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Abstract

The finite element method (FEM) has been commonly employed to solve the partial differ-

ential equations in different physical domains including structural analysis, heat transfer,

and electromagnetics due to its field-oriented nature, high accuracy, and capability to con-

sider complex geometries and material properties. As essential components in power sys-

tem, traditional models of transformer and transmission line cannot sufficiently represent

the often omitted but important physical phenomena like the ionized field, magnetic satu-

ration, eddy currents, and hysteresis. Therefore, finite element models are given increasing

consideration in electromagnetic transient (EMT) simulation to provide more accurate re-

sults and a comprehensive view of the physical details, which can assist engineers to make

better decisions when designing and testing equipment.

However, when seeking accuracy and detailed field information, the computational

cost of the finite element method substantially increases compared with conventional nu-

merical models. The spatial discretization generates innumerable interconnected nodes

and elements, which subsequently are assembled into a large system of equations to be

solved with matrix solvers. The computational efficiency of the finite element solver, es-

pecially for transient studies and nonlinear problems that require repetitive matrix factor-

ization, remains an intractable challenge. The prevalent trend of parallel processing using

high-performance computing resources including multi-core CPUs, many-core GPUs, and

field-programmable gate arrays (FPGAs) provides a possible solution to resolve the com-

putation efficiency issue, yet the finite element solution procedure needs to be improved

and adapted to parallelism and data dependency to efficiently utilize the parallel hardware

resources.

In this thesis, parallelism is explored at both the node-level and element-level to make

the finite element computation suitable for massively parallel processing. First, the nodal

domain decomposition scheme is proposed to solve the finite element problem with node-

level parallelism. Each finite element node and its neighbors make up a sub-domain and

each sub-domain can be mapped to one computational unit and solved independently. The
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assembling phase and matrix of the finite element method are avoided and the algorithms

are perfected for single instruction multiple data (SIMD) stream hardware such as GPUs.

The sub-domain solver works for both linear and nonlinear problems, and the mixed

boundary conditions are incorporated in the sub-domain solver to accelerate the conver-

gence. By fully using the massively parallel computing resources, the computational ef-

ficiency can be greatly improved compared with commercial software while maintaining

high accuracy. The node-level parallelism is also extended for the finite difference method

when computing the ionized field around high-voltage direct-current (HVDC) transmis-

sion line, and the Poisson’s equation and the current continuity equation are solved alter-

natively on GPU to speed up the computation.

Second, the transmission line decoupling technique is employed to solve the nonlinear

finite element problem at the element-level parallelism. Each element is decoupled from

the interconnected network using the transmission line so the nonlinearity of the decou-

pled element can be solved independently on each computational core in parallel, which

is suitable for SIMD hardware. Instead of repetitively factorizing the Jacobian matrix, a

constant admittance matrix is required and matrix factorization is required once for all.

Real-Time implementation is carried out on FPGA to explore the hardware concurrency

and data pipelining for a 2D nonlinear finite element transformer model.

In addition, to interface the finite element model with the electrical network, an indirect

field-circuit coupling scheme is proposed to extract and exchange the coupling coefficients

at each time-step. Multi-physics finite element simulation considering thermal effects is

also discussed in this thesis.
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1
Introduction

Advances in computer-aided engineering (CAE) have made simulation tools prevalent for
solving a broad range of engineering problems in the power system. Electromagnetic tran-
sient (EMT) simulation plays an important role for the design and test of equipment un-
der different operating conditions, and nowadays, the representation of different electrical
and magnetic components tends to be device-leveled, highly-accurate, and including more
physical details, thus causing the finite element method more and more widely employed.

This chapter will introduce the background and motivation conducting the research
topic of parallel finite element computation in electrical engineering, including the preva-
lent high-performance computing trend, existing state-of-the-art technique, a brief review
of commercial software, and the main challenges of the topic. The summarized contribu-
tions and the thesis outline are provided at the end of this chapter.

1.1 Finite Element Method for EMT Simulation

Lumped-element models of different components have been widely developed and used
in an EMT program [1], however, for some magnetic components such as transformers,
motors, and generators with the material nonlinearity, eddy currents, saturation, and field
distributions to consider, traditional lumped-element models are incapable of providing
detailed and accurate information. Under this circumstance, the field-oriented Maxwell’s
equations can be used to fully represent the material properties and physical details, and
provide the most accurate results compared with other simplified or equivalent model.
Among all the numerical methods to solve Maxwell’s equation, the finite element method
is the most prevalent due to its flexibility to mesh complex geometries [2]. Since the num-
ber of finite element nodes to solve can reach thousands or even millions, the solution
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efficiency usually depends on the sparse matrix solver, which is computationally expen-
sive and regarded as a notable problem especially for nonlinear and transient analysis that
involves repeated matrix factorization. Essentially, it is a trade-off between modeling ac-
curacy and computational efficiency when choosing different models.

The transformer models for EMT studies include the admittance matrix representa-
tion, star-circuit representation, and the magnetic equivalent circuit (MEC) representation
[3], [4], and these representations essentially are solving the Ampere’s law in Maxwell’s
equation based on different simplifications. For example, the lumped inductances are usu-
ally assumed constant while in fact, the values are time-varying and determined by the
winding currents and saturation conditions; In the MEC representation, the magnetic flux
through each branch is assumed constant, which is not true. On the contrary, a finite
element transformer model solves the magnetic potentials in Ampere’s law directly and
relies on fewer assumptions. Therefore, it is usually acknowledged that the finite element
model is the most accurate and comprehensive to represent a transformer, and the finite
element model is irreplaceable in applications like fault analysis. However, the bottleneck
that limits its application in EMT is the computational efficiency because the domain dis-
cretization will generate numerous nodes and elements to solve. The design and test cycles
in real application can be reduced by improving the computational efficiency of finite ele-
ment modeling, especially when the transient simulation needs to run repetitively under
different parameters and setups.

Another example of the importance of the finite element method in power system is
the calculation of the ionized field around the high-voltage transmission lines [5]. Existing
line models such as the traveling wave model and serial π models can barely describe the
corona caused by high-voltage discharging, and the coupled Poisson’s equation and the
current continuity equation governing the ionized field have to solved iteratively using
field-oriented numerical methods. Thus, due to the iterative computation of the coupled
partial differential equations, computational efficiency also remains a concern for the ion-
ized field computation [5].

Although the finite element method is capable of modeling physical phenomena ac-
curately and comprehensively, the computational efficiency problem remains a challenge
in many physical areas such as structural analysis [6], heat transfer [7], [8], and electro-
magnetics [2], and improving the computational efficiency will shorten the design cycle in
different applications. The urgency of fast computation is especially high for EMT studies
because 1) Newton-Raphson iteration is required to handle the nonlinear magnetic mate-
rial property, and 2) transient studies usually include thousands to millions of time-steps
to solve.

The primary objective of this thesis is to resolve the computational efficiency problem
of the finite element model of the power transformer and transmission line utilizing paral-
lel computing. To achieve this goal, a glance of the finite element method is necessary. The
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KX=b, K is sparse matrix 

iv. Solve the sparse system

Sparse solver

-Direct method:
· lower-upper decomposition
· Cholesky decomposition

-Iterative method:
· Jacob, Gauss-Seidel method
· conjugate gradient method
· generalized minimal residual

-For nonlinearity:
· Newton-Raphson method

Figure1.1:Procedureoftraditionalfiniteelementmethod.

finiteelementanalysisfordifferentproblemshashithertosharedthegeneralprocedureas

follows[9]:

•Meshing:discretizetheproblemdomaintomanysmallinterconnectednodesand

elements(e.g.triangularorquadrangularfor2D,tetrahedralfor3D).

•Solving:foreachelement,interpolateandobtaintheelementalequationusingdif-

ferentstrategies(variationalprinciple,Galerkin,Ritz,etc.)

•Solving:assemblealltheelementalequationstoagloballinearsystemofequations

thatinvolvesalargesparsematrix.

•Solving:applyboundaryconditionsandsolvethelinearsystemusingthesparse

solvertechnique,applyingNewton-Raphsoniterationfornonlinearproblems.

•Post-processing:obtaintheresults,plot,anddisplay.

Forthethreephases(orfivesteps)describedabove,thisthesiswillfocusonexploring

parallelalgorithmstospeedupthefiniteelementcomputingonlyinthesolvingphase.

Inotherwords,thealgorithmusedtogeneratemeshwillnotbeinvolvedandthemesh

informationisassumedgiven. Theproblemwillbesolvedwiththeproposedparallel

finiteelementsolverwithmeshinformationandothernecessaryinputparameters,and

thesolutionisthenprocessedforplottinganddisplayingusingtoolslikeMatlab.

1.2 StateoftheArt:ParallelFiniteElementComputation

1.2.1 High-PerformanceComputing

Itisnaturaltomentiontheprevalenthigh-performancecomputing(HPC)trendwhenit

comestothecomputationalefficiencyissue.Inthepastdecade,thecomputingpowerofa

workstationcanbehardlyenhancedbysolelyincreasingtheworkingfrequency;instead,

moreandmorecomputingcoresareintegratedtoincreasethecomputingcapabilityof
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Tesla V100
PCle

Tesla V100
SXM2

Tesla V100S
PCle

GPU Architecture NVIDIA Volta

NVIDIA Tensor Cores 640

NVIDIA CUDA® Cores 5,120

Double-Precision 
Performance

7 TFLOPS 7.8 TFLOPS 8.2 TFLOPS

Single-Precision 

Performance
14 TFLOPS 15.7 TFLOPS 16.4 TFLOPS

Tensor Performance 112 TFLOPS 125 TFLOPS 130 TFLOPS

GPU Memory 32GB /16GB HBM2 32GB HBM2

Memory Bandwidth 900GB/sec 1134 GB/sec

ECC Yes

Interconnect 
Bandwidth

32 GB/sec 300 GB/sec 32 GB/sec

System Interface PCIe Gen3 NVIDIA NVLink PCIe Gen3

Form Factor PCIe Full
Height/Length

SXM2
PCIe Full

Height/Length

Max Power 
Comsumption

250 W 300 W 250 W

Thermal Solution Passive

Compute APIs CUDA, DirectCompute, OpenCL™, OpenACC

Table1.1:Data-sheetofNvidiaTeslaV100GPU[12].

differentarchitecturessuchasthegeneral-purposegraphicsprocessingunit(GPGPU)and

computerclusters.

Forexample,thesummitsupercomputerhas4608workstationsandeachworkstation

isequippedwithdualIBMPower9CPUsand6NvidiaTeslaGPUs[10].Table1.1shows

thedata-sheetofoneNvidiaTeslaV100with5120Cudacoresand32GBHBM2memory.It

canbeinferredthatthesummitsupercomputerhasover110thousandsofCPUcoresand

140millionsofCudacoresavailableforhigh-performancecomputing.

Besides,field-programmablegatearrays(FPGA)arealsointegratingmoreandmore

hardwareresourcestosatisfythegrowingneedsforhigh-performancescientificcomput-

ing;forexample,theXilinxVCU118developingboardwithxcvu9pFPGAhasmorethan

1.18millionlook-uptables,2.36millionflip-flopsand6840DSPslicesformassivelyparal-

lelprocessing[11].Also,theFPGAcanbeconfiguredfordatapipeliningbyfullyunrolla

computationalinstance.

However,itisimportanttomentionthattheparallelcomputingresourcesonlyprovide

thenecessaryhardwareanddon’tsufficientlyleadtotheaccelerationofthefiniteelement

computation.AccordingtoAmdahl’slaw[13],thespeedupofaprogramislimitedbythe

fractionoftheprogramthatcanbeparallelized,implyingthattheparallelismofthealgo-

rithmistheprerequisitetoachievegoodcomputationalefficiencyviaparallelcomputing
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resources. It seems quite direct that a sequential algorithm cannot benefit from whatever
amount of parallel resources, and suitable parallel algorithms for the finite element method
is required to fully utilize the parallel computing resources.

Nowadays, the finite element computation is being deployed in high-performance
computing environments, and it remains a challenge to execute finite element computation
with massive parallelism on these computing resources having single instruction multiple
data (SIMD) paradigm. Among the most commonly used parallel strategies are the paral-
lel sparse matrix solvers (direct solver and iterative solver) and the domain-decomposition
based algorithms [2]. A brief introduction of the existing parallel strategies is presented be-
low.

1.2.2 Parallel Sparse Matrix Solver

As shown in Fig. 1.1, assembly of the elemental equations will generate a system of equa-
tions KX = b to be solved. Since each finite element node is directly connected only
with its neighboring nodes, implying most entries in each row of the matrix are zeros, the
stiffness matrix K is sparse. Therefore, the computational efficiency of the finite element
solution usually depends on the sparse solver employed. For nonlinear problems, an iter-
ative scheme such as Newton-Raphson is required to solve the nonlinearity, and for each
iteration, a linear system J∆x = r with the Jacobian matrix J still needs to be solved for
the vector increment ∆x [9].

There are two categories of methods to solve a sparse system: the direct methods [14]
and iterative methods [15]. Direct methods including the Gaussian elimination, frontal
solver, lower-upper (LU) factorization, and Cholesky decomposition seek to solve the sys-
tem analytically and obtain an accurate solution after a finite number of mathematical op-
erations [14]. All direct methods are associated with matrix factorization combined with
forwarding (for lower triangular matrix) and backward substitution (upper triangular ma-
trix). Although most of the operations of the matrix factorization are sequential, some
parallelism exists in different phases and can be utilized for parallel processing [14].

Among the most popular parallel sparse solvers are the SuperLU [16], PARallel DIrect
sparse SOlver (PARDISO) [17], and MUltifrontal Massively Parallel sparse direct Solver
(MUMPS) [18], [19]. All these solvers are LU based and explore parallelism during the
matrix factorization to make use of the multi-core CPUs of a modern computer. Issues will
arise when the problem size becomes very large such as the accumulation of the roundoff
errors caused by floating-point arithmetic and the memory requirement to store a large
number of intermediate results.

Iterative methods, on the other hand, explore the solution iteratively and seek for ap-
proximate solution satisfying the user-defined error instead of an accurate solution. All
the iterative methods start with an initial guess of the solution, and then the error between
the updated solution and the final solution gradually diminishes through iterations. The
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solution converges and the error can be controlled by users. Within each iteration, the
roundoff error will not accumulate and impair the final converged solution. The iterative
solver is memory-friendly since the required memory increases linearly with the problem
size.

The most commonly used iterative methods include the Jacobi and Gauss-Seidel method
for diagonally dominant matrix, conjugate gradient (CG) method for symmetric and positive-
definite matrix and the generalized minimal residual (GMRES) for others [15]. The number
of iterations required for convergence heavily relies on the initial guess and precondition-
ing is usually required to accelerate the iterative process. The main mathematical opera-
tions during each iteration are matrix-vector product Ax and vector inner product x1x

T
2 ,

which is very suitable for massively parallel processing. The conjugate gradient solver has
been implemented on GPU to explore parallelism for the matrix-vector multiplication and
speedup the computation [20]–[22].

Recently, the new class of assembly-free or matrix-free solution technique has also been
proposed to fully utilize the parallel computing resources to solve the finite element prob-
lem without assembling all the elemental equations to a global matrix [23]–[25]. Besides,
the matrix-free fashion is also applied to a so-called element-by-element scheme and the
matrix-vector product is done at each finite element without explicitly exploring sparse
matrix [26], [27]. The new method follows a divide-and-conquer strategy and is suitable
for massively parallel processing.

As for the nonlinearity of magnetic materials, the Newton-Raphson iterative scheme
is commonly used. It usually starts with an initial solution and then repeatedly solves
the Jacobian matrix to obtain the increment until convergence. The Jacobian matrix is also
sparse, and it keeps changing and needs assembly at each iteration, the parallel sparse
solvers aforementioned are also required for nonlinear problems.

1.2.3 Domain Decomposition Method

Another class of parallel strategy to solve a finite element problem is the domain decompo-
sition technique [28]. The number of floating-point operations required to factorize a ma-
trix will increase dramatically when the matrix size increases, for example, the complexity
of Gauss elimination and Cholesky decomposition is O(n3). Therefore, for large-scale fi-
nite element problems, it may be more efficient to partition the problem to some smaller
sub-domains to solve instead of solving the large system directly, provided the fact that
the smaller sub-domains can be solved independently using parallel processing.

On the contrary to the merits of smaller sub-domains that can be solved in parallel,
the drawback is that iterations are required for sub-domains to exchange information. Es-
sentially, the domain decomposition scheme is also an iterative method, which shares the
common features of iterative methods such as initial guess of solutions, approximate re-
sults, and convergence issue.
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(a) (b)

(c) (d)

Figure1.2:Domaindecompositionthroughiterations:(a)initialvalue,(b)2iterations,(c)
5iterations,and(d)10iterations.

Figure1.2showsasimple2Dboundaryvalueproblemssolvedusingthedomainde-

compositionmethod.Theproblemisdividedinto4sub-domainswithsomeoverlaps,and

thesolutionprogressivelyconvergestotheanalyticalsolution,whichisu(x,y)=x2+y2in

thiscase.Ateachiteration,the4sub-domainscanbesolvedwithmultiplecomputational

coresinparallel,andthenthesub-domainsexchangeboundaryconditionsintheover-

lappedzoneforthenextiteration.Althoughiterationsarerequired,matrixfactorization

ofsub-domainshappensonlyonceforallinthebeginning,andthemainoperationsare

theforwardandbackwardsubstitutionforeachiteration.Itisworthtomentionthatthe

domaindecompositionmethodworksregardlessofthelinearityornonlinearityofeach

sub-domain.

Sincetherearedifferentsub-domainpartitionstrategies,thedomaindecomposition

methodcanbedividedintooverlapping(Schwarz)schemesuchasshowninFig.1.2

andnon-overlapping(ordisjoint)schemewithsub-domainssharingonlyboundaries[28].

Basedontheiterativemethodapplied,i.e.,tosolvethesub-domainsinparallelorsequen-

tially,therearemultiplicativeandadditivesolvingschemes.Also,therearedifferentkinds
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of implementation for the information exchange between sub-domains, for example, the
Dirichlet type, the Neumann type, and the Robin type [28].

Although iterations are required for domain decomposition method, the reduced prob-
lem size and parallelized computation for each sub-domain have made it possible for high-
performance computing using multiple CPUs. It is also worth to mention that the matrix
factorization for each sub-domain is required only once, and most calculations through
iterations are mere forward and backward substitution.

1.2.4 Glance of Commercial Software

The most commonly used commercial software for finite element modeling of transformer,
inductor, and other electrical machines include Comsol MultiphysicsTM AC/DC module
[29] and Ansys MaxwellTM [30]. As finite element software, both ComsolTM and AnsysTM

are capable of modeling 2D and 3D geometries, generating the user-controlled mesh, pro-
viding built-in and user-defined linear and nonlinear materials, deploying state-of-the-art
sparse solvers, and plentiful of features for post-processing. Also, multi-physics and multi-
domain simulation are included to consider the interaction of the electromagnetic field and
the thermal field.

AnsysTM is more industry-oriented and provides convenience from the point of view of
an engineer. Since in reality transformers are fully coupled with the external electrical cir-
cuit and it is inevitable to consider the interaction of finite element model with electromag-
netic transients of power electronics or power system. Ansys MaxwellTM can perform tran-
sient field-circuit co-simulation when connected with Ansys SimplorerTM, which provides
system-level transient simulation with lots of built-in libraries for detailed device-level
components. However, Ansys MaxwellTM reveals few details of its solving procedures
such as the mesh information and provides little flexibility for the solver setup, making it
difficult to reproduce its results using different parallel solvers.

On the contrary, ComsolTM is more academic-friendly since the whole solving proce-
dure is transparent. All the intermediate data including the mesh information and the
assembled matrix can be accessed and exported. The different built-in sparse solvers in-
cluding CG, PARDISO, and MUMPS mentioned before can be selected and configured
in detail. Besides, the LiveLinkTM with Matlab and the equation-based modeling feature
provide much convenience to solve different boundary value problems. One shortcom-
ing regarding the electromagnetic transient is that the library to build external electrical
circuits includes only basic AC/DC sources and RLC components, which is not capable
of complex circuit simulations with different components like transistor and transmission
line.

Both ComsolTM and AnsysTM have released the high-performance computing (HPC)
license and parallel algorithms such as the domain decomposition method to parallelize
its solver on multiple CPUs to accelerate the computation. Recently, since the GPU is
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integrating more and more resources, AnsysTM is developing its GPU solver to further
speedup the solution phase.

Despite the resourceful hardware, the future trend of high-performance scientific com-
puting, especially the burdensome finite element analysis, still calls for suitable parallel
algorithms to fully explore the computing power of HPC resources.

1.3 Motivation and Challenges

Massively parallel computing resources like GPU follow the single instruction multiple
data (SIMD) paradigm and are most suitable for vectorized computation. The existing
parallel sparse solvers of commercial software aforementioned explore the parallelism at
different phases of matrix factorization and benefit from multiple CPUs. However, most
operations of the matrix factorization, including the forward and backward substitution,
are sequential in nature, the computation can be hardly vectorized to fully utilize SIMD
hardware. Solving a nonlinear finite element problem in a massively parallel fashion re-
mains a huge challenge and requires much investigation.

The prevalent massively parallel computational resources featured SIMD provide great
potentials to accelerate the finite element computation, especially for transient simulation
of nonlinear problems in the time domain. The commercial finite element solvers, usually
accommodated for CPUs, have not involved vectorized computation on SIMD hardware.
Therefore, exploring suitable parallel algorithms for SIMD hardware, with expected fea-
tures like vectorization and little communication between cores, would be very crucial for
future parallel finite element computation in high-performance computing environments.

The main challenges confronted include the following aspects:

• The previous finite element method, whether parallelized or not, follows the stereo-
type that the elemental equation must be assembled to a global system to solve. If
a global matrix is assembled by following the traditional finite element procedures,
the sparse solvers are essential, and it is very difficult to fully utilize the SIMD hard-
ware. Gathering all the information from each element and node into a global system
will somehow impair its potential for decentralized or parallel computation. Some
out-of-box thinking is required to alter the traditional solution procedure to explore
suitable parallel solving technique on SIMD hardware.

• To solve the nonlinearity, the most popular method has been the Newton-Raphson
iterative method. For each iteration, the Jacobian matrix keeps changing and assem-
bling and factorizing matrices have to be repeated, which causes the heavy computa-
tion burden for nonlinear problems. The nonlinearity requires to be considered and
accommodated for parallel processing.
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• The solution procedure should also be memory-friendly and avoid numerous inter-
mediate parameters that increase immensely with problem size, especially regarding
the matrix-related operations;

• For power transformers, the input is the current density and the output is the mag-
netic potential according to Ampere’s law. Thus the field circuit coupling issue
should be resolved to include complex electrical circuits connected to the primary
and secondary windings.

1.4 Contributions of the Thesis

The following contributions are made when exploring suitable algorithms for massively
parallel finite element computation on SIMD hardware:

• A new finite element solution procedure named nodal domain decomposition method
that avoided assembling to any matrices was proposed to explore parallelism at the
finite element node level. The computation is entirely decentralized at each node
and the computation of each node shares the same pattern and can be accomplished
with one single program (sub-domain solver), thus easily vectorized for the SIMD
pattern. The proposed method works for both linear and nonlinear problems, and
the convergence rate was improved over 4 times by exchanging information between
sub-domains with mixed boundary conditions. The execution time of the proposed
method on GPU is over 30 times faster than commercial software.

• The transmission-line decoupling technique was employed for nonlinear finite el-
ement solutions to explore parallelism at the finite element level. Each element is
decoupled from the interconnected system using a virtual transmission line so the
nonlinearity of the decoupled element can be solved independently in parallel. A
constant admittance matrix is required in the solution without repeatedly factoriz-
ing the Jacobian matrix. The adapted admittance matrix scheme was proposed to
greatly reduce the number of required iterations by adding a couple of matrices to
factorize. The transmission-line decoupling technique was implemented on FPGA
to achieve real-time finite element computation for the first time: the execution time
drops from several milliseconds to 84 µs for a nonlinear finite element transformer
model with 196 unknowns.

• The nodal level parallelism was also extended for the finite difference method used
to solve the ionized field around high-voltage direct-current transmission line. The
Poisson’s equation and current continuity equation were iteratively solved with the
parallel finite difference method with differentiated grid sizes on GPU, increasing
the computational efficiency of more than 30 times.
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Considering the application of a fast finite element model in electromagnetic transient
studies, the following contributions are made:

• An indirect field-circuit coupling technique was proposed to extract the self and mu-
tual inductances from the winding zones of the finite element transformer at each
time-step, and these parameters can be used by the external electrical circuits con-
nected to the windings.

• The Joule effect of the winding current was also considered in a multi-physics case
study. The electrical circuits, magnetic field, and thermal field were solved indepen-
dently using coupling coefficients.

• The parasitic capacitance of the transformer model was extracted from a static elec-
tric field to consider the transients under high-frequency conditions.

1.5 Thesis Outline

This thesis includes 7 chapters:

• Chapter 1: Introduction - The background, motivation and objectives are briefly
summarized.

• Chapter 2: Finite Element Method and Parallel Computing - In this chapter, the
finite element method and the current high-performance computing trend is intro-
duced, and a core question that motivates this work is proposed: how the finite
element method can benefit from these massively parallel computing resources?

• Chapter 3: Node-Wise Parallelism: Nodal Domain Decomposition - This chapter
proposes a novel finite element computing procedure that explores parallelism at
each finite element node, and the computation of each finite element node can be
mapped to each computational core for both linear and nonlinear problems to utilize
high-performance computing resources such as GPU. The exchange of mixed bound-
ary conditions between sub-domains is explored to accelerate the convergence.

• Chapter 4: Element-Wise Parallelism: Transmission-Line Decoupling - A comput-
ing procedure that explores parallelism at each triangular element level is explored.
The computation of each triangular element is decoupled from the network and thus
achieves massive parallelism. Besides, for nonlinear problems, the admittance ma-
trix remains unchanged and matrix factorization is required once for all.

• Chapter 5: Parallel Finite-Difference Computation -The node-wise parallelism is
applied for the finite difference method for the computation of the ionized field
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around HVDC transmission lines. The coupled partial differential equations gov-
erning the ionized field are alternatively solved on GPU with differentiated finite-
difference grids.

• Chapter 6: Application for Electromagnetic Transient Studies - In this chapter, the
application of the parallel algorithms is discussed with electromagnetic transient
studies, including the field-circuit coupling and multi-physics finite element simu-
lation considering thermal effects.

• Chapter 7: Conclusions - This chapter presents the conclusions of the thesis and
discusses future work.

The chapters are organized as follows:
Chapter 1 and Chapter 2 present the necessary background for EMT simulation, finite

element method, and parallel computing.
Then, motivated by how to divide the finite element problem into numerous small

pieces for massively parallel processing, Chapter 3 and Chapter 4 describe the proposed
node-wise and element-wise parallel algorithms implemented on GPU and FPGA, respec-
tively.

Chapter 5 can be regarded as an extension of the node-wise parallelism for the finite
different method, which is utilized to solve the burdensome ionized field problem via
parallel computing.

Chapter 6 describes an efficient multi-physics simulation model with the interfacing of
modular multi-level converter and finite element models and proves how the runtime of
such an integrated model can be reduced from weeks to hours.

At last, Chapter 7 summarizes the thesis and gives the conclusion.
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2
Finite Element Method and Parallel

Computing

2.1 Introduction

The finite element method is one of the most commonly used numerical methods to solve
boundary value problems. To elaborate on how the finite element computation can be per-
formed in parallel, an introduction of the finite element method solving partial differential
equations and some background regarding parallel processing will be presented in this
chapter.

2.2 Boundary Value Problem

Figure 1.2 in Chapter 1 shows a simple example of a boundary value problem (BVP), which
is solved with the domain decomposition (DD) scheme. Figure 2.1 shows the same exam-
ple without the DD method. In both cases, the three parts that define a boundary value
problem are:

a) Problem Domain: The problem domain shows the interested domain in which the
physical problem has a definition. The problem domain is usually defined by boundaries
that can make up a closed-loop. In this example, the problem domain is x ∈ [0, 1], y ∈ [0, 1].

b) Governing Equation: The equation that determines the physical phenomenon within
the problem domain. The equation is usually ordinary partial equation (ODE) for a 1D
problem and partial differential equation (PDE) for 2D and 3D problems. The governing
equation can also be an integral equation. In the above example, the governing equation is

∂2u

∂x2
+
∂2u

∂y2
= 4. (2.1)
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Figure 2.1: A simple example of 2D boundary value problem.

c) Boundary Conditions: The problem domain and the governing equation can not
guarantee the uniqueness of the solution. Different kinds of boundary conditions can be
applied for different physical constraints or assumptions, and all boundary conditions can
be categorized into three kinds: the Dirichlet type, the Neumann type, and the mixed type,
which will be introduced later. The boundary condition of the example is prescribed as:
u(x, 0) = x2, u(x, 1) = x2 + 1, u(0, y) = y2, u(1, y) = y2 + 1.

It is worth to mention the difference between the initial value problem and the bound-
ary value problem. For the initial value problem (IVP), the solution is provided at a time
point t = 0, and the time marching scheme is required to calculate each time step. All the
boundary conditions in BVP is spatial and usually do not include the time term. For a PDE
with the time-varying term, it can be both BVP and IVP.

With all the three parts specified, the unique solution can be solved with analytical or
numerical methods. For the above example, the boundary conditions are intentionally se-
lected so the solution has an analytical expression: u(x, y) = x2 + y2. However, in the real
world, considering the irregular geometries in the problem domain, different materials,
and boundary conditions, most boundary value problems do not have an analytical solu-
tion. In this case, numerical methods are required to obtain an approximate solution over
the problem domain.

The commonly used numerical methods to solve a BVP include the finite difference
method (FDM), finite element method (FEM), boundary element method (BEM), finite vol-
ume method (FVM), etc. Since the Ampere’s law and Poisson’s equation are both elliptical
problems, the FDM and FEM are the dominant methods used by engineers [31].

The finite difference method converts the partial differential equation to algebraic equa-
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u(i, j+1)

u(i, j-1)
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Δy

u(i, j)

Figure 2.2: Rectangular grid for finite difference method.

tions by replacing the differential equation with difference equation using the Euler method
or central difference scheme. For example, on the grid shown in Fig. 2.2, the second order
partial differential term in (2.1) can be rewritten as [32]:

∂2u

∂x2
=
u(i− 1, j) + u(i+ 1, j)− 2u(i, j)

(∆x)2
,
∂2u

∂y2
=
u(i, j − 1) + u(i, j + 1)− 2u(i, j)

(∆y)2
. (2.2)

More details about the finite difference method will be described in Chapter 5.
For the finite element method, the strategy to convert the PDE to algebraic equations is

different.

2.3 Galerkin’s Finite Element Method

2.3.1 Ampere’s Law for Eddy Current Problem

The Ampere’s law with Maxwell’s addition, which states that the magnetic field in space
is generated by both electric current and displacement current, is the working principle
of a transformer. A finite element transformer model, which provides more accurate and
comprehensive information for simulation by considering the factors from a design per-
spective such as geometries, winding parameters, and material nonlinearity, is governed
by the following partial differential equation [32]:

∇×H = ∇× (υ∇×A) = J − σ∂A
∂t

+
∂D

∂t
, (2.3)

where A is the magnetic potential and the relation with magnetic flux density B satisfies
B = ∇×A, υ is the nonlinear magnetic reluctivity, σ is the conductivity, and the right-hand
terms are the impressed current, the eddy current, and the displacement current, respec-
tively. In 2D cases, magnetic flux density B has Bx and By components while magnetic
potential A only has Az component.

Note that the displacement current term ∂D/∂t is usually not important so it can be
ignored in low frequency applications. Since the curl of curl of A satisfies the following
identity:
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∇×(∇×A)=∇(∇·A)−∇2A. (2.4)

Applyingthegauge∇·A=0,(2.3)canberewrittenas

∇·(υ∇A)=−J+σ
∂A

∂t
,

A1  (x1 , y1) 

A2  (x2 , y2) 

A3  (x3 , y3) 

Ωe 

N1 N2 N3 

Interpolation:  Ae=N1A1+N2A2+N3A3.

Ni=(ai + bix + ciy)/2/Δ
e (i=1, 2, 3.)

a1=x2y3-x3y2, b1=y2-y3, c1=x3-x2,

a2=x3y1-x1y3, b2=y3-y1, c2=x1-x3,

a3=x1y2-x2y1, b3=y1-y2, c3=x2-x1.

Area:  Δe= [x1(y2-y3)+x2(y3-y1)+x3(y1-y2)]/2.

(2.5)

whichisusuallyknownastheeddycurrentproblemandgovernsthemagneticfieldin

electricaldeviceshavingwindingssuchastransformerandgenerator.

Figure2.3:Triangularelementandtheinterpolation(weight)function.

2.3.2 DomainDiscretizationandInterpolation

Giventheproblemdomain,materialpropertiesυandσ,externalexcitationJ,andap-

propriateboundaryconditions,thesolutionofmagneticpotentialAisuniqueandcanbe

solved.However,itisimpossibletosolvetheproblemanalyticallyandprovideanexact

expressionforA(x,y,t),whichiswhythefiniteelementmethodisrequiredtosolvesuch

aboundaryvalueproblemnumerically.

InsteadofobtainingtheanalyticalexpressionA,theFEMdiscretizestheprobleminto

numerousinterconnectednodesandelements(e.g.Fig.1.1)andseeksforasolutionat

eachnodeoredge.ThenthemagneticpotentialAatanylocation(x,y)canbeobtainedby

interpolation.

Fora2Dgeometry,thetriangularmeshismostcommonlyutilizedbecauseitisvery

flexibletorepresentdifferentshapesusingtrianglesofdifferentsizes.Inpractice,tetrahe-

dralelementsandhigher-orderinterpolationcanbeapplied,andinthisthesis,a2Dcase

withthetriangularelementandlinearinterpolationisusedasanexampletoelaborate

theparallelalgorithms.Figure2.3showsatriangularelementandthelinearinterpolation

function.Therearethreeunknownsatthevertexesandtheinnerdistributionispresented

usinginterpolation:
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Ae = N1A1 +N2A2 +N3A3. (2.6)

The elemental equation, describing the relation of vertex unknowns A1, A2, and A3,
should be derived based on (2.5), which is the essential part of the finite element method.

2.3.3 Weighted Residual Method

Substitute the linear interpolation in Fig. 2.3 to (2.5), for each element Ω with index e, let
re be the residual of (2.5):

re = ∇ · (υe∇Ae) + Je − σe∂A
e

∂t
. (2.7)

Thus the following two statements are equivalent:

• 1. (2.5) is satisfied in the whole problem domain.

• 2. re is always 0 for each element Ωe.

Since re is a distribution over each triangular element, to set re to 0, it will be more conve-
nient to convert re to a single value via the integral over each element. For example, the
above statements are also equivalent to the following statement:

• 3. The integral of r2
e over each triangular element Ωe is always 0, namely,∫∫

Ωe
r2
edxdy = 0. (e = 1, 2, 3...) (2.8)

There are many ways to manipulate the integral to make such an equivalent statement,
of which the most popular one is the weighted residual method. Let we be any function
defined on element Ωe, the following statement is also an equivalence:

• 4. For any weight function we, the following integral is always 0 for each element Ωe:∫∫
Ωe
we · redxdy = 0. (e = 1, 2, 3...) (2.9)

It is important to mention that the weight function we is arbitrary. Setting the weight
function to the shape functions N1, N2, and N3 in Fig. 2.3, respectively:∫∫

Ωe
Ni · redxdy = 0, (i = 1, 2, 3; e = 1, 2, 3...) (2.10)

3 equations with unknown A1, A2, and A3 can be obtained for each element. The Ni,
re, and Ae involved can be found in Fig. 2.3 and (2.7). By using the shape functions as the
weight function, the above scheme is called the Galerkin’s FEM [33].

The coefficients can be obtained by calculating the integrals, and the 3 × 3 elemental
equations for Ωe can be written as :
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M11 M12 M13

M21 M22 M23

M31 M32 M33

A1

A2

A3

 +

T11 T12 T13

T21 T22 T23

T31 T32 T33

∂A1
∂t
∂A2
∂t
∂A3
∂t

 =

F1

F2

F3

 +

P1

P2

P3

 , (2.11)

where A and F are 3× 1 vectors represent the unknown magnetic potentials and external
source at the vertexes of triangle, respectively; P is associated with the boundary condi-
tions; M and T are 3× 3 matrices whose entries are determined by the material properties
and shape functions Ni. Within a specific element e they can be written as follows:

M e
ij = −υe

∫∫
Ωe
∇Ni · ∇Njdxdy, (2.12)

T eij = σe
∫∫

Ωe
Ni ·Njdxdy, (2.13)

F ei =

∫∫
Ωe
NiJdxdy. (2.14)

2.3.4 Assemble and Solve

The local 3 × 3 system of equations can’t be solved directly, and the traditional way is
to assemble all the elemental equations to a global system of equations. The assembling
procedure essentially is a summation of local coefficients to the entries of the global matrix.
For example, let G be the global symmetric matrix, if the three nodes indexed 1, 2, and 3
locally in element Ωe are indexed I , J , and K globally, the following operations would be
performed during the assembling phase:

G[I][I] = G[I][I] +M e
11, G[J ][J ] = G[J ][J ] +M e

22, G[K][K] = G[K][K] +M e
33,

G[I][J ] = G[I][J ] +M e
12, G[J ][K] = G[J ][K] +M e

23, G[K][I] = G[K][I] +M e
31.

(2.15)

Note that the entry G[X][Y ] of a global matrix is only non-zero when node X and node
Y are connected directly and share one edge, implying the global matrix is sparse because
each node is only related to its neighboring nodes.

The assembled global matrix is singular and needs constraints to have a unique solu-
tion. The boundary conditions will be applied here and then the system can be solved
using a sparse matrix solver.

2.3.5 Newton-Raphson Method

The reluctivity υe in (2.12) usually depends on the unknown magnetic potential A for ma-
terials with nonlinear B-H curve such as iron, thus a system of nonlinear equations need
to be solved after assembling.
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Calculate gradient g=f’(xn) and 
residual r=-f(xn)

Calculate increment Δx=r/g 

xn+1=xn+α Δx

Tolerance satisfied?

Initial guess x0

End

Y

N

n=n+1

Calculate gradient g and 
residual r=b-A(Xn)Xn

Calculate increment ΔX=g-1r

Xn+1=Xn+α ΔX

Tolerance satisfied?

Initial guess X0

End

Y

N

n=n+1

(a) NR to solve f(x)=0. (a) NR to solve A(X) X=b.

Figure 2.4: Newton-Raphson scheme to solve nonlinear problem.

The Newton-Raphson scheme is commonly used to solve the nonlinearity. For a simple
nonlinear equation f(x) with only one unknown, the solution can be obtained by iterating
the procedure in Fig. 2.4(a).

For a nonlinear system of equations, the procedure shown in Fig. 2.4(b) remains almost
the same except the operations for matrix and vector. Note that X is a vector of unknowns
[x1, x2, x3, ..., xm]; the gradient g, also known as the Jacobian matrix, is defined as

g =


∂A1
∂x1

· · · ∂A1
∂xn

...
. . .

...
∂Am
∂x1

· · · ∂Am
∂xn

 . (2.16)

The Jacobian matrix is associated with Xn and changes at each iteration, implying the
sparse matrix solver has to be repeatedly called during the Newton-Raphson iterations.
Besides, the parameter α in Fig. 2.4 is the relaxation factor that can be adjusted to fix the
divergence issue or to accelerate the convergence.

2.4 Parallel Computing

Traditional computer software is usually designed for serial computing, and the instruc-
tions are executed one by one sequentially on one central processing unit. Recently, com-
puting hardware is integrating more and more processing units (PU) such as CPU cores
and GPU CUDA cores, and it has motivated researchers to divide the problem into inde-
pendent parts so that each processor can execute its part simultaneously.
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Figure 2.5: Flynn’s taxonomy for parallel computing.

A program is composed of instructions and data, Flynn’s taxonomy [34] is usually used
to classify different patterns of parallel computing based on how instructions and data are
fed to each processing unit. Figure 2.5 shows the commonly used classifications and some
examples are provided below [35]:

• Single instruction single data (SISD) stream: single-core CPU.

• Single instruction multiple data (SIMD) stream: array processors, GPU.

• Multiple instruction single data (MISD) stream: mostly nonsense.

• Multiple instruction multiple data (MIMD) stream: Multiple-core CPU, computer
clusters.

Also, based on the memory that each processing unit can access, parallel processing
can be classified into shared-memory programming and distributed-memory program-
ming. Although the processing units usually execute assigned tasks independently, the
tasks need to exchange data or synchronize at some point. It is necessary to introduce the
parallel software used to schedule the hardware usage and to control the program flow.

Multi-core central processing units (CPU) and many-core graphics processing units
(GPU) are the essential components in the prevalent high-performance computing envi-
ronments. And field-programmable gate arrays (FPGA) with a massive amount of look-
up tables (LUT) and flip-flops (FF) are irreplaceable for hardware acceleration in areas like
real-time computing, and more complex and large scale computing is being deployed on
FPGA. To make use of the computing power of these resources, both parallel algorithms
and supporting programming environments are required.
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Figure 2.6: Shared and distributed memory structure for pthreads, OpenMP, and MPI.

2.4.1 Parallel Software for CPUs

Modern personal computers and workstations usually have tens of CPU cores to pro-
cess tasks concurrently. POSIX Threads (also referred to as pthreads) and Open Multi-
Processing (OpenMP) are the most commonly used application programming interfaces to
perform parallel processing on one single computer node with multi-core CPU. Since all
the CPU cores share the global memory on the motherboard, pthreads and OpenMP are
shared-memory programming interfaces. They have such common features as supporting
different programming language on different platforms, and also have some differences
[35]:

Pthreads is very low-level and gives users extremely fine-grained control of each thread,
and the thread function, thread communication, and synchronization can be implemented
by users with much flexibility. On the contrary, OpenMP is high-level and easier to use
because most low-level operations are transparent to users. One example is to unroll and
parallelize the for-loop by simply adding some directives.

For computer clusters having numerous computer nodes that do not share memories,
distributed memory programming is involved (Fig. 2.6). In this case, the message passing
interface (MPI) can be used to implement data communication like broadcast, gather, re-
duction, etc. Although computer clusters can also integrate thousands of CPU cores, the
data communication between distributed memory may cause serious overhead.

2.4.2 Parallel Software for GPUs

The Tesla V100 GPU released by Nvidia integrates 80 steaming multi-processors (SM),
and each SM has 64 FP32 cores, 64 INT cores, and 32 FP64 cores, implying a total of 5120
cores for single-precision and integer operations and 2560 cores for double-precision op-
erations simultaneously. Besides, Tesla V100 provides 16GB high bandwidth memory and
NVLinkTM to achieve high-speed signaling interconnect between multiple GPUs.

Fig. 2.7 illustrates the inner view of a streaming multi-processors. Each SM has 128KB
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Figure2.7:Detailswithinonestreamingmulti-processorsofTeslaV100.

sharedmemoryforthe64cores,whichismuchfasterthanaccessingtheglobaldevice

memory.Thecomputeunifieddevicearchitecture(CUDA)isanapplicationprogramming

interfacecreatedbyNvidiaandallowsdevelopersandengineerstousethemassiveGPU

coresforgeneral-purposecomputing.

NotethatGPUisatypicalsingleinstructionmultipledata(SIMD)paradigm,andin

CUDAcodes,thesingleinstructionisdefinedbythekernel.Onceakernelislaunched,the

samefunctionwillbeappliedtomultipleinputdatasets,witheachdatasetexecutedon

differentGPUcores.Onesimpleexampleisthevectorsummationwithaddingoperation

fordifferentinputdata,whichismostsuitableonGPU.Thus,tofullyexplorethecomput-
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Fully unrolled Instance f(x)
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x1

Fully unrolled Instance f(x)

Depth t0

.

.

.

.

.

.
xn

f(x0)

f(x1)

f(xn)

Interval t1

Figure 2.8: An example of data pipelining to achieve parallelism.

ing power of GPU, it is necessary to find a suitable algorithm that has a similar patter with
the SIMD stream.

2.4.3 Parallel Computing for FPGAs

Recently, FPGA prototyping boards are also integrating more and more resources to pro-
vide high-performance computing solutions for engineering problems via hardware accel-
eration. FPGA is featured by hardware concurrency, and different hardware blocks can
be configured to run different tasks concurrently. The very-high-speed-integrated-circuit
hardware description language (VHDL) is used to implement different algorithms with the
data-path and controller fashion. In addition to the hardware concurrency, data pipelining
is another feature to achieve parallelism on FPGA, as shown in Fig. 2.8. Once an instant,
usually composed of different phases, is entirely unrolled and implemented by hardware,
the input data can be continuously fed without having to wait for the previous data pro-
cessing to be finished.

Due to the concurrent nature of VHDL, which is quite different from other program-
ming languages, it is usually a challenge to implement a very complicated large-scale al-
gorithm using VHDL. In this case, the high-level synthesis (HLS) tool is very useful that it
can convert the function in C language into an intellectual property (IP) core with different
configurations such as unroll and pipelining using directives.

Generally, a C function will be compiled to an IP block with inputs, outputs, and some
handshake signals for interfaces between blocks. The matrix-vector multiplication model
is given as an example to elaborate on how to optimize the execution time using directives.

If calculating bi =
∑N

1 Aijxj is called a task, the computation of the matrix-vector mul-
tiplication is composed of many independent tasks. For the CPU codes, the summation
loop is sequential in nature and the next task can not be started until the current task is
ended. Whereas in FPGA implementation, the summation can be unrolled completely and
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be compiled as an instance on hardware, and the multiplications Aijxj can be executed in
parallel on massive multiplying units. Although the subsequent summation of the prod-
ucts is the critical path and takes the major latency, the next task needs not to wait because
the multiplying units are ready for the next computation. Thus, different tasks can be
executed on the unrolled instance in a pipelined fashion.

The computation time of a pipelined IP block can be calculated as

t = tdepth +N × tinterval, (2.17)

where tdepth is the execution time of a single task, tinterval is the time interval after which
the next task begins, and N is the number of tasks.

The tdepth is usually determined by the algorithm and tinterval can be optimized by
array partitioning. In this example, the b vector can be partitioned by rows, and the Y
matrix can be partitioned by its second dimension.

The pseudo-code for this matrix-vector multiplication block in Vivado HLSTM usually
has the following form:

Function solve(b[N], x[N])
A[N][N]=[....];

#pragma array partition b dim 1
#pragma array partition Y dim 2

loop1 i in 1 to N
#pragma pipeline

loop2 j in 1 to N
#pragma unroll
b[i]+=A[i][j]b[j];

end loop2
end loop1

2.4.4 Hybrid Parallel Computing

Recently, hybrid parallel computing across different platforms is utilized to explore the
merits of different computing architectures. For example, hybrid parallel CPU-GPU com-
puting [36] is very suitable for problems including SIMD tasks and MIMD tasks: GPU can
efficiently handle the vectorized computation while CPU can handle the communication
between modules and the serial tasks.

Compared with CPU and GPU, FPGA has much smaller and deterministic latency, thus
suitable for real-time hardware-in-loop application. However, when handling very large-
scale computation, the lack of configurable hardware resources is the drawback. Nowa-
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days, hybrid platforms such as the Intel Xeon-FPGA Hybrid Chip and CPU-FPGA [37] are
also being developed for high performance computing.

2.5 Summary

In this chapter, the boundary value problem and the Galerkin finite element method are
introduced, and the traditional procedures for finite element computation are presented.
Besides, modern high-performance computing hardware and software are briefly intro-
duced for CPU, GPU, and FPGA, respectively. The contents in this chapter are important
background for the entire thesis.
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3
Node-Wise Parallelism: Nodal Domain

Decomposition

3.1 Introduction

This chapter proposes a novel finite element procedure that explores parallelism at each
finite element node to accommodate the SIMD hardware and the scheme is applied to both
linear and nonlinear problems. The finite element method (FEM) has been dominantly uti-
lized for the modeling and design of electromagnetic apparatus such as rotating machines
and transformers due to its accuracy and flexibility for complex geometries. The notorious
computational burden, stemming from repeatedly factorizing the updated Jacobian ma-
trix, demands exploration of efficient nonlinear FE solvers for conveniently designing and
testing electromagnetic apparatus.

The prevalent trend in high-performance computing (HPC) resources is to increase
the number of cores massively either as clusters of multi-core central processing units
(CPUs) or many-core graphics processing units (GPUs); for example, the recently released
NVIDIA R© Tesla V100 accelerator card is equipped with 5120 Cuda cores and 16GB of
HBM2 memory [12], and it has motivated engineers to explore suitable parallel algorithms
to make full use of its computing power. In the past, GPU-accelerated conjugate gra-
dient solver [20], [38]–[40] and domain decomposition (DD) method on CPUs [41], [42]
have been implemented to improve the efficiency of the electromagnetic field computa-
tion. However, massive parallelism could be hardly achieved since the assemble and then
solve procedure in traditional FE technique is essentially a centralized way of thinking. On
the other hand, to fully explore the computational power of GPUs, a decentralized think-
ing pattern resulting in massive parallelism would be greatly promising. For example,
the element-wise FE technique was proposed for matrix-vector multiplication with inde-
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(a) Traditional FEM that requires assembling the global matrix

(b) Proposed vectorized  FEM that involves no assembling or global matrix

Figure3.1:IllustrationoftraditionalFEMandtheproposednodaldomaindecomposition
(NDD)basedFEM.

pendentcomputationatthetriangularelementlevel[27],[43],andwasthendevelopedto

solvealinearFEproblemonGPUarchitecture[23],[24].Besides,theJacobi-basedGPU

solverhasalsobeenexploredforthecomputationofPoisson’sequation[44]. Although

deficienttohandlenonlinearFEproblems,massiveparallelismandadecentspeedupare

achievedonGPUsduetothedivide-and-conquerstrategy.Massivelyparallelsimulations

havealsoalreadybeeninvestigatedforlarge-scalepowersystemdynamicandtransient

simulationapplications[45],[46].

Inthischapter,thenodaldomaindecomposition(NDD)withrelaxationisproposedto

explorethemassiveparallelisminFEcomputationofbothlinearandnonlinearproblems.

Thisnovelideaisinspiredbythefollowingquestionregardingtheextremepartitionofa

domain:Whatifasub-domaincontainsonlyoneunknownnode?

AsillustratedinFig.3.1,theproposedNDDhasthefollowingfeaturescomparedwith

thetraditionalnonlinearFEsolverbasedontheNewton-Raphson(NR)algorithm:

1.Thereexistsonlyoneunknownineachsub-domainandthusnomatricesareneces-

sary,i.e.,theNDDismatrix-freeandmemory-friendly.

2.InsteadofapplyingtheNRalgorithmtoaglobalsystem,whichissequentialinna-
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ture, the problem is solved utilizing a neat relaxation scheme by iteratively updating
each node (sub-domain) in a massively parallel manner.

3. Each sub-domain is solved independently following the same pattern and the com-
putation is concise since there is only one unknown. Therefore, the NDD shows
perfect modularity for Kernel programming on GPU architectures.

4. A specific data structure is required for the single instruction multiple data (SIMD)
programming on GPU.

The matrix-free feature stems from the fact that the more number of sub-domains, the
fewer the number of unknowns required to be solved for each sub-domain. It is also worth
mentioning that for a linear problem, both the NDD scheme and the N-scheme in [10] us-
ing weighted summation of elemental contributions are equivalent to the Jacobi iterative
scheme. However, the proposed NDD scheme can be easily extended for nonlinear prob-
lems; in this sense, the NDD scheme better reveals the domain decomposition advantage
regardless of the linearity or nonlinearity of the problem. Also, the massively parallel com-
puting resource (either large-scale CPU or GPU clusters) that matches the FE problem size
is a prerequisite to explore the full potential of the NDD scheme, especially for large scale
FE problems.

This chapter is organized as follows: Section 3.2 briefly introduces the FE equations
of general EM apparatus with the nonlinear B-H curve. Then Section 3.3 presents the
methodology of the NDD and the supporting data structure. Section 3.4 briefly introduces
the mixed boundary conditions exchange between sub-domains to accelerate the conver-
gence. In Section 3.5, case studies employing the NDD scheme are implemented on both
CPUs and GPUs, and the results are compared with the commercial FE package Comsol
MultiphysicsTM concerning the accuracy and speedup. Finally, Section 3.6 gives the sum-
mary.

3.2 Finite Element Equations of EM Apparatus

Governed by the Ampere’s law, a 2-D magnetostatic problem can be described by the
following equation [47]:

∇ · (υ∇A) = −J, (3.1)

where A is the z-component of the magnetic vector potential to be solved, υ is the material
reluctivity, and J is the z-component of the impressed current density.

The problem can be solved by the well-known Galerkin FEM [48], and the general steps
are discretizing the domain, forming elemental equations, assembling, applying boundary
conditions and solving. The product of the weight function and the residual is integrated
over each triangular element (Fig. 3.2) and the following elemental equations can be ob-
tained by forcing the integral to be zero:
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wherek11=b1b1+c1c1,k12=k21=b1b2+c1c2,

k22=b2b2+c2c2,k23=k32=b2b3+c2c3,

k33=b3b3+c3c3,k31=k13=b1b3+c1c3.

Forferromagnetictriangularelements,thereluctivityυedependsonthestrengthof

theunknownmagneticvectorpotential,implyingthattheproblemisnonlinear.Forthe

nonlinearsolution,thecalculationofJacobianmatrixfor(3.2)isrequiredusingtheNR

scheme.Toobtain∂υ
e

∂Ai
,thefollowingchainruleinpartialdifferentiationisusuallyutilized

[9]:

∂υe

∂Ai
=
∂υe

∂B2
∂B2

∂Ai
(i=1,2,3). (3.3)

The∂υe/∂B2canbeobtainedfromthenonlinearB-Hrepresentationwhile∂B2/∂Aiis

derivedusingthedefinitionofthemagneticfluxdensity:B=∇×A.

ForthetraditionalnonlinearFEsolver,alltheelementalequationsareassembledto

formaglobalsparsesystemandthensolvedwithsomeiterativeschemessuchastheNR

technique.Therefore,largematricesandefficientsparsesolversarealwaysinevitable.In

theproposedNDDscheme,thenonlinearsystemissolvedinadecentralizedmanner.

3.3 NodalDomainDecompositionwithRelaxation

ThetraditionalSchwartzdomaindecomposition[49]dividesthewholedomainintosev-

eralsub-domainsandeachsub-domaincanbesolvedindependently.Theinformationex-

changebetweensub-domainsisimplementedbysubtlymanipulatingtheboundarycon-
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Figure3.3:Informationexchangeinasub-domainforoverlappingSchwartzdomainde-
composition.

Figure3.4:Asub-domaininNDDanditssolution.

ditions(Fig.3.3),andaniterativeschemeisrequiredtoachievethesteady-stateforfinal

solutionssincethevaluesoftheinnerboundariesareunknownandareusuallyassigned

guessedvalues.

AsillustratedinFig.3.3,ineachsub-domain,theinnernodesaresolvedbasedonthe

globalboundarynodesandtheneighboringboundarynodesfromothersub-domain,and

theyalsoserveastheboundarynodesforothersub-domain.Althoughthisneighboring

informationisnotalwayscorrect,ifallsub-domainsworktogetherrepeatedlyatthesame

time,theinformationexchangebecomeseffectivetoconvergetothefinalsolution.Inthis

sense,thedomaindecompositionmethodisarelaxationscheme.

Notethatthetermrelaxationdescribestheiterativenatureofthesolutionprocess,

namely,theindependentsub-domainsolverandtherepeateddatacommunicationbe-
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tween sub-domains. Despite the necessity of iteration, the reduced problem size and the
parallelism have made the domain decomposition method beneficial for parallel comput-
ing architectures such as multi-core CPUs. The number of nodes in each sub-domain,
which determines the matrix size of the sub-problem, depends on the domain partition.
Commonly, each sub-domain can still contain more than hundreds of nodes for a medium
size FE problem [41], [42], and only partial parallelism can be achieved. However, from the
perspective of a Cuda core on a GPU, which is suitable for massive parallelism, an ideal
sub-domain should contain as few nodes as possible.

With the relaxation scheme, an extreme situation where each sub-domain contains only
one inner node is considered. As shown in Fig. 3.1(c) and Fig. 3.4, each non-boundary
node and its direct neighbors make up a sub-domain. Applying the neighbors’ values from
the previous iteration as boundary conditions, the value of the inner node can be updated,
which is a miniature FE problem. Due to the overlapping, each node is updated based
on its direct neighbors, and meanwhile serves as boundary conditions when its neighbors
are updated. Thus, each inner node is updated independently and the steady-state can be
reached in an iterative manner, which is perfect for massively parallel architectures.

At first glance, the miniature FE problem in Fig. 3.4 seems to be a nonlinear system
with 7 unknowns, but a closer inspection reveals that it is a 1×1 nonlinear system because
the other equations are overwritten by the imposed boundary conditions.

As illustrated in Fig. 3.4, all the neighboring elements ΩKi (i=1, 2, 3...) contribute
to the solution of the inner node AK , whereas not all the elemental equations are useful
depending on the element-node numbering scheme. For example, for element ΩK1, the
nodeAK to be solved is numbered 1, andA2 andA3 are given as boundary conditions, thus
only the first elemental equation (highlighted in blue) is valid for the solution of AK since
the other two equations will be overwritten. Similar things occur in the other neighboring
elements; therefore, the following equations considering all the neighbouring elements
need to be solved for AK :

N∑
i=1

FKi(AK) = 0, (3.4)

where K is the index of the node to be solved, N is the total number of neighboring el-
ements of node K, Ki is the element index of its ith neighboring element, and FKi is
one of the elemental equations of element Ki determined by the element-node number-
ing scheme.

To solve the 1 × 1 nonlinear equation (3.4), the Newton iteration is applied and the
increment ∆AK can be calculated by:

∆AK =
−
∑N

i=1 FKi(AK)∑N
i=1

∂FKi(AK)
∂AK

. (3.5)

Note that the updating scheme in (3.5) works for all cases where the neighboring elements
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typedef struct 
{

int Id;
double Cordinate_X;
double Cordinate_Y;
int Number_of_Neighbour_Element;
int Neighbour_Element_Id[8];
int Neighbour_Element_Number[8];//1,2,3
int Node_Type;//Boundary node indicator
double Anew;//Current iteration
double Aold;//Previous iteration

}NDDR_FEMNode;
typedef struct 
{

int Id;
int I,J,K;//Element-node numbering
double Element_Area;
int Element_Type;//Air or Ferromagnetic
double Ve;//Reluctivity
double Js;//Impressed current density
double k11,k12,k13,k22,k23,k33;//Matrix

}NDDR_FEMElem;

Figure 3.5: Data structure related to the FE nodes and elements for the NDD scheme.

are all linear elements, all nonlinear elements or a mixture of linear and nonlinear elements.
Since all the calculations are executed at the nodal level and no matrices are involved,

a matched data structure is required for efficient data access. Based on the solution process
presented in Fig. 3.4, the structs defined in C language are presented in Fig. 3.5. Each node
or element is an entity with some attributes. Thus, the memory required for the NDD
scheme increases linearly with the problem size, and all computations can be completed
only with two arrays of the defined structs. Note that the maximum number of neighbors
was set to 8 based on the inspection that for general 2-D triangular mesh, each node has no
more than 8 neighboring triangular elements. For some extreme 2-D mesh or 3-D mesh,
the limit can be adjusted accordingly.

3.4 Mixed-Type Boundary Condition for Sub-domain Solver

When AK evolves, not only the values of its neighbors can be utilized, but also the normal
component on the outer edge, representing the trend how the nodal value changes along
the normal direction. A mixture of the nodal values and the normal component (third-type
boundary conditions shown in Fig. 3.6) will efficiently accelerate the converging process
of the evolution.

When a mixed boundary condition is applied, the sub-domain solver should also be
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adjusted.Figure3.7showsthedetailsofasub-domainsolver(SDS)whenmixedboundary

condition

∂A

∂n
+γA=h (3.6)

isapplied.NotethatAistheneighbors’nodalvaluefromthepreviousiterationwhile∂A∂n
isthefluxoutwardtheedge,whichisalsoevaluatedfromthepreviousiterationusingthe

adjacentsub-domain,asshowninFig.3.6(b).Sincethecentralnodeisrelatedtoallthe

triangularelementsthatshareit,theelementalequationsaresummedaltogethertosolve.

Besides,notalltheequationshavethesameweights.Theequationswherethecentralnode

dominates(highlightedinblue)weights1whiletheequationswheretheboundarynodes

dominate(highlightedinred)weights1γ.Similarly,a1×1equationisobtainedtosolve

thecentralnode.Foralinearproblem,thesolutionismerelyaweightedsummationof

itsneighbors’previousvalueswhilefornonlinearproblem,several(typically2-5)Newton

iterationsarerequired.

Whenupdatingthecentralnodeofasub-domain,insteadofmerelyusingthevalues

ofitsneighbors,usingmixedboundaryconditionrepresentingthetrendhowthesevalues

changealongthenormaldirectioncangreatlyenhancetheinformationexchangebetween

sub-domainsandthusacceleratetheconvergence.Figure3.8showsthecomparisonof

theconvergingcurveafterapplyingmixedboundarycondition,implyingthenumberof

iterationsrequiredreducedfrom800to200roughly.

Notethatthesub-domainsolverwithmixedboundaryconditionworksforbothlinear

andnonlineartriangularelements.
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3.5 CaseStudies

3.5.1 FiniteelementmodelofE-coretransformer

The2DE-coretransformermodelinFig.6.1isstudied.Thetransformersizeis5.2m×3.6m,

thewidthoftheyokeandthelimbis0.5m,thecoilsizeis0.25m×2m,andthecoilturns

are390fortheprimarysideand810forthesecondary. Theconductivityofthetrans-

formercoreis106S/m,andthetime-varyingwindingcurrentsareIp=5000sin(120πk∆t)
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Figure3.9:FEmodelofanE-coretransformerforthecasestudies.

A,Is=2000sin(120πk∆t)A(k=0,1,2...).ThetransformercorematerialisElectricalSteel

35ZH135,andthenonlinearB-Hcurvecanbefoundin[50].Boththeprimarywinding

andthesecondarywindingarefedwithsinusoidalcurrentsourcesandtheproducedmag-

neticvectorpotentialcanbecalculatedwiththeNDDscheme.TheflowchartoftheNDD

schemeispresentedinFig.3.10(a).

ThesameFEproblemwassolvedwiththecommercialsoftwarepackageComsol.The

domaindecompositionsolversettingsarepresentedasfollows:thenumberofavailable
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Table 3.1: Relative tolerance ε0, iteration number N , and Error of the NDD scheme for
different problem sizes

Cases Number Number Relative tolerance ε0, iteration number N , and Errorof nodes of elements

Case 1 528 1000
ε0 10−3 10−4 10−5 10−6 10−7

N 89 161 230 327 443
Error 6.1% 0.55% 0.085% 0.011% 0.001%

Case 2 1273 2482
ε0 10−3 10−4 10−5 10−6 10−7

N 196 378 537 1104 1445
Error 9.3% 0.82% 0.15% 0.038% 0.003%

Case 3 3303 6516
ε0 10−3 10−4 10−5 10−6 10−7

N 331 731 1456 2047 2865
Error 20.5% 3.71% 0.45% 0.083% 0.013%

Case 4 4923 9682
ε0 10−3 10−4 10−5 10−6 10−7

N 394 1032 1663 2879 3979
Error 33.7% 4.57% 0.78% 0.15% 0.065%

Case 5 10104 19956
ε0 10−3 10−4 10−5 10−6 10−7

N 565 1683 3067 4252 6214
Error 51.7% 7.69% 0.85% 0.17% 0.085%

cores for parallel processing is set to 40; the additive Schwarz scheme is applied with
40 sub-domains and the direct linear solver is used; the nonlinear method is set to the
automatic Newton method, and the termination technique utilizes a tolerance factor of
0.001 or a maximum iteration number of 25. Other settings such as damping factor and
coarse preconditioning remain default. The results are regarded reliable and the efficiency
of its optimized nonlinear domain decomposition solver is assumed to be state-of-the-art.
Thus, the results obtained from ComsolTM serve as the benchmark to evaluate the accuracy
and efficiency of the proposed NDD scheme.

3.5.2 Implementation, accuracy and efficiency of magnetostatic case

To evaluate the accuracy and efficiency of a single finite element computation, a magne-
tostatic case is studied, where the winding currents are set to the peak values (Ip=5000A,
Is=2000A).

As an iterative relaxation scheme, the accuracy of the NDD is determined by the con-
vergence criteria, i.e., the relative tolerance ε0 between two successive iterations. The
change of the problem size is also considered. The problems are solved with both the
NDD scheme and ComsolTM using the same mesh, respectively, and Table 3.1 provides
the prescribed ε0, the iteration number N required, and the relative error Error of the two
methods for five different problem sizes.

It can be concluded from Table I that the NDD scheme converges exactly to the same
solution of ComsolTM if the iteration number keeps increasing. In engineering problems,
since an error of less than 1% is usually acceptable, it is safe to set the relative tolerance ε0
of the NDD to 10−5 in all the cases in Table 3.1.

The field distributions of the magnetic vector potential and the magnetic flux density
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get thread_rank, start_Id, end_Id;
loop: for j=start_Id to end_Id
update_Anew_with_Aold ( j );
end loop 
synchronization;

loop: for j=start_Id to end_Id
update_Aold_with_Anew ( j );
end loop 
synchronization;

 CPU Thread function

j=threadIdx.x+blockIdx.x*blockDim.x;

update_Anew_with_Aold ( j );
synchronization;

update_Aold_with_Anew ( j ); 
synchronization;

 GPU Kernel function

Implementation of synchronization 
on CPUs: pthread_barrier_wait ();
on GPUs: atomicAdd ();

update_Anew_with_Aold (K)

(a) Flow chart of NDDR (b) Parallelization on CPUs and GPUs

(c)  Sub-domain solver

if (MyNode[K].Node_Type==InnerNode)
AK=0;
while(er >10-5)
loop i=1 to 
MyNode[K].Number_of_Neighbour_Element

get Neighbour_Element_Id[i];
get Neighbour_Element_Number[i];

get boundary conditions using Aold;
calculate and accumulate ∂FKi/ ∂AKi;

calculate and accumulate -FKi(AKi);

end loop

update ΔAK  based on equation (5);

er=ΔAK/AK;
AK=AK+ΔAK;

end while

update MyNode[K].Anew = AK;

end if

Figure 3.10: Detailed implementation of the NDD scheme on CPUs and GPU.

obtained from the NDD scheme in Case 2 with ε0 = 10−5 are plotted in Fig. 3.11 with a
relative error of 0.15% compared with ComsolTM.

As mentioned before, the NDD scheme is perfectly suited for massively parallel archi-
tectures since each sub-domain can be solved independently within each iteration. The
NDD scheme is implemented on a parallel workstation with multi-core CPUs and many-
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Figure 3.11: Field distribution of the NDD scheme in Case 2 with ε0 = 10−5.

core GPU. Specifically, the workstation has dual Intel Xeon E5-2698 v4 CPUs, 20 cores each,
2.2GHz clock frequency, and 128GB RAM. The GPU is the NVIDIA Tesla V100-PCIE-16GB
with 5120 Cuda cores, and details can be found in [12]. Figure 3.10(b) provides the par-
allel implementation concerning POSIX Threads on CPUs and Kernel on GPUs, and Fig.
3.10(c) shows the details of the sub-domain solver. For the implementation on the 40 CPU
cores, each core still needs to handle hundreds of sub-domains due to the limited number
of cores. Whereas, for the implementation on the GPU, each Cuda core can handle much
fewer sub-domains. In fact, in Case 1-4, each Cuda core only needs to handle one single
sub-domain since the number of nodes is less than the number of Cuda cores.

It is very important to mention that the run-time of ComsolTM is measured using the
Comsol-Matlab-LivelinkTM, meaning the solution phase can be timed accurately with little
overhead.

The massive parallelism of the NDD scheme also results in decent computational ef-
ficiency. With the prescribed ε0 = 10−5, the execution time and speedups of the parallel
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Table 3.2: NDD execution time and speedup for CPU and GPU with ε0 = 10−5

Cases
ComsolTM NDD CPU Parallelization NDD GPU Parallelization
Execution Execution Time (s)-Thread N Speedup Execution SpeedupTime (s) 1 4 8 20 40 Time (s)

Case 1 2.1 0.35 0.16 0.10 0.088 0.25 23.9 0.045 47
Case 2 3.4 1.92 0.87 0.54 0.37 0.57 9.2 0.107 32
Case 3 9.0 13.90 5.24 3.23 1.64 1.26 7.1 0.29 31
Case 4 10.3 21.61 8.89 4.88 2.22 1.67 6.2 0.32 32
Case 5 18.0 85.24 31.34 18.55 7.71 5.31 3.4 0.76 24

NDD scheme implemented on CPUs and GPU are provided in Table 3.2. It can be inferred
that the execution time of the optimized ComsolTM solver increases almost linearly with
the problem size (node number), and it is revealed from Table 3.1 that the iteration number
required for NDD also increases linearly with the problem size (number of nodes).

In Case 1-4, maximum parallelism is achieved, i.e., enough hardware resources are
available so that each sub-domain is projected to one single hardware core. Therefore, the
execution time is only determined by the iteration number and thus also increases linearly
with the node number. Compared with ComsolTM, a steady speedup of more than 30
times is achieved on the GPU implementation. However, in Case 5, the speedup drops
because each Cuda core has to handle two sub-domains instead of only one. Similarly, for
CPU implementation, the drop of the speedup when node number increases can be also
explained. With multiple GPUs in the future with more than 10,000 cores, the speedup of
Case 5 with maximum parallelism can also reach more than 30 times without doubt.

3.5.3 NDD for magnetodynamic case

For the magnetodynamic case, the governing equation will include the eddy current term:

∇ · (υ∇A) = σ
∂A

∂t
− J. (3.7)

Similarly, applying the Galerkin FEM will result in the following elemental equations:

υe

4∆e

k11 k12 k13

k21 k22 k23

k31 k32 k33

A1

A2

A3

 +
σe∆e

12

2 1 1
1 2 1
1 1 2

∂A1
∂t
∂A2
∂t
∂A3
∂t


=
Je∆e

3

1
1
1

 .
(3.8)

The following algebraic equations can be obtained after time discretization with Back-
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Figure 3.12: Number of iterations required for different time-steps to maintain a relative
tolerance of 10−5 for the NDD in Case 2.

ward Euler method:

υe

4∆e

k11 k12 k13
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A1(t+ ∆t)
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A3(t+ ∆t)


+
σe∆e

12∆t

2 1 1
1 2 1
1 1 2

A1(t+ ∆t)
A2(t+ ∆t)
A3(t+ ∆t)


=
Je(t+ ∆t)∆e

3

1
1
1

 +
σe∆e

12∆t

2 1 1
1 2 1
1 1 2

A1(t)
A2(t)
A3(t)

 .
(3.9)

Thus, the magnetic vector potentials at time point t+∆t are unknowns and the solution
procedure at each time-step is very similar to the magnetostatic case. The sub-domain
equation (3.4) needs to be adjusted according to (3.9).

Note that in the magnetostatic case, the initial guess of the magnetic vector potential
for each node is set to 0 since there is no information for reference before the problem is
solved. The number of the required NDD iterations is less if the initial guess is closer to
the correct solution. This feature is very useful for the magnetodynamic case since the
final solution of each time-step can serve as the initial guess of the next time-step and
contribute to the converging process. In the transient simulation where a small time-step
is applied, the field usually changes slowly, implying the NDD iteration number between
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two successive time-steps can be less than the magnetostatic case presented before.
For the Case 2 in Table I with 1273 nodes, 2483 elements and the prescribed relative

tolerance ε0 = 10−5, the required iteration number is 537. If the windings are fed with
the time-varying sinusoidal currents provided, the initial guess of the magnetic vector
potential for each time-step could be set to the solution of its previous time-step instead of
0. Figure 3.12 shows the number of iterations required for each time-step when different
∆t is applied, which reveals that the required iteration number can be much less than 537
for a magnetodynamic problem. For example, the average number of iterations required is
254, 128, and 40 when the applied time-step is 100µs, 10µs, and 1µs, respectively. And the
average execution time per time-step of the ComsolTM time-domain solver is 2.5s when
∆t = 100µs, 1.6s when ∆t = 10µs , and 0.52s when ∆t = 1µs. Thus, the average speedup
of the NDD scheme for time-domain FE computation is 53, 60 and 70 times for the time-
steps of 100µs, 10µs, and 1µs, respectively.

3.5.4 Scalability and Limitation

As mentioned before, with unlimited parallel hardware resources, the execution time of
the NDD scheme will increase linearly with the problem size and a speedup of more than
30 times is obtained compared with the commercial solver, which are very attractive fea-
tures. However, in practical applications, the potential of the NDD scheme may be capped
by the available parallel hardware resources. For any fixed parallel hardware resource, the
execution time of the NDD scheme will eventually increase quadratically with the num-
ber of nodes N , while the time cost of the Newton-Raphson and incomplete Cholesky
conjugate gradient solver will roughly increase with N1.5, and the execution time of the
commercial software only provides a linear increase with N . Therefore, to gain decent
speedup for a FE problem, parallel hardware resources that match the problem size would
be a prerequisite for the proposed NDD scheme.

Fortunately, the development of modern high-performance parallel computing archi-
tecture provides many possibilities for such massively parallel algorithms. In our future
research, the FE problems with tens of thousands of nodes would be solved on the work-
station with multiple GPUs; for larger 3-D FE problems, computer clusters would be con-
sidered, which consists of millions of computational cores.

It is also worth mentioning that due to its matrix-free property, the NDD scheme is also
promising in those FE problems with dynamic mesh generation such as rotating machines
with moving parts. The changing geometries only impact the attributes of the nodes and
elements involved, and all the other computations remain the same because the proposed
NDD scheme is essentially decentralized.

Besides, the Galerkin scheme in this chapter utilized node-based FEM, thus the sub-
domain is defined by a node and its neighboring triangular elements. Also, the NDD
scheme can be potentially applied in edge-based FEM such as 3-D problems using tangen-
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tial vector finite elements. In that case, the sub-domain consists of an edge element and all
the tetrahedrons that share this edge.

3.6 Summary

In this chapter, a novel nodal domain decomposition with relaxation scheme is proposed
and the massive parallelism is implemented on the prevalent parallel computing architec-
tures. For the first time, the nonlinear FE problem in EM apparatus is solved in a decen-
tralized manner without having to assemble a global matrix. The miniature sub-domain
solver shows perfect modularity for single instruction multiple data (SIMD) programming
with the specifically defined data structure, and the memory required increases linearly
with the problem size. The mixed boundary condition is incorporated to the sub-domain
solver to accelerate the convergence. The accuracy and efficiency of the NDD scheme im-
plemented on both multi-core CPU and many-core GPU are discussed for different prob-
lem sizes, and comparison with the results from ComsolTM shows a speedup of more than
30 times while maintaining high accuracy (error less than 0.85%). Also, for time-domain
FE computation, the average speedup achieved is more than 53 times since the solution
of each time-step could serve as valuable information to contribute to the convergence of
the next time-step. Besides, it should be mentioned that the results of the proposed paral-
lel method match well with the commercial software regarding the same boundary value
problem. To represent the physical problem accurately, efforts will be paid to reduce the
assumptions and simplifications that the finite element model depended on. Future re-
search will focus on applying the NDD scheme in coupled electromagnetic field-transient
FE computation where dynamic mesh generation is required, and extending it to large-
scale 3D FE solution on compute clusters of multiple CPUs and GPUs.
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4
Element-Wise Parallelism: Transmission-Line
Decoupling for Transformer EMT Simulation

4.1 Introduction

This chapter provides the transmission line decoupling technique that explores parallelism
at the element-level. The features including the parallelism and constant admittance ma-
trix are elaborated and a 2D real-time finite element transformer model is implemented on
FPGA using hardware concurrency and data pipelining.

Transformers are essential components in a power delivery system. The behavior of
the electromagnetic field in a transformer is governed by Ampere’s law, and the accurate
prediction of the magneto dynamic field is commonly obtained from the FEM simulation, a
powerful numerical method to deal with complex geometries and material nonlinearities.

An accurate real-time electromagnetic field-transient simulation of a power transformer
is of great benefit for the design and testing of better control and protection schemes, cost
reductions, and energy efficiency improvement. However, as the permeability of the ma-
terial depends on the magnetic field strength, solving the discretized nonlinear system of
field equations in space-time requires iterative techniques such as the Newton-Raphson al-
gorithm within each simulation time-step. Thus, a new linear system has to be solved at
each iteration due to the updated Jacobian matrix, and the dense computation makes the
traditional FEM solver unbearably slow for real-time execution. In the authors’ knowl-
edge, real-time simulation is only possible by simplifying the field problem to a lumped
network. The traditional lumped models [51]–[56] used for electromagnetic transient sim-
ulation of the transformer include the admittance matrix-based model and the topology-
based magnetic equivalent circuit (MEC) model, both of which have been adequately uti-
lized in real-time simulation [57], [58] for modeling various multi-winding transformers;
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nonlinear effects such as hysteresis and eddy current behavior have also been sufficiently
represented. Although these analytical circuit-oriented models can be calculated fast, they
suffer from oversimplification and serious information loss.

The transmission line modeling method is based on Huygens’s principle and was orig-
inally developed by Johns [59] to simulate wave propagation. Then the concepts of TLM
link and stub were proposed for the analysis of nonlinear networks to effectively decou-
ple the nonlinear elements from the linear system [60]–[64]. Later Lobry and Deblecker
insightfully uncovered the analogy between the finite element matrix and the nodal ad-
mittance matrix of a corresponding equivalent network and successfully applied the TLM
technique to the FEM solution [47], [65], [66]. The improved computational efficiency and
accuracy were notably discussed.

Solid foundations have been laid by previous scholars, yet the TLM technique used
in FEM can be further explored for implementation on parallel hardware architectures to
achieve the most computational efficiency, especially for real-time computation. Besides,
the TLM-FE models in [47], [65], [66] are all fed with current sources, and an appropriate
field-circuit coupling technique is necessary to interface with the external network.

A single TLM iteration is composed of two phases: scattering and gathering. In the scat-
tering phase, pulses are injected from the linear network to each external element. Thus,
all elements are decoupled from the network and the reflected pulses of external elements
can be computed individually, i.e., the scattering phase can be perfectly parallelized. In
the gathering phase, the reflected pulses return and impact on the linear network. Since
the admittance matrix is determined by the impedance of the TLM links and remains un-
changed, only one inversion is enough in the beginning. Thus, the computation of the
gathering phase includes mainly matrix-vector multiplications with a changing right-hand
side vector, which is also perfectly suitable for parallel hardware architectures. In general,
multiple TLM iterations are needed due to the mismatch between the impedance of the
TLM link and the impedance of the element (linear or nonlinear). To decrease the number
of TLM iterations required within each time-step, the impedances of the TLM links in this
work are set to the memory steady-state values of the corresponding element instead of
using arbitrary values.

Also, an indirect non-iterative field-circuit coupling technique is proposed to handle
the external circuit. The self and mutual inductances of the transformer windings are cal-
culated based on the magnetic vector potentials from the FE model, and these coupling
coefficients are fed to the external circuit, which is then solved independently within each
time-step.

In this chapter, the parallelism of the TLM-FE solution is fully explored to achieve real-
time finite-element simulation of the electromagnetic transients in a 2D single-phase power
transformer coupled to external circuits. The real-time simulation is performed on the Vir-
tex UltraScale+TM VCU118 FPGA board, and the results are compared with those obtained
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from commercial FEM software Comsol MultiphysicsTM concerning accuracy and compu-
tational efficiency.

The chapter is organized as the following. Section 4.2 presents the magneto dynamic
field equations to be solved for the transformer, the TLM solution technique, and the field-
circuit interface. In Section 4.3, the detailed real-time implementation of the parallelized
TLM technique on the FPGA is presented. Section 4.4 provides real-time simulation results
and comparisons. At last, summary and future work are provided.

4.2 Magnetodynamic Problem Formulation for Transformer FEM
Simulation

4.2.1 FEM Equations

Consider a 2-D finite element model of a single-phase power transformer shown in Fig. 4.1.
When the windings are excited by the external circuit, the current density in the windings
produces a dynamic magnetic field, which is described by the magnetic vector potentialA.
Since the magnetic vector potential A and the impressed current density J only have the
z-components in a 2-D problem, the nonlinear magneto dynamic problem can be defined
by the following diffusion equation:

∇ · (υ∇Az) = σ
∂Az
∂t
− Jz, (4.1)

where υ is the field-dependent reluctivity; σ is the conductivity, a constant value for a
certain material; Jz is the impressed current density, which is only nonzero in the winding
zone.

The well-known Galerkin FEM [48] applied to solve the magneto dynamic problem
includes the following steps: discretize the domain, form elemental equations, assemble
the global matrix, and solve the system of equations.

Fig. 4.1 shows the discretized domain consisting of triangular elements and nodes. For
the Galerkin method, the product of the residual and the weighted function is integrated
over each element, and the element equations can be formed by forcing the integral to
zero. With natural boundary conditions applied, the classical weighted-integral equation
of element Ωe can be written as [48]:∫∫

Ωe
υe(

∂Ae

∂x

∂W e

∂x
+
∂Ae

∂y

∂W e

∂y
)dxdy

+

∫∫
Ωe
σ
∂Ae

∂t
W edxdy =

∫∫
Ωe
JezW

edxdy,

(4.2)

where Ae is the magnetic vector potential over element Ωe, and W e the weighted function.
In Fig. 4.1, the vertex values of the triangular element Ωe are A1, A2, and A3, and the
magnetic vector potential over the whole element Ae can be expressed with the classical
barycentric interpolation:

Ae = N1A1 +N2A2 +N3A3, (4.3)

45



Primary winding 
element

Secondary winding 
element

Transformer core 
element

Air element

N1

N2

N3

A1  (x1, y1) 
A2  (x2, y2) 

A3  (x3, y3) 

Ωe 

X (m)

Y 
(m
)

Figure4.1:2-DFEmodelofasingle-phasetransformer.

whereN1,N2,andN3aretheshapefunctionsprofiledinFig.4.1.Thevaluesofthese

shapefunctionsatanyposition(x,y)aredefinedby

Ni=
1

2∆e
(ai+bix+ciy)(i=1,2,3), (4.4)

where∆eistheareaofthetriangularelement;ai,bi,andciarerelatedtothecoordinates

ofthevertices:
a1=x2y3−x3y2,b1=y2−y3,c1=x3−x2,

a2=x3y1−x1y3,b2=y3−y1,c2=x1−x3,

a3=x1y2−x2y1,b3=y1−y2,c3=x2−x1.

(4.5)

AccordingtotheGalerkinmethod,theAein(4.2)issubstitutedby(4.3)andtheweighted

functionsWearesettoN1,N2,andN3respectively.Thus,3equationswith3unknown

vertexmagneticpotentialvaluesareobtainedafteraccomplishingtheintegral:

υe

4∆e




b1b1+c1c1 b1b2+c1c2 b1b3+c1c3
b1b2+c1c2 b2b2+c2c2 b2b3+c2c3
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=
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e
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.

(4.6)

Notethatthereluctivityυe,theconductivityσeandthecurrentdensityJezareconstant

overonefiniteelement.ThedistributionsofσeandJezaregivenwhileυ
edependsonA1,

A2,andA3.Thedependenceisnotstraightforwardandcouldbequantitativelyexpressed

byintroducingthemagneticfluxdensityB.Ina2-Dproblem,asAisdefinedbyB=∇×A,

inoneelementBandAarerelatedby:

B2=(
∂Ae

∂x
)2+(

∂Ae

∂y
)2=−

1

4(∆e)2
((b1b2+c1c2)(A1−A2)

2

+(b2b3+c2c3)(A2−A3)
2+(b1b3+c1c3)(A1−A3)

2).

(4.7)
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Figure4.2:Preisachmodel:(a)Hysteresisoperator,(b)Preisachtriangle,(c)Sampleinput
ofH,and(d)Trajectoryofthehysteresisloop.

Theυe−B2relationshipcanbefoundfromthecorematerialpropertysuchastheB-H

curverepresentation.Inthiswork,thenonlinearmaterialpropertyofthetransformercore

isrepresentedusingthePreisachmodel[67].

TheclassicalPreisachmodelregardstheferromagneticmaterialasaninfinitesetof

hysteronsdefinedbythehysteresisoperator(Fig.4.2(a)).Thusthemagnetizationmoment

M canbewrittenasthefollowingintegraloverthePreisachtriangle(Fig.4.2(b)):

M(t)=
α≥β
µ(α,β)γαβH(t)dαdβ

=
S+
µ(α,β)H(t)dαdβ−

S−
µ(α,β)H(t)dαdβ,

(4.8)

whereH(t)andM(t)aretheinputandoutput,thestair-shapedboundaryofS+andS−

isdeterminedbythehistoricalextremumofH(t),andµ(α,β)isthePreisachdistribution

functionthatisusuallyobtainedfromtheexperimentalresults.ThustheB-Hrelationship

canbeobtained:

B=µ0(M +H). (4.9)

FortheNewton-Raphsonalgorithmrequiringsmoothnonlinearity,itisbeneficialtoap-

proximatetheexperimentalresultsusinganmathematicaldistributionfunction.Accord-

ingto[68],thefollowing2-DCauchydistributionfunction,whichisanalyticallyinte-

grable,canachieveanaccurateapproximation:

µ(α,β)=c
1

1+(α−a0b0 )
2

1

1+(β−a1b1 )
2
, (4.10)

wherea0,a1,b0,b1,andcarecoefficientsgivenintheAppendixA.
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SincethemagnetizationmomentM dependsonthepasthistoryofH,areversalpoint

vector(RPV)storingthehistoricalextremum(h1,h2,h3,h4,...)isrequiredtoderivethe

integral.Figure4.2(c)andFig.4.2(d)presentasampleinputwith4branchesandthe

correspondingtrajectoriesofthehysteresisloop.TheRPVisupdatedorwipedout(branch

h4→h1)basedontheinputsequenceH(t),andtheB-Hformulationindifferentbranches

areregulatedbytheRPV.

TheproblemdomainisenclosedbyanartificialrectangularboundaryΓ(shownin

Fig.4.1),andtheboundaryconditionisAΓ =0. Aftertimediscretization,theabove

nonlinearelementalequations(4.6)canbeassembledandarereadytobesolvedwith

theNewton-Raphsoniterativescheme.Concerningthecomputationalburden,theTLM

techniqueprovidesanefficientmethodologytohandlethesenonlinearequations.

4.2.2 RefinedTLMSolution

WhentheTLMtechniqueisappliedtosolveanelectricalcircuitinthetimedomain,the

componentsareseparatedfromthenetworkbylosslesstransmissionlines.Thecharacter-

isticimpedanceofthetransmissionlineZcisarbitraryforresistors,∆t/2Cforcapacitors,

and2L/∆tforinductors,where∆t

Net-
work

C

L

Net-
work

ZC

ZC=Δt/2C 

ZC=2L/Δt 

Vi Vr

Net-
work

U=f (I)

ZC 2Vr /ZC

ZC 2Vr /ZC

ZC 2Vr /ZC

(a) Electrical network (b) Scattering phase (c) Gathering phase

isthesimulationtime-step[60].

Figure4.3:TheTLMtechniqueappliedinanelectricalnetwork.

AsshowninFig.4.3,inthescatteringphase,thenetworktransmitsincidentimpulses

Viintoeachelement.Forlinearelements,thereflectedpulsecanbecalculatedby

Vr=KrVi, (4.11)

wherethereflectioncoefficientKrisequalto(R−Zc)/(R+Zc)forresistors,1forcapacitors,

and-1forinductors.Foranonlinearelement,forexample,anonlinearresistordescribed

asU=f(I),thereflectedpulseVrisobtainedbysolvingthenonlinearequation

Vi+Vr=f(
Vi−Vr
Zc

). (4.12)
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Note that if Zc is equal to the working state value of the linear or nonlinear resistor, the
reflection coefficient is 0 and only one TLM iteration is required.

In the gathering phase, all the reflected pulses return to the network and update the val-
ues of all nodes. The transmission line and the elements are replaced with their equivalent
Norton circuits. For each element, the equivalent resistance is the characteristic impedance
Zc of the transmission line and the equivalent current is 2Vr

Zc
according to the TLM theo-

rem [69]. A global linear network needs to solve, and the nodal admittance matrix, which
is determined by the characteristic impedances and is independent of the elements, re-
mains unchanged. It is a significant feature providing an improvement in computational
efficiency.

The nodal values can be updated by solving a linear network with unchanged nodal
admittance matrix, then the next incident pulse can be also updated by:

Vi = Vd − Vr, (4.13)

where Vd is the nodal voltage difference. Thus, the gathering phase is complete, and the
scattering phase of the next TLM iteration is ready to begin.

At each time step, multiple TLM iterations described above are necessary to fully solve
the nonlinearity. Note that the round-trip travel time is infinitely short for a resistive ele-
ment. Therefore, at the beginning of each time step, the TLM iteration is applied repeatedly
to all nonlinear resistive elements until convergence. During this process, the incident and
reflected pulses of all reactive elements are not yet updated. After steady-state is reached,
the incident and reflected pulses of the reactive elements are updated for the next time
step.

Equation (4.6) defines an equivalent network composed of capacitors and nonlinear
resistors shown in Fig. 4.4(a). The magnetic vector potential is modeled as the electric
potential, the right-hand side vector of (4.6) is modeled as the current sources and the
Dirichlet boundary conditions are modeled as the voltage sources. The nonlinear resistors
and the linear capacitors form the coefficient matrix and hold such material properties as
reluctivity and conductivity. And the values of the components are given as

G12 = − υe

4∆e
(b1b2 + c1c2), YG12 = −

υeg
4∆e

(b1b2 + c1c2),

G13 = − υe

4∆e
(b1b3 + c1c3), YG13 = −

υeg
4∆e

(b1b3 + c1c3),

G23 = − υe

4∆e
(b2b3 + c2c3), YG23 = −

υeg
4∆e

(b2b3 + c2c3),

C12 = C13 = C23 = −σ
e∆e

12
, YC12 = YC13 = YC23 = −σ

e∆e

6∆t
,

C10 = C20 = C30 =
4σe∆e

12
, YC10 = YC20 = YC30 =

4σe∆e

6∆t
.

(4.14)

where υe is the prior unknown reluctivity to be solved using the 3×3 Newton-Raphson
scheme and υeg is an initial guess value, which should be as close to υe as possible. With
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theguessedυeg,thenodaladmittancematrixrequiredinthegatheringphasecouldbe

obtainedbyassemblingmultipleNortonequivalentcircuits(Fig.4.4(c))basedontheFE

meshinformation.

WhentheTLMtechniqueisappliedinatriangularnetwork,threepulsesbasedon

thedifferencesbetweennodalvalueswillbeinjectedintothethreeedges.Figure4.4(b)

showstheTLMlinks(resistors)andtheTLMstubs(capacitors)inthescatteringphase.The

incidentpulsesintothreeedgesaredenotedbyx0,y0,andz0andthereflectedpulsesto

becalculatedaredenotedbyx,y,andz,respectively.Insteadofsolvingasingleequation

(4.12),thefollowingthreecouplednonlinearalgebraicequationsneedtobesolved:

G12(x+x0)−YG12(x0−x)=0,

G13(y+y0)−YG13(y0−y)=0,

G23(z+z0)−YG23(z0−z)=0.

(4.15)

SinceG12,G13andG23arefunctionsof(x+x0),(y+y0)and(z+z0),andtherelations

canbederivedfrom(4.7)andthePreisachmodel,theresultingnonlinearalgebraicequa-

tionscanbeefficientlysolvedwiththeNewton-Raphsonmethod,andtheconvergence

canbespedupusinganappropriaterelaxationfactor. Whencalculatingthe3×3Jacobian

matrix,thefollowingchainruleisutilized:

∂G

∂x
=
∂G

∂B2
∂B2

∂x
. (4.16)
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In the gathering phase shown in Fig. 4.4(c), the reflected pulses and the TLM links or stubs
are replaced with their equivalent Norton circuits. The equivalent Norton circuits make a
a linear network and the nodal values can be updated after matrix-vector multiplications
if the inversion of the admittance matrix is ready at the beginning.

It should be emphasized that the above descriptions of the TLM technique applied in
FEM are at the triangular element level. For a problem domain composed of numerous
finite elements, the main computational tasks include solving (4.15) for all nonlinear ele-
ments in the scattering phase and the matrix-vector multiplications in the gathering phase.
Both tasks could be perfectly parallelized on massively parallel computing architectures.

It is acknowledged that multiple TLM iterations are needed because of the mismatch
of the unknown υe and the guessed υeg. If υe is equal to υeg, the reflected pulse is zero and
only one TLM iteration is enough for convergence. Fewer TLM iterations are needed if the
two values are closer. Thus, the concept of memory nodal admittance matrix is proposed to
decrease the mismatch and to accelerate the convergence. A memory admittance matrix is
featured by the impressed current density. For the transformer, once the FE model is solved
with provided Ip0 and Is0, the υe of each element can be extracted. After the assembly and
inversion process, these values could be utilized to form a new admittance matrix, which
contains very valuable information (memory) for the rest solution.

Figure 4.5(a) shows the efficiency of the memory admittance matrix in a case study
(presented in SectIion IV) with secondary winding open-circuited (Is = 0). As shown in
the figure, even when the υeg is carefully guessed, it takes more than 30 TLM iterations for
each time-step while the number is around 10 utilizing the memory admittance matrix.
Note that Imaxp in Fig. 4.5(a) could be set to the peak value of the rated primary winding
current.

In this work, a total of four memory admittance matrices are applied to ensure that
the TLM iteration number is always less than 5 provided that Ip and Is change arbitrarily
within each time-step, as shown in Fig. 4.5(b), where IRp and IRs are the rated currents in
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theprimaryandsecondarywindingsofthetransformer.Differentadmittancematricesare

usedforthegatheringphasebasedonthecombinationoftheIpandIs.ThedecreasedTLM

iterationnumberandtheparallelismwithinaTLMiterationmakereal-timesimulation

possibleontheparallelFPGAhardwarearchitecture.

4.2.3 Field-CircuitCoupling

NotethattheinputsoftheFEmodeldescribedabovearethewindingcurrents.However,

sinceatransformerisgenerallyexcitedbyvoltagesourcesinapowersystem,afield-circuit

couplingtechniqueisnecessarytointerfacewiththeexternalcircuit.

Directcouplingandindirectcouplingapproacheshavebeenexploredtointerfacethe

FEmodelandtheexternalcircuit:thedirectcouplingapproachsolvesthefieldequations

andtheelectricalnetworkequationssimultaneouslywhiletheindirectapproachsolves

thetwosubsystemsseparately[70].Thecomputationalburdenofthedirectcouplingap-

proachisheavierthanthetraditionalFEMsolverbecausethecircuitequationsdestroythe

matrixsymmetry[71].

Inthischapter,weproposedanindirectcouplingtechniquebyaccuratelyextractingthe

selfandthemutualinductancesofthetransformerfromtheFEmodel. Withineachtime-

step,thefieldequationsandthecircuitequationsaresolvedseparatelywithouthavingto

applyaniterativescheme.

Inelectricalnetworks,atransformermodelcanberepresentedbyselfandmutualin-

ductanceswithcontrolledsources,asshowninFig.4.6. Theaccuratevaluesofthese

nonlinearinductances(dependsonthewindingcurrents)canbeobtainedwiththeFE

model.TheelectricvoltageUacrossawindingcanberepresentedbythemagneticvector

potentialandthevoltagedropofwinding’sresistance:

U=rI+
Nl

∆S S

∂A

∂t
dS, (4.17)

whereIisthewindingcurrent,rthewindingresistance,Nthenumberofturns,ltheaxial

lengthofeachfilament,Sthewindingzone,and∆Stheareaofthewindingzone.
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Since A is a function of the primary winding current ip and the secondary winding
current is based on the FE model, (4.17) can be rewritten as:

U = rI +
Nl

∆S

∫
S

∂A

∂ip
dS
∂ip
∂t

+
Nl

∆S

∫
S

∂A

∂is
dS
∂is
∂t
. (4.18)

Applying (4.18) to the primary and the secondary winding respectively, the self and
mutual inductances of the transformer can be obtained as:

Lp =
Nplp
∆Sp

∫
Sp

∂A

∂ip
dS, Mps =

Nplp
∆Sp

∫
Sp

∂A

∂is
dS,

Msp =
Nsls
∆Ss

∫
Ss

∂A

∂ip
dS, Ls =

Nsls
∆Ss

∫
Ss

∂A

∂is
dS.

(4.19)

Since
∂A

∂ip
=
A(ip + ∆ip, is)−A(ip, is)

∆ip
,

∂A

∂is
=
A(ip, is + ∆is)−A(ip, is)

∆is
,

(4.20)

these coupling coefficients can be calculated with the FE model by setting the ∆ip and ∆is

in (4.20) to a very small value such as 0.1A.
It is known that by applying Trapezoidal rule, a constant inductor in the network can

be replaced by a resistor 2L(t)
∆t in parallel with a current source Ihis. When the inductor

value L(t) is time-varying, both L(t) and L(t+ ∆t) should be used. Since L(t+ ∆t) is un-
known, an error exists in the proposed indirect coupling scheme because the time-varying
inductances at time point t, calculated from ip(t) and is(t), are utilized to solve the external
networks at time point t+ ∆t. To reduce the asynchronization error, the inductance values
at time point t+ ∆t

2 are used with a prediction scheme and the following central difference
formula is utilized:

∂A

∂ip
(t+

∆t

2
) ≈ A(ip(t+ ∆t), is(t))−A(ip(t), is(t))

ip(t+ ∆t)− ip(t)
,

∂A

∂is
(t+

∆t

2
) ≈ A(ip(t), is(t+ ∆t))−A(ip(t), is(t))

is(t+ ∆t)− is(t)
.

(4.21)

where ip(t + ∆t) and is(t + ∆t) are unknown and can be predicted from their historical
values:

ip(t+ ∆t) = 2ip(t)− ip(t−∆t),

is(t+ ∆t) = 2is(t)− is(t−∆t).
(4.22)

Simulation results show that the mean absolute relative error is less than 3% with ∆ip =

ip(t)− ip(t−∆t), ∆is = is(t)− is(t−∆t) and more than 5% using small values (0.1A) of
∆ip and ∆is.

Note that the calculation of A(ip, is), A(ip, is + ∆is), and A(ip + ∆ip, is) can be also
parallelized with enough hardware resources. Then, these parameters are fed to the exter-
nal electrical network for simulation using the electromagnetic transients program (EMTP)
approach [1].
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4.3 Real-Time Hardware Emulation of the Finite Element Trans-
former Model

The hardware design was implemented on the Xilinx Virtex UltraScale+TM VCU118 board
with the xcvu9p-flga2104-e-es1 FPGA using high-level synthesis and optimization. The
sequential C and C++ functions can be compiled down to hardware IP blocks with in-
puts, outputs, and handshake signals for interfacing, which can be optimized based on
user’s preferences by adding the directives such as array partitioning, loop unrolling and
pipelining.

According to the TLM-FE solution and the field-circuit coupling technique, six hard-
ware blocks are generated and optimized to achieve deep data pipelining on the FPGA.
The detailed real-time implementation on the FPGA is shown in Fig. 4.7. The block con-
nections, pseudo-codes, and the finite state machine are all illustrated. The functionalities
of these blocks are presented as the following:

1. Assemble Current: The currents generated by the reflected pulses in each triangular
element (Fig. 4.4) and the impressed source currents are assembled to obtain the
total current injected to each node. The assembly of each node is parallelized and
pipelined based on the node-element connection matrix.

2. Solve Potential: With the assembled current vector and the inverted nodal admittance
matrix, the magnetic potential of each node is calculated by the matrix-vector mul-
tiplication under the Dirichlet boundary conditions. The multiplications could be
parallelized and the summation could be accomplished using a tree adder with a
latency of O(log2N).

3. Impulse Generator: Based on the updated magnetic vector potential and the reflected
pulses, the new incident pulses are generated for each triangular element. For each
element, these operations are unrolled and executed in parallel.

4. Newton Solver: For each triangular element, the 3 incident pulses are taken as in-
puts to obtain the 3 reflected pulses. The Newton solver is also unrolled and fully
pipelined to treat multiple elements. In this work, by using a relaxation factor of 1.2,
6 iterations are enough for all elements to maintain a relative tolerance of 10−5.

5. Inductance Calculator: Once A(ip, is), A(ip, is + ∆is), and A(ip + ∆ip, is) are available,
the self and mutual inductances can be calculated by the integration in (4.19).

6. Solve External Networks: The transformer is converted to the equivalent model in Fig.
(4.6) with all inductances known, and the external electrical networks are solved in
the time-domain. Note that although the execution time of the external network
solution is slight compared with the FE model, the extracted inductances are also
time-varying and will change the admittance matrix of the electrical network.
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TableIshowstheFPGAhardwareutilizationandthetimingreportofthecasestudy

withanFEmodelcomposedof196nodesand358elements,whicharecompiledonboth

XilinxVirtexUltraScale+TMxcvu9pandxcvu13pFPGAs,andthedetailsofthecasestudy

arepresentedinthenextsection.

AlthoughtheFPGAclockfrequencyofeachhardwareblockcanbesettomorethan

115MHz,themaximumclockfrequencyofthedesigncanreach93.1MHzforxcvu9pand

94.2MHzforxcvu13pafterthehardwareblocksareinterconnected.Since5TLMiterations

arerequiredforreasonableaccuracy,accordingtothetimingreport,theexecutiontimeof

theFEhardwareblockis5×1523÷93.1=81.8µsonthexcvu9pFPGAand5×1536÷

94.2=81.6µsonxcvu13pwhilethelatencyofthecircuitmodelis1.7µs. Accordingto

thehardwareutilizationreport,twoFEhardwareblockscanbegeneratedonthexcvu9p

FPGAandthreeFEhardwareblocksonthexcvu13pFPGA.Therefore,forthedesignon

thexcvu9pFPGA,twoofA(ip,is),A(ip,is+∆is),andA(ip+∆ip,is)canbecalculated

inparallelandtheotheroneisexecutedsequentiallythereafter,andthetotalexecution

timeoftheimplementationis,therefore,166µs.Forthexcvu13pFPGA,thecalculationsof

A(ip,is),A(ip,is+∆is),andA(ip+∆ip,is)canallbeexecutedinparallelatthesametime

andthetotalexecutiontimeoftheimplementationis84µs.

Althoughanexecutiontimeof166µsofthedesignonUltraScale+TMxcvu9pFPGAin
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Table4.1:HardwareResourceUtilizationandTimingReport
FPGA

Module
ResourceUtilization Latency

device BRAM DSP FF LUT (clockcycles)

Assem.curr. 84 512 130316 253004 393
Solv.poten. 168 842 86841 64301 206

Xilinx Imp.gener. 0 24 4418 21316 157

UltraScale+
Newt.solv. 9 1646 194969 200509 767
Subtotal(FEM) 6% 44.2% 17.6% 45.6% 1523

xcvu9p Calc.induc. 0 33 4971 5237 71
Solvenetw. 0 5 1611 1758 82

Subtotal(Netw.) 0% 1% 0% 0% 153

Assem.curr. 84 512 131490 257507 399
Solv.poten. 168 842 86876 64805 208

Xilinx Imp.gener. 0 24 5187 21524 159

UltraScale+
Newt.solv. 9 1646 214112 203558 770
Subtotal(FEM) 4.9% 24.6% 12.7% 31.7% 1536

xcvu13p Calc.induc. 0 33 4991 5287 72
Solvenetw. 0 5 1811 1958 84

Subtotal(Netw.) 0% 1% 0% 0% 156
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Figure4.8:SchematicofthetransformerFEmodelcoupledwithexternalnetworksforcase
studies.

ourreal-timeimplementationisstilltoolargefortheelectromagnetictransientsrequiring

atime-stepof50µs,itshouldbepointedoutthattheproposedindirectcouplingscheme

worksperfectlyformulti-ratereal-timesimulation,whichmeansthattheexternalnet-

workscanutilizeamuchsmallertime-stepthanthatoftheFEmodel.Forexample,in

CaseStudyIIpresentedinSection4.4,thetime-stepis180µsfortheFEtransformermodel

and45µsfortheexternalnetworks,implyingthatthetransformerinductancesusedinthe

solutionoftheexternalnetworkmoduleareupdatedevery4time-steps.Inourfuture

workimplementedontheUltraScale+TMxcvu13pFPGA,theappliedsimulationtime-step

fortheFEmodelcouldbe84µs.

4.4 CaseStudyandResults

4.4.1 SetupforCaseStudy

Asingle-phasepowertransformerratedat37.5kV/202kVwasstudiedinthiswork,and

thegeometryandmesh(196nodesand358elements)areshowninFig.4.1.Theschematic
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of the real-time FE model coupled to external networks is shown in Fig. 4.8. The primary
winding is excited by a 60Hz AC voltage source, and a Bergeron line model is included
between the secondary winding and the load. The detailed simulation parameters are
provided in the Appendix A.

Two case studies are presented: a single-rate case study and a multi-rate case study. For
the Case Study I, the total simulation time is 600ms and the applied time-step is 180µs for
the FE transformer model and the external networks. The following events are simulated:

1. t=0, SW1 is turned on and the transformer is energized while the secondary winding
is open-circuited.

2. t=150ms, SW2 is turned to T1 and the transformer works with a load of RL1 and LL1.

3. t=300ms, the second and the fourth harmonics are injected into the voltage source
Vac.

4. t=450ms, SW3 is turned on and the secondary winding is short-circuited.

For Case Study II, the total simulation time is 600ms and the applied time-step is 180µs
for the FE transformer model and 45µs for the external networks. The following events are
simulated:

1. t=0, SW1 is turned on and SW2 is turned to T2, the transformer is connected to a
transmission line with an open-circuited receiving end.

2. t=150ms, SW4 is turned on and the the transmission line is loaded with RL2 and LL2.

3. t=300ms, the second and the fourth harmonics are injected into the voltage source
Vac.

4. t=450ms, SW5 is turned on and the transmission line is short-circuited.

4.4.2 Results and Validation

The off-line simulation with the same case study, setup and mesh were also performed
on the commercial FEM software ComsolTM. Mesh dependency test has been performed
in ComsolTM and it turned out that for this 2-D problem, 196 nodes are enough to main-
tain reasonable accuracy compared with a finer mesh. The off-line results are regarded
as reliable and are thus used as the benchmark for comparison for the real-time results.
The real-time simulation results of the primary winding current Ip, the primary winding
voltage Up, the secondary winding current Is, the secondary winding voltage Us, the trans-
former inductances, the time-varying winding loss, eddy current loss, hysteresis loss, and
total loss are all presented in Fig. 4.12 for Case Study I and Fig. 4.13 for Case Study II,
respectively, with a comparison of those results from ComsolTM. Note that all the errors in
the figures denote the mean absolute relative error. The zoomed-in plot of the simulation
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Figure 4.9: Zoomed-in time-domain result comparison in Case Study II between 117ms
and 182ms.

results is shown in Fig. 4.9. For all practical purposes, the real-time results are identical
to the ComsolTM results, and the harmonics from Fast Fourier transform of the results also
match in Fig. 4.12 and Fig. 4.13.

As can be seen from the results, when the secondary winding is open-circuited, Ip is the
magnetizing current and the phase difference of Ip and Us is always 90 degree. The inrush
current of the primary winding occurs at t = t1 while the inrush current of the secondary
winding occurs at t = t5. The inrush currents may cause some unwanted phenomena
such as saturation in the transformer, which is possible to be monitored in real-time with
the proposed implementation.

The direct output of the FE model is the magnetic vector potential A, and Fig. 4.10
shows the node solution of the real-time implementation compared with the ComsolTM at
t = t1 in Case Study I and at t = t5 in Case Study II. Other variables can also be derived
after post-processing. For example, the induced electric field E and the eddy current loss
Lec can be calculated with

E =
∂A

∂t
, Lec =

∫∫
Ωcore

σeE2. (4.23)

Fig. 4.11 shows the magnetizing current and the trajectories of the hysteresis loop in
a sample element in Case Study I, and the hysteresis loss can be also calculated based
on these loops, which are regulated by the RPV. The detailed field distributions of the
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Figure 4.11: Magnetizing current and the trajectories of the hysteresis loop of a sample
triangular element in Case Study I.

magnetic vector potential A (Wb/m), the magnetic flux density B (T), the magnetic field
strength H (A/m), and the eddy current density J (A/m2) at t = t1 in Case Study I and at
t = t5 in Case Study II are also captured and presented in Fig. 4.12 and Fig. 4.13, respec-
tively.

Note that the relative error compared with ComsolTM in the case studies is caused by
two factors: the FE-TLM solution and the non-iterative coupling scheme. It turned out
that given the same Ip and Is, the error of the magnetic vector potential from the real-time
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Figure 4.12: Real-time simulation results and the comparison with ComsolTM off-line re-
sults for single-rate Case Study I: time-domain, frequency-domain, and field distributions.
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Figure 4.13: Real-time simulation results and the comparison with ComsolTM off-line re-
sults for multi-rate Case Study II: time-domain, frequency-domain, and field distributions.
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results is less than 0.1% compared with the ComsolTM solver. Further increasing the TLM
iteration and the Newton iteration will make this error smaller. Thus we believe the error
in our work mainly comes from the non-iterative coupling scheme.

4.4.3 Speed-up and Scalability

The off-line simulation with ComsolTM was conducted on a PC with the CPU Intel Xeon
E5-2620, 16 cores, 2.1GHz clock frequency, and 32GB RAM. The tolerance of the ComsolTM

nonlinear solver is 10−5 and the maximum iteration number is set to 20. The order of
the finite element is 1. It takes 134s to run 3333 simulation time-steps, and the execution
time per solution step is 40ms. By sufficiently exploring the parallelism and deep data
pipelining, the speed-up of the real-time hardware implementation can reach 241 times.

The proposed real-time approach also has good scalability. Although a simple circuit
is used in the case study, the real-time FE model can be easily coupled to a larger compli-
cated external network, which can be solved independently with the accurate inductances
obtained from the FE model. When applied for complex geometries that require increas-
ing the number of nodes and elements, the resource usage of the Assemble Current and the
Newton Solver hardware blocks remains unchanged and only the pipelined loop count in-
creases, and the hardware resources usage and latency of other blocks increase linearly or
logarithmically.

4.5 Adaptive Admittance Matrix

The unchanged admittance matrix implies that only one LU decomposition (or matrix in-
version) at the beginning of the program is enough, and for the gathering phase, the rest
numerical operations to solve the linear network are merely backward and forward sub-
stitution (or matrix-vector multiplication). However, in real applications, the real value
of the nonlinear reluctivity υe(t) is always time-varying. Thus the extent of mismatch be-
tween the constant υeg and the changing υe(t) will fluctuate, and the required number of
TLM iterations may also vary from tens to thousands.

In fact, at time-point t, the solution can provide the real values of υe(t) for all triangular
elements. If this information is used to update the transmission-line impedances, implying
υeg(t) = υe(t), the required TLM iteration number for the next time-step t + ∆t will be
substantially decreased because the values of υeg(t) and υe(t + ∆t) within each triangular
element are very close.

It has been tested that for a larger finite element problem, hundreds of iterations are
required using constant admittance matrix, while only 2-4 iterations with adaptive ad-
mittance matrices. Whereas, due to the modified υeg(t) at each time-step, the admittance
matrix will also keep changing although only 2-4 iterations are required. In the future
work, some iterative sparse solvers such as the conjugate gradient solver, which can also
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be implemented on GPU, can be utilized to achieve fast matrix solver and reduce TLM
iterations at the same time.

4.6 Summary

In this chapter, real-time finite-element computation of electromagnetic transients in a
transformer is attempted for the first time. The transmission line modeling method suc-
cessfully decoupled the nonlinear elements from the linear network so that the compu-
tation can be massively parallelized. The parallelism of the different phases of the TLM
technique is fully explored and implemented on an FPGA board with deep data pipelining.
The proposed field-circuit coupling enabled the real-time FE model to effectively interface
with the external circuit to capture the transient behavior of interest. Tests conducted in
comparison with a commercial FEM package prove excellent accuracy and computational
efficiency of the real-time FEM approach, which provides unprecedented data detail of
the simulated transformer. It should be mentioned that the results of the proposed paral-
lel method match well with the commercial software regarding the same boundary value
problem.

Potential applications of the proposed real-time FE model are many, allowing detailed
modeling of the power transformer in AC and DC networks. To represent the physical
problem accurately, efforts have been paid to reduce the assumptions and simplifications
that the finite element model depended on. For example, the proposed approach has been
extended for 3D nonlinear finite element modeling with edge element [72].

63



5
Parallel Finite-Difference Computation of
Ionized Field Around Transmission Line

5.1 Introduction

High-voltage direct current has such advantages as lower cost and lower power loss over
alternating current for bulk power transmission over long distance that new projects are
spouting up world-wide. Environmental problems caused by the occurrence of corona
on the high voltage conductor have received much attention with the widespread use of
HVDC transmission lines in the last few decades [73].

Since these transmission lines are generally operated above their corona onset voltage,
space charges are generated around the energized conductor. These space charges migrate
in a manner determined by the electric field; at the same time, the electric field is modified
by these space charges. The mutual interaction of electric field and space charges eventu-
ally leads to a sustained steady-state, which is governed by Poisson’s equation and current
continuity equation for unipolar lines [74]. The physical details of the corona and the mu-
tual interaction process are often deemphasized, therefore investigators usually focused
on obtaining the solution of the mathematical model, which can be necessarily described
by coupled nonlinear partial differential equations (PDE) for 2-D problems.

The analytical solution of an ionized field was first obtained by Townsend in 1914 al-
though it was only applicable for cases with regular geometry such as concentric spheres
or coaxial cylinders [75]. For such 2-D problems as conductor-to-ground arrangements, the
solutions of the coupled nonlinear PDEs relied on some simplifying assumptions, among
which Deutsch’s assumption was exclusively employed by investigators before the 1970s
[74]. Deutsch’s assumption reduced the 2-D problem to 1-D computation along flux lines
by assuming that the space charges affect only the magnitude and not the direction of
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the electric field [76]. This assumption is still utilized in methods such as the flux trac-
ing method owing to its simplicity [77]–[79]. Janischewskyj et al. for the first time solved
the PDEs without resorting to Deutsch’s assumption using the finite element method in
1979 [5]. Then Takuma et al. in 1981 proposed the upstream FEM to overcome numerical
instability caused by the accumulated error in each iteration [80]. To handle the nonlin-
earity of the problem, both [5] and [80] solved the coupled equations iteratively based
on a predictor-corrector algorithm. Thereafter FEM was dominantly used in ionized field
calculation. More complicated configurations which considered the effect of wind veloc-
ity, bipolar conductors and bundled conductors were investigated using FEM in [81]–[87].
Improved Galerkin method based FEM, combination of FEM with the method of charac-
teristics or the finite volume method, and other numerical techniques and iterative strate-
gies were proposed to make the calculation more stable and more efficient in [88]–[93].
Recently 3-D FEM was also explored to solve the ionized field in the presence of human
bodies and buildings in [73], [94]–[96].

Nevertheless, it’s generally highly acknowledged that FEM is CPU and memory in-
tensive, particularly for those cases where a large number of discretized nodes and re-
peat calculations are necessary. Nowadays high-performance parallel computing is being
explored to speed up iterative linear solvers, among which the conjugate gradient (CG)
solver is most widely employed. Based on [97], the Jacobi method has advantages over
CG method when applied in MapReduce framework, which is based on a single instruc-
tion stream multiple data stream (SIMD) paradigm. However, the prerequisite of Jacobi
method that the system of linear equations should be diagonally dominant restricted its
use in a FEM solver. Besides, graphics processors (GPUs) as another commonly used SIMD
paradigm are limited by the device memory for large-scale FEM problems [26]. GPUs have
been exploited for the simulation of large-scale power systems in several areas including
transient stability simulation, electromagnetic transient simulation, and dynamic state es-
timation [98]–[101].

In this chapter, a novel finite difference relaxation (FDR) method is proposed to solve a
unipolar and a bipolar conductor-to-ground problem without Deutsch’s assumption. This
method requires much less memory than FEM because the finite-difference equations need
not be assembled, and FDR can be massively parallelized in the GPU. The parallel imple-
mentations are carried out on multi-core CPU and many-core GPU, and the results are
compared with those obtained from commercial FEM software Comsol MultiphysicsTM

concerning accuracy and computational efficiency. Additionally, for the bipolar case, the
current continuity equations are regarded as PDEs on electric potential rather than on ion
density, and the solution process using the FDR scheme is unconditionally stable.

This chapter is organized as follows. Section 5.2 presents the assumptions, the govern-
ing equations, the boundary conditions, and the iterative scheme. Section 5.3 provides the
implementation details of the FDR method with differentiated grid size. Section 5.4 gives
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Figure 5.1: Computational domain for bipolar conductor-to-ground arrangement.

the unipolar and bipolar case studies and the result comparison of the FDR method and
the FEM. Finally, Section 5.5 presents the summary.

5.2 Problem Description

5.2.1 Assumptions for Modeling

Since corona and the ionized field are complicated physical phenomena, appropriate as-
sumptions are necessary to build a solvable mathematical model. The assumptions em-
ployed in this work are the following:

1. The ionized field is time-independent. All parameters involved do not vary along
the direction of the transmission line, i.e. the problem is two-dimensional.

2. The thickness of the ionization layer around the conductor is so small that it can be
neglected.

3. Ionic mobility is constant, and ion diffusion is neglected.

4. The electric potential of those nodes on the artificial boundary is determined by the
space charge free field, which is defined by Laplacian equations.

The 2-D ionized field problem is a boundary value problem (BVP), and the problem do-
main can be illustrated as in Fig. 5.1. The rectangular domain may contain bipolar bundled
conductors or a single centered conductor for different cases.

5.2.2 Governing Equations

The governing equations of the bipolar ionized field are [5]

∇2 · ϕ =
ρ− − ρ+

ε0
, (5.1)
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∇ · (k+ρ+∇ϕ) =
Rρ+ρ−

e
, (5.2)

∇ · (k−ρ−∇ϕ) =
Rρ+ρ−

e
, (5.3)

where ρ is the space charge density, ε0 the permittivity of free space, ϕ the electric potential,
k the ionic mobility, R is the recombination rate, e the charge of the electron, and the
superscript + for positive and - for negative.

The three unknowns to be solved in the bipolar ionized field problem are electric po-
tential ϕ and the space charge densities ρ+ and ρ−.

In the case of unipolar ionized fields, all the space charges have the same polarity as the
conductor. The governing equations of the unipolar ionized field with only positive con-
ductor can be obtained by forcing the negative space charge density to 0. The unknowns
to be solved are electric potential ϕ and the positive space charge density ρ+. Equations
(5.1)-(5.3) are reduced to the following:

∇2 · ϕ = −ρ
+

ε0
, (5.4)

∇ · (ρ+∇ϕ) = 0. (5.5)

5.2.3 Boundary Conditions

The product of two unknowns in the current continuity equation makes the problem non-
linear. The solution of the BVP can be obtained if the boundary conditions (BCs) are well-
posed, i.e., neither undetermined nor overdetermined. Substituting (5.4) to (5.5) yields the
following equation:

∇ · ((−ε0∇2 · ϕ)∇ϕ) = 0. (5.6)

Equation (5.6) is a nonlinear third-order PDE on ϕ, and three boundary conditions on
ϕ are required:

1. The electric potential on the conductor is the applied voltage V0 (Dirichlet type):

ϕC = V0. (5.7)

2. The ground is taken as the reference (Dirichlet type):

ϕG = 0. (5.8)

3. The third boundary condition is usually selected from the following two conditions.
Only one can be applied or the problem will be overdetermined.
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(a)Theelectricfieldstrengthattheconductorsurfaceisconstantatthecoronaonset

value(Kaptzov’sassumption,Neumanntype):

∂ϕ

∂n
=E0. (5.9)

(b)Thechargedensityattheconductorsurfaceisknownasρ0fromexperimental

results:

ρC=ρ0. (5.10)

Also,truncationofthedomainisnecessary.Theaboveboundaryconditionstogether

withthefourthassumptionmentionedpreviouslycandefinetheproblemwell.

5.2.4 Predictor-CorrectorStrategy

START

Maximum|(φ1-φ2)/φ1|<0.2% ?

END

YES

NO

Solve φ2(x,y) from Eq. 

(5) with BC.(a, b)

Solve φ1(x,y) from Eq. 

(4) with BC.(a, b)

Initial prediction of distribution 
ρ(x,y) based on BC. c(II)

Get artificial BC.s

Extrapolation  of 
ρnew on boundary

ρnew(x,y)=ρold(x,y)
*(1+0.5*(φ1-φ2)/(φ1+φ2))

Fortheunipolarcase,theproblemcouldnotberesolveddirectlybecausethegoverning

PDEscontainingthetwounknownsarecoupled.Thepredictor-correctoralgorithmpro-

posedby[5]and[80]isbasedonthefactthatboth(5.4)and(5.5)canbesolvedonceone

unknownisassignedaninitiallypredicteddistribution.Thenthepredicteddistributionis

correctedprogressivelybyiterativelysolvingthetwoPDEs.Onemostcommonandsim-

pleiterativeproceduresin[5]canbedescribedasinFig.5.2.Theiterativestrategyused

Figure5.2:Flowchartofthepredictor-correctoralgorithm.

maybeabitdifferentyetthesamesolutioncanbeachieved.Forexample,in[80],ϕ1(x,y)

solvedfrom(5.4)wassequentiallyutilizedby(5.5)togenerateanewρ(x,y).Inthiswork,

theflowchartshowninFig.5.2isemployedfortheunipolarcase.

Forthebipolarcase,theiterativestrategytohandleϕ,ρ+andρ−isverysimilar.The

modifiediterativestrategyforthethreeunknownsispresentedinSection5.5.
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Figure 5.3: Domain discretization for 2-D boundary value problem.

5.3 Finite-Difference Relaxation Methodology

5.3.1 Domain Discretization and FDR

The weighted residual method in FEM is widely utilized instead of tediously constructing
a functional based on the variational principle. The product of residual and weighted
function is integrated over the domain of each element, and a set of equations associated
with nodes of each element can be obtained by forcing the integration to be zero. Then
these equations are assembled and solved based on certain boundary conditions.

On the contrary, the finite-difference method is convenient when forming equations by
replacing derivative with difference quotient in classic formulation; at the same time, a
regular grid is required. Figure 5.3 shows a simple 2-D discretized domain. The order of
the PDE determines the number of nodes required for difference equation derivation. For
a second order PDE, the five-node mode is sufficient. As shown in Fig. 5.3, every inner
node is surrounded by four nodes (either inner or boundary nodes). A very important
observation in [5] is that both the Poisson’s equation and the current continuity equation
can be rewritten as the following second-order PDE on ϕ:

∇ · (α∇ϕ) = β. (5.11)

Equations (5.1)-(5.5) can be obtained by setting different α and β. For example, (5.1) in
2-D domain can be rewritten as the following form when α=1 and β=(ρ− − ρ+)/ε0:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
=
ρ− − ρ+

ε0
. (5.12)

The second derivative in (5.12) can be replaced with a difference equation at node (i, j)

using central difference scheme in the five-nodes mode as:

∂2ϕ

∂x2
=
ϕ(i− 1, j) + ϕ(i+ 1, j)− 2ϕ(i, j)

(∆x)2
, (5.13)
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∂2ϕ

∂y2
=
ϕ(i, j − 1) + ϕ(i, j + 1)− 2ϕ(i, j)

(∆y)2
. (5.14)

Thus Poisson’s equation (5.1) at node (i, j) can be written as:

ϕ(i, j) =
(∆x)2(∆y)2

2((∆x)2 + (∆y)2)
· (ϕ(i− 1, j) + ϕ(i+ 1, j)

(∆x)2

+
ϕ(i, j − 1) + ϕ(i, j + 1)

(∆y)2
+
ρ+(i, j)− ρ−(i, j)

ε0
).

(5.15)

Similarly, setting α=ρ+ and β=0, the current continuity equation (5.5) can be rewritten
as:

ϕ(i, j) =
(∆x)2(∆y)2

2((∆x)2 + (∆y)2)
· (ϕ(i− 1, j) + ϕ(i+ 1, j)

(∆x)2

+
ϕ(i, j − 1) + ϕ(i, j + 1)

(∆y)2
+
ρ(i, j)

ε0

+
(ρ+(i+ 1, j)− ρ+(i− 1, j))(ϕ(i+ 1, j)− ϕ(i− 1, j))

4(∆x)2

+
(ρ+(i, j + 1)− ρ+(i, j − 1))(ϕ(i, j + 1)− ϕ(i, j − 1))

4(∆y)2
).

(5.16)

For those nodes on the boundary, the BCs can be either Dirichlet type or Neumann
type. Nodes located exactly on regular boundary (such as a line) are straightforward while
nodes near the circular conductor need special attention. For example, in this work, those
nodes satisfying the following conditions define the approximated conductor surface (Fig.
5.4(b)):

r < d < r +
√

(∆x)2 + (∆y)2 (5.17)

where d is the distance between a node and the conductor center, r the conductor radius,
and ∆x, ∆y are the spatial increment. The approximation is more accurate when the grid
layer is finer. The values of the nodes on Dirichlet boundary are fixed and only used as
known value when updating the adjacent inner nodes. Thus the finite difference equation
applies only for inner nodes and no equations are necessary for boundary nodes. For
nodes on Neumann boundary, the equation can be written with the help of imaginary
nodes, which are associated with inner nodes and ∂ϕ

∂n .
By writing the difference equation for each node, a set of linear equations can also

be obtained as in FEM. In FEM assembling all the element equations often produces a
large matrix which calls for more memory, although the sparsity of the matrix may enable
saving of memory by exploring special data storage methods. Undoubtedly, the tedious
tasks undermine the prospect for massively parallel computation. The solution phase of
FDR is quite different.

Indeed calculating one node based on the adjacent 4 nodes by (5.15) can be regarded
as a form of communication or information exchange. At first glance, a single communica-
tion between one node and its neighbors is probably meaningless because it never knows
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whether the neighbors are of the desired solutions or not. However, if all inner nodes up-
date themselves repeatedly, these communications can be very beneficial to find the final
solution. Intuitively, the prescribed value such as information on the boundary will grad-
ually flow into the entire domain by iteratively updating each node. Convergence can be
expected when all values of inner nodes satisfy (5.15) if the problem is well-posed. Each
node is concerned with its computation based on the finite-difference equations and even-
tually a converged solution satisfying all nodes can be achieved. Thus, the process is called
finite-difference relaxation. The following section will reveal that the convergence of the FDR
scheme is a mathematical certainty.

5.3.2 Jacobi method and Convergence Condition

There are two classes of algorithms for solving a linear system of equations. Direct meth-
ods like Gauss elimination, or equivalently LU factorization followed by back-substitution
can provide the exact solution after a finite sequence of operations. Iterative methods
such as the conjugate gradient method and the Jacobi method are commonly used as they
provide solutions for desired error tolerances for a large-scale linear system. Indeed, for
Poisson’s equation, the set of finite-difference equations can be written as the general form:

Ax = b, (5.18)

where A is a known sparse matrix associated with the coefficients of each unknown nodes
and its neighbors indicated in (5.15), x the unknown vector containing ϕ(i, j) of each un-
known node (boundary node excluded) and b the known vector related to (ρ−(i, j) −
ρ+(i, j))/ε0 and prescribed boundary values.

Note that most unknown nodes are surrounded by four other unknown nodes, and the
nodes right adjacent to the boundary nodes have only two or three unknown neighbors.

Solution of the system can be obtained by the iterative expression:

Pxk+1 = (P −A)xk + b, (5.19)

where P is the preconditioner and xk is the kth approximation of x.
For the Jacobi method, the preconditioner P is set the diagonal matrix of A. Indeed,

A can be decomposed into a diagonal matrix D, and the remainder R. Thus the iteration
formula for Jacobi method can be written as:

xk+1 = −D−1Rxk + D−1b. (5.20)

The standard convergence condition is when the spectral radius of the iteration matrix
is less than 1 [102], namely

ρ(D−1R) < 1. (5.21)
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It is acknowledged that (5.21) is sufficiently satisfied if the matrix is diagonally domi-
nant, i.e., the absolute value of the diagonal term is greater than the sum of absolute values
of other terms:

|aii| >
∑
j 6=i
|aij |. (5.22)

It can be observed from (5.15) that the coefficient of each to-be-updated inner node is equal
to the summation of coefficients of its four unknown neighbors, and the coefficient of those
to-be-updated nodes right adjacent to the boundary nodes is greater than the summation
of coefficients of its two or three unknown neighbors. Thus, for most rows in coefficient
matrix A, the following equation is satisfied:

|aii| =
∑
j 6=i
|aij |. (5.23)

If (5.23) is satisfied for all rows of A, the spectral radius is equal to 1. However, for those
nodes next to the known boundary nodes, (5.22) is well satisfied for the corresponding row
of A and determine that the spectral radius is less than 1.

5.3.3 Differentiated Grid Size

Few attempts using finite-difference method have been reported in the literature due to the
inflexibility when handling irregular geometries and disproportional sizes. For example,
in the ionized field problem handled by FEM, the mesh size near the conductor is fine
enough to ensure accuracy while a relatively coarse mesh is applied for the rest of the
vast domain to save computational resources. A square grid is the basis of FDR, and it
is one drawback compared with FEM. To depict the contour of the thin conductor, high
node density (or fine grid) is needed around the conductor. And if the whole domain
is filled with these dense nodes, the merits of FDR will be impaired seriously. Whereas
differentiated grid sizes can be explored and the details are described below.

Fig. 5.4(a) shows a simplified scheme for applying two layers with differentiated grid
sizes. Figure 5.4(b) shows irregular geometries can be described accurately if the grid is
fine enough. Undoubtedly different mesh sizes will cause the communication problem on
the boundary separating the two layers. As shown in Fig. 5.4(c), updating the outermost
nodes of the fine grid will require the value of some non-existing nodes next to them,
which are the dashed nodes located out of the fine grid layer. However, even though these
dashed nodes are imaginary, their values can be predicted as they are located in a cell (a
square consisting of four adjacent nodes) in the coarse grid. Therefore, an interpolation
technique similar with that of FEM is employed to predict the desired value based on the
nodes in the coarse grid layer. Figure 5.4(d) shows a local coordinate system. Assume the
electric potential at nodes A, B, C and D are ϕA, ϕB , ϕC and ϕD. For any coordinate (ξ, η),
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Figure5.4:DifferentiatedgridsizeandinterpolationinFDR.

thecontribution(shapefunction)ofeachnodeNA,NB,NCandNDcanbewrittenas:






NA=(ξ−1)(η−1),

NB=ξ(1−η),

NC=η(1−ξ),

ND=ξη.

(5.24)

Thustheinterpolatedvalueatanycoordinate(ξ,η)canbepredictedas:

ϕ(ξ,η)=NAϕA+NBϕB+NCϕC+NDϕD. (5.25)

Byinterpolation,thefinegridlayercanobtaininformationfromthecoarsegridlayer.

Itshouldbenotedthatafterallnodesareupdated,asimilarprocesscalledretrievalis

necessarysothatthecoarsegridlayercanobtaininformationfromthefinegridlayer.The

detailedprocessandtheaccordingnodetypearedescribedintheflowchartinFig.5.5.

Thus,foreachiteration,thefollowingthreephasesarealwaysnecessaryfordifferentiated

gridsizes:

1.Interpolation:informationflowsfromthecoarsegridlayertothefinegridlayer.

2.Updating:eachnodeisupdatedbasedonitsneighbors.

3.Retrieval:informationflowsfromthefinegridlayerbacktothecoarsegridlayer.
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5.4 Massively Parallel Implementation

5.4.1 Data Dependency and Parallelism

As discussed above, once xk is available, xk+1 can be obtained. Though nodes can be cal-
culated independently, synchronization is necessary between iterations to avoid updating
one node with its yet-to-be-updated neighbors multiple times. Additionally, the interpo-
lation and retrieval phase can also be parallelized in each iteration, yet synchronization is
also needed between these phases.

In the FDR process, two matrices are needed for each variable to store the node values
of both coarse grid layer and fine grid layer. To elaborate the process flowchart clearly, dif-
ferent node types are classified based on the location (shown in Fig. 5.5(a)). For example,
type A, a, B and b are the solid and dashed inner nodes in the two layers. Type C and c
are boundary nodes while type D and d represent the nodes to be updated in the retrieval
phase. The main flowchart is shown in Fig. 5.5(c).

5.4.2 Parallelization on CPU and GPU

The FDR program is parallelized on both multi-core CPU and many-core GPU.
For CPU parallelization, multiple threads are launched by the master thread and han-

dle different parts of the tasks. Open multi-processing (OpenMPTM) and POSIX Threads
(PthreadTM) are commonly used application programming interfaces (API) for shared mem-
ory multiprocessor programming. OpenMPTM is relatively higher level, and thus easier to
use. The high-level feature results in inflexibility because it is difficult to control each
thread. Moreover, for the FDR iterative scheme, repeatedly launching and joining threads
between iterations greatly increases overhead for OpenMPTM. On the contrary, PthreadTM

is a lower level API that takes extremely fine-grained control over threads. Each thread
is launched and will not be joined until the iteration process ends. Therefore, PthreadTM

is utilized to implement the CPU parallelization in this work. Considering the number
of cores available in CPU, the row-wise parallel implementation is employed, and the
flowchart of the thread function is described in Fig. 5.5(b).

Indeed, massive parallelization is perfectly suitable for the updating phase because
node calculations do not depend on each other. CUDA is chosen for massive-thread par-
allel programming on the GPU. A CUDA program separates the hardware resources into
CPU side (host) and GPU side (device). There is no shared memory for two sides and thus
copy operations are necessary for data exchange.

In the CPU parallelization, each variable needs a copy operation to store the updated
value. A more efficient strategy is explored for GPU implementation to reduce the required
memory and accelerate the convergence. Indeed, it can be observed that for all inner nodes
in Fig. 5.4, all solid nodes are surrounded by four dashed nodes and vice versa. Thus the
calculation phase can be separated into two steps: calculating all solid nodes in parallel,
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Figure 5.5: Massively parallel implementation of FDR scheme on CPU and GPU.

and sequentially updating all the dashed nodes in parallel. In other words, the updated
values of the solid nodes are utilized by updating the dashed nodes within one iteration.
It is applicable for both the coarse grid layer and the fine grid layer. This scheme is similar
to the Gauss-Seidel method, and the convergence is faster than that of the Jacobi method.
The flowchart of the device function is shown in Fig. 5.5(d). The detailed parameters of
the CPU and GPU are described in Appendix B.

5.5 Case Study and Results Comparison

5.5.1 Unipolar Case Study

5.5.1.1 Result Comparison of FDR vs FEM

Both Poisson’s equation (5.4) and current continuity equation (5.5) can be solved with FDR
if the distribution of space charge is provided. On the other hand, the problem can also be
solved with the equation-based modeling in Comsol MultiphysicsTM. Poisson’s equation
is chosen in the case study to comprehensively compare the FDR method and the FEM.
The parameters are shown as belows:

The domain width is 2m, the domain height 2m, the conductor radius 0.005m, the
applied voltage on conductor 20kV, and the space charge density on conductor 2e-6C/m2.
The initial distribution of space charge density is guessed as 10−8/

√
(x− 1)2 + (y − 1)2C/m2.

The sample line is defined by two points: (0, 0) and (1, 1).
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ToobtainreliableresultsfromFEM,meshdependencytestisdoneonasamplepoint.

ItturnedoutthattheFEMresultscanberegardedasstableandreliablewhenthenumber

ofnodesismorethan1500inthecase.ThustheFEMresultsareassumedcorrectandcan

serveasabenchmarkforevaluatingtheaccuracyofFDR.Sincetheproblemdomainis2-D,

Figure5.6:ElectricpotentialcomparisonofFEMandFDRforunipolarcase.

thesamplelineshowninFig.5.1isselectedtoplottheresults.Theelectricpotentialalong

theselectedpathsolvedfrombothFEMandFDRisshowninFig.5.6. Whenthenumber

ofnodesis10,000,themaximumrelativedifferencebetweentheFEMandtheFDRmethod

isaround3%.

TheresultsofFDRconvergetotheresultsofFEMwhenthemaximumrelativeerror

betweeniterationsdecreases.Asaniterativemethod,thesolutionphaseofFDRcanbe

describedbythe-iterationcurveshowninFig.5.7.Theconvergencespeedisdetermined

bythespectralradiusmentionedabove;convergenceisfasterwhenthespectralradiusis

small. Whentheproblemsizeincreases,thepercentageofboundarynodesdecreases,and

thespectralradiuscomescloserto1. However,totheauthor’sknowledge,itisdifficult

toquantifytherelationshipofnodenumber,spectralradius,and.Itwasfoundfrom

experiencethattheiterationcanbedeemedconvergentwhen islessthan10−6ifthe

numberofnodesislessthan50,000.

5.5.1.2 AccuracyandEfficiencyComparisonofFDRvsFEM

AcomprehensivecomparisonofFDRandFEMconcerningcomputationtimeandaccu-

racyispresentedinTableI.FortheCPUparallelimplementationutilizing16processor

cores,themaximumspeed-upisgreaterthan14underdifferentnodenumbers.ForGPU

parallelimplementation,thespeedupis30times.AsshowninthelastcolumnofTable5.1,
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Figure5.7:RelativeerrorvsiterationnumberfortheFDRmethod.

Table5.1:EfficiencyandaccuracycomparisonofproposedFDRmethodwithFEM
FEMsolution FDRsolutiontime(s)andspeed-up

Node time(s) Multi-coreCPU Many-coreGPU Relative
number Comsol Solutiontime-threadcount

Speed-up
Solution

Speed-up
error

MultiphysicsTM 1 4 8 16 time

3600 0.9 0.182 0.065 0.050 0.050 18 0.028 32.1 4.63%
10,000 1.78 0.700 0.210 0.140 0.124 14.4 0.05 35.6 3.15%
40,000 5.56 2.960 0.816 0.512 0.38 14.6 0.18 30.8 1.68%

theresultsofFDRcomeclosertothecorrectsolutionasthenumberofnodesincreases.

Notethatthebuilt-indirectsolverofComsolMultiphysicsTMisapplied,whichturned

outtobefasterthanitsiterativesolverforthecasespresentedinthetable.Forexample,

theiterativesolverconsumed7.1swhilethedirectsolverconsumed5.56swhenthenode

numberis40,000.Thusthespeedupisconcerningtheexecutiontimeofthecommercial

softwareComsolMultiphysicsTM,whichcanberegardedashighlyoptimizedandsuffi-

cientlyefficient.

Similarly,thecurrentcontinuityequationwassimulatedwiththeproposedFDRscheme.

ApplyingtheiterativestrategyinFig.5.2,thefinalsolutionwasobtained.Theinitialdis-

tributionofρ(x,y)andthesolvedϕ1(x,y)andϕ2(x,y)arepresentedinthefirstrowof

Fig.5.8. Whentheiterationconverges,thefinalsolutionofρ(x,y),ϕ1(x,y)andϕ2(x,y)is

showninthesecondrowofFig.5.8.

5.5.2 PracticalBipolarCaseStudy

5.5.2.1 ApplicationofFDR

InpracticalHVDCapplications,bipolarbundledconductorsareusuallyutilizedforpower

transmission.Thecaseismorecomplicated,whereasthecomputationcanstillbenefitfrom

themeritsoftheFDRscheme.ThefollowingsectionwillelaboratehowtheFDRscheme
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Figure 5.8: Final converged solution of the unipolar ionized field attained from the pro-
posed FDR method.

is applied for the full-scale bipolar bundled conductors. Figure 5.9 shows the structure of
a typical ±500 kV HVDC lattice tower of the Eastern Alberta HVDC line built by ATCO
Electric Ltd., and the geometric parameters are available online [103].

For the bipolar case, space is filled with ions of both polarities. The ions of both po-
larities migrate to the ground, at the same time, they migrate to the conductors with the
opposite polarity.

In each iteration of the solution phase, the ϕ in (5.1) is solved with the guessed or
updated ρ+ and ρ−; and then the ρ+ in (5.2) and the ρ− in (5.3) are solved respectively
based on the obtained ϕ in (5.1). However, the solution process of the current continu-
ity equations is likely to become unstable because of the accumulated error of first-order
derivative. Thus to counter instability, it calls for numerical techniques like the upwind
scheme in [80]. The current continuity equation in (5.2) and (5.3) can be seen as a first or-
der PDE on ρ (either ρ+ or ρ−), and it can also be regarded as a second order PDE on ϕ.
Mathematically, the stability of a first order PDE on u is conditional and depends on the
coefficients of u, ux and uy. However, the second order PDE on ϕ in (5.11) can be solved
with the FDR scheme efficiently if the distributions of α and β are given (either guessed
value or constant) and the solution of the FDR scheme is unconditionally stable. That is
why the numerical stability issue is not a concern in [5] as well as in the unipolar case
studied above. Since solving ρ+ based on known ϕ is unstable while solving ϕ based on
known ρ+ is unconditionally stable, the iterative strategy in Fig. 5.2 is improved to solve
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Figure 5.9: Structure of ±500 kV DC lattice tower of the Eastern Alberta HVDC Line.

the bipolar case to avoid numerical instability.
The improved iteration process can be described with the following steps:

1. Initial estimate of space charge ρ+ and ρ− are provided based on boundary condi-
tions.

2. Solve ϕ in (5.1), (5.2) and (5.3) respectively with the FDR scheme based on the known
ρ+ and ρ−. The results are stored as ϕ, ϕ+ and ϕ−.

3. Update ρ+ based on ϕ− ϕ+ and ρ− based on ϕ− ϕ−.

4. Go to Step 2 with the updated ρ+ and ρ−. The process is repeated until the maximum
relative error between ϕ+ and ϕ− is smaller than the prescribed value ε.

It is worth mentioning that solving (5.11) with the FDR scheme is no different for either
the unipolar case or the bipolar case. For the case with multiple conductors, multiple
Dirichlet boundary conditions should be applied. Similarly, differentiated grid sizes are
employed in consideration of the thin conductor in a vast space domain. As shown in
Fig. 5.10, the fine grid layer is applied around each conductor and the coarse grid layer
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Figure5.10:DifferentiatedgridlayerformultipleDirichletboundariesofthe4-conductor
bundle.

5.5.2.2 ResultsandDiscussion

AccordingtothestructureshowninFig.5.9,theminimumheightofthetransmission

lineis12matthemid-spanbetweentowers.Thusthecomputationaldomainisobtained

byspatialtruncation.Thewidthofthetruncatedproblemdomainis80mandtheheight

25m.ThegeometricparametersareshowninFig.5.9andothernecessaryparametersare

presentedasbelows:

Theappliedvoltageonconductoris±500kV,thepermittivityoffreespace8.854e-

12F/m,thepositiveionicmobility1.4e-4m2/V·s,thenegativeionicmobility1.8e-4m2/V·s,

therecombinationrate2e-12m2/s2,thechargeofelectron1.602e-19C,andthespacecharge

densityoneachconductor2e-6C/m2.Thesamplelineisdefinedbytwopoints:(0,12.5)

and(80,12.5).

Followingtheiterativestepslistedabove,thebipolarproblemwithbundledconduc-

torscanberesolvedwithboththeFEMandtheFDRscheme.ItturnedouttheFDRscheme

canbeperfectlyappliedinproblemswithmultipleDirichletboundaryconditions.There-

sultcomparisonofthecalculatedelectricpotentialalongthesamplelineusingFDRand

FEMisshowninFig.5.11.TheelectricfieldstrengthnearthegroundisshowninFig.5.12

andthecontouragreeswellwiththatin[94].

ThecalculateddistributionoftheelectricpotentialisshownintheFig.5.13.

Thedistributionofthepositiveandnegativeiondensitydistributionarepresentedin

theFig.5.14.Theresultsagreewiththephysicalfactsthationsofbothpolaritiesmigrate
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Figure5.11:Resultcomparisonofelectricpotentialalongthesampleline.

Figure5.12:Resultcomparisonofelectricfielddistributionontheground.

tothegroundandtotheconductorwiththeoppositepolarity.

Thespeed-upofthebipolarcaseissimilartotheunipolarcaseandcanbeinferred

fromTableI.Forbothcases,repeatedlysolvingϕin(5.11)basedonαandβisthecritical

partoftheworkandconsumesmostofthecomputationaltime.Theαandβmayvaryfor

differentcases,however,theperformanceimprovementoftheFDRcomparedwithFEM

regardingaccuracyandspeed-upisindependentofαandβprovidedthattheproblemis

well-posed.

Notethatinthebipolarcasestudy,theiondensityontheconductorsurfaceissetas

theboundarycondition.ThisboundaryconditionisusuallyreplacedbytheKaptzov’s

assumption.Inthatcase,theiondensityontheconductorshouldbeupdatedineachiter-

ationbasedonEk−E0,whereEkisthecalculatedelectricfieldstrengthontheconductor
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Figure 5.13: Electric potential distribution for the bipolar case.

surface in the kth iteration and E0 the corona onset value.

5.6 Summary

In this chapter, a finite-difference relaxation (FDR) method is proposed for the computation
of both unipolar and bipolar ionized fields in HVDC transmission lines. Instead of solving
the current continuity equation as a first order PDE on ion density, this work solves it as
a second order PDE on electric potential. The numerical instability problem is perfectly
solved because the FDR scheme applied for (5.11) is unconditionally stable. The proposed
FDR method has the following advantages over the finite element method.

(1) The scheme is suitable for massively parallel computation: compared with the com-
mercial FEM software Comsol MultiphysicsTM, the speedup is more than 14 times in CPU
parallelization and 35 times in GPU parallel implementation. The maximum relative dif-
ference compared with the FEM is around 3%, and acceptable for engineering computa-
tion.

(2) The set of equations in the FDR scheme does not have to be assembled. Instead, it
is solved by a relaxation scheme and requires much less memory than FEM. For n nodes,
the necessary memory required is Θ(n) for the FDR method and Θ(n2) for the FEM.

(3) Differentiated grid size and interpolation are employed to improve the accuracy and
scalability of FDR applied to a vast domain containing a disproportionately thin conductor.
Thus FDR can be more flexible when used to handle any domain containing irregular
geometries or disproportionate geometry sizes. It is reasonable to conclude that all well-
posed second-order PDE having the form of (5.11) can benefit from the proposed FDR
scheme instead of FEM concerning computational efficiency, accuracy, and scalability.

It should be mentioned that the results of the proposed parallel method match well
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Figure 5.14: Ion density distribution for the bipolar case.

with the commercial software regarding the same boundary value problem. Future work
will focus on reducing the assumptions and simplifications employed to represent the
physical problem accurately.
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6
Application for Electromagnetic Transient

Studies

6.1 Introduction

Multi-physics simulation software combining finite element analysis (FEA) and electro-
magnetic transient (EMT) program has gained increasing significance for the design, pro-
totyping, evaluation, and validation of components in high power applications [104]. The
device-level modeling enables more accurate and comprehensive information that is un-
available in system-level study, such as the magnetic field distribution revealed by a finite
element power transformer model for saturation analysis and eddy current distribution
for total loss calculation, the exact performance of a power electronic switching unit and
the impacts including junction temperature rise.

However, the notorious computational burden of the finite element solver and the
efficiency of the EMT program are usually the main bottleneck, especially in large-scale
AC/DC grids with multiple transformers where the field-circuit coupling is involved [105]–
[108]. Simulation tools for the analysis of EMT in power systems and power electronic
circuits can be classified into two categories: system-level (such as EMTDC/PSCAD R©,
Simulink, EMTP-RV R©) and device level (such as SaberRD R©, PSpice R©, and Ansys Simplorer R©).
On the other hand, field-oriented tools such as FLUX CEDRAT R©, Comsol R© AC/DC and
Ansys Maxwell R© usually focus on the physical details such as geometries and material
properties of electromagnetic devices. For a system-level simulation including FE models,
a field-circuit coupling technique is normally required. Although FLUX CEDRAT R© and
Comsol R© AC/DC provide the field-circuit interface, the built-in electrical components in
their libraries are very limited and only include basic R, L, and C elements. Co-simulation
between Ansys Simplorer R© and Ansys Maxwell R© is capable of large-scale power elec-
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tronic circuit simulation including finite element components [108]–[110], however, the
execution time will be prohibitively long to run a large number of time-steps.

Modern high-performance massively parallel architectures such as graphics process-
ing units (GPU) and CPU clusters have been utilized to improve the efficiency of field
computation [111]–[115] and power electronics [116], [117], and the key of performance
improvement, according to Amdahl’s law [13], is determined by the parallelism of the
program. Considering the computational load balance and potential to be parallelized,
the well-known transmission-line matrix (TLM) modeling, which solves the nonlinearity
at the elemental level, has been employed in the solution phase of nonlinear finite element
problems [66], [118], to exploit parallelism and improve the computational efficiency.

So far, no research has been reported to study the interaction of the modular multi-
level converter (MMC) and FE transformer model, not to mention high-performance mas-
sively parallelized codes running on GPU. Under this background, an integrated thermo-
electromagnetic model combining the FE transformer model and the MMC is established
to study their transient interaction in this chapter. The FE method is utilized to calculate
both Ampere’s law for magnetics and Fourier’s law for heat conduction, and the interfaces
between the magnetic field, thermal field, and electrical networks are fully considered.
The integrated model can provide detailed field distributions within the transformer and
device-level information of the MMC under transient conditions. The codes are massively
parallelized for execution on NVIDIA Tesla V100 GPU [12] and the run-time is over 47
times faster than Ansys Simplorer R© and Ansys Maxwell R© co-simulation.

The contributions of this chapter are listed as follows:

• The transmission line modeling, which solves the nonlinearities at the elemental
level and thus is decentralized in nature, is employed to solve the nonlinear finite
element equations in a massively parallel manner.

• The electrical network, thermal field, and magnetic field are fully coupled by ex-
changing coupling coefficients. The thermal impact of winding loss and eddy current
loss are considered for the computation of magnetic field and electrical network.

• Fully-detailed modeling of the MMC whose EMT topology is reconfigured using cir-
cuit partitioning which separates all the submodules (SMs) from their arms to create
a substantial number of independent sub-circuits that caters to parallel processing.

• The interaction of FE transformer model and MMC is implemented with an indirect
field-circuit coupling scheme, and the FE transformer is represented by nonlinear self
and mutual inductances whose values can be extracted from the FE element compu-
tation.

• The massive parallelism of the integrated codes is sufficiently explored to execute on
massive parallel GPU architectures.
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Figure6.1:2-DtransformermodelusingtheGalerkinfiniteelementmeothod.

Thischapterisorganizedasfollows:Section6.2describestheintegratedthermo-electromagnetic

transformermodelandthecouplingtechniquesindetails,andSection6.3providesthe

electro-thermalmodeloftheIGBTintheMMC.Section6.4illustratestheparallelimple-

mentationoftheintegratedmodelonGPU.Then,Section6.5givesthecasestudiesand

resultcomparisonswhileSection6.6discussedtheparasiticcapacitanceextractionforhigh

frequencyconditions.Finally,Section6.7presentsthesummary.

6.2 CoupledThermo-ElectromagneticModelofConverterTrans-

former

6.2.1 FiniteElementModelforMagneticField

Considerthe2-DfiniteelementmodelinFig.6.1forapowertransformerrated230kV/110kV

and400MVA.Forlowandmediumfrequencyapplication,themagneticfieldgeneratedby

thewindingcurrentsisgovernedbytheAmpere’slawwithunknownmagneticvectorpo-

tential:

86



∇ · (υ∇A) = σ
∂A

∂t
− J, (6.1)

where υ is the field-dependent reluctivity; σ is the electrical conductivity; J is the im-
pressed current density.

After applying the Galerkin finite element method, the elemental equation for each
triangular element can be obtained as [118]:

υe

4∆e

k11 k12 k13

k21 k22 k23

k31 k32 k33

A1

A2

A3

 +
σe∆e

12

2 1 1
1 2 1
1 1 2

∂A1
∂t
∂A2
∂t
∂A3
∂t

 =
Jez∆e

3

1
1
1

 . (6.2)

The nonlinear B-H curve of the transformer core can be found in [50], and the magnetic
vector potentials on the artificial boundaries are assumed 0.

The elemental equations can be assembled to a global nonlinear system to solve, or
alternatively, the equation is equivalent to the nonlinear electrical network in Fig. 6.2 (b)
and can be solved using the TLM scheme wherein the component values are given as
follows:

G12 = − υe

4∆e
(b1b2 + c1c2), YG12 = −

υeg
4∆e

(b1b2 + c1c2),

G13 = − υe

4∆e
(b1b3 + c1c3), YG13 = −

υeg
4∆e

(b1b3 + c1c3),

G23 = − υe

4∆e
(b2b3 + c2c3), YG23 = −

υeg
4∆e

(b2b3 + c2c3),

C12 = C13 = C23 = −σ
e∆e

12
, YC12 = YC13 = YC23 = −σ

e∆e

6∆t
,

C10 = C20 = C30 =
4σe∆e

12
, YC10 = YC20 = YC30 =

4σe∆e

6∆t
.

(6.3)

The TLM scheme has perfect parallelism in the scattering phase and constant admit-
tance matrix in the gathering phase. In the scattering phase (Fig. 6.2 (c)), the incident
pulses based on the nodal solution are injected into each triangular element and the re-
flected pulses can be calculated individually within each element, thus the nonlinearity is
treated in a massively parallel manner. In the gathering phase (Fig. 6.2 (d)), the reflected
pulses enter the linear network as new incident pulses, and to obtain the new reflected
pulses, a linear network is required to be solved, of which the admittance matrix is fea-
tured by the characteristic impedance of the imagined transmission-lines and generally
remains unchanged. Thus, repeatedly updating and factorizing the Jacobian matrix in
traditional nonlinear FE solver is circumvented, and the TLM technique is felicitous for
parallel computing architectures.

Note that the source term in (6.1) is the impressed current density determined by the
winding currents. If the electrical networks are connected to the primary or secondary
windings (Fig. 6.1), the winding currents are not known, thus a field-circuit coupling
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Figure6.2:TLMsolutionforthenonlinear2-Dfiniteelementproblem.

schemeisrequired.Besides,theelectricalconductivitiesofboththewindingandtrans-

formercoreareusuallyalteredbytheJouleeffectsofthewindinglossandtheeddycurrent

loss,thusathermalmodelisrequired.

6.2.2 FiniteElementModelforHeatConduction

TheFourier’slawgoverningtheheattransfercanbeexpressedbythefollowingpartial

differentialequation[119]:

∇·(λ∇T)=ρC
∂T

∂t
−q, (6.4)

whereλisthethermalconductivity;ρisthevolumetricmass;Cistheheatcapacity;qis

theheatsource.

Theelementalequationhassimilarformto(6.2),andthenaturalconvectiveboundary

conditionsareemployed:

λ
∂T

∂n
=h(T−T0), (6.5)
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where n denotes the outward normal direction on the boundary, h is the convection coef-
ficient, and T0 is the external environmental temperature.

Although the thermal conductivity λ depends on the temperature, implying that (6.4) is
also nonlinear. Since the temperature field changes much slower than the electromagnetic
transients, thus for simplification, the historical value of λ from the previous time-step is
utilized so that the thermal problem becomes linear.

The heat sources originate from the Joule loss in the winding and eddy current loss in
the transformer core, and the changing temperature also alters the electrical conductivities
of the transformer. In this work, the winding material is copper and the transformer core
is made of electrical steel, and their conductivities σ(T ) altered by the temperature can be
represented [7] with

1

σ(T )
=

1

σ0
+ α(T − T0). (6.6)

where T0 is the ambient temperature and the parameters are provided in the Appendix C.

6.2.3 Multi-Domain Interfacing

Since the integrated model consists of three domains: external electrical network, the mag-
netic field, and the thermal field, there exist three kinds of interfaces between them, which
are illustrated in Fig. 6.3(a). The interfaces of the thermal field with the other two domains
are quite direct: the external electrical network can provide the time-varying winding cur-
rents, thus the Joule-type loss in the copper windings is available; the time-varying mag-
netic field will induce electrical field in the steel transformer core, and the eddy current
losses can also be obtained after post-processing. Naturally, both the winding loss and
eddy current loss are fed to the thermal field as heat sources. In turn, the thermal field up-
dates the temperature distribution at each time-step, and the conductivities of the copper
winding and steel transformer core are altered due to change of temperature.

For the external network and magnetic field interface, the coupling coefficients are the
self and mutual inductances. According to the Faraday’s law, the induced winding voltage
can be calculated by:

U = rI +
Nl

∆S

∫
S

∂A

∂t
dS, (6.7)

where I is the winding current, r the winding resistance, N the number of turns, l the axial
length of each filament, S the winding zone, and ∆S the area of the winding zone.

Equation (6.7) can be rewritten as the following based on the partial differential chain
rule:

U = rI +
Nl

∆S

∫
S

∂A

∂ip
dS
∂ip
∂t

+
Nl

∆S

∫
S

∂A

∂is
dS
∂is
∂t
. (6.8)

Applying (6.8) to the primary and secondary windings respectively, the self and mutual
inductances of the transformer can be extracted as:
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Lp=
Nplp
∆Sp Sp

∂A

∂ip
dS, Mps=

Nplp
∆Sp Sp

∂A

∂is
dS,

Msp=
Nsls
∆Ss Ss

∂A

∂ip
dS,Ls=

Nsls
∆Ss Ss

∂A

∂is
dS.

(6.9)

Fig.6.3(b)showshowthefiniteelementtransformermodelisrepresentedbyanequiv-
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alent network composed of winding resistance, self, and mutual inductances, to be cou-
pled with the external network, and these nonlinear inductance values are updated by the
finite element computation for different winding currents at each time-step.

In EMT simulation, an inductance L can be represented by an impedance of 2L/∆t in
parallel with a historical current term using the Trapezoidal rule. Similarly, as shown in
Fig. 6.3(c), the mutual inductance is equivalent to a current-differential controlled voltage
source whose value is determined by the mutual inductance and the corresponding branch
current after applying the Trapezoidal rule. For example, the KVL equation for the branch
in Fig. 6.3(c) can be written as:

u(t) =
2Lp
∆t

(ip(t)− ip his) +
2Mps

∆t
(is(t)− is his). (6.10)

Thus, the mutual inductances serve as active sources and the magnetic field and elec-
trical network are fully coupled. Also, (6.10) implies that the primary side network and
the secondary side network are fully coupled by the mutual inductances, and therefore
should be solved simultaneously as one system.

6.3 Electro-Thermal Modeling of MMC

In addition to the thermo-electromagnetic FE transformer model described above, the
main contributor of nonlinearity to the MMC shown in Fig. 6.4(a) is the power semi-
conductor switch IGBT and its anti-parallel diode. As the layout corresponds to a large
admittance matrix due to the cascaded submodules, they are separated by circuit parti-
tioning using a pair of coupled voltage and current sources [120], and the reconfigured
MMC EMT arm model is given in Fig. 6.4(b). The arm current Iarm is sent to each MMC
submodule, and in return, the SM terminal voltage Vp is fed back to the arm. It can also be
seen that after splitting each submodule, the remaining circuit of the MMC is linear.

The prevalent ideal switch model [122] taken as a two-state resistor falls short of reveal-
ing a higher-than-normal current stress and the power dissipation during the IGBT switch-
ing period. Therefore, the dynamic curve-fitting model which reproduces the shapes of
transient waveforms is selected for the comprehensive electro-thermal simulation. The
rise and fall times denoted by tr and tf respectively are two key parameters reflecting the
switching period. Their sensitivity to operation conditions such as collector current, gate
resistance, and the junction temperature is tested and provided in the datasheet by the
manufacturer. Therefore, they can be uniformly expressed by the following polynomial
function

tr,f (x1, x2, x3) = A0 ·
3∏
i=1

xi +

k 6=j∑
k,j=1,2,3

Akxkxj +

3∑
m=1

Cmxm + C0, (6.11)

where A and C are coefficients, and x represents factors affecting the switching time of the
IGBT.
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Figure6.4:Schematicofthree-phaseMMC-basedHVDCconverterstation:(a)Half-bridge
MMCinconnectionwithFEM-basedconvertertransformer,(b)MMCsubmoduleparti-
tioning.

Theactualswitchingwaveformscanbedividedintomultiplesectionsdependingon

thecurvatures,andthenapproximatedbyfirst-ordercircuits.Forexample,theexperi-

mentalcurrentwaveformoftheselectedIGBTmodule5SNA2000K450300[123]inFig.

6.5(a)showsthattheinitialpartoftheturn-onprocesscanbetakenasastraightline.Af-

terward,therisingratedecreasesandeventuallythecurrentfallstillenteringthesteady

state.Therefore,theturn-oncurrentcanbesimulatedbyanR-Lcircuitexcitedbyaper

unitvoltagesourceVe,andtheinductorcurrentisregulatedbychangingtheresistor,as

Fig.6.5(b)shows.ThelinearcurrentatstageS1issimulatedbychargingapureinductor,

followedbyavaryingslopewhichisapproximatedbytheR-Lcircuitwithanexponen-

tialfunction.Thedescendingwaveformstartingatt2isrealizedbyremovingthevoltage

sourceVesothattheinductordischargesexponentially.Therefore,theinductorcurrentin

theperunitcircuitcanbesummarizedas

iL=






Ve
L(t1−0), 0≤t≤t1
Ve
R(1−e

−t
τ),t1≤t≤t2

I0
I0
+imaxL e

−t
τ,t2≤t≤t3

(6.12)

whereI0isthesteady-statecurrent,andi
max
L istheinductor’smaximumcurrentinper

unit. Then,theinductorcurrentisamplifiedbyKtimestosimulatetheactualdevice

current.Similarly,thedeviceturn-offtransientscanalsobemodeledbythefirst-order

circuits.

Asacriticalparttocomposeanintegraldevice-levelswitchmodel,thetransientelectro-

thermalimpedanceisbasedonthefollowinganalyticalfunction

Zth=

n

i=1

Rth(i)(1−e
−t
τi), (6.13)

wheretheimpedanceRth(i)alongwiththetimeconstantτicanberealizedbyaparalleled
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R-CpairforEMTsimulation,asgiveninFig.6.5(c)where

Cth(i)=
τi
Rth(i)

. (6.14)

Intheequivalentcircuitofthetransientthermalimpedance,theinputcontrolledcur-

rentsourceisnumericallyequaltothepowerloss,anditsterminalvoltageisdeemedas

thesemiconductor’sjunctiontemperatureTvj. Withtheinherentcoolingmechanism,the

IGBTisexposedtotheenvironmentandtherefore,theotherterminaloftheR-Cpairsis

connectedtoaconstantvoltagesourcedenotingtheambienttemperatureTambwhichis

25◦C.
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Figure 6.6: Detailed massively parallel implementation of the integrated thermo-
electromagnetic model on GPU.

6.4 Parallel Implementation of Integrated Field-Circuit Model on
GPU

The detailed program flow, data path, coupling coefficients, and block connections are il-
lustrated in Fig. 6.6. The finite element transmission-line modeling (FE-TLM) solution of
the nonlinear magnetic field is provided in details, and the parallelism of each functional
block, either at the nodal or the elemental level, is also noted. These blocks are all opti-
mized to fit the Kernel functions in Cuda codes.

The program starts with loading the mesh information such as nodal coordinates and
node-element connections, thus the coefficients of Galerkin’s FEM in (6.2) and (6.3) can be
obtained. According to Fig. 6.2(d) and (6.3), the admittance matrix of the linear network
in the gathering phase is determined by two factors: the guessed reluctivities υeg and con-
ductivities σe in each triangular element. Due to the thermal effects, the σe of transformer
core may be altered by the temperature, implying that the admittance matrix should be
reassembled and decomposed occasionally. Meanwhile, the adaptive transmission-line
impedances, using the solved υe of the previous time-step instead of guessed υeg, can be
also incorporated into the admittance matrix to efficiently reduce the required number of
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TLM iterations. The thermal field has a much larger time constant compared with the elec-
tromagnetic field, meaning that the temperature T (t) and σe(T ) change much slower than
electromagnetic parameters, so the admittance matrix does not have to be updated at each
time-step. To balance the required number of TLM iterations and the computational costs
of matrix decomposition, the criteria to update the admittance matrix is determined by
whether the required number of TLM iterations is more than 20 or not, which is described
as C2 (Condition 2) in Fig. 6.6.

Since the thermal field is assumed a linear FE problem, thus its description is simplified
in the flow chart.

The field-circuit coupling scheme described before applies to every single-phase trans-
former independently, and each consists of three finite element blocks to calculate the par-
tial differentials in (6.9). Figure 6.6 shows three single-phase transformers in an MMC-
based HVDC station with nine finite element blocks executed in parallel on the GPU. Once
the magnetic vector potentials are calculated, the self and mutual inductances in (6.9) can
be obtained for each transformer.

The details of each FE-TLM block are also provided, which includes TLM iterations: the
scattering phase with elemental parallelism and gathering phase with nodal parallelism.
The summation of total currents into each node can be executed in parallel with appro-
priate information of node-element connections, and the LU solution process, which es-
sentially is mere backward and forward substitutions, can also be parallelized. The math-
ematical operations are quite simple to update the next incident pulses while relatively
dense for the Newton solver, which requires several (generally 5-15) iterations of updating
and solving the 3× 3 Jacobian matrix.

The MMC model is then computed following the acquirement of the transformers’ in-
ductances. The linear subsystem as part of the field-circuit interface is connected directly to
the transformers while other parts, including the controller, are interactive internally. The
solution of the interface gives the transformers’ primary and secondary currents, which are
returned to C2. Inside the MMC, the outer-loop controller regulates either power or DC
voltage after transforming the grid voltage and current into the d-q frame. The inner-loop
controller adopting phase-shift control (PSC) strategy [124] contains two parts: the aver-
aging control and the balancing control (BC). The former corresponds to the MMC phase,
so its kernel has only 3 threads for each HVDC station; while the output of the latter is
gate signal Vg that drives a switch in the submodule directly, and therefore, the number of
threads that the BC kernel and the SM kernel can invoke is much larger. The only signals
that the MMC linear part receives from other MMC blocks are the submodule terminal
voltages Vp to complete the computation.
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Figure6.7:Three-terminalHVDCsysteminvolvingFEMtransformermodel.

6.5 CaseStudyandResults

6.5.1 CaseDescriptionandSetup

Fig.6.7showsthe3-terminalDCsystemwheretheMMC-basedstationsSTN1andSTN3

arerectifierstations,whiletheinverterstationisdenotedasSTN2.Alltheconvertertrans-

formersTr1−3adopttheproposedFEmodel,andthegeometricparametersoftheFEtrans-

formerinFig.6.1arepresentedintheAppendixC.Eachthree-phasetransformerisbuilt

fromthreesingle-phasetransformersasshowninFig.6.6,thereforethereare9indepen-

dentsingle-phasetransformersintotal,andtheinductancecalculationscanbeexecuted

inparallel.TheHVDCconvertercontrolisconductedinthed-qframe,anddepending

ontherole,therectifierstationregulatestheactivepowerinthed-axis,whiletheinverter

stationcontrolstheterminalDCvoltageVdc2.Sincetheseconverterstationsareconnected

bytheDCtransmissionlines,theDCvoltagesatthetworectifierstationsVdc1andVdc3are

slightlyhigherthanthoseoftheircounterpart.AftertheinverseParktransformation,the

three-phasesignalsva,b,caresenttoindividualMMCinner-loopcontrollerwhichadopts

phase-shiftcontrolstrategywherethegatesignalsfortheIGBTsareeventuallygenerated.

6.5.2 ExternalNetworkSimulationResults

Thedevice-levelperformanceoftheIGBTisgiveninFig.6.8whereSaberRDRsimulations

resultsarealsoprovidedforvalidation.Figure6.8(a)givestheexperimentalIGBTturn-on

andturn-offwaveformsandthesimulatedresultsoftheproposeddynamiccurve-fitting

method.Itshowsthatthelinearandnonlinearcurvesatvariousstagescanbeapproxi-

matedbytheproposedmulti-sectionfunctionsasin(6.12).Figure6.8(b)-(c)areobtained
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fromasingle-phase5-levelMMCwithaDClinkvoltageof16kV.Thescaleofthesystemis

smallerthananHVDCstationduetothelimitedcapabilityofSaberRDR insolvingIGBT

nonlinearities;nevertheless,itissufficientforvalidatingthedevice-levelperformanceof

theproposedIGBTmodel.Theturn-oncurrentovershootanddiodereverserecoverycur-

rentcanbeobservedintheupperandlowerswitchesinan MMCsubmodule,andthe
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Figure 6.9: MTDC system performance under short-term DC line-line fault.

results from proposed model demonstrate a great similarity to those of the off-line simu-
lation tool, including the junction temperatures.

Fig. 6.9 shows the system-level performance of the 3-terminal DC system subjected
to short-term DC line-line fault. Initially, the DC voltage at the inverter station is exactly
200kV, and the two rectifier stations have a slight margin as a result of power transfer,
as it can be seen that the DC currents are around 2kA at these two stations and 4kA at
the inverter station. At t=8s, the fault lasting 200µs occurs in the middle of the line, and
consequently, the profound impacts can be observed in the DC network. The DC voltages
witness severe oscillations before being restored by the inverter 100ms later; while the
currents first see a dramatic rise and then restore after the fault disappears – the inverter
current even witnesses a polarity reversal. On the other hand, the impact on the AC side
is negligible since the currents on both sides of the transformer maintain throughout the
entire process. The above statements are validated by the right column sub-figure where
identical waveforms from Ansys R© co-simulation are given.
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Figure 6.10: MTDC system performance under power reversal.

The power reversal as a typical system-level operation is also conducted in Fig. 6.9.
Starting at t=8s, the power reference at Station 1 is ordered to rise from 200MW to 500MW
in a time gap of 2s, while Station 3 as the other rectifier maintains its power order. It is ob-
served that during the process, the DC voltages are largely stable, with only slight pertur-
bations. As a consequence, the DC current at Station 1 rises from 1kA to around 2.5kA, and
the power at the inverter station increases correspondingly as a combination of its counter-
parts. At the AC side of the rectifier conducting power reversal, the transformer currents
on both sides ramp up due to the increase in the power order. Ansys co-simulation which
shows the same results on the right column demonstrates the accuracy of the proposed
integrated model.

6.5.3 Finite Element Simulation Results

As mentioned before, the dense computation of FE models can contribute to a more com-
prehensive view of the physical details within the transformer. With the integrated thermo-
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Figure 6.11: Time-varying temperature, winding resistances, winding losses, and eddy
current losses of the FE transformer model.

electromagnetic model, all the transient fields can be available at any time point after post-
processing. For example, at t = 1000s in the power reversal case study, the field distribu-
tions of the magnetic vector potential, magnetic flux density, eddy current density, winding
loss and eddy current loss, temperature, and the conductivities altered by temperature, are
all plotted in Fig. 6.12.

Undoubtedly, these transient fields in practical working conditions can be very benefi-
cial for designers to make better decisions on transformer problems such as loss reduction,
saturation, and over-heating. Besides, the transient information related to such fields can
be also monitored. Figure 6.11 shows the time-varying temperature of sample locations
S1 and S2 noted in the transformer core, how the winding resistance changes due to the
thermal effects, the time-varying winding losses, and total eddy current losses. The steady-
state thermal field is achieved after 20 minutes with the highest temperature of 95 ◦C in
the transformer core, and the total losses also increase until the material conductivities are
not altered by temperature anymore.
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Figure 6.12: Field distributions within the FE transformer (Tr1 phase A) at t = 1000s.

The Ansys R© co-simulation results are also plotted to evaluate the accuracy of the inte-
grated model, and it turned out the maximum error is less than 5%. Note that this error is
mainly caused by the interfaces and the inherent assumptions between the thermal field,
magnetic field, and external networks, because the FE-TLM block itself is quite accurate,
and the error is less than 0.1% compared with Ansys Maxwell R©when given the same input
winding currents.

The massively parallelized codes executed on the NVIDIA Tesla V100 GPU with 5120
Cuda cores have high computational efficiency. The Ansys R© co-simulation was carried
out on a workstation with dual Intel Xeon E5-2698 v4 CPUs, 20 cores each, 2.2GHz clock
frequency, and 128GB RAM. The Ansys HPC (High-Performance Computing) license was
utilized and the available number of cores set to 40.

Table 6.1 shows the run-time comparison of Ansys HPC co-simulation and the inte-
grated model on GPU for finite element problems of different sizes, and the total simu-
lation time is 2s with a time-step of 20µs for the system. Although a time-step of 1µs is
applied to the MMC submodules, the coupled voltage and current sources exchange infor-
mation every 20µs. It takes Ansys R© co-simulations several days or even weeks to run 105

time-steps, while only several hours for the integrated model on GPU, and the speed-up
is more than 47 times. On the other hand, the time MMC needs to run a simulation dura-
tion of 2s is much shorter than that of the transformer, only 0.11 hour and 0.14 hour when
the MMC voltage levels are 5 and 513, respectively. Therefore, the simulation speedup is
largely determined by the transformer’s FEM model, as the overall speedup is still around
50 in all three cases.

Thus, since the codes are massively parallelized and executed on modern GPU acceler-
ating card, the integrated model can not only provide more comprehensive physical details
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Table 6.1: Execution Time and Speedups of Integrated Model Parallelized on GPU (105

Time-steps)

Cases
Number of Ansys Co-Sim Integrated Model Runtime

Speedup
FE Nodes Runtime FEM MMC (5-513L) Total

Case 1 505 40.8h 0.72h 0.11-0.14h 0.86h 47.4
Case 2 1973 152.2h 2.53h 0.11-0.14h 2.67h 57.0
Case 3 4923 438.9h 7.94h 0.11-0.14h 8.08h 54.3

within transformers but also substantially decrease the design and test cycle for engineers
to run an integrated simulation in AC/DC grids.

6.6 Parasitic Capacitance Extraction

Note that the displacement current term in 2.3 is usually so tiny that can be ignored in low
frequency applications. And for medium to high frequency cases, this term can be con-
sidered by solving the electric field and magnetic field simultaneously for the full-wave
maxwell equation with either the finite-element time-domain (FETD) method [2] or the
finite-difference time-domain (FDTD) method [32]. However, considering the computa-
tional complexity of solving the coupled Maxwell equations and the field-circuit interface,
it seems feasible to solve the electric and magnetic fields separately. Since the electric field
does not involve nonlinearity caused by materials while the magnetic field does, a lin-
ear electrostatic and a nonlinear magneto-dynamic problem are solved, and the constant
parasitic capacitances from the electrostatic problem and the time-varying transformer in-
ductances from the magneto-dynamic problem are extracted to interface the wide-band
transformer model with electromagnetic transient studies.

Thus, instead of handling the full-wave (2.3) directly, the following two equations with
unknown magnetic potential A and electric potential Φ are to be solved:

∇× (υ∇×A) = J − σ∂A
∂t
, (6.15)

∇2φ = − ρ

υ0
(6.16)

Fig. 6.13 shows a simplified 2D finite element transformer model rated 220kV/65kV and
100MVA.

According to the electrostatic theory, each conductor is an equipotential object and
there exists capacitance between any two conductors with different electric potential. For
the 2D transformer in Fig. 6.13, there are parasitic capacitances between four conductors:
the primary winding, the secondary winding, the transformer core, and the grounded
shielding box, which are indexed as conductor 1, 2, 3, and 0, respectively. In the 2D case,
the windings are enclosed by the transformer core, thus no capacitance exists between

102



Core

AirPrimary winding

Secondary winding

D1

D2

C30

C12

C23
C13

Pr
i
ma
ry
 s
id
e 
n
et
wo
rk

Se
c
o
nd
ar
y 
si
d
e 
n
et
w
or
kLp Ls

+

-

Up Us

+

-

ip isRp Rs

Cp Cs

 

Cps

Lm

Figure6.13:Parasiticcapacitanceexistingbetweenconductors.

Figure6.14:Informationexchangeinasub-domainforoverlappingSchwartzdomainde-
composition.

thewindingsandthegroundduetotheshieldingeffect.Thecalculationoftheparasitic

capacitancesshowninthefigureisasfollows:

TocalculatethecapacitanceC30betweenthecoreandground,oneelectrostaticcase

Φ3shouldbesolvedwithsuchaboundaryconditionthattheelectricalpotentialsonthe

transformercorearesetto1V.AndtocalculatethecapacitanceC12,C13,C23between

conductors1,2,and3,twoelectrostaticcasesΦ1andΦ2arecomputedwiththeelectrical

potentialssetto1Vasboundaryconditionsontheprimaryandsecondarywinding,re-

spectively.Notethatbecauseoftheshieldingeffectofthetransformercore,thecalculation

ofC30isindomainD1whiletheC12,C13,C23indomainD2.

SincetheelectricfieldisrepresentedbyE=−∇Φ,thecapacitancesareevaluatedby

theenergystoredinthespacebetweenconductors:
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C30=
D1

0E3·E3dS,C12=
D2

0E1·E2dS,

C13=
D2

0E1·E1dS,C23=
D2

0E2·E2dS.

(6.17)

Thepermittivityofair 0in(6.17)isunchangedandtheelectrostaticfieldsarelinear,

implyingtheparasiticcapacitancesareconstantregardlessofthewindingcurrentsorvolt-

age.Therefore,theelectrostaticfieldsrequiretobecomputedonceforall.Onthecontrary,

theinductancesextractedfromthelinearmagneticfielddependontheexternalsources

andshouldbeupdatedateachtime-stepbasedonthewindingcurrents,whichisthemain

computationalburden.Thesolutiontothecomputationalefficiencyproblemisillustrated

inthenextsection.

AsshowninFig.6.14,boththemagneticfieldandtheelectricfieldareconverted

toparametersthatcancouplewiththeelectricalcircuit,andtheinductanceextraction

methoddescribedinthepreviouschapterremainsunchanged. Aftersomesimplifica-

tion,theparasiticcapacitancesareequivalenttothethreecapacitors:primary-winding

toground,secondary-windingtoground,andprimary-windingtosecondary-winding.

Thefrequencyresponsesofthetransformerwithandwithouttheparasiticcapacitances

arealsodifferent.Figure6.15showstheBodediagramforbothcasesinonecasestudy,and

thedetailedparametersareprovidedintheAppendix.Itcanbeinferredthatwhenthe

workingfrequencyisunder20kHz,thetransformercanworknormallyandthemagni-

tude-10.6dBandthevoltageratiomatchwell:20log(65/220)=-10.59dB.Andatthisstage,

theparasiticcapacitancecauseslittleinfluenceanddoesnotseemimportant. However,

104



when the working frequency keeps increasing, the transformer ratio starts to fail and the
impact of the parasitic capacitances becomes notable.

To further verify the performance of the transformer model with parasitic capacitances,
the transient simulation is conducted.

Fig. 6.16 shows the simulation result under a normal working frequency of 60Hz, and
the voltage ration matches the rating. The primary winding current Ip, secondary winding
current Is, primary winding voltage Up, and secondary winding voltage Us are provided
in the figure. The results of the nodal domain decomposition method and ComsolTM per-
fectly overlap.
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Figure 6.16: Transient simulation result comparison under 60 Hz with a time-step of 0.5ms.

Fig. 6.17 shows the simulation result under a high-frequency condition of 300kHz,
and the secondary voltage drops to 12.3kV, and the magnitude ration is 20log(12.5/220)=-
24.9dB, which verified the correctness of the Bode diagram.

From the Bode diagram, we can also infer that under 300kHz, the parasitic capacitances
are important and will notably influence the performance, both magnitude, and phase, of
the transformer. The secondary winding voltage can be predicted as 220∗10−13.5/20=46.5kV.
Figure 6.18 shows the simulation result comparison of the transformer with and without
parasitic capacitances under 300kHz, and the secondary winding voltage is around 46kV
as predicted.

With the extracted wide-band transformer model, the high-frequency conditions can be
simulated more accurately. The Bode diagram can very help to analyze the performance
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Figure 6.17: Transient simulation result comparison under 300 kHz with a time-step of
0.5ms..

of the transformer in the frequency domain.

6.7 Summary

This chapter proposed an integrated thermo-electromagnetic model to simulate the finite-
element transformer transients interacted with MMC in multi-terminal DC grids. The
comprehensive physical details enabled by detailed modeling, including the transient field
distributions within the transformer and device-level information of the MMC, can aid en-
gineers to make better decisions on practical transformers and MMC problems such as
material B-H properties, loss reduction, saturation, and power converter design guide,
especially under transient conditions. The thermal field, magnetic field, and the elec-
trical networks are fully coupled, and the information exchanges were implemented by
extracting the coupling coefficients. The field-circuit coupling scheme, the finite element
transmission-line modeling solution, and the fine-grained MMC model all have perfect
parallelism, and the codes were sufficiently parallelized and implemented on Tesla V100
GPU to improve the computational efficiency. Consequently, the execution time of the in-
tegrated model is more than 47 times faster than Ansys co-simulation while maintaining
good accuracy, and the substantially reduced execution time enables more efficient design
and test. It should be mentioned that the results of the proposed parallel method match
well with the commercial software regarding the same boundary value problem. To repre-
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Figure 6.18: Transient simulation result comparison with and without parasitic capaci-
tances under 300 kHz with a time-step of 0.1us.

sent the physical problem more accurately, future work will reduce the assumptions and
simplifications that the finite element model utilized.
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7
Conclusions and Future Work

This thesis explored the divide-and-conquer strategy for finite element computation at
the node-level and element-level in a massively parallel manner and the proposed paral-
lel algorithms can be easily vectorized and accommodated for parallel hardware such as
GPU and FPGA. Both the node-level and element-level parallel algorithms can handle the
nonlinear problem for time-domain studies. In this way, preferences can be given to the
finite element models of transformers and transmission lines in engineering simulation
to benefit from the high accuracy and comprehensive field information with substantially
improved computational efficiency. The divide-and-conquer strategy was also applied for
parallel finite-difference computation for the ionized field around the transmission line.
For the application of a fast finite element model, the field-circuit interface was considered
to couple the finite element model with the electrical network for electromagnetic transient
studies. Other applications of finite element modeling such as the parasitic capacitance ex-
traction from an electrostatic field and multi-physics simulation considering the thermal
field were also discussed.

This thesis contributed to the prevalent trend of deploying finite element computation
in high-performance computing environments and the trend of highly accurate device-
level modeling in an electromagnetic transient simulation.

7.1 Conclusions of Thesis

The conclusions of the thesis are summarized as follows:

• A nodal domain decomposition scheme was proposed to solve the nonlinear finite el-
ement problem with node-level parallelism without having to assemble a global ma-
trix. The sub-domain solver showed perfect modularity for single instruction multi-
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ple data programming with the specifically defined data structure, and the memory
required increased linearly with the problem size. The mixed boundary condition
was incorporated to the sub-domain solver to accelerate the convergence. The accu-
racy and efficiency of the NDD scheme implemented on many-core GPU were dis-
cussed for different problem sizes, and comparison with the results from ComsolTM

showed a speedup of more than 30 times while maintaining high accuracy (error
less than 0.85%). For time-domain finite element computation, the solution of each
time-step could served as valuable information to contribute to the convergence of
the next time-step.

• A transmission line decoupling technique was explored to solve the nonlinear finite
element problem with element-level parallelism. The transmission line decoupling
scheme successfully decoupled the nonlinear elements from the linear network so
that the computation of the nonlinearities can be massively parallelized. A real-time
finite-element transformer model was attempted on FPGA for the first time. The
parallelism of the different phases of the proposed scheme was fully explored and
implemented on an FPGA board with deep data pipelining. Tests conducted in com-
parison with a commercial FEM package proved excellent accuracy and computa-
tional efficiency of the real-time FEM approach, which provided unprecedented data
detail of the simulated transformer.

• The nodal-level parallelism was also extended for the finite difference method used
to solve the ionized field around high-voltage direct-current transmission line. The
Poisson’s equation and current continuity equation were iteratively solved with the
parallel finite difference method with differentiated grid sizes on GPU, increasing
the computational efficiency of more than 30 times.

• An indirect field-circuit coupling technique was proposed to extract the self and mu-
tual inductances from the winding zones of the finite element transformer at each
time-step, and these parameters can be used by the electromagnetic transient stud-
ies. The thermal effect of the winding current was also considered in a multi-physics
case study and the electrical circuits, magnetic field, and thermal field were solved
independently using coupling coefficients.

7.2 Future Research Topics

The proposed future research topics include but are not limited to the following:

• For linear case, the nodal domain decomposition scheme without mixed boundary
conditions is equivalent to the Jacobi iterative method and the sub-domain solvers
are essentially doing matrix-vector multiplication Ax. Thus the matrix-free scheme
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can be also applied in the preconditioned conjugate gradient method where matrix-
vector multiplication and inner product of vectors are the main operations.

• The nodal domain decomposition method can perfectly handle nonlinear finite ele-
ment problems with moving parts like generators since the computation is decentral-
ized, and the changing geometry only affects the coefficients of the nodes involved
with no matrix being altered.

• The parallel finite element methods proposed will be also extended to the 3D prob-
lem and tested on a workstation with multiple GPUs connected with NVlink for
larger problem size. Then it can be deployed on clusters of the workstation. Simi-
larly, the algorithms can also be implemented on multiple connected FPGA boards
to enable large problem sizes.

• Explore a parallel algorithm for dynamic mesh generation on GPU to solve finite
element problems with moving parts and make the procedures of the finite element
computation more complete.

• The parasitic capacitances of the transformer can be extracted from an electrostatic
field for electromagnetic transient studies under some high-frequency conditions.
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A
A.1 Simulation Parameters in Chapter 4

• Preisach model: a0 = a1 = 0, b0 = b1 = 3162, c = 0.6.

• Transformer parameters: The transformer size is 1.3m×1.8m for the outer rectangle
and 0.7m×1.2m for the inner. The coil size is 0.3m×0.5m, and the number of coil
turns is 200 for the primary side and 1076 for the secondary. Rp = 0.667Ω,Rs =

3.588Ω and σe = 1000.

• Case study parameters: Vac = 37.5
√

2sin(120πt)kV, R1=5Ω, L1=2mH, RL1=200Ω,
RL2=100Ω, LL1=10mH and LL2=5mH. The length of the transmission line TL is 15km,
travelling time is 50µs and characteristic impedance ZTL is 200Ω. The magnitude of
the injected second and fourth harmonics are 9.38kV and 4.69kV respectively.

• ComsolTM simulation parameters: (1) For the finite element solution of the magnetic
field with nonlinear B-H curve, the winding zone is modeled as the multi-turn coil,
the nonlinear method is set to the automatic Newton method, the termination tech-
nique utilizes a tolerance factor of 0.001 or a maximum iteration number of 25, and
other settings such as damping factor remain default. (2) For the external circuit, the
external I-VS-U is used to interface with the magnetic field, the transmission line is
modeled as a series of equivalent Π models, the switches are modeled as two-state
time-varying resistors defined by some piecewise functions, and other events like
harmonics injections are also implemented with time-varying functions.
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B
B.1 Simulation Parameters in Chapter 5

• Computation Resources: The GPU version is GeForce GTX Titan Black, with 2880
cores, 889MHz clock frequency, and 4GB memory. The CPU version is Intel E5-2620,
with 16 cores, 2.1GHz clock frequency, and 32GB memory.
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C
C.1 Multi-Physics Simulation Parameters in Chapter 6

• Material parameters: for copper, α = 3.8× 10−11Ωm/K and σ0 = 5.8× 107S/m; and
for steel, α = 5× 10−11Ωm/K and σ0 = 9.6× 106S/m.

• MMC parameters: voltage level 5-513, DC voltage Vdc=±100kV, rated power 500MW,
AC voltage Vac=280kV; Submodule capacitor 3mF, arm inductance 50mH; DC line
parameters: length 100km, l=0.05mH/km, r=0.012Ω/km, c=0.015µF/km.

• Transformer parameters: The transformer size is 5.2m× 3.6m for the outer rectangle
and 1.85m × 2.6m for the two inner rectangles. The coil size is 0.25m × 2m, and the
number of coil turns is 418 for the primary side and 200 for the secondary.

C.2 Wide-Band Transformer Parameters in Chapter 6

In Fig. 6.14,Rp=1.2mΩ,Rs=0.35mΩ,Lp=4.6850H,Ls=1.3836H,Lm=-1.0680H,Cp = Cs=104pF,
and Cps=812pF.
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