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- model 1is determ1ned analytlcally It 1s shown that‘the behav1our

" to descrlbe nutr1ent uptake. Graphlcal technlques are developed to

st . Lo . s e

_AbSTRACT

\ : ».

A model of the .chemostat 1nvolv1ng n populatlons of mlcro-
organlsms competlng for a s1ng1e, essent1a1 growth 11m1t1ng substrate
%

15 con51dered Instead of assum1ng the familiar M1chael1s -Menten.

v,

'klnet1cs for nutruent uptake, a general class of functxons is used 5

;1

wh1ch 1nc1udes all monotone 1ncrea51ng uptake functlons but also’

Al >
@ ¢

allows uptake functlons that describe 1nh1b1t10n by the substrate at

- "

- high concentrations. The qualltat1ve behav1our of thlS generallzed

‘1}

‘Ndepends 1nt1mately upon certain parameters ' Brovf%ed'that all the

parameters are distinct (wh1ch lS a b1olog1cally reasonable asSumption);v I

-

at most one competltor surv1ves The ' substrate and the. surv1v1ng

competltor (1f one ex1sts), approach limiting wplues «Thus there is

SR
H .
compet1t1ve exc1u51on However, unllke tgz standard model it certain '

6 .

y cases the outcome is 1n1t1a1 condltlon dependentt

Next a model of the chemostat 1nv01V1ng two populatlons of

mlcroorganlsms compéﬁlng for two: complementary,ﬂgrowth limiting

/'substrates is cons1dered Agaln, a general class of functlons is: used

€

-

‘analyze the mOdel - In the case of monotone klnetlcs the results are

'51m11ar to those of Hsu, Cheng and Hubbell [41] -who study this problem \\Q\

t

assum1ng MLchaells Menten k1net1cs For monotone k1net1g§ all dynamlcs

are.tr1v1a1 in the sense that all’ solutlons approach equ111br1a ‘How-

'ever, when at least one of the competltors is 1nh1b1ted by hlgh

concentratlons of the substrate, one ‘can easlly construct examples for

a



which -there is a stable periodié solution. Surprisingly, if the

)

substrates are inhibitory at high concentrations, there aig/;xamples :

e . - -~

for which coexistence is possible but neither competitor can survive N

- . N o

” v
in the absence of its r1val

. | ‘Finally, a model of th$ chemostat ist om51dered in thCh there
-t

.15 predat1on on the competltors that are competlng for a 51ng1e

Lo

essential, growth-llmltlng nutrient. - Here the class‘of response
functions is‘restnicted‘to be monotone. It is shown that although at

mi/;rdhe Competltor survives in the absence of predation, the addition

- of a predator can cause per51stence in a strong sense. Under certain-

circumstances one can also show ‘that there'isva globally asymptotically
reu : o 158 2,28y :

stable interior critical point.

o~ +
!
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Q‘{b CHAPTER 1

INTRODUCT ION

1. THE CHEMOSTAT. The chemostat is a {aboratory apparatus used for
the continuous culture of microorganisms. The continuous culture
technique was mainly developed in order to study microbial#growth undér
nutrient limitation in a controlled environment (See Monod [56] and
Novick and Szilard [S8]) and fhe term "chemostat' used in this context
was apparently coined by Novick and Szilard.

- .

A good description of the continuous culture technique can be
found in Kubitschek [46] and a schematic diagram oﬁ{a“themostat is given
on the following pagel ABasically one can think of a chemostat as ‘
three bottles: a feed bottle, a growth or culture éhamber and a
collecting vessel. Microorganisms are inoculated into the culture
chamber which is well-stirred. it is assumed that all essentials for
growth are supplied at near optimal amounts'gxcept for the one oT ones
which the equrimenter chooses to supply in growth—limiting’amounts.
These limiting nutrients are supplied continuously from the feed bottle
at a constant input ;ate and removed-at.thé same -rate along with
proportional amounté of microgrgaﬁisms, byfroducts, énd other grdwth
nedium. Thus the. volume in the cﬁiture chamber is held constant.

The continuous éulture techniqué is used in industry fér the
economical produétiohfbf useful microorgénisms_(seé Herbert, Elsworth
and Telling-[SG]) as“well'as for the simulation of blologlcal waste
decomp051t10n or water purlflcatlon by mlcroorganlsms (see Yang and

Humphrey [83]). According to. W1111ams [82], the chemostat can be viewed
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I.1

as the best laboratory idealization of nature in the context of

s

population studies. He.points out that natural systems are open fory
o
the input of energy and other material substances, He interpreté the
removal rate in terms of the continuous turnover of nutrients in nature
and he formally equates the outfiow of organisms with non-specific
death rates, predation_énd emigration.
In this thesis we shall be mainiy interested in studying how
different populations interact under "chemostat-like" conditions. The
interactions of interest Qill be exploitative competition for re%ou§ces
andlpredatof-mediated competition.
The classical theopy'of ecological cbmpetition'and predator-prey
relapionships wa:\hsgginated by Lotka [50] and Volterra [80]. This
~.approach is appealing bécause of its general}ty and its simplicity.

The competition eqUations'studied are basically an extensionvof the
logistic model of single-species growth that dates back to Verhulst
[79]. The classical theory is an attemptegto deScribe populagion

dynamics w1thout being spec1f1c aboup which resources are limltlng and

hence the focus of the competltlon and how these limiting resources

are utilized by the different competitors. These_modelg are usually

©

phenomenologlcal rather than predlctlve since it is very dlfflcult to
measure ¢he critical parameters used in the theory 1ndependently of
actually observ1ng the populatlons in competition. One way to overcoﬁé
these defects is to, develop:a more méchanlstlc, resourceé-based theopy
of ecologlcal 1nteract10ns and ‘such an approach is currently belng
Ftaken by many resehrchers. ‘Some of the pioneer work can beoattrlbuted

&

- to Monod [56] and Holling [38]. Though this approach may result in



1.1

mathematical models that are less general and more difficult to

analyze, the resulting models are often predlctlve since parameters can

g

frequently be measured 1ndependently of the- competltlon (see eg.
Hansen and Hubbell [33])~ Mathematical modelllng of populatlon inter-
actions in a cnfmostat 1s ;erta1n1y an example of this resource based

approach and is the approach: taken in thls theSis. The models we study

.

1nv01ve systems of first order autonomous d1fferent1a1 equatlons

However, there are models 1n the llterafﬁre that involve periodic

coefficiknts and time-delays.  For an excellent survey article®of

'preV1ous work done on the mathematlcal modelling of populatidn inter-
Q

actions under chemostat like condltlons the reader. 15 referred to the

3

-

" article by Waltman, Hubbell and Hsu [81].‘» o



2?' THESIS OUTLINE Inuthis thesis we consiéer;three different types

of populatlon 1nteract10ns under chemostat llke conditions. In

Chapter IT we analyze a modlfled version of the olass1cal chemostat
equations that descrlbe explo1tatlve competltlon between n populatlons
of m1croorgan15ms for a s1ng1e, essentlal growth l1m1t1ng substrate

We allow populatlon resource dynam1cs to be descrlbed by a general

N
class of funct1ons Thls class of functlons includes all monotone

1ncre351ng funCthﬂS as well as functlons-that descrlbe‘the 1nh1b1t10n'
of populatlon growth by the substrate at - hlgh concentrations. |

In Chapter III we restrlct our attentlon to exp101tatrve B
competltlon between two populatlons. Thls t1me however;,the competltlon

is for two complementary resources whlch are assumed to be growth—

1imitrng; As in Chaptesr II, general populatlon resource dynamlcs are

L)

‘ <considered.

In Chapter IV we ¢ nsider a case of predatoerediated competition

between two populatlons for a slngle growth-limiting nutrient, Unlike

L)
in 'the flrSt two chapters, ‘in this chapter we restrlct the class of\ '

funct1ons descrlblng populatlon resource dynamlcs to be monotone. '

The basic approach used -in th1s the51s is .a dlfferentlal‘

e »

equations, dynamlcal systems approach ' For source texts for the'
.

.fundamental theory, we refer the reader ‘to - [6 16, l7 35 52, 67]



1.3

-

. : ' . , _ : ' 1
3. NOTATION. The foglowing notation and abbreviationsiwill be used

consistently throughout the thesis:

R 'denotes the set of real numbers v

Ru-{(xl,zf)%) ,"i=}1,..A.,n}b.

no_ _ L o ; :
R {(XI’XZ"'*?qu,e R" LXg > Oi i= L,...,n}.

~C’ denotes the class_of continuously differentiable. functions.

aA ‘denotes the boundary of th%,§et A
“int A. denotes the 1nter10r of the set .A
-¢i A denotes the closure of the set Af
B\A = {xe B x’éA}.

¢ denotes the empty-set.
Any other thation‘is either standard in mathematics OT is

‘defined independently for each chapter.



I.4 » o . .

“

4. NUMBERING SYSTEM ANDYCROSS REFERENCING. Throughout this thesis we

use the follow1ng system of- numberlng and cross-referencing. At the

top. of each. page in the 1eft hand margln appear the chapter and section

numbers or the appendix number. Roman,numerals are always used to

~ denote the chapter number. For example, f.4fat_theutop‘left of thig ?\\

page’means that the discussion on this page is part of Chapter I,

'Section 4;» On the other hand Al.B at the top 1eft of a page meane that

the page ‘is part of Appendlx 1, Subsectlon B. Each item (Deflnltlon,

Theorem Lemma Corollary, Propos1t10n Dlsplay, Example) 1is 1dent1f1ed
: -

. by segtron and 1tem number Items are numbered consecut1ve1y within

each section. On the other hand Tables and Flgures are numbered

'consecutlvelm throughout the the51s and a LlSt of Tables and a List of,

» Flgures, 1nd1cat1ng page numbers,pfollow the Table of Contents

'III 2. 3” for 1tems”

- Cross references are of. the form "by Theore
“.and "by (IV 5. 3)" for dlsplays The former means "b\ the theorem
.whlch is 1tem 3 of Sectlon 2 in Chapter III” and the latter means ”by
d1sp1ay 3 of Section 5 in Chapter IV W Note)that the theorem which is
item 3 of a partlcular section is not necessar1ly the third theorem

of that sect1on whereas dlsplay 3 of a sectlon is the th1rd dlsplay

of the sectlon Whenever we refer to an item (dlsplay) w1th1n the same -

chapter only the section and 1tem (dlsplay) numbers are glven Forl

jexample "by (4 2)” means. ”by the second dlsplay in Sectlon 4 of thls
.e;‘? . §
&
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CM!FTER IT &
A MATHEMATICAL MODEL OF THE CHEMOSTAT WITH A GENERAL

CLASS ‘OF FUNCTIONS DESCRIBING NUTRIENT UPTAKE

-

.

.1. INTRODUCTIOM. In this cnapter wé\consider a.deterministic nodel
Nof purely exploitatdve.competition Letween n populations of micro-
organisms for a single, essential, growth-limiting nutrient, in a-
chemostat with constant input and wash;out rate.‘ Qur purpose is to
show that for any nrealistic' functions describing nutrient uptake

rates for the comneting microorganisms, the princinle’of competitive
exclusion holds. That is to say,'at most ohe population of micro-
: : \ ' ‘
'_organisms survives. Furthermore, the system always asymptotically
‘approaches an equilibrium state. Ouf results -may be regarded as
A'extend1ng those of Hsu, Hubbell)and Waltman [40] and a result of
Armstrong and McGehee [S]. The novelty of thlS work is that in
allow1ng very general nutrlent ugtake functlonal responses, the com-
petltlve outcome becomes, in some cases, initial condition dependent.
Thls is in contrast to the references c1ted above but has been noted
»exp 1menta11y and by numerlcal 51mulat10n in the.case of nutr1ent
~1nh1b1tlon [1 64,83], of whlch we g1ve a brief discussion Pater “For
a more detalled account of the chemostat and related exper1mental
: Aresults, we refer the reader to [33,40,44,56, '58,62,78,81] .. .
| Thls chapter is organlzed in the follOW1ng manner. In Section_'
we present the model and some background remarks Sectlon‘S contains
statement of the main results However, for clarity of presentatlon,’

-

vthe proofs of these results are deferred to Sectlon 5. Proofs of the



II.1
/ : .
in Section 4. .We

preliminary results and technical lemmas are given i

conclude with a discussion and an application in Sectlion 6. A linear

TN : \ _
; dnalysis of the model 1s given in Appendix 1.
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2. THE MOPEL. MWe shall consider the following model of the chemostat:

, n x,(t)p; (S(t))
st(r) = (s0-s()D - | — -,
=1 Yy v
(2.1)¢ -oxl(t) = xi(t)(-o+-pi(5(t))),‘ iel,
S(0) = So > 0, xi(O);= Xip 05 i e.i;
where I = {1,;;.,nl. A -; ' e - : "%g

‘ " In these equations, xi(t)» denotes the concentratlon of the
¢ :

‘Z.th population.ofrmicroorgan}sms'ax time t; S(t) denotes the

’

concentratlon of substrate at time t; p (S) is the function that_‘

represents the -rate of conver51on of nutrrent to b1omass, i.e. the per

.

capltaMErowth rate of the <th populat1on as a functlon of substrate -
concentratlon y is a growth y1e1d constant and we assume P (S)/y .
represents the. substrate uptake functlon for the  <th bopuiatlon, \
SO denotes the concentratlon of substrate 1n the feed bottle, D

denotes the 1nput rate from the feed bottle contalnlng the. substrate

“and the wash out rate of substrate, m1croorgan1sms and byproducts from

ba
o

the growth Chamber. Thus S D represents the 1nput rate of substrate ;-
,COncentration. = | | |

H The system (2 1) descrlbes a chemostat in;which n hbopuia—
t1on5 of mlcroorganlsms compete exp101tat1ve1y for a 51ng1e essential,
growth-limiting substrate. It is assumed that the substrate 1s non-‘
'reproduc1ng, the 1nput concentratlon and the dllutlon rate are constant
and there 1s perfect m1x1ng 1n the growth vessel so that substrate and .

m1croorganlsms are removed in proportlon to. the1r concentratlons. The



individual death rate of any species is considered lnsignificant
compared,to.the dilution rate, and it is assumed that,growth'rates
adJust 1nstantaneously to. changes'in the'concentration’of substrate.

Furthermore we assume that the\substrate uptake rate is proportlonal

~to the rate of conver51on to blomass To)motlvate the conditions that °

we shalI place on the uptake functlons Ps (S), we give a brlef account

of the development of thelmodel
]

Volterra, in 1928. [80] appears to have been the flrst to use a’

I

11

1mathematica1 model to show that under certaln condltlons, the coexrst-- '

ence of two or more populatlonS‘competing for the same l1m1t1ng
resource is_imp0551ble. -In his model he assumed a linear relationship
between the amount of_substrate present and the- spec1f1c growth rate‘
'for each of the competlng populatlons,vln the context of (2.1) thls

V.requires'the,functlons p (S) to be llnear functlons Monod in

'1942 [56], formulated a model wh1ch featured the dependence of

m1crob1al growth rate on. the concentratlon of the 11m1t1ng substrate, o

as.a data f1tt1ng curve whlch later was 1nterpreted in terms of -
M1chae115 Menten klnetlcs. A theoretlcal derlvatlon of the same model

inVolving a substrate and a slngle populatlon is glven, for example,

[36] “An exten51on of thrs ba51c model to several competlng popu1a~

‘tlons was g1ven by Taylor<and W1lllams [72] In these models there is . o

\—\
;! saturatlon effect at hlgher resource 1eNels, p (S) takes the form
(m S)/(a +S) ,,where m ’and a1‘ are p051t1ve constants. A complete

cglobal analy51s of thf% model was glven by Hsu, Hubbell and Waltman [40]

N |

~'j"and Hsu [39] They showed that at most one of the competlng populatlons}.“\

surv1ves, the one whose ”Mlchaells Menten constant" a; ,~1s smallest



1n comparlson w1th its intrinsic growth rate, and that the dvnam1cal
‘system has an equ111br1um p01nt which 1is globally stable for solutionms.
with positive 1n1t1a1 condltlons This result was conflrmed experlmen-‘
'tallynby Hansen.and Hubbelll[33]‘u’Armstrong‘and“McGehee [S]'extended

(
»these theoretlcal results to models with arbltrary, smooth mono;one

l.1ncrea51ng uptake functlons P; (S) ‘ An example of such- functlons is
glven by the Holllng type III multlple saturatlon response of the form
pi(S) = n,S /(b +5) (c;+), see [44]. o ‘ |

A number of authors have p01nted out that certaln substrates may
be growth 11m1t1ng at 10w concentratlons and growth 1nh1b1t1ng ‘at h1gh
concentrations for. example there 1s/1nh1b1t10n -of Nltrobacter by.
n1tr1te and of Nltrosomonas by ammonla 44] Thls‘results 1n non- monotone
uptake functlons Andrews [1] and Yang and Humphrey [83] dlscuss |
several speC1f1c models "of 1nh1b1tory klnetlcs Bush and Cook [10]‘giye
;an ana1y51s of such a model 1nvolv1ng one substrate and one populatlon
'of mlcroorganlsms, u51gg a general 1nh1b1t10n funcoaon Arls and |

Humphrey [2] glve an analy51s of a. model of one substrate and two

competlng m1croorgan1sms u51ng a spec1f1c functlonal form of 1nh1b1tory -
b2

ur;klnetlcs prOposed by Boon and Laudelout [7],- (S) = m, /Cl+———+-——)

g Wlth 1nh1b1tory k1net1cs, each competlng populatlon of m1c;0- .

' organlsmS'has a lowerithreshold level of substrate belbw. whlch 1t cannot
Vgrow (1rrespect1vq of compet1t1on) and an upper threshold level of sub--
;f_strate abOVe whish substrate 1nh1b1t10n prevents growth B

Gu1ded by thlS, we make the followrng assumptlons concernlng the o

f:funetronsﬁp.; in our model equatlons (2 1) _;ili ';~:°l

2y LR iR R



. (See Figure 2.)

(2.3) ,'pi is-continuously‘differentiable;

[

e . (0) -

and there exist uniquely defined positive extended real’

(2.5) numbers Ai and ui,‘with Xi <y ,.suph that

py(5) <D if $ ¢ Dol
E an¢_

py(8) > D if S Oy

W1th 1nh1b1t10n klnetlcs 1n m1nd Ai and Y 'represent the - '

fbreak even concentratlons of substrate referred to abOVe But it

’\should be noted that we allow A and/or My to be equal to + o

Vcon51der an even more general class of functlons pi;_ it 1s partly for

';‘Agaln, for the sake of clarrty,:we make two further assumptlons of a ,'_.--f

1gener1c_nature;

S0 that our results also apply in the case of any monotone uptake

functlons and in partlcular in the case of Mlchaells Menten k1net1cs R

B It W111 be’ ev1dent from the method of proof that we could
*

the sake of clarlty of our arguments and partly for ‘the sake of

. b1010g1ca1 reallty that we 1mpose cond1t1ons (2 2)- (2 5) .above

i
¢

_-}.{(2._(“))‘:-“ Ifxl (or‘ .‘ _p—i) is flnlte, then._;._l’piﬁ()\i) ;éo . (pi(“l)’é 0) .

"a 121?3 A11 A J (other than those wh1ch are 1nf1n1te) are

S

dlstlnct from each other and from S0
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Note that in the definition of (2.1), we assume X, ., ~ 0 for

all i e I. This involves no loss of generality since if X5 = 0 for

-

some 1 ¢ I, then xi(t) =0 forall t >0 and that population can
' 5

%

be eliminated from consideration.
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3. STATEMENT OF RESULTS. From now on (except in Theorem 3.6 where we
§
relax (2.7)), we assume that the functions P; satisfy (2.2) - (2.7).

- «

First we note that (2.1) has positive, bounded solutions, which is a

prerequisite for any reasonable model of the chemostat.
¢

‘Theorem 3.1. All solutions S(t), xi(t), ie I, of (2.1) are positive

and\bounded'for» t > 0.

The next result CONCerns competition-independent‘extinction of a
population. Tt states that if the conversion rate of the Zth organism

‘{s less than the dilution rate, for all nutrient densities below the

input concentration, then that organism dies Qut.
. N

Theorem 3.2. If xi > SO (or' xi = +®) , then 1lim xi(t) = 0 for all

¥ tro
solutions of (2.1).
Henceforth, we shall assume that the populations are labelled

so that
(3.1) A < A <_.;-<)\."<s<>‘j’ 'V+1_<_j_<_n’

whére 0<v<n. As a coﬁsequence Qf Tﬁeorem 3.2, Xy 1hrqugh iv
" are the only competitoTs that have a chance of surviving. If v =0,
the syétem qlea:ly crashes, i.e. all pOpulations.of microorganisms
become'extinct and the substrate conceﬁtration converges to SO.

' To describe our Tesults on the competitive outcomes of the systemo

(2.1), the following definitions will be useful.

Let Q =
i

(Ai,ui). (If v=0, let Q= g.)

<

it C<

1.



»

From (2.7) and (3.1) it follows that every connected'component of Q
is an open intérval of the form (Ai,uk), where 1 < 1 i.k .: Evidently,
for each j, 1 <j < ; Aj and M belong- to thé glpsure of exactly
one and the same Eomponent of Ql’ Note that if '(Ai’uk) is,a
component of Q, then for any time 1. for wﬁich S(t) € (Ai,gk) , ‘the
concentration of at least one populatibn of microorganiéhs is in-
creasing. B ‘:_ | | |

Now we define

1 ' - 0 u . N
(3.2) D={A :h <8 }u {pj tuy SH.

It will be cohvenieﬁt to relabel the elements of T as

Y <Yy S .o <Yy - Note that k < 2v.

The following results show that sblutions of (Z.f) always have

limiting behaviour.

Theofem 3.3. (a) For any solution of (2 1), lim S(t) = Y ; where Y

‘T

a

A 0
is either S or 15 the endp01nt of a component of Q

tb) A necessary cOndltlon for lim S(t) ’jwhete Y
. tro )
is the endpoint of a component of Q, 1is that y < S If'a

1im S(t) = Y, where® y is such an endp01nt then - 11m X, (t)-—y (S

e : - o
if v = Ai oT M and -lim‘xj(t} 0 for all other j.
e : ,

(c) A necessary condition'for 1im S(t) -s% is that

v oo S ,
4 Q. If limsS(t) =S°, then . lim x, (t) for all i.

tyo " T S PR

\‘“ ’ l\‘v>

In'faCt, for almost all solutioﬁs of (2.1): lim S(t)

or’
e R 22 '

1
s
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Ai, where li is the left endpoint of a component of Q. More

precisely, we have the following theorem, which is th® main result of

this chapter:

Theorem 3.4. Let A denote the set of left endpointé of components of
. Q, together with S0 , if 'SO ¢ Q. With the exception of a set of
initial conditiens ovaebesgue measure zero, all solutions of (2.1)

AN

satisfy

S

trx

(3.3) L 1im S(t) =y, ye Ao,

, with the oorresponding asymptotic behaviouf: lim Xi(t) = yi(SOZ-Ai),
. > | o -

lim x,(t) = 0,. -3 #1i, if y=21,; and limx.(¢t) =0, j el if

oo L trw )

Conversely, for each y ¢ A, there 1s an open, . nonempty set of,

initial conditions for which the solutions of (2.1) satisfy -(3.3).

Corolléry 3.,5. If Q 1is connected, then for all j > 2,

C e

: 1im xj(t) =0. If, in addition,_ SO ¢ Q, then the critical point

Tt

'(A1’y1(50"“1)?0""’0)‘ iS'globally asymptoticélly stable for (2.1)".

Corollary 3.5 applles to all models for whlch the functlons ‘pi
fare monotonlcally 1ncrea51ng (actually only Py need be monotonlcally
1ncrea51ng), as well as those for wh1ch either the 1nput concentrotlon
or the wash-out rate is suff1c1ent1y small

The except1ona1 set mentloned 1n the statement of the'above

theorem con51sts of the stable manlfolds of the (unstable) cr1t1cal

Y

J

s

18

: points (Syxl,,..;xn) where S = ., X = yk(S -,uk), x, £.0, J#k;



and uk is a right eﬁdp@int of .a compoﬁent of Q.

| in all éases ;hen, at most one competitof survives and the sub-
strate and surviviﬁg competitor abproach limiting values. Competitive
exclusion therefore applies with_the_proviso that' the outcome of the
competition méy,ﬁe initial condition debendent.‘ W

If for th¢ moment, we relax the generic assumption (2.7);11.8.

no longer require that al;} xi'“and uy's be_diét%nct'from gach,othgf
and from SO, ‘coexistence is ﬁossible'(at least in a weak seﬁse) as is

’

suggested by the following theorem.

Theorem 3.6. For any solution of (2.1), lim S(t) =y where either
N ‘ - tw

1
(2]

Y = SQ. or y 15 the endpoint of a component of Q. If 'y

‘II
wn

]
-

then 1lim x.(t) = 0, e 1. Otherwise 1lim () x, () /y.)
. , j . . : . i i
troo o : ;t+w 1led

where ¢ = {i: A, =y OT . ?Y} , and 1lim x,(t) = 0 if neither A,
V 1. 1 too I o - J

nor ;5 is equal to Y.

19
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4. LEMMAS AND PROOFS-OF PRELIMINARY RESULTS.

. ‘ g ' _ n x.(t) - '
proof of Theorem 3.1: Let z(t) = S(t) + Z 1 . From (2.1), we
- i=1 7i | ‘
have
{4.1) 2 (t) = (8- z(1))p ig&

from which we obtain

(4.2) oy = sa-e Y zoe‘Dt

where = z(0) . It is clear from (2.1)' that the'positive

. ZO‘
(S,x ,.;.,x ). cone is. ositiVely invariant. Thus solutions are
positive for all t.> 0. and s$0, by (4;2), are bounded.™

’
‘The following corollary is immediate from (4.2).

Corollary 4.1. The n-dimensional simplex,

: - , . -
Py - . : -y =~ g0
S = {(S,x s/ X ) ES,X Xy 2 0; S+ 121 x;/y; = S},

. is a global attractor for (f;l).

. Proof of Theorem 3.2: Let (S(t),x,(t),...,x (t)) be a solution of

A (2.1)- Suppose that S0 LR ?rom.Corollary (4.1) it follows

that for each ¢ > 0,{therefexi§ts T.=ﬂT(e)"Such that

n:

@ -y s s ) x@y; st ey e TE .

j=1

VRN
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Slnce P; (s) - D < O for 0 < S < g - e/2y we have

si - max{pi(S)- 0 <S :_50 - e/2y;) < 0. 1E os).s - e/

for all sufficiently large t,‘ theﬁ (4.3) implies that xi(t) <€

for all laige t. If S(t) i:SO - e/2yi for a11 sufficiently large
t, fhen we have xi(t)'i Gixi(t) for all large t, and again we shall

have xi(t) e if t 1is large enough. If there is - a sequence 'cn-w'o

| A

1"

with S(t ) s0 - e/2y, , end

. O . “l
S(t) - SO ISR tp < t2n+1
28 - e/ T * T T Tone

. . s v . . S 5 . ) ‘9’
we have x,(t) <e on [t2n+1 ’t2n+2] and " x{(t) <0 on (ty - U

~so xi(t).i g on M(tzn 2n+1)’ also. ThUS'ln all ease;, we have

xi(t) < e for all suffic1ent1y large t. It follows that

lim xi(t) =

to

~

If ) =, then p;(S) - D<0 for 0<S<=. By Theorem 3.1
S(t) is bounded above:by o, say and so nii= max{p (S) -D 0 <S«<o}< 0.
Since O,i;S(t) <o, for all t we have »xi(t) j_nixi(t) , and:so ‘

lim x, (t) = 5 | .
o T ‘ ' - y SR o . o a

The foliow1ng 1emma descrlbes a condltlon that guarantees 
‘fconvergence of the substrate go one of the break even concentrations.
An analogous result was proved in [40], based-on a result of

Miller t54].: Since the proof of our lemma is 51m11ar, we shall'oﬁit

it.

Lemma 4.2. Let (S(t),x; (8], e, (®)) be a solution of (2.1).

Suppose that for‘sqme'°i'L Xi(t) . converges monotonely to x;‘>i0 as
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&
t > >, 'Theﬂ ;1im S(t)ﬂ éxists and is equal either to Ki oT -to o
tw
In the event. that Stt) conyergés to a limit as, t - =, then
it must be to SO or to;one of the.bteak—even cdncentrations, and the
‘populétiOn biomasses have appropriate limitingvbehaviburs. This is the

[

content of the next lemma.

Lemma 4.3. Let (S(t),x (t),;..,xn(t)) be a solution of (2.1).

Suppose that 1lim S(t)} = y. Then

o
(a) Y‘= SO Ao: is the endpoint of .a component of Q.
®) 1f y=s’, then limx () =0, ieT.. \\

T

() If y =2, or u;, the endpoint of a component of Q,

then limx, (1) =y, (s7-y), limx, (1) =0, j#i.

toro v _ >

Proof: (a) Frpm-CdrOIIarY 4.1, we know that 0 <y itSO. Suppose
that Qa) ~does not hold. . Then either  y ¢ (Ai,ui) for*some i, or

thére‘eXists ey > 0 . such that [y -go»;y-+€0] is disjoint from
Q) .
In the former.case,‘xi < 5(t) <« My for .t sufficiemtly large,

which implies x, "#s monotone increasing. By Lemma 4.2, it-follows
that .1im S(t) 1is equal either to Xy or My , contradicting
too ’ ; ' '

YE(A:U)

In the 1atter case, we shall have P; CS(t)] - D< O fdr all

large »t, for all /1 , So all the x (t) ‘are eventually monotone
decreasing. If they all decréase to zero, then we have lim S ) =
’ : t—>oo

by'Coroilary 4.1; otherw1se we may apply Lemma 4.2 and deduce that

1im S(t) =,xj OT- i for some j { But thlS contradlcts
: e ﬁ 4

tro
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[v-gp v+l c2(Q) = #. Thus (a) must hold,
(b) follows at once from Corollary 4.1.

(¢) If vy = Ai or 'ui , the endpoint of a component of Q,
then for all j #-1 ,Lwe.have xi(t) <o for t sufficiently large.

If&wé had lim'xj(t) > 0, them 1lim S(t) = A, oT 'pj by Lemma 4.2,

| oo o e )
\hich is a contradiction. Thus lim x,(t) = 0 for all ] #i. That
t> ' . .

lim xi(t) = yi(SO-y) now follows from Corollary 4.1,
N . \

1T
Recall that the simplex,

L]

n
= {(S,xl,...,xn)f Sfxl,.;.,x > O; S + Z Xi/y' =S}

is globally attracting for the system (2.1) (and therefore positively
‘invariépt). Since'eveiy:bounded'trajectory is asymptotic to its omega-
¥ ‘ : :

limit set it is evident that the dynamics of (2.1) - restricted to S
will provide the key‘tb understahding the general behaviour of  (2.1).
-It wili be'conveﬁient:to introduce the following notation for the
ﬁositively invariant subéimplice; of S: : o, ‘
= {(S,x1,..f;xn)_e S: Xy > Q if and only‘if h e H}
ﬁeflned for every subset H of I. Note tﬂen'thafﬁ $=8;-

Accordlngly we denote the system (2.1) restricted to these sub-

simplices as:



r;.4 v
0 nooX (t) )
st(t) = (8-S - p,(s(0)),
i=1 1
xi(t) = x () (-Depy (N, i T,
(4.4)
H o
$(0) = 5,20, . x;(0) = X547 0, ieH, x,° 0 i ¢H
n
\ 0
\ S0 * .Z Xi0/¥1 35

We also define Q, = C u (A_,u )) n Q, the analogue of Q with
O H h’"h

heH

respect to (4.4)S

H :

Note that solutions of (4.4)3 are positive for all t >0 and
Satisfy, , [‘
. : . n x{(t) ,
(4.5) ST(t) + ) =0,, t>0.
- | i=1 i

CROPY

The next sequence of lemmas is directed at analysing
We will be mainly concerned with show1ng that on the p051t1ve1y

_ invariant linear manifoldz S, the concentratlon of substrate, S(t),

eventually becomes trapped e1ther outsxde of“ Q or 1n51de a component

. of Q. between partlcular values of

-

T, forcing*monotonic c0nvergence

of the concentratlon of each competltor xi(t)}
of -S(t);
: 3 ‘ | o -
" Lemma 4‘4 : het '(S(t)tx (t);t. ;X (t)) be a solutlon of (4 4)S

4

Let y  be the endpoint. of a component of Q. ~ Suppose’ there exists

1 3;0 wlth S (1) =Y Then S'(r) >0 or n =.1 and St(t) =,0.‘

‘and hence convergence’



Proof: Since Yy 1is fhe}endpeint of a eomponeht of Q . xi(r) = 0 for
some i and gxs(rj'< 0 for all j # i. The result now follows from
(4.5). ' : - . _

< - ' G

Cox

The following lemma is an immediate consequence of Lemma 4.4.

Lemma 4.5. Let ‘(S(t),xl(t),...,xn(t)) be a sdlution‘of -(4.4)'S “and
let (Ai,uj) be a component of Q. Then, for all Sufficiently-iarge

St ;eprecisely one of the following oCCuTs:

(@) S <a, or
(B) Ay < S(8) Suy, o

(c) S(v) > uj. ' ~

| i s point we diéress by stating and‘prdving a result for the
1 p; - 0

'j). Wevdo ﬁhis here, to quhesiee*thet in this special ease

_1s falrly stralghtforward However, the\resﬁit is qﬁite

.?ﬁd natural from a b1010g1ca1 V1ewp01nt It etetes‘tﬁat if the

ftor w1th the lowest break even concentration level Xi ;;elso'has
?gest break-even concentratlon level g (le;el above whlch it is
V;ted) greater than the 1nput concentratlon rate 'SO,‘ then there ;g
f;bally asymptotlcally stable cr1t1cal p01nt ) Thls applles in the uf

that ‘“l —.+a> and so. it generallzes results of Hsu, Hubbell and

‘an i@o] More generally, it applles to all odels in’ whlch the

vvk1net1c growth funct1on p1 is m%notonlcally ine ea51ng.

-Thebrem'ﬁ;6;_“if- kl {‘SO < ﬁl”’ then"the"critieal point '

*1"

(2

= Cxlsyl(s ),0,{..,0} iérglobellx-esymptoeieally’stable for.

Vg
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Proof: First we show that the result holds fof (4. 4)3 where H=1I\@

and @ 1is any index set such that - @ < IN{1} . By Lemma 4. 4 if there
[ : : : 6 ‘

“exists T > 0 such that ’S(¢) = Ai, then -S‘(T) > 0. " (In the case

>

that n

n

Al.) Therefore, on SH.’ either

S(t) < Ai for all t >.0 or ,All_;S(t) < SO for all large t.. In

. 7 :
the former case all xi(t) monotonely decrease. By\ (4.5), S(t). must

1. s'(t) = 0 and S(t)

AN

monotonely increase. Since S(tﬁn is bounded above it converges»and s
the result follows by Lemma 4.3(a) and (c). In the latter case, X (t)
is bounded above and monotonely increaeing. Since thls 1mp11es that it

must convergevto‘a positive iimit, the result follows‘for (4.4)S , by

-

Lemmas 4. ahd 4.3(a) and (<)
o show that the result holds for (2.1), it'soff;ces:{o show

that Ex belongs to the omega limit set, NQ,'of any solution

(S(t) X (t),.. ;X (t)) of (2. 1) 51nce 1t is e3511y ver1f1ed that.

Ey is locally asymptotlcally stable for (2 1)
1 ; :

.First we show that if Tim x (t) \\\ then E ¢ Q. Suppose

‘ tro ' 1‘ .

Tim x (t) > 0 Then there exists P:= (S,Si,;..,gn) e 0 with gl > 0.

By Corollary 4.1, TP e.SH ,'fof'some”fﬂié I

with 1 ¢ H,-and so by

.the proof for (4. 4)S above,’hEA: belongs to he‘cloéure of thé orbit
‘ 1 ’ ‘ ' L

through P and hence belongs to Q.

i e B .

L If We/assume ‘glm»xl(t) =g0,vand'hence 1im xl(t) we?-
derive a contradiction as follows; Let z(t) —‘S(t) + Z X. (t)/y
By~ (4.2), Q¢ S, 11m z(t) 0 and lim z‘(t) = 0. In thls case

1im S(t) < Ai (or. X (t) 1ncreases to a pos1t1ve 11m1t) and so- there KR
g =1 ‘ L

L N ,

exists tk’*fm such that for flxed A satlsfylng 1 < X <-m1n(A S ),:
'S(tk) <X and lim S'(t J = 0. Now x! {Ew) -~(D+p1(5(t )))x (t, )—> 0o

ko
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<2

' i 2 ' = .
and for 1 > 2, xi(tk) ,cixi(tk)v

as k + o, since lim X (tk) R
- .. . >0 &
where 'ci = -D + pi"CS(tk)) < =D+ piCS(-)T)) < 0. Since lim z'(t =10,
it follows that lim x!(tk) = 0 and therefore 1lim Xy (t ) =0 for .
i > 2. Thus lim x, (tk) 0 for all i ¢ I, which 1mp11es that
- ko
1im-S(tk) = S0 > %, a contradiction. Theorem 4.6 now follows. -

Lemma 4.7. Let CS(t);xl(t),...,in(t)) “be any solutiom of (4.4)S R
Let y ¢ . Then there do not exist ti’,tz"With 0zt <[té, :

‘suéh that"

(i) :S(t1)~=:5(t2) =v-> (1), ;for Tt <t y t,
and | |

(i) fs'etlf <0 <8t
Proof': In.this proof we adopt the cdnventidn.thai’tha'result of
summatlon over an empty 1ndex set is zero | | |
' | Recall that le= {Ai: xi < S } u {u {uj;< SO};, ama that‘the
.elements of T - have been relabelled as Yl '2 § ... % Yy < So.nffmé.
mproof w111 proceed by 1nduct10n on the 1ndex set {l;% | k};'
Let =‘Y1t$ikl_; and suppose. that (i) 'and (11) hold."Sincezl
o S(ti) = 1= Xl/{ Yl 1§ the endp01nt of a component of Q, and so it
"follows from Lemma 4, 4 that S'(tl) > 0, contrad1gt1ng (i), _Therefqre"'

'memmamm5mry=yig'

Now sugpose the lemma is’ true for ’y = y : for'allv’mi with '
lgm f;h-l where 2 < h < k . Let 'y = yh' -and suppose that (1) 3
" and (ii) are. satlsfled B ' .
o (e .
Let a Cp (Yh)'iD)/y i a T. :_Theg -Yf: = aixi(til,
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j =1,2; 1ie1, and so (ii) and (4.5) imply that

|

aixi(tl) < - aixi(tz).

(4.6) -
' 1 1

I~
1 s R}
—

1

Suppose that Ty T Ay for some ¢ i;Z (note this implies n > 2).
Define J to be {j e I: uj < xg} and L to be {1,...,8-1}.

Observe that the a; have the following signs: .

a, >0, ielL\J Y.

(4.7) _
' a, <0, i e (INL)ulJ

A
- with strict inequality except for 1 = 2. Rearranging (4.6) gives

(4.8) -y ai(xi(tl) - xi(tz)) < ) ai(xi(tl) - x, (1)),
‘ ie (INLYud ie (L\J)
ﬂ;} 4
‘By (i), S(t) < A for ty <t £2 . The inductive hypothggis:gives
S(t) > vy , i.e. S(t) > max(A ,max u.), with (by continuity of
= "h-1 — -1 e 1
$(t)) strict inequality in some nonempty subinterval U of (tl’tz)'
3 . . . }'? :
¢ o
Thus fqr t <=t < t,, ‘we have B
: >0, ie L\J
p,(5()) - D A :
<0, ie (NL)uJ
with strict inequality in U, and so : .
¥ ! |
¢ - ) s
xi(tl) - xigtz)‘< 0, ie INJ. ¥
(4.9) ~ .
xi(tl) - xi(tZ) >0, ie (INLYuJ. .

v

By (4.7) and (4.9), the left-hand side of (4;8) is nonnegative and
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the right-hand side 1is nonpositive, which 1is possible only if all a

are Zero. But only a, is zero and since n > 2 in this case, we

have a contradiction.

i

u for some . We define K = (i e I:

Now suppose that T 0

TR

. UR} , M=({1eTA, > “R}’ and rearrange (4.6) to give

1

@0 -7 a(x(t)-x (t)) < y a.(x,(t,))-x,(t,)).
, b T T Ky Y 2

A similar argument as before gives a contradiction. Thus the induction

is complete, and the lemma is proved.

0
Lemma 4.8. Let (Sﬁt),x'(t),..;,xn(t)) be a solution of (4.4)S and

let Yoo Yoal be consecutive elements of I Then, for all

 sufficiently large t " precisely one of the following occurs:

(a) S(t) <‘YQ, or

b S -
() v, 2 (t) i'Y%Qd or
(c) S(t) > vy &

L

Proof: 1If for all t, S(t) ¢ [YQ’Y1+1] then tlearly v(a) or (c)
must hold. Suppose’then that v, i.S(TO) S Yo for some 7o - If

Y, < S(t) <YV for all t 2 T then (b) holds. ~If there eXists

Ty > Ty such that S(TO) < Yg o then there will exist 3 with

T9< T < T such that S(rl) =Y, >‘S(t) for Ty < t <145 and

§'(r)).< 0. It follows from Lemna 4.7 that we must have S(t) <Y,

L i.e. (a) holds; I1f there ‘exist ?& > T

S(Tl) > Y41 then either . S(t) > Youl for all "t.> 1, 1n*wh1ch‘

for all t > 1 such'fhat»

casg (¢) holds, or Fhere §x1sts T, > Tl‘ such thaF '8(329 ='Y2+H’

v

o~/

Yo



a

11.4 | 30

¢

and S'(TZ) < 0. By Lemma 4.7 again, we must then have S(t) < Yoal

for all t > T - By the preceding argument, we will then have (a)

or (b) occurring. This proves the lemma.

0

Lemma 4.9. Let (S(t),xl(t),...,xn(t)) be a solution of (4.4)S , let

(Ai,uj) be a component of Q, and suppose that S(t) € [r.,u.] for

1)
all sufficiently large t. Then lim S(t) exists and is equal to A,
T !
or to wu..
J
: ' . = - ; < A <om. D b 1
Proof: Let F1J Dy A Sy _»uJ} T P i_uJ} Since
fxi,uj) is a component of Q, we have Ai < S0 , and so Fij is a

nonempty subset of [ . With the labelling used for T, there exist
: 7 = < =

r,s. such that Ai Y. < Yrel Y uj. By Lemma 4.8, for each

interval ’[Y15Y2+1]’ where T < 2 <s-1, S(t) 1is either eventually

in that interval or eventually outside it. Since these intervals

decompose [Ai,uj], there is some value of & such that

Y i_S(t)‘:_yR+l for‘all suffigiently large t. If Y, = A, say,

. p
then - v <y and so x'(t) > 0 for all sufficiently large t. If
L 2,‘*'1 - I-ﬁ - I—) —_— |
Yo o= “q’ say, then it cannot be that u_ <‘uq for all q for ‘which

AL < AF < by o for otherwise (A,,y,) ‘is a component of Q, a

q

contradiction since, by assumption, in,pj) is a component of Q, and
. ' T ‘

Yy <y . Thus there exists q such that A, 2 A_ < u =Y, <Yy <

i—"3 q

h_ < ui , and so x'(t) > 0 for all sufficiently large t. Ih either

q= 7 - q \
event, therefore, there exists p such that xé(t) > 0 for all

,suffi;iehtly large t. §ince solutions of (4.4)S are bounded, xp(t)

cbnverges monotonely to x>0 as t -+ o, By Lemma 4.2, 1im S(t) =y
. ‘\l : L. p ' . N Dt—m '
(where y = A or wu_). ‘
, p . P

‘ . .
- L —
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Now we use Lemma 4.3(a) to deduce that Yy = A, OT M.

i (
J 0
The next lemma describes the asymptotic behaviour of the system

(4.4)g -

Lemma 4.10. Let (S(t),xl(t),...,xn(t)) be a solution of (4.4)¢.-

Then lim S(t) exists and is equal to y, where Y is either SO or
e a
is the endpoint of a component of Q. If y = SO , then lim xj(t)= 0,

too

jel. If y=2i or i, the endpoint of a component of Q, then

[

lim x, (t) = y ($°-v),  limx(e) = 0, i #

tor , e

Ezggf; By‘Lemma 4.5, S(t) 1is either eventually interior or exterior

to the closure of each component of Q. Since Q is the union of its

(disjoint) cbmponents, either S(t) is eventually in the closure. of
e

some compongnt [Ai,uj] or is eventually exterior‘to c?(Q . In the

first case, Lemma 4.9 gives the Tesult. In the second case, x; (1) is

' eventually decreasing for all i. By (4.5), S(t) is eventually

increasing and therefore has a limit as t > . Lemma 4.3 now

completes the proof.

y

It is evident that we can replace (4.4)S in Lemma 4.10 by

(-4.4)SH ,» where H is any subset of I, prbvided we also replace Q

by Q= (th (powp)) 0 Qe
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S. PROOFS OF THE MAIN RESULTS. We introduce the following notation

for the critieal points of’ (2.1) :

.4 -— : - — 0‘ - ‘ -
{(S,xl,...,xn) : S = Ak ;X = yk(S Ak) box, =02 #k},

E. =
>\k | |
) X\ 0
defined for Ak < §°,
E = {(S,x ; Xx):S =u . X, =Y (SO-u‘) ; x— =0 2 # k}
My R IR k’ k k k’’ L ’
defined for My <_SO..
By = (s%,0,...,0).
Sy

We let E denote the set of all critical points of (2.1), i.e.

‘ =(x fso {E*k'}> U.-<u,gs° { Eﬂ“k.}>lu-{EsO} '

k - ATk

We will also consider the following subsets of E:

L= {EA": A is a left endpoint of a component of Q}.
k S : - |

R = {Eu R is a right endpoint of a component of Q}.
My ’
C(BWwRuE,  if sP4Q,
. S . ' .
. = 0 | v

E\(LUR) -if ST e Q.

V-Inuorder to ﬁrove Theorems 3.3 .and 3;4 we first establish the
- local stability of the critical points of (2.1). Since this is
obtained fairly routinely'from standard 1inea:ization\procedUres; we

suhmariie this result here and relegate the proof to Appendix I.



Lemma 5.1. All the points in E ‘are hyperbolic critical points (i.e.
all the associated éigenvalues of the .linearized systems have. nonzero

real parts). Furthermore,.

(i) For the systeh _(2.1), the critical points in L are‘all
asyﬁptoticaliy stgblé.

(ii) The critical points in R are all unstable, but eaph has
aﬁ n—dimensionalfSiéble manifoid.

‘ (iii) The ériticai point (SO,O,...,O) is asymptotically stable
iff SO £ Q. (Noté thét ‘SO € éQ is excluded by fhe generic dondition
@) | )

(iv). The critical points in the set E* are ali unst?ble. The
stable manifold of éach of these points 1is entirely contained in the |

boundéry of R2+1 (which we i?entify with (S,xl,...;xn)—space).
The following lemma will be useful. It can be obtained either by’
the use of Hartman's Linearization Theorem [35] or by the method of

isolating blocks [15], and a proof may be found in Appendix 1 of a

paper of Freedman and Waltman [21].

Lemma 5.2. Let P.vbeban isolated hyperbolic critiéal point in the
omega—limit set Q(X) of‘an orbit through X of a dynamiéallsygpem.
Then eifher a{X) = {P}) or»there éxist points Psi and pu ih,,ch)’.
‘with P° ¢ wstp)\{p} and PY ¢ W'(P)\{P}, where WS(P) and W (P)

denote the stable and un%table'manifold‘of'iP TeSpectively. —

Lemma 5.3. (i) No,poini of the set E* is in the omegé-limit‘set of

any solution dfj'(2.1).
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(ii) If a p01nt of the set E\E* .is in the omega—limit set
of éome solution of (2. 1), then it is the only po1nt in the omega-

limit set of that solution.

. N B} . . . . . - T 8
- Proof: Let AES(t),xl(t),...,xn(t)) ~be a solution of (2.1) and let @

be its omega-limit set. Suppose that P e @ n E*. Then P 1is of the
form E, Eu or E and I ={iel:x, < Ay < pi} (resp.

g 2 S
{iel :Ai < < ui} , {ie1: Xi < SO < u.}) is nonempty. By

Lemma 5.1, WS(P) c 8R2+1'. Since the trajectory of CS(t) Xq (t),...,

xn(t))' is contained in  int R+ 1, Lemma 5.2 y1e1ds the- existence of
a point PV ¢ (w“cpj\{p}) ~ o and we may assume that P and the
negative semi-orbit through ?u are as close to P as we Qish.. Let
this negative semi-orbit be denoted (:S(t) X (t),.,.,i;(f)), t i 0,
go that Y- CS(O)’X (0),...,xn(0)}'. Deflne J to be |
SRR TEACR T o o |

1f 4 1T u-{e} (if j é1 'in the case that P = ESO), then
P, (S(t)] -0 <0 for t <0 andso x (t) ‘is nonincreasing on (-w O].
Slnce’ xj(t) va as t + -, it fo}lowﬁ that. _xJ(t)‘EJQ on ( ® 0] -
and so Eﬁ(O)-=

On.thé othér hénd,'there mus§ exisf some'vj‘e‘I with E&(b) >0,
otherwisé P would belong to WS(P), lHencecthe'trajectory of tﬁe
solution C§It),§ (t),... i'(t)) is in'the relative intéfior of the
subsimplex Sj‘ of 3 . Since (A.,u ) n (xz,ul) # ) fon;all jed
(SO é‘(k.,u.) for 511 j e J in the ‘case that = E ), it follows
that QJ is connected, Say QJ (A ,uM) - By Lemma'i.lo applied to
(4.4)31, we have | i | |

o



(5.1) s(t) S, Wy of S

(a) Suppose that P =E

11.5

We may assume that p¥Y is so close to P that S(t) e‘(Aj,uj)

for all t < 0, for all j e J\{2} . We cannot have S(t) > AQ for

(93]

any t ¢ (-»,0}, for otherwise there exists < € (—w,O] with §”(r) > 0

and S(1) € (xj,uj) for all j € J, which implies that E}(T)«> 0.,

.

0. Thus S(t) <Xy for all t.

contradicting ~ S' + ). X!/y.
‘ jeJ 1) ‘ -
(and sV > AQ), we must have S(t) - Xm as t -

Since Am < AQ < “M

By Lemma 4.10 it follows that ‘E, € Q.

*n

s

C e

that EX € 0, where EA e L. By Lemma 5.1, EA is asymptotically
' i o i i :
stable for (2.1), so Q = {EA 1, contradlctlng E Q.
6 i 1 - Q,‘
(b) Supposé-that P=E ..
. : 0
» S
By arguments 51m11ar to the above, we find that EX e @, and

m
obtain a contradlctlon

(c) Supposevfhat P = E

Moo
An argument similar to that used in (a) shows that §(t) > U,
for all Tt and then (5 1) 1mp11es that lim S(t) "“M ‘or SO.

tco

Repeatlng thls argument 1nduct1vely, we arrive at the conc1u51on that

-

0

" either Eu_ ¢ % . where. E ¢ R or E e Q. - Suppose that E 0 Q.
S S _ . .

U, :
DR S , : S”
If 'E 0 E-E*j, we are back in case .(b) and obtain a contradiction.
1£ E O"é'E* ! it is asymptotically stablé for ﬂ(2;1}, by Lemma §g1,fso\n

that @ = {E 0},' contradicting vE,u e,QZ“

s : : o 2

2

jﬁﬁtf

o]
.

‘Repeating this argument inductively, we may eventually.concludé'

(4]
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Suppose that Eu. e 9, but Q #'{Eu_} . Then
J J
(wu(Eu.)\{Eu 1) onQ £ ¢, by Lemma 5.2. By considering the subsimplex
j i - o
S{j}’ we find that either Ekj or ESO ¢ 2, and obtain a contradiction

by the preceding arguments.
This proves the first assertion of the Jemma. If P e 2 -and

" Pel, or P =E in the case that SO ¢ c2(Q), then P_ is

SQ

asymptotically stable and so @ = {P}. If Pe R, then Q.= {P}.
Otheiwise we obtain a contradiction as in case (c) discussed above.

/
This proves the second part of the lemma.

0

Proof of Theorem 3.3: ~Since S,‘is globally attracting for (2.1), fhe
Vomega-limit-set Q, of any solution of (2.1) 1is a union of

| trajecto:iés lying entirely in S, where each such‘trajectory is a
solution of (4.4)SH for §6me Hc 1. ?.By the'remark following

’Lemma 4,10, appl%ed‘;ok (4.4)SH “for'any_ Hc If every solution of
(4.4)SH converges to a point 1in E. Since the Omega—limit’set is

closed, o must contain a point-of %V The result follows by

b

Lemma 5.3. /

Proof of Theorem 3.4:" Immediate from Theorem 3.3 ‘and Lemma 5.1.

. Corollary 3.5 follows at‘onée from Theorem 3.4.
Theorem 3.6 can be provéd”using arguments -similar to those used

to prove Theorem 3.4. ‘-

Ry



6. DISCUSSION. We have considered a model of purely exploitative
competition between n populations in a chemostat for a single,
essential, nonreproducing grbwth-limiting substrate, which hay be
inhibiting at high concéntrations.. Ourvreéults predict that at most
one of the competing popuiations survives, i.e..there is competitive
exclusion. However, the outcom; may be initial condition dependent.
The -global dynamics of the model are in a sense, trivial, in that alll
solutions have limiting asymptotic behaviour. There are a finite
number of locally asymptqtically stable equilibfia whose domainé of
attraction.partition.the'(stricfly) positive (S,xl,xz,...fxn) cone,
their boundaries being comprised of the stable manifolds of some of the
unsiable eQuilibria of the sYstem‘(if all ;hg x; énd Wy are fihite,.
there are at most 2n4;i equif;bria, at mosé n+1 of whiéh are
vasymptotiéally_stable). These resﬁlts are n6£ surprising. According
to Fredrickson [20], there is much experimentai evidence that "pure and
simple competitors will not coexist indefinitely in a system that 18
-qutially homogeneoua.and that is subject to time-invariant external
influences, " whiéh is préEisely the case in the biological system we
.consider.

Oﬁ the attracting'simpiex S, we could eliminate S «from the
' model‘tq oﬁtaih a system 6f'interactions bétweén the X - ' Howevgr, the
non-monotone nature of thé-functions vpi does not allow this systém to
satisfy the hypotheses of the competition models studied by Armstrbngim
and McGehee [5] or by Hirsch [37]. Our results,gléo contrast with the:
example ngen by Nitecki [57] of competition for a single resourcé,

‘where competitive. exclusion does not hold, and the examples of
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competition for a single reproducing resource fprey) in which
coexistence occurs for a'variety of models with monotone uptake
(predation) responses [3,11,13,45,53,70].

Provided that conditions (2.6) and (2.7) hold, our results
are easily extended to mode{§ with uptake functions P; that have an
arbitrary number of ''break-even'" concentrations, instead of the two,
(xi,ui) considered in’this paper. If these genericity assumptions

are not made, more delicate, but technical, arguments are needed.

We have used the same wash-out rate,' D for both substrate and
mieroorganism populdtions. This is equivalent to. assuming that the
death rates-of the nicroorganism populations are negligible compared
with the wash-out rate. It would be‘intere;ting to see if simiiar

| & « o N |
Tresults hold for different wash-out rates (or death r"ates),.'Di . Hsu
[39] has carried out the analyeislfor this situation in the case of
'Michaelis—Menten Kinetics.

To iilustrate our resuits, we consider the following (é; least,
theoretiéal)'application to water purification. Here we are motivated
by experinental work of Yang and Hunphrey [83]. Soppose that there is
one contaminant, saywphenoi,'in the waterlsupply, and that SO , the:
vinput concentration ofiphenol, is high..vSuppoge a}so‘that certain

&

m1croorganlsms feed on phenol in such a way that it is growth limiting

‘at 1ow concentratlonsd’hut 1nh1b1ts growth at h1gh concentratlon (e.g.

PseudomonaS»putida and'Trichosporon.cutaneum). Let A denote an
acceptable concentratlon of phenol 1n the water: supply and assume
A << S o SUppose that mlcroorganlsm '1. is harmless and that AI < A

but ui << SO. ;‘If‘the,initial,concentration of phenol in the water



)

Btively high, and microorganism 1 is used alone in an

e the phenol level, then it is likely. to,wash out of

khe concentration of phenol would approach the

b‘ével S On the other hand,.suppose that microorganism

0 . : : |
<'An < § < un' If microorganism n 1is used alone, S(t)
proach the value xn, which is again unacceptable. However,

buld findvmicroorganisms 2,...,n-1, so that (A,u) intervals

Ip in such a way as to form a single component of Q, containing
then we. would have lim S(t) = Al < A, Lim xl(t) = 'yl(SO —Al)
, o troo - ‘

! xj(t) =0, j>1, arriving eventually at a tolerable

fon.




_ CHAPTER III
EXPLOITATIVE COMPETITION IN A CHEMOSTAT
: . [

‘FOR TWO COMPLEMENTARY RESOURCES

L. JINTRODUCTION. In this-chapter we extend the theory of the preVlous
chapter to cover exploitative competition for two resources.. However,
'we restrict our attention to the two competitor situation. h
When there is competltlon for two or more resources it becomes
necessary to con51der how the resources, once consumed, 1nteract'to
promote.growth beon and Tumpson [48] and Rapport [65] use consumer

needs to prov1de a criterion. to class1fy resources. They c1a551fy

resources as. perfectly complementary, perfectly substltutable or

~

imperfectly substitutable. C e . ‘ : ;
Perfectly complementary resources are- sources of different -
essentlal substances which must be taken together because each substance
fulfils,a different functlon with respect-to growth. For example a
‘ - - L % . | _
carbon source and a nitrogen .source might be complementary for a
bacterium.
: . \%
’ ; \Y , S
Perfectly substitutable reSources,\on the other hand are alternate

. sources of an essent1a1 substance ‘or of essentlal substances that

fulfil the same functlon. The 1ntermed1ate case 1s called 1mperfectly
substitutable: DR B R T
In thlS chapter we shall&gestr1ct our attenn&on exclu51ve1y to c

e

, cperfectly‘complementary resources Sf and R. ~In this context we: shall

40 -
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SaV'that a population is S—limited (resp.iR;limited)'if its per caprta\
consumptlon rate of R (resp. S) is 1ndependent of the concentrathn of
R (resp. S) and depends only on the concentratlon of S (resp R).
Leon and Tumpsoh [48] seem'to be the flrst to have modelled
exp101tat1ve competition for perfectly complementary resources.
They assume ‘that each competltor s functlonal response is a strictly
monotone function of resource concentratlon. In the two resource, two
competitor case they derive conditions for the'existence of a locally
asymptot1cally stable 1nter10r cr1t1cal p01nt and hence cond1t1ons for
the coex1stence of “tWO compet1tors |
Hsu, Cheng and Hubbell [41] derive a model for exp101tat1ve .
competition in a chemostat between two populat1ons for Two perfectly
complementary resources. They assume that_consumptlon of‘the resources
_ifollows Holllng Type II - oT equ1valently Mlchaells Menten k1net1¢s,; .
Jgenerallzed to the two resource 51tuat10n. They glve a complete

)

global analy51s of thelr model They conclude that "each of the four
outcomes of cZasszcaZ Lotka-VoZterra two-spectes competttzan theory .
has muZtthe mechanistic ortgtns tn terms of~¢onsumer resourae,

interactions They also g1ve blologlcal condltlons based on parameters
‘ o

41

in the1r model that predlct the competltlvegputcome The1r results are

<

3

'also summarlzed in-a survey paper by Waltman et al [Sl], ~For other )

: ’“g : '»ﬁ
' elated work see [4 29, 61 76].. S 5h-'i-: '
The content of th1s chapter “is organlzed as ﬁlows 'I/n < 6

.Sectlon 2 we con51der the model of Hsu et al [41] We po1nt out that

the1r der1vat10n and the1r arguments apply for any functlonal responses ”

that are str1ct1y monqﬂpne functlons of resource concentr lon. We

i . e
o -

Q e ."'__""" ) - ,‘ o et

L N

3
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3 »
also give an alternative method of obtaining their results which we
shall find useful in Section 3.

In Section 3, we modify the model considered in Section . by
allowing a more general class of functions to describe consumption and
conversion rates, as we did in Chapter II. Again this class will
allow us to cordider substrates that are growth-limiting at low
concentrations as well as at overly high concentrations. . After
' presenfing somé preliminary results we develop graphicai criteria that
characterize’ the set of critical points and ‘show under what circum:
stances the model permits Erivial dynamics only. These graphical
criteria are based on tge methods developed in Section 2 as well as some
concepts from linear programming. Surprisingly enough, using these
graphical criteria, we é}e able to show that the‘hodel predicts that
there.éfe cases in which, in the absence of a rival each population
definiteiy dies Qut, whereas when both competitors are present there 1is
a possibility of coexistence. Thus, in some sense the rivals are
cgoperating. We then show by means of an example that even if we
éllow only one resource to be inhibitory to only one éf the competitors
at high concentrations, the model permitz‘an Orgitally asymptotically
stable periodic orbit. ﬁence the model predicts that under certain
' conditions coexistence bf‘the competitors with concentrations 1in
sustained oscillation 1is possible. In this same examp}e,fthere is also
an unstable periodic orbit associated with a locally asymptotically
stable critical point. Thus, there can be initial condition dependent
regions of coexistence. In each case, the existence of the periodic

orbit is Sbtained through a Hopf bifurcation. Since the analysis of

v

/

.
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stability involves computations that would be extremely -tedious, they
were done using the symbol manipulation language, REDUCE2. The
algorithm used is based on the work of Marsden and McCracen [52].
The REDUCE2 program is general enough to be adapted for use to
determine whether or not there is a Hopf bifurcation énd, if there is,
to determine the stability of the bifurcating periodic 6rbit,'in the
casé of most systems of two first order, autonomous, ordingry
differential equations. The program and an explanation of how to
adapt it is included in Appendix 3 along with the program results. To
illustrate the examples we use computer graphics to~genefate phasefpléne
portraits. The equations are-solved numerically by mééns of the IMSL
douple precision algorithﬁ DGEAR.

“We conclude'the chapter with a discussion in which we summarize
our results, compare the difference in dynamics between moﬁotone
kinetics and non-monotoné—kinetics and consider the merits of other

possible ways of modelling this problem.

Some auxiliary results appear in Appendices 2 and 4 as well.

~
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2. THE .MODEL - MONOTONE KINETICS. We consider the following model of
exploitative ‘competition in a chemostat between two populations of

- ‘microorganisms for two purely complementary resources:

0 2 xi(t) '
st(t) = (s -s(v))p - ] fi(S(t),RCt)),
i=1 7Vsi
' 2 x.(t)
R'(t) = (RO-R(t))D i fiﬂg(t),R(t)),
2.1) i=1 YRi
x} (0 = x (©(Dr £SO RED), 1= L2y
5(0).= S, > 0, R(0) =Ry >0, x; (0)=x;0> 0, i=1,2.
where

£.(s(e),R(D) = min(p, (S(t),q; (R(1))), i = 1,2.

Here, S(t) and‘ R(t) denote the concentrations of the two
nonreproducing, complementary resources‘at-time t and xi(t) denotes
the concentration of tﬁeA ith populatién of microorganisms at time t.
The fun;tion piCS(t))i(resé. quR(t))) represents'}he per capita |
growth rate ofthe~ 1th pqpulation yﬁen resource S 1is limiting (resp.
.resource' R is limiting) and‘so “fiCS(t),R(t)) is the function that
represents the rate of converéioﬁ of nutrient to biomass for the <th
population. We take the minimum here because the rgsodrces are purely
complemenfary; We aré therefore assuming that growth rates adjust
instantaneously to changes in the resource concentfation. Tﬁe

consumption rate of nutrient is also assumed to be proportional to the

rate of conversion to biomass. Thus, fi(S’R)/ySi (resp. f;(S,R)/yRri)



I11.2 : ’ 45

represents the consumption rate of resource S (resp. resource R)
by the tth species where ysi and YRi are the growth yield factors.
If only one feed bottle is used, S0 and RO denote the concentrations
of resources S and R respectively in the feed bottle and D denotes
the input rate froﬁ the feed bottle containing- the resources 1o the
growth chamber, as well as the wash-out rate of nutrients, micro-
organisms and byproducts from the growth chamber to the COJlectibn
~ vessel. _Thus the volume in the growth chamber remains constant. Here
we are assuming,Atherefore, that.the-input rate of resource and the
dilution rate are constant and that there is perfect mixing in the
growth vessel so that nutrient and microorgani§ms are removed in
proportion to their concentraéion. We are also assuming that individual
death rates of either pqpuléEiOn are ihsigﬁificant compared to the
dilution rate, D. |

1f the experimenter prefers to use two separate feed bottles,

each containing only one resource, and input from each feed bottle to

the growth chamber at different rates, say rate Dg from the bottle
containing resource S and rate Dp "from the bottle containing
.'resource R, then D = DS + DR’ s0 =(SODS)/(Dé+~DR) and

R0 = (RODR)/(DS+-DR) where ‘§0 and ﬁo represent‘the concehtra;ions
of resources S and R, respectively in each separate feed bottle.

' Here, D still represents the dilution rate.

We make the following assumptions concerning the functions Py

and a; in our model:

(2.2) . pi,"qi:R+ + R_;

(2.3) \ p., q; are continuously differentiable,



-the functions p. and . assume the form of the usual prototypes for
i ¢ a4 p Yp

I11.2 : 16

BRI p.(0) =0, a0 =0 .

Ll

%,

" that is, if there is no nutrient, there is no uptake{ Due to

assumption (2.3), the functions fi(S,R) satisfy a Lipschitz
condition in S and R on any compact subset of R_ x R_ and so
we have uniqueness of initial value problems and continuous dependence

on initial conditions and parameters for system (2.1).

Vs ,}n’ihis séction we shall also assume that

(2.5) pi(S) > 0 foh S > 0 and qi(R) > 0 for R >0,

that is, that the kinetics are strictly monotone.
This is precisely model III of Leon and Tumpson [48], adapted
to a chemostat in which individual death rates are assumed

insignificant compared to the dilution rate. The model applies when

|
*
|

monotone functional responses, eg. Holling Type I (or Lotka-Volterra \

Ckinetics), Holling Type II (or Michaelis-Menten kinetics) and Holling \

Type III (or multiple saturation dynamics). In the case that all the

. pi's and qi's satisfy Michaelis-Menten dynémits the model 1is

precisely the one studied by qu) Cheng and Hubbell [41].

By means of a linear énalysis,dLeon and Tumpson [48] proved
that ”Necessafy»and sufficieﬁt conditions fﬁr stable coexistence of -
two species engaged in exploitative éompetié%on fér comp lementary
fesources" (at an asymptbtically stable equilibrium) "are that each

»

species must at equilibrium consume a greater fraction of the net rate

df supply of its limiting resource than of the net_rate‘of supply of
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its competitor's limiting resource. " ©

Hsu et al. [41], on the other hand, do a complete global
analysis'oflihe model. We summarize their resuits here. Although
they assume the functions- Py and g, i = 1,2 all satisfy
Michaelis-Menten kinetics, their proofs are also vélid for striétly
monotone functions. However, we give alternativelproofs for some of
their results. The methods we émploy will be useful infa'subsequeﬁt
section where we relax assumption (2.5) 1in order to allow resources
that are inhibitory at high concentf;t;ons, as we did in Chapter II.
Some of'the ideas to be used in these proofs are similar to ones used
in the proofs in Chapter II.

We begin by stating some préliminary results.;-Just as in
Chapter II (the proofs are similgr as well) the sy%tem is as well-
behaved as one would expect from thé‘biological problem. Moré.
precisely, solutions of (2.1) are pOsiti?e and bounded. Furthermore

the polygonal set

X X

(2.6) M= {(S.Rx %) « R} s+ L, 2 .40
Ys1 Yr2.
i X X -
and R+ 1 + 2 < R0
Yr1 YR2

is a global attractor for (2.1)  and on M solutions satisfy:

: 2 . o L
S! (t) + z xi(t) /YSI -
i<1 s

'
=

(2.7) ’ - and
, | - |
R+ ] XL/ ypy =
i=1 :

)
N
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'repg{ients'the ratio in which resources R and S are externally

I11.2
At this point we introduce some useful notation:
(2.8) pi(xSi) =D and qi(ARi) =D 1= 172.
Thus MA.. and A_. represent the break-even concentrations for

Si -R1

[y

resource’ S and R respectively, when that resource is limiting. By
assumption (2.5) these concentrations are uhiquély defined extended

positive real numbers provided we assume that ASi = +o if pi(S) <D
for all S > 0 (similarly ARi =vfw if qi(R) <D forall R>0).

Following Hsu et al. [41], we define . "
Cl =YS1/)’R1 ’ 1 = .1:2 .

Since the units of (l/ySi) are (units of S consumed)/(unit of

population 1 produced), C, Tepresents the invariant ratio in which

R and S are consumed by population 1i. \\
Let |
R - MRi -

(2.9) : T. = —w——— 1i=1,2

% ' R SO-A o u

i Si
and K
(2.10) T* = — and T, = S—O——-— .

: S - ST -

As Hsu et al. .[41] explain, by comparing Ti an&. Ci» we can :

" determine whether population 1i- is S-limited or R—limited.’ Ti

T o

48
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regenerated under steady-state consumption pressure from population 1
in the absence of his competitor. Therefore Ti > Cy implies that

population i is S-limited because S 1is regenerating at a steady
3 B
. state rate slower than R with respect to the required consumption

ratio of population 1i. Similarly /;i < C.1 implies that population
i is R-limited.
T* (resp. T,) represents the ratio of the steady state

regeneration rate of R when X, (resb. xl) is alone and that of S

-

when X, (resp. xz) is alone.

"To avoid critical points for which the associated matrix of the

‘linearization (the Jacobian) has any real root equal to ‘zero, if the

parameters are finite, we assume that

ASi and ASZ __:are distinct from each other and from SO
(2.11) ' ' ( 0
: ARl and ARZ are distinct from each other and from R
and
(2.12) T, and T* are distinct from c, and o . ,

To ensure that the critical poinzﬁ érévéll isolated"wé assume that
(2.13) I : "'Cl_# C2;

N

So that we can as§ﬂ me that the vector fleld is contlnuously
dlfferentlable at and in 'some nelghbourhood of each cr1t1cal p01nt we

assume that

(2.14)" if (8,R,%,,%,) is a critical point, then p, (8)#q;R),i=1,2.
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Assumption (2.14) implies that’
-/ “‘{ !

t
—
-
r9

, | | )
(2.15) ToAC, i

-

Table I contains notation for the possible critical points of

(2.1). In Tfﬂle II we summarize criteria that ensure g&at these

N
-

critical poiﬁts lie in the nonnegative cone, as well as criteria that
guarantee local asymptotic stability of these critical points. For
completeness the linear analysis is given in AZ.A.

We provide a summary of all the possiblévbiological outcomes
along with the competition criteria that yield each outcome, iﬁ
Table III. To prove the results.sgmmarized in Table III we proceed
‘as’ follows. First we note that sincé M 1is globally attracting and
all solutions are bounded, thesomega-limit set of any solution of
(2.1) lies entirely in M. We shall show that the dynamics of (2.1)
restricted to M are trivi;l (i.;. all ffajectories with»initiai
conditions in M approach some equilibrium in the 1imitj. Next we
shall éppeal_to the local analysis results and do a phase plane analysis
in (xl;xz)-séac¢ to eliminate saddle connecfions and hence shall show
')that all_solufions'of- (%.1). asymptotically approach equilibria. 5”*3
Finally, we shall cdnsider the location of the stable manifolds of |
certain qfigicél poinfs to shéw that no sblutibn wifh initial conditions
in the positive cone caﬁ converge to that critical point.
'/’-‘ That the dynamics of (2.1) restricted to M are trivial
follows from Hirsch's results [37] on competitive systems adapted to

‘monotone Lipschitzian functions rather than ¢!  functions since (2.1)

-

¥

restricted to M is equivalent to system
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TABLE I \

' NOTATION‘FOR THE CRITICAL POINTS+ OF (2.1)
&0TATION CRITICAL. POINT (provided it lies 1in Ré&
E 0 .0 = (SO ’ RO"’ 0,0)

S7,R
Brgprt - Ogy R -G8 gy (8 - Rgy) )
0 0 0

By = (0- %)/, Ay Y ® ) s O

0 0 0

= A - - - )\

"’ 0 .0 0
S = Ogpotpg X0 x))
- S§1° R2

0 0

AL - A

here x* = Y528 Ag1) - Yo (R )
Ys17r1

YriYs2 " Vs1'r2
0

, 0
PR (yhl(R ) Vs S ‘A31)>
an x5 = YooF
2 TSTR2 Yri¥s2 " Ys1'R2

-

= (s s Ayt s Xp 5 X))
XSZ’ARI S2 R1 1 2

0 0
here %o = youy Y52 (S -xgp) ~Ypa R ~Agy)
XS Ysm| -

Yr1Ys2 ~Vs1'r2

P

| 0 0
and ey Yi R -Apy) - Y515 As))
| 2 7 Vs2'we

~ Yr1¥s2 " Ys17r2

>
1

1-under assumption (2.13) ,\i.,e. C1 # CZW

s

51
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TABLE 11

SUMMARY OF THE LOCAL STABILITY ANALYSIS OF (Z.1)

s

~Exploitative Competition Between Two Populations for

Two Complementary Resources

Monotone Functional Responses

¢

CRITICAL POINT

K4

CRITERIA FOR EXISTENCE

CRITERIA-FOR/
ASYMPTOTIC STABILITY

A512 2

ASZ’ARI

always exists

Si S2 R1 R2
and
‘ 0
*

C1<‘T <§2 and ASI<S
. or o
C.>T*>C, and A ., < s0

\ 2. 'S1
ETRESTIR I SR ¥
' and
- 0
C1<T*<C2vand‘ >\52<S
or
o A it}
C1>T*>C2 and >\82<S

b ¢ 0

Agy? S or Ap,” R
and

0 0

Agp> S o gy 7 R

“~

: *
or T*« C1

and A.,<S

(Ta> ¢ 5257

S Sz‘or T,<C
R1~ "R2

(T, >C, and Ag, < ST
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TABLE III
. CLASSIFICATION OF COMPETITIVE OUTCOMES OF (2.1)
Exploitative Competition Between Two Populations for
Two Complementary Resources
g- Monotone FUnctional Responses
2 /7
BIOLOGICAL OUTCOME  COMPETITION CRITERIA
f ' . . 0 0
; 1. Both populations die out. (a) ASl> S or AR1> R
- (&) = populat1on 1 dies out) and
(O;) = populatlon 2 dies out) ) Agp > S0 or Apo RO
This is competitive-independ- ” '
ent extinction. =~
0 0
) Agy < §° and Ap; < R
2— Population 1 always wins. (- ASl< ASZ and ARl AR2’
. . - or - .
. Population 2 dies ouF. : xSl<ASZ’AR1>AR2 and T*>C1,C2
or y
and s sz R and T*<C},Cy
or 0
5275
or A > .0
. L R2 R
~ ( ( : ) .)
' A < SO and A <LRP ﬁ%
S2 '
3. Population 2 always wins. ( 517 *s2 and ‘r1” R’
. . or _
Population 1 dies out. Agp < XSZ’AR1> RzandT*<C1,C2
OT . |y 1 <y o
and gy > ASZ,AR1<AR2andj‘>C1,C2
: or 0
Agy > S ~
. or 0 Lz
\ ARl > R
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TABLE I1I (Continued)
CLASSTFICATION OF COMPETITIVE OUTCOMES OF 2.1)

Exploitative Competition Between Two Populations for

Two Complementary Resources

Monotone Functional Responses

, BIOLOGICAL OUTCOME COMPETITION CRITERIA
L L0 R
S XSi <S5 and XRi <R, 1i=1,2
4. Populations 1 and 2
coexist at a positive ° | A51<XSZ’AR1>AR2 and‘p1> T,?> C2
equilibrium. and or -
© . *
; A1 hs2 e 20 G <TG

5. One population wins and

the_other‘dles out. ‘ : As' p SO and XRi < ROZ i = 1,2
Initial concentrations . o : ‘
ggtermlne the outcome. | xSlfASZ’AR1>XR2 and Cl<’T*< C2
Coexistence only for ang or
. . : * -
. - . solutions with initial' Ag17hgp g and G2 T2 6y

conditions on the
separatrix (a set of

measure .zero). Lo . ‘ I )
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: ‘ x, (1) - x,(t) x. (1) x,(t)
x! (t) = x(t)—D+f.GO— 1 27 bl __1__> ,
(2.16) ' i=1,2 ’
X X X . ‘ -
X:g >0 1i=1,2; 10, —39-5_50 ; 10 + —zg_i RO;
' | Ys1 Ys2 YR YR2
coupled with ) -
: x, (t) x,(t) x,(t)  x,(t)
Caan s = - 2 20 g =)
| ' Ys1 Ys2 R Y YR2

for two-dimen51opal competitive systems depend on Kamke s comparlson

theorem which requires only monotone behaviour with respect to the

approprlate varlables Viewing the system this way it ‘is not«surprising

that. the biological outcomes of the two Tesource model can be compared
with the outcomes of the classrcal model of Verhulst [79] for two-
species compet1t10n w1th constant carrying capacity. These'outcomes

w1th correspondlng competltlve criteria are compared 1n Table 4 2 of

Waltman, Hubbell and Hsu [81]

We use a more elementary approach one similar to.the approach

it

also glyes more 1nformat10n about the behav1our of solutions on the

, trlangle M,- and w111 be employed when we con51der non monotone' "

.

uptake functlons in a later sectlon

We shall requlre the following notatlon

Ho
1]

(2.18) B, = {(S,R) :5 > )g; and R-?~*Ri}’ =20

55

.and (2.16) 1is a two- dlmen51onal competltlve system Hirsch'S'results ,

used in Chapter II to show that the*dynamlcs are tr1v1a1 This.approach-«
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(2.19) Q
(2.20) ; K
Therefore,

v -

fi(S,R)

A

wfi(S,R)

- and £, (S,R)

Here Q can be thought

Chapter II and parts (1) and

-

viewed as an analogue of Lemma

Figure 3.

D if (S,R) ¢ Bi’

D if (S,R) ¢ ct B, ¢

D if (S,R) ¢ BBi.

of as an analogue of the Q defined in
(ii) of the following lemma can be

11.4.4. The lemma is illustrated in

Lemma 2.1. Let (S(t),R(t),x(t),x,(t)) be a solution of (2.1) with

initial conditions restricted to_M . (Note that this still implies

that xio >0, 1=1,2.)

(i) If there éxists f
S'(le> 0 and ﬁ'(r) > 0.
(ii) If there exists 1
(56 R(0 3, () 5y (0)) s am
S'(t) =0 - R' (1) .
(iii) If there exists <
S'(t) < 0 ‘and R'(1r) < 0.

(iv) If there exists T

>0 with (S(1),R(r)) € QQ\ 3K then

A\

2 0 with (s(t),R(1)) € 3Qn oK then

equilibrium for (2.1) ~and so

>0 with (S(t),R(r)) e 9K\ 23Q then

I

>0 with (S(r),R(x)) € R} \ ¢l Q then

56
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R ‘ oy
| h
//' L|/ - - -3K
I'd
L
g =
/| \:\\ .
2 ” ¥
4 7
S
(@) Ag; < Agy and Ap) < Apg
or
gy > Agp and App 7 Apo
R
‘/)"‘

(b) Ag) < Agy f:f ‘17 M2

g > Mgy and Apy < Apo

FIGURE 3 Dynamics on M are Trivial
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S'(1) > 0 and R'(1) > 0.
(v) If there exists T > 0 with (S(r),R(r)) ¢ K then

S'(t) <0 and R'(1) < O.

proof: (i) 1f (S(1),R(1)) € 3Q\3K, since x;(t) = xi(t)(-D +
fi(S(t),R(t))) i=1,2 either xj(t) =0 and x3(1) < 0 or

Xi(T) < 0 and xé(r) - 0. The result follows by (2.7).

(ii) 1f (S(1),R(1)) € 3Qn 3K then x (1) = xy(1) =0. By (2.7) and

(2.13) it follows that S'(t) = R'(1) = 0 and we are at an equilibrium.

(iii), (iv) and (v) are proved similarly. | \
. , 0

h .

The next lemma is the analogue of Lemma [1.4.5 and is also

illustrated in Figure 3. It follows immediately from Lemma 2.1.

Lemma 2.2. Let (S(t),R(t),x ()X (t)) be a solution of (2.1) with
initial conditions in M. For all sufficiently large t preci;ely L

one of theyfollowing holds:

() (S(.R(M) ¢ R} \ee
(i) (S(t),R(1)) € K,
(iii)  (S(t),R(r)) € Q\ct K,
or (iv)g CS(t),R(7)) € 3Qn 3K.

/
/
Theorem 2.3. The dynamics of (2.1) with initial coniditions restricted
|

| | |

proof: Let y(t) # (5(t),R(),x, (1),x,(t)) bea solution of (2.1)

to M are trivial.

with initial condi%ions in M. Then for all sufficiently large t

/
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precisely one of the options of Lemma 2.2 holds. Recall that on M

/

x, (t) x,(t)
S(t) + : - = S0

Ys1 Y52

(2.21) and
x. (t)  x,(t) .
R(t) + ——— « 2= r0. .
-1 YR2

If option (i) - holds, i.e. CS(t),k(t)) € Ri \ct Q for all large t,
then xi(t) < 0 and xé(t) < 0 for all large t since

xi(t) = xi(t)(~D+-fi(S(t),R(t))), xi(t) >0 forall t >0 and‘

for all large t. Since

S(t) < min(xs1 and R(t) < min(Ax

’ASZ) Rl’ARZ)

solutions are bounded, the monotonicity of xl(t) and xz(t) for
large t implies convergence and henée by (2.21) S(t) and R(t)
also converge.

£ option (ii) or (iii) holds theproof is similar.

If option (iv) holds the result follows by Lemma 2.1 (i1).
‘ U

Next we consider system (2.16)-(2.17). This system is
equivalent to system (2.1) with initial conditions restricted to M.
Wé do a phase plane analysis of (2;16) in (xl,xz)-space based on the
information summarized in Table II in order to show that no saddle
connections are possible and hence the dynamics of (2.1) are trivial.

If we allow Ag. > s or Aps > RO for i = 1 or 2 then
there is no equilibrium for which the.concentration of X4 is -positive
and hence there is competition-independent extinction of Xs See
Figure4 (a-b). Figure 4(a) corresponds to the first biological .

outcome of Fable III. Figure 4(b) corresponds to the second and third

biological outcomes.
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o»

A
>

(a) Xsi > 50 and ARi > RO, i=1,2.

Each population dies out even in the

the absence of its competitoT.

&
oy X

() gy > % or g, R, i=1 or

S]
Population X, dies out even in the

absence of its competitor.

FIGURE 4 Competition-Indépendent Extinction

2
Ae. < S0 and )\Rj <R0, j =1 or %2\

60



I11.2

v
0 O i=1,2

If we assume that Ae. < S and- A.. <R, 1=
S1 R1 :

then
there are only 4 basic pictures (since wenére assuming C, #Cz)_(sée
Figure 5 (a-d)). .On M Figure 5(a) corresponds to the second
biological outcome of Table 111, Figure 5(b) to the third biological"
outcome, Figure S(c) to the fourth and Figure 5(d) to the fifth.

Clearly there are no saddle connections. We have_therefore proved
Theorem 2.4. The dynamics of (2.1) are trivial.

Finally we note that by considering the location of the stable
manifolds of the critical points on aRi it follows that fo; the
particular parameter ranges described in T;ble 111, solq;ions of (2.1)
(i.e. solutions with initial conditions in the po§itive cone) have the
same type of asymptotic behaviour as solutions with initial conditions

in the relative interior of M. Hence we have shown that Table 111

applies globally.

61
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*2
Y
*]
(a) Population 1 always wins.
%2
Y
4 < X
1

(b) Population 2 always wins.-

'FIGURE 5 (a-b)
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4 v < :
1 xl
(¢) Populations 1 and 2 coexist at a globally

asymptotically stable interior equilibrium.

«
D
o - £
(d) Initial concentrations determine the outcome.
One population wins, the other dies out,
except for solutions with initial conditions
on the Séparaprix.

. t
VA '

FIGURE 5 - Phase Portraits in (Xl,xz)—Space for (2.1)

Assuming Ag. < s and A < RQ,

i | Ri =12
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3. THE MODEL - GENERAL KINETICS. We continue to study exploitative

competition for two purely complementary resources. This section

differs from the previous section in that we now allow the resources to

be inhibitory at high concentrations. We make the same basic assump-
tions we made for model (2.1) of the previous section and use the same
notation. In particular, in the previous section we assume that

growth rates adjust instantaneously ‘to changes 1n resource

Concentrgﬁion, that functions pi(S) (resp. qi(R)) represent per
;apita growfh rate of the <th population when resource S (resp.
resource R) is limiting, and that resource consumption rates and
growth rafes are proportional. Recall that for complementary resources
S and R, a populati§h is.considered S-limitedeif its per capita
consumption rate is independeﬁt of the concentration of R and is
considered R-limited if its per capita consumption rate isvindependgnt
‘of the concentration of S. In the;E;ﬁTtext of model (3.1) Bélbw, a
population can be limited by a.resource either because that resource

is in short supply or because it is overabundant.

The model we study in this section is:

0 2 xi(t)
s'(t) = (8 -S())p - | £.(5(1),R(1)
i=1 7si
R'(t) = (R*-R(E))D - 7§ fi(S(t),R(t)) ‘
i1 YRi. '
(3.1)
' xi(t) = xi(t)(—D+-fi(S(t),R(t))), i=1,2,

S(0) = SO >0, R(0) = R0 >0, xi(O) = X9 2 0,
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where :
fi(S(t),R(t)) = min(pi(S(t)) ,qi(R(t))), i=1,2,

and

1 and az satisfy assumptions (2.2) - (2.4).

It is the same as model (2.1) except that we replace the monotonicity
éssumptions (2.5) ‘on ét and 9 by the following assumption.

(3.2) There exist uniquely defined extended positiVe real

-

o 5 .
numbers ASi’ ARi’ Mgy and MRi i 1,2 with

! Agi < Msi and Ap. %guRi such that:
p(8) <D if S7 D gyl
pi(S) >D if Se (xSi ’USi)’

qi(R) >D if Re (ARi ’URil'

We make the following generic assumptions:

(3.3) , If *51 (resp. ARi’ Mg uRi) is finite then

pl(ag,) # 0 (resp. ajlipg) # 0, Pilugy) # 0, aj0y) #0).

S s . )
If the parameters are finite we assume

@

®

. : L ' 0
‘ XSI’ASZ’“81 apd Mgo are distincy from ¢ach cher and frqm‘S .
(3.4) 4 ’ o
, T ' , 0
ARI’%&Z’“RI, and Hpo are distinct from each other and from R .
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5

(3.5) If (S,R,il,iz) is a critical point, then pi(é)# qi(R), i=1,

We shall also require the following notation:
l »
(3.6) Bi = {(S,R} : ASi< S«< Mg and ARi< R < uRi} , 1=1,2.

2 {
(3.7) Q= u B, .
i=1 !
v 2
(3.8) K= n Bi'
: i=1
Therefore, ’ )
£.(S,R) > D if (S,R) < By,
fi(S,R) <D 1if (S4,R) £ CQ'Bi,
and fi(S,R) =D if (S,R) ¢ 831.

¥ - -

Again, as one expects from the biology, solutions of (3:1)

are positive and bounded. - (The proof is similar to the proof of

IS

Theorem II1.3.1.) Also, the polygonal set

X X | : X X
1 . 2 =SO and R + 1 N 2 0

Ys1 ¥s2 Yr1  YR2

S 4
(3.9) M = (S’R’XI’X2)§ R_: S +

\is a globgl attractor for (3.1) and as in Section 2, on M solutions

satisfy:

1]
o

' S'(t) +

. x{(t)/ysi

i ~no

(3.10) " and

"
[aw]

R'(t) +
i

N~

X{(t)/yRi‘
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However, even if at high concentrations, only one resource 1s
,inh;bitory to only one of the competitors, Lemma 2.2 need not hold,
~and the dynamics need ﬁot be trivial. For example, the existence of
a nontrivial, orbitally asymptotically stable periodié orbit for model
(3.1) is possible. In"this case the concéntrations of the resources
and of the competitors oscillate indefinitely.

Before we consider examples that illustrate this oscillatory
behaviour, we give a table of useful notation (see Table IV), a tdble of
notation for the critical points (see Table V) and a table summarizing
criteria for the‘existence and stability of these critical points (see

Table VI). We then give sufficient conditions that guarantee that the

dynamics of (3.1) are trivial. -

To ensure that the vector field at, and in a neighbourhood of,
’
each critical”point is €1 we made assumption (3.5). In terms of

thé notation in Table IV, assumption (3.5) implies that

8]
—
[ 3%}

(3.18 T.,W ,V. and U, are all distinct from C,, i
¥ i1 i i i

We also assume that

(3.12) ?1‘# C2
and » z:
v |
ﬁ ' . T* "T* s w* > W* ? V* ’ V* i} U* and U*
(3.13)

are distinct from C1 and C,.

This ensures that the critical points are isolated and together with
assumptions  (3.3) and (3.4) ensuresthat for each critical point,

X ' S . . Lo
none of the eigenvalues of the associated matrix of the linearization

equals zero.
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TABLE 1V
USEFUL NOTATION FOR (3.1)
0
Ci = ¥si/Ygi i=1.2
RO Y ‘R0.x
Ri . R2 R1
T. = , i=1,2, T+ T, =
g0, s0.x * 50
. Si s1 gqs’
3 .
0 0 0
R™-¥py . R'-po Ro-wpg
V. = R i=1,2, V* V, = -
P70 0 « 50
Hsi Hs) Hs2
0 0 0
R™-Api . R™-Ap2 R™-Ap1
u. = s i=1,2,. u* U, =
i S0_ SO— * SO
‘ Msi ‘ Hs1, “Hg2
0 0 0
R™-Mpi . R™-upo R™-Hp1
W, = , i=1,2, W W, =
140, s0x 50
.2 "hsi s1 52
L4

68



111.3 ‘ o 69

TABLE V

NOTATION FOR THE CRITICALVPOINTS.OF (3.1)

‘NOTATION ~ TCRITICAL POINT (provided it lies in Rf)
"""" _ 0 0 0
E“Sl’* - CHSI’R - CI(S “USI) :)’51(5 ’usl);o )
' 0 0 - 0 ' _
E*’uRl = CS - (R 'uRl)/Cl)uRl!le(R —uRl):O ) ‘ . ‘ a
: 0 0 ' o’
EuSZ,* 5 (ug R €0 "”52)’0{¥52(S “igo) )
il .
0 0 .
E*’“Rz = (57 - (R-up)/Cppupy 0oy (R “ip2))
E . o= , " * “ *
_Y,n (Y n xlg?
B - 0 0 .\ .
(ySz(S 'Y) - sz(R ‘ﬂ)) - ¢
where x* = y..,Y ) '
' Sl TSIRLY O YpiYs2 7 Ysi'R2 ‘

Ay @) -y, (87-1) ) ~

- IrVs2” Vsvrz

cand v, 0 =gy Apy 5 Agprtpy ng1 W 5 ug Ay
‘ : e .

AgpoMR2 b Ag2rHR1-Y g1 oHR2 P ¥s27 PR s
Q
« 'E , E. ., E, , E , and E, as defined in Table I
.0 R st TR As2" 2 T T

: ,are‘.also.cri%ical points of = (3.1) provided they lie in Ri
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TABLE VI

EXISTENCE AND STABILITY CRITERIA FOR CRITICAL POINTS OF (3.1)

»

~

CRITICAL POINT  CRITERIA FQR'EXISTENCE CRITERIA FOR

ASYMPTOTIC STABILLITY

(ASI> S or AR1> RO«,or

t -’

<S or < RO) and

bs1%” o7 Pma

e 0 "0
(}Sz> S or 5R2> R” or

0 0
Mpo < R7)

E N always exists j

L 0 s1°"s2 s17Vs2 °F
E. - L. Aeq <SS, T1> C1 and W-1<C_1 :
s1’ : T* < C, or Wr > G

orTr

A > S or

or

2
0 0 XR2‘<AR1 or AR2> HR1 or
Ag <R, Aq,<S  and T,<C '
Rg 52 22 (Cé<’T* and XSI‘<SO) or
CPTR2 . ' 0 ASI-> S” or .
: if uSZ<S _then C2< UQ :
, . 0
. *
(C2> U* and. ugq <‘$ )

TR PIgre e S

ke bk B i iR
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EXISTENCE AND

TABLE VI~ (Continued)

STABILITY CRITERIA FOR CRITICAL POINTS OF

(3.1)

CRITICAL

POINT

CRITERIA FOR EXISTENCE

\ CRITERIA FOR
ASYMPTOTIC STABILITY

YY)

XSZ’ARI

us1 2 R

sy

0
Hgp < ST, V1 < C1

0
Mgy < R Agy

<50

ané if Mgy

< SO, v, < C

Hs2 2 2

0
Mro < R Agp
and ;f Y < S0

(Agy<hg <Hgy) and

and

( *
C1< T* < C2 and
or

C1>”T*> C2 and

(Ag1$rgp<Hgy) and

and

and

i 2

C,<T,<C
) or
c,>T,>C, and

1 2

(s2Hg1¥s2)
and

C1<U*<C and
or

and

2

R *
C1> U* > C2

< S and W1 < C

<SO

and (AR1<

and U1 > C1

1

then C1 < V1

and U2 > C2

and W2 < C2

then C2 < Vz

(g1 *r2"MR1

(Ar2**r1"R2

0
Agp < S

0
ASZ < S

Ry

0
Mgy < S

0
Mgy < S

)

Q

)

Ar2<r1)

always

always

always

always

unstable

unstable

unstable

unstable

Dok
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TABLE VI (Continued)

EXISTENCEEAND STABILITY CRITERIA FOR CRITICAL POINTS OF (3.1)

CRITERIA FOR

CRITICAL POINT CRITERIA FOR EXISTENCE ASYMPTOTIC STABILITY
(hgp¥sa sy and (ga“ri™p2)
and
< SO * *
Eu \ < and Y
S2’"R1 or 0
and Hgo < S

(A <A <A ) and
E and

ASI’URZ < W*<:C and
or
> W* > C and
( 51<ASZ USl) and
EX' and
s27"R1 C <W,<C, and
or
C1> W*i>C2 and
and
and
E .
Hs1°¥R2 <V* < c and
1 or
> V*=>C and

(Aey<Man<Hgy) and
Sl S2 'Sl and

522 HR1 gi<:v*<<c2 and
' or

C,” V, > C‘2 and

** Stability depends on the sign of
characteristic equation:

Ay € sV >
Ao s
(Ap2“R1“¥R2)
Ao s o
g2 © s”
L

always unstable”

alwayé unstableT

\
' af of .
) R afz)+ o (af1 ’f, a 2> s
£ -8 x1 Bxl 2 8x2 1 X2 1 X ax x1

evaluated at the critical point®

tby phase plane‘analysis in _(S,R)—spaée using Lemma 2.1.

~J4
[ 3]
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Next we develop simple graphical criteria that, when satisfied,
ensure that the dynamics are trivial. We adapt certailn concepts and .
terminology frequently used in linear programming (see €g. Luenberger
[51]). We also apply the techniques used in Section 2. In particular,
Lemma 2.1 (see below) also holds for model (3:1) subject to
considerations of feasibility; provided we replace Q by @ and K
by K.

We shall refer to M as the feasible region.

A

Definition 3.1. We define the feasible region projected on (S,R)-space,

which we denote by F , as the set

X X

,
(3.14) F-{(SR ¢ R :8S+ P2 g9
+ y y |
: s1 7s2
X X
R + 1, 2 . RO, xli_O, X, 2 0
Y1 7R2 -

-

F is therefore the projection of M on (S,R)-space. Since we are
assuming C,#Cy for each pair (§,ﬁj, with S >0 aqd R>0
there is at most one pair (il,iz) such that (§,ﬁ,i1,%é) e F.

We point out here, that if.‘CS(t),R(t),xl(t),xz(t)). is a
solution of (3.1) with initial conditions in M , then
CS(t),R(t)) ¢ F for all t > 0. Thus Lemma 2.1 only applies to
. points (S(1),R(1)) e F and therefore Figure 3 fin Section 2) is
actually iny valid for points in. F .

Again adopting the terminoldgy of linear programming, we give

pefinition 3.2. A basic famsible solution'of M 1is a point

o
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(S’R’XI’XZ) ¢ M with at least two components equal to zero. 7
)

Definition 3.3. A basic feasible solution of F is a point (S,R)

such that (S,R,xl,xz) is a basic feasible solution of M.
We generate the C; = 6 possible basi@ feasible solutions of M

and therefore gf Fin Appendix 4 and‘we summarize the results in
Table VII.

It is well knowsmsfrom the theory of linear programming that M
is precisely the clésed convex hull of the set of all basic feasible
solutions of ' M and so F is thgjclosed convex hull of all basic
feasible solutions of F . See Figure 6 for examples of F .

It is interesting to note that the feasible region depends only
on the yield factors Ysi and YRi and the concentrations‘ SO -and
RO of S and R in‘the feed bottle. Since SO‘ and RO ‘are easily
controlled by the experimenter the'shape of the fe;sible‘region can be
controlled and as we shall see_this implies that the experimenter has
a lot of control over which critical points iie in théxfeasible region.

Using this'idea of the feasible region, we are able to- graphically

determine whether a critical point exists or not. In order to do this

we need the following notation. For each 1 = 1,2, that portion of

'3F which corresponds to the portion of M along which x, = 0 we

1

ca11 Fi' We also define

(3;15) ' | G = aBl n 382 n int F,

<
"

Lemma 3.4. (i) The set of all critical points iné Ri is the.set of

all points in M for which the projection onto (S,R)-spaceibelbngé

to the set &?BIHAFZ) U (aan Fl) u {(SO,RO)}-U G '
) - iy

o 4
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TABLE VII

BASIC FEASIBLE SOLUTIONS

. ¥

BASIC FEASIBLE SOLUTIONS BASIC FEASIBLE SOLUTIONS

CRITERIA FOR

OF M ' oF F EXISTENFE
(SO,RO,O,O) (SO,RQ\) always exists
(o,Ro-clsO,y51s°,oj R -clso) RY/s? > ¢,
(SO-RO/CI,O,yR;,O) - (s”-r%/c,0) RY/s? < ¢,
(O,RO-CZSO,O,ySZSO) | '53,R0»-c250) » R%/s° c,
| ! , |
(SO-R?/CZ;O,YRZRO;O) - (SO-RO/CZ,Q) | #s? < c,
< rs < e,
(0,0,1,8) (0,0) of )
: 200 <

4 N
o d
[ v

t+ = - K -
YsiVr1Us2S YRR/ Us2Vp “YsiYr) R e

_ 0 .0 L
b= yo,Ypa iR - Y515 )/ ¥Ry ~ Ys1¥R2)

£

i
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(SO,RO)

0 SO-RO/Cj s

(a) Ci < RO/S0 < Cs, i=1lor2,j=1or2, i#]

-

0 A SO-RO/(':j S

(e C, = RO/SO_< c. -

J

FIGURE 6 Examples of thé Feasible Region Projected -

on (S,R)-Space, F-. - |
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(ii) The set of all interior critical points in R_~ 15 the
' A

set of all points in M for which the projection onto (S,R)-space
belongs to the set G.

{iii) The set of all boundary criticai points in Rf is the
set of all points in M for which the’projection onto (S,ﬁ)—space

belongs to the set

¢

o 0
"(aBln F,) u (3Byn F) v {(ST,R)}.
”

4

Proof: The proof is obvious (and the result holds even if C1 = C,
in which case more than one point of M may correspond to a point in

F and so the critical points would not be isolated).

]

-

~ .
The application of Lemma 3.4 is illustrated in Figure 7.

Although, in Table VI we see that there are seventeen possible critical

. points, from this lemma it follows that for any:particular example there

can be no more than nine critical points (see Figure 7(d)) and even as
few as one critical point (see Figure 7(c)).
We are now ready to give a sufficient condition that ensures

that thé'dynamics of (3.1) are trivial.

Theorem 3.5. If
(5. 16)/{: (g gy » Ogpoipr) » Gis1hn? > Gszohm) ) =7

then the dynamics of (3.1) are trivial.

v

(See Figure 7(a) (b) and {c) fonrexamples of when this ‘theoren app11e>
Note also that at most two of the four points in brackets in  (3.16)

can 1ntersect_ G in any particular example.) fff?3

~J

~1
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(©) )

@ (£)
N ® .denotes a critical point
- 9B, :
. T ,
*]  , _ ‘ . FIGURE 7 Examples of the GraphicalfMeihdd of

" Determining Critical Points
. ’ ' ’

R
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Proof: By the generic assumptions (3.3)-(3.5) and (3.11)-(3.13)

it follows that the critical points are

isolated, the vector field is
[ u\\

¢l at and in a neighbourhood of each critical point and the matrix

of the linearization associated with eac

eigenvalue equal to 2ero.

h critfical point never has an

First we show that the dynamics of (3.1) restricted to M are

trivial. Note that (3.1) restricted t

o M is equivalent to the two

dimensional system . (2.16)-(2.17). Hypothesis (3.16) impliés that,

the only candidates for interior critical points aré of the form
o .

(3.17) | E, ¥ and E

Si’"Rj

where i,j,k,2 =1 or 2 and i #j,

HYsk YRy

k # ¢ . In this case Lemma 2.1

¢an be used to show that Lemma 2.2 holds provided we replace Q- and K

by Q and K respectively. That the dynamics of (3.1)5 festri¢t¢d

to M are trivial now follows by a proof similgr to thééproof of

Theorem 2.3. »

-

To show that the dynamics of, (3.

Jn . . .
51 L )
- \-‘,:

1) -are trivial, ince ‘M- is

globally attracting, and all solutions are bounded it suffices to shOW'

ghat the phase portralt gf syf@em (2 16) fln (xl,x ) - space) contalnsv
P T

no saddle connf;. , i.e.

i

»

p01nts of (2. 16) then,cLearIy fhere can be no saddle connectlons

]

there are no interior critical

)

51nce a saddle connectlon must conta1n a crltrcal p01nt in its interior.

If G # 9, ‘the only interior cr1t1ca1 p01nms of (3.1) are of the

form in (3. 17) and hence system (2. 16) can have at most two 1nter10r

3

critical points. By 1ndex theory if both 1nter1or cr1t1ca1 p01nts of B

£

)



' Coroilary 3.6. If (i) 6 = ¢"'L“ , .

for (3.1). ’ \ ‘ .

~ Proof: By‘Lemma 3.4, E

111.3 80

(2.16) are a saddle points (or if there is a unique interior critical

point, and it is a saddle point) then there are no saddle connections.

To prove that the dynamics on .M are trivial we showed that the

competitor concentrations converge monotonely. The same method can be

used to show that if we reverse time competitor concentrations either )
- 4 . - ‘

converge monotonely or leave R+ . Therefore, under assumption (3.16),

no interior critical point of (2.16) is a spiral. Since solutions

in (xl,xz)—space are eventually monotone both in positivé and in

. Q .t - - .
negatlyeﬁtlme,by the Poincare-Bendixson Theorem and the generic nature

-

of the critical points, there cannot be a unique unstable or a stable

node inside a saddle connection and by index theory there cannot’ be

’

. precisely two nodes inside a4 gaddle connection. Thus there canbe no
§ ' .
P

interior critical point(s) inside a saddle connection of (2.16) and

s

so there can be no saddle conrections. Thereforé the -dynamics of = (3.1)
are trivial. , .

-
A J

As an immediate consequence of the previoué two\theorems we

o

. . . . Ny L
obtain the following result concerning the extinction of both competitors.
. . , _

The corollary is illustratéd in Figure 8.

(ii) 38y n F2 = g, - - B .

and  (iii) 882 n F1 =@,

then the critical .point o 0 " is globallytgsymptotically stable
. . ‘S,R . :
A
.

14

. - 1s the only critical point‘of (3.1).
PR =



e

4
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FIGURE 8 Examples of Competition=Independent EktinCtion

)

2

81
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rd

The result is immediate from Theorem 3.5 .and the fact that all solutions
L

are bounded.
0

Other immediate consequences of Lemma 3.4 and Theorem 3.5 are the

following results concerning competition-independent extinction.

Corollary 3.7. Let (S(t),R(t),'x (t),xz(t)) "be a solution of (3.1}. <

n=

If Bi n F=¢, then lim xi(t) =0, i=1,2.

tro
14
2

o
) Jbe a solufigfdfgi//LS.l).

-

Corollary 3.8. Let (S(t),R(t),x(t),x,(t)

Assume i, j =1,2, 1 #3j, and- x., =0. .(Therefore, xj(t) =0, for

_ j0 ‘
. ) . ‘ ‘. - ' ' % BT

all t.) If B. n F. =¢, then 1lim x.(t) = 0.% . e
S o ~ | RS

» .

This leads to a surprising result ®that 'seems to indicate that
at times, the competitors are actually cooperating. There are situationd
in which in the absence of a rival each population would-die out, but -4
: : o . g

when a,rival is present there is a possibility of coexistence. This 1is

demonstrated in the folfowing example and illustrated in Figure 9.

, ; "
Example 3.9. Let B ‘,k ' v W
Example 3.9. lLet . | | ‘
Agp T2 L Agp s g 7Y Hg2 =7 %
App = r2 ¥ ? Mpp T 7 “Rzg; S
s% = 20 RO =3 D=1 '
' Yo =2 Vg =l yptl o Ypp =l

“If x, is absent (i.e. xX.,=0), then lim X, = 0 where .i,j =1,2
-1, - ‘ i0 t;m e o . .

and i # j.. This follows from Corollary 3{8v(see-Figuré 9)‘Since
'thefe'aré_nb;Critical points on the boundafy except ESO; 0 However,
Co e ' : “ R : :



:;‘or ’ |
M . —t B K JEA ’
2 2 | e

R @ - critical points$” - §'
) | . eat pe o

- 83
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. .‘A : i L - R :
the interior critical point EA \ is asymptotically stable (see
: _ S27 Rl ‘ ’
Table VI) since ' : )
26 _
\ 1 = C2.< T, = 17 < C1 = 2

and so there are initial conditions for which there is cpexistence.

. ‘ : ' '
This coexistence must in some sense be due .to cooperatlon

By Theorem 3.5 it follows that a necessary Condltlon for (3. 1) .

to have nontr1v1al dynamlcs is_that there exist a- crltlcal point of the

- N

form given in (3.17), i.e. a cr1t1ca1 p01nt at whlch one competltor

=,
.15 S- 11m1ted and the qthbr is R-limited and one competltor is limited

because a resource is in short supply whereas the other ls 11m1ted

because-a resource is overabundant and thus inhibitory.

We consider two examples thatiigiagziate that (3.1) can. have

. '3
£ . o4 . : . . . : i
nontrivial dynamics. The functions in both examples are ‘chosen purely

for their mathematical convenience rather than for any biological :

N

o *

significance,
| In the first example, only gné resourcé is 3nhibitofyafqronly‘_ _
one pOpulatidn at high concentrations, in particulér résourép_f5<.ié |
inhibitory to populatlon 2 at high concentratlons All the other
k1net1cs aTe monotone w1th mlcroblal responses modelled by Michaelis-

L

Menten kinetics. .

Example 3.10. Let,

en _ SS o
P, 8) =573 o

84
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. (24A1; 1)s%+ 45

ﬁ S-4)(6-S
py(®) = 1 s —25 0 e
: 24(A8"+7/12 5+ 1) é4Als + 145+ 24
_10R "
QR = goor L
5.1R S
LM = g7
p=1, s®=40, R =30, .,
=1 1, 2 =1 “
3 YS]. - > )’§2\ > le " yRZ - \ » %
S 4 '
- .
Here, e £
>\Sl = 2, ASZ = 4, ARl = 4, )‘RZ = 2,
Usl = @, Usz = 6’ uRl = ®, URZ = f”.
.
. T e
' CRITICAL POINTS ' e \\ LOCAL STABILITY
E o= (40,30,0,0) unstable
S°,R .
4 L 9 S
- EA . = (2,11,38,0) asymptotically stable
S1’ - :
) 1
- ) Y
EA AL = (4,4,20,16) unstable
S2°"R1 X . . o v \ .
asymptotically stable if A,> 1/12,
E = (6,4,16,18) unstable if A < 1/12,
Mg20*R1 . 1
. Hopf bifurcation at A1 =d/12 .
In this examplé,as A1 decreases through 1/12 the critical
.‘point E " changes its stability. "For A, > 1/12, E -~ is
\ o sl ' o ! T Mgpotpr

S

85
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asymptot1cally stable whereas for A, < 1/12, E is unstable. ‘
! Mg27 AR R R

This change in stablllty occurs via a Hopf blfurcatlon The resulting
»

.perlodlc orbits app%ar for values of A1 g 1/12 and are orbltally ; Cy
' ' ) ) ' ? ) . - C o
asymptotically stable. ‘ - o ‘ S -

The calculatlons to show that there is a Hopf blfurcatlon at

Aa = 1/12 and that the resulting perlodlc orbits exist fora ‘i { 1/12

¥

and are asymptotically”’ stable are usually very: tedlous 1f done by hand.
Instead they were done by means of the symbol manlpulatlon Ianguage
REDUCEZ accordlng to the method descr1beé in Marsden and McCracken :
[52 Sectlon 4] The REDUCEZ program is glven i Appendlx 3 A and the -

results for Example 3 10 are given in Appendlx 3 B*;.»
( f ' .
The fea51b1e set 1n - (S, R)—space, BI ﬂand B are shown'in‘
. \ - e ,
Flgure 10 The next serles of graphs are also rn (S R) space Ih‘,,f" .

\

. Figure 11 we show sample soﬂutlons for A =0.08 < 1/12 The-
solutlons in Flgure 11 that are depicted by dotted 11nes were found by

1ntegrat1ng backward in t;me whereas all other solutlons were 1ntegrated :
{ . /v ’
forward in time. However, a11 aTrTows 1nd1cate the evolutlon of solutlons !

for positiﬁe“time‘ In Flgure 12 we focus on the crltha1 point

Eu A ‘and the asymptot1ca11y stable perlodlc orb1t surroundlng
S2°7R1

Eu N ' and we show two solutions, one W1nd1ng in towards the perlodlc
S2’"R1

orbit. from.the out51de and one w1nd1ng out towards tHe perlodlc orb1t

~ from the inside. iagure 13 is in (x ,xz) space Here again we focus
. N A
\on\the cr1t1cal point E N and show the periodic orb1t w1th

‘ o ¥sz2e Rl -

: traJectorles wxpdlng toward it.

It is 1nterest1ng to note that in thlS example there is a range

-of choices of A, é\?~whlch the cr1t1ca1 polnt E ' ;"15 asymptot1ca}1y
IR : _ Slf o
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stable ‘and for these same parameters»there is a stable periodic orbit.

-

Therefore there are at 1east two- dlStlﬂCt biological outcomes possible.
That there is a HOpf blfurcatlon and that the b1furcat1ng
perlodle orblt is asymptotlcally stable is actually 1ndependent of the -

choice of the functlons ' (S) and qz(R) prov1ded that for Py (S),
v
XSI

. E 3 ,. isan CQU}Jlbrlum point and that the vector field in a
!

522 R1 N e
nelghbourhood of E . is analytic. Thls is because the Hopf
: i A

S2¢"R1
“ b1furcat10n is a local phenomenon However,:lt is anterestlng to note

< 6.< “Sl _and for‘ qz(R), R2 < 4 < “Rz , thus ensurlng that

‘that in thlS example there are p01nts at wh1ch the vector f1e1d 1s not
dlfferentlable The ch01ce of the. functlons pl(S) and qz(R): cah".
affect how cIose a p01nt at whlch the vector f1e1d fﬁ'not oifferentiable
“is to an equ111br1um p01nt _ This can 1nf1uence the 51ze of the.para- |
meter range A1 < 1/12 for which a: perlodlc orb1t ex1sts In our p}}
‘eaample as. Ai decreases the amplltude of the blfurdatlng per1od1c
orblt 1ncreases Asv A cont1nues to decrease the amplltude of the
per10d1c orblt contanes to 1ncrease and 1t may approach a p01nt where
the vector f1e1d 15 not d1fferent1a91e ‘ If' éi is decreasad even more
the orb1t could dlsappear.. That thlS can actually happen is demona--f

strated 1n Flgure 14 We keep everythlng the same as before ,‘

(1nc1ud1ng A 08) except that we'replace pl(S) by _'

e, ooas RO e s
.4,.».,'.. B :_l:ﬂ L e ifx\\\;
For th1s ch01ce of Pl(S) E s Stillga critical,point,: With
MMl

the prev1ous ch01ce for pl(S) there is a perlodlc orblt (see

i
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. Periodic Orbit Disappears

FIGURE 14 Discontinuity in the Veator Field
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Figures 11-13). However, for this choige.of‘she function pl(S) there
is a discontinuity in the vector field at (approximately) the point

(6.0, 4.10914) and this is apparently &lose enough to [E SO
S . - - USZ’XR-I

[

that there is nolonger a perlodlc orbit for A = .08 . (Fisbre 14 is

W .
n '(S,R)-space. The 1n1t1a1 condltlons for the substrate are .

A . r

,(6.05,4;05). Instead,of cycllng out t0~a perlodlc orblt, “the soiution
escapes and convefges to- (2 11)“)

In the second example both resources are 1hh}b&tory to beth

populatlons at\hlgh concentrat1ons In this example we can adJUSt the

parameters to obtain slmultaneous Hopf glfUTC&thﬂS about two. d1st1nct
1hter10r equ111br1a one super cr1t1ca1 and the other SUbCIltlcal
'Therefore there can be both stable}and unstable perlodlc orbits. ‘In
th1s way we agaln show. that there can be two’ 1ndependent reglmes of

c0ex1stence for the same value of the blfurcatlon parameter Also, as

~

'1n Example 3.9 this example deplcts a case where both competltors -

B N o e ‘
'wash out: when the1r r1va1 is absent but can otherw1se coexist glven

certaln‘1n1t1al cond1t10ns.

Example 3.11. Llet, . 1

:tS‘é 2) (8_;'8)

o 16(.06255; +.1255r+19_;:‘
SR (s 4)(6 S)
py(8) =1+ 5
S 24(A S’ -+1os-+1)
P - ‘\.
Lo (R 4)(6 R)
L ql(R) =1+ 2

24( 075R 4-7 625R+ 1)
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o"‘ . : qz(R) = 1 +
o co : 16( 125R +

"Here, S &

RITICAL PQINTS

',;"Q}RO o

m o
"

= (4,6,20,8)

m..
i

6,

Ms2’Ra

4

A . v . ‘ : :.y'v“ . ’
._ 7;'v* R

I As 1n the prev1ous example t

(32,24,0,0)
(4,4,16,12)

= (6,6,16,10)

4,12,14)

(R-2){8-R)

: unstable -

- unstable

T .asymptotlcally stable 1f AL

.unstable 1fk.f4 ," oA 1

2 1R+,1),

© LOCAL STABILITY

ésymﬁtoticélly(staﬁle

.

»

asymptotlcally stable 1f A

j;'unstable 1f ) ‘,ahil.';Aiﬂ

' <'H9pf,b1£urcat1on‘af;; 15-'Aif

<

>

.. v

he computatlons to show the

9/8, -

9/8

B LHORbeifurcatiQn.:Z:v‘_ ; A1 _.9zéJ.-_: .
,9/8},g; t;

exlstence of a Hopf b1furcat1on and the étab111ty of blfurcatlng orbltsl;ii-y-'

.»;,'.
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were done us1ng the REDUCEZ program in Apﬁ%ndlx 3. A ~ The program’&
»_'uresults for thls example cdn be found in Appendlx 3.C. B o

Therﬁ is a smulta&us Hopf bifurcatlon of the cr1t1cal pomts .

5f" E_ ., - and, £ asvA passes through 9/8 , For E, .
A “sz’AR1 S sty ;-% T B T P "R1

- as 1n the prev1ous example, the | cr1t1cal p01nt loses stablllty as Al_
: dfcreases th$bugh the cr1t1cal\&alue and the b1furcat1ng per1od1c orb1t

' appears for values of A1 < 9/8 and is asymptotlcally stable On the

1

other hand E Lo goes from unstable to asymptotlcally stable as
, ‘ SZ Rl ‘ L ,

. AIJ decreases below 9/8 and ‘the assoc1ated perlodlc orblt is unstable
and ex1sts for A1*< 9/8 From thls we see that there is a range of

parameters (A < 9/8) for whlch there is an asymptotlcally stable
- 1nterlor cr1t}c31 p01nt surrounded by an unstable per10d1c orb1t and

/

,‘ for the same value of A1 _an orbltally asymptotlcally stable perrodlc

E /
orblt\ 'ThUS there are at 1east two dlfferenr possrb111t1es for
I

‘X1stence and the outcome is; 1n1t1al condltlon dependent Th1s was

L. not 0551b1e 1n the monotone k1net1cs case Recall that in. that case
//4hkydynam1cs are always trLV1al and there 15 at most one 1nter10r

s o Lo
- B S // S v

= cr1t1cal polnt whlch is e1ther globally asymptotlcally stable oT. unstable ;faﬁ
"f;;/ﬂf‘ . The dynamlcs for thlS example are 1llustrated 1n the flgures
that follow The flrst ser1es of graphs are 1n (S R) space Flgure lS

and B Flgure 16 ((a) and (b)) deplcts sample f

traJectorres for A1 1 1< 9/8 = (As for F1g re 11 the dotted 11ne fifjf' :

L

;s J

was found by 1ntegrat1ng backward i

nﬁ;lme However all arrows 1nd1cate '”dfh}x
_evolution of solutlons for p051t1ve t1me ) In Flgure 17 (respectlvely

Frgure 19) we focus on the cr1t1cal p01nt El (respectlvely o
o TR e ] 52’ Rl S

T

B PO
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FIGURE 17 The Unstable Periodic Orbit of Example 3.11 in (S,
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FIGURE .19 The Stable Periodic Orbit of Example 3.11 in
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, FIGURE 20 The Stable Periodic Orbit of Example 3. 11 in (xl’x ) Spacc
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A
E N ) and the associated unstable (respectively stable) periodic
Hs2° Rl .
orbit in (S,R)-space. Finally, in Figures 18 and 20 we again’;\?pfc“us

on these -same(.c,.r\itfic‘,ﬁ\yoint's, but this time in (xl,xz)—spa'ce.'-ﬁ
X ) . . co.

\J
"N

« \
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4. DISCUSSION. In ®his chapter we showed that if one models exploit-

ative competition for two complementary resources in a chemostat with

microbial responses modelled by\genéral monotone kinetics one obtains -
' - 3

the same qualitative results as Hsu, Cheng and Hubbell [41] did for
microbial responses modelled by Holling Type II dynamics. However, we.
use a different techniqUe which can be applied with some success in

the non-monotone case. |

In the monotone case, we show that the dynamlcs are always

trivial and that there are only five possible distinct biologlcal

+

. outcomes. We summarize these results in Table IIT and in each case
- . . . i ! < ) . Q
give criteria that guarantee each outcome.

In the non-monotone case, which can arise if a resource 1is

inhibitory at hlg\\ﬁgpcentratlons,vwe give graphlcal cr1ter1a for the
existence of critical points.. We glve sufficient conditions which are

also graphical which ensure that the dynamics of the model are tr1v1a1.
0

However we show that the model permits nontr1v1a1 perlodlc solutlons
which may be elther unstable or orbitally asymptotlcally sgable (see
Examples 3.10 and 3, 11). This is only po:slble however 1£ there 1is an
interior critical p01nt at Wthh each resource is limiting to‘a
,dlfferent competltor populatlon and one resource is 11m1t1ng because f_ ;

it ‘is.in short supply whereas the other resource is limiting because - /
o 4
i /
it is overabundant. We have therefore shown that sustalned osc111atlons
] /

are p0551ble in a chemostat with nonreprodu01ng nutrlents and constant T

o

nutrlent 1nput Tate. It has already been shown in [11 13, 45 53 7Q]

o ©
<

that fpr a reproduc1ng resource (prey) or by Hale and Somollnos [32]%

b

forra‘periodicaily fluctuating nutrient thaf oscirlatory behaviour ‘in

G
[
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a chemostat is p0551b1e

It should be p01nted out that the model with non-monotone

kinetics cannot be reduced to a compet1t1ve model in the sense of Hirsch -
[37], as it can be with monotone kinetics. In the non-monotone case,

under generlc assumptlons, up to nine distinct critical points are

p0551b1e whereas in’ the ‘monotone: .case at most four distinct critical

y

) N
points are possible This 1eads to a wealth of d;fferent posslble
'b1olog1ca1 outcomes even’ when the dynamlcs are tr1V1a1._ There 1is actually

the possiblllty that in the absence of 1ts r1va1 a populatlon d1es out

‘whereas in the presence of 1its r1va1 there is (dependlng on ‘the inltlal
condltlons), a p0551b111ty of coex1stence Thus.ln some sense‘the
competltors ‘are cooperatlng (see Example 3 9) : There is also another'
situation in which the competltors clearly do not‘cbmpete “This is in
the case that the resources are both overabundant and hence 1nh1b1tory

to both competltors The fact that the other populatlon is consumlng

hd \‘\ S
~.

can only be of help, S s T
B . \ -

An advantage of exp11c1t1y modelllng'the resources is thas\the
~.
™~

model 1is pred1ct1ve and the predictions are made based on parameters \\bcg\
that can be measured 1ndependent of competltlonv with each competltor'
‘11m1ted by ‘only one resource at a time. A dlsadvantage is that to
simplify the;mathematlcs certain assumpt1ons were made that need,not"
'hold; For.erample,‘ t was assumed that the 1nd1v1dua1 death rates of

each COmpetltor populatlon are 1nsfgn1f1cant when compared to. the wash-‘

o

'out rate. It mlght be appropr1ate in many cases. to conslder d1fferent1a1

- - death: rates Also most nutrlents .are probably 1mperfect1y substltutable

rather than periectly complementary It mlght also be the case that the

o . T
o o



groups 1f the other gro

_thus form1ng an 1neffect,ve complex ' In thlS case a react1on cannot i

a clump dlSSOClateS in order to absorb it. If these mechanlsms wh1ch

‘,_affect only substrate enzyme complex formatlon or analogously search

560 OF T o ' | T

w‘/ o . . ) o ,/’

A

per caplta growth rate is not proportlonal to the consumption rate as

in the models - of Tllman [73 74, 75 76} or that the mechan1sm for 1nh1b1-
tion. of complementary resources may not lead to’ a model in whlch

f,(S(t),R(t)) = mln(p (s(t)), q; (R(t))) In the context -of 'simple

. "

enzyme catalyzed reactlons, a reaction can be con51dered to have two .

“tlme consumlng parts.' The flrst is the b1nd1ng of the substrate. W1th

=S SRR

';the enzyme and the second is the actual reaction formatlon of the prod-
uct. There is ev1dence, accordrng to Dlxon and Webb [18] and Palmer

,[60], that 1nh1b1t10n by h1gh substrate concentratlons (1n the c0ntéxt

Kl

- of enzyme catalyzed reactlons) in some cases may be due to the

spec1f1c1ty of certaln enzymes : Many enzymes have two _OT more groups'

and in an effect1ve enzyme substrate molecule complex a 51ngle substrate

,molecule must be comblned W1th all these groups However, it mlght be

the case that a substrate molecule may comb1ne w1th only one of these

s:.are comblned w1th other substrate molecules - F

»

. take place unt1l some of the substrate molecules dlssoc1ate away. . When

~ the substrate congentratlon 1s h1gh the chance of formlng 1neffect1ve

/

_ complexes 1ncreases Thus the 1nh1b1t10n ‘can come 1nto the enzyme-

el ’

"_substrate complex formatlon only The analogous concepts for m1crob1al

rgrowth mlght be search time and- proce551ng t1me of nutrrent and the’q'
- analogous mechanlsm for 1nh1b1t10n m1ght be that at hlgh resource i T
' concentratlons the resource mlght form clumps too large for the the ,."'

'}m1croorgan15ms to handle, The m1croorgan15ms mlght have to wa1t untll

¢



111.4 : ’ . "I. : - ‘ o . N 103

time are responsible for the inhibition then there |is.reason to assume

that £, (S(0),R(8)) = ‘minCp'i(s“(tj‘,qi(R(,t)')). ‘Howevkr, if reaction time |

or analbgously‘procegsing‘time is sloWwed by high ¢ entrationlpf

-

- Se

,substrate~a dlfferent mOdel might have'to be consider d. There isalso

exper1menta1 ev1dence to 1nd1cate that some m1croorgan15ms employ such

strateg1es as luxury con;umption and that there is probably a time deﬂay- |

between absor tion. of nutrlent and. convers1on to blomas Ne1ther of
g

\

|
these p0551b111t1es is taknh 1nto account in our model.

As a next step 1t would be 1nterest1ng to con51der the "Pr1nc1p1e :

of Competltlve Exc1u51on" in this context and determlne whether or not

o S ol

fitis posslble‘for more than 2'fcompetitors*to;survive»if»lim;ted'by,

only two resources

'y

'\f

Before concludlng this chapter we w1sh o p01nt out’ that JUSt

~as in the 51ng1e resource case studled 1n Chapter II in’ the two

ES

o ’ v
resource case, qualltatlve outcomes depend on the relatlve values of

1

' the break -even concentrat1ons and on the COncentratlon of nutrlent "~
in the feed bottle.' In the 51ng1e resource case “the qualltatlve

g _outcome 1s 1ndependent of the growth y1e1d factors.s However,'rn the

two resource case the growth y1e1d factors play a s1gn1f1cant role in’ t.f',

o determ1n1ng the qua11tat1ve outcome s1nce the1r ratlos _C1 and C play

= an 1mportant part 1n determlnlng both the p051t10n of the fea51ble set

L and the 1oca1 stablllty of cr1t1ca1 p01nts.

';the contamlnant 1s ‘a complementary resource and 1f 1t is to knOW'l

Flnally, w1th respect to the appllcatron to water pur1f1cat10n'fu,ff
glven in Chapter II 1t would be 1mportant to be aware whether or not}"

N

whether or not 1ts complement 1s ever 1rm1t1ng 51nce our” results showf;]5.ﬂ"
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that th1s could ‘influence the predicted outcome Slgnlflcantly This

is llkely to be 1mportant for perfectly and 1mperfec€1y substltutable

3

resources as well.



CHAPTER IV
3
PREDATOR-MEDIATED COMPETITION

| -
1. ‘iNTRODUCTION. In this chapter we‘consider-a mathematical model
of a chemostat descrlbuuitwo competltors competlng for aV51ng1e;
essent1a1 growth 11m1t1ng substrate\gnd a predator predatlng on the
, "superior competitorx (Recall that in Chapter IT we showed that in "
the absence of a predator the inferior competltor is always ellmlnated
by the competltlon ) Be51des this food web we shall also study the
rbfood chaln that results when the’ 1nfer10r competltor is omitted from
the'model.

As in the previous chapters, we allow a general class of
‘functlons to descrlbe micrdbial- nutrlent dynamlcs 1n order to see
what can be said in general about suqh food webs and food chalns

' However unllke in the prev1ous chapters, in this chapter we restrlct
the class of functions to be monotone nondecre351ng Thus" we allow

1 .
saturation but not 1nh1b1t10n at high concentratlons of e1ther‘

substrate or prey. 'QZ
Three prototypes for monotone functlonal responses are Lotka—
Volterra (11near) M1chaells Menten (concave),'and multlple saturatlon‘
ghv(51gﬂglda1) We shall see that even among | these three prototypes
’fthere w111 be qualltatlve dlfferences in: the dynamlc behav1our of- the
"model However, we shall f1nd that there is a certalnbstructural |
:behav1our that 1s common to all models 1nvolv1ng monotone k1net1cs
Hopefully thls W111 be helpful to experlmenters who w1sh to gatn
: 1n51ght 1nto the ba51c mechanlsms underlylng mlcroblal 1nteract10ns

: s S P . . . .

105



Iv.1

L~
H

a4

in partlcular those who wish to determine the most approprlate
function descrlblng growth and feed1ng dynamlcs of a given class of
m1croorganlsms "

The work in this chapter is an attempt to unify the mathematlcal
work already done on thls problem as well as to present new results |
The novelty is that many of . the results are of a global nature and

I3

~are for general monotone functions, We do however ‘give results for~

spec1f1c prototypes where approprlate

he shall address the related ecolog1cal question of whether or
not thelinva51on by a. predator can reverse the outcome of compeﬁition.
The answer may depend upon whether one 1nterprets our results purely
determlnlstlcally aQr whether -one allows for stochastlc 1nf1uences

Our. results also help to"confirm the current ecologlcal th1nk1ng,

Vbased on. much exper1mental ev1dence (see for example Slobodkln [69]‘e

and Paine [59]) that predatlon is often respon51b1e for the dlverslty-'

in ecosystems Palne postulates that "LocaZ spQCtes dtverstty ts |
'dtrectly related to the efjictency wzth whtch predators prevent
monopoltzatton of the magor envtronmental reqquttes by one spectes..;’

'u ~

A central concept in our dlscu551on is the not1pn of

_ : S E g"(‘
" perStatence. Followlng Freedman and Waltman {22], wegglve%the
R 2 4
X OIS PR
o
) o . . : . : . "?7'.’ gL .
Definition1.l. Let 7« - S TR AT I A

(11) R f(wct))

o be a system of d1fferent1a1 equatlons where f -is a.yector;valued o

-vfunctlon 1n W= (wl"' ,w ) € Bl Then (1 1) 1s sa1d to perszst .

-~
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1,...,n implieS’that lim w (t) >0

t—rm

if W, (0) > 0 for all i

for all i-= l,ﬂ.:,n}

For other definitions of per51stence see. [8,21,23,28,31,34,42;53].
“b B ‘
hls chapter is organlzed in ‘the followlng manner. In

Sectipn 2 we set down the mathemat1ca1 model of the food web that we

wish to study and we outline the underlylng assumptlons An
equ1va1ent nondlmen51onal verslon of thls model 1s g1ven in Sectlon 3 '
where we also deflne several 1mportant parameters and 1ntroduce : § ‘?

notatlon for xhe cr1t1ca1 p01nts of this system It 1s thls non-

'

'dlmen51onal ver51on of the model that we actually analyze “In‘
Sectlon 4 we 1ntroduce notatlon for the three d1men51ona1 subsystems

that result 1f one of the compet1tors or the predator 1s om1tted

@ectlons 5 through 9 contaln mathemat1ca1 results We state-

4

% and prove prellmlnary results in- Sectlon 5. In Sectlon 6 we show“ o
<'_that under certaln condltlons there 1s a charn of transference‘Of
’ global stab111ty from one cr1t1ca1 p01nt to another as certaln
E parameters aré decreased (So [71] g1ves a- s1m11ar reseff"?o;/the
1c1a551ca1 Lotka Volterra food cha1n ) Before we g1ve an example to

show that thlS sequencelof transference of global stab111ty can be " . 'i*'ﬁ;ﬁ;;;;

’ 1nterrupted by the appearance of a stable 11m1t cycle (see Sectlon 9)

é,we con51der the food chaln that results 1f the 1nfer10r r1val 1s 3

: ﬂg’ellmlnated from the model in Sectlon 7 and we determlne condltlons

”LLJthat ensure per51stence of the entlre food web 1n Seceﬁon 8 fThe7

‘..,‘ G o K

'x,per51stence of the entlre food web can be con51dered predator medlated

'"h51nce 1n the absence of the predator at: least one of the competltors

'fralways becomes extlnct ThlS predator medlated coex1stence 1s
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‘hlgh11ghted in the example in Sectlon 9 where we also show that e

1nva51on by a predator can in some€ sense reverse the outcome bf pure

competltlon |
We conclude the chapter with Sectlon 10 Ain whlch we snmmarlde

our results, 1nterpret them mith respect ‘to the or1g1na1 model |
descrlbed in Sectlon 2, and flnally conSlder the ecolog1ca1
. 'ramlfrcatlons For completeness we summarlze the local Stablllty

A ana1y51s of the food web 1n Appendlx 5. A and of the food ehaln in
:'1Append1x 5.B.: ‘Part of thls 11near analy51s has already appeared in
di the 11terature (see for example Canale [14] and Saunders and Ba21n |
| l.'[66~],_‘. | | ' '

ThroUghout thiS‘chapter‘we'shall{use theyfollowing,notation:}

'1(Pj w111 denote the orb1t of -a dynamlcal system, that
,3fpasses through the p01nt P and 0F (P) and 0 (P) w111 denote the

"fp051t1ve and negatlve semi- orb1t through P respectlvely

'.a_."
[}

_': If E 1s an equ111br1um p01nt of a. dynam1ca1 system, then
| “T;w (E) and W (E) w111 denote the stable and unstable manlfOldS of .

E respectlvely (Prov1ded theY ex1st) wa 1;sj3w?.ff;\75*lri'55
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2. ‘THE MODEL - A FOOD WEB. We shall consider the following model of

. xgttj

predator-mediated'cdmpetition‘in the chemostat: H

‘ P S2ox (t)p (S(t)) o h -
S (1) =G§-SGDD% Lo r

1

’.'A

x(ﬂCD+pgsun)

[

f.th)C-Drﬁq(xi(t)j)fl SRS _"1-:"{:"“hfs?¥ T
R UE S RN
i

«.,.‘)‘".(t) .

"o
m v )
v

s v = %420

',;In these. equatlons (t) denotes the concentratlon of the predator o
>‘.;populat10n of m1croorganlsms at t1me J: In the absence of the

‘”predator' (1.e y(t) 0 for all t) thls model reduces 1o the model

\

'.*ﬁ(II 2. 1) W1th ‘n spz;f, Therefore ‘x (t) S(t), p (S),“ | D and y
L?Z'have the same blOlOglfal meanlng as 1n Chapter II However, 1n th15‘7p--5 o

e ﬁ;:;model x (t) 1s V1ewed as both a prey populatlon and a competltor

‘L'f]populatlon Here,_ q(x ) denotes the per caplta growth rate of the

| growth )’1e'ld factor for the predator POP‘lla'ClOn feedl“g on- the Pre)” ':v

P and q 1n the méﬂ%l equatlons (2 1)

7“f%2¥;£<557~54uﬂ?5539?Rﬁﬁﬁi#,sgigt*'

predator

: :predator populatlon as a functlon of the prey concentratlon, _§ 1s the

and we assume that q(x )/z represents the prey upta e functlon for the gft; o

SR

?}f* We make the follow1ng assumptlons concernlng the functlons p




w.2 | ' S

“{2.3)  p;, a are continuously differentiable; .

‘,.(2~4) L o ppi(S).;hOfoor all Se¢ R ;:
(2.51» ST Pé(s) >0 for ali S € R+»;Vi'

' }‘(Zto) b’j:v . ‘ei(xl) 350'}59r’311 xl,%'lz*;

Cen o p@=0, - 0.

It willgalsoibe.convenient to depotef'q(xl) fasyyj

(28) i ‘.“qi(:xl)' R LRI | 5

'e’! ‘I:'_':;i Note that 51nce q isl(oohtihuouslyj differehtiablefitlfoilows S
"%hat 11m h(x) = q (0) and 'S0 we. deflne h(Q) -'q (0) o bf_f _.ka»T:p ’t;

The system (2 1) descrlbes a chemostat set up as 1n Chapter II f-?
'w1th nonreproduc1ng substrate, constant 1nput and dllutlon rate,_' 5th ilﬁ*__..f
“:perfect m1x1ng 1n the growth vessel, 1n51gn1f1cant death rates compared .
ﬁf?_to d11ut10n rate, and 1nstantaneous adJustment of growth rates to dunges
bf:;1n the concentratlon of nutrlent Furthermore, Just as we assume‘that -
:thhe substrate uptake rate is proportronal to the rate of conver51on tou {;;ﬁff}?
"';Qiicompetltor blomass, we assume that the prey uptake rate 1s proportlonaln

B to the rate of conver51on to predator blomass In thlS model two

’i{populat1ons compete solely for an essent1a1 growth 11m1t1n,fsubstrate "& {ﬁ;

”'T'Also a predator populatlon predates on the competltor POPU1at1°“ that

’,_would be the sole surv1Vor prOV1ded the predator populatlon were absent.,,}fﬂtf;

Thls model 1s 51m11ar to the models studled by Jost et al [43]

"Q[However in the1r model of a food web they allow the predator to predate ‘f-, L

- . RIUTI
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on both competitors. In all of their models they use Michaelis-Menten -

.Xkinetics to describe nutrient uptake and competitor (prey) growth. In

+7the food chain that results when the second competitor is absent, they

consider two different models, one with Michaelis-Menten kinetics

wgf describing predator-prey dynamics ands the other with multiple saturation

kinetics. Their experimental results seem to indicate that the latter

o P . : .
“nodel is more satisfactory. In the food web” they derive a more

complicated functional response for the predator that takes food
Y

prefefence into consideration but- that reduces to multiple saturation
dynamics whén one competitor is absent.
Freedman and Waltman [22] coﬁsider a genéral‘KolWogorov model
'of three 1nteract1ng predator prey populatlons They derive persistence
crltefla for this general model and then illustrate their result; in
special cases. -1n particular, under_certain conditions their system
can b; iﬁté;pretéé as two rivél populations with a predator predatgng
on either one or both of tHe rival populations.
The foOd;chain that results when the second competitor is
eliminated\f£om‘the model (2.1) was also studied by Butler, Hsu and
Waltman [1g], Bungay and Bungay [9] and ‘Sell [68], among others. They
all consider a model in wh1ch all functlonal r#}f?’es are mpdelled
" by Michaelis—Menten type dynamics. Experiments [57] seem to show that this
‘1s qulte reasonable for soZubZe organic, nutrient - heterotrophic bacteria -
holozoic protozoa food Chalns.ﬂ Canale [14] also considers M'Kendrick

and Pai 's [55] model (1'e. Lotka- Volterra dynamics) . The food chain

with very general dymamics is also studled by Saunders and Bazin [66]'

and by Gard [24,27]ﬂ I .
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3. THE NONDIMENSIONAL VERSION OF THE MODEL. It will be more convenient

to analyze the model after the following substitutions are performed:

~ . 1

~ . 0 .

S ; 0 . N
(3.1) t=1tD; S X; = xi/yiS i=1,2;, y=yv/S R

i}
92
~
9p]

(3.2) ' © py(8) = p,(8)/D i =12,

A}

5

(3.3) agil) q(x))/D (and so ﬁ(il) = ylsoh(xl)/D)

Omitting the bars, in order to simplify'the notation, the nondimensional

version of model (2.1) can be written: ' .

S'(t) .=»»C1—S~(t)) - éi ?F-l(t [(s(0y),
x{(1) = x (O (1+p (5(0)))- y‘"(lt)q(.xl(t)) ,
(3.4) | xé(t’) ?~"Xé(t)(-.1+Pé(~5(£))),
y'(t) éy(t)(-1+q(x1(t))), K . s

Sy >0, X020 i=1,2, y,>0.

All the assumptions (2.2) - (2.8) hold for this néndiménsional version
of tﬁé system (2.1). Therefore, there will be no loss of generality
if we study system (3.4) insfead of té.l) and we can always
rgintérpret our results in terms of the unscaled variables by the
appropriate qpblicatioﬁ of (3.1) - (3.%).

fo the mono;onicity assumptions (2.4) - (2.6) it follows that -
théfe-éxist.unique;y defined positi#e extended reai numbers Ai and §

5uch,thét:
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pi(S) <1 1if S < Xi’
if
5.5 pi(S) > 1 1 S > Ai’
§ .
q(x,) <1 if x, <g§,
. l ‘\/ 1
- And q(xl) > 1 if X > 8

¢

provided we make the following assumption of a generic nature: -

(3.6 If x, (oT §) is finite, then pj(i,) >0 (q'(s) » 0).

A\
- Assume also that

(3.7) all Ai’ § (other than those which are infinite) are distinct
i . . _ SN

from each dther and from 1, and
.(3_3) | M Ay if A <

Then A and § represent the break-even concentrations of
substrate and prey, respectively. Also in the absence of the predator

x, drives x, to extinction. 3

1 2
The critical points of the system (3.4) will be denoted:

E, = (1,0,0,0)
EA = (*1’1'*1?0’0)
l .
E)\ = (>\2,011_>\2:0)
ES* =‘ts*,6,0,y*j wheré' y* = 5(-14-p1(s*))A and S* saiisfies
N 1_ S* - Gpl (S*) ] : . l . . //
EA = (A2,§,x2,y)‘ where X,. = 1- Az- épl(x2) and y = 6(-1:¥p1(kz))
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and will be assumed to be critical points if and only if all their

.componentS'ére nonﬁegativé. Therefore EA" ﬁfresp. ,Ex )
: ‘ : . 1 _ 2 ‘
critical point provided Al <1 (Xz < 1) and: EA is a critical
. : . Sy ] :
point provided x2”= 1 - Az - Gpl(Az) > 0. In particular, this

is a -

implies)that Ay v 8 <1, ES* is a critical point provided S* zMO"'

is\well-defined and y* >0,  S* .is defined“by'the equafion

1-S* = Gpl(S*)  "If we plét the fqﬁétions 1-8" and- 6pi(S) ‘on the.
same graph (see Figure 21), since pl(O) =0 anaf pl(S)' s;rictlyL'
increages it follows that fhere,isfa3uniqhe poiﬁt. S* _that'sa£isfi¢s

" the equation -1;YS‘= éﬁl(S)' and this point lies.be;yéen 0 and 1.

In order for y* > 0 we require- S* i;kl._ But the solution of
<1-8 =

1 1

if and only if 1-A
6p(S) < 8py(A)) =6, d.e. 1-A<8. Thus, Eg, is a critical

1-§ = apl(sj is less than A
poin§'piovided.ﬁhat k1f+§ <1, Acﬁgally,‘since;in tbié cgse:vgf > Ai{
it follows thét Im‘S* ='6p1(S*j 2_6_ énd so;&hen‘fEs*. ;;_a criticaI'
,Apoinf Ay < S <168, | | |
See}T;B{e\HII féf a summary of thé,griticéi'pqiﬁfé“ah&“thénm
paraheter\ianéés in which they a?pear‘in thé nanéga;ivé»cong.j_Eor.
,.convéhiepéeiwe shall identify‘the noﬁn?gativg ‘(é?xi;XZ’Yj::ééhé5witH:}  

R4

o
A
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- - ey (9)

FIGURE 21 Position of S*

s . - :
B . . " . . g
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» 1]
V.3 :
| ‘ )\15_1 o 1—}2-6p1(>\2)<0 |
Ai?-l >\1.+ 6} 1 Alfdil 1->\2-<Sp1(>\2),10
E, ' yes “yes . | . yes - yes
- . - ‘. . Fy
EA .no ' yes yes yes
. 1 " B ) .
1 > ! O ~ 4
(no.if A.>1 |(no if A,>1
: . T2 2
E)\ : no ; o g _ : yes
2 yes if Azil‘ yes if’)\z',_il :
Egx. - _mo.. | —-mo | yes yes
. . : . . Ré
B, ‘no | . mo.. | o yes
TABLE VIII Critical Points in Nonnegative Cone

116
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4. THREE-DIMENSIONAL SUBSYSTEMS. In this section we shall consider ‘
the three dlmen51ona1 subsystems that result if one of the competltors :
‘or the predator is absent from the system

| If the predator is absént, i.e;i Yo = 0, then system  (3.4)

‘ reduces to:

s'(t) = (1-5(v)) - .lexi'(t)pi(S(t)).,
5 L |

0o

CVI X xi'(t)cvlf‘pi(.sl(.'t)‘)] S 1,2

wn
| v

Q 'and"xio >‘0 i1'= 1;2. S RN
. - v . N . .

'_But thls is the. same ‘as model (II 2. 1) with n=2 and so'all the

" results of Chapter II apply, in partlcular Theorem II 3. 4 and

.Corollary II 3 5.
' 3 , , »
e competltor xi‘,is absent, i.e.’ x;, =0, then (3.4)

ifeduces.t01'
| 's'i(t.t)',=' (- 'S(.t),) - jx.z'(‘f)P'zCSﬁ(“D.-’l"' ~'

‘ ~ ’ * _
Es (t) = X (t)( 1+p2(5(t)))

(t) - ~")'(tk:’ &

>h03v and yo 0

fSlnce the y equatlon decouples 1t 1s clear that 11m y(t) jb*iandgso.w5I,"“

{oa -

'_the model has the same. form as model (II 2 1}* **** w1th n‘=ii:;€“' 8

If competltor sz' 15 absent then (3 4) haS’the;ferh: }h o
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st(r) = (1 -S(‘t)) —,xl(t)pl(S(t)) , : .
> o xi(0) = x (0 (-1+p, (S(N) - ¥(B)alx (N,
(4.3) S ) , N : | .
| yr(t) = y(1+alx (), - » -
S0 > 0, X0 >0 and Yo 2 0.
‘The critical points of this system will be denoted by:
D= (1,000, ES = () 17,09, and Es, = (5*,8,y%) where

© '

6( 1+p1 S*)) and §* satlsfles l}{S* =‘%p1(S*) and will be

y*
con51dered crltlcal p01nts 1f and only if all the components ‘
i-are nohnegative.
System (4 3) descrlbes a food chaln where ,Y; eatsifxl.ZWhich ih
ﬁ‘turn‘eats S. . It w111 be studled 1n more detall in Sectlon‘é and a
“Tvlinear analy51s can be found in Appendlx 5 B.

For notatlonal convenlence we. shall 1dent1fy the nonnegat1Ve

'(S’leylp cgne w;th~»Ri‘,

~



- IV.S

5. PRELIMIﬁARY RESULTS. As for the models in the previous chapters,

the solutions of model (3.4) are well-behaved.

Theorem 5.1. All solutions S(t),cxl(f); xz(t) énd- y(t) of (3.4)

for which x..> 0, i = 1,2 and y0f> 0 are positive and bounded for

t > 0.

" Theorem 5.2. The‘simplex

" Proof:

i0

| .

'The proof is similar to the proof of Theorem II.3.1.

T o - 2
(S)xl’x2>)') S X Xz,}’ > 0; S+ z xl*')’ .= l
, - i=1
is 'a global attractor for (3.4). . - B

©
e,

Adding the equatlons in (3 4). and soivihg:the'réshiting“

.differentlal equatlon it follows that for any solutlon of (3ﬂ4)ﬁ

(5.1) :

oG

. where ’

P T T
‘ i=1l | . - s 1—1 . M

'I; is evident that.for all solutions of (3.4),  lim S(t) > 0.

. ) g ; t—*c,o‘
Coee Lo . .

- Just aSﬁin”ChagFer II,'it:willube'uSeful to cOhsider the‘~'

‘.;. “$ﬁbSimpIicQs >L b%.-L;'

H

L

Hc {1f2} | Thusg L= {1 2}

The next two results concern extlnctlon of a populat1on déé to J*‘ '

119 .
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*insufficient nutrient. The extinction is independent of either

- competition or predation.

Theorem 5.3. For all solutions of (3.4) .

+o), then lim xi(t)'=_0;

{re

(i) if Ai > 1 (or ki

» -

Gi) if 6 >1 (or 8

+®), then lim y(t),= 0 ;

tro

lim x;(t) 0 then 1limy(t) = 0.

T 1>

(i) if

Proof: The prdof of (1) and}-(ii) isfsimilar to the proof of
Theorem 11.3.2 apd' (1i1) follows;by intégrating 'y’(t)/y(t) = .

-1 + q(x,(t))  and taking the limit as t > .

s
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6. TRANSFER OF GLOBAL STABILITY. In this section we show that -
. there is a hierarchy'of criticaf points and that under certain conditions
global stablllty transfers from one critical p01nt to another as

_various parameter§ are decreased Thls is a prototype for the general

a

-case. In this instance, the global behav1our at each stage resides in
a single equilibrium point. -

‘Note that when A, > l,ythenl E; is the only critical point in

1

"the'nonnegative (S X ,x ,y) cone,:RA ,-and when A, =1, E, - and E
N 1 2 + o 1 1 Al

coalesce.

\Theorem' 6.1. If A >1, then El is globally asymptotically stable

for (3. 4) | |

| omia

Proof- Slnce {; s the result follows 1mmed1ate1y from.

‘Theorems 5 2 and 5.3.

«

_ Now we -shall maintain7 x1i+ § > 1, but allow Ay to decrease

. below :1;_ We shall show that as'.EA' appears ‘in 'Ri ‘there is a
transfer of global stab111ty from E1 to Ek.} 'ana 'E remains

1 1
‘globally asymptotlcaﬂly stable prOV1ded 1— § < A1< 1. In thlS

' parameter range 51 EAPA; and if, A? < 1 EA‘, are the only equlllbrlaf "
: RESHS _ ' o o
;ln'lRi, In order to prove thls we. shall use the follow1ng lemma

.. Q.“ -

1

:fLemma 6.2. Aésome-kx' < 1. Then for any solution of” (3Q4)'-for“which COR

| xld 0 11m &l(t) > 0. :

L

’Rroof::_SupP95§ lim Xi(t) e»o»r By Theorem 4 3 (111), lim- y(t)

Sl . \\

BREE ¢ RO U O 1'_chie'n, lim xz(t) '=:f0f’jand Lim_‘. S_('t‘)":f= 1. _"I_ff A, < 1, ,athe_ri

,'e?AZ f:'. “tjm 2" [ s

. L
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-

“1im xz(t) =1.- AZ and lim S(t) 2. "In either case lim'S(t? > Ai

St . toe ST

exiéts. 1But; x'(t) X (t)( 14-p1(5(t)) “(t)h(x (t))) and so. L

xi(t) > 0 . for suff1c1ently large . t,. contradlctlng 11m xl(t) =0.
‘ . : tre '
~

Therefere' Tfm'“xi(t) >0.

4

e o ' S 0

Theeiem 6.3. 1f 1 - § < Al
. . . 1

_stdble for f§.4)' with respect to all solutlons w1th initial COﬂdlthnS

;isatiefying_‘xld‘> 0. )

.'Proof: .Let’ (S(t) X (t) X, (t) y(t)) be a solutlon of (3. 4) and let

' 'Q"denote lts‘omega-llmltfset, ‘Since - 1 - 6,<.A1, 1, EXL"ls locally -

L asymptotlcally stable- for (3.4) (see AS.A). Therefore _E e 9

1mp11es 0= {EA-}g~ By Lemma 6 2, 11mnx1(t) > O and SO there ex1sts
1 : N t+w »

1

ff | be the solutlon of (S‘f) 7through'Lp' aﬁgvdenotg.its
Slnce .cl O(P) c Q if Q,Qto Vthen Ey .:e.Qv _h‘;!;v
:V(II 3 5) If/ y ¢,0 by the precedlng.arguminttlt o
_oLshow that lim y(t) . v}  i,'e P ‘t,;?" ’

A T S o
\

T R T TN

s -

']by | '.~and Theorem 5 2

(6. . -(_’g_;_;igsgz el 1 for'all t>0, and '~

W

‘ffflf 11m S(t) < Al then 11m x (t) 0 contradlctlng Lemma 6 2

< 1,‘ then E is gldbally asymptotaeally'

'LL%) e Q w1th x SYO Let y(t) (g(t)é§1(t);iéﬁt),9(t1);

o122

"fnlf;zd»t e,? Then e;é Slnce ? e Q and Q < L \fm'

0

.

”‘56,<'J or the result follows by Theorem 5. 3 (11) Define -LT_!fu
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But Iim S(t) i_li implies. that S(t) > ll for'all large. t . or there. -

_exists‘ T > 0. such that l1->-§( ) 1 - e/2. BY'V(ﬁelll S ~”'
X (T) <1 - S(T) < 1 - (A ‘-e/2) 6 - e/2 But then y (r) < o
Y(T)C-l'tq(é- e/?)) < 0 .\ S(T) < ll 1mplies x (r) < 0 and |

x5(1) < 0 ft Therefore, by (6.2) s‘(e) > 0 and so s(r) > Al —:5/2' R o

forlall ot Z-T. In any caseyat follows that S(t) > ll - e/2 for all

‘,sufficiehtly large_ t and so xl(t) 5'6,— e/2 for ‘all large’ . Th;S'ﬁ
iimplies' 1im-9(t)h= 0 .. The result follows. e _ | S T
o oo : ’; . B ‘ _ R T -0

v,

o Next we shall assume that ?2- 1s suff1c1ent1y 1arge s0 that" :

. v" - k '_‘ . S E . ' * : - .
Xy : l- 2vu,§P1(X2)a<_0_. Thls is equavalent to B Az However o
we shall allow the”sum' Xi:+ 8§ to,decrease. When Al‘t‘6e=,lj.then -
- Ey Cand. ESQ coalesce,aite. LS¥ =) il and y . Theréfore.cohdi-n“' ,
Ay - . T

: tion:JCAS,A.S), (i.e. (Gq (6) -1)/6-+6p (S*) > 0) holds,,srnce .
: pl(l ) > 0 by (2 4) By the contlnuity of the roots of the character— :

- 1st1c equat1on as ' a funct1on of. 1ts coeff1c1ents, 1t follows that as.

o the sum Al + 6 detreases below ,l,_eEs;fvls at least 1n1t1ally

L locally asymptotlcally stable (see (AS A, 2) and (AS A 3)) At the -
same t1me EA‘ -loses not only 1ts global stab111ty but also 1ts local

S

Stablllty 51nce lleﬂxi:gﬁj,’1mpl1es that the elgeﬁwalue 1-l + q(l- A )

‘fi is pos1t1ve (see AS A, C)
: . ’ ; \

In what follows we shall see that/;n certa1n spec1a1 cases ES

e

"'-ﬂf;: pleS up the global stab111ty lost by E o nd malntalns 1t prov1ded

e ffandxor 5 to decrease, once l‘- lzf— Gpl(l ) —'0 Esiﬁ and E

'ﬂg-coalesce.; As these parameters decrease further ES* loses 1ts local ":‘“;’

1_

2Q- Gpl(l ) < O In thls case, 1f we aIIQW' lz

7-+'5 < 1 and - x

el
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stab111ty since then S* > AZ , and there isva‘transfer-of global -
stab111ty to E That this n1ce sequentral transfer of global -
'stab111ty from oie.crltlcal p01nt to another 1s not always thevcase
w1th general’ monotone k1net1cs will ‘be demonstrated by an example 1n.
Section 9. |

In order to prove the global stab111ty’resu1ts, welW111 use.

| ”:LaSalle s exten51on theorem [47] wh1ch we shall state here for the

general system of dlfferentlal equatlons S

s h‘d X' = £(x) .

‘»Here f(x) is a vector'“alued functlon continuous'in X for x.e ¢ G

'hf R : Before we state the theorem we

\ (

~ where G lS an. open subSeA

requlre the folldWlng def1n1t10n Let V be a contlnuously

dlfferentlable fu on ‘ma 1ng R to Rf. Then we say -V 'is-a |
ﬂi,} PP , % .

wLyapunov functton 1n G for (6 3) if, the trajectory derlvatlve w1th

'drespectvto. (6.3){ rV grad V f < O on G :f'f . “‘f;, -;'f Sﬁ):

iTheoremAé 4 (LaSalle S. Exten51on Theorem) If V rsha'byapunoyl»d°
.thunct1on 1n G for (6 3) then each bounded orb1t y c G P
'”;approaches M where M is the largest 1nvar1ant subset of
.lf¥iX€dG wn ,hyfﬂ ¥;th§,5fih{:r3"
The follow1ng Theorem shows that in the spec1a1 case that

"’fpredatlon 1s descrlbed by a 11near functlon of prey concentratlon 4

;pk(iﬂbi q(xl) =X /6) and substrate uptake by each competltor elther

u i;;:by~l1near Cl'é;t (S) = S/A ) or by Mlchaells-Menten

ir;(p (S) m S/(G(m - 1)**8)) k1net1cs, global stab111ty transfersv
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from EX to Eg, as Xl + & decreases below 1 and is maintained
1 s .
by ES* in the parameter rénge xl +&<1 and 1 - XZ - 6p1(kqj < 0.
. : L
|
Theorem 6.5. Assume that Al + 6 < 1. If X50 >0, ‘assume that

1 -1, - Gpl{kz) < 0. Let q(xl) be linear, i.e. q(xl) = xl/é

and assume that each p;(5) i = 1,2 is either linear, i.e.

p;(S) = S/, or Michaelis-Menten, i.e. p;(S) = n.s/(, (m, - 1) +S).

Then ES*

to-all solutions for which X10 0 and Yo 3”0.

is globally asymptotically stable. for (3.4) with respect

Proaf: Define the function V:int Ri ~ R by

~

o x
. S , 1
= — *  _ * —_ - - R
(6.4) V(S,xl,xz,y) S-S S* n X + k1 [xl §-8 n 3 ]

' v vk _ y¥ _):__
+ k2x2 + k1 {y’ y* - y* &n v ],

[}

where the constants kl’ ké € I{\,aré assumed to satisfy

>

(6.5) 8(S*-8)p (S)/S + kl(a(§1+p1(5)) -y*) =0, forall $>0,

N

. : 6:‘4" o
and if X50 > 0: N ¢ &

(6.6) (S* - S)p,(S)/S + =k2(-|1’+1 p,(8)) <0, fordll §>0.

I1f such constants k1 and k2 exist, then the:time dqrivative of" V

'ibmputed along solutions of system (3.4) 1is

ke

125
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1t

V(S,xl,xz,y)

s [0 P AR
<1—§~>S' + k1<1_‘x1.>xl+k2x2+kl<1—y y

x, (8 (s* - $)p,(5)/S + Kk  (8(-1+p () - y)/8

* X, (5% - 8)p,(8)/5 + k(-1 + p,(5))

+ (S-5%)(1-8)/5 - k (8(-1+p (5)) - y*)

1]

x, (5% - S)p,(8)/5+ K, (-1 p())

+ (s-s*)(1-s-ap1(5))/s, by (6.5)

5

<. 0,

»

since 1 - S* - épl(S*) = 0 and either X509 = 0 and so xz(t) =0
for all t or the coefficient of the X, term is nonnegative by (6.6).
‘Thus,b%f ki ~and k2 - exist such that (6.5) and '(6.6).Ihold, then"

V is a Lyapunov function for (3.4) in'the int Ri . By Theorems 5.1

B

*and 6.4 every solution of (3.4) for which x;4> 0 and y, > 0

©

épproaches H where Hh ishFhe largest invariant seét in

| {(s,xl,;;z,y) e Rl:s = sg,"': =0, x 20, y 20} But then

H= {Eg,}, since S=S* and x, =0 imply that |

- S'.= 1 - S* - xlpl(S*) = 0. Therefore, .xl -5 ‘and by Theorem 5.2, ;
Y=yt |

Thé result follows provided we can show that there exist

constants k1 and k2 such that' (6.5) and >(6a6) hold. If

bl(S) = S/>\1 thgﬁ take k1 = 1. Then '(6.5) ‘becomes,

s(s* - 8)/y + (8(-1%8/x)) - 8(-14,5*/x1))'¥ 0.

o

P
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If Pl(S) = mls/ckl(ml-l)-is) take k, = ((mi-l)xl-+5*)/(A1(ﬁ1_1)).

In this case (6.5) becomes,

6(5*-S)m1 .C(ml—l)xl‘-si) » ‘ mls mlﬁ* .
DS T A m 1) 5(“1% -1 +'s> - 5(‘“\ (m -1)+s*>
141 M1t S e 171

- § (S*-S)m, s((m -1} + %) ml's(xl(ml-i) +5%) -m S*(A; (m 1) ¢ s)
= Al(ml—l) rar b\ 1(ml—l) .(Al(ml-l)-+S)CAl(m1—l)+ S{j

6 (S*-S)m; sm A, (my -1) (5-5%)

=3 L 1)+s Al(ml SICCIER)

o

=0.
if pz(S) = ?/AZ': 1ef k2 = 1. Then (6.6) Becom;s,
| (S*-8)/xy + (rl+-S/A2) = (S* ;AZ)/AZ <0 D
\ since 1 Ay - 6p1(>\.2) < 0 implies th‘avt 5* < xz’.' If pZ(S)'}

mZS/O\Z(m‘Z-l)+S)f let k, = my/(my-1). Then (6.6) becomes,
¢ -

(s S)m < my \ f m,$ '
A, (m, —1)+S m2—1>_ 1+\>\ ,(m, 1)+S _

(s* - S)m, m (sx)(m 1)
(m -1)+s M- 1 )\z(mz—l)fs

L5

Qx_ ) . '« . .
_M<O :
Ap(my-1) +5

The next theorem also concerns the transfer of global
stahlllty under the assumptlons that predatlon is 11near and substrate

uptake is. elther linear or Mlchaells Menten. In this case stablllty
N ’
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passes from ES* to ék as 1 - AZ - dpl(kz) increases above zero u
US* ) | , : 3
and E appears in the positive (S,xl,xz,y) cone and EA ~remains

)‘2. 2

globally stable_provided 1 - Az - Gpl(k2) > 0. (Recall that when

1 - AZ "Gpl(ké) =0, ES* . and E>‘2 coalesce.)

Theorem 6.6. Assume that 1 —/Xz - Gpl(kz) >0. . Let q(xl) = xl/é :
and assume that for each i = 1,2 either pi(S) = S/k.1 or. |
pi(S) = miS;(Ai(mi-1)~+S). ‘Theni éxz iS‘gldbally aSymptogically
stablé'with.re§p§ct té solutions of, (3;4) for which xio > O,Vi“= 1,2
and y, > 0. (Recall thé; :éx2'=

, (Kz,ﬁ,xz,y)‘ Yhere
Xy = 1- xz- spy(A,) and y = 5(-1-5p1(x2)).)

2

Proof: Define the function V: int Ri ~ R by

. . X.
. . : S . __1_
‘(6.7) V(S’XI’XZ’Y) = S - AZ - Az Qn»xz-+ k1<x1r §-8 4n 3 )

where the constants kl and k2 are assumed to satisfy’

\

(6.8) &(Xé-—S)pl(S)/S + kl(dﬁ-lw-pl(s)) -9} =0, for all Sa> 0, '

and T

#

1(6.9). (A, > S)p,(8)/8 + k2(-1+-p2(s)) =0 3 for all S > 0.

Provided that'SQCh constants exist, the time derivative of V. along

" solutions of ~ (3.4) is
20 ‘ \

y
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<

_ . | _ - , D A
V(S,x,,X,,y) = 1-‘3 S'. + Kk & x! +k O-—l x'+l<<i—X>Y'
N S S ' 1 X 1 2 X, 2 1 y

1

(0 S99, (5)/5 + k (5 (-1 + py (8)) = 3)/6)
+ %, (0 - )P, (8)/8 + ky(-1+p,(5))]

+ (S -32)'(1 -5)/8 -k 8(-1+p; (8)) - kyx (-1 p,(8))-+kyy

520 - $)/s - 5p,(8) (S-1,)/8 = XD, (S)(S-2))/S,

by (6.8) and (6.9),

n

(s-2,)(1-5-sp (S) - %,p,($9))/5

< 0.

B J

" Therefore if kl‘“and.;kz exist such that: (6.8) ~and (6.9) hold,

.V is a Lyapunov funCtion”for” (3.4) in int‘Ri-< and so Theorems 5.1

and 6.4 1mp1y that every solutlon of (3.4)‘ with xib >0 i=1,2

and Yo > 0 approaches H where H 1is the 1argest invariant set
4

in G-{(s xl,xz,y)eR S = A, Xiz_O":iél,Z and y > 0.

2 b

implies that S' = 0 and x2 =0. But ‘then X, is .

2

a

"_conStantnandfsoﬂsince ' =1 - >2 1p1(>\ ) - =0 it foliows,

,thatﬁ Xy is'cbnstant Therefbre"xi’# 0 4wh1ch 1mp1ies that x; = 0

1

or nv~1.“.+.p'1(>\ ) yh(xl) =0. ,If x; = 0, then x) = 1 -}, _A.a_iﬁd‘

e

0 since S + x1 + x2 +y =1 by Theofem 5.2. If xj.# 0, then
= ( 14—p1(xz)}/th ) a constant and so xl = §- énd'v
x2 =_; - X, : dpl(xz) - Thergfo;g G N {E Yu {EA } . . However E,

IR R 2

a

_is locally unstable and has the 3'—d1men51on_al_ stable manifold
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W (E, ) = ((S,xpx ,y) =0, x,>0, y>0,8S> 0}
A, 122 2 2 >

L)

‘and so no trajectory with X:0 >0 i=1,2 and Yo > 0 can approach

E, - Hence ﬁk is globally asymptotically stable for (3.4)
2. ‘ :

| .
provided x;, >0 1 =1,2 and-y, > 0

The result follows provided we can show that there exist constants

k, and k, such that (6.8) and (6.9) hold.

it

If p (S) = S/A let (k= 1.

If -pl(S) =-mls/(xl(m1-1)l+s);a1et.-kl é ((mlfl)X1+-Az)/Cxl(mlfl)).
Bt P,(8) = 5/35 let k, ;'1',‘ )
If p,(S) = myS/(y(my=1) +5)  Let K, = my/(m,1) .

| Suff1c1ent condltlons for the global stab111ty of cr1t1ca1 p01nts

of .(3 4)  are summarlzed in Table iX. That this orderly transfer of

global stab111ty from one cr1t1ca1 point. to another (as var1ous
.lrparameters are varied, maklng condltlons favourable enough for a new
_populatlon ‘to surv1ve) 1s not always the case for general monotone:
‘dynamlcs, w111 be 111ustrated 1n Example 9 1. ? Flrst we shall see what
can be’ sa1d for general monotone dynamlcs Before we con51der the

»

‘ﬂentire‘food web (3 4) - in Sectlon 8, we con51der a 51mp1e food cha1n

g

in the next. sectlon : ThlS food chafn is 1nterest1ng 1n its own’ rlght, .

'ofand we shall need some 1nformat10n concernlng it in order to analyze the

| food web. o -f ‘ff' ', ;."~' E a' "f: b
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Y . x.u. N 5 . ‘ »
_Critical Point *Conditions for Global Stability
El,'. )\1 >1
L . - : ,
EA .j : AI <1 Al + 8> 1
1
. Eg A1 “5_ <1, 1=y -op 00
!
Exz e L=y = 8p () 2 0
.* ! - .
q assumed to be Lotka- Volterra
p assumed to be e1ther Lotka- Volterra oT" Mlchaells Menten for ,

TABLE IX Suff1c1ent Condltlons for Global Stab111ty

» of Cr1t1ca1 P01nts of (3. 4)
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f,asymptotlcally stable as long as it. 15 locally asymptotlcally stable
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7. A SIMPLE FOOD CHAIN We first encountered the following food chain

'1n Section 4 (see system (4;3))-where we considered the three

gdlmen51ona1’subsystems of the food web - (3.4).

1 - S(t) - x(t) pCS.(tD’ ,

S'(t) =
| Cx'(e) = x(0)(- 1+p(5(t))) : y(t)q(x(t))
(7.1)
| y'(t) = y()(- 1+-q(X(t)))
S b < '

0’ and Yo 2. 0

Ql

We drop the subscrlpt 1 here (except'for' X.), since there‘is no -

,amblgu1ty, and- we use the nmotation for the cr1t1ca1 p01nts, L
(Ei, 53 s and Eg ) .1ntroduced for system (4. 3.
1

System (7 1) has been studled by others (eg. [12 19, 27 44,68, 77])

Except forButler, Hsu and Waltman [12] and Gard [77] most of ‘the

.'prev1ous work has concerned 1oca1 stab111ty ana1y51s, numer1ca1

solutlons or exper1menta1 results The local ana1y51s is. summarlzed

“in AS B.

Note that all the results in Sectlons 5 and 6 apply to (7 1)

Wlth the obV1ous mod1f1cat10ns i partlcular there is a transference

'of global stablllty from E? toi“Ei ;'as 'Xi~ decreases below 1
. Ay .
‘Mand at least a transference of local stab111ty from E3 - to Eg*"as
1“‘ - '

48 decreases below 1. We conJecture that Eg( 1siglobally

fﬁand that 1f it loses 1ts stab111ty 1t does so via a Hopf b1furcat10n

':1n Wthh the b1furcat1ng per10d1c orblt pleS up the global stablllty

In the spec1al case, that the functaonal response .q’Fis ,ii,«v;

i

v

1}
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Lotka-Volterra and p satrsfles e1ther Lotka- Volterra or Michaelis-
Menten kinetics, hy‘Corollary_é.é, EE* is globally asymptotlcally
stable provided ’Al +§ <‘l.

Assum1ng the. functional responses ’p> and q both satisfy
M1chae115 Menten k1net1cs, Butler et al [12] uée the Poincaré
‘crlterlon (see’ eg. Coppel [17]) to show that Eé is globally

_ asymptotlcally stable whenever it is locally atymptot1cally stable.

Since E3 is at least 1n1t1a11y asymptotlcally stable as -Ai_+'6

S*.
_decreases below 1., this_implles that in thlS case, there is a transfer
of global stab111ty from E to Eg* . They also show that if Eg*

- is ever unstable then there is at least one perlodlc orbit surroundlng
it. They conJecture that if Eg is unstable then the limit cycle is
unique and hence must be a global attraetorrwithvrespect to noncr;tleal
': orblts w1thaposlt1ve 1n1t1a1 condltlons Thoughfthey‘do not comment,
’by thelr method of proof they actually show that 1f ES . ioses
stab111ty byfdecre351ng- Al +.6 approprlately, then the‘1nequality'
(AS B 2) must be reversed and so at least 1n1t1a11y.there is a
unlque perlodlc orblt Wthh is globa11¥ attractlng w1th respect to
noncrItlcal orblts W1th p051t1ve 1n1t151 condltlons ' In thlS case, then,
: here 1s a’ transfer of global stablllty from Eg ' to a blfurcatlng o
;perlodlc orbrt (as tl + 5 decreases)
| Gard [2?] on the other hand, con51ders a more general model than
(7 1) Wthh reduces. to (7 1) 1f the functlon g(x) 1n hls model 1s :
aken to be - 1-x and ‘the parameters a;b,c and d in’ hlS model are_‘

. all equal to 1 ' In thls case Gard obta1ns a weaker form of per51stence

| of (7 1), namely that prov1ded the 1n1t1a1 condltlons are- p051t1ve and

P J :‘3‘:‘.“

B2

(93]
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+§<1, then lim of each'component of the solution is positive. He
o
also shows that there is a,unlque interior equ111br1um and if the
equ111br1um is unstable there is a nontrivial periodic orblt with
‘trajectory in L, 'n R3w
R {1} = 7+ ,
In this section we strengthen Gard's result for (7.1) by showing

1im of each component of the solutlon is p051t1ve using a techn1que

tro
similar to the one used to prove Theorem-2.1 in Freedmen and Waltman v

[22]. We also prove-several results about (7.1) which w111 be used
in Section 8 to show’persistenoe of (3.4). These reSults are 1nter-
esting in themselves since they concern the eventuai behamiouf of
‘ solutions of (7.1)'., Then we: 1nvest1gate the propertles of per1od1c
orbits if they exist' Flnally we apply the P01ncaré ¢riterion to

I?.l) to determlne results for global stab111ty Of\ E3
D . b
* Theorem 7.1. Let y(t) =‘CS(t),x(t),y(t)) ‘be .a solution of "(7.1).

Then ,

Voo
(]

(i) lim S(t)

_t-.»oo

(ii) if A1;<_ 1 and x,> 0, 1im x(t) > 0.

(iii) if a, + & <1 and xj, y, > 0, lim y(t) > 0.
Proof: (i) is obvious. : B B ,
(ii) Let ‘Q,hdenote the omega—limit set of,:y(t}. By =
Theofem;S{I ac Ri is compaott~ |
Assume Ay < 1 and x> 0. Suppose Ei_eeﬂ'. Since K 1,

. =
Ei is an unstable hyperbollc cr1t1cal po1nt (see (AS B)) w1th stable

manlfold W (QS) = {(S,x y) S > 0 P =_0 xy > O}. | Slnce

-y (0) £ WS (El), Q #‘{El} . By Theorem II S 2, there ex1sts
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€ (W (E )\{E }) nQ. By Theorem 5.2, Ps'e Qc L{l} ;ba poSitiyely o

invariant set. But. ‘then (see Figure (72(a))) -(PS) ¢ R; , a

_contradiction since P° e Q implies that cZ(O(P )) c Qc R

Therefore E3 é Q.

Suppose -Xl <1, Xy > 0 and . lim x(t)_é;O . Then there exists
’ O T _ L

. (5.0,7) ¢ @ and so c2(0(P)) e.@ . . By Theorem 5.3 (iii), Ei ca,

a contradiction. Therefore - lim x(t}~>f0; ) |

(ili) ’SUppose Xl + 6 < 1 0’ Yogﬁ ?‘e By a similar argument to‘

the one used above to show E é Q , it can be.. shown that E £ Q.

Mo :
: Assume lim y(t) , Then there_exists Q = (§,x,0) € @ where x>0
. N tw ‘
~since . 11m x(t) > 0. by (ii).f By Corollary‘II.S;S, Ei € cQ(O(Q)) c Q
t-*‘°° o ) . ) 1. .
a contradiction.  Therefore 1lim y(t) > 0. s :
: & e

0

We have therefore shown that no'matter how-tenaeious the,predator;

prov1ded the substrate concentrat1on is suff1c1ent for the- prey to .
survive in pure competltlon it will surv1ve predatlon in the sense that
{‘ 1ts concentratlon rema1ns bounded away from zero for all pos1t1ve t1me

‘:To ayo1d ext1nct1on of. the predator\ however, the predator must be |
va_ eff1c1ent enough l{et ;xl + 6 < l , In th1s case the food chaln

pers1sts On the other hand it 1s p0551b1e to show that the more -

- Ux

"'.eff1c1ent the predator (1 e- he closer 6 1s to zero), the smaller the

..5

prey concentrat1on is "on the average" and even. though the prey

:'concentratlon is bounded away from zero the closer that bound 1s to

eiero Thls 1s bas1ca11y the content of the next . lemma 1n wh1ch we

:clarlfy what we mean by "on the average " We shall also requlre thlS
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. 1emma and the follow1ng as technlcal leémmas for our dlscu551on of

-per51stence of the food web in Sectlon 8. However, before statlng thel

1Y

' next lemma we thwoduce the followlng parametrlzatlon of (7. 1)

s'(t)° =1 - S(t) - x(t)p(sct))
e = x@( 1+p(sm)) - y(t)qéCx(t))
(7.2), |
| ey (t)(1+q5(x(t))) °

’SO’ Xq and yofi Q.

- We assume that the functlon q6 satlsfles all the usual assumptlons on .
. o v :
qf~(i.e}e (2 2) 2.3);- (2 6) (2 8); and (3,5)-(3.7))_ In add1t10n we

assume - that
+(7.3) - vlim qéfﬁ)'= f<#:'for ewery"fi§ednhET> 0. . R

'We show that 1f q satlsfles Lotka Volterra% Mlchaells-Nenten ar .

ﬂh-multlple saturatlon klnetlcs then q can be pa{ametrlzed 1n thlS way

. + M . R
,In these-examples 8 %'O» 15 equ1valent to the max1mum growth rate
L , _ A S
' 5tend1ng to. .o '7;, ’u: EE S§h o
v - B S IS L o \» . ’ \ —1‘ N » . ’
If q' 1s Lotka Volterra then q(x) = nk.afb¥ some'posftive :

.

3 }fhconstant n(é) > 0 Then qd(x) -»x/& : 51nce then q~(6) = 1 B't*j'.';g,-

B R 3 640+ o 6+Off,'-ﬁfyA'~'5«'” f’,ségf ‘7”'f"'"
”EziiLjf=i:q§_ satlsfles M1cha§%¥s Menten k1net1cs, then q(x) ;f; }n;

'*foraanY'flxed; é*§ 0, lin qé(s) lin /s =

A

(a+6)x and.hhhf

:hl?where n(d) and a are P°51t1ve constants Then qé(‘) 6(a+x)

S IO R
T.se‘for »e > Q flxed: 1ﬂ_q5(€) 6(a+g) + A R B
:”'QIS%leﬁv_“fﬁ*Qf, SN fv"f°f}yigf'gf et
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y -
. é

Ik 'q"-satisfies multiple satufation kinetics; (e;g;

(x) (nx )/C(K+x)(L+x)] where' n(s), K and L _are p051t1vp constants),
'then qé(x)-[(K+6)(L+6)x2)/(6 (K+x)(L+x)) and S0 for £ > 0 flxed |
:711n1+ qé(s) 11m . C(K+6)(L+6)52)/(6 (x+e)(L+e)) o : " |
s-0" 0 8+0" 3 o T

oo . o ; s : - :

Lemma 7.2 . Let € > 0 be glven Assume that Xiv+ § < 1. Let

(S(t) x(t) y(t)) be any flxed solutlon of (7 2) ' for'which Xy 7 0

and yo 0. Choose > o, L>1 and T>0 such that ’

.

% < y(t) < L for all t > T' where _l: and T depend on 6 and 7[

:the-solution. (Thls is p0551b1e by Theorems 5.1, 5 2 and’ 7 1 )'”Select .
‘?.any T >b2n(L/£) and‘any s > max(T T) , Deflne
A= (t é'[s~T,s] x(s) > e} a-= u(A), the Lebesgue measure of A

Jd

and :d'='%-n(A); Theng4a‘<‘2/q5(e).
Proof: Define- AS .to;bef“[sl;T;él\A,' -_‘it o

CIf te A then yI(R)/y(th > -l+qe).

Lo

I et then @2l (T

.4 .. .
.

“QIntegratlng the y equation.frdm s-T to 3 yleldS':-

= zn(y(S)/y(s T)) f e 1-+q<5e))du . f "— 1du

. RS
,‘\_ S “h.

( 1+-q (e)]a -'(Tff“i%,;:iifﬁia':""f

AT TSIR

A A

J”::Tﬁéféfgfe ”a < 2/q (e) 'since. otherw1se,_r

s _f>;’rijn_c’yics')z-yf“ti’s;f-éira); S1
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a contradiction.

U
We can also show that if & >,0 is sufficiently small then
"on the average" the S-compongnt of any solution eventually remains
close to one. This is made rigorous in the following lemma.
Lemma 7.3. Choose e sSuch that 0 < g < 1/4 and choose L > 1. Let

M. = maxCL,p(L)) . AsSuﬁﬁ,/é > 0 1is sufficiently small so that

A8 <l and qé(e) > 4(1+M/ek)//e‘.' Let (S(t);x(t),y(t)) be any

_ fixed solution of (7.2)<S for which Xq > 0 and Yo > 0. Choose

>0 and T > 0 so that

g<y() <L,

0 <S(t),<L, «and
{

0 < x(t) <L

for all t z_T . Select
T > max(ln(L\z),Z/e,T)

such that

S(t) <1+ eM for all t>T.

For. any s > T, define ~

"B ={te [s-T,s]:S(t) <1 - (1+k)eM} where k+1=1/Ve,

: %
: 1
b=u(B) and B =7 u(B) .

Then B<6@ﬂ

139



Iv.7
Proof: Defipe
A
a
Let BS denote
G1 =
L6y =
Gy =
G, =
Then;:
S'(t) > 1 -
§'(t) > 1-
St(t) > 1 -
apd s'(t) > 1 -

since s 1is 'chosen su

Integrating the

S 14U

= {t e [s-T,s] :x(t) > e},
1
= y(A) and a = T—u(A).
A . n
[s-T,s]\B. Then [s-T,s] = v G.1 where
i=1 '
B n A (and so u(Gﬂ >b-a),
Bn A (and so u(GZ) < a), \
B n A® (and so . u(GS) <T),
B n A (and so u(G4) < a).
(1- (1+k)eM) - eM = ekM for t e G,
2 .2 :
(1- (1+k)eM) - M° > -M" for t ¢ Gy,
(1+eM) ~ eM > -2eM for t e C3 y
2 2 '
(1+eM) - M = -eM - M™ for t e G4,
fficientiy large. :
S equation from .s-T to s yields

‘

M> S(s) - S(s-T) > ekM(b-a) - Mza‘;:ZsMT ;'(eM-sz)a,

Therefore,



\

~ Lemma 7.2 since q, () > 4(1+M/ek)/Ve .
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b < a(l+1/k) + (1+2Ma+ 2eT)/ek, .or

™
A

20 + 1/Tek + Ma/ek + 2/k, since k > 1 if 0 <e <.1/4

< 6ve

since T > 2/e by selection and for 0 < e < 1/4, k > 1/2 Ve which

implies that 1/Tek < /& and 2/k < 4/e. Also, 2a(l+M/ek) < /e by

0
Since by Theorem 5.2, S+x+y?> 1, it if’evident that if .the

hypotheses' of the precgding Lemma hold then "on the average' the

y-component of.ény soiution eventually remains close tO Z€ro provided

§ >0 1is sdffiéiéntly small.

Next we use a phase portrait analysis to determine some

'propertiés of periodic orbits for (7.1) “when they exist. In order to

do this we note that by Lemma 5.2 the simplex

F{l}z {(S,x,y) : S,x,y > 0; S+x+y=1

is positively invariant and globally attracting for (7.1). Since the
, | a
omega-limit set of any solution of (7.1) lies in L{l} it will be

»

useful to consider (7.1) restricted to L{l}:

S'(t)'= 1~ s(e) - xtt)p(S(t))

(1) = x(0)(-1Fp(s©))) - y(®a&x®),
(7'4)L [N . . .. , |
LY y' (1) = y(©(-1+ax),

S0 * Xq * Y T 1, So,xo,yo > 0.
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This “s¢stem is equivalent to the two dimensional system obtained by

substituting x(t) =1 - S(t) - y(t) > 0:

s'(t) = 1-s(0) - (1-8(0) -y@Ip(s(t)) = £,(S.y)

(7.5) v (0) = y(©(-1+q(1-S() - y(£) = £,(5,y) ,

S >0 énd‘ So* Yo < 1.

0’ Yo

The phase portrait for (7.5) in the case that Al.i 5 < 17 is
given in Figure 23. The equations of the substrate and predator

,

isoclines are

(7.6)  y(t) = 7£1"S(t))(1i1915(t)2) and 1 - S(t) - y(t) = 8

p(S(e))

respectively. It is now possible to prove

THeorem 7.4, Assume 'xl % § < 1. Then, any nontrivial periodic

solution CS(t),x(t),y(t))’ of (7.1) (or (s(v),y(t)). of (7.2))

satisfies:

7.7y A1’§:§(t) <1,

(7.8) _ 0 < x(t) <1 -\xl,
(7.9) , o 0 < y(t) <’1.—>(A1+'6 v”

Proof: By Theorem 5.2 the omega-limit Set of any solution of (7.1) N
lies entirely in the simplex L{l} .. Thus any periodic orbit of (7.1)

« L .
lies entirely in L since the omega-limit set of any periodic orbit

{1}

is the periodic orbit itself, Thus it suffices to consider
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y | %

1t . N
- .~ --- substrate isocline

-.- predator isocline

) ‘ part of the unstable

"" manifold of ,Ei

1

) l—(xl+6)

<

\\N.
™
A

)

'I

A ,'. .\C‘é“ i: | PR
Y N O
.I = :. & -~
> — > «
A 1—6 1 S

ﬁIGU%g 23 Phase Portrait of (7.5) for 'xl'; § < 1.

Any per10d1c orb1t must 11e inside the region marked out by

).
1

> wm

the dotted 11ne (part of the unstable manlfold of E
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(7.4)L or equivalently (7.5). But this is a 2-dimensional system
{1} ‘

(refer to Figure 23). ) . e}

Assume y(t).=(S(t),y(t)) is a nontrivial‘periodic solution of
(7.5) and x(t) = 1 - 8(t) - y(t). For all = > 0 such that

S(t) < )\1 s

s'(t) > 1 - 8(1) - (1-5(x) - y(0))p(h) = y(©) > 0.
, : b .
(Note y(t) # 0 since otherwise y(t) = Ei y contradlcting y ié
, , L

a nontrivial periddic orbit‘) Therefore on . y(t), S(t) > Xl for all t

:FOr all 1 > 0 such that y(t) > 1 - (Al + 6)(‘and S(t) > Al’
y1) = y@ (1 a- 800 -y()) < 0

since 1 —vS(r) - y(t) <1 - Al QVCl; (Aiw-é)) ;“S‘ﬂf Therefore on iy(t),
y(t) <1 - (A +8) forall t. '
. That S(t)'< 1, 0<x(t) <1c Al

for all t now fqllows,.slnce Y ¢ L{l} ~and - the S-axis‘and;the

and y(t) > 0 oﬁA-Y(f)v

"line y + S = 1 -are invariant.

We are now ready to apply the P01ncare crlterlon to determine
more 1nformat10n about the existence and stablllty of perlodlc orblts

T .g7£9) and hence ' (7.1);

"Lemmé‘7.5."Let (S(t) y(t)) be an arbltrary perlodlc orbit. of ’(7.5)

- with period " w .’ If we. assume h 1s dlfferentlable and we. deflne
o= [ 5 (BLym) + 5= (B)L.y(e))de, |
g s Sy

iy,
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- then
(7.10) 8= - [ x((p'(S(r)) +y(t)h' (x(r)))de,
N " O . N

. wﬁgfe x(t) = 1-5(t) - y(t)‘ilo.
Proof: & = f {[('1 +p(s(t))) -._X(t)P"(S(t)):l _
0 A .

A3

y [(_1} q(x(1))) - y(t)Q'C‘X(t)D] g de

o - f {[(f:é ; + y(t)h(x(t)]> x(t)p (S(t)j}
B o : (,
. [Y L y(t)(h(x(t) x(on (x(t)))]}
‘u) ‘. . | )
= - [ x()(p"(s(t)) +y(t).h'(x(t)))dt
0 o
sinee fw x (t) dt = f PASAIE (t) dt =0 sihce x(t) an Y(e). are’

periodlc of period w.

Theorem 7.6. :Assume that‘ h is differentiahle‘and that Eg. is

locally asymptgtlcally stable. Suppose also that p' (S(t)) +

. 145

(t)h'(x(t)) 50 whenever 0 < x(t) <1 xl S0 < y(t) <1 - (A v 8y, .

and Al < S(t) < 1 Then Eg “is globally asymptot1ca11y stable

;;wlth respect to solutlons of (7 1) 'Whlch satlsfy XO yO > 0 andx
S200 |

.

Proof - Recall, that by Theorem 5 2 the omega 11m1t set of any solutlon

" of (7 1) lies entlrely in the p051t1Ve1y 1nvar1ant 51mp1ex L{ } "
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~J

and note that if (S(t) y(t)) is a-solution of (7 5) then

(S(t) x{t), y(t)) is a solutlon of (7. 1) where x(t) =1 - S(t) -y(t).

Also by Theorem 7.1 any solution of (7 1) for which Xys Yo 2 0 and
So'i 0, persists.and so any solution of}i(7.5) for which yb > 0,

0 q and 'S +yy <1, persists. _;,

is globally asymptotically stable for (7.1):

(v

- To show that Eé

with respect to solutlons for whlch XO’ Yo and SO > 0 it sufficesh,a‘

to show that (S8*,y*) s globally asymptotlcally stable w1th respect

" to solutions of (7.5) for whlch yO > 0, S0 : and--S * Y < 1.

1 2 ,_O(P), converges to E3 . Slnce cl(O(P)) c Q Es*;g Q . _But*

20

This follows because the omegarllmlt set, Q of any’ SOluthn of (7.1)

with ’r » Yo ” 0 -and S, >0 must contain only polnts of the form

>0 and §+X+y=1. The solution of

(7.2) throngh the associated point. ﬁl

if it is globally asymptotlcally stable. Therefore the orbit through
' 3
S*

v

s
Let CS(t) y(t)) be a nontr1v1al perlodlc solutlon of (7 2)

then, 53 _ asymptotlcally stable 1mp11es Q= {E } . K

with perlod ‘w > 0. Let ‘x(t) = I - S(t) - y(t) Then CS(t)x(t) y(t))

(\

’515 a nontr1v1a1 per10d1c $01ut10n qf (7 1) By»Theorem'7 4 and the

ypothe51s of thlS theorem P (S(t)) + y(t)h'(x(t)) > 0 and x(t) > O

for 0<t<a. Therefore by (7 10) of Lemma 7.5, A < 0. Applylng

A

fthe P01ncare crlterlon 1t follows that all nontr1V1a1 perlod solutlons

- _\‘s

of (7. 2) ‘are asymptot1ca11y stable. Slnce (7 5) 1s a 2- dlmen51onal

system and 51nce the ﬁﬁ‘; 1nter10r cr1t1ca1 point is asymptotlcally

‘ stable, 1n order for a nontr1V1a1 perlodlc solutlon to eglst_ ‘there .

must eX1st at 1east one unstable per10d1c solutlon Thus no r'. L

(5,y) COnVerges to (S*,y*) .

146



nontrivial periodic orbit exists. By the Poincaré—BenéExson Theorem

it follows that (S$*,y*) 1is globally asymptotically stable and the

- \} ’ . s )
result follows. T .

U

Corollary 7.7. Assume that h "is differentiable. Provided At §, <1

S*

with respect to (7.1) for solutions satisfying XO"YO >,$4 and
. , - i

is sufficientlylélose to 1",‘E3‘ is globally asymptotically stable

50_1 0.

EIQQ§; Rééall that Eg* is‘locally.asymptotically stable for
\ ikl + 8 <1 provided A -+ $ i5'sufficiently close to 1. (This was
//shown in Section 6 for system (3 4) ) If h' [x(t)) > 0, then .
pf(S(tj) + y(t)h' Cx(t)) > 0. If h‘(x(t)) < 0, but we assume

y(t) < 1-(a +8), then

pr(5®)) + yn ) > pEs®) + (- 0+ (x(0) > 0
| (. o

if ‘Xl 6 sufficieﬁtly close to 1.r The result follows by .

" Theorem 7.6.

Corollary 7.8.  Assume ), +§<1. If h is differentiable and

T

| ‘1(7,;1)”1” ' "h'Cx(t)) %_0 for all 0 < x(F) < 1 -2y

"then-"Eg*‘

of (7.1) for‘Wh1ch _x071,y0 >,Q and SO 1 0.

is globally asymptotically stable with respect to solutions

Proof: Since

(7.12){5 o q'(x(t)) ﬁ_h(x(t))'; &(;)h;CX(t)),



Iv.7

by (7.11), q'(x(t)) - h(x(t)) > 0 for all 0 < x(t) <1 - kl' ‘I3¥
particular this holds for x(t) =38 Since- S’< 1 - Ay . Kherefore
8q'(8) - 8h($) = 8q'(8) - i >.0. This implies that condition (A5.B.2)
holds. Thus: Eé* is locally asymptotical}y stable for (7.1).
fesﬁlt féllows by Théorem 7.6. o

~

Corollary 7.9. Assume A, * 5§'< 1. Assume also that h 1is

differentiable and q 1is twice differentiable. I q 1is convex for
0 < x(t) < &, then Eg* is 1oca11y ‘asymptotically stable. If q 1is
convex for 0 < x(t) < 1 - Al then Eg is globally asymptotically

stable with respect to solutioms of (7.1) for which Xy, ¥, > 0 and

Sy > 0. In particular if

(7.13) . q(x) = x/8, or

7 14j (x) = ————EEE———~ where K,L > 0 ; LEiélllijL and
A8 T e ey SRR

1- 4 < VXL

then Eg* is globally asymptotlcally stable with respect to solutions
) .

of (7.1) forgai1ch Xq yo >0 and SO > 0. If we replace

1 - A < /KL by & < /f_ in (8. 14) then Eg* i#*at least locally

aSymptotically stable.

”proof By (7.9) h'(x(t)) (q (x(t)) -h(x(t)))/x(t) pr0V1ded

x(t) # 0. But then the 51gn of h'(x(t)) depends on the 51gn of

L(7.18) 'f(x(t)) ' x(t)q (x(t)) ; q(x(c)) for x(t) > 0.
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Now, £
(7.16) - | I",C)‘((t))d= x(t)Q”CX(t)) . ‘ S .

<.

Since r(0) =0, if q is convex for 0 < x(t) <&, thenby (7.16)
"r is nondecreasing from 0 to 6 and so by (7.15) 5q'(5)_- 1> di‘ : b, |
This implies that ;ondig&on'.(As.B.z) holds and Eg* s 1oc311,,/, '45
.asymptotically stable. -If q nis'eonvex fof 0 < x(t) < 1 ; Al ,,then
.51m11ar1y r(x(t)) >0 for 0 <x(t) <1 -4 and hence %'(X(t)] ; 0
there. The global stablllty of ES follows 1mmed1ate1y by Theorem 7 6

If q(x) = x/§ then’ q(x) ~is twice d1fferent1ab1e and convex

for all x.

If q sotiefies (7.14), them
. . : o - .
2
e he(x) = a0 )
- | | e f(xey?

a
s

,and SO h (ﬁ(t)) >0 for 0 < x(t) <1 - Al if '1 - Alvi /KT . The
global stablllty of ES-‘ follows by Theorem 7.6. If we replace ‘
1A VKL by 6 < /KL, then h'(8) > 0, Thus;

;§Q'(6) - 1;=;5(h(6)-56h'(55) - 1= cnr(él > 0.

| Therefore (A5.8.2) holds, implying local asymptotic stability of Ej, -
Equatlon (7. 14) descr1bes a multlple saturatlon growth functlon o

"and has been studled 1n thls context by Jost et al. [43 44] and by

- Saunders and Ba21n [66] SRR T et v  {j
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Theorem 7.11. Assume

Eg* is unstable then

SR 1 and that h is differentiable. If

there exists a nontrivial periodic-solution of

(7,1) If the A of Lemma 7.5 is negatlve for every nontr1v1al

L per10d1c solution of

" hence globally orblta

of (7.1) ' for which
Proof: The proof is

The: hypptheses
Butler et al. [12]

both the functlonal T

kLnetlcs. In partlcu

(7.15)

e

They'aléb show that
“of (7.15) and somet

~ decreasing ¢ ‘then a

(7 1) then the perlodlc orbit is unlque and
lly asymptotlcally Stable w1th respect to solutions

xo, Yo > 0 and So_i 0.
similar to the propf of‘Theorem 7.6.

.of Theorem 7. 11 hold for the model snudled by

As mentloned prev1ously they con51der the case when ‘

esponses p and q satisfy Mlchaells Menten

lar, ;f p(S) xl(m%1)=+s andA.q(xz R
- where m, u > I, then they show that Eg* “is unstable if.
. Afm-Ds . LT
- : >.0 . » ,

ué. . ‘(Xl(m—l) R S*)Z .jﬂ

150

A can be written as the sum of the left- hand:side

g l destab1llzé$ g}

t 1east‘ihitia11y,Theorem 7.11 applies-’

hing negative. Therefore 1f E3

W
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8. ?ERSISTENCE OF THE FOOD WEB. We again focus our attention on‘the‘
foodeeb described by model~ (3;4). 'In Section 6,‘we'showed that in the
'spec1al case that the predatlon Tesponse functlon is Lotka-Volterra and
each competitor response functlon is either Lotka Volterra or M1chaells—

Menten then EA is globally asymptotlcally stable for (3.4) w1th
' 2

respect to solutions with positive 1n1t1a1 condltlons, prov1ded ‘that .

A~

EA- lies in the p051t1ve cone This is an example of per51stence of
? ,

(3.4). (Refer to Deflnltlon 1 1 for the. formal deflnltlon of per51st—

ence.) In thlS sectlon we show that under less restrictive cond1t10ns

A

on thetfunetions pi;-'i'=e1,2 and q -(motlvated by~resu1ts.on the |
“'ffood chain in éection 7), system (3‘4) persists.

We begln with . the results that requlre the fewest restr1ct1ons
E_on the functlons ‘pi, i= 1 2 and q If not otherw1se stated thei

only assumptlons on these functlons are those given in Sectlons 2 and 3

.

Lemma 8.1. For any solution of < (3.4):
(i) . if K1:< 1 and ix10f> 0, then lim xl(t)1? O;‘

‘ (ii) ifn At 5d<\1‘ and *10; yd'>v0,'then .1im'y(t)”> 0.~
v, . \’: . ‘; L - . * ‘ . . t_;m' . i .

Proof_ Let Y(t) = (S(t) X (t) X0 (t) y(t)] be a solutlon of ~.(3“'_.;4,)?'

. ‘ v 4»' ‘0 .
\and,let Q denote the omegaviim;t set of y(t), RS
(1) Assume Al 4?1 »and< xlO >0, JSuppose'~1im.x'(t)n

;}Then there ex1sts P = (S 0 xz,y) € ﬂ, and by Theorem 5 2

H
Lo

S:+;x2 +. y 1 By Theorem 5 1 Q is compact and contalned 1n fRil; -

.;4Ffom (4 2) 1t follows that
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(8.1) at least one of E: or E, (if A <1) eQ.
| o2 S VR A2

Suppose E € Q; Q # {El}. since by Lemma 6.2, Tfﬁyxl(t)l> 0. Sinée..

too

‘ El is hyperbollc " (see (A5.A)), by Lemma 11.5.2, there exists’

152

o (w (EI)\{El}) Q. But W (E ) {(s xl,xz,y) € R4 X = 0 and

if A, <1 then x, = 0}. Thus- P° ¢ {(S, xl,xz,y) elix; =0 and if

X2 %

A, < 1 ‘then X, = 0 and- y > 0} . If ’Az“i 1, by Theorem 5 3 (1),
»lithZCt) = 0. and so there is novlose_of gehera11ty 1f.we assume,
St T : ' .; o ce e o
VI 1. But then 0 (Ps) ¢'Ri. Since P° € Q. implies that
c2(0(P>)) c o, we have deti?ed-a contradiction. Therefore E, £ Q.
' Suptdsel Ay <1 cand - E, € Q,. {E }5#.9 since lim,x;(t) > 0.
! 2. )\2 s . ; 1 .

. o - _ 2 ) K toro :

Slnce Ex ‘is hypefbollc,rby Lemma II 5. 2 there ex1sts

€ (w (Ex )\{E }) nQ. Slnce w (E ) = {(s xl,xz,y) € R 1‘=Tp,

2

o X

2,
xé->:0} a two- d1men51ona1 p051t1ve1y 1nvarlant set. By the Rplncare- ,:
'v'Bendlxson Theorem e1ther E € Q or. 0 Q° ) £ I{ But both |
'"alternatlves are 1mposs1b1e Therefore tEX"é Q. Hence by (8.1) |
Ay T
1im x (t) > 0. g
— "1
T
(11) Assume f,l e 6 < 1 'and x 0, yo 0, : Suppose 1inm y(t) 0
. oo
Then the system reduces tothe chemosfat model (4 1) 'Sane X0 > 0;‘
. 1im~S(t) = 11m x (t) = 1 - A L~and 11m X, (t) ; o.fby?”'
e : 1 1 ST CELL
[t : t+w S P t#w, T e

l

> 6} (see Flgure 24(3)) and Q< L” .Q € {(S,xl,x ,y) € L Xi=f0,v"

| Corollary 11 3 5 But .1 i xu éea and: 50, 5ince@»yd*§jd; y'c;)?>5oj"" “

Ffor all suff1c1ent1y large t :TheféfOfe’f B
e e 'ﬁi f:: R AR CR s S
8.2)° - - o my(@ A0. o :
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4
) = () € Roixg > 0,y =08 0y < 1)

s
(b) W .(EM

N o

FIGURE 24 Stable Manifolds:
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If A, > 1, by Theorem 5.3(i),; lim xz(tj = 0 and so the result follows

. T
by Theorem 7.1. Therefore, assume Az < 1. Suppose lim y(t)
. : 1o
Then there exists P = (S,il,iz,O) e 0 with S+ il + X, = 1. Peq ™
implies that c& 0(P) < & and so at least one of .Ei, EA/ oT
: . 1/
EA e Q. But by part (i), lim xl(t) > 0 and so E1 ¢ 0 and EA £ Q.
2 t+o 2
Suppose .Ex e Q. By (8.2) lim y(t) # 0. Therefore {EA b Ea.
71 tro 1 -
Since Ex is hyperbollc (see AS. A), by Lemma II.5.2, \@here exists
1
€ (w (E )\{E }) n @ where (see Flgure 24(b)) W * ) =
1

s
{(S,xl,xz,y) € Rf B 0, y = 0}. Since P € Q¢ L,

e {(S,xl,xz,y) e L: xl >0, y=0}. Noweither E, or

Y2

possible. Hence 1im y(t) > 0. .
T - : ' 0

E, € ct 0_(PS) or ¢ 07(P) ¢ Rf . None of these alternatives is

Part (i) of this lemmé teils us that provided the concentration
of substrate in the feed bottle is high enough to enable X, to
survive in the absence of competltlon and predation, if the system is
viewed purely determlnlstlcally, X) will survive the compe£1t10n of any
inferior competitor (i.e. Al < kz), even in the presence of appredator
j . N

that predates soley on X, . /Thus, viewed deterministicaliy, the -

!
/

1ntroduct10n of a.predator cannot Teverse the outcome of the
competition. We comment fufther on this in the discussion in Sectlon 10.

It is evident from Eheorems 6.1 and 6.3. that a necessary condition

for persiétence of (3.4); is fhat A1A+ § < 1. This condition is
certainly not sufficient since ES* is locally asymptotlcally stable if,
as well, xl + 6 is sufficiently close to 1. The next few results'

deal with sufficient conditions for persistence of (3.4).
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+*

Lemma 8.2. Let y(t) = (S(t),xl(t),xz(t),y(t)] be .any solution of
Lo

(3.4) such that X30 >0 1i=1,2, Yo >0 and lim xz(p) > 0. Then

lim S(t) > 0, lim xl(t) >0 and lim y(t) > 0.

£+ . to t-roo

1>

[
&

- proof: Let Q denote the omega-limit set of f(t). First we show

that E, ¢ Q. Suppose E, € Q. {E, } # @ since E is always
2 ' )\2 )\'2 A,

unstable (see (A5.A.b)) and since X10 > 0, v(0) ¢ WS(EX ) (the stable
. 2 [}

manifold of EA - see Figure 24(a)). Therefore by Lemma II.5.2 there
2 .

exists P> ¢ (WS(EA )\{EX }) nQ. But Q2 c L and so ¥
2 2
S .
P € {(S,xl,xz,y). X = 0, Xy 0, S + X b Xy by o= 1} . But then
either E ¢ c2(07(P%)) or E, ¢ (07 (%)) or (07 (PH)) ¢ Rf .
1
Vs

. 4
But cl(O(PS)) c . Since lim xz(t) >0 and 2 < R_, we have a

T ot

A

cbn;radiction. Therefore E. £ Q.
: 2

Suppose lim xl(t) = 0. Then there exists a point P =
oo

(3,0,%,,7) € 2. Since ct(0(F)) c @ c L it follows that either

E. or E, € Q. E, ¢ Q since lim x.(t) > 0 and we just showed
I Ao 1 — "2 o e
2 . o ) .
E, ¢ Q. This contradiction implies lim xl(t) > 0.
2 Lo

That 1lim y(t) > 0 follows similarly.

T :
e ' 0
o i
Theorem 8.3. Assume A, < I. Assume also that q(x(t)) = qa(x(t)a
where liq_qé(e) = +o for any fixed ¢ > 0. Provided & >0 is
&0 ¢ :
sufficiently close zero, it follows that lim x,(t) > 0 for any
troo ‘

solution of (3.4) /for which Soiz_O, X500 Yo > 0 i=1,2 and hence

system (3.4) pers£sts.

|
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Proof: Define

(8.4) € = p2C)\2+ (1-x2)/2) - 1.

4

Then ¢ > 0 since ‘Az <1. Choose L > 1 and let M = max(L,p(L)).

Select ¢ > 0 such that

‘ 1 ll: )\2 2/ - 2 g
(8.5) e < min T\ /o’ *—-ijj— .
6(1+¢)

Choose 6> 0 sufficiently small so ghat

(8.6) A e < 1 and qg(e) > 4(1+M/ek)/Ve .

Let- y(t) = (S t),x~(t),x2(t),y(t)) be a fixed solution of

(3.4) for which S, > 0 and xiO’VYO >0 i =1,2. Assume

0

lim xz(t),= 0. Then there exists a sequence ‘{tn} with t - as
1t

: Q
n - » such that xz(tn) +~ 0 and xz(tn) < xz(t) for all t <t

Since all solutions. are bounded, without loss of generality, we assume

that y(t ) > P = (§,il,o,y) (passing to a subsequence and relabelling
if necessary). Let y(t) ='(§(t),i1(t),o,9(t)) denote the solution

» - -
of (3.4) through P. Since Al + &< 1, by Lemma 8.1 xl(O) >0

and y(0) > 0. .

-

Choose £ >0 and T > 0 with fespect‘to the solution v (t)

so that
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for all t > T.  Select
(8.7) » T > max [2/e, &n(L/%) ,T],
‘'such that v
: o oy
§(t) <1 +eM for all t >T.
Since the functions on the right-hand side of (3.4) are
Cl and autonomous and since all solutions are bounded, it
follows by continuous dependence on initial conditions that there
exists § » 0 such that o(y(¢),y(x)) < & implies that

p(y (1), y(t)) < Je M for all t e [r-T,t] where 5 depends on -T
; = 3

but not on ¢ . Here the metric p is defined by p(a,b) =
4 4
) |ai-bi| if a= (a1’32’33’34) and b = (blsz’b3{b4) . Since

i=1
y(t) ~ P, there exists N> 0 such that p(y(tn),ﬁ) < § provided
n > ﬁ,z Since the system (3.4) 1is autonomous, there is no loss of

—‘}j’ B
N L . . .
generality if we assume P = ;(tN) for any N > N, fixed. Therefore,
p(y(tN),y(tN)) < § and so o(y(1),y (1)) < Je M for all te [tN-T,tN] .

Therefore, by‘gpe definition of »p

(8.8) |S(t) -S| < Ve M for all t e [tN—T,tN] .

Define,

B={te [ty-T,ty]:5(t) <1~ 2/e M},
G = {t e"-[vtN—T,tN],,:S(t)il—/EM}‘, . ’
Cpelum amd v=iw@.
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Then by Lemma 7.3, v < 6/e provided t, > T. Since t + @ as n >

)

and the only restriction on N is that N > N, there is no loss-of

generality if we assume ty > T. By (8.8) Bc G andso

(8.9) B <y <6/,

A}

- T,tN]‘\B, defined to be B¢ , then

v
S(t) > 1 - 2/e M

(1 |
>1°- 2 2)M by (8.5)

1
Also, if t € [tN

i - 4M
=y r (12272 | o
Therefore, by (8.4)
(8.10) e py(S(0) > € for a1 t « B

Integrating the X, equation from tN-T to ty yields

- - N -
X, = x, (ty T)exp(ft (-1 +p2(Sv(v)))dv),
R N-T : /.
which'impliééythat

| . |
S (8.11) ftN_T (-1 +p,(S(¥)))dv < 0
: N

\

since by construction of tﬁe sequence {tn} , xz(tN:-T).y XZQFN)"' 

However,

158
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ty . '
ftN_f C—1+p2(s(v)))dv = jB (-l+p2(S(v)))du + IBC (-1 +p2(s(v)))du
> (-1u(®) + e(T-u(B)) by (8.10)
=T(f-8(1+¢))
N &

> T(e-6/e (1+€)) by (8.6) and (8.9)

> T(E-&(-——E——_—.) (1+€_)> by (8.5)
6(1+¢) : '

contradicting (8.11). Therefore, provided § >.0 is sufficiently

close to zero so that (8.6) holds, lim x,(t) > 0.

trw

That system '(3.4) Vpersists now follows immediately from

3

Lemma 8.2. : : ’
. . | 0

One can actually show that S(t) + x,(t) is "on the average" as
[} C ‘ ‘ ’
close to 1 as we like if q can be parametrized as in the hypothesis
of the previous theorem and § > 0 is chosen"sufficieﬁtly.close to zero.

The probf is similar to the proof of Lemma 7.3. _Ffom this we infer

that as. § tends to zero’both the lig'xl(t) and lim Y(t) tend to

too _ treo _ . y

zero. We shall comment further on the ecological implications of this

in the discussion in Section 10

a -

Theoren 8.4. 'Assuméa“i éYx2 - Gpl(kz)f>.0  ‘;if‘fﬁs* is globally

. éSYmptogically stébie‘fof"(3;4) fwiﬁh respect to solutions for which

X10.> 95 %0

%AO and \yoxé O} ‘then.system (3.4) persists with trespect
%o sbiutionsffor which"x{ >0 ii;? lﬁzs:_Yb>.O>; | :

i0
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£
Proof: Let Y(t) = (S(t) X, (t), X, (), y(t)) be a solution of (3.4)

for which x, 10’ y >0 1=1,2 and let & denote the associated omega-
limit set. Since 1 - XZ-' cpl(x ) >0 1mplles that Al + 8§ <1, by.

Lemma 8.2 it suffices to show that lim xz(t) > 0.
Tt

) [4 - - - -
Suppose lim X, (t) = 0. Then there exists P =’(S,x1,0,y) e 0,
t—m

where _1, y > 0 by Lemma 8.2, and CZCO(P)) c Q. Note that

7 - XZ - épl(k ) >0 implies that S* > xz and so by (A5.A.2) ES*

is unstable. The?eforeA S*} £ since v(0) ¢ WS(ES*) =

-{(S,xl,xz,y)‘:x‘1 >0, x, = O’,y >0, S >0} because Xx,q > 0. Suppose-.

P=Eg, . Since Eg, is hyperbolic and {Eg,} # @ , by Lemma 11.5.2

there exists p> e_(WS(ES*)\{ES*}) A @ . Therefore, without loss of

generality, assume P #fﬁs*; Since P <.l and il’ y > 0, the closure
of the negative semi-orbit through P either contains: El’ EA ) EA )
: ' 1 2
or it is not contained in Ri . But 1lim y(t) > 0 and @ < Ri and so
, paroms ‘

none of these alternatives is possible. This contradiction yields the

result.

y . 0
In Section 7 wé derived several sufffcient cdn&itions for the.
- global stability of Eg* with reséect té (7.19. Under these conditions,
the above Theorem'appliéé and so provided that.'fi)\2 i&sfiin the positive

cone, i.e. 1 - AZ - 6p1(x ) > O’ it follows that’ system (3.4) persists.

ThlS is summarlzed in

-‘Corollary 8.5. vASSume 1 - Ag -15p1(A2)"> 0. Supposeifhat one of the. L
- following alternativeé holdéf ' - ‘ o

(1) h. is differentiable and’ M + 6 is'sufficiently-élqse‘to 1,

. or
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(ii) h is differentiable and h'(x) > 0 for all

"0 < x <1 - Kl , or

(iii) q 1is twice differentiable and convex for 0 < x <1 - \l,

for éxample if q satisfies (7.13) or (7.14).

Then system (3.4) persists with respect to all solutions for which
Ci=1,2 ' |
Xi0 >0, 1 1,2, and Yo > 0.

S*

Proof: E_., “1s globally'asymptOticaliy stable for = (3.4) with respect

to solutionsﬁﬁor which x.. >0, x,, =0, Yo ~ 0 if and only if Eg*

10 20

15 globally asvmptotlcally stable for (7.1) with respect to solutions_

for which 0. The corollary therefore follows d1rect1y by

Xg» Yo~

Theorem 8.4 and Corollaries 7. 7 7.8 and 7.9.
S o 0

By Theorem 5.2 it i;:oossible to eliminate gj‘from model (3.4)
to obtain a three-dimensional Kolmogorov model. that could bo
interpreted as two competifors‘and a preeéﬁ?r with the predator
predating on one of the competitors. In\[zz], Freedman and Waltm;n
derivevperéistence critefia for'general Kolmogorov models describing
three interaoting predator-prey popolations'as_long_aé it can be shown
that there are no nontrivial periodic orbits on the bounding coordinate
planes. Our results contrast with thelrs, since in our more restrlcted
context, we are able to derlve persistence criteria w1thout hav1ng to

o
xclude the p0551b111ty of perlodlc orbits. See 1n_part1cu1ar Theorem 8.3

)

and the example in the follow1ng sectlon
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_9. AN EXAMPLE. That the orderly transfer of global stability from one
critical point to another, as described in Section 6 (seelTable IX), 1is
not always the case for the food web (3.4) will be illustrated by means
of an example. Recall that ES* is always locally a§ymptoiically stable
when it first enters the nonnegative cone (i.e. just as the sum Al + 8

©is decreased below 1). In the following example, as & is decréased

- further, Eg, loses its stability via a Hopf bifurcation before ékz
appears an@ ékz is unstable as it enters ]Rf. If § 1is decreased
,spfficiently there.is prédatqr—mediated persistence and not only.does
the otherwise inferior competitor survive, but it éuryivés at a higher

concentration than that of its rival.

Example 9.1, In this example we \assume that Py is Lotka-Volterra and

q‘ is Michaelis-Menten. More speéifically, let

(9.1) ° . pl(sy =45 (i.e. A = 1/4)

i

and ) ’ ;

. . : ~

(9.2).l q(xl) = x1(6+2a)/C6(2a+x1)), where ao = f/f?- 2)/1é ~ .1338 .

-

Welaiso fix |
©n Ay = 67/100. RS ' /
Then,fprovidéd‘

(9.?7') Y :3/?68 ~ 0'.1Q .f(i.e.}f_xl'- A, - 5p1(X2);< 0) | |

w

“ﬁxz does. not_lie in’ Ri, but: prQQ

géed‘  | ;‘P’ e A
.‘ g - L . ,l o °
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(9.5) s <34 (e Nescl) T
ES# does»lie ih Ri . qu this example

(9.6) | 5% = A1/(311+6) RASEONEN

and so if both (9.4) and (9.5) hold, S* <1,. | Therefore, b)"J

depends on the sign of

(A5.A.3) the local stability of ES*

(9.7) y*(8q' (8) - 1)/8 + 8p1(5*) .

»If (9.7) 1is positivex ES* is locally asymptotically stable and if

(9.7) 1is negative, thén E is unstable. With Py and q satisfying

S*
(9.1) .and (9.2), (9.7) equals (5(165° + 3208 + 8a - 3))/((1 +48) (20 + 8)).

Thus the sign'of (9.7). depends on the sign of g(é) =1662-+32a6 +8a-3.

Since o > 0, g(8) is a strictly increasing function of §. Noting

‘that g(q) =0, itvfollows that ES* is locally asymptotica}ly stable
“for & > a and is‘ﬁnstable for § <oa. For 6 =a both (9.4) and

. loses its stability before E .
S : Ay

appears in the nonnegative cone. At a = §, the chaxactefistic

(9.5) are satisfied(and»so E

equation (see (A5.A.1)) has two real, nggative roots and two pure
imaginary roots. Since

\ . §=a ‘ o L '

8=a

o= 320
: .3(1'+4a)

# 0. -

"~(wh6re .Re(A) denotgs the real part of ‘the roots of the quadratic
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N

expression in (A5.A.1)), the real part of the complex conjugate pair

of roots crosses zero transversely at & = a and so the change in

164

stahility at § = o is via a Hopf bifurcation. Numerical results seem -

to indicate that the bifurcating periodic orbits exist for & < o and

aré stable. . S,

- ]

Figures 25 and 26 illustrate this Hopf bifurcation in the case

that

(0.8) | | p2(8)=1508/(67'+505)v-. o

In both figures»wé take

(9.9) S, = 0.4, x

0. = 0.3, x,,=0.2 and »yo =0.1.

10 20

~In Figure 25 & = 0.3 > a. The solutibn converges to Eg, - In

"Figure 26 6§ = 0.13 <a and so & satisfies (9.4) and (9.5).

*
ST My s*.

Therefore E, ¢ Rj and E is‘unstable.' i;}s figure %eems-to ,
A S '
depict. g stable periodic solution. |

: Eigures'27,and 28 also depict solutions with pZ(S) defined by

(9.8) . and initial cohditions (9.9). In Figurewg\ﬁ é@i .12 and so

E.. e'R4,‘but § is close to the value at which E.  and E .
Ay + - . , ) Ay S*
~ coalesce. Clearly ﬁ’ i?/unstable.
2

sg& the f1na1 grapk Flgure 28 we reduce § even further, to B

= 0.014.  For this value of 8 we obtaln per51stence Note ‘that not-’

on1y~does 7x2 'surviVe but‘it‘Survives at higher concentrations;than

its rival, xi;' Also a good deal of the tlme the concentratlons of

Xq and Y are'very close to zero. Thus each of these populatlons is
: : LA
in danger of. a  small stochastlc event causing ext1nct1on 1n finite tlme.
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o
10. DISCUSSION. This chapter 1is mainly concerned with the qualitative
behaviour that can result when a predator invades a chemostat in which
two popuiations of microorganisms aro‘competing for a single, essential,

[ .
growth-limiting nutrient. We are also interested im the 3-dimensional

food chain that results when the competitor that is inferior in the ’
\

absence of predation is eliminated. For the most part we consider

-gean;ﬁ monotone dynamics for microbial-nutrient dynamics. We are

however, motivated by results obtained by considering three common
prototypes for monBtone functional responses: . Lotka-Volterra,
Michaelis-Menten, and multiple saturation.

In general we can summarize‘the results of this chapter as
follows. As various parameters are decreased, the modelvexhibits a
sequence of different stages of global behaviour. At each étage,
conditions have become sufficiently favourable for a new population
to survive. Evehtua(i»/the model predicts persistence of the entire
food web. |

We obtaln our most complete results in the case that a Lotka-
Volterra fesponse funct1on is used to describe preyﬁltlllzatlon by the
predator and each response function describing competitor- substrate

interaction s of,effher Lotka-Volterra or Michaelis-Menten form. In

this case there is an, unbfoken chain of transference of global stability

N v

;from one critical p01nt to another as certaln parameters decrease. At

edch new link in the chaln condltlons become favourable enough for a
new population to survive. The specific conditions for global
stab111ty of each critical point are summarized in Table IX.

For the next set of results we allow a general monotone response

i

[

Pt . |
+ . r

Y

168
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function to describe each competitor's utilization of substrate. Instead

€ »

of réstricting our attention to Lotka-Volterra kinetics for the predator '
|

response function q(xl)’ we assume either that q(xl) is convex for

0 < Xy f 1 - Al or q(xl) = xlh(xl) where h(xl) is monotone

nondecreasing for 0 < X) < 1 - Al . These assumptions allow for Lotka-
Volterra response functions as well as for multiple saturation response

functions if we restrict certain parameters appropriately (see (7.14})).

Under these assumptions we still obtain the same transference of global

stability from E1 to E,  to ES* at the same critical values of the
1 : .

parameters, and as before ES* remains globally asyhptotically syable

if Al +6<1 and 1 - Al - dpl(A7) < 0. Though we.conjecturJ that

for the parameter range | -'Al - 5p1(x7) >0, EX is as abovei

Mgl
<

globally asymptotiéally stable, we are onlv able to prove that for this

~

parameter range, E is locally‘asymptotically stable and that the

.

entire food web persists.

If we relax the assumptions on the functional responses further
!‘ .

to allow quite general monotone kinetics, there is still a transference

ofbglobal4stability from E1 {to EA to ES* as described above.
. 1

However, the chain can be broken at this point. In particular, it is

possible fbr there to exist e > 0 such that ES* is globally
: a§ymptoti¢a11y stable if 1 - ¢ < A oY § <1 and 1 - A o- Gpl(lz) <0,
p* § <1-¢ even though 1 - AL - dpl(kz)‘< 0.

In Example 9.1, for example, ES*, loses stability via a prf bifurcation

but is unstable if A

and the stability is picked up by the bifurcating periodic orbit»that
sits in A(S,xi,y) ‘épace; Also, in this example EAZ is~iﬁitia11yA

3

unstable as it‘appears in the nonnegative (S,xl,xz,y) cone. ~Although

.

WG
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the chain of transference of global stability from ¢ritical point to
critical pointhan be broken, it is still always the case that the
(S,xl,y) food chain persists if Al + & <1 and the entire
(S,xl,xz,y) food web pers}sts if AZ < 1, the predation response
function can be parametrited appropriately with respect to 3§ (see
(7.3)), and & > 0 1is sufficiently small. (Note that this
parametrization is possible for all three of the protetypes of mono-
tone response funetions.)

If we rnterpret the thresholds Xl, xl + 6, and 1 ; Al - 6pl(A2)
in terms of their gpunterparts for the unscaled model, we gain insight
into the biology of the situation. Decreasing a Ai can be aehieved
either by increasing SO, ‘the concentration of nutrient in the feed
bottle, by decreasing D, the dilution rate or by selecting a compet-
itor that is more efficient at low concentrat1ons of- substrate.
Decreaslng 5§ can be achieved by increasing S by decrea51ng D or
by selecting a predator that is more efficient at low concentrations
of the prey.i However, ¢ can alse be‘decreased'by selecting a pre&.
with larger growth yield constant A - Thus, aecording te the

f . .
predictions of this model, there are a number of ways that an- experi-

menter can mahe adgustments in order‘to influence the outcomZ of the
microbial interactions in‘a chemostat; 'Also he -should be able to f
predlct the outcome 1n advance ‘based on the measurement of certaln
parameters and the ,medsurement of these parameters can be achieved b;
’stuaylng the rnteractlons between pairs (1 e competltor substrate
pa1rs OT" the predator prey palrﬂ Therefore the predlctlons of this

5.

model can be tested in the laboratory 1n a way analogous to that ‘used -

1
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;Jé the presence of a predator However, if we ‘look more;closely we.

V.10 o

by Hansen and Hubbell [33] to verify the prediétibhs of the model

analyzed by Hsu, Hubbell and Waltman [40].

Recall that in Chapter II we showed that in the absence of a
predator, one competitor always outcombetes hie rival (i.e. there is
at most one survivor). This model evidently confirms current
ecological thinkihg that predation eéh be responsible for diversity: in

ecosystems. Levin [49] explains that, "two species can coexist at a

O

stable equilibrium if each is limited by an independent combination of

predation and resource limitation , since then two independent factors
are serving to limit two species. " Pg}ne:[59] gives experimental

reéults that actually show that the removal of one predator, Pisaster,
resulted in a'collapee from'a 15 species to an 8 species food web.

It would be interesting to investigate whether mathematically it is

p0551b1e to show that the invasion by one predator can cause pers1st-

4

ence of many'competlng populations. ThlS would 1nvolve modelllng

predator preferences and strategies and it was to avoid this complica-
tion that in our model the predator predates.on only one of the

compet1tors o - A

y What can be said about the p0551b111t;>of invasion by a
.l .
predator actually causing reversal in the outcome- of compet1t10n

;between two r1vals, in the sense that the competltor that is 1nfer10r

“in the absence of the. predator survives and the otherw1se superlor

’n;competltor is driven to extlnctlon?' On first thought our ‘model would

g

5

®

dppear to predlct that this is 1mp0551b1e We.have showﬁ that_the"

competltor that w1ns 1n pure competltlon contlnues tO surv1ve even lﬂ

e

e S

-
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realize that in the course of proving persistence of the food web, we-

showed that the closer the predator's break-even concentration iﬁ to

K
El

zero, the closer the average value of the concentrat1on of the .« o
competitor that wins in.pure competition, xl(t) (and of the preda{br,
y(t)) are to zero. Although our model is complete;y deterministic,

a more sophisticated attempt at modelling the situation.might wish.to
take into account stochastic effects, inrwhfch case.a small_randon event
might cause extinction‘of xl(t) in finite.time. Under these
circumstances it is conceivable that there would be a reversal of the
outcome of the competltlon If by reversal of . the outcome ‘we mean only

that -thé loser in pure competltlonqgurv1ves at a more abundant
A

H

coneentration on the average than his rlval in the presence of a

predator and we do not requ1re the rlval populatlon to be forced to .
extinction then our model predicts that reversal is 1ndeed p0551b1e._’

This is_illustrated in Figure 28. It is also easy tdvconstruCt examples

_in which:the interior equilibrium ﬁx is asynpgotically stable and

Aéf%%&brium value

the equilibtium value of x, is larger than the

~of Xy . ' o S >

a

'With respéct to R05ensweig's paradox'of enrichment [63], it is

N

also noteworthy that th15 model predlcts that the more the ‘environment

134 , : -
1s enrlched by 1ncrea51ng the concentratlon of substrate in the feed e

as‘

‘bottle, the more d1verse the ecosystem that. per51sts, even though

-

Saunders and Bazin [66]:pq1nt'out enrlchment can cause all thevf

“equilibria to destabili;el o ,Q" co o Lo
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- As for the models in the preceding chapters, we: have assumed

that the specific death rates of the microbial populations are

negligible compared with the washout rate. In this context as well, ~’ &
$ - :

it would be ihteresting to study a model which allows for significantly

different deatﬁ rates.
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APPENDIX. 1

% 'LINEAR ANALYSIS OF THE SIMPLE CHEMOSPAT MODEL . (II.2.1)-- . %
GENERAL KINETICS ., .. i

: . s |
The matrix of the linfea“rf“zat'ion \E/‘&(A:‘S\},xl,lxz,}..,x ) is:
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Smce at any equ111br1um ‘pOmt at. molst one 'Xi__ isﬁonzero’ this -

matrlx is qulte sparce and S0 the 51gns of the real part ot/ the TOOtS of.

\

‘to deLermlne "’For example for the cr1t1cal pomt , ‘*
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o
i

negative real part and so this critical point is lecally asymptotically

‘stable.

The analysis for the other critical points is similar.
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APPEND}

LINEAR ANALYSTS OF”COMPLEMENTARY RESOURCE MODELS
. N
'A. LINEAR ANALYSIS -

MONOTONE KINETICS MODEL (III.Q.I}
By 111 2.6,

M is globally “attracting.

.

"For the linear analysis
it is therefore suff1c1ent to con51der the follow1ng svstem
t

o )
x2A . x X ‘
tazal)  x! =X D+f(k.-~—--———

\p0 sl —3->> i=1,2"
Ys1 Ys2 Yr1 ,\¥k; |
v

. ' ‘ 'S
The -variational matrix is: - .

o - ef o T
B R TS T A U v B PN
‘ . - 1. . 2 .
Mm2 V| e e
‘)(2- ——“ax»l ‘ . -D+ f (S R) + X2 5—}(—‘ o ‘
.-_ A/ - ‘ ) - " = . L 2N
L oo x. . ocoen oo Tx X,
where S =50 - L % and R-= RO - L= ’.
. - Tst Ys2 : Yri. R2
- o+ £, (s° R0 o0
a. V(E )= | R . ;
N 0 - epegy(s0 R
o T . 0, o0\
Therefore the eigenvalues are: ny * -D + mln(pl(S ),ql(R )) x
. . . . e 0 0 . ‘ RN ¥
nz = -D +' .mlncpz (S ) ] q2 (R )) : »
. o . s 0 ) 0.
Eo o IS locally asymptotically stable if (ASI > 87 .or Apy R7)
S R : + L : - ! ) . . .
‘“ R afid  (Ag, > S~ or. §R2’> RY). $
‘l\“ ' . . K‘ o f‘ v " ..
|
|
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5

PR, ‘
A 0 ! ] . . 0 ' ﬂ
(ASZ‘< S | an§ sz <‘R ). ‘

- . 0, 0,
E is unstables if. (XSI < S, and ARl < R7) or

" E can therefore have a 1 or 2 dimensional, unstable manifold.

g 0 ‘
0~1ff A>‘Sl<s and TAz_Cl.

. exists distinct from E

Ag10 T ¢ S4,R

: . : ) af )
0 Ay ‘ ‘ 0._ __1_ *l*
R°-Gy (87-hg)) * ¥g1 €5 rs1) 3%

- ‘—D+~f1()\ : § |

s1’

V(Ex W) = - . o
s1 0 D+ fz(xSI,RO

A

0 -
- ¢y (8 1))

of
'_.1_<0

0
“hed)
]

.S; Xy

-

Therefore the éigénvalugs_aie: ni = ysl(S
S AT 0 . 0
= -D+min(py(hg))»ap (R -C, (S “hgp)))

n2

E . is ?ocally asymptotically stable if Ag,<Aigy, OT T* < c, and

st . |
A . [N . . *
» is unstable if ASl > 552 and T* > Cl .
. '—&
; L A v C
EA . always has at least a 3-dimensional stabTe manifold.
S1°
c. The ggalysis for E, . , E. and E, .is similar and the
s A Xcrs s A
Cy R1 S2 R2 7{

- stability results'are.summarized in Table II in (IIL.2).

® .

Y ; ‘ _ : 7
d. E. exists in the positive cone provided
O ASAre o | |

8 .

AR1 < *Rr2

s2 .

“and }Sl‘? A

[}



and .. -or

. . 'The characteristic equation is:"

5

| '2“ X’{v -"X’z‘. BV '1‘ 1
Ao+ p! (e Viymay ) ) xxp(x )q( ) o)

f'EI . f, «1is” locally asymptotlcally stable 1f C1 <'C2I (ali roots are
T negatlve ‘and real), rid S o

'is_uhstable if CI >'C2 ;(three ﬁegétive roots and one .

'positiVeerOt); R

The ana1y51s is s1m11ar for EA A - and the'stabilitybresults
N : . S22 Rl R S
© v oaré summarlzed in- Table II in (III 2)

B

o el - - . .
. .8 . ) . : X ‘©
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B. LIVEAR ANALYSIS - GENERAL KINETICS MODEL (111 3. 1) s
o " ‘~ v
" The ana1y51s is similar to the non- monotcme case and the , U
1 , R
results’ are summarlzed in Table VI in (III 3) S NS

<




APPENDIX 3 . o«
. REDUCE2 PROGRAM. AND . ITS APPLICATION
- ‘ oL -

[ §

. REDUCE: PROGRAM -
: g
COMMENT ILE HOPF . W ) ‘

1
€2 . GTven ‘a system of two firs<’ order ‘autonomous different‘al'
3 equations we can ‘determine whether:-or not there is a Hopf
4 Bifurcation by using. the symool man1pu1at1on ianguage  REDUCE2 in' the.
S following way: - - : s
6 . . N »
7 First creaéf fvle{"~£eRATCH ‘ . POLYW
8 . " CANONICALFOR’ . POLYWH
8 . : 4N , 2 INVERSEW
10 B o e BIFSTABW .
I4 11 B N K . .
12 © If these files -atready exust then make sure they are empty
13 .7 The def1n1tion of the system to be analysed must be in a file.
.14 For- the 2 resource and 2 competitor preblem: in:a chemostat this
15 ~appears in the file named DATA . See this file for particulars on
16 how to-enter the defini rn of the system properly.
17 - The program ‘is. started by EX *REDUCE2 in MT5 mode.
18 Once in. REDUCE2 type IN FILENAME : where ‘FILENAME - is the file |
19 _conta|n1ng the problem def inition (e g. IN DATA ) Next type IN POLY:
20 . From now on. the program prompts you. .
21 * You will need files: T pOLY
- 22 . . : . - INVERSE
S 23 o ~ 7t w7 " TRANSFORM
.24 _ . . BIFSTAB
25 . The output.appears in :POLYW ) S o
26 . o R § pOLYW. .. - S
27 L | INVERSEW .~ : ) oy
28 - ' R . . CANONICALFOR ‘ Co : )
29 T BIFSTABW. ’_' . L
End of file ~ S ‘ B
e A "COMMENT ., . LE DATA. (FOR. EXAMPLE 111.3.11) ’ : :
2 IN"ORD TO DETERMINE WHETHER THERE IS A HOPF BIFURCATION AND
3 ’ : IF THERE 1S, TO DETERMINE THE STABILITY QF THE
4 ’ BIFURCATING PERIODIC. ORBIT - ‘ .
"5 . © ouT SCRATCH C R SO -
6 COMMENT ... -/ ‘ ' '
70 T REPLACE LINES 22 THROUGH 56 WITH THE DEFINITIDN OF THE SVSTEM
8 . : C..IN TERMS OF THE .VARIABLES s AND R. - -
a9 HERE LINES. 22 THROUGH 56 REPRESENT A CHEMOSTAT MODEL OF 2.
10° "f . COMPETITORS - COMPETING FOR 2 COMPLEMENTARY: RESOURCES.
PER B I o ff . S AND R: ALL ‘RESOURCES ARE INHIBITORY AT HIGH C
H2 © .. 'CONCENTRATIDNS. ’
- .13 “‘ ,v' THE DEFINING EQUATIONS MUST BE OF THE FDRM
4 . DS ‘SOME FUNCTION OF S,R AND A1
A5 .. . DR:=SOME. FUNCTION OF $.R AND A1
16" e LAY IS'THE BIFURCATION PARAMETER HOWEVER ONE CAN LEAVE
17 . Lo Ui . 'OTHER. VARIABLES UNDEFINED AS WELL IN ORDER, TO
18 ﬁ; .. .DETERMINE IF. THERE ARE PARAMETER. COMBINATIONS
e T ’ ‘THAT ‘GIVE A HOPF- BIFURCATION. -
S0 IT IS ASSUMED THAT THE CRITICAL POINT IS, (s R) (o 0). .
ERV3 BT OFF "NAT: ‘OFF ALLFAC; o
.22 - COMMENT...S,R-DENOTE CONCENTRATIONS oF NUTRIENTS , : S
"23'-> R N X1,X2° DENOTE CONCENTRATIONS OF" COMPETITOR POPULATIONS e
L4 R ! Fi,F2- DENOTE THE- FUNCTIONAL RESPONSES, : R
S8 e L s DS (RESP DR) ‘DENOTES THE FIRST DERIVATIVE OF s (RESP;.R)g'
26 e L WITH, RESPECT TO T; SR
27.,\ -COMMENT.. THE CRITICAL PDINT BEFORE TRANSLATION IS (TS RT)
.28 S TS:= "y . B . E
.29 . RT: =4 L '
30 - - -Ds: -((so s TS)*D)‘(X1*F1/YS1) (xz*Fz/vsz)




A3A

+ End

DR:=((RO-R-RT)¥D)I-{X1*F1/YR1) -(X2=F2/YR2)¢ O . C
X1:=(((RO-R—RT)/VS2)-((SO-SgTS)/Ynz))/((1/(v32*Y91))-(1/(YS1-v92)))
X2:=(((SO-S-TS)/YR1)*((RO'R-RT)/Y31))/((1/(Y§2'YR‘))-(1/(VS1'YR2})ﬂ;
COMMENT . .BOTH RESOURGES INHIBITQRY KINETICS: o ’ S
F1f=D+(o-(n+Rr-LR1}'(Mn1-p-nr)/(LR1'MR1j<(AR1'((R+RT)'-2)1'
+(BR1*(R+RT))+1)) )¢ ‘ ’ L

.
¥

jrz:=o*(o'(s+Ts-L521-(Msz-s-rs)/(Lsz~Mszj((Act((szS)~'2)i

file

" DUT SCRATCH:

< MATRIX M(2.2),1D(2.2).MEIG(2.2):. A
COMMENT .. M IS THE VARIATIONALEMATRIX:

"OFF. ALLFAC:

+(BS2*(S5+TS))+1))); o -
COMMENT. . WE DEFINE THE PARAMETERS USED IN THE MDDEL .EXCEPT At
' WHICH WE USE AS JHE BIFURCATION PARAMETER AND
WHICHEVER OTHER PARAMETERS MIGHT AFFECT WHETHER OR
r NOT THERE IS A HOPF BIFURCATION: R '
LS2:=4; . B i . o
MS2:=6; ‘ . - ' -
LR1¢=4§ - S . ) .
MR1:=6; S| . o
YSt:=1; o o : . ) - i N
¥S2:=1; » S ) . .
YR1:=2: ’

CYR2:=1! oo ' ' : R {

AR1-=3/4; . S ) . o ,
BR1:61/8: : . ‘ . . o
BS2:=10; R L e )
$0:=32" o - g
RO: =24 o ! »

D-=1: g C

SHUT SCRATCH:

'COMMENT . TYPE IN POLY FOLLOWED BY A SEMICOLON NEXT: .. = S .

END;

COMMENT.. . . FILE POLY _ T o C
- 10 FIND THE CHARACTERISTIC POLYNOMIAL IN ORDER TO SEE
“IF THERE-.IS SOME VALUE OF A1 THAT' GIVES PURE IMAGINARY
EIGENVALUES. IF THEREIS WE ASSIGN A1 THAT VALUE AND .. .
CHECK TRANSVERSALITY ¥ .E. THAT DRGAMWRTA1 1% NONZERO N

IEIG IS THE PURE_IMAGINARY EIGENXALUE'}POSITIVET:

v

OFF NAT: S o
FACTOR GAMMA: - S
' '

M{=MAT((DF(DS,S),DF(DS.R)),(DF(DRﬂS).DE(DR.R))):. \

S:=0;

R:=0; o o [ o :

ID:=MAT((1,0).(0,1)): . J
Moo . o -
MEIG: =M-GAMMA*ID: . R -
COMMENT:, ... CHARPOLY IS THE'CHARACTERXSTIC POLYNOMIAL :

* CHARPOLY:=DET(MEIG); - -

“RGAM:=(-C1)/(2*C2): - . TR L
COMMENT: . . DRGAMWRTA {1 IS  THE DERIVATIVE OF RGAM WI1TH RESPECT TO\éfi\;;\\

COEFF (CHARPOLY ,GAMMA.C)5 = = o o Y
COMMENT.. . /ASSUMING THE DISCRIMINANT 1S NEGATIVE, RGAM IS THE REAL

" PART OF THE ROOT OF THE THARACTERISTIC POLYNOMIAL: ° - e~

.

DRGAMWRTA {1 :=DF (RGAM,A1): . o L

“ON. RAT

ON ‘GCD: . . R 4

CSHUT SCRATCH: . -~ . . : S EER

oUT POLYW:



bEnd

RGAM; ' »

DRGAMWRTA 1 ; ' - : A | N

CHARPOLY; .

SHUTH POLYW: ‘ e ' .
QutT T - - . \

CHARPOLY ; _ o

COMMENT .. . TYPE N A4

IF POS%IBLE ASSIGN Al BASED ON CHARPOLV 50 THAT THE

COEFFICIENT OF THE LINEAR TERM EQUALS ZERQO AND THE CONSTANT
IS POSITIVE. IF THIS IS NOT POSSIBLE THERE IS NO VALUE OF A
THAT GIVES. A HOPE BIFURCATION FOR THIS SET OF PARAMETERS.
: ONCE A1 IS ASSIGNED TYPE RGAMWRTA1 TGO CHECK
TRANSVERSALITY..
TYPE CONT TG CONTINUE OR STOP:
PAUSE; .
CHARPOLY: . :
COEFF (CHARPOLY., GAMMA . EC) :
IEIG:=CCO**(1/2);
COMMENT .. .TYPE N
EVALUATE IEIG BY USE OF A CALCULATOR. OR OTHERNISE
ASSIGN THAT VALUE TO TEIG. IEIG IS MODULUS OF THE PURE
IMAGINARY "EIGENVALUE ' '
" TYPE CONT: - ’ » BN
PAUSE ; :
OUT POLYW1;
o DS: : ’ :
‘DR; v : , o
Al : . . - .
RGAM; ! ' o
COMMENT . . .RGAM SHQULD- EQUAL ZERO:
,DRGAMVRTA1
COMMENT., DRGAMNRTA1 SHOULD BE NONZERQ:
- CHARPOLY ;
1IEIG:
SHUT POLYW1;
QuUT. I
OFF NAT;. = . . . RSN
OFF GCD; ' ' Co
OFF RAT:
COMMENT.. . .FIND EIGENVECTORS NEXT 10" “TRANSFORM TO CANONICAL
o FORM BY TYPING IN INVERSE:
END: - - » S o .
file. - . . ~ LT
COMMENT . . CFILE INVERSE ‘
: TO FIND THE EIGENVECTORS ASSOCIATED WITH THE PURE
IMAGINARY ROOT AND HENCE THE MATRIX THAT TRANSFORMS THE
SYSTEM TO CANDNICALFORM;

o

1

AND THEN

. COMMENT...IF DIVIDE BY ZERO MESSAGE SET V2:=VV2. IF & SECOND

DIVIDE BY ZER MESSAGE APPEARS SET V2 To, ANYTHING E.G.
QUT SCRATCH;

Ut:=ti B v
\‘ v2:=(- ui*CJh(3‘1)+(M(z 1)*M(2 2)/M(1, 1))/

9, ((((TEIG*=*2)+M(2, z)**z)/rs:c) (M(1.2)*M(2, 1>-M(2 2)/(M(1 1)

SHUT* SCRATCH;
CouT T ¢
SWV2: '(U1‘M(2 ')*IEIG*(Mﬂ& 1)+M(2, 2)))/ N
; ((M(1,2)*M(2,2)*M(2, 1Y)=(M(1, 1)*((IEIG**2)+M(2 2)'*2)))
Vi:=(IEIG*U1/M( 1, 1)) ~(M(1,2)=v2/M(1, 1))
s y2:=(M(2, 1)~u1/m(1 1)) - (V2/(IEIG*M(1 1)))

O

’

‘IEIG)))

‘ !V‘

(W



End of

.2

S((M(1,2)°M(2,1))- (M(¢ 1)*M(2,2))): B : -
COMMENT . . . THE COLUMNS ,OF COMPRISE OF THE EIGENVECTPRS OF M
ASSOCIATED WITH THE EIGENVALUES PLUS AND MINUS IEIG: <
N EMAT((U1,V1),(U2,v2));
ouT INVERsew : o :
.oV - s "(ﬁ;
VINV:=1/M; ’ : t P 4
M - "
VINVEM*V;
COMMENT . . _VINV*M*V SHOULD MAVE DIAGONAL ELEMENTS EQUAL TO ZERO
. AND OFF DIAGONAL ELEMENTS EQUAL TO PLUS AND MINUS IEIG:
SHUT INVERSEW;
'COMMENT . . .CHECK 'IF TRANSFORM T0 CANDNICAL FORM WORKS:
.oUT T
TVINVEM*Y; g N .
COMMENT . . .VINV*M*V, SHOULD HAVE DIAGONAL ‘ELEMENTS EQUAL TO ZERO
""" AND OFF DIAGONAL ELEMENTS EQUAL- TO PLUS AND MINUS IEIG:
COMMENT .. . TYPE IN TRANSFORM NEXT TO TRANSFORM TO CANONICAL FORM: *
. END: \‘ . ) ) %
file X )
COMMENT .. .FILE TRANSFORM
 TRANSFORMS THE SYSTEM TO CANONICAL FORM-AND PUTS OUTPUT
T IN A FILE NAMED CANONICALFOR: P
QUT SCRATCH; » ‘ ,
OFF NAT: . ot o : . Lo
OFF ALLFAC: P : ; : . .
CLEAR R.S: - - , -
MATRIX X(2,1),0N(2,1) N{2,1): o
pX:=MAT((DS) ., (DR)): - o 3
DN: =VINV*DX; ° L ‘ ‘
N:FMAT((N1).(N2)): o . L
X:=V*N; ' Co S : ' - .
So=X(1,1): ’ : o . '
R:=X{(2,1); - -~ ‘ o ’ :
SHUT SCRATCH: .- o :
ouT CANDNICALFOR ‘ o ' >
IEIG; . . Co L L ,
DN S J
SHUT CANONICALFOR ¥
ouT T: . :
COMMENT . _EDIT FILE CANONICALFOR AS FOLLOWS - :
. , ADELETE ALL LINES BUT THE ONE DEFINING IEIG AND' THE
ELEMENTS OF ON. REPLACE MAT(1,1) BY DN1 AND MAT(2, 1)
BY DN2.
' SIMPLIFY .DN1 AND DN2 BY OMITTING ALL TERMS 'HIGHER THAN
THIRD ORDER FROM THE NUMERATOR AND- HIGHER THAN CONSTANT
_FROM THE DENOMINATOR.
‘ PUT IN THE :MISSING SEMICOLONS AT THE END OF TEIG AND
£ACH ELEMENT OF 'DN.
‘ “  THIS IS-LESS: EXPENSIVE AND PREVENTS OVERFLOW.
1 " THEN EX.-*REDUCE2 AGAIN AND.. TYPE IN CANONICALFOR
FOLLONED BY .IN BIFSTAB: ,
END: . e o RO
file - ‘ ’ ST e o
COMMENT . FILE BIFSTAB ‘ :
7710 FIND THE STABILITY OF THE BIFURCATING PERIODIC ORBIT. :
TO BE USED IN CONJUNCTION WITH. CANONICALFOR ONCE IT: 1S EDITED.
" "TYPE 'IN' CANONICALFOR’ BEFORE - TYRING 1IN BIFSTAB
" RESULTS -APPEAR IN FILE. NAMED BIFSTABW
'OUT SCRATCH:



A\

OFF:- ALLFAC; i
DIF11: ~DF(DN1 N1 2)
N1:=0;

N2:=0;

F1F11: annF11 '
CLEAR D *g N1,N2;:
D1F12:=DFTDN1 N4 1 .N2,
N1:=0; 4‘
N2:=0;
FIF12: -D1F12
CLEAR D1F12,N1 N2;
'D1F22 =DF(DN1 N2., 2)
—O
‘N2 -o- '
F1F22%= D1F22 .
CLEAR D1F22,N1,N2;

%

D2F 11::DF (DN2, N1_2) ST

1:=0:.

N2:=0: :
CF2F11:=02F11;
CLEAR D2F11 . N1,N2: :
D2F12:=DF(DN2 ,N1,1,N2,1);
N1:=0; : :
N2:=07 .
CF2F12:=D2F12;

‘CLEAR D2F12,N1,N2;
DQF22:#DF(DNQ.N2.2):
Ni:=0

N2:=0
CF2F22: —02F22
CLEAR D2F22,N1,N2; ™

S D1F11t: =DF(DN1 N1, 3)
"Nt:=0;

N2:=0;
FIF111: -01F111
CLEAR-D1F 111, N1, N2;

DtF122 =DF(DN1 NT.1.N2,2) 5

.:O
N2
}F1F122 D1F122;
" CLEAR D1F122 ,N1,/N2;

© D2F112:=DF(DN2.N1.2, Né 1)

N1' =0;
F2F112 =D2F 1125
CLEAR D2F112 Nt N2
F2F222 =0F(0N2 N2, 3)
..0 .
.‘ so 1
F2F222

T ey

h

DDV3"(3'0V3’PI)/(4*IEIG)
" SHUT *SCRATCH; . ~

OUT. BIFSTABW:- R
"COMMENT .

..DDV3 1s THE EVALUATI
AU 126 OF MARSDEN. AND- MCCRAC
N o BIFURCATING PERIODIC ORBI

F1F11 C

w ) "', -

"vas =(F1F111+F1F122+F2F112+F2F222)+((1/IEIG)*( (F1F11*F1F12)
+(F2F22%F2F 12)+(F2F11*F2F 12) - (F4F22‘F1F12) ' .
+(FAFA11*F2F11) - (F1F22*F2F22)))

oN oF THE‘FbRMULA’(4"2)”0N PAGE""“”
- THE STABILITY OF .THE:
T oepsnos ON THE SIGN OF oova

190
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, 67 vF1F1&‘if
”’ 68 F422; , . - .
69" F2F11: . o ' ‘ .
700 F2F12: 7 o S . _
71 F2F22% o - N : S
72 FAF411: ’ - - - : -
73 FIF122; A o e o _ CL e .
74 FE1127 1\ O 'z

& 75 F2F222; NN

\\ 76 s DV3; - \‘

Tr7 . pOV3: - . . : . .
Y8 SHUT BIFSTABW: . e N -

e e L SRR . '

Epd of file ., ' C e .



A : RS X
. ‘ . L 4 . . )
B. DATA AND BIFURCATION ANALYSIS FOR EXAMPLE (II1.3.10) I '
3 S g ‘
: . . . - ’ ; '
a. Dgta, v o ‘ ~ |
' 4
: - -
4 . » COMMENT, - - FLLE DATA (FOR EXAMPLE 111 3.10) ' " , %
2 "IN ORDER TO DETERMINE 'WHETHER THERE 1S A HOPF BIFURCAWION AND . .
« 3 : 1F THERE.IS, TO DETERMINE THE STABYLITY OF THE \
4 S - 'BIFURCATING PERIODIC ORBIT: . :
. 5. " " pUT SCRATCH: - A : o
. 6 _COMMENT R '
7 REPE%%E LINES 23 THROUGH' 55 NLTH THE. DEFINITION OF THE SYSTEM
8 IN TERMS.OF THE VARIABLES S AND R :
9 - " HERE LINES 22 THROUGH S5- 'REPRESENT A CHEMOSTAT MODEL of : 2
10 T COMPETITORS COMPETING FOR 2 COMPLEMENTARY RESOURCES;
11 R .$ AND R. ONLY. ONE SUBSTRATE IS" INHIBITORY: TO ONLY.
a2 T “COMPETITOR AT HIGH CONCENTRATIONS.- - :
13 . THE DEFINING EQUATIONS MUST .BE OF THE FORM
14 : DS: =SOME- FUNCTION DF S.R AND A1 - "
15 ’ : . "DR:=SOME FUNCTION OF S, R AND At ‘ ,
<16 _ a1 IS THE BIFURCATION PARAMETER: HOWEVER ONE CAN LEAVE
R A g OTHER VARIABLES UNDEFINED AS WELL IN- -DRDER TO
18 - . . DETERMINE IF THERE "ARE PARAMETER COMBINATIONS
19 THAT GIVE ‘A HOPF ‘BIFURCATION:. -
20 1T 1% ASSUMED THAT THE CRITICAL POINT 1S (S. R)-(0.0);-
224 "OFF NAT; OFF ALLFAC: P :
22 . COMMENT...S, R . DENOTE CONCENTRATIONS oF NUTRIENTS
23 . X1.x2- DENOTE CONCENTRATIONS OF GOMPETITOR POPULATIONS
24 ... - F1,F2 DENOTE THE FUNCTIONAL RESPONSES
25 - o ''DS (RESP. DR)-DENOTES THE FIRST DERIVATIVE OF s (RESP R) .
o 126 e WITH RESPECT. TO T: o
27 COMMENT ... THE CRITICAL POINT BEFORE TRANSLATION‘(§ (TS;RT}.
28 TS:=6y SEA . - el ,
29 RT =4: N ‘
30 . - DS: S((50~5-T5Y ) - (X1*F1/YS1) (xthz/vsz) v
3f - DR:=((RO=R- RT)*D)=(X1*F1/YR1)- = (X2*F2/¥R2);
C 37 x1:=(({RO- R-RT)7Y52)-((50-5~ rs)/vnz))/((t/(vsz*v91)) /(vs1~vnz)));
33 x2:=(((S0-5= -1S)/YR1) - ((RO-R~ RT)/VS1))/((1/(YS2 YR1)) /(vs1*YR2))):_"‘ ;
B s34 ‘COMMENT MICHAELIS-MENTEN KINETICS: , o , o
BRI |- T A = (D*AR1*(R+RT))/{LR1* +CART=1)4R+RT ) \t ,
.36~ 'COMMENT. L INHIBITION KINETICS: * ’ PERRE e
‘37 - E2: 'D+(D‘ (S#TS-LS2)*(MS52-8- TS)/(L52'MSZ‘((A1 ((S+TS)’*2)) RN
{38 - +(BS2* (s+rs))+1))) :
L9 ACOMMENT WE DEFINE THE PARAM %ERS USED IN THE MODEL EXCEPT Al
oJREE , ]‘WHICH ‘WE "USE AS- THgﬁ%IFURCATION PARAMETER AND. -~
" WHICHEVER OTHER 'PARAMETERS MIGHT AFFfCT WHETHER OR R :
_ NOT ‘THERE: IS A HOPF BIFURCATIO T o _ o
S . . o IR T R ;
0/95. ‘ o AL !
','56?-_f,5HUT SCRATCH R o SN L .
» 5% ;-}“CbMMENT »1 TYPE IN POLY FOLLOWED BY s SEMICOLON NEXT :

“‘*.Sal“" END: 0t




b.

Bifurcation analysis for the critical point. E .. .. . 7"

1
2
3
4
5
6
7
8
9

CVINV(1,2)
_¥vv1Nv(2 2)
,M' (Varfational matrdx)

“V¥MAT(1 ) e
TMAT(A, 2)_5 '

TMAT(2.2)
VINVEMSY

lffMAT(1 1.
COMAT(1.72):

i . N

. ., '§2’HR]

At e ¢ . R T

M. (Variational Matrix) = ) N .
L I . . i
. w“ . I
MAT(1.1) == 1/(24*A1 .+ 3)
TMAT(t.2) .= ( -2)/5
MAT(2.1) -:= 1/(24*a1 + 3) :
MAT(2.2) :=.(.-"1)/5 "
RGAM=( - 1241+ 1)/(120°a1 + 15) = - T
. : i . [
DRGAmwa:A1-( - 4)/(192+A1%227+ 4BrA1 + 3) '
CHARPOLY=GAMMA*+2 & GAMMA*(24*A1 = 2)/(120%A1 + 15)
+ 1/(120%a1 + 15) ‘ e ¢
A1=f/12}A(B%fufcatiQn Value) 4
' ReAM=0" : S .
COMMENT.. -RGAM 'SHOULD EQUAL ZERO:
i:DRGAMWRTAi—( - 12)/25 . -l ’ L N
COMMENT . DRGAMWRTA 1- SHOULD BE NONZERO e
A
CHARPOLY GAMMA"2 . 1/25 .’ '
IEIG=1/S (Pure 1maglnary exgenvalue) . Ce e
v (Matrix of the transformatxon) fff.-  Lo _f I
'MAT(1. . 3_1_0
MAT(1,2).:= 1 .
CMAT(2,1) =10
T MAT(2,2} := O ‘ o

.VfNV;#f/V, (WheiihVerse of the matrix of the transformation)’

»

VINV(1,4)°

» -0

VINV(2,1)7:

Won e
-

—~—~

PN
-~

~

o

MAT(271) .1

s

{The transtrmed'variationél.matrix)'5'

MAT(2.,.1).
MAT(2, 21;:

'icQMMENT _VINV*M+y ‘SHOULD HAVE DTAGONAL ELEMENTS' EQUAL''TO" gERo =

AND OFF DIAGONAC ELEMENTS EQUAL TO PLUS AND MINUS IEIG

\Q(The transformed system -u omitting higher ord%r terms)

'nbei_:; K‘-+ 88*N1‘*3 + 290*N1**2'N2 + 660'N1"2 o zazfml*ﬁészl‘"[”'

LI
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r‘h ' |

i t .

' o - J
¥ w .

61 "+ 1640*N1*N2 + 40*N2+*3 + 800°*N2**2 + 1440*N2)/(7200)

62 :

63 DN2 := ( - 8eNt**3_+ 3I*N1**2*N2 - 152*Ni**2 + TSN IAN2**2

64 - 62*N31*N2 - 720%N1)/{(3600)

65 « e

66 COMMENT . . .DDV3 1S THE EVALUATION OF THE FORMULA (4.2) OA\PAGE

67 126 OF MARSDEN AND MCCRACKEN [52]. THE STABILITY OR THE

68 BIFURCAT}NG'PERIODIC ORBIT DERENDS ON THE SIGN OF DDV3:

69

70 . FiF11=11/60

71 F1F12=414180

72 F1F22=2/9

73 F2F11=( - 19)/225 .

74  F2F12=( - 31)/1800

75 . F2F22=0 -

76 FIF111=11/150

77 F1F122=121/1800

78 F2F112=1/600

79 F2F222=0

80 .

81 - DvV3=( - 21049)/54000 3»

82 .

83 DOV3=( - 21049*PI1)/14400 (Indicates stability of the periodic

84 . orbit) ; -

End of file

.

»
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C. BIFURCATION ANALYSIS FOR EXAMPLE (I11.3.11)

Y

a. The b1furcat10n analysis for the critical point E followst
) Hg2°"R1

" (The data for this example 1is given in file DATA 1in Appendlx 3.A.).

<

1 M (variational Matrix)

2 ;

3, MAT(1.1) = 7/(216*A1 + 366)

4 MAT(1,2) = ( - 2)/87

5 MAT(2,1) = 7/(216*A1 + 366)

6 MAT(2,2) = ( - 1)/87

7 . ”

8 RGAM=( - 24*A1 + 27)/(4176*A1 +.7076)

9 : .

10 DRGAMWRTA1=( - 21)/(1296*A1**2 + 4392+a1 + 3721)

11 . : !

12 CHARPOLY=GAMMA**2 + GAMMA*(24*A1 - 27)/(2088*A1 + .3538)

13 + 7/(18792*A1 + 31842)

14 . o

15 ° A1=9/8 (Bifurcation vaJue)

16 :

17 RGAM=0 v . .

18 COMMENT . . .RGAM SHOULD EQUAL ZERO;

19

20 DRGAMWRTA41=( - 12)/5887

21 COMMENT . . .DRGAMWRTA{ SHOULD BE NONZERO OR TRANSVERSALITY VIOLATED:
22 . °
23 CHARPOLY=GAMMA**2 + 1/7569

24 : , .

25 1E1G=1/87 (Pure imaginary eigenvalue)

26 ‘ ,

27 v (Matrix of the transformation)

28

29 MAT(1,1) = 1~

30 MAT(1,2) = 1

3N MAT(2,1) = 1

32 MAT(2,2) = O .

33 . :

34 VINV=1/V (The inverse of the matrix of the transformation)

35 . '

36 - VINV(1.1) = 0 ‘.
.37 VINV(1,2) = 1

38 VINV(2,1) = 1

39 VINV(2,2) = ( -1)

40 . _ °
41 M (variational matrix)

42 ) !

43 ‘MAT(1,1) = 1/87

44 MAT(1,2) = ( - 2)/87

45 MAT(2.1) = 1/87

46 MAT(2,2) = ( - 1)/87

a7 . . . .

48 VINV*M*V (The transformed variational matrix)

49 . .

50 ° MAT(1.1) = 0 X
51 . MAT(1,2) = 1/87

52" ‘MAT(2,.1) = ( - 1)/87

53 MAT(2,2) = O

54 L : : :

65 .  COMMENT.. VINV*M*V SHOULD HAVE DIAGONAL ELEMENTS.EQUAL TO ZERO

56 v . AND OFF DIAGONAL ELEMENTS EQUAL TO PLUS AND MINUS IEIG:

57 .
58 " (The transformed system - omitting higher order terms) : e
59 : ' .

-60 DN1=( 2148‘N1‘*3 + 3348*N1**2*N2 + 9844 ¥Nt**2 T 2360*N1*N2*=2:
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End of file

+ 10267 Ve =3+ 4TGeN1**24N2 + 2616*N1**2 + 18N 1*N2* *3
'N1*N2*‘2 - 632*N{1*N2 - 9744*N1)}/(3+(282576))

‘ \ 2
Ij/ﬂ\>164‘N1‘N2 + 34B*N2**3 + 5568*N2**2 + 9744'N2)/(3'( 2825786))
0N2

COMMENT . . .DDY3 IS THE EVALUATION OF THE FORMULA (4.2) ON PAGE
126 OF MARSDEN AND MCCRACKEN [52]. THE STABILITY OF THE
BIFURCATING PERIQDIC ORBIT DEPENDS ON THE SIGN or DOV3;

7

F1F11=2461/105966 . .

F1F12=3041/211932 . ’ .

F1F22=5/609 , L .

F2F11=109/17661 * i

F2F12=( - 79)/105966

F2F2220 '

FAF111=179/11774

F1F122=295/52983

F2F112=17/15138

F2F222=0

DV3=( - 2949797)/258133176 :

pDV3=( - 2949797+*P1)/3956064 (Indicates stability of periodic

orbit) .

196
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b. The bifurcation analysis for the critical point EX I “follows.
] . S2°7R1
(The data for this case is the same as in file DATA in Appendix 3.A
: . . \
except that TS = 4 and RT = 6.)
1 M (variational matrix)
2 , . ‘
3 MAT(1,1) = ( ® 2)/(48*A1 + 123)
4 MAT(1,2) = 4/177 ‘
5 MAT(2,1) = (- 2)/(48*A1 + 123) n
6 MAT(2,2) = 2/177 , ~ :
- 7 - . . . 1
8 RGAM=( 16*A1 - 18)/(2832%A1 + 7257) ‘ S
9 ' : X,
10 DRGAMWRTA1=16/(768%A1**2 + 3936*A1 + 5043) .
11 : : . ‘ ‘ _
© 12 "CHARPOLY=GAMMA**2 + GAMMA*( - 32%A1 + 36)/(2832%A1 + 7257)
13 +.4/(B496*A1 * 21771) S
14 C ' . _ : :
15 A1=9/8 (Bifurcation value) : "y v
16 ; . o .
17 . RGAM=0 ,
18 COMMENT . . .RGAM SHOULD EQUAL ZERO:
19 B : )
20 - DRGAMWRTA1=16/10443 . c .
2 COMMENT . . .ORGAMWRTA1 SHOULD BE NONZERO:
22 A L
23 CHARPOLY=GAMMA**2 + 4/31329 .
24 , ,
25 1EIG=2/177 (Pure imaginary ejgenvatue)
26 ‘ :
27 V (Matrix of the tradsformation)
28 _ :
29 MAT(1,1) = 1 )
30 MAT(1.2) = ( -1) N
31 MAT(2,1).= 1 ‘ '
32 MAT(2,2) =0 :
33 . - . & ov . \;
‘ 34 VINV=1{/V (The inverse ofy the matrix of the transformation)
35 ’ S .
36 VINV(1,1) = 0 - -
37 . VINW(1,2) =1 v .
38 VINV(2,%)-= ( -1) ,
3g VINV(2,2) = { o o ' R
40‘\\ - . , ) o 5
LA M (variational matrix) = - ' A
42 _ Ce : /
43 MAT(1,1) = ( - 2)/177 S : /
44  MAT(1,2) = a/477 - . . : : 4
45 MAT(2,4) = ( - 2)/177 : o f
46 MAT(2,2) =.2/177. . a . ;
.41 : ) ' . 4
48 VINV*M*Y (The tranfformed variational matiix) ’/‘< L
49 ‘ ' : : : : : L
50 - MAT(1,1) = O o L o e
, 81 MAT(1,2) = 24177 - S R
52 MAT(2,1) .= ( - 2)/177 : S e . : W
. 53, MAT(2,29°=0 ° o - . , : R : ¢
) 54 o . R . . SR Iy » :
55 COMMENT...VINV*M*V 'SHOULD HAVE DIAGONAL ELEMENTS EQUAL TO ZERO
56 AND OFF DIAGONAL ELEMENTS EQUAL TO PLUS AND MINUS IEIG: ® -
57 - . = ‘ . . o o - c:- . .‘,“ o . .
58 - s (The transformed system - omitting higher ofder terms) . ’
59 o PR o i o
60 DN1= ( 2344*N1**3 - 254GXN1++2¥N2 # J1532*N1++2 + {264*N1*N2%*2



a

" End «of file

v

- 9408*N1*N2 - S90*N2++*3 + 3540°NZ%+2 + 9440*N2)/(835440)

DN2= ( - 1700%N1++3 + 1104*N1#+2N2 - 7760*Ni**2 + 124*NL*N2**2

+ 2096*N1*N2 - 9440*N1)/(835440)

COMMENT .. .Dbv3 IS THE EVALUATION OF THE FORMULA (4.2) ON PAGE
126 OF MARSDEN AND McCRACKEN [52]}. THE STABILITY OF THE
BIFURCATING PERIODIC ORBIT DEPENDS ON THE SIGN OF DOV3;

F1F11=961/34810 ‘ : n
FIF12=( - 196)/17405 -
F1F22=1/118 e

F2F11=( - 194)/10443
F2F12=131/52215 . .

F2F22=0 - '
F1F111=293/147405 &
F1F122=158/52215 _
F2F112=46/17450 : ; . "
F2F222=0 ) S

A

[

. DV3=275717/30806850 v 8 .

‘éDV3=(827154’.P,I)/13§2400 (Indicates i‘,n'stabil‘ity of periodic

orbit)
Y
Rt
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APPENDIX 4

'BASIC FEASIBLE SOLUTIONS OF M

. ”

.

We: consider the following‘syStem of = 2 ‘linear equationﬁlin

‘4 unknowns (S,R,x, -and x,): - -
ek X, o

S+ 1y 2 0 ‘ S

Yo < Vs2

"
wm

L x PR
S +‘_3L. 0

Y YRz o

n
=

S, R, X, 3.0,'1 =1,2.
A ‘ \\— ‘

Since the rank of thls system 15 2 there are C4 "pdssible basic.

feasible solu ions of M and hence of F We generate these solutlons
_h N . i

(Recall that _we are assum1ng C # C2 )
.. . E
We start w1th S and R in the:baSls.

v e N

s R il‘,i ;:xz‘ i s
EEE e S DA Correspondlng bas1c

(- Sf l_l'-‘ 1/y81 1/ySZ _ s S fe351ble solutlon
R ‘0: 1v l/yRl 11(YR2 ‘R o (S R O O)

. i

If R /S then we replace S ‘in the ba51s of Tableau I ff;“_;fa

: 1.
"rby ) (1 e,_p1vot on the ‘(S X ) element 1/ySl’ of Tableau I)

’,’. .
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1 Ys1

—

“Ys1/Yr1

¥ ﬂé§vLYR1Y32"YsiyRZ)/(yRIYRZYSZ)'

L

then pivot on the (R-x,)

S R Vﬁxl.” X
YpilVs1 0 T
A

Y B3 RERLY)

.‘ "

e Rs? > c,

X

s “'R.v,_ X, . X
0 YsalYsy

“Ys/YRa -

1f 7%/s% < ¢, then pivot on the (R-x.)

* Ot s i

w5 ftlf yR27Ysz

yRZ/le

|Tr2™

*. :

sO;RO,/c1

Xp R

= Osire " YriYs2?Ys1Vsolma ¢
MY - ' ’ » *' B

/ then pivot on'the (S-x,) element of

‘element of

f;; =f(Ys2¥§if]{s1YR214Ys1¥527R1f*i

'
f
}

(0,

“ _i(s R /c

.200

Corresponding ‘basic
feasible solution:

0
(0,R -ols ,ySIS ,0).

w

elément of Tableaﬁ»I.

-
-

l " n
Cbr¢ésponding basic
féasible sblution:

1,0 leR 0)

Tableau 1.

Coirésponding basic.

f'ffeasib1e solutidh:ﬂ

0.~ 0 4

ETabléau’I;; 

v tr»;;%:*Correspondlng ba51c R
3 SQ*R9/C2

fea51b1e solutlon

2’O YRZ

-CZS . ,O,}'SZS ) .I "_.(; S

g 0)!2"



If €, < R /s %Lz or € > R/S >C, then pivot on the (R-x,)

element of Tableau II to’ obtaln the basic fea51ble solution .

. h . O O v | | . ‘O- 0 \’ ]

A
. ) ‘ \
. .
——
&
t
-
2
.
’ . X L3N
*
-~
LoD
3
%
R ¥ E
o T
>~
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APPENDIX 5

 LINEAR ANALYSIS OF THE*FOOD\uak AND "FOOD CHAIN MODELS
A. LINEAR ANALYSIS - FOOD WEB MODEL (IV.3.4)

The variational matﬂ%x is:

@

\ __};xlpi(S)-xzpé(S)' - -py(8) ' -pz(s),e 0
V(S,X{5X5,Y) = Ppp® L b ) yathy) .»:‘0 - -q(x))
a xPa(S) | 0" -1+py(S) . 0
0 yq'(xl)‘ T 0 -1+q(x,)
L. - _ : - )

We consider the local stability of each of the”eigenvaldes‘ El’ Ei ,

. 3 . ) . S e 1
E E E ‘ h
> * L .
Ayt SEN TN
o » —r

. . T (D) -p (D) 0]
: 0 .-1+p1(1") : 0 -0

V(1,0,0,0) = B ' .
‘ Y 0 - 0 -lap,(1) 0
o -0 -0 -1

__fThe elgenvalues of the varlatlonal equatlon at the cr1t1cal

-

p01nt E are:‘i—l; 4,2 -1+p1(1) and -1+p2(l) ‘ It follows that E

g 3

1
'1s locally asymptotlcally stable prov1ded Kl > 1 and -XZ > ',:that
1s, prov1ded there is. not enough substrate to support -either competltor
-f.(see Theorem IV.5. 3) 1f elther-;X2>< 1 or’ Al <1 hen E1 is

unstable ,‘bg o o oy
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b‘ ) . -1~(1—>‘2)pé(xz) y -pl(iz)‘ \ _1 0 ' i‘_
. £ .
: RN , o .
(1-x,)p5(A,) 0 : 0 0
L . o 0 0 -1t
.. ’ . a - -

Clearly -1 is an eigenvalue of . the variational equation at the

critical point E, . We can therefore eliminate the jast row and
2 .
>.column and consider the rema1n1ng 3 x 3. matrix ‘which we shall call

2,0 1-2 ) Then expandlng V(A 0 1-X. )- along the second
e
column it follows that the remalnlng three elgenvalues are: -1,

, v(

_1+p1(A2) “and ~(1-A2)p2(A2). It follows that Ek2 1s_a}ways unstable

&

since -1-fp1(xz) > 0

Assume Al'g'l;' Then' EA is in the’nonnegativé. (S,xl,xz,y)'\
S . | o 1 T ' CEe

cone. ‘
. R . v« ) ‘-—_ _ »__ . ' . . B b. . s - . . ——
e [raapeon 100
1-A)p! (3" 0.0 -q(141))
VO 1- 1,o 0= P L R
,‘“ ' S AR : jO MR Oi;ﬁiil+p2(kl}v ’ :‘0
E B 0 . 0L e 0 g -1fq(1;kl)
g V . L S . 5 . :. _: ‘. . 'Q;‘A "". 5 I\ “ » oL S n N
7’ﬁw‘ - Expahdlng V(Al,l AI,O 0)- AI alongathe flpsv?column 1t follows
: : R
that the elgenvalues of . EA "aré -1 -(1 - )pl(a ), 1-+p2(x ) .
1 -
-14-q(1 A ) PrOV1ded Al <1 by assumptlon (IV 2 4) 1t follows
that -(1 A )pl(k ) < 0. ' Prov1ded 14»AI <'S' 1t.follows that'..ﬂ
~1'+q(1 A ) < 0 : Slnce i~ < kz, ) 1+-p2(x ) < O Théréfdfe vExjf is 1_“hf‘h-
L g e o
' asymptotlcally stable prov1ded 1- 6 < Al Lﬂ and 1s unstable 1f
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d. A ‘ ——l—épi(S*j' _pl(sf) v _pz(s*j : ' 0 ‘T‘_
8p; (%) -1+p1(S¥)_y?kql((Sj 0 -a(8) |~

V(S*,6,0,y%) =

If we intercharige the last two rows and the last two gblumns we
do not chéﬁge the eigenvalpes:
. T [ _ _‘.v Gk i o * o . v_ - ’fr* 1
Let _ o 1 ?1(5 ) ,.plfsv) - 0 'p2(§i§" ’
- Copysty - slepy(SMeyrat(®) 1 0

oo yee 00

0- S0 0 =1, (8

- . . . . ~

f,ExpéQgiﬁg V- Al -along,the 1a$tvrow:and faCtorihg out" (ufi)’;’
thelcharaCteristic equation is: ’
o X . S
(AS A. 1) ( 1+P (5*) A) (?\‘*1)[)\ +>\(>’ (8q' (‘5) 1)/5+5P1(S*))

 +Yq(®U+m$ﬂH

We only con51der th1s cr1t1ca1 p01nt when y* o 0 é,‘ S* > Al’ since -

otherw1se 1t does not 11e in the nonnegatlve cone
: Then by the ROuth Hurw1tz cr1ter1a (see Eg [30]) f:i§f  o

) asymptotlcally stable prov1ded that

RS

Cesan () s xzd e , s
- ASLA:;"lﬁi | * - . SERE el L
Ry o __ (Gq . 10/6. o (S,) O e e

}_’If;thefiﬁgquaiityfinf](i)[;gﬁd (11) 15 reversed then ES .:isiuqétéﬁiéﬂfﬁ%f;x;f'r
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Note that, S ' T
- : : o o . _ ’

Sq'(8) = 1= 6°0(8),
., so that (ii) ~ is eqiivalent to

. ('A'S_.A,S)Y o (11): )’fh' (5) + pi(s*) S0, N .‘ _ 7
o O o | | .  , '» . s
e N ‘51’1(A )z xzpz(xz) B U2 s_‘{_..Of}
T R . . ol _ ._A . . s -—- -

, V(A2,6,xé,y) - ;‘, Gpl(x ) ‘ 1+p1(A2) yq‘(6) _‘ 0- -1

s _ - zpz(}\ ) C .‘.. 4 0 SRR 0 0

The characteristic equation is:

p+1)(}.l +u [y(Gq (8) 1)/6+6p1(}\2) +x2p2(>\ )]

[N

CAsAD. u[xzypz(xz)(sq (6)\-'~1)/s+yq (6)(1+6p1(x ))]

Pl

e xzyq (6)p2(kz)) -0

We assume that x =. i = X - Gpl(kz) > 0 otherw1se EA:'7dbéé.45;f 5jf 
g not 11e 1n the nonnegatlve cone We denote the coefflclents in. the J-ff‘ﬁ’ii;;ﬁ

*charaCterlsﬂlc.equat}on-.»; e

)

(A5A6}c zypz(xz) (sq (a) - 1)/5 il (6)0 - Gpl (A ))

CASAT) G y@q (a)-- 1)/6 : sp (xz) + nzpzcxz)

* By -the’ Routh-Hurwitz -criteria.,,.;*éx'zf : i_’:s' vldc‘ally, ‘as'ymptd_tii:all)ﬁ"‘;' stable ... S
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provided

(AS.A;S) : - (1) C0 >0, C1_> 0 and »C2 > 0,‘ and

(A5.A.9)  (i1) 8, =OC) - Co> O

-

.'and 1s unstable 1anny 1nequa11ty in J(i) (11) i§“§ever5ed-‘ ;, N

Suppose a11 the components of E ‘ ‘are p051t1ve and that Gq (6) > 1.
Ap :

'Then condition (AS.A;S) 'hoLds angjcondltlon,‘(Asz‘Q) can be wrltten,

>‘
1l

2 ZCC -yq (6)) + Yq (6)(C2 sz(x )) + xzyq (5)p2(>\ ) - ¢4

c CC yq (a)) + ¥’ (G)CCZ sz(xz))

/

v

05 vprov1ded 1&qu(d)_i_k- }

Therefore prOV1ded E 11es in the p051t1ve (S xl,xz,y) _cone. and

% \- 2' . .

,5q (5)*>.1' then .E 1s 1oca11y asymptotlcally stable In partlcular,»
2 . .

thlS applles 1f q(x ) s Lotka-Volterra ;j; q(x ) = x /5 51nce

TR

i ;then dq (6) .. However 1f q(x ) satlsfles Mlchaells—Menten
'*'fkmems, ,i.e‘. q(x ) = ) / 5(u-1)+x ? whe,r_e W 1, then
":;ﬂsq (5) = (u 1)/u < 1

‘ Note also that ES ;4Fd:«EX'l C03165¢¢‘Wh6n{ﬂxz[?;l?* - Gpl(kz) =0. ..~

“ case”'Ci*>V0 and C2

'”ni;reduces to the expre551on in cond1t10n (AS A 3) for the asymptotlc -f<5

‘uf;;stablllty!of ES* Therefore>1f COﬂdlthn (AS A 3) for local

s
s* Kz'

f;;¥asymptdﬁmc stab111ty of E holds as Ef': and E coalesce,‘then ]h.i:jii'
S 1s at least 1n1t1311y locally asymptotlcally stable On the other j;f

if'hfhand 1f there has been a: Hopf blfurcatlon o ES preV1ousito the

'tf51Coa1escence of ES and Ekzvl then .ERZ .1s at 1east 1n1t1a11y unstable.fsf%*“f?
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e
b

B. - LINEAR ANALYSIS FOOD CHAIN MODEL (IV 4. 3) ¢

- The matrix of the 355001ated 11near system 1§P
rz o , ‘ A
1pl(S) o ;-'p'l(S) S o ) ) O‘

;_40 | 3 .‘ g )'q""(xl)_ | . _1+q(x1)‘j

.W;»cohgiQer.tﬁé‘é?ébi}ity ofigacb of fhg eigenvaluésg Ei)i'EA‘)A g* °
A;fh;.eiggnvgiueS 6f::E§ Véréft ;1, >}‘ éﬁd: —lAfyl(i).

'I‘he elgenvaluesof Eil _.are!:‘ -1,\ -(1')‘1)pi(>‘1);nd ' ‘_ ;1 + Q(l_xl) .
_Thé1§igéﬁva¥ﬁ§sAof.:é§% fsatigf{i{ﬁg}éhafgcﬁeriéyig eQﬁatioA:

fMSBl) W*UDJ+u6(1®)—p($)+1+ﬁ)@ﬂ)+yq(ﬁ j 1“

'

«6y'p} (s*)q (a)] SRS
and so ES, is asymptotically »stam’e'prcvi&eé, o
SR SR R
Gsabay () <1)/6 + spy(sM) > 0

- “and'is unstable if the inequality is reversed.




