)+ (1,3)(4,5)+(1,3,2,4,5)+(1,4,5,3,2)+(1,4,5)+(1,4,5,2,3)

Note that when projected down to its 2-support, ba has

¥ ®H ®* =

augmentation =3 =1 neq O here !!!

a;
(3,5,4)+(2,3,5)+(2,4,5)+(2,5,4)+(1,2)(3,5)+(1,2,3,5,4)+(1,2,4,5,3)+
(1,2,5,4,3)+(1,3,5,4,2)+(1,3,5)+(1,3,2,4,5)+(1,3,2,5,4)+(1,4,5,3,2)
+(1 :4:5)+(1’4:5:2:3)+(1:4,2:5:3)+<1’4:3’2:5)+(1,4) (2:5)+(1:5:2)+

H OH O O®

(1,5,3,4,2)+(1,5,3)+ (1,5)(3,4)+(1,5)(2,3)+(1,5,2,3,4)+
astar:=GroupAlgebraElement ([
(3,4,5),(2,5,3),(2,5,4),(2,4,5),(1,2)(3,5),(1,4,5,3,2),(1,3,5,4,2),
(1,3,4,5,2),(1,2,4,5,3),(1,5,3),(1,5,4,2,3),(1,4,5,2,3),(1,2,3,5,4),
(1,5,4),(1,3,2,5,4),(1,3,5,2,4),(1,5,2,3,4),(1,4)(2,5),(1,2,5),
(1,2,4,3,5),(1,3,5),(1,5)(3,4),(1,5)(2,3),(1,4,3,2,5)],

[One(F), One(F),
One(F), One(F), One(F), One(F), One(F), One(F), One(F), One(F),
One(F), One(F), One(F), One(F), One(F), One(F), One(F), One(F),
One(F), One(F), One(F), One(F), One(F), One(F)]);
# astar:=
# (3,4,5)+(2,5,3)+(2,5,4)+(2,4,5)+(1,2)(3,5)+(1,4,5,3,2)+(1,3,5,4,2)+
# (1,3,4,5,2)+(1,2,4,5,3)+(1,5,3)+(1,5,4,2,3)+(1,4,5,2,3)+(1,2,3,5,4)
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+(1,5,4)+(1,3,2,5,4)+(1,3,5,2,4)+(1,5,2,3,4)+(1,4) (2,5)+(1,2,5) +
(1,2,4,3,5)+(1,3,5)+ (1,5)(3,4)+(1,5)(2,3)+(1,4,3,2,5);

b;

(3,5,4)+(2,3,5)+(2,4,5)+(2,4) (3,5)+(2,5) (3,4)+(1,2,3,4,5)+
(1,2,3,5,4)+ (1,2,4,3,5)+(1,2,5,4,3)+(1,2,5)+(1,2,5,3,4)+
(1,3,4,5,2)+(1,3,5)+(1,3,2,4,5)+ (1,3)(2,5)+(1,3,2,5,4)+(1,4,3,5,2)
+(1,4,5)+(1,4)(3,5)+(1,4,5,2,3)+(1,4,2,5,3)+ (1,4,3,2,5)+
(1,5,4,3,2)+(1,5,2)+(1,5,3,4,2)+(1,5,4)+(1,5) (3,4)+(1,5) (2,3) +
(1,5,2,4,3)+(1,5,3,2,4)+

bstar = b™* =

(3,4,5)+(2,5,3)+(2,5,4)+(2,4)(3,5)+(2,5) (3,4)+

(1,5,4,3,2)+ (1,4,5,3,2)+ (1,5,3,4,2)+(1,3,4,5,2)+
(1,5,2)+(1,4,3,5,2)+ (1,2,5,4,3)+(1,5,3)+(1,5,4,2,3)+
(1,3)(2,5)+(1,4,5,2,3)+(1,2,5,3,4)+(1,5,4)+(1,4)(3,5)+
(1,3,2,5,4)+(1,3,5,2,4)+ (1,5,2,3,4)+(1,2,3,4,5)+
(1,2,5)+(1,2,4,3,5)+(1,4,5)+(1,5)(3,4)+(1,5) (2,3)+

# R OH OH OB K OB OB R OB K OB R O H OH W R

(1,3,4,2,5)+(1,4,2,3,5)
bstar:=GroupAlgebraElement([(3,4,5),(2,5,3),(2,5,4),
(2,4)(3,5),(2,5)(3,4),(1,5,4,3,2),(1,4,5,3,2),
(1,5,3,4,2),(1,3,4,5,2),(1,5,2),(1,4,3,5,2),(1,2,5,4,3),
(1,5,3),(1,5,4,2,3),(1,3)(2,5),(1,4,5,2,3),(1,2,5,3,4),
(1,5,4),(,4)(3,5),(,3,2,5,4),(1,3,5,2,4),(1,5,2,3,4),
(,2,3,4,5),(1,2,5),(1,2,4,3,5),(1,4,5),(1,5)(3,4),
(1,5)(2,3),(1,3,4,2,5),(1,4,2,3,5)],

[One(F), One(F), One(F), One(F), One(F), One(F),
One(F), One(F), One(F), One(F), One(F), One(F), One(F),
One(F), One(F), One(F), One(F), One(F), One(F), One(F),
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One(F), One(F), One(F), One(F), Ome(F), One(F), One(F),
One(F), One(F), One(F)1);

# Recall that \omega \pi_2 (ba) =21 \neq O here, so ba is
not nilpotent and by Theorem 20 we get that U(KD10)
contains free groups. In fact, dt contains

<i+ta, 1+tbab, 1+t(1+b)aba(l+b)>, which is isomorphic
to C2*C2*C2 in the obvious way. It is also isomorphic
to {T,U,V} iso to gamma~3 (see “\cite[p.371]{Newman}.
Here T=the 2X2 matrix({0,1,-1,0] , U=[1,1,-2,-1] and
V=[-1,-2,1,1]. Here T,U and V axe considered as
matrices in PSL(2,Q),

i.e. I=-I. Note: T"2=U"2=V"2=-I=I.

Now in Newman notation: C_1=TUV=[1,3,0,1] and
D_1=TVU=[1,0,3,1].

Thus <TUV, TVU> is well known to be isomorphic to a
free group (again considered as a subgp of PSL(2,C)),
(The fact that we are in PSL(2,C) does not affect the
freeness of the group as the matrices in the group

have no negative entries, so going from SL(2,C) to

¥ B ®H #H O ¥ H H OH O H OB OB R O H OB R I}

PSL(2,C) does not alter the structure of this subgp).

Thus: <(i+ta) (1+tbab) (1+t(1+b)aba(1+b)),
(1+ta) (1+t (1+b)aba(1+b)) €1+tbab)>
is isomorphic to a free group, <c,d>, say.

Now cstar=

¥ B O ®H B

(1+t (1+bstar)astar*bstar*astar(2+bstar))
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*(1+t*bstar*astar*bstar) (1+t*astar)

and we already have astar and bstar, so we compute
cstar as follows:

Write cstar as (1+t*f) (1+t*g) (1+t*astar), where
:=(etbstar)*astar*bstar*astar*(e+bstar) ;
:=bstar*astar*bstar;

So cstar = 1+t(astar+f+g)+t~2(g*astar+f*astar+f*g)+
t"3(f*g*astar) = 1+t*h+t"2*i+t"3*j, say, where
h:=astar+f+g;
{3,5,4)+(2,3)(4,5)+(2,3,5)+(2,4,3)+(2,4,5)+(2,5,3)+
(2,5,4)+(1,2)(4,5)+(1,2,3)+(1,2,3,4,5)+(1,2,3,5,4)+
(1,2,4,3,5)+(1,2,5,4,3)+(1,2,5)+(1,2,5,3,4)+(1,3,4)+
(1,3)(2,5)+(1,4,5,3,2)+(1,4,2)+(1,4) (3,5)+(1,4) (2,5)+

H B ¥ O H # O ® # R H O O B #

(1,5)(3,4)+(1,5) (2,3)+ (1,5)(2,4)+

M.

:=g*astar + f*astar + f*g;
0+(2,3,4)+(2,4,5)+(2,4)(3,5)+(1,2)(3,4)+(1,2,3)+
(1,2,3,4,5)+(1,2,4,5,3)+(1,2,5)+(1,3,2)+(1,3,4)+
(1,3,5)+(1,3,5,2,4)+(1,3,4,2,5)+(1,4,5,3,2)+
(1,4,3,5,2)+(1,4)(3,5)+(1,4,5,2,3)+(1,4,2,5,3)+
(1,4)(2,5)+(1,5)(3,4)+(1,5)( 2,3)+(1,5,2,4,3)+

H # # ¥ # #®

(1,5,3,2,4)+

:=f*g*astar;
(0+(3,5,4)+(2,3)(4,5)+(2,3,4)+(2,4,5)+(2,4) (3,5)+
(2,5,3)+(2,5)(3,4)+(1,2)(4,5)+(1,2) (3,4)+(1,2,4)+
(1,2,4,3,5)+(1,2,5,4,3)+(1,2,5)+(1,3,2)+(1,3,5,4,2)+

#* ®H O ®H .
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# (1,3)(2,4)+(1,3,2,4,5)+(1,3,2,5,4)+(1,3,4,2,5)+

# (1,4,5,3,2)+(1,4,3,5,2)+(1,4,3)+(1,4,5)+(1,4)(2,3)+

# (1,4,2,3,5)+(1,4,2,5,3)+(1,4)(2,5)+(1,5,2)+

# (1,5,3,4,2)+(1,5,4)+(1,5)(3,4)+(1,5,4,2,3)+(1,5)(2,3)+
# (1,5,2,4,3)+(1,5,3,2,4)+

# The interesting question is: "is cstar = c or 47"

# Let us begin to answer this:

# c:=(1+ta) (1+tbab) (1+t(1+b)aba(1+b)) =

# (1+t*a) (1+c*k) (1+t*m), say, where

k:= b*ax*b;

:=(e+b) *a*xb*a*x(e+b) ;
Then c=1+t (a+m+k)+t " 2(k*m+a*m+a*k)+t "3 (a*xk*m) .

Now compute h+(a+m+k);

# ® ® B

This is not equal to zero, so cstar <> c !!!

Now let us ask: "is cstar = 472"

d = (1+ta) (1+t(1+b)aba(l+b)) (1+tbadb) =

#* ®# ®

(1+t*a) (1+t*n) (1+t*o0), say, where

:=(e+b) *a*b*ax(e+b);

ju]

:=b*axb;

(o]

Thus, d=1+t(a+tn+o)+t~2(a*n+a*xo+n*o)+t~3(a*n*o) .
Aside: ¢ and d have the same coeff of t,
(but not t~2 and t~3) as we see:

gap> (atn+o)+(a+m+k) ;

H # B B =B

Lag.Zero()
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# Now to answer "is cstar = 47", we compute

(a+n+o) +h;

(a*n+a*xo+n*o)+i;

(a*n*o0)+j;

# None of these are zero, so we conclude that <c,d> is
# a non-stable free pair

# in F(t)A_S.

# Now <c,d>=F_2, so <cstar,dstar)=F_2 also.

# (Indeed, if w(cstar,dstar)=1

# then applying * we get w_*(c,d)=1.)

# Let us check to see if c*cstar = 1:

# Let us redefine c as c=1+tp+t~2q+t~3r, where:

p:= atm+k;

q:= k*m+a*mta*xk;

r:= a%k*m;

# Then we have c*cstar = 1 + ti, +t~2) +... +t~6Y.

# The coeff of t is:

p+h;

# This is <> 0, so c*cstar <> 1. Thus F_2=<c¢,d> is

# not a subgp of the orthogonal group

# 0:={x\in KG | x*xstar=1 }.

# Now <c,d> is a free group, so <cstar,dstar> is also a
# free group. (Indeed, if w(cstar,dstar)=1 is a word in
# <cstar,dstar> then applying * we get w_*(c,d)=1 in

# <c,d>.)
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