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Abstract

It is not trivial to understand the underlying principle of polymer dynamics due to its wide

range of applications in our daily lives. This thesis mainly focuses on the theory and sim-

ulation of polyethylene melts, which are not only restricted to the classic linear structure,

but also extended to ring and four-arm symmetrical star structures. The size dependence

of the dynamic properties of these polyethylene molecules, such as diffusivity and viscosity,

demonstrates a crossover from unentangled to entangled regimes. In the literature, there are

two classic models, known as the Rouse model and reptation model, only for polyethylene

with linear structure, which accounts for the crossover in the dynamics of linear polyethylene

as a function of chain length (N) at a particular temperature.

The Rouse model is a simplified version of Brownian dynamics (BD) model for unentan-

gled polymers, in which the inertia term is neglected. If such inertia term is included, it

is then possible to compute the velocity time correlation function using the eigenvalue and

eigenfunction method. The eigenfunctions can then be used to construct different time cor-

relation functions. Such analysis can also be applied to ring and star polymers, by modifying

the resultant matrix equation in such model. It was also found that by incorporating a finite

equilibrium length in the harmonic bond stretching term in Rouse model, it becomes a non-

linear BD model, which makes the equation of motion nonlinear and the analytical derivation

of eigenfunctions impossible. This is also true in MD simulation, which explicitly includes

all the highly nonlinear atomic force as a result of the bonded and non-bonded potentials in

the equation of motion. Proper orthogonal decomposition (POD), which is a method that

can generate a reduced ordered model, was applied to the numerical data so as to obtain

‘eigenfunctions’, which are later regarded as eigenmodes, for calculating relaxation times and
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viscosities. With the aid of POD analysis, it was observed that the viscosities calculated

from nonlinear BD model and MD simulations concur with one another.

Another notable fact is that the diffusivity of linear polyethylene melt as a function of

chain length as predicted by Rouse model is Dcm ∼ N−ν and η ∼ Nν , with the exponent

ν = 1, whereas in reality, ν is larger than 1 and it becomes larger when temperature decreases

with ν = 2.6 at 343.5 K for diffusivity. The same trend was also observed for viscosity with

ν = 1.8.

In the same way as the Rouse model, the classic reptation model for linear polyethylene

predicts that Dcm ∼ N−2 at T = 448 K, whereas a stronger exponent was experimentally

observed having a value of −2.2. Similarly, based upon such model, it can be calculated

that η ∼ N3, whereas in reality, η ∼ N3.4 for linear polyethylene. The reptation model is

based on the assumption that a polymer chain is reptating through a tube as defined by a

number of fixed obstacles, known as entanglements. However, a foundation, i.e., how does

the repulsive force among the chains give rise to the entanglements, leading to a reptative

motion?, for the entanglement concept in such model is still lacking. In addition, to our

knowledge, the quantification of the entanglements for identifying the primitive path is only

possible in linear polymer, but not ring polymer.

With regard to this, an alternative free volume theory was proposed, for which many

parameters can be theoretically obtained using the generic van der Waals’ equation of state

and the distribution function theory of polymer melts. Different radial distribution functions

in this case can be obtained either by either MD simulation or more elegantly the Polymer

Reference Interaction Site Model (PRISM). The free volume theory proposed in this work,

which only considers the amount of free volume distributed within the macromolecules, can

account for the crossover in the dynamics of both linear, ring and star polymers.

In summary, this work shed light on the theoretical approach of evaluating the dynamic

properties of polymers with linear, ring as well as star structures. The proposed free volume

theory also offers an alternative way of understanding the diffusivity and viscosity of both

unentangled and entangled polymer melts within a particular range of molecular weight.
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ĉ(k) Fourier transform of c(r)
δ(t) Dirac delta function
D Diffusivity of particle
Dcm Center-of-mass diffusion coefficient of polymer
η Zero-shear viscosity
Ei ith energy level in NVT ensemble
Etotal Total energy of the box in NVT ensemble
f Phase space function
fj Phase space function of jth particle
F Force vector in 3D space
Fj Force vector acting upon the jth particle in 3D space
Fk Component of the force vector in k direction that k can be either x, y or z
g(2)(r) or g(r) Radial distribution function
h(r) g(r)− 1
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g(ṙ) Constraint function
J Jacobian matrix
k Spring constant
kθ Angle bending force constant
λ Lagrange multiplier, which is equivalent to the friction coefficient with a

unit of per unit time
mi Mass of the ith particle
µp(t) Time correlation function of the pth eigenmode
N Total number of particles in the system (Section 2.1.1) or number of atoms

of a polymer chain (Section 2.3.1)
Nsnap Number of snapshots of the MD trajectory

xix



p Pressure
ϕ Torsion angle

ψ̃pq Normalized pth eigenmode in q direction
qi Position of the ith particle in q direction that q can be either x, y or z
q′i(t) Fluctuation in the position of the ith bead from the centre-of-mass of the

polymer in q direction at time t
r Distance between the ith and jth particle
r Position vector of all particles.
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Chapter 1

Introduction

1.1 Overview of the thesis

There are three transport phenomena in nature, namely mass, momentum as well as energy

transport. These quantities are always conserved and the corresponding transport processes

are governed by the laws of conservation. Transport coefficients, such as diffusivity, viscosity

and conductivity can be inferred from the equations of mass, momentum and energy trans-

port, and they give us an idea of transfer rate of these entities. These transport coefficients

can be evaluated theoretically by understanding science from a molecular point of view as

demonstrated by Boltzmann in his kinetic theory of gas. Such theoretical understanding of

transport phenomena can be also applied in the analysis of dense liquid, such as polymer

melt, even though the problem has become more complex due to the strong intramolecular

and intermolecular interactions of the polymer chains.

Polymers are macromolecules, which are ubiquitous in nature. For instance, DNAmolecules

in our body is one of the many examples of polymers that exist in nature, and they can exhibit

shapes such as cyclic ring. Common synthetic polymers, such as polyethylene, polystyrene,

have a wide range of applications in our daily lives as they are inexpensive materials. Trans-

port coefficients of polymer melts exhibit peculiar dependence relation with their molecular

weight as well as their structures. The most classic structure of polymer is a linear structure

with two chain ends. Diffusivity and viscosity of such linear polymers both demonstrate a

change in the molecular weight dependence relation as a function of molecular weight, i.e.
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a crossover in the molecular weight dependence. Such crossover occurs at certain critical

molecular weight (Mc) or critical chain length (Nc). To be explicit, for linear polyethylene,

the change at T = 450 K is tabulated in Table 1.1.

Table 1.1: Molecular weight dependence of Dcm and η below and above Mc for polyethylene
at T = 450 K.

Transport Coefficients Below Mc Above Mc

Dcm Dcm ∼M−1.5 Dcm ∼M−2.3

η η ∼M1.8 η ∼M3.4

The region below Mc and above Mc are known as unentangled and entangled regimes,

respectively, due to several theoretical considerations. Interestingly, it is worthwhile to note

that such M dependence also changes with temperature that the M dependence becomes

weaker as temperature increases (cf., Chapter 7).

In polymer science literature, two classic theoretical models for unentangled and entangled

regimes, known as Rouse model and reptation model, respectively, were developed to account

for the M dependence of Dcm as well as η. Rouse model predicts that Dcm ∼ M−1 and

η ∼ M1, which are slightly weaker than that as listed in Table 1.1. Generally, Rouse model

is an equation of motion of Brownian dynamics of a polymer chain. From such equation of

motion, one can obtain time correlation function of the positions of the beads, relaxation

times of different normal modes and both Dcm as well as η of the polymer chain. Based on

the Rouse model, we found an interesting mathematical problem, i.e. is it possible to obtain

the velocity time correlation function from such a Rouse chain, and to see if integration of

such velocity time correlation function will give us Dcm ∼ M−1? In addition, the Rouse

model can be easily changed for polymers with different structures, such as ring and star

shapes. The harmonic potential associated in the Rouse model can also be modified such

that finite equilibrium distance between two beads is always a non-zero positive value to yield

reasonable values of relaxation times as well as zero-shear viscosities of polyethylene melt.

Reptation theory is simply an equation of motion for chain in curvilinear coordinate. It

is assumed that such chain is immersed in a medium of fixed obstacles as if there exists a

many-chain effect on the motion of the polymer chain. The chain diffuses along the primitive

path with diffusion coefficient obtained from the Rouse model. With this, the reptation

2



theory predicts Dcm ∼M−2 and η ∼M3, which are also weaker than that as listed in Table

1.1. Such theory also leads to questions, such as ‘How can one define an entanglement from

first principle? How are these entanglements related to the many-chain effect? Why does

this “many-chain effect” suddenly becomes so prominent onceM is aboveMc?’ Indeed, these

may not be hard questions, as the so-called many-chain effect can be easily understood armed

with knowledge in thermodynamics.

Intuitively, the many-chain effect can be alternatively understood as the amount of free

volume or distribution of free volume in a polymer melts. The success of free volume concept

in polymer science is manifested in the account for temperature dependence of viscosity as

well as glass transition phenomenon. The only limitation of free volume concept, to our

knowledge, seems to be empirical nature of the theory, such as parameters in Williams-

Landel-Ferry equation, that many parameters in free volume theory are empirical and they

could be only obtained by curve fitting to experimental data. Nonetheless, these associated

empirical parameters have physical meanings, and some of them can even be theoretically

calculated. With these, an interesting question to ask is ‘Can we apply the free volume

concept to account for the M dependence as listed in Table 1.1?’ Furthermore, as mentioned

above, the M dependence as listed in Table 1.1 can also change with temperature, and

such temperature effect is not captured by both Rouse model and reptation theory. On the

contrary, the free volume concept should enable us to capture such temperature effect, as it

is well known that free volume varies significantly with temperature.

This thesis aims to attack the questions raised above. In particular, we would like to focus

on the material, polyethylene due to its simple structure. The methylene group, methyl group

of polyethylene can be modeled as beads with distinct interaction potential parameters, and

any electrostatic interaction is negligible. And this significantly shortens the computation

time in our studies of polyethylene. Experimental data of such materials are also reliable.

In this thesis, this chapter presents the basic concept of the equation of motion, such as

the Brownian dynamics (BD) and Langevin dynamics. Fundamentals of statistical mechan-

ics, such as the canonical ensemble, distribution function theory of simple liquids, Boltzmann

equation and transport properties, are also reviewed. Additionally, the rotational isomeric

state model for determining the static properties of a polyethylene chain, which is used in
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the initial configuration preparation step in MD simulation, is discussed. Chapter 2 shows

the details of the molecular dynamics simulation, such as the preparation of the initial con-

figuration of polymers, equilibriation, production runs and forcefield parameters, numerical

integration of nonlinear equation of motion in BD dynamics as well as the POD method

are included. Chapter 3 reports the evaluation of velocity time correlation function after the

inclusion of a inertia term in the Rouse model, compared with the numerical results. Chapter

4 shows the analysis of the nonlinear BD as well as MD data of polymers with different struc-

tures using POD analysis. A free volume theory for chain length dependence of linear and

ring polymers is proposed in Chapter 5 and Chapter 6, respectively. In Chapter 7, the effect

of temperature on the chain length dependence of the diffusivity of linear oligomers studied

by the proposed free volume theory is investigated. In Chapter 8, the free volume theory was

extended to the calculation of viscosity of unentangled and entangled polyethylene melts of

different structures within a particular range of M . Finally, conclusions and future work can

be found in Chapter 9.

1.2 BD and Langevin dynamics of a classical particle1

Consider the simplest case that a single classical particle is subjected to a harmonic potential.

The Langevin dynamics equation of motion for a single particle under such potential can be

written as follows:

m
d2x

dt2
+ ζ

dx

dt
= −kx+ f(t) (1.1)

ζ is the friction coefficient, m is the mass of that single classical particle, k is the spring

constant and x is the position of the particle. Alternatively, Equation (1.1) can be rewritten

in a system of two ordinary differential equations.

m
dv

dt
+ ζv = −kx+ f(t) (1.2)

v =
dx

dt
(1.3)

This system of differential equations can be easily solved by rewriting in the state-space

representation.
d

dt

[︃
x
v

]︃
=

[︃
0 1

− k
m

− ζ
m

]︃ [︃
x
v

]︃
+

[︃
0
f(t)
m

]︃
(1.4)

1A version of this section has been published in Mol Simul, 2020, 1-12. (cf., Appendix A)
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The solution is as follows: [︃
x
v

]︃
= eAt

[︃
x
v

]︃
0

+ eAt
∫︂ t

0

e−Aτ

[︃
0
f(τ)
m

]︃
dτ (1.5)

Laplace transformation of the above solution gives us:[︃
X(s)
V (s)

]︃
= (sI−A)−1

[︃
x
v

]︃
0

+ (sI−A)−1

[︃
0

F (s)
m

]︃
(1.6)

The task has become evaluating (sI−A)−1, which has the following form:

(sI−A)−1 =

⎡⎣ s+ ζ
m

s(s+ ζ
m
)+ k

m

1

s(s+ ζ
m
)+ k

m
− k

m

s(s+ ζ
m
)+ k

m

s

s(s+ ζ
m
)+ k

m

⎤⎦ (1.7)

1.2.1 Case 1: k
m > ζ2

4m2

This can be transformed back to the time domain. If k
m

≫ ζ2

4m2 :

eAt = e−
ζt
2m

⎡⎢⎢⎣cos(
√︂

k
m
− ζ2

4m2 t) +
ζ sin(

√︂
k
m
− ζ2

4m2 t)

2m(
√︂

k
m
− ζ2

4m2 )

sin(
√︂

k
m
− ζ2

4m2 t)√︂
k
m
− ζ2

4m2

−k sin(
√︂

k
m
− ζ2

4m2 t)

m
√︂

k
m
− ζ2

4m2

cos(
√︂

k
m
− ζ2

4m2 t)−
ζ sin(

√︂
k
m
− ζ2

4m2 t)

2m
√︂

k
m
− ζ2

4m2

⎤⎥⎥⎦ (1.8)

Leading to the following solutions:

x(t) = x(0)e−
ζt
2m

[︂
cos(

√︃
k

m
− ζ2

4m2
t) +

ζ sin(
√︂

k
m
− ζ2

4m2 t)

2m(
√︂

k
m
− ζ2

4m2 )

]︂
+ v(0)

e−
ζ

2m
t sin(

√︂
k
m
− ζ2

4m2 t)√︂
k
m
− ζ2

4m2

+ h(t)

(1.9)

v(t) = −x(0)e−
ζt
2m

k sin(
√︂

k
m
− ζ2

4m2 t)

m
√︂

k
m
− ζ2

4m2

+v(0)e−
ζt
2m

[︂
cos(

√︃
k

m
− ζ2

4m
t)−

ζ sin(
√︂

k
m
− ζ2

4m2 t)

2m
√︂

k
m
− ζ2

4m2

]︂
+g(t)

(1.10)

where,

h(t) = e−
ζ

2m
t

∫︂ t

0

e
ζ

2m
τ
sin(

√︂
k
m
− ζ2

4m2 (t− τ))√︂
k
m
− ζ2

4m2

f(τ)dτ (1.11)

g(t) = e−
ζ

2m
t

∫︂ t

0

e
ζ

2m
τ
[︂
cos(

√︃
k

m
− ζ2

4m2
(t− τ)) +

ζ sin(
√︂

k
m
− ζ2

4m2 (t− τ))

2m
√︂

k
m
− ζ2

4m2

]︂
f(τ)dτ (1.12)
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We can then obtain different time correlation functions of the position and velocity:

⟨x(t)x(0)⟩ = ⟨x2⟩e−
ζt
2m

[︂
cos(

√︃
k

m
− ζ2

4m2
t) +

ζ sin(
√︂

k
m
− ζ2

4m2 t)

2m(
√︂

k
m
− ζ2

4m2 )

]︂
(1.13)

⟨v(t)v(0)⟩ = ⟨v2⟩e−
ζt
2m

[︂
cos(

√︃
k

m
− ζ2

4m
t)−

ζ sin(
√︂

k
m
− ζ2

4m2 t)

2m
√︂

k
m
− ζ2

4m2

]︂
(1.14)

1.2.2 Case 2: ζ2

4m2 >
k
m

If ζ2

4m2 ≫ k
m
, then the matrix exponential eAt has the following form:

eAt = e−
ζt
2m

⎡⎢⎢⎣cosh(
√︂

ζ2

4m2 − k
m
t) +

ζ sinh(
√︂

ζ2

4m2−
k
m
t)

2m(
√︂

ζ2

4m2−
k
m
)

sinh(
√︂

ζ2

4m2−
k
m
t)√︂

ζ2

4m2−
k
m

−k sinh(
√︂

ζ2

4m2−
k
m
t)

m
√︂

ζ2

4m2−
k
m

cosh(
√︂

ζ2

4m2 − k
m
t)− ζ sinh(

√︂
ζ2

4m2−
k
m
t)

2m
√︂

ζ2

4m2−
k
m

⎤⎥⎥⎦
(1.15)

Such that, the solution now becomes:

x(t) = x(0)e−
ζt
2m

[︂
cosh(

√︃
ζ2

4m2
− k

m
t) +

ζ sinh(
√︂

ζ2

4m2 − k
m
t)

2m(
√︂

ζ2

4m2 − k
m
)

]︂
+ v(0)

e−
ζ

2m
t sinh(

√︂
ζ2

4m2 − k
m
t)√︂

ζ2

4m2 − k
m

+ h(t)

(1.16)

v(t) = −x(0)e−
ζt
2m

k sinh(
√︂

ζ2

4m2 − k
m
t)

m
√︂

ζ2

4m2 − k
m

+v(0)e−
ζt
2m

[︂
cosh(

√︃
k

m
− ζ2

4m
t)−

ζ sinh(
√︂

ζ2

4m2 − k
m
t)

2m
√︂

ζ2

4m2 − k
m

]︂
+g(t)

(1.17)

where,

h(t) = e−
ζ

2m
t

∫︂ t

0

e
ζ

2m
τ
sinh(

√︂
ζ2

4m2 − k
m
(t− τ))√︂

ζ2

4m2 − k
m

f(τ)dτ (1.18)

g(t) = e−
ζ

2m
t

∫︂ t

0

e
ζ

2m
τ
[︂
cosh(

√︃
ζ2

4m2
− k

m
(t− τ)) +

ζ sinh(
√︂

ζ2

4m2 − k
m
(t− τ))

2m
√︂

ζ2

4m2 − k
m

]︂
f(τ)dτ (1.19)

The time correlation functions now become:

⟨x(t)x(0)⟩ = ⟨x2⟩e−
ζt
2m

[︂
cosh(

√︃
ζ2

4m2
− k

m
t) +

ζ sinh(
√︂

ζ2

4m2 − k
m
t)

2m(
√︂

ζ2

4m2 − k
m
)

]︂
(1.20)
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⟨v(t)v(0)⟩ = ⟨v2⟩e−
ζt
2m

[︂
cosh(

√︃
ζ2

4m2
− k

m
t)−

ζ sinh(
√︂

ζ2

4m2 − k
m
t)

2m
√︂

ζ2

4m2 − k
m

]︂
(1.21)

In this case, we can extract the diffusivity easily by assuming that ζ2

4m2 ≫ k
m

such that the

evaluation of the mean square displacement ⟨(x(t)− x0)
2⟩ can be simplified.

⟨(x(t)− x0)
2⟩ = ⟨h(t)2⟩ (1.22)

With:

⟨h(t)2⟩ = m2

ζ2

∫︂ t

0

∫︂ t

0

(︂
1− e−

ζ
m
(t−τ1)

)︂(︂
1− e−

ζ
m
(t−τ2)

)︂
⟨f(τ1)f(τ2)⟩dτ1dτ2 (1.23)

⟨f(τ1)f(τ2)⟩ = 2kbT
ζ
m2 δ(τ1 − τ2). This is going to give us:

⟨h2(t)⟩ = 2kbT

ζ
t− 3kbTm

ζ2
+

4kbTm

ζ2
e−

ζ
m
t − kbTm

ζ2
e−

2ζ
m
t (1.24)

As time tends to infinity, we then have:

lim
t→∞

⟨(r − r0)
2⟩ = 2kbTt

ζ
(1.25)

Therefore, D = kbT
ζ
, where D is the diffusivity of the classical particle.

1.2.3 Brownian Dynamics

In BD, the equation of motion is even much easier as the inertia term is neglected. Consider

the same case of a 1D classical particle subjected to a harmonic potential.

ζ
dx

dt
= −kx (1.26)

This can be solved even more straightforwardly.

x(t) = x(0)e−
k
ζ
t (1.27)

Even though we will not be able to get the velocity time correlation function from BD, when

the system is only subjected to a stochastic force, the diffusivity can be calculated. With the

stochastic force f(t) only, we have the following equation of motion:

ζ
dx

dt
= f(t) (1.28)
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Such that the stochastic force has a normal distribution with ⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ =

2ζkbTδ(t− t′). The solution is as follows:

x(t) = x(0) +

∫︂ t

0

f(τ)

ζ
dτ (1.29)

To derive the diffusivity, the mean square displacement ⟨x2(t)⟩ has to be known.

⟨x2(t)⟩ = ⟨x2(0)⟩+
∫︂ t

0

∫︂ t

0

dτ1dτ2
⟨f(τ1)f(τ2)⟩

ζ2
(1.30)

This gives us:

⟨x2(t)⟩ = 2kbT

ζ
t = 2Dt (1.31)

1.3 Statistical mechanics and distribution function the-

ory of simple liquid

1.3.1 Canonical Ensemble and Classical Statistical Thermodynam-
ics

It is also pertinent to introduce the fundamental concept of statistical mechanics of simple

liquid (i.e., derivation of statistical weight and partition function of a canonical ensemble.)

before any detailed discussion of radial distribution function and pressure equation.

Consider a box as depicted in Figure 1.1 with many compartments having the same

number of particles, volume and temperature. The walls of the box are adiabatic, rigid

and impermeable, whereas the walls separating compartments are diathermal, rigid and

impermeable. The energy of each compartment is different in this case. And say each

compartment possesses a certain energy level of Ei, then the total energy of the box is:

Etotal =
∑︂
i

Eiai (1.32)

ai is the number of compartments at the energy state Ei, such that the total number of

compartments is:

Atotal =
∑︂
i

ai (1.33)
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The total number of ways of arranging these ai compartments at different energy level Eis

(W ) is then:

W (a) =
Atotal!

a1!a2!a3!...
(1.34)

where a =
[︁
a1 a2 a3 a4 . . .

]︁T
. As Atotal → ∞, there exists a particular distribution a∗,

which maximizes W (a). Subjected to Equation (1.32) and Equation (1.33), we have:

∂ lnW (a)

∂a∗i
− α1 − βE∗

i = 0 (1.35)

With Stirling approximation, we know that ∂ lnW (a)
∂a∗i

= −1− ln a∗i , leading to:

a∗i = exp(−1− α1 − βE∗
i ) (1.36)

A macroscopic property M can be then determined.

M =

∑︁
i aimi∑︁
i ai

=

∑︁
imi exp(−βEi)∑︁
i exp(−βEi)

(1.37)

In classical mechanics,mi and Ei are both functions of positions and momenta of the particles,

which can be denoted as m(p,q) and E(p,q), such that Equation (1.37) can be rewritten

as:

M =

∫︁
...
∫︁
m(p,q) exp[−βE(p,q)]dpdq∫︁
...
∫︁
exp[−βE(p,q)]dpdq

(1.38)

Figure 1.1: A box containing multiple compartments with the same N , V and T .
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1.3.2 Radial Distribution Function

Thus, if we consider a system of all atoms interacting with one another with a total potential

energy of UN , the probability of finding atom 1 at dr1, atom 2 at dr2, ... , atom N at drN is:

P (N)(r1, r2, ..., rN)dr1dr2...drN = exp(−βUN)dr1dr2...drN/ZN (1.39)

ZN is the partition function of the canonical ensemble, which has the form:

ZN =

∫︂
...

∫︂
exp(−βUN)dr1dr2...drN (1.40)

Therefore, the probability of finding atom 1 at dr1, atom 2 at dr2,..., atom n drn is:

P (n)(r1, r2, ..., rn)dr1dr2...drn =
[︂ ∫︂

...

∫︂
exp(−βUN)drn+1drn+2...drN/ZN

]︂
dr1dr2...drn

(1.41)

The probability density of finding any atom at dr1, dr2,..., drn is then:

ρ(n) =
N !

(N − n)!ZN

∫︂
...

∫︂
exp(−βUN)drn+1...drN (1.42)

Let us define a function g(n) as follows:

g(n) =
ρ(n)

ρn
(1.43)

ρ is the number density of the atoms. The simplest form is n = 1, which is related to the

probability of finding any atom in the system. We have:

ρ =
1

V

∫︂ ∞

0

ρ(1)4πr2dr =
N

V
(1.44)

This implies that g(1) = 1. This is only true for single monoatomic particle. If the molecule is

a polymer, then g(1)(r) is a function of r (See Chapter 8 for derivation of a Gaussian chain).

When n = 2,

g(2) =
V 2(N − 1)

NZN

∫︂
...

∫︂
exp

(︂
− βUN

)︂
dr3...drN (1.45)

g(2) is a function of our main interest as it is related to the probability of finding a molecule

1 in dr1 given a molecule 2 in dr2. It is an extremely useful function as the interaction

potential in simple liquid is typical pairwise.
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1.3.3 Pressure Equation

Consider the following coordinate transformation:

xk = V 1/3x′k (1.46)

This implies that:

rk = V r′k (1.47)

And the partition function ZN is expressed as follows:

ZN = V N

∫︂ 1

0

...

∫︂ 1

0

exp(−βUN)dr′1dr′2...dr′N (1.48)

Taking derivative with respect to V .(︂∂ZN
∂V

)︂
N,T

=
∂

∂V

∫︂ 1

0

...

∫︂ 1

0

exp(−βUN)V Ndr′1dr
′
2...dr

′
N (1.49)

(︂∂ZN
∂V

)︂
N,T

=

∫︂ 1

0

...

∫︂ 1

0

exp(−βUN)
[︂
NV N−1 − V Nβ

(︂∂UN
∂V

)︂]︂
dr′1dr

′
2dr

′
3...dr

′
N (1.50)

In which we have, if the interaction potential is pairwise addition:(︂∂UN
∂V

)︂
=

∑︂
1≤i≤j≤N

∂uij
∂rij

· ∂rij
∂V

=
∑︂

1≤i≤j≤N

rij
3V

∂uij
∂rij

(1.51)

As p = kbT
∂ lnZN

∂V
, we can obtain the pressure equation with the following:

∂ lnZN
∂V

=
1

ZN

∂ZN
∂V

=
N

V
− β

3V

N(N − 1)

2ZN

∫︂ 1

0

...

∫︂ 1

0

rij
∂uij
∂rij

exp(−βUN)dr′1dr′2dr′3...dr′N

=
N

V
− 2πβ

3V

∫︂ ∞

0

r12
∂u12
∂r12

ρ(2)(r1, r2)dr1dr2

By transformation into spherical coordinate, we finally have:

pβ = ρ− 2πβρ2

3

∫︂ ∞

0

r312
∂u12
∂r12

g(2)dr12 (1.52)
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1.3.4 Percus-Yevick Equation

(a) Direct (b) Indirect

Figure 1.2: (a) Direct and (b) indirect interactions between particle 1 and particle 2 in a
many-body system. Particle 3 can influence the motion of particle 1 by indirectly interacting
with particle 2.

The problem of determining the pressure in a simple liquid then becomes obtaining g(r) (also

known as g(2)), which allows us to quantify the many-body effect. With h(r) = g(r)− 1 and

the direct correlation function c(r), Ornstein and Zernike proposed the following:

h(r12) = c(r12) + ρ

∫︂
c(r13)h(r23)dr3 (1.53)

The key idea behind such equation is illustrated in Figure 1.2. In Figure 1.2, they argued

that g(r) can be divided into direct and indirect parts. The direct part accounts for the

influence from atom 2 on atom 1, whereas the indirect part includes the influence from atom

3 on atom 2, which results in indirect influence on atom 1, as these particles interact with one

another through a particular potential, such as hard-sphere potential or 6-12 Lennard-Jones

(LJ) potential.

However, Equation (1.53) is not useful as there are two unknowns. Percus and Yevick

then proposed a closure relation along with Equation (1.53):

c(r) = gtotal − gindirect

≈ exp(−βw(r))− exp(−β[w(r)− u(r)])

Let y(r) = exp(−β[w(r)− u(r)]), such that g(r) = exp[−βu(r)]y(r).

c(r) =
{︂
exp[−βu(r)]− 1

}︂
y(r) = f(r)y(r) (1.54)
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The Percus-Yevick Equation was finally obtained as:

y12 = 1 + ρ

∫︂
f13y13[e

−βu23y23 − 1]dr3 (1.55)

1.3.5 Fourier Transform Method

To solve Equation (1.53), it is simplified to a scalar algebraic equation when it is transformed

to the Fourier space:

ĥ(k) = ĉ(k) + ρĉ(k)ĥ(k) (1.56)

k is the wavevector. ĥ(k) can be therefore easily calculated with:

ĥ(k) =
ĉ(k)

1− ρĉ(k)
(1.57)

The Fourier Transform is three dimensional. The position vector in Cartesian coordinate is

firstly rewritten in spherical coordinate.⎡⎣xy
z

⎤⎦ =

⎡⎣r sin(θ) cos(ψ)r sin(θ) sin(ψ)
r cos(θ)

⎤⎦ (1.58)

The corresponding Jacobian matrix is therefore as follows:

J =

⎡⎣sin θ cosψ r cosψ cos θ −r sin θ sinψ
sin θ sinψ r cos θ sinψ r sin θ cosψ

cos θ −r sin θ 0

⎤⎦ (1.59)

Determinant of such matrix is r2 sin θ. Secondly, if we look at the integral in the Fourier

Transformation: ∫︂
dx

∫︂
dy

∫︂
dze−i(kxx+kyy+kzz)g(x, y, z) (1.60)

Coordinate transformation gives us:∫︂ 2π

0

dψ

∫︂ ∞

0

∫︂ π

0

e−ikr cos θg(r)r2 sin θdθdr (1.61)

Consider the integral: ∫︂ π

0

e−ikr cos θ sin θdθ = −
∫︂ −1

1

e−ikr cos θd cos θ

= −
[︁e−ikr cos θ

−ikr
]︁−1

1

=
2i sin kr

ikr
= 2

sin kr

kr
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Finally, the Fourier transform of property A(r) is defined as:

Â(k) = 4π

∫︂ ∞

0

A(r)r2
sin(kr)

kr
dr (1.62)

With these, Equation (1.56) was solved numerically along with the Percus-Yevick closure

relation, and the solutions with different ρs are shown in Figure 1.3 with u(r) being 6-12

LJ potential. As expected, when ρ decreases, the amplitude of the first peak decreases until

g(r) → exp[−βu(r)] as ρ→ 0.

Figure 1.3: Radial distirbution function of monatomic liquid at different number densities.

The compressibility factor, which is defined as pβ
ρ
, can be then evaluated using the pressure

equation that we have derived earlier. The results are shown in Figure 1.4. In ideal gas, the

compressibility factor should be constant, but in monoatomic liquid, atoms interact with one

another and they have finite sizes. Therefore, the compressibility factor increases nonlinearly

with ρ. The reader is going to see that this computation is important in the approximation

of mean free volume and effective pressure of a polymer melt.
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Figure 1.4: Calculated pressure as a function of number density.

1.4 Maxwell-Boltzmann Distribution and Transport Co-

efficients of Dilute Gas

1.4.1 Derivation of Boltzmann Distribution and Mean-Free Path

Conside a phase space function fj(vj, rj, t) of a particle j, which is a function of the velocity

(vj) and position (rj) of particle j . Infinitesimal change in vj and rj can be expressed in

terms of dt that dvj =
Fj

mj
dt and drj = vjdt.

dfj =
[︂(︂∂fj

∂t

)︂
+ vj · ∇rfj +

Fj

mj

· ∇vj
fj

]︂
dt (1.63)

We have: (︂∂fj
∂t

)︂
+ vj · ∇rfj +

Fj

mj

· ∇vj
fj =

(︂dfj
dt

)︂
(1.64)

dfj
dt

can be known by understanding the collision between gas particles because the gain

and the loss of fj with time is dependent on the scattering due to collisions. With the

normalization to the number density of particle j:∫︂ ∞

−∞
fjdvj = ρj (1.65)
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As the term dfj/dt is related to the collisions among particles. Equation (1.64) can be

rewritten as:
∂fj
∂t

+ vj · ∇rfj +
Fj

mj

· ∇vj
fj =

∑︂
i

Γ+
ij − Γ−

ij (1.66)

Γ+
ij and Γ−

ij are the gain and loss in the phase space distribution function of particle j due

to its collision with particle i, respectively. Before analyzing the expressions for Γ+
ij and Γ−

ij,

consider two particles collide with one another, assuming that the collision is elastic, we can

write equations for mass, momentum and energy balance.

m1 +m2 = m′
1 +m′

2 (1.67)

Without any reaction, then m1 = m′
1 and m2 = m′

2. Then, the momentum balance gives us:

m1v1 +m2v2 = m1v
′
1 +m2v

′
2 (1.68)

0.5m1v
2
1 + 0.5m2v

2
2 = 0.5m′

1v
′2
1 + 0.5m′

2v
′2
2 (1.69)

To make our lives easier, the velocities can be rewritten in terms of relative velocity (vr) and

center-of-mass velocity (vc), with the following definitions:

vc =
m1v1 +m2v2

m1 +m2

(1.70)

vr = v1 − v2 (1.71)

Consider the momentum balance and energy balance:

m1v1 +m2v2 = m1v
′
1 +m2v

′
2

m1v1 +m2v2 = m1

(︂
vc +

m2

m1 +m2

vr

)︂
+m2

(︂
vc −

m1

m1 +m2

vr

)︂
= (m1 +m2)vc

This proves that vc = v′
c. Consider the following definition of v1 and v2:

v1 = vc +
m2

m1 +m2

vr (1.72)

v2 = vc −
m1

m1 +m2

vr (1.73)

v21 = v2c +
m2

m1 +m2

vc · vr +
m2

2

(m1 +m2)2
v2r (1.74)

v22 = v2c −
m1

m1 +m2

vc · vr +
m2

1

(m1 +m2)2
v2r (1.75)
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The energy balance equation then becomes:

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
(m1 +m2)v

2
c +

1

2
µv2r

where µ = m1m2

m1+m2
. This means that vr = v′r. In conclusion, during an elastic collision, the

magnitude of vc and vr remain unchanged. Only the direction of vr has changed, such that

vr · vr
′ = v2r cosχ. The angle χ is dependent on the potential of interaction between two

particles, which will be discussed in details in the forthcoming section.

Assumed that particle i is now traveling through a medium, in which all other particles

j are fixed. This means that particle i travels with a velocity of vr = |vi − vj|. Then, the

total number of collisions (ncol) experienced by one particle j in a unit time is:

ncol =

∫︂ 2π

0

dψ

∫︂ ∞

−∞

∫︂ ∞

0

f ′
iv

′
rbdbdvi

′ = 2π
∑︂
i

∫︂ ∞

−∞

∫︂ ∞

0

f ′
iv

′
rbdbdvi

′ (1.76)

f ′
i is function of v′i, which is the velocity of particle i after the collision. The phase space

distribution function of particle j for the gain due to collision is f ′
j, which is also a function

of velocity of particle j after collision (v′j). Therefore:∑︂
i

Γ+
ij = 2π

∑︂
i

∫︂ ∞

−∞

∫︂ ∞

0

f ′
if

′
jv

′
rbdbdvi

′ (1.77)

Similarly, for
∑︁

i Γ
−
ij, we consider fi and fj, which are functions of velocities before collision.∑︂

i

Γ−
ij = 2π

∑︂
i

∫︂ ∞

−∞

∫︂ ∞

0

fifjvrbdbdvi (1.78)

Let the following to represent the net gain contribution due to collision:(︂∂fj
∂t

)︂
col

=
∑︂
i

Γ+
ij − Γ−

ij (1.79)

In a volume element with dr, the probable number of particles j in the range of vj to vj+dvj

is fjdrdvj. Similarly, we have f ′
jdrdv

′
j for the post-collisional term. Then, for the gain and

loss terms, we have: ∑︂
i

Γ+
ijdv

′
jdr = 2π

∑︂
i

∫︂ ∞

−∞

∫︂ ∞

0

f ′
if

′
jv

′
rbdbdv

′
idv

′
jdr (1.80)

∑︂
i

Γ−
ijdvjdr = 2π

∑︂
i

∫︂ ∞

−∞

∫︂ ∞

0

fifjvrbdbdvidvjdr (1.81)

17



In a binary collision event, magnitude of vr remains unchanged and vc does not change. Con-

sider the following Jacobian matrix for coordinate transformation from dvi
′dvj

′ to dvr
′dvc

′

for one component system:

J =

[︃∂v1

∂vc

∂v1

∂vr
∂v2

∂vc

∂v2

∂vr

]︃
=

[︃
1 0.5
1 −0.5

]︃
(1.82)

The absolute value of determinant is one, therefore dv′
idv

′
j = dvcdv

′
r and dvidvj = dvcdvr.

Note that we have used vc = vc
′. If we define dvr and dv′

r in spherical coordinate, we find

that they are equivalent. See that:

dv′
r = v′2r sin θdθdψdv′r = dvr = v2r sin θdθdψdvr (1.83)

This then gives us dvi
′dvj

′ = dvidvj, and it leads to the conclusion:∑︂
i

Γ+
ij − Γ−

ij = 2π
∑︂
i

∫︂ ∞

−∞

∫︂ ∞

0

(︁
f ′
if

′
j − fifj

)︁
vrbdbdvi (1.84)

Rewriting again for the Boltzmann Equation, we get:

∂fj
∂t

+ vj · ∇rfj +
Fj

mj

· ∇vj
fj = 2π

∑︂
i

∫︂ ∞

−∞

∫︂ ∞

0

(︁
f ′
if

′
j − fifj

)︁
vrbdbdvi (1.85)

Now consider the phase space distribution of all particles, which are identical to one another

such that we have a one-component system. In this case, we can drop the summation operator∑︁
i and all the subscripts j and change the subscript i to 1, such that we have:

∂f

∂t
+ v · ∇rf +

F

m
· ∇vf = 2π

∫︂ ∞

−∞

∫︂ ∞

0

(︁
f ′
1f

′ − f1f
)︁
vrbdbdv1 (1.86)

We then write the following H function:

H(t) =

∫︂ ∞

−∞

∫︂ ∞

−∞
f ln fdrdv (1.87)

Taking time derivative of both sides:

dH(t)

dt
=

∫︂ ∞

−∞

∫︂ ∞

−∞

(︂
ln f

∂f

∂t
+
∂f

∂t

)︂
drdv (1.88)

As total number of points in phase space does not change with time, we can write:∫︂ ∞

−∞

∫︂ ∞

−∞

∂f

∂t
drdv =

∂

∂t

∫︂ ∞

−∞

∫︂ ∞

−∞
fdrdv = 0 (1.89)
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We know that:∫︂ ∞

−∞

∫︂ ∞

−∞
(ln f)v · ∇rfdrddv =

∑︂
k=x,y,z

∫︂ ∞

−∞

∫︂ ∞

−∞
vk(ln f)

∂

∂k
fdkdvk

=
∑︂

k=x,y,z

∫︂ ∞

−∞
vk

[︂
f ln f

⃓⃓∞
−∞ −

∫︂ ∞

−∞
df
]︂
dvk = 0

Similarly, we also know that:∫︂ ∞

−∞

∫︂ ∞

−∞
(ln f)

F

m
· ∇vfdrddv =

∑︂
k=x,y,z

∫︂ ∞

−∞

∫︂ ∞

−∞

Fk
m

(ln f)
∂

∂vk
fdkdvk

=
∑︂

k=x,y,z

∫︂ ∞

−∞

Fk
m

[︂
f ln f

⃓⃓∞
−∞ −

∫︂ ∞

−∞
df
]︂
dk = 0

With these, we can write:

dH(t)

dt
=

∫︂ ∞

−∞

∫︂ ∞

−∞

[︂
2π(ln f)

∫︂ ∞

−∞

∫︂ ∞

0

(f ′
1f

′ − f1f)vrbdbdv1

]︂
drdv (1.90)

The collision integral is reversible:∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

0

(ln f)(f ′
1f

′−f1f)vrbdbdv1drdv = −
∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

0

(ln f ′)(f ′
1f

′−f1f)vrbdbdv1drdv

(1.91)

v1 and v, as well as v′
1 and v′, are treated as the pre-collisional velocities on the left and

right hand sides of the above equation, respectively. Then we have:∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

0

(ln f)(f ′
1f

′−f1f)vrbdbdv1drdv =
1

2

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

0

(ln
f

f ′ )(f
′
1f

′−f1f)vrbdbdv1drdv

(1.92)

Similarly for f1:∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

0

(ln f1)(f
′
1f

′−f1f)vrbdbdv1drdv =
1

2

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

0

(ln
f1
f ′
1

)(f ′
1f

′−f1f)vrbdbdv1drdv

(1.93)

As we only have one component, an interchange of the f and f1 is not going to affect the

value of the integral [10], we then have:∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

0

(ln f)(f ′
1f

′ − f1f)vrbdbdv1drdv

=
1

4

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

0

ln
(︂ f1f
f ′
1f

′

)︂
(f ′

1f
′ − f1f)vrbdbdv1drdv

At equilibrium, dH(t)/dt = 0. This suggests that:

ln f + ln f1 = ln f ′ + ln f ′
1 (1.94)
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This bears a close resemblance with conservation law in collisional motion, which leads to

the result that ln f should be a linear combination of m, mv and 1
2
mv2 as these quantities

are conserved.

ln f = c1m+mc2 · v − c3
2
mv2 (1.95)

c1, c2 and c3 are constants. f should have the following form:

f = c exp
[︁
− c3

2
m(v − c2

c3
)2
]︁

(1.96)

where c = exp[c1m+mc22/(2c3)]. These constants can be found as follows:

ρ =

∫︂ ∞

−∞
fdv (1.97)

c =
(︂c3m
2π

)︂1.5

ρ(r, t) (1.98)

v0 =
1

ρ

∫︂ ∞

−∞
vfdv (1.99)

v0,k =

∫︂ ∞

−∞
vk

(︂c3m
2π

)︂0.5

exp
[︂
− c3m

2
(vk −

c2,k
c3

)2
]︂
dvk (1.100)

v0 =
c2
c3

(1.101)

(v − v0)
2 =

∫︂ ∞

−∞
(v − v0)

2
(︂c3m
2π

)︂1.5

exp[−c3
2
m(v − v0)

2]dv (1.102)

=

∫︂ ∞

0

4π
(︂c3m
2π

)︂1.5

(v − v0)
4 exp

[︂
− c3m

2
(v − v0)

2
]︂
d(v − v0) =

3

c3m
(1.103)

As we know that m(v−v0)2

2
= 3kbT

2
, c3 =

1
kbT

. This implies:

f = ρ
(︂ m

2πkbT

)︂1.5

exp
[︂
− m(v − v0)

2

2kbT

]︂
(1.104)

By knowing the velocity distribution as well as the mean free path of a monoatomic particle,

viscosity and diffusivity can be easily calculated as these information allow us to approximate

the collisional probability. This analysis is important because it allows us to calculate the

diffusivity of one single bead in the polymer melt. We have:

f(vx, vy, vz)dvxdvydvz = ρ
(︂ m

2πkbT

)︂3/2

exp
[︂
−
m(v2x + v2y + v2z)

2kbT

]︂
dvxdvydvz (1.105)

which is equivalent to:

f(v)dv = 4πρv2
(︂ m

2πkbT

)︂3/2

exp
[︂
− mv2

2kbT

]︂
dv (1.106)
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It can then be shown that the mean value of velocity ⟨v⟩ is:

⟨v⟩ =
∫︂ ∞

0

(︂ m

2πkbT

)︂3/2

4πv3 exp
[︂
− mv2

2kbT

]︂
dv =

√︃
8kbT

πm
(1.107)

And the mean square velocity ⟨v2⟩ is:

⟨v2⟩ = 3kbT

m
(1.108)

For the mean free path, the simplest way to calculate it is to firstly assume the monoatomic

particle as hard sphere, and then quantify the probability of collision. The number of collision

that a particle encounters per unit time is:∫︂ σ

0

ρ2π⟨v⟩bdb = ρπσ2⟨v⟩ (1.109)

ρ and σ are the number density and hard sphere diameter of the particle. (σ here is not to

be confused with the statistical weight in Section 1.5). The distance traveled by the particle

in a unit time is ⟨v⟩ if there is no collision. Therefore, the mean free path is finally obtained

as:

l =
⟨v⟩

ρπσ2⟨v⟩
=

1

πρσ2
(1.110)

With these, we can approximate viscosity and diffusion coefficient.

1.4.2 Viscosity

Figure 1.5: A plate on the top of the fluid moving with a velocity of U , leading to a velocity
gradient. It is argued that the momentum can transfer along the z direction, and most of
the momentum transfer is from above as the velocity of the particle near the top is faster.

Figure 1.5 shows a moving plate on the top with velocity U , with a distance of H above the

bottom of the fluid. The gradient of momentum along the z direction is:

G(z) =
mUz

H
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The last collision occurred at a height of z′ = z − vzl
v
. In a unit time, the average number of

molecules in a layer passing through a horizontal plane at z can be calculated as:

|vz|f(vx, vy, vz)dvxdvydvz (1.111)

with the assumption that the plate has an unit area. The flow of momentum ψ(z):

ψ(z) =

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞
G(z′)vzf(vx, vy, vz)dvxdvydvz (1.112)

By Taylor expansion,

G(z′) = G(z)− vzl

v
G′(z) (1.113)

Equation (1.112) then becomes:

ψ(z) = −mUl
a

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

v2z
v
f(vx, vy, vz)dvxdvydvz (1.114)

ψ(z) = −mUl
a

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

v

3
f(vx, vy, vz)dvxdvydvz (1.115)

ψ(z) = −ρmUl⟨v⟩
3a

= −ρml⟨v⟩
3

dv

dz
(1.116)

We can find η by juxtaposing this final form with the formula of shear stress:

σxz = −ηdv
dz

(1.117)

η =
ρml⟨v⟩

3
(1.118)

1.4.3 Diffusion Coefficient

Similarly, for diffusion coefficient, the flow of mass can be calculated.

ϕ(z) =

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

ρ(z′)

ρ
vzf(vx, vy, vz)dvxdvydvz (1.119)

ρ(z′) = ρ(z)− vzl

v

dρ

dz
(1.120)

ϕ(z) = −l dρ
dz

∫︂ ∞

−∞

∫︂ ∞

−∞

∫︂ ∞

−∞

v2z
ρv
f(vx, vy, vz)dvxdvydvz (1.121)

ϕ(z) = − l⟨v⟩
3

dρ

dz
(1.122)
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With the knowledge of the mass flux being:

J = −Ddρ
dz

(1.123)

one can then write:

D = l⟨v⟩/3 (1.124)

This analysis of viscosity and diffusivity is simple, but elegant. It allows one to directly

evaluate these transport coefficients without solving any sophisticated equations and knowing

the gradient of momentum and mass accurately. Nonetheless, it was found that Equation

(1.118) and Equation (1.124) underestimate these transport coefficients. As demonstrated

in the forthcoming section, with the Chapman-Enskog method, these transport coefficients

were expressed in terms of weighed integrals of the angle of deflection, which were found to

agree better with experimental values.

1.4.4 A More Rigorous Approximation of Transport Coefficient

As mentioned above, a more rigorous calculation of transport coefficient, such as diffusivity

requires the knowledge of the deflection angle χ in collision between particles.

Figure 1.6: An illustration of one particle traveling at a velocity of vr, colliding with another
stationary particle. Collision is elastic in this case, that the magnitude of vr does not change
after the collision.

If a particle is traveling with vr, then it can be said that the particle is moving as if other

particles in its surrounding do not move at all. Such scenario is depicted in Figure 1.6. The
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energy during the collision is equal to that before or after the collision. In polar coordinate,

we obtain:
1

2
µv2r =

1

2
µ(ṙ2 + r2θ̇

2
) + u(r) (1.125)

u(r) is the interaction potential between two particles. Angular momentum before or after

the collision is µbvr = µr2θ̇.

µv2r = µṙ2 + µv2r(b
2/r2) + 2u(r) (1.126)

This leads to Equation (1.127).

ṙ =

√︄
v2r(1−

b2

r2
)− 2u(r)

µ
(1.127)

We know that θ̇ = bvr
r2
.

dr

dθ
=

r2

bvr

√︄
v2r(1−

b2

r2
)− 2u(r)

µ
(1.128)

An expression for θ is then obtained.∫︂ θm

0

dθ =

∫︂ ∞

rm

bvr

r2
√︂
v2r(1− b2

r2
)− 2u(r)

µ

dr (1.129)

The deflection angle (χ) is related to θm that χ = π − 2θm. χ can be calculated using the

following:

χ = π − 2

∫︂ ∞

rm

bvr

r2
√︂
v2r(1− b2

r2
)− 2u(r)

µ

dr (1.130)

It is impossible to solve the integral in Equation (1.130) analytically if the potential u(r) is

a 6-12 LJ potential. But analytical form of χ exists for a hard sphere potential. For hard

sphere potential, rm is always greater than σ. The key of evaluating the integral is to let√︂
1− b2

r2
= cosα, and b

r
= sinα, such that dr = −b cosα

sin2 α
dα. As r → ∞, α → 0, and as

r → rm, α → arcsin( b
rm

).∫︂ ∞

rm

b

r2
√︂

(1− b2

r2
)
dr =

∫︂ ∞

rm

sin2 α

b cosα
dr = −

∫︂ 0

arcsin(b/rm)

dα = arcsin(
b

rm
) (1.131)

Substitute this result into Equation (1.130), we get:

χ = π − 2 arcsin(
b

rm
) = 2 arccos(

b

rm
) (1.132)
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When b ≤ σ, χ = 2arccos( b
σ
), otherwise χ = 0. Now, let us consider the change in momentum

of particle 1:

∆(m1v1) = m1(v1
′ − v1) (1.133)

By Equation (1.72), Equation (1.133) can be rewritten as:

∆(m1v1) = µ12(vr
′ − vr) (1.134)

Then, with Equation (1.72), we can consider the momentum of particle 1:

m1v1 = m1(vc +
m2

m1 +m2

vr) (1.135)

Combining the results of Equation (1.133) and Equation (1.134), we have:

m1v1 ·∆(m1v1) = v2rµ
2
12(cosχ− 1) +m1µ12vc · (vr

′ − vr) (1.136)

The averaged change of this quantity with respect to time is therefore:⟨︂m1v1 ·∆(m1v1)

∆t

⟩︂
= 2πρ2

(︂ µ12

2πkbT

)︂1.5
∫︂ ∞

0

∫︂ σ

0

v3rµ
2
12(cosχ− 1) exp

(︂
− µ12v

2
r

2kbT

)︂
bdbdvr

(1.137)

With:

4π
(︂ µ12

2πkbT

)︂1.5
∫︂ ∞

0

v5r exp
(︂
− µ12v

2
r

2kbT

)︂
dvr =

8kbT

µ12

√︄
2kbT

µ12π
(1.138)

And:

2π

∫︂ ∞

0

(cosχ− 1)bdb = −πσ2 (1.139)

if we assume that the particle is hard-sphere. We then simplify Equation (1.137) to the

following: ⟨︂m1v1 ·∆(m1v1)

∆t

⟩︂
= −8kbT

µ12

√︄
2kbTπ

µ12

ρ2σ
2µ2

12 (1.140)

This is important as we know that the velocity correlation function has this form:

⟨v1(t) · v1(0)⟩ = ⟨v21⟩e−at (1.141)

Taking derivative of Equation (1.141) with time at t = 0 gives us:

a = −
⟨v1(0) · (dv1(t)

dt
)t=0⟩

⟨v21⟩
(1.142)
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This implies that:

a = − lim
∆t→0

⟨
(︂

∆v1(t)
∆t

)︂
t=0

· v1(0)⟩

⟨v21⟩
(1.143)

The diffusion coefficient can then be written as:

D = −kbT
[︂⟨︂m1v1 ·∆(m1v1)

∆t

⟩︂]︂−1

m1⟨v21⟩ (1.144)

This is because:

D =
1

3

∫︂ ∞

0

⟨v1(t) · v1(0)⟩dt (1.145)

It is known that from the Maxwell-Boltzmann distribution, ⟨v21⟩ = 3kbT
m1

. Thus, by using these

results, we can write:

D =
3

8ρ2σ2

√︄
kbT

2πµ12

(1.146)

If particle 1 and particle 2 share the same mass m, then the expression is further simplified

as:

D =
3

8ρ2σ2

√︃
kbT

πm
(1.147)

Interestingly, Equation (1.147) can also be obtained by solving the Boltzmann Equation

hierarchically using Chapman-Enskog method as well as Sonine polynominal [10]. Similarly,

we can determine η using this approach.

η =
m2

kbTV

∫︂ ∞

0

⟨vx(t)vx(0)⟩⟨vy(t)vy(0)⟩dt (1.148)

The velocity correlation function vx(t)vx(0) can be assumed as this form:

⟨vx(t)vx(0)⟩ = ⟨vy(t)vy(0)⟩ =
kbT

m
e−at (1.149)

For which, a = 8ρ1σ2

3

√︂
πkbT
m

. Hence:

η =
m2

kbTV
· k

2
bT

2

m2
· 3

√
m

16ρ1σ2
√
πkbT

=
3

16σ2

√︃
mkbT

π
(1.150)

This result is lower by a factor of 1.67 than that obtained by Chapman-Enskog method along

with Sonine polynominal.
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1.5 Static properties of polymers

This section aims to introduce the fundamentals of rotational isomeric state model derived

by Flory [11] with reference to the book written by Mattice and Suter [12]. We have used

this model to study the conformational properties, such as characteristic ratio, end-to-end

vector as well as mean-squared end-to-end distance, of polyethylene with different degree of

polymerization. The initial configuration of polymer chain in the MD simulation was also

prepared using this model. It is worthwhile to note that unlike the other sections, in which

vector quantities are represented by boldface letters, they are highlighted by a right arrow

only in this section for clarity.

It is well-known that the conformation of a polymer chain can be characterized using the

end-to-end distance, which can be computed theoretically using the freely-joint chain, free

rotation and independent hindered rotation models [13, 14, 15]. Consider a polymer chain

consists of C-C backbone with a C-C bond length l and with n of this bond, armed with the

knowledge of vector calculus, the end-to-end vector r⃗ can be expressed as below:

r⃗ =
n∑︂
i

li⃗ (1.151)

To determine the magnitude of r⃗, we would have to evaluate the dot product of r⃗ with itself.

⟨r⃗ · r⃗⟩ = nl2 +
⟨︁ n∑︂

i

n∑︂
j ̸=i

li⃗ · lj⃗
⟩︁

(1.152)

n is the number of C-C bonds, which is not to be confused the number of particles N in

Section 1.3 and Chapter 2, with the number of carbon atoms of polyethylene from Chapter

3 to Chapter 9. Depending on our assumptions, there are different ways to handle the

second term in Equation (1.152) (i.e.
⟨︁∑︁n

i

∑︁n
j ̸=i li⃗ · lj⃗

⟩︁
)[13, 14, 15]. Table 1.2 summarizes

ways to compute ⟨r2⟩ using different aforementioned models[13, 14, 15]. In Table 1.2, θ

is defined as the subtraction of 180◦ from the bond angle (for example, for polyethylene,

θ = 180◦ − 112◦ = 68◦) and ϕ is the torsion angle of the C-C backbone bond.

As observed in Table 1.2, for different models, nl2 is multiplied by a different prefactor.

As n→ ∞, we can then write:

⟨r2⟩ = C∞nl
2 (1.153)
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Table 1.2: Formulae of ⟨r2⟩ for different model chains.

Model ⟨r2⟩
Freely-joint chain nl2

Freely-rotating chain
(︁
1+cos θ
1−cos θ

)︁
nl2

Hindered-rotating chain
(︁
1+cos θ
1−cos θ

)︁(︁
1+⟨cosϕ⟩
1−⟨cosϕ⟩

)︁
nl2

C∞ is the characteristic ratio as n→ ∞. It is pertinent to note that ⟨cosϕ⟩ in the independent

hindered rotation model (cf., Table 1.2) can be calculated using Boltzmann’s statistics with

the knowledge of the energy of a trans (t) state (i.e. ϕ = 180◦) and a gauche plus state (g+)

or gauche minus state (g−) (i.e. ϕ = 60◦ or 300◦). To make our lives easier, in this paper, we

are going to limit our discussion on a three-state model, that there are only three minima in

the torsional energy curve. Furthermore, such a curve is symmetrical. Therefore, ⟨cosϕ⟩ for

the independent hindered rotation model can be easily computed by Equation (1.154).

⟨cosϕ⟩ = 1

Z
cosϕt + 2

exp(−Eg−Et

RT
)

Z
cosϕg (1.154)

Z is the partition function, Et and Eg are the energy of t state and g+/g− state, and R is

the ideal gas constant. And Z in this case can be calculated by Equation (1.155).

Z = 1 + 2 exp(−Eg − Et
RT

) (1.155)

The independent hindered rotation model does not account for the fact that for bond i

to be in a particular state would affect the probability of bond i + 1 to be in another state,

owing to a second-order interaction. In other words, as there are correlation between a bond

and its adjacent neighbour, the possible states for the case of a pentane molecule that have

to be included in the Boltzmann statistical calculation are tt, tg+, tg−, g+g−, g−g+, g+g+

and g−g−. In this sense, evaluation of Z has become a daunting task for macromolecule.

1.5.1 Partition Function and Probability

An expression that evaluates Z straightforwardly consists of multiplication of matrix and

arrays [16, 12].

Z = U1U
(n−2)
i Un (1.156)
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Let us first define a matrix Ui that contains the statistical weight of all the possible states

for 1 < i < n:

Ui =

⎡⎣1 σ σ
1 σ σω
1 σω σ

⎤⎦
i

(1.157)

σ = exp(−Eg−Et

RT
) and ω = exp(− ε

RT
). ε is the energy involved in the second-order interaction

in either g+g− or g−g+ states. In the multiplication of the matrix, that is going to be shown,

we would find that the rows and columns of Ui corresponds to t, g
+ and g− for bond i − 1

and bond i respectively. By realizing the fact that for n=3, Equation (1.155) can be applied

and Z = 1 + 2σ, U1 and Un are defined as below:

U1 =
[︁
1 0 0

]︁
(1.158)

Un =
[︁
1 1 1

]︁T
(1.159)

To simplify Equation (1.156), we solve for the eigenvalues of Ui such that Equation (1.156)

can be rewritten as follows:

Z = U1BΛ(n−2)B−1Un (1.160)

As we know that,

U
(n−2)
i = BΛ(n−2)B−1 (1.161)

Λ is a diagonal matrix with eigenvalues ofUi, and B is a matrix containing the corresponding

eigenvectors. We can solve for Λ and B by realizing the fact that det(Ui − Λ) = 0 and

vj = Ui − λjI, where vj is the eigenvector corresponding to λj. And these can be solved

analytically by the assumption that the torsional energy curve is symmetrical that Ui can

be reduced to a 2×2 matrix, and U1 and Un become arrays with two elements.

Ui =

[︃
1 2σ
1 σ(1 + ω)

]︃
i

(1.162)

U1 =
[︁
1 0

]︁
(1.163)

Un =
[︁
1 1

]︁T
(1.164)

Therefore, the eigenvalues λ can be determined by Equation (1.165) and Equation (1.166).

λ2 − [σ(1 + ω) + 1]λ− 2σ = 0 (1.165)

λ =
σ(1 + ω) + 1±

√︁
[1− σ(1 + ω)]2 + 8σ

2
(1.166)
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With a little mathematical trick, one will find that:

B =

[︃
λ1 − σ(1 + ω) λ2 − σ(1 + ω)

1 1

]︃
(1.167)

B−1 =
1

λ1 − λ2

[︃
1 σ(1 + ω)− λ2
−1 λ1 − σ(1 + ω)

]︃
(1.168)

BΛ(n−2)B−1 =
1

λ1 − λ2

[︃
λn−2
1 (λ1 − σ(1 + ω))− λn−2

2 (λ2 − σ(1 + ω)) H1,2

H2,1 H2,2

]︃
(1.169)

As revealed in Equation (1.160), Z is in fact the summation of the elements of the first row

of BΛ(n−2)B−1. Therefore, the exact values of H2,1 and H2,2 are unimportant and H1,2 is

expressed as below:

H1,2 = [λ1 − σ(1 + ω)][λ
(n−2)
1 σ(1 + ω)− λ2λ

(n−2)
1 ] + [λ2 − σ(1 + ω)][λ

(n−2)
2 λ1 − λ

(n−2)
2 σ(1 + ω)]

(1.170)

With these, Z can be evaluated by:

Z =
1

λ1 − λ2
[λn−2

1 (λ1 − σ(1 + ω))− λn−2
2 (λ2 − σ(1 + ω)) +H1,2] (1.171)

With algebraic rearrangement, we find that:

Z =
λn−1
1 (1− λ2) + λn−1

2 (λ1 − 1)

λ1 − λ2
+
[σ(1 + ω)(λ

(n−2)
2 − λ

(n−2)
1 − λ

(n−1)
2 + λ

(n−1)
1 + λ2λ

(n−2)
1 − λ

(n−2)
2 λ1)]

λ1 − λ2

+
σ2(1 + ω)2(λ

(n−2)
2 − λ

(n−2)
1 )

λ1 − λ2
(1.172)

As the first term is much greater than the sum of the second and third terms. Equation

(1.172) can be simplified as below:

Z ≈ λn−1
1 (1− λ2) + λn−1

2 (λ1 − 1)

λ1 − λ2
(1.173)

To test if Equation (1.173) is a good approximation of Z, we have computed Z using both

Equations (1.172) and (1.173), as well as obtained the percentage error for different n. They

are reported in Table 1.3, which shows the calculated Z as a function of n with σ = 0.543

and ω = 0.088. Our results agree with that of Mattice and Suter [12]. The probability of

bond i in a particular state η, pi;η, can be calculated by starting with the postulation that Z

can be expanded as presented in Equation (1.174).

Z = A+ ση;i(
∂Z

∂ση;i
) (1.174)
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n Z Percentage Error (%)
4 3.795 2.76× 10−15

9 83.119 1.11× 10−14

30 3.52× 107 5.00× 10−15

100 2.00× 1026 7.08× 10−15

Table 1.3: Z as a function of n for σ = 0.543 and ω = 0.088.

As in Equation (1.174), Z is expressed as the sum of statistical weights, A, and the sum of

statistical weights, where bond i is in state η. Therefore, the probability for bond i to be in

the state of η can be determined:

pη;i =
ση;i
Z

∂Z

∂ση;i
(1.175)

ση;i
∂Z
∂ση;i

can be explicitly expressed as below:

ση;i
∂Z

∂ση;i
= U1U2...U

′
η;i...Un (1.176)

U′
g+;i = U′

g−;i =
1

2

[︃
0 2σ
0 (1 + ω)σ

]︃
i

(1.177)

The matrix is multiplied by 1
2
due to our assumption that the torsional energy curve is

symmetrical. pη;i was evaluated for different bond i using Equation (1.175) and Equation

(1.176). Figure 1.7 shows pg+;i at different i and n. It is intriguing to point that pg+;i for

the bond near the chain end is slightly higher than that of others. And intuitively, pt;i can

be calculated by pt;i = 1− pg+;i − pg−;i. The fraction of bonds in η state, pη, in the polymer

chain can be calculated using Equation (1.178).

pη =
1

n− 2

n−1∑︂
i=2

pη;i (1.178)

1.5.2 Exact Calculation of End-to-End Vector

Armed with the knowledge of computing Z and pη;i, we can proceed to the exact evaluation

of ⟨r⃗⟩. The evaluation of ⟨r⃗⟩ with reference to the book written by Flory as well as that by

Mattice and Suter is achieved by expressing it in terms of the local coordinate of the first

bond vector, l⃗ = [l, 0, 0]. It is well-known that rotation of a particular vector in a 3D space

can be achieved by multiplying it with rotation matrices T1 and Ti (for i > 1), respectively.
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Figure 1.7: pg+;i of different bond i and different n. The pg+;i for n > 2 is shifted up for
better presentation purpose.

T1 =

⎡⎣cos θ sin θ 0
sin θ − cos θ 0
0 0 −1

⎤⎦ (1.179)

Ti =

⎡⎣ cos θ sin θ 0
− sin θ cosϕ cos θ cosϕ − sinϕ
− sin θ sinϕ cos θ sinϕ cosϕ

⎤⎦
i

(1.180)

θ and ϕ are the bond angle and torsional angle for bond i in Ti. It is therefore obvious that:

li⃗
S
= [

i−1∏︂
m=0

Tm]l⃗ (1.181)

Note that T0 is an identity matrix and l⃗ = [l, 0, 0]. The superscript S of li⃗
S
reminds us that

the components of the vector are expressed in terms of global coordinates. r⃗ can be then

evaluated by Equation (1.182).

r⃗ =
n∑︂
i=1

li⃗
S
=

n∑︂
i=1

[
i−1∏︂
m=0

Tm]l⃗ (1.182)

To make life easier, Mattice and Suter defines a transformation matrix Ri for bond i that it

is a 3×4 matrix with the form:

Ri =
[︁∏︁i−1

m=0 Tm r0i⃗
]︁

for i > 1 (1.183)

And,

R1 =
[︂
T1 l⃗1

]︂
for i = 1 (1.184)
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r⃗0i is the vector from the first bond to bond i. And a 4×4 matrix, Ai, for 1 < i < n, and a

4×1 array, An, are defined as below,

Ai =

[︃
Ti l⃗
0 1

]︃
i

(1.185)

An =
[︂
l⃗
T

1

]︂T
(1.186)

Such that,

Ri = Ri−1Ai (1.187)

As we can see from above, the last column of the matrix Ri is the most valuable as it is r⃗.

Therefore, r⃗ can be simply expressed in Equation (1.188).

r⃗ = R1

n∏︂
i=2

Ai (1.188)

With A1 = R1, Equation (1.188) can be rewritten.

r⃗ =
n∏︂
i=1

Ai (1.189)

Free and Independent Hindered Rotation

For free rotation and independent hindered rotation, we can simply use ⟨Ai⟩, which is con-

structed using ⟨Ti⟩, to calculate ⟨r⃗⟩ by Equation (1.189). ⟨Ti⟩ are identical for bond 1 < i < n

that the cosϕ and sinϕ terms in Equation (1.180) are substituted by ⟨cosϕ⟩ and ⟨sinϕ⟩, which

can be calculated using Equation (1.154) for independent hindered rotation model and they

are zero for free rotation model. Figure 1.8 (a) and (b) show the x and y components of

⟨r⃗⟩ at different n for polyethylene with free rotation model (i.e. ⟨cosϕ⟩ = 0) and indepen-

dent hindered rotation model, respectively. As n → ∞, we found that x and y components

converge to a particular value that ⟨r⃗⟩n→∞ can be calculated using Equation (1.190).

⟨r⃗⟩n→∞ =
l

(1− cos θ)(1 + ⟨cosϕ⟩)

⎡⎣1− cos θ⟨cosϕ⟩
sin θ
0

⎤⎦ (1.190)
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(a) Free Rotation Model (b) Independent Rotation Model

Figure 1.8: x and y components of ⟨r⃗⟩ evaluated using Equation (1.188) at different n.

Interdependent Hindered Rotation

For interdependent hindered rotation, ⟨r⃗⟩ would be an ensemble-average of rκ⃗ of a polymer

chain in different κ states.

⟨r⃗⟩ =
∑︂
κ

pκrκ⃗ (1.191)

Alternatively, Equation (1.191) can be written in terms of Z and the statistical weight wi of

each bond i.

⟨r⃗⟩ = 1

Z

∑︂
κ

(
n∏︂
i=1

wiAi)κ (1.192)

As demonstrated in the calculation of Z, the summation of wi can be simplified with the use

of matrix Ui. In the same sense, the term
∑︁

κ(
∏︁n

i=1wiAi)κ can be simplified with the use

of matrix Ui. With the definition of Ui in Equation (1.157), we define a 1×12 array A1, a

12×12 matrix Ai (for 1 < i < n) as well as a 12×1 array An.

A1 =
[︁
A1 0 0

]︁
(1.193)

Ai =

⎡⎣At σAg+ σAg−

At σAg+ σωAg−

At σωAg+ σAg−

⎤⎦
i

for 1 < i < n (1.194)

An =
[︁
An An An

]︁T
(1.195)

Now, Equation (1.192) can be simplified to a large extent (cf., Equation (1.196)).

⟨r⃗⟩ = 1

Z

n∏︂
i=1

Ai (1.196)
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Figure 1.9 shows the x and y components of ⟨r⃗⟩ at different n for polyethylene, which has

θ = 68◦, ϕt = 180◦, ϕg+ = 60◦, ϕg− = 300◦ and l = 1.54Å. Our calculation results again

agree with that mentioned by Mattice and Suter [12].

Figure 1.9: x and y components of ⟨r⃗⟩ at different n for polyethylene in interdependent
hindered rotation model.

1.5.3 Exact Calculation of Mean-Square End-to-End Distance and
Characteristic Ratio

Nevertheless, in order to obtain Cn at different n for interdependent hindered rotation model,

⟨r2⟩ has to be obtained using similar procedures to that of ⟨r⃗⟩. Analogous to the use of Ai

in the evaluation of r⃗, we define a 1× 5 array G1, a 5 × 5 matrix Gi and a 5 × 1 array Gn

for calculating r2.

G1 =
[︁
1 l cos θ l sin θ 0 l2

]︁
(1.197)

Gi =

⎡⎢⎣1 2l⃗
T
T l2

0 Ti l⃗
0 0 1

⎤⎥⎦
i

for 1 < i < n (1.198)

Gn =
[︂
l2 l⃗

T
1

]︂T
(1.199)

In this way, r2 can be calculated using Equation (1.200).

r2 =
n∏︂
i=1

Gi (1.200)
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Free Rotation and Independent Rotation Models

Similar to what have been done for ⟨r⃗⟩, we use ⟨Gi⟩, which is constructed using ⟨Ti⟩ to

calculate ⟨r2⟩ using Equation (1.200). Note that ⟨Gi⟩ is identical for 1 < i < n.

Interdependent Rotation Model

For interdependent hindered rotation model, G1, Gi and Gn are 1×15 array, 15×15 matrix as

well as 15× 1 array, respectively, which are constructed using Gi in a similar fashion as that

of Ai (cf., Equations (1.193), (1.194) and (1.195)). It seems to be superfluous to explicitly

write the expression for G1, Gi and Gn in this paper. ⟨r2⟩ is then computed using Equation

(1.201).

⟨r2⟩ = 1

Z

n∏︂
i=1

Gi (1.201)

The characteristic ratio, Cn, for different models can be now evaluated as a function of n

using Equation (1.202). Figure 1.10 shows the dependence of Cn on n for polyethylene for

free rotation model, independent hindered rotation model as well as interdependent hindered

rotation model.

Cn =
⟨r2⟩
nl2

(1.202)

Figure 1.10: Cn at different n for polyethylene for free rotation model, independent hindered
rotation model as well as interdependent hindered rotation model.
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1.6 Summary

In the first part of this chapter, we have explored the dynamics as well as statistical mechanics

of monoatomic liquid and ideal gas. The radial distribution function g(r) is a key function in

the pressure equation. It was also demonstrated that the Maxwell-Boltzmann distribution can

be derived using the Boltzmann H-theorem, and such distribution allows us to obtain different

transport coefficients of ideal gas. Alternatively, transport coefficients of ideal gas can be

obtained by integration of different time correlation functions, such as the time correlation

function of velocity.

In the second part of this chapter, the rotational isomeric model has been presented,

which is crucial in generating the initial configuration of the polymer for MD simulation.

Such model has taken into account of the bond length, bond angle as well as torsion angle

in the calculation of the characteristic ratio of polymer.
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Chapter 2

Molecular Dynamics, Numerical
Simulations and Numerical Analysis

In Chapter 1, we have dealt with linear equations of motion. But in many-body system, the

equation of motion is highly nonlinear due to the nonlinear bonded and non-bonded forces

acting upon the atoms. This is particularly true in the case of MD simulation of polymer

chain when we would like to evaluate the many-chain effect on the dynamics of a polymer

chain. In such case, the equation of motion can only be solved numerically.

2.1 MD Simulation

Equation of motion for MD simulation:

mir̈i = Fi (2.1)

The force acting on the ith atom can be a function of the positions of other particles and

it is nonlinear (you should expect some square term or even higher order exponent term of

the positions in Fi). Due to the absence of a friction term in Equation (2.1), one may argue

that there is no damping in the system and therefore, the system never relaxes. In fact, the

friction term will come into play, when we consider the temperature coupling of the equation

of motion.
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2.1.1 Temperature and Pressure Coupling: Nonholomonic Con-
straints of the Equation of Motion

With respect to the temperature and pressure coupling in equation of motion, Gauss proposed

the following curvature function, which is a function of r̈i [17]:

C(r̈) =
1

2

N∑︂
i=1

mi(r̈i −
Fi

mi

)2 (2.2)

Here, N is the total number of atoms. If the system is not subjected to any constraint, then

it should evolve according to Equation (2.1), and C = 0. To couple the system to a particular

temperature, the following constraint function is defined:

g(ṙ) =
(︂ N∑︂
i=1

mi

2
ṙi

2
)︂
− 3

2
NkbT = 0 (2.3)

To make g(ṙ) only a function of r̈, we take the derivative of g(ṙ) with respective to time:

G(r̈) =
N∑︂
i=1

miṙi · r̈i = 0 (2.4)

We then subject C(r̈) to the constraint function G(r̈), and then minimize it as follows, which

will give us the equation of motion:

∂

∂r̈
[C(r̈)− λG(r̈)] = 0 (2.5)

The equation of motion of particle i is then:

r̈i = λṙi +
Fi

mi

(2.6)

Resubstitute this back to Equation (2.4) to get λ:

λ = −
∑︁N

i=1 ṙi · Fi∑︁N
i=1miṙi

2
(2.7)

The Lagrange multiplier acts like a friction coefficient. For pressure coupling, the idea is very

similar, we can start with the following constraint function:

g(ṙ) =
(︂ N∑︂
i=1

miṙi
2

2
+
∑︂
i<j

Fij · rij
)︂
− 3

2
pV = 0 (2.8)
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This gives G(r̈) in the following form.

G(r̈) =
N∑︂
i=1

miṙi · r̈i +
∑︂
i<j

(Fij · ṙij + Ḟij · rij) = 0 (2.9)

Taking derivative of G(r̈) with respective to r̈i gives us the same equation of motion as that

in Equation (2.7). But λ is now written as:

λ = −
∑︁N

i=1 Fi · ṙi +
∑︁

i<j(Fij · ṙij + Ḟij · rij)∑︁N
i=1miṙi

2
(2.10)

These are the simplest ways of maintaining temperature and pressure of the system at a

constant value, and the key concepts behind the derivation of a Nosé-Hoover thermostat and

Parrinello-Rahman barostat.

2.1.2 Integration of the Equation of Motion

The equation of motion of all the particles can be rewritten as follows:

d2r

dt2
+ ξ

dr

dt
=

F(r)

m
(2.11)

R and F are vectors containing the positions of particles and the force acting upon them,

respectively. Both of them have a dimension of 3N × 1. To be explicit, they have the form:

r =
[︁
r0,x ... rN−1,x r0,y ... rN−1,y r0,z ... rN−1,z

]︁T
(2.12)

F =
[︁
F0,x ... FN−1,x F0,y ... FN−1,y F0,z ... FN−1,z

]︁T
(2.13)

In fact, Equation (2.11) can be solved analytically in the case of Rouse chain. In the case

that the force term F can be highly nonlinear, Equation (2.11) has to be solved numerically

using Leapfrog Algorithm, which can be summarized in the following two equations:

v(t+
∆t

2
) = v(t− ∆t

2
) +

[︂F(t)
m

− ξv(t− ∆t

2
)
]︂
∆t (2.14)

r(t+∆t) = r(t) + v(t+
∆t

2
)∆t (2.15)

where v contains the velocities of the particles in all three directions, such that:

v =
[︁
v0,x ... vN−1,x v0,y ... vN−1,y v0,z ... vN−1,z

]︁T
(2.16)
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Therefore, the most crucial point to focus on is the evaluation of F, which depends on

the forcefield. In this work, we applied the TraPPE forcefield [18, 19] because we are only

interested in polyethylene. In TraPPE forcefield, methyl and methylene groups were coarse-

grained into a single united atoms such that these single united atoms interact with one

another through bonded and non-bonded interactions. The bond stretching potential is a

simple harmonic potential.

(a) Harmonic bond stretching potential.

(b) Angle bending potential.

(c) Angle torsion potential.

Figure 2.1: Different bonded potentials, such as (a) harmonic bond stretching potential, (b)
angle bending potential and (c) angle torsion potential, in MD simulation. (cf., Equation
(2.17), Equation (2.18) and Equation (2.19))

ub(rij) =
1

2
k(rij − l)2 (2.17)

l = 1.54 nm and k is the spring constant. (The value of k is not given in TraPPE forcefield,

which assumes that the beads are always separated from one another by a distance of l.

In this work, we used the value of k for alkane in either OPLS-all atom forcefield or the

MM2 forcefield.) rij is the distance between two bonded united atoms. The angle bending

potential is of the form:

ubending(θ) = kθ(θ − θ0)
2 (2.18)

and was used for every bond angle θ consists of methylene group and methyl group united

atoms with kθ = 519 kJ/(mole rad2) and θ0 = 114◦, whereas for the bond angle CH2-C-CH2,
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θ0 = 109.5◦. Each torsional angle ϕ, which is defined with ϕtrans = 180◦ , is modeled as:

utorsion(ϕ) =
3∑︂
p=0

cp cos
p(ϕ− 180◦) (2.19)

with c0 = 8.397 kJ/mol, c1 = 16.786 kJ/mole, c2 = 1.134 kJ/mole, c3 = −26.318 kJ/mole

for all torsion angles, except for CH2-CH2-C-CH2 and CH2-C-CH2-CH2, c0 = 1.917 kJ/mol,

c1 = 5.753 kJ/mole, c2 = 0.000 kJ/mole, c3 = −7.671 kJ/mole. Intermolecular interaction

was modeled using 12-6 Lennard Jones potential:

uLJ = 4ε
[︂(︁σ
r

)︁12 − (︁σ
r

)︁6]︂
(2.20)

with ε = 0.0042 kJ/mole and σ = 0.640 nm, ε = 0.38 kJ/mol and σ = 0.395 nm, as well

as ε = 0.81 kJ/mole and σ = 0.375 nm for a carbon atom, methylene group and methyl

group, respectively. r is the distance between any two united atoms. In the simulation, the

cut-off distance was set at 1.4 nm. Electrostatic potential were neglected as polyethylene is

non-polar. From these potentials, the force acting upon the ith united atom can be easily

evaluated by taking the negative gradient of the potential V :

Fi = − ∂u

∂ri
(2.21)

Additionally, in the MD simulation, the united atoms are confined in a square box with

periodic boundary condition. The definition of periodic boundary condition is illustrated in

Figure 2.2. Subjected to such condition, when a particle in the box passes through one wall of

the box, its duplicate is going to come into the same box from another side. The effect of the

periodic boundary condition on the MD simulation results can be minimized by increasing

the size of the simulation box. It was found that the effect of periodic boundary condition on

our work is minimal. For instance, in Chapter 5, the diffusivity of linear polyethylene with

N = 405 does not change much with the size of the box.
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Figure 2.2: Illustration of periodic boundary condition in MD simulation. (This figure was
created by Germain Salvato-Vallverdu and the corresponding source file can be found on
http://www.texample.net/tikz/examples/periodic-boundaries-conditions/.)

2.2 Implicit Euler Method

In the forthcoming sections of this thesis, the reader is going to see that the implicit Euler

method was also used to integrate non-linear equation of motion that is simpler than that

in MD simulation. Compared to the Leapfrog algorithm, the implicit Euler method is more

robust in a way that stability is guaranteed regardless of the size of the time step. Nonetheless,

it is a much more daunting task to implement the implicit Euler method as the positions in

the future time step have to be calculated based on the positions in the previous time steps.

This leads to a system of non-linear equations, which have to be solved numerically.

To illustrate this more explicitly, we are going to consider a molecule consisting of two

beads, which are connected to one another through a harmonic spring with a finite length b,

in a two dimensional space. Without the inertia term, the equation of motion is explicitly

written as follows:

dx0
dt

=
k

ζ
[
√︁

(x0 − x1)2 + (y0 − y1)2 − b] · (x1 − x0)√︁
(x0 − x1)2 + (y0 − y1)2

(2.22)

dx1
dt

=
k

ζ
[
√︁

(x0 − x1)2 + (y0 − y1)2 − b] · (x0 − x1)√︁
(x0 − x1)2 + (y0 − y1)2

(2.23)
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Similarly, in y direction:

dy0
dt

=
k

ζ
[
√︁

(x0 − x1)2 + (y0 − y1)2 − b] · (y1 − y0)√︁
(x0 − x1)2 + (y0 − y1)2

(2.24)

dy1
dt

=
k

ζ
[
√︁

(x0 − x1)2 + (y0 − y1)2 − b] · (y0 − y1)√︁
(x0 − x1)2 + (y0 − y1)2

(2.25)

For ith particle in the q direction, discretization gives us:

qi(t+∆t)− qi(t)− Fiq(t+∆t)∆t = 0 (2.26)

where Fiq is the force acting on the ith particle in the q direction. And by juxtaposing

Equation (2.26) and Equations (2.22) to (2.25), we know that for i < 1:

Fiq =
k

ζ
[
√︁

(xi − xi+1)2 + (yi − yi+1)2 − b] · (qi+1 − qi)√︁
(xi − xi+1)2 + (yi − yi+1)2

(2.27)

And for i = 1:

Fiq =
k

ζ
[
√︁

(xi − xi−1)2 + (yi − yi−1)2 − b] · (qi−1 − qi)√︁
(xi − xi−1)2 + (yi − yi−1)2

(2.28)

This indicates that at each time step, one has to solve systems of non-linear equations numer-

ically (cf., Equation (2.26)). This can be attained by using the Newton-Gauss method, which

is initiated by inputting an initial guess such that Equation (2.26) is rewritten as follows:

q
(k)
i (t+∆t)− q

(k)
i (t)− F

(k)
iq (t+∆t)∆t = Riq (2.29)

The superscript (k) indicates the kth iteration. Riq is the residue, which is initially much

greater than zero. An initial guess of q
(0)
0 (t+∆t) was input. The problem then becomes how

to update the value of q0(t+∆t) until the magnitude of Riq is minimized. To solve this, it is

firstly important to build up the Jacobian matrix J, which has a dimension of 4 × 4 in this

example.

J =

⎡⎢⎢⎢⎣
∂R0x

∂x0

∂R0x

∂x1

∂R0x

∂y0

∂R0x

∂y1
∂R1x

∂x0

∂R1x

∂x1

∂R1x

∂y0

∂R1x

∂y1
∂R0y

∂x0

∂R0y

∂x1

∂R0y

∂y0

∂R0y

∂y1
∂R1y

∂x0

∂R1y

∂x1

∂R1y

∂y0

∂R1y

∂y1

⎤⎥⎥⎥⎦ (2.30)

Then q
(k)
i (t + ∆t) can be updated to q

(k+1)
i (t + ∆t) by the following until the residue has

become a very small number (in the order of ∼ 10−5):⎡⎢⎢⎣
x0
x1
y0
y1

⎤⎥⎥⎦
(k+1)

=

⎡⎢⎢⎣
x0
x1
y0
y1

⎤⎥⎥⎦
(k)

− [(JTJ)−1JT

⎡⎢⎢⎣
R0x

R1x

R0y

R1y

⎤⎥⎥⎦](k) (2.31)
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2.3 Numerical Analysis of the Trajectory

2.3.1 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) analysis generates a reduced order model of the

MD trajectory. Basically, it gives us different eigenmodes based on the numerical solution to

the highly nonlinear equation of motion in the MD simulation, which may not be obtained

analytically. In such analysis, the deviation of the positions of different atoms (q) of a

molecule in a particular direction (either x, y or z) of the same molecule from its center-

of-mass at different time (q′) is calculated. The components of a correlation matrix C in a

particular direction are then evaluated by the following:

Cij =
1

Nsnap

T ′∑︂
t′=0

q′i(t
′)qj(t

′) (2.32)

Nsnap is the number of snapshot of the MD trajectory and q′i(t) is the deviation of the position

of atom i from the center-of-mass of the molecule at time t.

q′i(t) = qi(t)−
1

N

N−1∑︂
i=0

qi(t) (2.33)

To be more explicit, if the number of atoms consisting a molecule (N) is three, then the

correlation matrix is:

C =

⎡⎣C00 C01 C02

C10 C11 C12

C20 C21 C22

⎤⎦ (2.34)

The eigenvectors of C are the eigenmodes. The number of the eigenmodes derived from a

correlation matrix in a particular direction is N . As there are three directions, there are

in total 3N normalized eigenmodes (ψ̃pq), for which p ranges from 0 to N − 1. With the

eigenmodes in different directions, transformation of the Cartesian coordinates of the atoms

can be achieved, which is expressed as follows:

X ′
pq(t) =

N−1∑︂
i=0

q′i(t)ψ̃pq (2.35)

The relaxation times of different eigenmodes (τp) can be then extracted from the time correla-

tion functions of these transformed coordinate (µp(t)) by fitting it to a stretched exponential
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function.

µp(t) =
⟨X ′

px(t)X
′
px(0) +X ′

py(t)X
′
py(0) +X ′

pz(t)X
′
pz(0)⟩

⟨X ′
px(t)

2 +X ′
py(t)

2 +X ′
pz(t)

2⟩
≈ exp[−(t/τp)

βp ] (2.36)

where βp is the stretching factor. From the above equation, we know that a molecule with

size N has N relaxation times.

2.3.2 Time Correlation Function and Mean Square Displacement

In many-body system of polymers, for example, we are interested in the time correlation

function of the end-to-end vector R, which is ⟨R(t) · R(0)⟩. The bracket indicates that it

is indeed an average property, and to calculate such time correlation function, one has to

average over the number of chains and time. It is intuitive to understand the average over the

number of chains that if there are ten chains in the simulation, the time correlation functions

for each individual chain can be obtained and then summed up altogether, followed by the

division by the chain numbers. But the fact that ⟨R(t) ·R(0)⟩ is also a time average property

may not be straightforwardly understood. To be exact, the time correlation function is a

function of duration, not a function of time. For simplicity, let us consider a trajectory with

only five time steps with an increment of 1 ps as depicted in Figure 2.4. Then, one can

count the number of samples corresponding to a certain amount of duration. For instance, if

we consider a duration of 1 ps, we have five samples: R(1) ·R(0), R(2) ·R(1), R(3) ·R(2),

R(4)·R(3),R(5)·R(4). The time correlation function at a duration of 1 ps can be individually

evaluated and then averaged over these five samples. Similarly, if we consider a duration of

5 ps, we only have one sample, i.e. R(5) ·R(0).
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Figure 2.3: Illustration of sampling for time averaging of time correlation function and mean-
square-displacement for a MD trajectory with six snapshots from 0 ps to 5 ps (represented
by the blue circle).

This also applies to the calculation of mean-square-displacement of the center-of-mass

of the polymer molecules. As explained above, the number of samples for time averaging

decreases with increasing duration. Owing to this, the mean-square-displacement values

near the end of the simulation are typically excluded from the calculation of the diffusivity.

2.3.3 Voronoi Tessellation

Voronoi tessellation is a mathematical method of evaluating the free space available to mul-

tiple points in a two dimensional or three dimensional space. This is particularly useful in

the analysis of probability for a particle getting free volume, which relies on the knowledge

of the distribution of free volume. This is because the size distribution of the Voronoi cell is

related to distribution of free volume, and the cumulative function of such distribution func-

tion is the probability for a particle getting certain amount of free volume. The procedures

of Voronoi Tessellation is as follows:

Consider four points randomly distributed in a two dimensional space, point A is then

connected to its closest neighbours, which are points B, C and D. They are connected to

one another by dashed lines as depicted in Figure 2.4. The Voronoi cell for point A, which

is the free space available to point A, is then constructed by drawing solid lines, subjected

to the constraint that these lines must be perpendicular to the blue dashed lines and that

the solid line has to intersect with the dashed line at the mid-point of the dashed line. In
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the case as depicted in Figure 2.4, the Voronoi cell for point A is a triangle with the solid

lines as boundaries. In a more complicated case of many points, different sizes of Voronoi

cells can be obtained using exactly the same procedures. (cf., Figure 2.5) The same logic

can be applied to three dimensional space that after connecting the points to their closest

neighbour, surfaces with their normal vectors perpendicular to these lines are constructed.

Alternatively, one can also construct Voronoi cells using the so-called Delaunay triangu-

lation. In such method, each point is again connected to all its closest neighbours, which

creates multiple triangles, such as the one as shown in Figure 2.4. With such triangle, one can

obtain the center of the circumcircle of such triangle. Finally, by connecting the centers of all

the circumcircles, one can then be able to obtain different Voronoi cells. In three dimensional

space, it would have been a sphere instead of a circle.

Figure 2.4: Voronoi tessellation of a 2D system with only four points.
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Figure 2.5: A more complicated example of Voronoi tessellation in two dimensional space.

One limitation of Voronoi Tessellation in MD simulation is that Voronoi Tessellation

does not take into account of the fact when the particles or beads of different polymer

molecules interact with one another through a soft core potential, such as Lennard-Jones

potential, instead of hard-sphere potential. Voronoi Tessellation assumes that the Lennard-

Jones particles are points and thus it neglects the excluded volume. Hence, as demonstrated

in Chapter 5 and Chapter 6, when the probability is extracted from the size distribution of

Voronoi cells, such excluded volume effect is considered.
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Chapter 3

Velocity Time Correlation Function of
a Rouse Chain1

3.1 Introduction

The dynamics of unentangled linear polymer in a melt has been successfully predicted by

the Rouse model, which was developed by Rouse back in 1953 [20]. In such a simple and

elegant model, a Gaussian chain is modelled as beads connected by springs, and is under

the influence of a random force, which has a normal distribution. Without accounting for

the inertia of the chain, if a Langevin equation for each individual bead is written, one will

end up with a system of coupled linear first order ordinary differential equations. Such a

system of equations with the positions of the beads as the states, can be easily solved by

hand if we consider the continuous approach introduced in Doi and Edwards’ book [21],

in which the difference Rn+1 − 2Rn + Rn−1 ≈ ∂2Rn

∂n2 and Rn − Rn−1 ≈ ∂Rn

∂n
. Clearly,

the eigenvalues (λ) of the operator ∂2/∂n2 are related to the relaxation time of different

modes of the polymer chain and coordinate transformation can be easily achieved with the

knowledge of the eigenfunctions (ψ). Even though such an eigenfunction may not be true in

highly nonlinear equation of motion, the behavior of chain relaxation [22, 23], and the shear

relaxation modulus [8], can be still reasonably predicted for unentangled chain. Nevertheless,

to our knowledge, one may not be able to obtain accurately the velocity correlation function

of the polymer and to study the short time dynamic behavior of the polymer chain in the

1A version of this chapter has been published in Comput. Mater. Sci., 2018, 155, 320-324.

50



melt as the inertia term is neglected.

In this paper, we consider the simple case, in which the friction coefficient is constant for

every bead (i.e., no hydrodynamic interaction). We logically started from the inclusion of

an inertia term in the Langevin equation for a single particle and then extended it to the

Rouse model for unentangled polymer melts, which enables us to obtain the velocity time

correlation function for different normal modes of a Rouse chain. To confirm our analytical

results, the velocity time correlation function was also numerically obtained using Langevin

dynamics simulation.

3.2 Numerical Simulation Details

To perform such a numerical simulation, the implicit Euler method was implemented in a

C++ program (cf., Supporting Information). The advantage of using implicit Euler method

is that the stability is unconditionally garanteed regardless of the size of ∆t. Discretization

of the Langevin equation of motion would lead to a system of linear equations in each of the

three directions at each time step:

− q(t)− g(t+∆t)

m
∆t = Aq(t+∆t) (3.1)

q is a vector with 2N components, in which N of its components being the positions of the

beads and other N components being the velocities of the beads in one particular direction.

g is also a vector with 2N components, in which the first N elements in this vector are zeros,

and the remaining components are stochastic force gi,q acting on the bead with ⟨g(t)⟩ = 0

and ⟨g(t)g(t′)⟩ = 2kbTζδ(t − t′). m is the mass of the bead and ζ is the friction coefficient.

To be explicit:

q =
[︁
R0,q . . . RN−1,q V0,q . . . VN−1,q

]︁T
(3.2)

Ri,q and Vi,q are the position and velocity of ith bead in the q direction, respectively.

g =
[︁
0 . . . 0 g0,q . . . gN−1,q

]︁T
(3.3)

A is a 2N × 2N matrix created by blocks of N ×N matrices:

A =

[︃
0 I
A Σ

]︃
∆t−

[︃
I 0
0 I

]︃
(3.4)
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Note that I is a N × N identity matrix and Σ = −ξI and ξ = ζ/m. And A, which is a

N ×N matrix, has the following form:

A =
k

m

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

0 0
. . . . . . . . . 0

0 0 . . . 1 −2 1
0 0 . . . 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

k is the spring constant. By solving the system of matrix equation as expressed in Equation

(3.1), the positions and velocities of the beads in the next time step were obtained. For

the studies in long time scale motion (normal mode p = 1) and in short time scale motion

(normal mode p = 6), a time step of ∆t = 0.01 ps and ∆t = 0.001 ps was chosen with the

number of time steps set at 3500 and 6000, respectively.

The initial conformation of the chain was generated using rotational isomeric state model,

which was originally developed by Flory [16] and further extended by Mattice and Suter [12],

in which the assignment of torsional angle of different segments is achieved by evaluating

the interdependent probability of having a particular configurational state (i.e. tt, tg+, tg−,

g+g−, g+g+ as well as g−g−). These procedures have been implemented in a Python 3.5

program (cf., Supporting Information).

3.3 Preliminaries

3.3.1 Langevin Dynamics of a Single Particle: without Inertia
Term

Equation (3.6) is a one dimensional Langevin equation for a single particle without the inertia

term, in which x is the position of the particle and f(t) is the random force with a normal

distribution with ⟨f(t)⟩ = 0, and ⟨f(τ1)f(τ2)⟩ = σ2δ(τ1 − τ2).

dx

dt
=
f(t)

ζ
(3.6)

This is easily solved:

x = x(0) +
1

ζ

∫︂ t

0

f(t)dt (3.7)
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From Equation (3.7), we found that x is only a linear combination of the normal distribution

f(t), therefore x by itself is also a normal distribution with ⟨x⟩ = 0, and ⟨x2⟩ is expressed as

follows:

⟨x2⟩ = 1

ζ2

∫︂ t

0

∫︂ t

0

⟨f(τ1)f(τ2)⟩dτ1dτ2 =
σ2t

ζ2
(3.8)

The next step is to determine σ2 and the velocity of the particle.

3.3.2 Langevin Dynamics of a Single Particle: with Inertia Term

Inclusion of the inertia term leads to the following equation:

d2x

dt2
= −ξ dx

dt
+
f(t)

m
(3.9)

As dx
dt

= v(t), which is the velocity, the equation can be arranged in matrix form:

d

dt

[︃
x
v

]︃
=

[︃
0 1
0 −ξ

]︃ [︃
x
v

]︃
+

[︃
0

f(t)/m

]︃
(3.10)

With matrix C to be as follows:

C =

[︃
0 1
0 −ξ

]︃
The solution is therefore: [︃

x
v

]︃
= eCt

[︃
x0
v0

]︃
+

∫︂ t

0

eC(t−τ)
[︃

0
f(τ)/m

]︃
dτ (3.11)

To evaluate the matrix exponential, inverse laplace transformation can be applied:

eCt = L−1[(sI−C)−1]

= L−1

[︄
1
s

1
s(ξ+s)

0 1
s+ξ

]︄

=

[︄
1 2

ξ
e−

ξ
2
t sinh( ξ

2
t)

0 e−ξt

]︄
We have the following:

x(t) = x(0) +
v(0)

ξ
(1− e−ξt) +

∫︂ t

0

1

mξ
(1− e−ξ(t−τ))f(τ)dτ

v(t) = v(0)e−ξt +
1

m

∫︂ t

0

e−ξ(t−τ)f(τ)dτ
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Now, we have to firstly obtain σ2. It is known that from the equipartition theorem, ⟨v2⟩ = kbT
m

,

where kb is the Boltzmann constant and T is the temperature, therefore,

⟨v2(t)⟩ = ⟨v2⟩e−2ξt +
1

m2

∫︂ t

0

∫︂ t

0

e−ξ(2t−τ1−τ2)⟨f(τ1)f(τ2)⟩dτ1dτ2 (3.12)

As time approaches infinity, the second term becomes much larger than the first term in

Equation (3.12), we end up with the following integral equation:∫︂ t

0

∫︂ t

0

e−ξ(2t−τ1−τ2)σ2δ(τ1 − τ2)dτ1dτ2 = mkbT (3.13)

From this we obtain σ2 = 2kbTmξ = 2kbTζ. The velocity correlation function for a single

particle is as follows:

⟨v(t)v(0)⟩ = kbT

m
e−ξt (3.14)

In the case of three dimension, the variance ⟨v(t)v(0)⟩ in x, y and z directions are uncorrelated

to each other. This gives us:

⟨v(t) · v(0)⟩ = 3kbT

m
e−ξt (3.15)

3.3.3 Rouse Dynamics: without Inertia Term

For a Rouse chain, if we neglect the inertial term,

dRn

dt
=
k

ζ

[︂
Rn+1 − 2Rn +Rn−1

]︂
+

fn(t)

ζ
(3.16)

Equation (3.16) is a system of first order coupled ordinary differential equations. fn(t) is a

normal distribution, which has ⟨fn⟩ = 0 and the covariance matrix Σ = 2kbTζδ(τ1 − τ2)I.

In the continuous limit, this equation can be rewritten as a second order parabolic partial

differential equation,
∂Rn

∂t
=
k

ζ

∂2Rn

∂n2
+

fn
ζ

(3.17)

Subjected to the following boundary conditions:

∂R0

∂n
= 0,

∂RN

∂n
= 0

By separation of variables, Rn(t) = A(t)ψ(n), this lead us to the following:

1

A

dA

dt
=

k

ζψ

d2ψ

dn2
= −λ2
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With the boundary conditions, ψp = cos(pπ n
N
) for p = 0, 1, 2, 3...N − 1. The solution is

therefore:

Rn(t) =
2

N

{︂N−1∑︂
p=1

e−λ
2
pt
[︂
Ap +

∫︂ t

0

eλ
2
pτ

∫︂ N

0

fn′

ζ
cos(pπ

n′

N
)dn′dτ

]︂
cos(pπ

n

N
)
}︂

+
1

N

[︂
A0 +

∫︂ t

0

∫︂ N

0

fn′

ζ
dn′dτ

]︂
A0 and Ap are related to the initial condition R(n, 0). We then let the following:

X0(t) =
1

N

[︂
A0 +

∫︂ t

0

∫︂ N

0

fn
ζ
dndτ

]︂
(3.18)

Xp(t) =
1

N
e−λ

2
pt
[︂
Ap +

∫︂ t

0

eλ
2
pτ

∫︂ N

0

fn
ζ
cos(pπ

n

N
)dndτ

]︂
(3.19)

The solution is simplified to a large extent:

Rn = X0 + 2
N−1∑︂
p=1

Xp cos(pπ
n

N
)

Inverse transformation can be achieved easily by firstly multiply both size by cos(qπ n
N
) and

integrate with respect to n.∫︂ N

0

Rn cos(qπ
n

N
)dn =

∫︂ N

0

[︂
X0 + 2

N−1∑︂
p=1

Xp cos(pπ
n

N
)
]︂
cos(qπ

n

N
)dn

If q = p and q > 0, with orthnormality, we have:

Xp =
1

N

∫︂ N

0

Rn cos(pπ
n

N
)dn

If p = q = 0,

X0 =
1

N

∫︂ N

0

Rndn

This is essentially the center-of-mass of the Rouse chain. We can study the dynamics of the

center-of-mass of the Rouse chain by taking derivative of Equation (3.18) with respect to

time.

X0(t) = X0(0) +

∫︂ t

0

∫︂ N

0

fn
Nζ

dndτ (3.20)

This is similar to Equation (3.7).
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3.4 Velocity Time Correlation Function of a Rouse Chain

3.4.1 Rouse Dynamics: with Inertia Term

Center-of-Mass of the Chain (p = 0)

Alternatively, we can also directly incorporate the inertia term in Equation (3.17).

m
∂2Rn

∂t2
+ ζ

∂Rn

∂t
= k

∂2Rn

∂n2
+ fn (3.21)

Separation of variables implies that Rn = A(t)ψ(n), which leads to:

m

kA

d2A

dt2
+

ζ

kA

dA

dt
=

1

ψ

∂2ψ

∂n2
= −λ2 (3.22)

We then solve for A(t):
d2A

dt2
+
ζ

m

dA

dt
= −λ

2k

m
A (3.23)

That for different modes:

Ap(t) = c1p exp
[︂(︂

−0.5ξ+0.5
√︂
ξ2 − 4λ2pk/m

)︂
t
]︂
+c2p exp

[︂(︂
−0.5ξ−0.5

√︂
ξ2 − 4λ2pk/m

)︂
t
]︂

(3.24)

As demonstrated above, as p = 0 (λp = 0), it corresponds to the dynamics of the center-of-

mass of the Rouse’s chain.

A0(t) = c10 + c20 exp(−ξt) (3.25)

With:

X0(t) =
1

N

[︁
c10 + c20 exp(−ξt)

]︁
+

1

Nmξ

∫︂ t

0

[︂
1− e−ξ(t−τ)

]︂ ∫︂ N

0

fndndτ (3.26)

The initial conditions can be used to find the parameters c10 and c20:

X0(0) =
1

N

[︁
c10 + c20

]︁
(3.27)

V0(0) =
1

N

[︁
− ξc20

]︁
(3.28)

Putting this back to Equation (3.26) gives us:

X0(t) = X0(0) +
V0(0)

ξ

[︂
1− e−ξt

]︂
+

1

Nmξ

∫︂ t

0

[︂
1− e−ξ(t−τ)

]︂ ∫︂ N

0

fndndτ (3.29)
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If we assume the center-of-mass of the chain is at the origin at t = 0:

V0(t) = V0(0)e
−ξt +

1

Nm

∫︂ t

0

e−ξ(t−τ)
∫︂ N

0

fndndτ (3.30)

The velocity correlation function is therefore:

⟨V0(t) ·V0(0)⟩ =
3kbT

Nm
e−ξt (3.31)

For which, ⟨V 2
0 ⟩ = 3kbT

Nm
. Alternatively, we can obtain the velocity for the center-of-mass of

the Rouse chain (V0(t)), based on Equation (3.20):

d2X0

dt2
+ ξ

dX0

dt
=

1

Nm

∫︂ N

0

fndn (3.32)

Similar to the procedures in the previous section, we can easily obtain V0(t) as

V0(t) = V0(0)e
−ξt +

1

Nm

∫︂ t

0

e−ξ(t−τ)
∫︂ N

0

fn(τ)dndτ (3.33)

The velocity correlation function is therefore:

⟨V0(t) ·V0(0)⟩ =
3kbT

Nm
e−ξt (3.34)

This is analogous to the case for a single particle (cf., Equation (3.15)). Integration of

Equation (3.34) from t = 0 to ∞ gives us the diffusion coefficient of the center-of-mass of the

chain.

Dcm =
1

3

∫︂ ∞

0

3kbT

Nm
e−ξtdt =

kbT

Nζ
(3.35)

Other Different Normal Modes (p = 1, 2, 3, ..., N − 1)

For convenience, we let the following:

ω =

√︂
ξ2 − 4λ2pk/m

2
(3.36)

Interestingly, if 4λ2pk/m < ξ2, ω is a real number, whereas if 4λ2pk/m > ξ2, ω is an imaginary

number. The reader will find that the velocity correlation function is oscillatory in the latter

case.
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Case 1: ω is a real number and 4λ2pk/m < ξ2

Xp(t) =
e−

ξ
2
t

N

{︂
c1pe

ωt + c2pe
−ωt

}︂
+Hp(t) (3.37)

For which, we let Hp(t) as:

Hp(t) =
1

2ωNm

∫︂ t

0

[︂
e(−

ξ
2
+ω)(t−τ) − e(−

ξ
2
−ω)(t−τ)

]︂ ∫︂ N

0

fn cos(pπ
n

N
)dndτ (3.38)

The initial conditions can be used to find the parameters c1p and c2p.

Xp(0) =
1

N

[︁
c1p + c2p

]︁
(3.39)

Vp(0) = Xp(0)
[︂
− ξ

2
+ ω

]︂
− c2p2ω

N
(3.40)

This leads to:

Xp(t) = Xp(0)e
(− ξ

2
+ω)t − e−

ξ
2
t

2ω

[︂
Vp(0)−Xp(0)(−

ξ

2
+ ω)

]︂[︂
e−ωt − eωt

]︂
+Hp(t) (3.41)

The normal mode correlation function is therefore:

⟨Xp(t) ·Xp(0)⟩ = ⟨X2
p ⟩e(−

ξ
2
+ω)t +

⟨X2
p ⟩e−

ξ
2
t

2ω

(︂
− ξ

2
+ ω

)︂(︂
e−ωt − eωt

)︂
(3.42)

The normal mode velocity is computed as:

Vp(t) = Xp(0)(−
ξ

2
+ ω)e(−

ξ
2
+ω)t +Vp(0)

{︁−ξ + 2ω

ξ + 2ω
e(−

ξ
2
+ω)t + e(−

ξ
2
−ω)t}︁+Gp(t) (3.43)

For which, we let Gp(t) as:

Gp(t) =
1

Nm

∫︂ t

0

e−
ξ
2
(t−τ)

[︂
cosh(ω(t− τ))− ξ

2ω
sinh(ω(t− τ))

]︂ ∫︂ N

0

fn cos(pπ
n

N
)dndτ (3.44)

The transformation from vn to Vp is expressed as:

Vp =
1

N

∫︂ N

0

vn cos(pπ
n

N
)dn (3.45)

The velocity correlation function for different normal modes is therefore:

⟨Vp(t) ·Vp(0)⟩ = ⟨V 2
p ⟩ ·

e−
ξ
2
t

(−2ω)

[︁
e−ωt(−ξ

2
− ω)− eωt(−ξ

2
+ ω)

]︁
(3.46)
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Case 2: ω is an imaginary number and 4λ2pk/m > ξ2

Now, we let the following:

ω̃ =

√︂
4λ2pk/m− ξ2

2
(3.47)

Such that ω = i · ω̃ with i =
√
−1. The solution now becomes:

Xp(t) =
e−

ξ
2
t

N

{︂
d1p cos(ω̃t) + d2p sin(ω̃t)

}︂
+Hp(t) (3.48)

Hp(t) is expressed as:

Hp(t) =
1

ω̃Nm

∫︂ t

0

e−
ξ
2
(t−τ) sin(ω̃(t− τ))

∫︂ N

0

fn cos(pπ
n

N
)dndτ (3.49)

With d1p = (c1p + c2p) and d2p = i(c1p − c2p). We then used the initial conditions to

evaluate d1p as well as d2p. It was obtained:

Xp(t) = e−
ξ
2
t
[︁
Xp(0) cos(ω̃t) +

ξ

2ω̃
Xp(0) sin(ω̃t) +

Vp(0)

ω̃
sin(ω̃t)

]︁
+Hp(t) (3.50)

This gives us the following:

⟨Xp(t) ·Xp(0)⟩ = ⟨X2
p ⟩e−

ξ
2
t
[︁
cos(ω̃t) +

ξ

2ω̃
sin(ω̃t)

]︁
(3.51)

The normal mode velocity is:

Vp(t) = Xp(0)e
− ξ

2
t
[︂
− ξ2

4ω̃
− ω̃

]︂
sin(ω̃t) +Vp(0)e

− ξ
2
t
[︂
cos(ω̃t)− ξ

2ω̃
sin(ω̃t)

]︂
+Gp(t) (3.52)

Gp(t) reads:

Gp(t) =
1

Nm

∫︂ t

0

[︂
e−

ξ
2
(t−τ)(︁ cos(ω̃(t− τ))− ξ

2ω̃
sin(ω̃(t− τ))

)︁]︂ ∫︂ N

0

fn cos(pπ
n

N
)dndτ (3.53)

The velocity time correlation function is therefore:

⟨Vp(t) ·Vp(0)⟩ = ⟨V 2
p ⟩ · e−

ξ
2
t
[︁
cos(ω̃t)− ξ

2ω̃
sin(ω̃t)

]︁
(3.54)

Intriguingly, the velocity time correlation function for 4λ2pk/m > ξ2 is a damped oscillatory

function of t. Figure 3.1a and Figure 3.1b show plots of Equation (3.42) and (3.51) compared

with numerical simulation results, respectively. Figure 3.2a and Figure 3.2b show plots of

Equation (3.46) and (3.54) compared with numerical simulation results, respectively. The
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parameters are chosen as: ξ = 5 ps−1, k/m = 900 ps−2, λ2p = p2π2/N2. The exact solution

was confirmed by the numerical simulation.

(a) Normal mode time correlation function in
case 1 (p = 1).

(b) Normal mode time correlation function in
case 2 (p = 6).

Figure 3.1: Normal mode time correlation functions for different cases.

(a) Velocity time correlation function in case 1
(p = 1).

(b) Velocity time correlation function in case 2
(p = 6).

Figure 3.2: Velocity time correlation functions for different cases.

As demonstrated above, there are multiple modes of relaxation in polymeric system due

to the fact that there are multiple eigenvalues −λ2p for p = 0, 1, 2, 3, ..., N − 1 to the operator

∂2/∂n2. Under any meaningful condition, depending on the values of these multiple eigenval-

ues −λ2p, the longer wavelength motion (i.e., when p is small) should always be overdamped

(case 1), whereas it is possible that the relatively shorter wavelength motion (i.e., when p

is large) can be underdamped (case 2). But ultimately, the time correlation function of the
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end-to-end vector (R = RN−1 − R0) and the velocity of a bead (vn), which can be con-

structed using all the time correlation functions of normal modes from both case 1 and case

2, are still overdamped relaxation as they are dominated by the longer wavelength motion

(cf., Equation (3.55), Equation (3.56) and Figure 3.3).

⟨R(t) ·R(0)⟩ = 16
N−1∑︂

p=1,odd

⟨Xp(t) ·Xp(0)⟩ (3.55)

⟨vn(t) · vn(0)⟩ = ⟨V0(t) ·V0(0)⟩+ 4
N−1∑︂
p=1

⟨Vp(t) ·Vp(0)⟩[cos(pπ
n

N
)]2 (3.56)

These analytical expressions as presented in Equation (3.55) and Equation (3.56) are also in

good agreement with simulation data.2

(a) Time correlation function of R. (b) Time correlation function of vn.

Figure 3.3: Time correlation functions of R and vn.

3.5 Conclusion

In summary, we have shown the velocity time correlation function for different normal modes

under the consideration that there is no hydrodynamic interaction. As p = 0, which corre-

sponds to the dynamics of the center-of-mass of the chain, the velocity correlation function

of the chain has an analytical form similar to that of a single particle. Integration of the

2The aforementioned analysis was also applied in ring polymer in Appendix A. In addition, as mentioned
in the future plan, such analysis allows us to derive the viscosity of polymer with the consideration of the
kinetic contribution. (cf., Chapter 9)
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velocity time correlation function gives the same diffusion coefficient when the inertia term is

ignored. For p = 1, 2, 3, ..., N − 1, there are two different cases for the correlation functions:

1. ω is a real number and 4λ2pk/m < ξ2: The correlation function is an exponential decay

function of t.

2. ω is an imaginary number and 4λ2pk/m > ξ2: The correlation function is a damped

oscillatory function of t.

This is also confirmed by our simulation data.
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Chapter 4

Analysis of Brownian Dynamics and
Molecular Dynamics Data of
Unentangled Polymer Melts Using
Proper Orthogonal Decomposition1

4.1 Introduction

The Rouse model [20], a Brownian dynamics (BD) based model, is the simplest molecular

level model that one can use it to describe the dynamics of unentangled polymer melts.

In the Rouse model, beads are held together by harmonic springs with a spring constant

k = 3kbT/b
2 where kb, T and b are the Boltzmann constant, temperature and equilibrium

spring (step or bond) length, respectively. The beads are also under the influence of friction

(−ζ dRn

dt
) and stochastic (fn(t)) forces. Here, ζ is the friction coefficient and Rn is the position

of the nth bead. The equation of motion for the nth bead is given as

ζ
dRn

dt
= k(Rn−1 −Rn) + k(Rn+1 −Rn) + fn(t) = k(Rn+1 − 2Rn +Rn−1) + fn(t) (4.1)

It is obvious from Equation (4.1) that the inertia term and hydrodynamic interaction

are neglected in the Rouse model. Another simplification of the model, which is seldom

1A version of this chapter has been published in Macromol. Theory Simul., 2019, 28, 1800072.
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pointed out explicitly, is that the equilibrium length of the springs is set to zero. It is worth

pointing out that according to Equation (4.1), forces due to the springs on the beads are

zero when the beads overlap. Obviously, this is unphysical. However, setting the equilibrium

spring length to zero makes it straightforward to solve the above linear stochastic differential

equation analytically. And the solution is typically expressed in terms of normal modes

(Rouse modes). In this way, the relaxation of the polymer chain with different molecular

structures can be easily determined. For instance, Ghosh used the Rouse model to study the

dynamics of branched polymer melt [24]. Another noteworthy point is that the Rouse model

was originally developed for dilute polymer solutions (no chain-chain interaction). However,

it turns out that the model yields correct prediction on the chain length dependence of the

dynamics of polymer melts.

In this work, we propose to incorporate a finite value for the equilibrium spring length in

the Rouse model so that two beads connected by the same harmonic spring are prevented

from overlapping with each other. To determine what value of b that should be used, we

followed the idea of Hiemenz and Lodge. [13] In their work, they defined an effective bond

length to describe chain dimensions such that in their words, “the real chain with local

constraints has an end-to-end distance, which is the same as that of a freely jointed chain

with the same number of links, but with a different (larger) step length.” Here, C∞ and b0

are the characteristic ratio and the carbon-carbon bond length. In other words, inclusion of

b implicitly incorporates the chain rigidity (i.e., bond angle and torsion angle correlations)

in the model. However, doing so makes the resultant equation of motion non-linear and it

can only be solved numerically. As a result, Rouse modes and time correlation functions

cannot be easily obtained. To address this issue, we propose to use the technique of proper

orthogonal decomposition (POD) to analyze the data (see further discussion below).

Another reason that the Rouse model is so popular is that when the Rouse modes are

expressed in stretched exponential functions, they can be used to elucidate the dynamics of

entangled polymer melts [25, 8, 26, 22, 23, 27] even though one can argue that Rouse modes

do not actually exist for such non-linear systems. In fact, this issue has been pointed out by

various authors. In the work of Padding and Briels [8], they mentioned that “For realistic

polymer chains, however, it is not expected that the Rouse modes are the normal modes (in

a dynamic sense; the static cross-correlations are zero), because the non-bonded interactions
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and un-crossibility constraints modify the equations of motion and make them highly non-

linear.” Shaffer [26] clearly stated that “If the basic Rouse model is modified to include

excluded volume interactions or topological constraints, the governing Langevin equations

become highly non-linear and can no longer be diagonalized by the Rouse coordinates.” In

the work of Kalathi et al., [22, 23] they even attempted to address the issue why they used the

Rouse modes instead of the true normal modes. This can be seen in the conclusion section

of their paper: “One question is why we choose to use the Rouse modes of the chains to

describe motion rather than true normal modes, which are guaranteed to be orthogonal to

each other.” In addition, the stress analysis work of Vladkov and Barrat [28] also requires the

assumption that the Rouse modes are applicable to non-linear systems before any meaningful

conclusion could be drawn.

In light of the above discussion, it is clear that when a BD based model contains non-

linear force terms, validity of Rouse modes is questionable. Therefore, we propose to use

the concept of eigenmodes derived from the proper orthogonal decomposition (POD) for the

analysis of the numerical solution of the non-linear BD equation of motion. The POD analysis

is commonly used in the areas of process control and fluid dynamics simulation [29, 30, 31].

To the best of our knowledge, we are the first ones to apply the POD to analyze dynamics

data of polymer melts. The essence of POD analysis is to construct functions of interest

based upon a reduced order model of the numerical simulation data. Generally, in the POD

analysis, a correlation matrix is constructed using the fluctuation in the positions of beads at

various time steps. The resulting eigenvectors of the correlation matrix are the eigenmodes

(analogous to the Rouse modes), which are useful for the reconstruction of time correlation

functions. The main difference between Rouse modes and eigenmodes is that Rouse modes

are the same in x, y and z directions, whereas eigenmodes in these three directions can be

different because the correlation matrix is different in the three directions.

To illustrate that the non-linear BD model that we propose can be easily implemented on

different molecular structures, we applied it to unentangled polyethylene melts with linear,

ring and star structures. The equilibrium spring length b used was set to 4.42 Å which is

derived from a C∞ value of 8.23 at T = 450 K as reported by Foteinopoulou et al. [32], The

POD will be used to obtain the time correlation functions of the end-to-end vector, the m-

to-n vector and the arm vector, as well as the zero-shear viscosity (η0), of the aforementioned
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molecular structures. Nonetheless, the Rouse model results of the same systems (i.e., b = 0)

were also obtained and are presented in the Supporting Information file. To illustrate that

the non-linear BD model yields consistent results, we also carried out molecular dynamics

(MD) simulations on comparable molecular systems. Obviously, MD simulation, by nature,

includes all intra and intermolecular interactions. We also applied the POD to analyze the

corresponding MD results.

4.2 BD Simulation Details

Consider the force due to the harmonic bond stretching potential is expressed as follows:

Fn = k(dnm − b)
dnm

dnm
(4.2)

Given that:

dnm =
√︁
(xm − xn)2 + (ym − yn)2 + (zm − zn)2 (4.3)

And,

dnm =

⎡⎣xm − xn
ym − yn
zm − zn

⎤⎦ (4.4)

b is the equilibrium length of the spring. Let qn be the position of the nth bead that q can be

either x, y or z. The position of each bead of a system containing N beads can be arranged

in a vector q.

q =
[︁
x0 . . . xN−1 y0 . . . yN−1 z0 . . . zN−1

]︁T
(4.5)

If b = 0, Rouse model is recovered; If b =
√
C∞b0 = 4.42 Å, the BD equation of motion

becomes non-linear. The harmonic bond stretching force in Equation (4.2) can sufficiently

avoid overlapping of the beads because in the BD simulation, as dnm = 0, a repulsive force

with magnitude of kb is always resulted, which is much greater than the stochastic force. In

fact, such harmonic bond stretching force is also commonly used in MD simulation for reliable

evaluation of static properties, such as radius of gyration, and dynamic properties, such as

diffusion coefficient, of linear and ring polyethylene [2, 3] as well as the surface structure of

polymethylene [33].

As mentioned, the equation of motion becomes non-linear by including a finite statistical

length in the stretching potential. Now, if we would like to solve the non-linear equation of
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motion numerically with the implicit Euler method, we have to solve a system of non-linear

equations at each time step j by the Newton-Gauss method. Similar numerical procedures

were presented by Fixman [34]. The equation of motion is as follows:

dqn

dt
=

1

ζ
(Fn + gn) (4.6)

gn is the stochastic force acting on the nth bead with ⟨gn⟩ = 0 and ⟨gn(t)gn(t′)⟩ = 2kbTζδ(t−

t′). After that, we need to know the Jacobian matrix J, which has a dimension of 3N × 3N

and it can be obtained by taking the gradient of the Fn, which is the force due to bond

stretching potential acting on the nth bead, and it is expressed as:

Fn =
[︁
Fn,x Fn,y Fn,z

]︁T
(4.7)

The derivative of Fn,q, which is the force acting on the nth bead in q direction, with respect

to sn. (sn can be xn, yn or zn, which are the positions of the nth bead at x, y or z direction,

respectively.) If q = s:

∂Fn,q
∂qn

= −k · (dnm − b)

dnm
+ k · (qm − qn)

2(dnm − b)

d3nm
− k · (qm − qn)

2

d2nm
(4.8)

If q ̸= s:
∂Fn,q
∂sn

= k · (qm − qn)(sm − sn)(dnm − b)

d3nm
− k · (qm − qn)(sm − sn)

d2nm
(4.9)

k is the spring constant. With this, we can immediately write:

∂Fn,q
∂qm

= −∂Fn,q
∂qn

(4.10)

∂Fn,q
∂sm

= −∂Fn,q
∂sn

(4.11)

We then let, in the case of linear polyethylene:

Jqs =
∆t

ζ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F0,q

∂s0

∂F0,q

∂s1
0 0 . . . 0

∂F1,q

∂s0

∂F1,q

∂s1

∂F1,q

∂s2
0 . . . 0

0 ∂F2,q

∂s1

∂F2,q

∂s2

∂F2,q

∂s3
. . . 0

0 0
. . . . . . . . . 0

0 0 . . .
∂FN−2,q

∂sN−3

∂FN−2,q

∂sN−2

∂FN−2,q

∂sN−1

0 0 . . . 0
∂FN−1,q

∂sN−2

∂FN−1,q

∂sN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.12)

ζ is the friction coefficient and ∆t is the integration time step. The Jacobian matrix can be

then constructed using blocks of Jqs:

J =

⎡⎣Jxx − I Jxy Jxz

Jyx Jyy − I Jyz

Jzx Jzy Jzz − I

⎤⎦ (4.13)
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At each time step, the initial guess of the positions of the beads at the next time step was

set at that of the present time step, and qj+1 was updated in the internal iteration of the

Newton-Gauss method based on Equation (4.14) until the tolerance, which is the norm of

the residual r, is less than 10−10.

q
(a+1)
j+1 = q

(a)
j −

[︂
(JTJ)−1JTr

]︂(a)
(4.14)

The superscripts (a) and (a+ 1) indicate the present and next iteration, respectively. r has

components expressed as:

r =
[︁
r0,x . . . rN−1,x r0,y . . . rN−1,y r0,z . . . rN−1,z

]︁T
(4.15)

rn,q =
[︂
Fn,q(t+∆t) + gn,q(t+∆t)

]︂
· ∆t
ζ

− qn(t+∆t) + qn(t) (4.16)

A C++ program is presented in the Supporting Information.

In all numerical simulations, T = 450 K, k = 3kbT/b
2 and ζ = l

√
mkbT , where l is the

bead size, which is taken to be 2 Å. And ∆t was set at 0.63 ps. Numerical stability is still

guaranteed despite a large ∆t as integration was achieved by the implicit Euler method. The

number of beads in linear and ring structures, as well as star structure with four arms ranged

from N = 30 to N = 73, respectively. The range of N was chosen such that they are below

the entanglement chain length. The simulation was allowed to run for 3 · 105 steps. Initial

conformations of all structures were constructed using free software Avogadro. CPU time in

this case was approximately 0.013− 0.020 hr/ns in a computer with Intel(R) Xeon(R) CPU

E5-2630 v2 at 2.60GHz.

4.3 MD Simulation Details

Molecular dynamics simulation was also performed by explicitly including the many-chain

effect, and more detailed bonded interactions, such as torsion angle potential as well as angle

bending potential in the equation of motion. The forcefield we considered is coarse-grained

without electrostatic interaction. The forcefield parameters were taken from the work by

Martin and Siepmann [19, 18], which is also known as the TraPPE forcefield. The most

daunting task in such simulation was the preparation of a good initial configuration, which
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ensures stability of the subsequent simulation. With regard to this, many of the chains,

which was prepared using Avogadro, were packed in a box such that the distance between

one united atom of one chain and another was at least 4 nm. This was achieved using the

free software PACKMOL [35]. Alternatively, for ring polymer, as such procedure may lead to

concatenation of the ring polymers, they were randomly distributed in a much larger box. In

equilibriation, the system was compressed by NPT simulation with a Nosé-Hoover thermostat

with a time constant of 0.2 ps to maintain the time-averaged temperature at 450 K and a

Berendsen barostat with reference at room pressure and time constant of 0.5 ps. After such

procedure, the density of the system reached approximately 700 kg·m−3. In the production

run, a 20 ns of canonical ensemble (NVT) MD simulation was then performed. Systems with

N = 30−73 were used. The number of chains used in this study was varied such that the total

number of united atoms is 800 for N ≤ 50 and it was fixed at 40 for N > 50. The equation of

motion was integrated using leapfrog algorithm. Periodic boundary conditions were imposed

in all cases. These simulations were performed using the free software GROMACS 5.1.4 [36].

Figure 4.1 shows the final configurations of polyethylene with different structures after the

NVT MD simulation. CPU time in this case was approximately 0.035 − 0.080 hr/ns in a

computer with Intel(R) Xeon(R) CPU E5-2630 v2 at 2.60GHz. Note that the CPU time

taken in MD simulation is 4 times longer than that in BD simulation.
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(a) Linear structure (b) Ring structure

(c) Star structure

Figure 4.1: Final configurations of polyethylene with different structures after the NVT MD
simulation. (N = 50 for linear and ring structures, and N = 49 for star structure)

To show that our MD data are reliable, we have also evaluated the center-of-mass diffusion

coefficient (Dcm) as well as the root-mean-square radius of gyration (
√︂

⟨R2
g⟩) of polyethylene

with different structures to check if the corresponding N dependence is in good qualitative

agreement with that reported in the literature. Such calculation results are presented in

the Supporting Information. In addition, to prove that the finite size effect due to periodic

boundary condition is not significant, we have performed one more MD simulation run of 40

linear chains with N = 50, i.e. a total number of 2000 united atoms. In this case, we found

that the change in the longest relaxation time (τ1) and η0 is small with only 5% − 7%. τ1
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changes from 468 ps to 432 ps, while η0 changes from 1.09 · 10−3 Pa · s to 1.04 · 10−3 Pa · s

when the number of chains increases by 2.5 times. This is in good agreement with Sen et al.

[37], in which they found that for linear chain with N = 120, the viscoelastic properties were

unchanged even if they doubled the number of chains used in the MD simulation. Therefore,

we conclude that the finite size effect does not significantly influence the calculated results

of τ1 and η0 in the MD simulation of this work. And it should be expected that such effect is

even more trivial for ring and star polymers because their radii of gyration are even shorter

than that of linear chains (cf., Supporting Information).

4.4 Proper Orthogonal Decomposition

As the equation is non-linear, the POD analysis should be performed to obtain the eigen-

modes. The time averaged position of different beads/united atoms of polyethylene in a

particular direction (either x, y or z) was computed.

q̄(t) =
1

N

N−1∑︂
i=0

qi(t) (4.17)

The fluctuation in the position q′i can be then calculated as follows:

q′i(t) = qi(t)− q̄(t) (4.18)

The correlation matrix (N × N), denoted as C, can be then formed using the following

equation:

Ci,j =
1

Nsnap

Nsnap−1∑︂
t=0

q′i(t)q
′
j(t) (4.19)

C is symmetrical and the eigenvectors of C are the eigenmodes, which is denoted as ψqp(n),

such that ψqp(n) is the pth eigenmode in direction q with dimension of N × 1. Nsnap is

the number of snapshots taken from the trajectory, and it was set at a range of Nsnap =

4000 − 5000. If one would like to obtain the high frequency eigenmode, a larger value of

Nsnap was preferred. Nevertheless, as we are mainly interested in the large scale motion (up

to a maximum of 7 modes), a large value of Nsnap may not be necessary. As the correlation

matrix C can be different in the three directions, this also implies that the eigenmodes can
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be slightly different in x, y and z directions. Normalization of ψqp was achieved by:

ψ̃
q

p =
ψqp{︂∑︁N−1

n=0

[︁
ψqp(n)

]︁2}︂0.5 (4.20)

To obtain the normal coordinate, the coordinate transformation in this case is therefore,

X ′
p,q =

N−1∑︂
n=0

qnψ̃
q

p(n) (4.21)

This analysis was performed using a Python 3.5 program attached in the Supporting Infor-

mation.

4.5 Non-Linear BD of Polyethylene with b =
√
C∞b0

The non-linear equation of motion was solved numerically with b = 4.42 Å. As the equation

of motion is non-linear and positions of the beads in different direction are coupled to each

other. Rouse mode is no longer applicable, and the normal mode in each direction has to

be approximated with the POD analysis. Figure 4.2, Figure 4.3 and Figure 4.4 show the

first three most dominant eigenmodes obtained from the POD analysis in three directions

for polyethylene with different molecular structures. It was found that these eigenmodes are

almost the same in three directions. However, they are slightly different from Rouse modes,

which are described by perfect cosine and sine functions: cos(pπn/N), and cos(2pπn/N)

as well as sin(2pπn/N), with the continuous approach introduced by Doi and Edwards [21]

in the case of linear polymer and ring polymer but not for star structure (a more detailed

derivation can be found in the Supporting Information).
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(a) Direction x (b) Direction y

(c) Direction z

Figure 4.2: The first three most dominant eigenmodes in different directions obtained from
the POD analysis in linear structure.
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(a) Direction x (ring structure) (b) Direction y (ring structure)

(c) Direction z (ring structure)

Figure 4.3: The first three most dominant eigenmodes in different directions obtained from
the POD analysis in the ring structure.
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(a) Direction x (star structure) (b) Direction y (star structure)

(c) Direction z (star structure)

Figure 4.4: The first three most dominant eigenmodes in different directions obtained from
the POD analysis in the star structure.

We then applied the coordinate transformation as stated in Equation (4.21), and the

corresponding time correlation functions µp(t) of different eigenmodes were evaluated and

fitted to a stretched exponential function.

µp(t) =
⟨X ′

p,x(t) ·X ′
p,x(0) +X ′

p,y(t) ·X ′
p,y(0) +X ′

p,z(t) ·X ′
p,z(0)⟩

⟨X ′2
p,x +X ′2

p,y +X ′2
p,z⟩

≈ exp[−(t/τ ∗p )
βp ] (4.22)

The effective relaxation time of the pth mode (τp) is determined as follows:

τp =
τ ∗p
βp

· Γ(1/βp) (4.23)

In Figure 4.5, − lnµp(t) is plotted as a function of time for the three different molecular

structures, such that the time correlation functions appear as linear curves, in which the

y-intercept is related to τp, and the slope is βp. Interestingly, as mentioned above and
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demonstrated in the Supporting Information, there are two and three eigenfunctions sharing

the same relaxation time for ring and star structures, respectively (cf., Figure 4.5(b) and

Figure 4.5(c)). Among these molecular structures, it was found that τ1 of linear polymer

is the longest (cf., Table 8.1). And βp was within the range of 0.97 − 1.05 , indicating the

constraint on the motion of the polymer is small because the βp does not deviate much from

unity [8, 26].

(a) Linear structure (b) Ring structure

(c) Star structure

Figure 4.5: Time correlation functions of different eigenmodes in BD simulation. (N = 50
for linear and ring structures, and N = 49 for star structure)

Table 4.1: β1 and τ1 of the most dominant eigenmodes in BD simulation, and τR1 in the
classic Rouse model as presented in the Supporting Information. (N = 50 for linear and ring
structures, and N = 49 for star structure)

Structures β1 τ1 (ps) τR1 (ps)
Linear (N = 50) 1.051 432 159
Ring (N = 50) 1.021 155 40
Star (N = 49) 1.034 157 40
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(a) Linear structure (b) Ring structure

(c) Star structure

Figure 4.6: N/p dependence of τp for polyethylene with different structures. (BD)

τp obtained from these time correlation functions are then plotted as a function of N/p in

Figure 4.6. In Figure 4.6, note that for ring structure, two linear curves were fitted to the data

as two eigenmodes can share roughly the same relaxation time, whereas for star structure, as

three eigenmodes can share similar magnitude of relaxation time, the data points were shifted

accordingly and was fitted to one single linear curve. As expected, τp ∼ N2/p2. This confirms

that the eigenmodes derived from the POD analysis are reliable. The longest relaxation time

of linear polymer is longer by a factor of 2.8 than those of ring and star structures (cf., Table

8.1). Furthermore, compared to the relaxation time in classic Rouse model (τR1 ), τ1 derived

from the BD simulation data is longer as expected (cf., Table 8.1).

Finally, we analyzed the time correlation functions of different vectors (cf., Figure 4.8),

which has a longer relaxation time compared to that in Rouse model. With τp obtained from

the above time correlation functions of different eigenmodes, it is possible to get a reasonable

77



approximation of the time correlation functions of these vectors (cf., Figure 4.8).

⟨R(t) ·R(0)⟩ ≈
9∑︂
p=1

e−t/τp

3

[︂ ∑︂
q=x,y,z

⟨X ′2
p,q⟩

(︁
ψ̃
q

p(m)− ψ̃
q

p(n)
)︁2]︂

(4.24)

Note that m and n are the index labels of any two beads of the polymer. The choice of m and

n is simply determined by which two beads the researchers are interested in. In the linear

chain, we are interested in the end-to-end vector, therefore, m = N − 1 and n = 0, which

refers to the two beads/united atoms at the two ends of the linear chain. R is the vector

joining these two points (i.e. m and n beads) (cf., Figure 4.7(a)). For ring structure, we are

interested in the vector joining m = N/2−1 and n = 0 (cf., Figure 4.7(b)); for star structure,

we are interested in the vector joining m = (N − 1)/2 and n = 0 (cf., Figure 4.7(c)), which

corresponds to the arm vector.

· · ·n = 0 m = N − 1

(a) Linear structure.

n = 0

m = N/2− 1

(b) Ring structure.

n = 0

m = (N − 1)/2

(c) Star structure.

Figure 4.7: Nomenclature of different bead in polyethylene with different structures.

To check if the harmonic bond stretching force in Equation (4.2) was able to avoid overlap-

ping of the beads and generate correct static properties of the polymer, the root-mean-square

values of these vectors (
√︁
⟨R2⟩) were also evaluated and compared with the value calculated

by
√︁

⟨R2⟩ =
√
NC∞b0 as presented in the Supporting Information. We found that the nu-
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merical values of
√︁

⟨R2⟩ are always slightly higher than that of
√
NC∞b0 and

√︁
⟨R2⟩ ∼ N0.5

in BD simulation (cf., Supporting Information).

(a) Linear structure (b) Ring structure

(c) Star structure

Figure 4.8: Time correlation functions of different vectors of linear, ring and star structures
(b = 4.42 Å) (N = 50 for linear and ring structures, and N = 49 for star structure).

4.6 MD Simulation

Same procedures of POD analysis were repeated for the MD simulation data of polyethylene

with linear, ring and star structures. Figure 4.9 shows the first three most dominant eigen-

modes of one of the many chains in x direction for the linear and ring structures with N = 50,

and star structure with N = 49. Data for y and z directions are not shown here as they

resemble to those of x direction. As expected, with the incorporation of the effect of many-

chain interaction and stiffness, the eigenmodes are similar to those of the eigenmodes found

in the BD simulation. This may be because the force derived from the harmonic potential
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of the bond stretching is much larger than other inter/intra-molecular force and forces from

other bonded interaction potentials in the TraPPE forcefield [19, 18]. In TraPPE forcefield

[19, 18], the spring constant in bond stretching potential is kb = 502416 kJ ·mol−1 · nm2,

whereas that in angle bending and torsional potential are kθ = 519 kJ ·mol−1 · rad2 and

kψ = 1.134 − 26.318 kJ ·mol−1. The depth of the potential well in Lennard-Jones po-

tential for a carbon atom, methylene group and methyl group are ε = 0.831 kJ ·mol−1,

ε = 0.382 kJ ·mol−1 and ε = 0.815 kJ ·mol−1, respectively. kb is 103 times larger than kθ,

104 times larger than kψ and 105 times larger than ε. Therefore, it is not surprising that any

fluctuation in the positions of the united atom is mainly contributed by the bond stretching

force.

(a) Linear structure (b) Ring structure

(c) Star structure

Figure 4.9: First three most dominant eigenmodes of one of the many chains in x direction
for different molecular structures of polyethylene.

Figure 4.10 shows the log-log plot of − lnµp with time for linear and ring structures
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with N = 50, and star structure with N = 49. The simulation data were fitted to a

stretched exponential function (cf., Equation (4.22)) and τp were obtained using Equation

(4.23). Unlike the case that eigenmodes were extracted using only a single macromolecule in

BD simulation, µp was averaged over all the macromolecules in addition to the time-averaging

in MD simulation. Due to the kinetic constraints imposed by the torsion potential and angle

bending potential in the bonded interaction, as well as the intermolecular potential in the

non-bonded interaction, µp is now a relatively more stretched exponential function of time

with values of βp ranging from 0.82 − 0.93. This is in line with the findings of Faller and

Müller-Plathe [38] as well as Bulacu and van der Giessen [27], which suggest that in addition

to many-chain effect, increased chain stiffness can lead to stronger reptation and more severe

kinetic constraints.

(a) Linear chain (b) Ring polymer

(c) Star polymer

Figure 4.10: Time correlation functions of different eigenmodes in many-chain systems of
linear, ring and star polyethylene. (N = 50 for linear and ring structures, and N = 49 for
star structure)
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Table 4.2: β1 and τ1 of the most dominant eigenmodes in MD simulation. (N = 50 for linear
and ring structures, and N = 49 for star structure)

Structures β1 τ1 (ps)
Linear (N = 50) 0.913 468
Ring (N = 50) 0.894 191
Star (N = 49) 0.833 296

Interestingly, once the many-chain effect and stiffness are explicitly included, τ1 of star

polymer becomes longer than that of the ring polymer, with τ1 of linear structure being

longer than that of star and ring polymer by factors of 2.4 and 1.6, respectively (cf., Table

8.2). Compared with the BD simulation results (cf., Table 8.1), we found that τ1s of all

structures in BD simulation agree well with those in MD simulation, except for star structure

(cf., Table 8.1 and Table 8.2). It was found that Dcms of star polymers are slightly lower

than that of linear polymers in MD simulation, whereas they are roughly the same in BD

simulation (cf., Supporting Information). This indicates that the resulting ζ of star polymers

is slightly higher than that of linear polymers in MD simulation, whereas this was held fixed

at ζ = l
√
mkbT for all different structures in BD simulation (cf., BD Simulation Details).

The obvious consequence is therefore the slowing down of relaxation dynamics of the star

polymers in the MD simulation, compared to that in BD simulation.

Relaxation times of different eigenmodes (τp) are also plotted as a function of N/p in

Figure 4.11 similar to that depicted in Figure 4.6. Dependence of τp on N/p from the MD

simulation results is slightly stronger (i.e., τp ∼ (N/p)2.3) than that from the BD simulation

results (i.e., τp ∼ (N/p)2.0). We speculate that this stronger dependence is attributed to

the fact that the equation of motion in MD simulation is more non-linear than that in BD

simulation. Kremer et al. [39, 25] and Kalathi et al. [22] applied the Rouse mode in the

analysis of the simulation data of linear chain with many-chain effect, and they observed that

in the unentangled regime, τp ∼ (N/p)2, which is slightly weaker than our MD simulation

results. This shows that the POD analysis is sensitive to the non-linearity of the system

when compared to the Rouse mode. Yet, the model in Padding et al. [8], Harnau et al. [40]

as well as Kavassalis and Noolandi [41], however, with Rouse mode analysis, suggested that

in the unentangled regime, the dependence is stronger with τp ∼ (N/p)4. Nonetheless, these

models are derived based on Langevin dynamics with uncrossibility constraints or Lagrange
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multiplier, and are therefore different from MD simulation: “Uncrossibility” and stiffness

are explicitly achieved by including Lennard Jones potential, as well as angle bending and

torsional potential, respectively, in MD simulation.

(a) Linear chain (b) Ring polymer

(c) Star polymer

Figure 4.11: N/p dependence of τp for polyethylene with different structures. (MD simula-
tion)

With these, we can reconstruct the time correlation function of different vectors based on

the eigenmodes using the following Equation (4.25):

⟨R(t) ·R(0)⟩ ≈
⟨︂ p′∑︂
p=1

exp
[︂
− (t/τ ∗p )

βp
]︂

3

[︂ ∑︂
q=x,y,z

⟨X ′2
p,q⟩

(︁
ψ̃
q

p(m)− ψ̃
q

p(n)
)︁2]︂⟩︂

(4.25)

Note that p′ is the number of eigenmodes being used in the construction of POD solution.

In linear structure, m = N − 1 and n = 0; in ring structure, m = N/2− 1 and n = 0; in star

structure, m = (N − 1)/2 and n = 0. The big angled bracket in Equation (4.25) indicates
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that the correlation function is also averaged over all the chains in the system. As shown in

Figure 4.12, the POD solutions are in line with the simulation data.

(a) Linear chain (b) Ring polymer

(c) Star polymer

Figure 4.12: Time correlation functions of different vectors (N = 50 for linear and ring
structures, and N = 49 for star structure) (MD simulation).

As indicated in Equation (4.24) and Equation (4.25), since the time correlation functions

of different vectors are linear combinations of time correlation functions of different eigen-

modes, for the purpose of comparison of the results in Figure 4.8 and Figure 4.12, we define

a relaxation time τv, which is the time such that ⟨R(τv) ·R(0)⟩/⟨R2⟩ = e−1. Table 8.6 shows

the τv of linear, ring and star structures in Rouse model, BD simulation and MD simulation.
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Table 4.3: τv of time correlation functions of different vectors in Rouse model, BD simulation
and MD simulation. (N = 50 for linear and ring structures, and N = 49 for star structure)

Structures τv (ps) (Rouse model) τv (ps) (BD simulation) τv (ps) (MD simulation)
Linear (N = 50) 138 389 410
Ring (N = 50) 32 147 154
Star (N = 49) 31 113 155

As shown in Table 8.6, τvs of all structures in BD simulation are in good agreement with

that in MD simulation. On the contrary, the values of τvs derived from the Rouse model were

significantly lower than that of MD simulation. This demonstrates that incorporation of a

finite equilibrium spring length in the Rouse model gives a relaxation time that resembles

more to the realistic value.

4.7 Zero-Shear Viscosity from BD and MD Simulations

With the time autocorrelation functions of different eigenmodes, it is possible to obtain the

shear relaxation modulus (G(t)), which is a linear combination of the square of µp(t) (cf.,

Equation (4.26)). Integration of G(t) with respect to time will give us the zero-shear viscosity

(η0). The corresponding G(t) can be therefore estimated as follows2:

G(t) ≈ ρRT

M

N−1∑︂
p=1

exp
[︁
− 2(t/τ ∗p )

βp
]︁

(4.26)

ρ is the mass density, and R is the ideal gas constant. The justification for using Equation

(4.26) for G(t) is that the harmonic bond stretching force is much larger than other forces

acting upon the bead/united atom in the simulation. η0 can be indirectly obtained with:

η0 =

∫︂ ∞

0

G(τ)dτ (4.27)

The time integration in Equation (4.27) can be numerically achieved using trapezoidal rule.

As G(t) is dependent on ρ (cf., Equation (4.26)), this indicates that η0 can be influenced by

many-chain effect. Therefore, we anticipate η0 from BD data should deviate sightly from that

of MD data. Due to the fact that in BD simulation, ρ cannot be obtained numerically, we

2Equation (4.26) is a modification of the shear relaxation modulus derived in the Rouse model as shown
in Appendix A.
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assumed ρ ≈ 700 g/m3 for the evaluation of η0 in BD simulation, whereas in MD simulation,

ρ can be directly obtained from the MD data as many-chain effect has been included. Figure

4.13 shows plots of η0 with N for polyethylene with different structures derived from BD and

MD simulations, and comparison with the literature data. For linear and ring structures,

the N dependence of η0 is slightly stronger in the MD simulation than that in the BD

simulation, whereas for star structure, η0s from BD and MD simulations are in excellent

agreement with one another. Furthermore, for both linear and ring structures, η0 derived

from MD simulation agrees well with the results by Tsolou et al. [4] and Mondello et al.

[42], in which they have also found that as N is small, the exponent of N dependence of η0

is larger than unity (cf., Figure 4.13). For linear structure, we found that our data analysis

procedures correctly reproduce the experimentally observed N dependence of η0 by Pearson

et al.[7] (i.e. η0 ∼ N1.8) (cf., Figure 4.13).

(a) Linear structure (b) Ring structure

(c) Star structure

Figure 4.13: η0 of polyethylene with linear, ring and star structures in BD and MD simula-
tions, and comparison with the literature data.
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4.8 Conclusions

We performed BD numerical simulation and MD simulation for unentangled polyethylene

melts with linear, ring and star structures at 450 K. In the BD models, an equilibrium spring

length (b = 4.42Å) was included. Inclusion of a finite value for b prevents beads connected

by the same harmonic spring from overlapping and brings the rigidity of the polymer chain

into the BD simulation implicitly. The POD, which is known for analyzing the dynamics of

non-linear systems, was used to analyze both BD and MD data. POD provides a method

to obtain the eigenmodes of the non-linear systems, thereby the time correlation functions

of different structural vectors. The eigenmodes obtained from the POD analysis in the

MD simulation are similar to those in BD simulation. They are also similar in x, y and z

directions. This demonstrates that even in many-chain systems, the macromolecular motion

is still very Rouse-like probably because the most dominant force in the equation of motion

is the bond stretching force derived from the harmonic potential.

τ1 of linear polymer is longer than that of ring and star structures by a factor of 4 in the

Rouse model. This factor decreases to 2.8 and about 1.6-2.4 based on the BD simulation

results and MD simulation results, respectively. The dependence of τp on N/p obtained from

the POD analysis of unentangled polyethylene in MD simulation (i.e., τp ∼ (N/p)2.3) are

stronger than that in BD simulation (i.e., τp ∼ (N/p)2.0). This may be attributed to the fact

that the equation of motion in MD simulation is more non-linear. Furthermore, relaxation

times of vectors and zero-shear viscosity derived from BD simulation are in good agreement

with those in MD simulation for all structures.
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Chapter 5

A Free Volume Theory on the Chain
Length Dependence of the Diffusivity
of Linear Polymers1

5.1 Introduction

The chain length dependence of the dynamics of polymer melts has been extensively studied

both experimentally [43, 7, 44, 45, 46] and numerically [47, 39, 48, 49]. It was demonstrated

in the log–log plot of the center-of-mass diffusion coefficient (Dcm) as a function of molecular

weight (M) that the slopes are more negative than −1 below the critical molecular weight

(Mc), which was observed by von Meerwall et al. [1] that the exponent of the N dependence

of Dcm of n-alkane with N = 9−60 can be as negative as −1.85 at 170 ◦C, and approximately

−2.4 above Mc. It is well-known that below Mc, the behavior can be qualitatively predicted

by the Rouse model [20] after elimination of the chain end effect, in which the beads are

modeled as Brownian particles connected by harmonic springs experiencing a stochastic force,

whereas above Mc, the behavior is well described by the reptation theory developed by Doi

and Edwards [21], as well as de Gennes [50] with the consideration of tube length fluctuation

[51, 52, 53].

In the reptation theory, entanglements and topological constraints imposed by surround-

ing chains on a given chain have substantially hindered its transverse motion, such that it is

1A version of this chapter has been published in Soft Matter, 2019, 15, 9300-9309.
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as if the chain is reptating in a confined tube. With this, one can then solve the diffusion

equation for segments of the chain in the tube, which obeys the Rouse dynamics, to obtain

the mean-square-displacement of the center-of-mass of the chain as well as the probability

of segments staying in the tube [21]. The repton theory, which is also known as the dis-

cretized reptation theory, introduced by Rubinstein presents a more accurate description of

tube length fluctuation, and agrees better with the experimental results [53]. Nevertheless,

the mathematical formulation and the molecular structures of entanglements have not yet

been clearly elucidated, although there were few attempts to quantify this property for the

determination of the entanglement length [54, 55, 56, 32]. To our knowledge, there are very

few alternatives to the entanglement theory in the understanding of the unusual behavior of

the self-diffusion of long chains. In addition, the concept of entanglement has become more

complicated when it comes to the understanding of the dynamics of non-linear polymers (e.g.,

ring polymers).

The free volume theory has successfully predicted the diffusion in polymer–solvent systems

as well as the temperature dependence of the diffusion coefficient in oligomers [57, 58, 59,

60]. Notably, von Meerwall et al. explained the pulse-gradient NMR measurement of self-

diffusion of oligomers by considering the the flip frequency of the segments [60], in which

they proved that the amount of free volume present in oligomer melts can influence their

dynamic properties. Nonetheless, one of the most impressive attempts is the modified free

volume theory proposed by Sabbagh and Eu [61], which can be applied to polymer melts. In

their version of modified free volume theory, which is essentially an extension of the Cohen-

Turnbull free volume theory, parameters, such as mean free volume, are calculated using

the generic van der Waals equation of state [62, 63, 64] and solving the system of coupled

integral equations with Percus-Yevick closure relations for polymer melt systems in a way

that is similar to their previous work on simple liquid [65, 66, 67]. Their proposed theory

[61] is not, however, entirely free of adjustable parameters as the theory was developed under

the assumption that the critical free volume for each bead follows a stretched exponential

distribution, for which any justification for this proposition is not adequate and as a result

of this, three empirical parameters are introduced in their theory.

In this work, we will improve and consolidate such proposition that the self-diffusion

coefficients of polymer can be evaluated by knowing free volume available to each bead of the
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chain and their corresponding distributions. The intermolecular radial distribution function

(g(r)) and intramolecular radial distribution function (gintra(r)) of the polymer melts were

obtained accurately by molecular dynamics (MD) simulation, in which detailed bonded and

non-bonded potential were included in the equation of motion. The critical free volume

for activation of diffusion, and the mean free volume can be then obtained from g(r) and

gintra(r), as well as the generic van der Waals (GvdW) equation of state developed by Eu [64].

Furthermore, Voronoi tessellation of the MD simulation data of linear chains with different

N was performed, which gave us the exact probability distribution of the volume available

to a bead.

In the literature, detailed atomistic and coarse-grained simulations have been used to

study the dynamics of polyethylene systems [68, 69, 70, 8]. For instance, Zhu et al. introduced

a highly coarse-grained model to simulate the entangled polymer melts, which can reflect the

characteristics of entanglements and simulate the dynamics correctly [68]. Harmandaris et

al. [69] demonstrated a clear crossover (at C154) from the Rouse regime to the entangled

regime for the Dcm of linear polyethylene chains in the melt state using MD simulation along

with a united atom model. Tsolou et al. [70] adopted the non-bonded and bonded parameter

sets used by Harmandaris et al. [69] for poly(butadiene) and showed that the crossover for

the polymer was around 2,600 g/mol. With these, we used MD simulation as well as a

free volume theory to demonstrate that the crossover in the N dependence of Dcm of linear

polyethylene melts can be accurately described.

5.2 The Free Volume Theory of Polymers

The self-diffusion of simple liquids is well described by the free volume theory of Cohen and

Turnbull, which is shown as follows:

D = D0 exp
(︂
−αv

+

⟨vf⟩

)︂
(5.1)

where α is the overlapping factor of the free volume, αv+ is the critical free volume, above

which diffusion occurs and ⟨vf⟩ is the mean free volume. D0 is the Chapman-Enskog self-

diffusion coefficient. In this simple theory, it is postulated that the self-diffusion coefficient

is proportional to the probability of finding αv+. And such probability has the following
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distribution:

P =
α

⟨vf⟩
exp

(︂
− αv

⟨vf⟩

)︂
(5.2)

Therefore, to extend the free volume theory to polymers, we should consider the probability

for a certain number of beads having sufficient free volume because the diffusion of polymer

relies on the motion of a collection of beads. The probability (Fct) for a single bead to obtain

a certain critical volume in the form of Cohen and Turnbull can be calculated as follows:

Fct = exp
(︂
− Nαv+i

⟨vf⟩

)︂
(5.3)

where v+i is the critical volume for activating the diffusive movement of the ith bead, N is the

chain length. Nonetheless, in positron annhiliation lifetime spectroscopy experiments [71],

the free volume distribution in polymers was found to be more accurately described by the

gamma distribution. The probability for a bead to have free volume greater than or equal

to αv+i for the activation of its diffusive movement (F ) can be then approximated by:

F = 1− 1

Γ(b)

∫︂ aαv+i

0

xb−1e−xdx (5.4)

Γ(b) is the gamma function with b as the argument:

Γ(b) =

∫︂ ∞

0

xb−1e−xdx (5.5)

The parameter a and b are defined as follows:

a =
b

⟨vf,i⟩
(5.6)

b =
⟨vf,i⟩2

⟨v2f,i⟩ − ⟨vf,i⟩2
(5.7)

b is the regularity factor, which is the ratio of the mean value to the variance of the gamma

distribution, and it is a dimensionless parameter (cf., Equation (5.7)), whereas a has a unit

of nm−3 (cf., Equation (5.6)). It should be noted here that this exact distribution can

be determined using Voronoi tessellation (VT), which will be discussed in the forthcoming

section.

Considering the fact that diffusion of a polymer chain as the motion of a collection of

beads, some of the beads in the chain, which have vf,i < αv+i may, perhaps, still be activated
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by the motion of its neighbours, which have vf,i ≥ αv+i . In other words, a chain may only

require a particular fraction of beads having vf,i ≥ αv+i (ϕ+) such that diffusion of its center-

of-mass can be activated. This is similar to the idea in the reptation theory that diffusion

of an extremely long chain relies on one another bead (i.e., a cooperative motion) to reptate

through the highly dense polymer melt.

To evaluate the distribution of bead having vf,i ≥ αv+i in the polymer chain, the prob-

ability that a polymer may displace (Pd) is related to the probability of finding nf beads

having vf,i ≥ αv+i and (N − nf − 2) beads not having.

Pd ∼ F nf (1− F )N−nf−2 (5.8)

In Equation (5.8), as for the bead of the chain end, the probability for them to have vf,i ≥

αv+i is assumed to be unity in order to simplify this problem to a large extent. There are
(N−2)!

nf !(N−nf−2)!
different possible ways to arrange nf beads in a polymer (cf., Equation (5.9)).

Pd =
(N − 2)!

nf !(N − nf − 2)!
F nf (1− F )N−nf−2 (5.9)

We can then apply the Stirling approximation that N ! ≈
√
2πN [ NN

exp(N)
].

lnPd = (N − 2) ln
[︂(N − 2)(1− F )

N − nf − 2

]︂
+ nf ln

[︂(N − nf − 2)F

nf (1− F )

]︂
+

1

2
ln
[︂ N − 2

2πnf (N − nf − 2)

]︂
(5.10)

The number fraction (ϕ) of the beads possessing vf,i ≥ αv+i is then introduced, such that

ϕ = nf/(N − 2). Also, to ensure numerical stability, Equation (5.10) reads:

lnPd = (N−2) ln
[︂
(

1− F

1− ϕ+ ε
)1−ϕ(

F

ϕ+ ε
)ϕ
]︂
−1

2
ln
[︂
2π(N−2)ϕ(1−ϕ)+exp[−ϕ

2

ε2
]+exp[−(ϕ− 1)2

ε2
]
]︂
+ln(c)

(5.11)

where ε is a very small number (∼ 10−5), which ensures the denominators in Equation (5.11)

are not zero, and the second term of Equation (5.11) is 0 for ϕ = 0 and ϕ = 1. c is the

normalization constant such that
∫︁ 1

0
Pddϕ = 1 and it was obtained numerically. As N → ∞,

Equation (5.11) becomes a normal distribution function of ϕ. The probability that the chain

has ϕ ≥ ϕ+ (P) can be found as follows:

P(ϕ+, αv+i , N) =

∫︂ 1

ϕ+
Pddϕ (5.12)
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Polymer chain is a collection of beads that the diffusion of polymer chain is governed by

connectivity and the cooperative motion. Consider a chain without any cooperative motion,

the motion of the beads within the chain is uncorrelated to one another. The center-of-mass

(rcm(t)) of a polymer chain can be calculated as follows:

rcm(t) =
1

N

N−1∑︂
i=0

ri(t) (5.13)

Without any cooperative motion, ri(t) is Gaussian distribution and the mean-square dis-

placement of all beads of the chain are identical that ⟨r2i (t)⟩ = ⟨r2b (t)⟩. ⟨r2b (t)⟩ is the mean-

square-displacement of a single bead. Then, it follows that rcm(t) is a linear combination of

Gaussian distributions. This leads to the following:

⟨r2cm(t)⟩ =
1

N2

N−1∑︂
i=0

⟨r2i (t)⟩ =
⟨r2b (t)⟩
N

(5.14)

By Einstein’s relation and from Equation (5.14), it can be deduced that: 6D′
cmt = 6Dt/N ,

which implies that D′
cm = D/N . D′

cm is the center-of-mass diffusion coefficient of a polymer

chain without any cooperative motion.

The cooperative motion of the chain in diffusion has been studied in the above analysis,

which leads to Equation (5.11) as well as Equation (5.12). We then follow the rationale of

Cohen-Turnbull theory: the polymer chain can only diffuse when ϕ ≥ ϕ+, otherwise Dcm is

zero. Therefore, when we average over all possible values of ϕ, we have:

Dcm =

∫︂ 1

ϕ+

D

N
Pddϕ =

D

N

∫︂ 1

ϕ+
Pddϕ (5.15)

The center-of-mass diffusion coefficient in the polymer melt can be therefore calculated:

Dcm =
D

N

∫︂ 1

ϕ+
Pddϕ (5.16)

Given that Pd has a form of Poisson distribution (cf., Equation (5.9)), Equation (5.16) can

be also written as:

Dcm =
D

N

[︂
1− exp

[︂
− (N − 2)F

]︂ (N−2)ϕ+∑︂
i=0

(︂
(N − 2)F

)︂i
i!

]︂
(5.17)
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It was found that numerically, Equation (5.16) was able to generate a smooth curve of

N dependence of Dcm, but a slight fluctuation in the predicted values of Dcm was resulted

if Equation (5.17) was used. This is because Equation (5.16) is a continuous approximation,

whereas Equation (5.17) is a discrete form. Similar to Sabbagh and Eu [61], with g(r)

and gintra(r) in polymer melts, ⟨vf⟩ can be directly calculated using the GvdW equation of

state. Nonetheless, in their work [61], the parameters, such as v+i and α, were not accurately

determined from g(r) and gintra(r) as the potential in their case is a simple square well

potential, whereas these parameters can be readily obtained from our MD simulation data

as the beads interact with one another through 6-12 Lennard-Jones potential.

Finally, the parameter ϕ+ can be determined with the following. It is well-known that

the typical Arrhenius form relation can describe accurately the temperature dependence of

the diffusion coefficient of polyethylene [1]. With the use of experimental data, the apparent

activation energy (Eapp
a ) was found to be dependent on the chain length [1]. Sabbagh and Eu

[61] pointed out that Eapp
a can be evaluated with the effective pressure (peff ) from the GvdW

equation of state as well as the critical free volume, along with the adjustable parameters.

Nonetheless, Macedo and Litovitz [72], as well as von Meerwall et al. [1] pointed out that

Eapp
a includes two contributions: 1. thermal activation energy responsible for the growing

free volume at higher temperatures 2. the energetic cost for performing diffusive motion

(Ea). Based on this, von Meerwall [1] modified the Arrhenius equation to a hybrid equation

for Dcm:

Dcm ∼ N−1 exp
(︂
− Ea
RT

)︂
exp

(︂
− 1

f

)︂
(5.18)

where f is the fractional free volume, having the form f = ρb⟨vf,i⟩. von Meerwall et al.

applied such analysis on n-alkane and found that Ea ≈ 0.81 ± 0.25 kcal/mole [1]. With

these findings, ϕ+ can be directly calculated as it is related to Ea, which is the energy that

is necessary for the activation of diffusion. Similar to Sabbagh and Eu [61], Ea can be

interpreted as the energy required for creating a certain critical volume in the polymer melt

such that the diffusive motion of the chain is activated. Ea can be therefore determined as

follows:

Ea = peff · [ϕ+αv+i + (1− ϕ+)⟨vf,i⟩] (5.19)

peff can be obtained from the GvdW equation of state.
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5.3 Molecular Dynamics (MD) Simulation

Figure 5.1: Final configuration of N = 105 linear chains with imposed periodic boundary
condition in MD simulation.

In our simulation, the initial configuration of a coarse-grained polyethylene chain was firstly

generated using rotational isomeric state (RIS) model [12, 16], in which a methyl group or

a methylene group is treated as a bead. The problem with RIS model, nevertheless, is that

it does not account for any excluded volume effect that as chain length increases, several

segments can overlap with each other. Owing to this, we performed a subsequent geometry

optimization using free software Avogadro. Many chains were then packed into a box using

the PACKMOL software [35] such that the intermolecular distance between any two atoms

of any two chains was equal to or greater than 40 Å. The system was relaxed using NVT

simulation for 1 ns, and then compressed to the correct density using NPT simulation for

10 ns, in which the temperature was maintained at 450 K by the Nosé-Hoover thermostat

and the pressure at 1.01325 bar using the Parrinello-Rahman barostat with time constants

of 0.2 ps and 2 ps, respectively. The pressure coupling only serves to give us a reasonable

mean density. The cut-off distance for intermolecular interaction was 1.4 nm. Finally, a NPT

simulation for another 20-400 ns was performed. Periodic boundary conditions were applied

in three directions. Equation of motion was integrated using the Leapfrog algorithm with a

time step of ∆t = 1 fs and the TraPPE forcefield [19, 18] was used. Figure 5.1 shows the

final configuration of linear chains N = 105 after the final 200 ns NPT MD simulation. All

95



the simulations were performed using open source GROMACS-5.1.4 [36]. Figure 5.2 shows

the number densities of the beads (ρb) as a function of N . As expected, it was found that the

behavior can be reasonably described by the function: ρb = ρb,∞−C1

N
with ρb,∞ = 32.760 nm−3

and C1 = 83.759 nm−3.

Figure 5.2: Number density of the bead in the system with different N fitted to an empirical
function: ρb = ρb,∞ − C1

N
with ρb,∞ = 32.760 nm−3 and C1 = 83.759 nm−3.

The number of chains used in the simulation is stated in Table 5.1.

Table 5.1: Number of chains, box dimension and root-mean-square radius of gyration in the
MD simulation for systems with different N .

N 30 40 50 60 70 80 105 205 305 405
Number of chains 26 20 16 40 40 40 10 10 10 10

L (nm) 2.91 2.96 2.98 4.28 4.49 4.67 3.17 3.98 4.52 5.00√︂
⟨R2

g⟩ (nm) 0.780 0.946 1.100 1.241 1.363 1.465 1.732 2.579 3.236 3.367

The effect of finite-size on the calculated Dcm is negligible. Firstly, it was found that our

calculated values of Dcms are in good agreement with the experimental values. Secondly, the

dimension of the box (L) is at least 1.5 times greater than the root-mean-square radius of

gyration of the chains (
√︂

⟨R2
g⟩). Finally, to be more explicit, we increased the number of

chains used in the MD simulation for polymer chains with N = 30 from 26 to 40 and that

with N = 405 from 10 to 20 in order to evaluate if there is any influence on Dcm. Figure

5.3 shows plots of mean-square displacement as a function of time in these two cases. It was
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found that regardless of the increase in the number of chains used in the MD simulation,

the mean-square displacement does not change much. The Dcms found in these cases are as

follows: for N = 30, Dcms were found to be 1.34 · 10−9 m2 · s−1 and 1.67 · 10−9 m2 · s−1 for 26

chains and 40 chains, respectively; for N = 405, Dcms were found to be 7.84 · 10−12 m2 · s−1

and 7.19 · 10−12 m2 · s−1 for 10 chains and 20 chains, respectively. These differences are not

significant enough to affect our conclusions derived from our MD simulation results.

(a) N = 30 (b) N = 405

Figure 5.3: Mean-square displacements for different numbers of polymer chains used in the
MD simulations with (a) N = 30 and (b) N = 405.

5.4 Results and Discussion

5.4.1 Free Volume Analysis

Determination of α and v+i Based on g(r) from MD Data

In the MD simulation of polyethylene, the intermolecular interaction between beads of two

different chains is governed by the 6-12 Lennard-Jones potential (u(r)):

u(r) = 4ε
[︂(︂σ
r

)︂12

−
(︂σ
r

)︂6]︂
(5.20)

where ε is the magnitude of the potential well, r is the distance between two beads of

two different chains and σ is the distance, which has a value of σ = 0.395 nm, between

these two beads such that the potential is zero. As u(r) is a pairwise interaction potential,

different properties of the simulation system can be readily obtained with the knowledge of
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the radial distribution function (g(r)), which is essentially the probability to find another

bead at a distance r from the reference bead. The pressure equation for a polymer melt can

be explicitly written as follows:

pβ

ρb
= 1− 2πβρb

3

{︂∫︂ ∞

0

r3
du

dr

[︁
g(r) +

2ω(r)

ρb

]︁
dr
}︂
− 4πβ

3

[︂ ∫︂ ∞

0

ωbond(r)r
3dubond

dr
dr
]︂

(5.21)

And:

ω(r) =
1

NV

[︂N−4∑︂
α=1

N∑︂
γ=α+4

ωα,γ(r)
]︂

(5.22)

ωbond(r) =
1

NV

[︂N−1∑︂
ε=1

ωε,ε+1
bond (r)

]︂
(5.23)

V = 4
3
πr3max, where rmax is the maximum sampling radius for the evaluation of the in-

tramolecular radial distribution function per unit volume and per bead due to 6-12 Lennard

Jones potential (ω(r)) as well as bond stretching potential (ωbond(r)) in the MD simulation

trajectory. rmax is related to the dimension of the simulation box in a way that rmax ≈ 3L

(cf., Table 5.1), which is always greater than the cut-off distance for 6-12 Lennard-Jones

potential. In addition, when ω(r) and ωbond(r) were input into Equation (5.21), they must be

normalized by factors of 4π
∫︁∞
0
ω(r)r2dr and 4π

∫︁∞
0
ωbond(r)r

2dr, respectively. In the calcu-

lation of intramolecular radial distribution functions, the periodic boundary conditions were

removed from the trajectory after the MD simulation by shifting the coordinates of the cor-

responding beads such that a chain crossing the boundary of the simulation box would not

be ‘truncated’. ubond is harmonic bond stretching potential between bead i and bead i+1 of

the same chain.

ubond =
1

2
kbond(r − l0)

2 (5.24)

kbond is the spring constant, which has a value of 132506 kJ ·mole−1 · nm−2 obtained from

molecular mechanics 2 forcefield. And l0 is the equilibrium bond length. It should be also

noted that as the TraPPE forcefield only gives us l0 = 0.154 nm without defining a value

for kbond, which is crucial in the calculation of free volume. ωα,γ(r) and ωε,ε+1
bond are the in-

tramolecular radial distribution functions between sites α and γ, as well as sites ε and ε+1,

respectively, within the same chain. Note that ω(r) and ωbond(r) as expressed in Equation

(5.22) and Equation (5.23) only include the interaction between the reference bead and the

bead that is separated by four bonds and one bond away from the reference bead, respec-

tively. In this case, Equation (5.21) only accounts for the contribution of the intermolecular
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and intramolecular interaction through 6-12 Lennard-Jones potential and bond stretching

potential to the pressure. The contribution of angle bending and torsion potential to the

pressure is negligible, which has been demonstrated by Honnell et al. [73]. Honnell et al. [73]

stated that the contribution of the angle bending and torsion potential would be reflected in

the g(r).

With these, as Laghaei et al. [65] proposed, for simple liquids, the work required to move

the surrounding beads near the reference bead per 4π (W (R)) by a diameter of R can be

calculated as follows:

W (R) =

∫︂ R

0

[︂
− r3

du

dr
g(r)

]︂
dr (5.25)

Equation (5.25) can be applied in our case if we consider the energy of the bead of the

polymer chain overcoming the intermolecular and intramolecular Lennard-Jones force in the

polymer melts.

W (R) =

∫︂ R

0

−r3du
dr

[︁
g(r) +

2ω(r)

ρb

]︁
dr (5.26)

Laghaei et al. [65] then proposed that important length scales, such as diameters of the

hard-core sphere and cavity, can be derived from the plot of the integrand with distance in

Equation (5.25). These length scales can be used to deduce the parameters in our free volume

theory (cf., Equation (5.4)). To obtain these length scales, a function I(r) can be defined as:

I(r) = −r3du
dr

[︁
g(r) +

2ω(r)

ρb

]︁
(5.27)

Figure 5.4 shows plots of g(r), ωbond(r), ω(r) as well as that of integrand I(r) with r from a MD

simulation of polyethylene with N = 405. Interestingly, in our simulation, the position of the

first peak of g(r) is slightly greater than σ, having a value of 0.5 nm due to the screening effect

of the collective motion of the beads within a chain. This makes the bead appears to be larger

from the perspective of the bead of another chain. Also, when compared to the case in simple

monatomic liquid, the amplitude of the first peak of g(r) is significantly lower despite the fact

that ρb is higher than density of simple liquid (Note that ‘simple liquid’ means Lennard-Jones

monoatomic liquid, and typically, the values of ρbσ
3 of Lennard-Jones monatomic liquid are

typically below 1.0 at T = 450 K, whereas for polymer melts, ρbσ
3 ≈ 1.8−2.0.). As for ω(r),

it was found that there are strong peaks at 0.44 nm and 0.52 nm, which correspond to the

6-12 Lennard-Jones potential and force minima, respectively. (cf., Figure 5.4) As expected,

a strong peak at l0 = 0.154 nm in ωbond(r) was observed (cf., Figure 5.4).
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Four length scales can be deduced from Figure 5.4(d). With the same notation used by

Laghaei et al. [65], the four length scales are rc, r
+, rfm and rpm as depicted in Figure

5.4(d). rc is the levitation diameter, r+ is the diameter of the cavity, and rpm as well as rfm

correspond to the length scales at the potential and force minima, respectively. The physical

significance of rc and r+ is as follows: rc can be taken as the diameter of a hard sphere,

which is the minimum possible and incompressible diameter of the bead. At r+, it has the

highest probability that two beads of different chains experience a strong repulsive force. The

experience of the bead in such situation is as if a hard sphere being placed in a cavity that the

hard sphere never touches the wall of the cavity. In other words, the hard sphere in the cavity

can be said to be ‘levitated’ in such cavity. The volume of the cavity with diameter r+ can

be then interpreted as v+i . In MD simulation, for N = 405, rc = 0.314 nm, r+ = 0.366 nm,

rpm = 0.444 nm and rfm = 0.524 nm. With the calculated values of r+, v+i can be easily

obtained with v+i = π
6
r+3, which is the critical free volume of a bead. The hard-core (also

known as levitation) volume of a bead vc can be evaluated with vc =
π
6
r3c . It was found that

in the simulation, v+i = 0.0257 nm3 and vc = 0.0162 nm3. In addition, according to Laghaei

et al. [65], the overlap parameter α can be approximated by the following:

α =
(︂
1− |rpm − rfm|

r+

)︂3

(5.28)

It was found that in our case, α ≈ 0.50.
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(a) g(r) (b) ω(r)

(c) ωbond(r) (d) I(r)

Figure 5.4: g(r), ω(r), ωbond(r) and I(r) as a function of r for polyethylene chain with
N = 405 obtained in MD simulation.

Determination of ⟨vf⟩ from the GvdW Equation of State and ϕ+ from Activation
Energy

Equation (5.21) can be recast into the van der Waals equation, which has been proposed

by Eu [64, 63, 62]. The van der Waals equation in such case is called the Gvdw equation

of state, which has been applied in many different studies of transport coefficients of liquid

[61, 65, 67, 66]. The excluded volume in the polymer melt can be easily determined using

the GvdW equation of state. The GvdW equation of state is expressed as follows:

(p+ Aρ2b)(N −Bρb) = ρbβ
−1 (5.29)

A(ρ, β) and B(ρ, β) are GvdW parameters:

A(ρ, β) = −2π

3
[

∫︂ ∞

r+
I(r)dr +

∫︂ ∞

lb

Ib(r)dr] (5.30)
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And,

B(ρ, β) =

N−1
ρb

+ 2πβN
3

[
∫︁ r+
0
I(r)dr +

∫︁ lb
0
Ib(r)dr]

1 + 2πβρb
3

[
∫︁ r+
0
I(r)dr +

∫︁ lb
0
Ib(r)dr]

(5.31)

With,

Ib(r) = −r3dubond
dr

2ωbond(r)

ρb
(5.32)

lb = 0.148 nm, which corresponds to the maximum positive value of Ib(r). B(ρ, β) gives

a measure of mean excluded volume. The integral term
∫︁ lb
0
Ib(r)dr captures the excluded

volume effect due to the harmonic bond stretching potential. The mean free volume per

chain (⟨vf⟩) is then given by:

⟨vf⟩ =
1

ρ
[N −Bρb] (5.33)

The values of ⟨vf⟩ as well as B, which are the mean free volume and a measure of the excluded

volume of the whole chain, respectively, obtained using GvdW are plotted as a function of

N in Figure 5.5. The fraction of free volume of the chain, which is defined as f = ρb⟨vf,i⟩,

is approximately 0.3. Local correlation lattice model developed by White and Lipson, which

shows that the fractional free volume in polyethylene melt at 425 K and 1 atm is slightly

lower at around 15% [74]. Our values are in better agreement with the empirical relation

found by von Meerwall et al. [1], which has the form f = 0.1 + 0.0007T (◦C), it can be

deduced that f in n-alkane at T = 450 K is approximately 0.22.

Figure 5.5: N dependence of ⟨vf⟩ and B as determined from the GvdW.

peff can be then determined using parameter A in Equation (5.29) that peff = p+ Aρ2b ,

which can be then used to evaluate Ea (cf., Equation (5.19)). Figure 5.6 shows that with
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ϕ+ = 0.22, Ea ≈ 0.88 − 0.89 kcal/mole, which is in excellent agreement with the range of

0.81 ± 0.25 kcal/mole as experimentally measured by von Meerwall et al. [1]. As shown in

Figure 5.6, Ea is independent of chain length, therefore, ϕ+ is constant.

Figure 5.6: Determined value of Ea in this work, compared with that of von Meerwall et al.
[1] at T = 450 K and ϕ+ = 0.22.

Free Volume Distribution as Determined by the Voronoi Tessellation (VT) on
the MD Data

To evaluate b in Equation (5.4) and the exact free volume distribution, the Voronoi cell

volume for each bead in the polymer with different N was also calculated using the voro++

code [75], in which the box in MD simulation at each time step was tessellated into different

so-called Voronoi cells. The obtained Voronoi cell distribution was shifted in a way that

vi − vi,min, where vi,min is the minimum Voronoi cell volume and should be the hard-core

volume of the bead. vi,min was found to be 0.017 nm3, which is in good agreement with

the above statistical mechanical calculation that vc = 0.016 nm3. In this way, the shifted

distribution of Voronoi cell volume represents the distribution of volume, excluding the hard-

core volume only. Although the VT method does not tell us exactly the distribution of the

free volume and holes in the polymer melt, the distribution derived from it is related to the

distribution of the free volume. In particular, the probability F can be therefore calculated

from the distribution of Voronoi cell volume given the knowledge of v+i , ⟨vf,i⟩ and α, which

have been already determined using GvdW equation of state.
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Figure 5.7(a) and (b) show the distribution of vi − vi,min from the VT analysis, and its

corresponding cumulative distribution function. As expected, peak width of the distribution

decreases as N increases as a result of a lower number density of chain ends in longer polymer

chain, and the distribution of free volume in the polymer melt are not perfectly symmetrical

due to the presence of the supernumerary free volume at the chain ends, which are in good

agreement with Liu et al. [71] (cf., Figure 5.7(a)). The distribution was then fitted to a

gamma distribution to obtain b in Equation (5.4) (cf., Figure 5.7(a)). It was found that

b = 4.976− 5.760 and a = 354.7− 465.1 nm−3 (cf., Table 8.1). As depicted in Figure 5.7(a),

the fitting to the gamma distribution is better as N → ∞, whereas as N decreases, the

distribution has a longer tail due to the chain end effect, for which the gamma distribution

cannot capture entirely. Figure 5.7(b) shows a plot of the corresponding cumulative distribu-

tion function. As the Voronoi cell distribution was shifted by vi−vi,min. The shifted Voronoi

cell volume only excludes the hard-core volume as a result of 6-12 Lennard Jones potential,

but it neglects the contribution from the soft-core nature of the intermolecular potential. As

demonstrated in the previous section, r+ is the effective diameter instead of rc. Therefore,

in the evaluation of F , the upper limit of the integral in Equation (5.4) has to be slightly

modified that:

F = 1− 1

Γ(b)

∫︂ av∗i

0

xb−1e−xdx (5.34)

Such that:

v∗i = αv+i +
1

ρb
(1−N +Bρb)− vc ≈ vc (5.35)

With b derived from the distribution of vi, F (vi) can be accurately calculated using Equation

(5.34). It was found that F (v∗i ) is dependent on N in MD simulation that can be described by

the empirical relation F = C1 +C2/N similar to that of the N dependence of ρb (cf., Figure

5.2 and Figure 5.8). Fct(αv
+
i ) was also computed using the simpler form as represented by

Equation (5.3) for comparison, but its values are slightly higher than that from Equation

(5.34) (cf., Figure 5.8). Only the values obtained from Equation (5.34), which is the more

exact one, were used in the calculations of the diffusion coefficient in the forthcoming section.
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(a) Voronoi cell distribution fitted to the gamma
distribution.

(b) F from Equation (5.34).

Figure 5.7: (a) Distribution of Voronoi cell volume in linear chain with different N . (b) F
derived from the Voronoi cell analysis and the solid line is Equation (5.34).

Table 5.2: Fitting results of the parameters a and b in the gamma distribution

N 30 40 50 60 70 80 105 205 305 405
a (nm−3) 354.7 379.1 395.7 414.3 420.3 423.4 434.4 454.6 458.4 465.1

b 4.976 5.141 5.299 5.409 5.450 5.461 5.556 5.684 5.700 5.760

Figure 5.8: Dependence of the probability of finding the critical volume upon N . The solid
line is the empirical function: C1 + C2/N with C1 = 0.252 and C2 = 1.10 determined by
Equation (5.3), as well as C1 = 0.172 and C2 = 3.38 determined by Equation (5.34).

More importantly, VT of the MD data also enables us to calculate the exact Pd distribution

by counting nf based on the snapshot of the MD trajectory at each time step, which allows us
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to test the validity of Equation (5.11). Figure 5.9 shows the comparison of the Pd distribution

directly obtained from VT of the MD data with that approximated by Equation (5.11) using

F derived from Equation (5.34). As expected, with the probability derived from Equation

(5.34), the distribution derived from Equation (5.11) is in good agreement with the exact one

as shown in Figure 5.9. This indicates that the distribution of free volume along the polymer

chain is similar to the Poisson distribution (cf., Equation (5.11)).

(a) N = 30 (b) N = 405

Figure 5.9: Pd distribution extracted directly from VT of the MD data and compared with
the approximation using Equation (5.11).

5.4.2 Center-of-mass Diffusion Coefficient of Polyethylene

The calculation of Dcm of a polymer from MD simulation is well-known that it can be derived

from the mean-square-displacement of the center-of-mass of the polymer given the time is

long enough (cf., Equation (5.36)). The factor of 6 in Equation (5.36) is attributed to the

fact that the system is three dimensional.

gcm(t) = lim
t→∞

⟨[rcm(t)− rcm(0)]
2⟩ = 6Dcmt (5.36)

The dynamic behavior of gcm(t) with respective to t is not of our interest in the framework of

our free volume theory, which is an inequilibrium statistical mechanical theory of polymer.

Therefore, our main focus is on the regime that gcm(t) ∼ t. Figure 5.10 shows a log−log

plot of Dcm at different N in linear polymers. A clear crossover from unentangled regime

to entangled regime at Nc = 105 was observed that Dcm ∼ N−1.46±0.06 in the unentangled

regime and Dcm ∼ N−2.23±0.20 in the entangled regime. Qualitatively, the exponent in the
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unentangled regime and entangled regime are slightly higher than the classic Rouse model

[20] as well as the reptation theory [21], respectively. In particular, in the unentangled

regime, we found that the exponent in Dcm ∼ N−1.46±0.06 is slightly less negative than that

of Dcm ∼ N−1.8 in von Meerwall et al. [1] as the temperature in our MD simulation is

slightly lower. Quantatively, Dcm obtained from our MD simulation data agree well with

the experimental results of polyethylene melt by Pearson et al. [7] and McCall et al. [43],

which is in the range of 10−9 − 10−11 m2/s (cf., Figure 5.10). We also compared our MD

simulation data with the simulation data of polyethylene melt in Harmandaris et al. [69].

Our simulation data are in good agreement with that of Harmandaris et al. [69] (cf., Figure

5.10).

(a) Dcm(N) (b) P/N(ϕ+, αv+i , N)

Figure 5.10: N dependence of (a) Dcm as well as (b) P in linear polymer with MD simulation
data and other literature data compared with our theory (cf., Equation (5.4)).

We then compare the simulation data as well as other literature data with Equation

(5.16) using parameters found eariler (i.e., α, v+i , ⟨vf⟩ and ϕ+) (cf., Figure 5.10). With the

determined parameters, we found that Equation (5.16) successfully describes all the data

presented in Figure 5.10(a). Our free volume theory is capable of describing the crossover

from unentangled regime to entangled regime. Furthermore, P/N was also plotted as a

function of N as depicted in Figure 5.10(b). Notably, in the unentangled regime as shown

in Figure 5.10(b), P/N has a slightly stronger N dependence (i.e., Dcm ∼ N−1.56±0.04) than

that in the Rouse model (i.e., Dcm ∼ N−1), indicating that our model captures the free

volume effect, which has been observed experimentally, but it was not taken into account

by the Rouse model [69, 60, 1]. In the entangled regime, the exponent for N dependence of
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P/N is slightly stronger (P/N ∼ N−2.37±0.13) than that determined in the MD simulation

(Dcm ∼ N−2.23±0.20). In addition, contrary to the model in Sabbagh and Eu [61], which has

three adjustable parameters, our theory only has one empirical parameter ϕ+ and is able to

account for the distribution of the free volume along the whole chain molecule.

5.5 Conclusion

In summary, a free volume theory for polymer melt was derived. Parameters in this theory,

such as v+i , ⟨vf,i⟩, α and ϕ+, can be evaluated using theoretical approaches, such as MD

simulation, as well as experimental measurement of Ea. With these parameters, it was found

that our free volume theory is successful in describing the crossover of the center-of-mass

diffusion of linear polymer melt from unentangled regime (Dcm ∼ N−1.46±0.06) to entangled

regime (Dcm ∼ N−2.23±0.20). This is appealing in systems, such as ring polymer, in which the

concept of reptation and entanglements are not clearly understood.
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Chapter 6

On the Diffusivity of Ring Polymers1

6.1 Introduction

The Rouse model [20] and reptation model [21, 50] are the two famous theories to describe

the self diffusion of linear polyethylene (PE) melts. These two separate theories were devel-

oped to account for the crossover in the N dependence of center-of-mass diffusion coefficient

(Dcm) from Dcm ∼ N−1 to Dcm ∼ N−2, in the so-called unentangled and entangled regimes,

respectively [20, 21]; these have also been proven experimentally [7] and numerically [8, 39].

Nonetheless, more careful experimental measurement later reveals that the exponent of the

N dependence of Dcm is indeed slightly more negative with: Dcm ∼ N−1.5 in the unentangled

regime [1] and Dcm ∼ N−2.3 in the entangled regime [44] at T = 450 K. In the reptation

model, it was postulated that the diffusive motion of a polymer chain is as if it is reptating

through an environment of obstacles [21], which mimicks the many-chain effect experienced

by the polymer chain. An important parameter defined in the reptation model is the en-

tanglement length, which is related to the number of obstacles experienced by the chain. It

has been demonstrated that these obstacles can be identified by geometric transformation of

the snapshots of linear polymer chains obtained from either Monte Carlo (MC) simulation

or molecular dynamics (MD) simulation into a primitive path [55, 56, 76, 77].

Dynamics of ring polymers in an environment of fixed obstacles have been proposed by

Rubinstein [78]. Rubinstein stated that the dynamics of ring polymers can be mapped to

1A version of this chapter has been published in Soft Matter, 2020, 16, 2350-2362.
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that of a randomly branched polymer, in which the concept of entanglement can be readily

applied [78]. In the case of ring polymer melt, in which obstacles are not fixed, diffusion of

smaller loop into a larger loop has to be considered so as to explain the absence of plateau

modulus in ring polymer melts [79]. The mathematical formulation of the obstacle, and the

appearance and disappearance of obstacle is not intuitive for non-concatenated ring polymer

melts as the ‘first’ and the ‘last’ repeat units cannot be clearly defined, which have to be fixed

in the algorithm developed by Kröger [77] in order to obtain the primitive path. Robertson

and Smith [80] and Chapman et al. [81] also demonstrated a peculiar trend observed in the

diffusivities of cyclic and linear DNAs. Given the fact that solution is highly concentrated

and the size of the biopolymer is large, the diffusivity of cyclic DNAs can drop when it is

surrounded by many linear DNAs, but the reverse is true as linear DNA is surrounded by

its circular counterparts. These unusual dynamic behaviours are then attributed to the fact

that linear DNAs are more capable of forming entanglements, and the effect of entanglement

disappears as the concentration or the chain length of linear DNAs decreases [80, 81].

It is well-known that transport coefficients, such as diffusion coefficients, of dilute gas can

be calculated by non-equilibrium statistical mechanics, i.e., by knowing its collision proba-

bility, velocity distribution and the mean free path. When the system becomes more dense

and thus is a simple liquid, the Cohen-Turnbull theory [82], which includes the probability of

finding a certain amount of free volume, can be applied. The concept of free volume was also

used in the William-Landel-Ferry equation [83], which describes the temperature dependence

of viscosities of impure ring polystyrene [84]. But Hiemenz and Lodge [13] pointed out that

despite the fact that it is easy to discuss free volume, a numerical value of free volume has

to be well defined from first principles. Furthermore, this approach has never been widely

applied in determining Dcm of polymers as a function of N .

To our knowledge, this was firstly attempted by Sabbagh and Eu [61] and then our group

[85] for determining the crossover in the N dependence of Dcm of linear polymers. The dis-

tribution function theory of polymeric liquid and generic van der Waals’ (GvdW) equation

of state [64] allow us to obtain the mean free volume (⟨vf⟩), and thus the probability of

finding certain free volume in a polymer melt. In our previous work, we have demonstrated

that the distribution of the free volume along a linear chain is related to the crossover of

the center-of-mass diffusion coefficient from unentangled regime to entangled regime, i.e., the
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exponent associated with the N dependence of Dcm changes from −1.5 to −2.3. Param-

eters were theoretically determined based on the intermolecular and intramolecular radial

distribution functions, as well as the activation energy that is derived from the temperature

dependence curve of Dcms of linear polymers in our free volume theory. The advantage of

this analytical approach is that the concept of entanglement is completely unnecessary. This

in particular is very useful in more complex system, such as ring polymers, in which the

concept of entanglement cannot be straightforwardly applied.

Figure 6.1: The methylene groups of a ring PE (left) are coarse-grained to beads (right) in
all our calculations.

In this work, we are going to use this non-equilibrium statistical mechanics approach to

determine the Dcms of ring PE melts. In all the calculations, the ring PE is coarse-grained

such that each methylene group is modeled as bead with interaction parameters derived

by Martin et al. [19] (cf., Figure 6.1). The radial distribution functions of ring PE are

obtained by the integral equation method, i.e., the polymer reference interaction site model

(PRISM) [86] and more accurately the molecular dynamics (MD) simulation, in which all

the details of bonded and non-bonded interactions are explicitly included. The calculation

in the former case is less sophisticated, computationally inexpensive, and the solution is

free of any finite size effect, whereas the radial distribution function derived from the latter

case is explicitly computed from the numerical solution to the highly non-linear equations

of motion of atoms, which is much more computationally expensive, but more accurate. In

the latter case, the probability for a bead to find a certain amount of free volume can be

precisely determined by Voronoi tessellation [87], in which the space available to a bead is

mathematically determined from the MD trajectory. The activation energy for the diffusion

of ring PE was also determined by varying the temperature in the MD simulation.
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6.2 Preliminary: Free Volume Theory Revisited

In our free volume theory, it is postulated that for a linear chain, the distribution of free

volume along the chain is:

Pd =
(N − 2)!

nf !(N − nf − 2)!
F nf (1− F )N−nf−2 (6.1)

where nf is the number of beads having free volume (vf,i) greater than or equal to αv+i , α is

the overlapping parameter and v+i is the effective volume of the bead. F is the probability

for a single bead having vf,i ≥ αv+i . For ring polymers, the expression for such distribution

in the absence of chain ends is:

Pd =
N !

nf !(N − nf )!
F nf (1− F )N−nf (6.2)

Equation (6.2) can be rewritten as:

lnPd = N ln
[︂
(

1− F

1− ϕ+ ε
)1−ϕ(

F

ϕ+ ε
)ϕ
]︂
−1

2
ln
[︂
2πNϕ(1−ϕ)+exp[−ϕ

2

ε2
]+exp[−(ϕ− 1)2

ε2
]
]︂
+ln(c)

(6.3)

Note that ϕ = nf/N , which is the number fraction of beads having vf,i ≥ αv+i . ε is a very

small number (∼ 10−5), which ensures the denominators in Equation (6.3) are not zero,

and the second term of Equation (6.3) is 0 for ϕ = 0 and ϕ = 1. c is the normalization

constant such that
∫︁ 1

0
Pddϕ = 1 and it was obtained numerically. Following the rationale of

the Cohen-Turnbull theory [82], F in such sense (Fct) can be expressed as follows:

Fct(αv
+
i ) = exp

(︂
− Nαv+i

⟨vf⟩

)︂
(6.4)

α is the overlapping parameter, v+i is the effective volume of the ith bead and ⟨vf⟩ is the

mean free volume of the whole macromolecule. It was found that a more precise expression

for F is indeed a gamma distribution, which has been verified experimentally by positron

annihilation experiment [71], as follows:

F (αv+i ) = 1− 1

Γ(b)

∫︂ aαv+i

0

xb−1e−xdx (6.5)

where Γ(b) is the gamma function with b as the argument:

Γ(b) =

∫︂ ∞

0

xb−1e−xdx (6.6)
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The parameters a and b are defined as follows:

a =
b

⟨vf,i⟩
(6.7)

b =
⟨vf,i⟩2

⟨v2f,i⟩ − ⟨vf,i⟩2
(6.8)

The parameter a has a unit of nm−3 and the parameter b, also known as the regularity factor,

is dimensionless. With these, Dcm of ring polymers with different N can be computed as:

Dcm =
D

N

∫︂ 1

ϕ+
Pddϕ (6.9)

Note that:

D = D0 exp
(︂
− αv+1

⟨vf,1⟩

)︂
(6.10)

D0 is the diffusion coefficient of dilute monoatomic gas determined by Chapman-Enskog

method. v+1 and ⟨vf,1⟩ are the critical volume and mean free volume, respectively, as N = 1.

D is therefore the diffusion coefficient of a dense monoatomic liquid, for which it was found

that D = 4.42×10−8 m2 · s−1 at T = 450 K using the parameters obtained by MD simulation.

(Note that D = 4.98×10−8 m2 · s−1 in our previous work of linear PE [85].) ϕ+ is the fraction

of beads in a single ring polymer having vf,i ≥ αv+i , such that the integral
∫︁ 1

ϕ+
Pddϕ gives us

the probability of finding ϕ ≥ ϕ+ of the whole macromolecule having sufficient free volume for

the activation of diffusion. The value of ϕ+ used in Equation (6.9) can be inferred from the

activation energy of the macromolecule (Ea), which can be directly obtained by evaluating

Dcm from MD simulation at different temperatures.

6.3 Calculation Details

6.3.1 Integral Equation Theory of Ideal Ring Polymers

It is well-known that for simple monoatomic liquid, its intermolecular radial distribution

function (g(r)) can be evaluated with the Ornstein-Zernike Equation, which was proposed

a century ago. They argued that g(r) can be divided into direct and indirect parts. The

direct part accounts for the influence from atom 2 on atom 1, whereas the indirect part

includes the influence from atom 3 on atom 2, which results in indirect influence on atom
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1, as these particles interact with one another through a particular potential, such as hard-

sphere potential or 6-12 Lennard-Jones (LJ) potential. The Ornstein-Zernike equation has

the following form:

h(r12) = c(r12) + ρ

∫︂
c(r13)h(r23)dr3 (6.11)

h(r) = g(r)− 1 and c(r) is the direct correlation function. This equation is simplified to an

algebraic equation when it is transformed to the fourier space:

ĥ(k) = ĉ(k) + ρĉ(k)ĥ(k) (6.12)

k is the wavevector. For polymer, the expression becomes a matrix equation, known as the

polymer reference interaction site model (PRISM) equation. In real space, it is expressed as:

H(r) =

∫︂ ∫︂
dr1dr2Ω(|r− r1|)C(|r1 − r2|)[Ω(r2) + ρH(r2)] (6.13)

Ω is a matrix containing the intramolecular correlation functions of different sites, and ρ is

the number density of the whole macromolecule. In polymer melts, translational invariance

can be applied such that all sites along the polymer chain are equivalent. Equation (6.13)

can be then simplified as:

h(r) =

∫︂ ∫︂
dr1dr2ω(|r− r1|)c(|r1 − r2|)[ω(r2) + ρbh(r2)] (6.14)

ρb = ρ/N such that ρb is the number density of bead. In the Fourier’s space, we have:

ĥ(k) = ω̂(k)2ĉ(k) + ρbω̂(k)ĉ(k)ĥ(k) (6.15)

In order to solve the equation self-consistently, the Percus-Yevick closure relation is applied:

cnew(r) = {exp[−βu(r)]− 1}[hold(r) + 1− cold(r)] (6.16)

The superscripts new and old indicate that a new c(r) is generated based on h(r) and c(r)

from the previous iteration step [88]. The intermolecular interaction potential u(r) is the

6-12 LJ potential, which has the following form:

u(r) = 4ε
(︂σ12

r12
− σ6

r6

)︂
(6.17)

σ = 0.395 nm and ε = 380 J/mole, which are parameters for ring PE. For a Gaussian ring,

ω̂(k) = 1 + 2N−1

N−1∑︂
i=1

(N − i) exp
[︂−k2d2i(N − i)

6N

]︂
(6.18)

d is the contact diameter of the segment and it is assumed to be equal to the statistical seg-

mental length. The PRISM equation was solved using a Python 3.6 program with the Fourier

transformation procedures as described in Martin et al. [88] (cf., Supporting Information).
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6.3.2 Molecular Dynamics Simulation

Figure 6.2: Final snapshot of MD simulation of ring PE with N = 305 at T = 450 K.

Similar to the PRISM calculation, in the MD simulation, the methylene groups of the ring

PE were coarse-grained to beads, with unique forcefield interaction parameters, which were

the TraPPE forcefield parameters reported by Martin et al. [19]. The equation of motion

was solved numerically by leapfrog integration with a discrete time step of 1 fs. Temperature

and pressure coupling, at 450 K and ambient pressure, were achieved using Nosé-Hoover

thermostat as well as Parrinello-Rahman barostat, respectively. The time constants of the

thermostat and barostat were set at 0.2 ps and 2 ps, respectively, unless otherwise mentioned.

All MD simulations were performed using GROMACS-5.1.4 free software [36].

Generation of MD data involved three steps: initial configuration preparation, equilibra-

tion and production. The procedures of initial configuration preparation for ring PE are very

similar to that of linear PE, and described in our previous papers [9, 85]. With the rota-

tional isomeric state model [16, 12], a linear chain was first constructed, followed by joining

the two ends of the polymer chain to form a ring. The excluded volume effect due to the
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intramolecular interaction was then introduced by geometry optimization in the Avogadro

software [89]. Identical ring PE molecules were then randomly distributed in a simulation

box and the energy was minimized with the force tolerance set at 100 kJ ·mol−1 · nm−1.

The equilibration as well as the production steps were the same as described in our

previous work of linear PE [85], except that the time constant of barostat was set at 0.5

ps and the NPT MD simulation was allowed to run for a duration of 20 − 650 ns, in the

equilibration and production runs. Figure 6.2 shows the final snapshot of MD simulation

of ring PE with N = 305 at T = 450 K. Figure 6.3 shows the N dependence of number

density of beads (ρb) at T = 450 K, the fitting curve is C1 − C2/N with C1 = 32.7 nm−3

and C2 = 23.8 nm−3. This allows us to approximate ρb as N → 1 for calculation of D

(cf., Equation (6.10)). In our previous work of linear PE, the extrapolated ρb is a negative

value as N → 1 that ρb corresponding to N = 4 was used for calculation of D in linear PE

[85]. The fact that ρb of ring PE melts is dependent on N is not surprising as this has been

reported by von Meerwall et al. [90] and Alatas et al. [91]. Additionally, to investigate the

effect of periodic boundary condition, the number of rings used in simulation was doubled

for N = 405. At T = 450 K, it was found that the resultant Dcm are 1.47× 10−11 m2 · sec−1

and 1.59 × 10−11 m2 · sec−1 when 10 rings and 20 rings were used, respectively. This shows

that finite size effect is negligible.

As mentioned in the Introduction, we would also like to know the effect of temperature

on the diffusivity of ring PE. To do so, the temperature of the NPT simulation of ring PE

was decreased from 450 K to 370 K with an increment of 10 K. Each temperature was kept

constant for 20 − 50 ns and 200 ps was allowed for the cooling from one temperature to

another. The number of rings used in the simulation, the dimension of the box in the final

snapshot of the MD trajectory (L) and the root-mean-square radius of gyration of ring PE

(
√︂

⟨R2
g⟩) are listed in Table 6.1.
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Table 6.1: Number of rings, dimension of the box and root-mean-square radius of gyration
of ring PE melts.

N 30 40 50 60 70 80 105 205 305 405 405
Number of rings 26 20 16 40 40 40 10 10 10 10 20

L (nm) 2.914 2.938 2.912 4.201 4.431 4.585 3.189 4.0352 4.544 5.103 6.291√︂
⟨R2

g⟩ (nm) 0.530 0.657 0.772 0.870 0.954 1.033 1.199 1.661 1.971 2.204 2.216

Figure 6.3: Number density of beads at different N at T = 450 K. The data are fitted to the
empirical relation C1 − C2/N with C1 = 32.7 nm−3 and C2 = 23.8 nm−3.

6.4 Results and Discussion

6.4.1 PRISM Theory

Pressure Equation and GvdW Equation of State for Ideal Rings

For ideal ring polymers, the pressure equation is written as follows:

pβ

ρb
= 1− 2πβρb

3

[︂ ∫︂ ∞

0

r3
du

dr
g(r)dr

]︂
(6.19)

Figure 6.4(a) shows the g(r) of ideal ring PE with N = 405 evaluated by the PRISM theory.

As expected, the first peak is relatively lower than that of a monoatomic fluid, due to the

screening effect from the intramolecular interaction within the ideal ring polymer. Different
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length scales can be then deduced by defining a function I(r) with the following form:

I(r) = −r3du
dr
g(r) (6.20)

As the 6-12 LJ potential is a soft-core potential, unlike the hard-sphere potential in which

only one length scale can be obtained, four lengths can be determined from the former case:

rc = 0.306 nm, r+ = 0.355 nm, rpm = 0.444 nm and rfm = 0.524 nm (cf., Figure 6.4(b)).

Despite the 6-12 LJ potential being a soft-core potential, it has a corresponding hard-core

diameter rc, which is the minimum possible incompressible size of the bead. r+ is the cavity

diameter. With the 6-12 LJ potential, the situation can be imagined as placing a hard-sphere

with diameter of rc in a cavity with diameter of r+. It is highly probable for the bead to

experience a strong repulsive force at r+. Finally, rpm and rfm correspond to the lengths at

potential and force minima, respectively.

(a) g(r) (b) I(r)

Figure 6.4: g(r) and I(r) of ring PE with N = 405 from the PRISM theory.

With these length scales, the critical volume of a bead is v+i = πr+3

6
= 0.0234 nm3 and

the overlap parameter (α) can be evaluated with the following:

α =
(︂
1− |rfm − rpm|

r+

)︂3

≈ 0.46 (6.21)

This formula was derived by Laghaei et al. [65] to quantify the overlapping of free volume

in LJ fluids. The excluded volume in the polymer melt can be quantified using the GvdW

equation of state:

(p+ Aρ2b)(N −Bρb) = ρbβ
−1 (6.22)
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By juxtaposing the GvdW equation of state with Equation (6.19), one can deduce that:

A = −2π

3

∫︂ ∞

r+
I(r)dr (6.23)

And:

B =
1

ρb

[︂
N − 1

1 + 2πβρb
3

∫︁ r+
0
I(r)dr

]︂
(6.24)

The parameter B actually gives a measure of the excluded volume. The mean free volume

of the whole ideal ring PE ⟨vf⟩ideal can be then evaluated as follows:

⟨vf⟩ideal =
1

ρ
[N −Bρb] (6.25)

Figure 6.5(a) and Figure 6.5(b) show a plot of the compressibility factor and the GvdW

parameter B and ⟨vf⟩ideal, respectively, as a function of N . As expected, the compressibility

factor is inversely proportional to N as observed by Sabbagh and Eu [61], and Gan and Eu

[92]. The GvdW parameter B increases with N as the excluded volume of the macromolecule

increases with its size. The fraction of free volume (f) in ring PE melt is approximately 0.45.

The probability for a bead having free volume greater than or equal to αv+i can be then

easily evaluated using Equation (6.4).

(a) Compressibility factor (b) B and ⟨vf ⟩ideal

Figure 6.5: Compressibility factor, B and ⟨vf⟩ideal as a function of N . The solid lines depicted
are guides only.
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Temperature Dependence of the Free Volume

(a) g(r) (b) f

(c) r+

Figure 6.6: Temperature dependence of (a) g(r), (b) f and (c) r+ for ring PE with N = 80
obtained by the PRISM theory. The data reported in (b) were fitted to the relation f =
C1+C2T with C1 = −0.0373 and C2 = 0.00107 K−1. The data in (c) were fitted to Equation
(6.26) with d0 = 0.404 nm and d1 = 0.0563 K−0.5.

Using ρbs obtained at different temperatures from MD simulation, g(r)s of an ideal ring PE

with N = 80 at different temperatures were computed using the PRISM theory as depicted

in Figure 6.6(a). As expected, the first peak of g(r) decreases with increasing temperature

as the system becomes less dense at higher temperatures.

The effect of temperature on the f can be then investigated for ring PE with N = 80 as

the mean free volume can be calculated straightforwardly using the procedures above. Figure

6.6(b) shows the temperature dependence of f for ring PE with N = 80 for all temperatures.

As expected, f increases with T , and the data were fitted to a linear curve f = C1 + C2T ,
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with C1 = −0.0373, C2 = 0.00107 K−1. Our results agree quanlitatively with the studies

of excluded volume and free volume in simple monoatomic LJ fluids conducted by Laghaei

et al. [65]. C2 obtained in this case is the thermal expansion coefficient of the fractional

free volume. The extrapolated thermal expansion coefficient of cyclic alkane as N → ∞

based on the data of cyclic alkane with N = 5 − 10 from Huang et al.[93] is approximately

8 × 10−4 K−1, and is higher than that determined by the PRISM theory as the ring PE

is assumed to be ideal such that beads of the same macromolecule are allowed to overlap.

Owing to this, the prediction of temperature dependence of Dcm, which will be discussed in

more details in Section 4.3.2, is not that successful using the PRISM theory.

In addition, we found that the parameter r+ obtained from the PRISM theory is slightly

dependent on temperature in that it decreases with increasing temperature (cf., Figure

6.6(c)), as also observed by Laghaei et al. [65] in the case of simple monoatomic fluids.

The temperature dependence of r+ can be described by the following equation:

r+ = d0(1 + d1
√
T )−

1
6 (6.26)

It was found that d0 = 0.404 nm and d1 = 0.0563 K−0.5 (cf., Figure 6.6(c)). With these,

we can know the probability of finding αv+i at different temperatures in ideal ring polymer

melts using Equation (6.4).

6.4.2 Molecular Dynamics Simulation

Pressure Equation and GvdW Equation of State

A more accurate approach to obtain the radial distribution function as well as the mean free

volume is the MD simulation, in which all intramolecular interactions, such as bond angle,

torsional angle, and intermolecular interactions, such as 6-12 LJ potential, are explicitly

taken into account in the equation of motion. For MD simulation, the pressure equation can

be expressed in a more precise way:

pβ

ρb
= 1− 2πβρb

3

∫︂ ∞

0

r3
du

dr
g(r)dr − 4πβ

3

∫︂ ∞

0

r3
dubond
dr

ωbond(r)dr −
4πβ

3

∫︂ ∞

0

r3
du

dr
ω(r)dr

(6.27)
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Equation (6.27) was originally derived by Honnell et al. [73]. In Equation (6.27), the direct

contributions from angle bending and torsional potentials to the pressure are neglected be-

cause the derivative of the bond angle and torsional angle with respect to the volume is zero

as shown by Honnell et al. [73]. The influences of the angle bending and torsional angle po-

tential are indirectly reflected in the radial distribution functions [73]. Also, it is worthwhile

to note that when ω(r) and ωbond are input in Equation (6.27), they have to be normalized

by factors of 4π
∫︁∞
0
ω(r)r2dr and 4π

∫︁∞
0
ωbond(r)r

2dr, respectively. Figure 6.7(a) shows the

g(r) of ring polymer with N = 405 from MD simulation. g(r) in this case is less suppressed

than that of the PRISM theory (cf., Figure 6.4(a)), indicating that the actual effect of the

intramolecular interaction on the intermolecular interaction is not that strong. We have the

bond stretching potential ubond(r):

ubond(r) =
1

2
kbond(r − l0)

2 (6.28)

l0 is the equilibrium bond length having a value of 0.154 nm and kbond is the spring constant of

the harmonic bond stretching potential. kbond = 132506 kJ ·mole−1 · nm−2, which is obtained

from molecular mechanics (MM2) forcefield. ωbond(r) in Equation (6.27) is:

ωbond(r) =
1

NV

[︂
ω0,N−1
bond (r) +

N−2∑︂
ε=1

ωε,ε+1
bond (r)

]︂
(6.29)

ωα,γbond(r) is the intramolecular radial distribution function between two sites interacting with

one another through ubond(r). As for the intramolecular 6-12 LJ potential interactions be-

tween the beads separated by four bonds within the same polymer, we have:

ω(r) =
1

NV

N−6∑︂
α=1

α+N−4∑︂
γ=α+4

ωα,γ(r) +
1

NV

N−4∑︂
α=N−5

N∑︂
γ=α+4

ωα,γ(r) (6.30)

ωα,γ(r) is the intramolecular radial distribution function between two sites due to 6-12 LJ

potential. In Equation (6.29) and Equation (6.30), V is the volume of the sampling sphere for

different radial distribution functions, i.e., V = 4
3
πr3max. rmax ≈ 3L and it is the maximum

radius used in the calculation of radial distribution function based on the MD trajectory.

Figure 6.7(b) and Figure 6.7(c) show the plots of ω(r) and ωbond(r), respectively. Three main

peaks at 0.46 nm, 0.51 nm and 0.65 nm, were observed in ω(r), whereas there is only one

peak at l0 in ωbond(r). These results are similar to that of its linear counterpart from our

previous MD simulation [85].
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Similar to the above analysis of an ideal ring polymer, four different length scales can be

derived by defining a function I(r). (Figure 6.7(d))

I(r) = −r3du
dr
g(r)− 2r3

du

dr

ω(r)

ρb
(6.31)

Figure 6.7(d) shows a plot of I(r) and the corresponding length scales read: rc = 0.316 nm,

r+ = 0.368 nm, rpm = 0.444 nm and rfm = 0.524 nm. This indicates that v+i = π
6
r+3 =

0.0260 nm3, and α = 0.48. Compared to the case of ideal ring polymer, in MD simulation, v+i

is slightly larger because the position of the first peak of g(r) in MD simulation is relatively

higher (cf., Figure 6.4(a) and Figure 6.7(a)).

(a) g(r) (b) ω(r)

(c) ωbond(r) (d) I(r)

Figure 6.7: g(r), ω(r), ωbond(r) and I(r) of ring polymer with N = 405 from MD simulation.
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Figure 6.8: N dependence of B and ⟨vf⟩. The solid lines depicted are guides only.

For MD simulation, A and B are defined as follows:

A = −2π

3

[︂ ∫︂ ∞

r+
I(r)dr +

∫︂ ∞

l0

Ib(r)dr
]︂

(6.32)

And:

B =
1

ρb

[︂
N − 1

1 + 2πβρb
3

(︂ ∫︁ r+
0
I(r)dr +

∫︁ l0
0
Ib(r)dr

)︂]︂ (6.33)

where Ib(r) is in the following form:

Ib(r) = −2r3ωbond(r)

ρb

dubond
dr

(6.34)

The integral term
∫︁ l0
0
Ib(r)dr captures the excluded volume effect due to repulsion experienced

by the bead in the harmonic bond stretching potential. The corresponding mean free volume

per ring PE and values of parameter B are shown in Figure 6.8. The fractional free volume

is approximately 0.3.

Free Volume Distribution for Different Ring Sizes

A more accurate approach of calculating the probability distribution of free volume in the

polymer melt is by Voronoi tessellation of the MD trajectory. In Voronoi tessellation, the free

space available to each united atom in the MD simulation trajectory is calculated using the

free software voro++ [75] and the volume of the so-called Voronoi cell can be then obtained.
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Although Voronoi tessellation does not give us the exact amount of free volume in the system,

the size distribution of the Voronoi cell should be directly related to that of the free volume

per bead.

(a) P (b) F

Figure 6.9: Probability distribution functions of the free volume in the ring PE melts as
determined by the Voronoi tessellation for N = 30, N = 105, N = 205, N = 305 and
N = 405, and the cumulative distribution functions for all ring PEs. The data in (a) and (b)
were fitted to probability distribution function and cumulative distribution function of the
gamma distribution, respectively, with the parameters as shown in Table 8.1.

Table 6.2: Fitting results of the parameters a and b in the gamma distribution.

N 30 40 50 60 70 80 105 205 305 405
a (nm−3) 411.3 437.1 443.3 448.1 453.7 455.1 454.0 468.3 464.7 462.4

b 5.444 5.586 5.644 5.665 5.710 5.703 5.706 5.759 5.764 5.752

It was found that the minimum Voronoi cell volume vi,min for a bead is 0.018 nm3, which

is close to the value of the hard-core volume of the bead vc = π
6
r3c = 0.0165 nm3. The

distribution was shifted by vi,min as shown in Figure 6.9 and was then fitted to a gamma

distribution. a and b were therefore obtained from the data, which have values of a =

411.3 − 462.4 nm−3 and b = 5.444 − 5.752. The distribution of (vi − vmin,i) is equivalent

to the distribution of the volume excluding the effect of the hard-core nature of the LJ

potential. Nonetheless, the Voronoi tessellation method does not take into account of the

soft-core nature of the LJ potential, which results in the cavity diameter r+. Therefore,

if Equation (6.5) is applied to the distributions as depicted in Figure 6.9, to account for

the fact that each bead has an effective diameter of r+ instead of rc, the critical volume
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v∗i = αv+i + 1
ρb
(1 − N + Bρb) − vc should be used instead of v∗i = αv+i . The probability of

finding v∗i (F (v
∗
i )) evaluated for ring PE melts with different N is shown in Figure 6.10. The

data were fitted to an empirical function C1 + C2/N that describes the N dependence of

F (v∗i ), which is similar to the form describing the N dependence of ρb (cf., Figure 6.3). This

allows us to easily calculate Fct as N → 1, which is necessary for the calculation of D (cf.,

Equation (6.10)). In addition, the probability determined by Voronoi tessellation is lower

than that calculated by the classic form in Equation (6.4) (cf., Figure 6.10).

Figure 6.10: Probability of finding v∗i for ring PE with different N . The data were fitted to
the relation: F = C1 + C2/N and Fct = C1,ct + C2,ct/N . The values of the parameters are
C1 = 0.141 and C2 = 0.886, as well as C1,ct = 0.252 and C2,ct = 0.107.

The Voronoi tessellation method also allows us to directly compute the distribution of

free volume along the chain (i.e., Pd(ϕ) distribution) as we can explicitly count the number

nf as presented in Equation (6.3) at any specific time in a MD simulation trajectory. Figure

6.11 shows the Pd(ϕ) distribution derived from the MD simulation and the theory for ring

polymers with N = 105 and N = 405. The obtained data can be then juxtaposed with that

theoretically calculated using Equation (6.3) and the determined values of F (v∗i ) (cf., Figure

6.10). As shown in Figure 6.11, the Pd(ϕ) obtained from MD simulation is slightly broader.

This is because in our free volume theory, the Pd(ϕ) distribution, which is the distribution

of fraction of beads of ring PE having enough free volume for the activation of diffusion,

was derived based on the assumption that each bead of the ring PE always has the same

probability of getting critical volume at each time step and the probability is independent of

the bead’s ‘memory’ of how often it had sufficient free volume. The slightly broader Pd(ϕ)
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distribution indicates that such assumption is not entirely valid. It seems that the bead that

possessed more free volume in the past may have a greater opportunity of getting more free

volume in the future.

(a) N = 105 (b) N = 405

Figure 6.11: Pd(ϕ) distribution extracted directly from VT of the MD data and compared
with the approximation using Equation (6.3) for (a) N = 105 and (b) N = 405.

Temperature Dependence of Fractional Free Volume

Similar to the analysis in the previous section of using the solution of the integral equation

for obtaining the temperature dependence of fractional free volume, we are also interested

in the temperature dependence of g(r) and f from MD simulation. In the MD simulation of

ring PE with N = 80, the temperature of the system gradually decreased from T = 450 K to

T = 370 K. The procedures were exactly the same as the previous section, i.e., to determine

f as a function of T using intermolecular and intramolecular radial distribution functions,

as well as the GvdW equation of state. In the calculation of the temperature dependence of

f of ring PE with N = 80 from MD data, as the integral
∫︁ lb
0
Ib(r)dr can completely mask

the contribution from
∫︁ r+
0
I(r)dr when temperature changes, it was neglected in Equation

(6.33) and a volume of πr2c l0
4

is subtracted from the resultant ⟨vf,i⟩. Figure 6.12 shows the

temperature dependence of g(r) as well as f in ring PE with N = 80. Interestingly, in

such way, the resultant f is still close to that determined using Equation (6.33) when the

integral
∫︁ l0
0
Ib(r)dr is included, which is approximately f = 0.35 at T = 450 K. It was

found that the temperature dependence of g(r) in MD simulation is similar to that of the

PRISM theory, that the first peak of g(r) decreases with temperature as ρb decreases with
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temperature, whereas the data of f were fitted to f = C1 + C2T with C1 = −0.04 and

C2 = 8.74× 10−4 K−1. Compared with the PRISM theory, f is a slightly weaker function of

temperature in MD simulation. Notably, C2 = 8.74 × 10−4 K−1 (cf., Figure 6.12(b)), which

is the thermal expansion coefficient, obtained from the MD data is closer to the extrapolated

value (i.e. 8× 10−4 K−1 as mentioned in Section 4.1.2) from Huang et al. [93].

(a) g(r) (b) f

Figure 6.12: Temperature dependence of (a) g(r) as well as (b) f of ring PE with N = 80
obtained from MD simulation. The data reported in (b) were fitted to the relation f =
C1 + C2T with C1 = −0.04 and C2 = 8.74× 10−4 K−1.

6.4.3 Center-of-Mass Diffusion Coefficient

In the MD simulation, evaluation of Dcm is achieved by analyzing the mean-square displace-

ment (MSD) of the center-of-mass of the ring PE in the regime that gcm(t) ∼ t.

gcm(t) = lim
t→∞

⟨[rcm(t)− rcm(0)]2⟩ = 6Dcmt (6.35)

Log-log plots of gcm(t) of the center-of-mass of the ring PEs with N = 30 and N = 405 are

shown in Figure 6.13. The linear curve as shown in the plot then allows us to extract Dcm,

which is related to the y-intercept of the linear curve. The slopes in the cases of N = 30 and

N = 405 are 1.00 and 1.04, respectively, which was also observed by several other groups

[6, 94, 2]. It is important to note that in the curve fitting, only the data points from 10 ns to

15 ns, as well as from 400 ns to 510 ns were used. This is because as indicated in Equation

(6.35), gcm(t) is a time-average property. The number of samples for the time averaging in

Equation (6.35) decreases when time increases. Owing to this, the data points collected near
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the end of the MD simulation were excluded from the determination of Dcm.

Although we are only interested in the regime that gcm ∼ t, it is worthwhile to report

the fact that two regimes were observed for both ring PEs with N = 30 and N = 405. For

N = 30, the two regimes are gcm(t) ∼ t0.69 and gcm(t) ∼ t, whereas for N = 405, they are

gcm(t) ∼ t0.42 and gcm(t) ∼ t. The exponent of 0.69 in ring PE N = 30, as observed in the

first regime, is in good agreement with that reported by Brás et al. [94] and Halverson et

al. [6], in which they observed an exponent of 0.79 and 0.75 in the first regime, respectively.

The weaker time dependence in the first regime for larger N was also reported by Halverson

et al.[6]. In addition, the relation of gcm(t) ∼ t0.42 in the first regime, is in better agreement

with Hur et al. [2].

(a) N = 30 (b) N = 405

Figure 6.13: Log-log plots of gcm(t) of ring PEs with N = 30 and N = 405. The slopes
and the y-intercepts of the black linear curves are 1.00 and 5.45× 10−3 nm2, as well as 1.04
and 9.58 × 10−5 nm2, for N = 30 and N = 405, respectively, which were then used in the
calculation of Dcm.
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N Dependence

(a) Dcm (b) P/N

Figure 6.14: N dependence of (a) Dcm and (b) P/N of ring PE melts. Dcm calculated from
our MD simulation and theory are compared with Hur et al. [2, 3], Tsolou et al. [4], Brown
et al. [5] and Halverson et al. [6].

Dcms of ring PE melts that were determined from the MD simulation data are plotted as

a function of ring size as shown in Figure 6.14(a). There is a clear crossover in Dcm from

Dcm ∼ N−1.03±0.15 in the unentangled regime to Dcm ∼ N−1.88±0.14 in the entangled regime.

The crossover ring size Nc is approximately Nc ≈ 100. Dcms at different ring sizes calcu-

lated using our theory are in good agreement with the MD simulation data, for ϕ+ = 0.17.

Interestingly, compared with the MD simulation results of linear PE in our previous work,

the exponent of the N dependence is slightly less negative in ring PE for both entangled and

unentangled regimes. This indicates that the Dcm of rings is lower than the Dcm for their

linear counterparts below Nc, but higher above Nc. This is well captured by our theory, and

it is in good qualitative agreement with Robertson and Smith [80] as well as Chapman et al.

[81]. They found that in the entangled regime, pure cyclic DNAs diffuse faster than their

pure linear counterparts. We postulate that such good agreement is due to the following two

reasons:

1. Below Nc: The N dependence of Dcm is not that sensitive to the values of ϕ+. It

is worthwhile to note that below Nc, the probability of getting sufficient free volume for

diffusion (F ) in linear PE melts is higher than its ring counterparts. This leads to a higher

mean value of Pd(ϕ) distribution in linear PE, which gives higher values of
∫︁ 1

ϕ+
Pd(ϕ)dϕ and
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Dcm.

2. Above Nc: From the MD simulation results, the values of ϕ+ are 0.22 and 0.17 for

linear and ring PEs, respectively. One natural consequence of our free volume theory is that

a stronger N dependence of Dcm in high-N region is resulted as we arbitrarily increase the

value of ϕ+. The parameter ϕ+ in our free volume theory is the fraction of beads of a ring PE

having sufficient free volume for diffusion. This parameter is incorporated in our free volume

theory because the diffusive movement of one bead can activate diffusion of its neighbours

as they interact with one another through intramolecular potential. In other words, in a PE

melt, the intermolecular force acting upon one of its carbon atoms can alter its intramolecular

interaction with another bead of the same macromolecule. A smaller value of ϕ+ in ring PE

tells us that diffusive motion of beads can activate their neighbours much more readily than

its linear counterpart.

The data in this work were compared with the data from Hur et al. [2, 3], Tsolou et al.

[4], Brown and Szamel [5], and Halverson et al. [6] as shown in Figure 6.14(a). Since the

data from Brown and Szamel [5] and Halverson et al. [6] were generated from Monte Carlo

simulation and MD simulation in reduced units, respectively, their data were in reduced

unit. Therefore, the center-of-mass diffusion coefficients from their work (Dd
cm) were firstly

normalized by Dd
cm,max, where the subscript max indicates the largest Dd

cm in their data set,

and it was then multiplied by a factor of [Dcm(N = 30)]× 30 as obtained from our MD data.

As Tsolou et al. [4] performed MD simulation also, their Dcms were included directly for

comparison with our data in Figure 6.14(a). As shown in Figure 6.14(a), our MD data agree

well with the MD simulation by Tsolou et al. [4], Monte Carlo simulation by Brown and

Szamel [5] , as well as the MD simulation by Halverson et al. [6]. A significant discrepancy is

only observed when our data are compared with that of Hur et al. [2, 3] as shown in Figure

6.14(a).

P/N obtained from the theory (P =
∫︁ 1

ϕ+
Pd(ϕ)dϕ) is also plotted as a function of N

in Figure 6.14(b). A clear crossover was also observed from P/N ∼ N−1.33±0.01 to P/N ∼

N−1.78±0.08. The exponent ofN dependence of P/N is slightly more negative and less negative

in the unentangled and entangled regime, respectively, when compared with that of Dcm from

MD simulation. Similarly, if the parameters obtained from the PRISM theory are plugged
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into our free volume theory, the N dependence of Dcm and P/N are also in good agreement

with that obtained using the MD simulation data. Nonetheless, for the PRISM theory, ϕ+

was found to be ϕ+ = 0.47, which is much higher than that from MD simulation. This

is because the influence of angle bending and torsion potentials on the Dcms is included

explicitly in MD simulation, but not in the intramolecular radial distribution function in

the PRISM theory. Therefore, for the PRISM theory to ‘capture’ the effect of these angle

potentials in the calculation of Dcm, a higher value of ϕ+ is resulted, indicating that the ideal

chain used in the PRISM theory should have had more beads participating in the activation

of diffusion due to the negligence of angle potentials.

Temperature Dependence

The temperature dependence ofDcm of n-alkane has been studied thoroughly by von Meerwall

et al. [60, 1]. In their work [60, 1], it was argued that the apparent activation energy (Eapp
a )

derived from the experimental data can be divided into two contributions: 1. the energy

required for the expansion of the free volume 2. the energy required for the activation

of segmental jump. In our previous work of linear PE, the second contribution can be

alternatively understood as the energy required to create the critical free volume for the

activation of diffusion of Nϕ+ beads (this amount of energy is denoted as Ea). This amount

of energy can be calculated as the value of ϕ+ is known (cf., Figure 6.14). It has been proven

both experimentally and numerically that Eapp
a of linear PE ranges from 2.5 kcal ·mole−1 to

6 kcal ·mole−1.

Nonetheless, to our knowledge, there are only a very limited number of studies on tem-

perature dependence of diffusion coefficients of ring PE. In the work by Alatas et al. [91]

and von Meerwall et al. [90], they did not report the value of Ea for ring alkane because

they only determined two Dcms at 328 K and 338 K for N = 5 − 16 (N = 80 was chosen

for temperature dependence investigate in this work), in which the calculation of apparent

activation energy from only two data points is expected to be inaccurate. Also, von Meerwall

et al. [90] did not extract Ea from their experimental data because of the failure of their

empirical model in the absence of chain ends. (direct quotation: ‘In the absence of chain

ends, this behavior cannot be explained by Eq. 6 with substitution of Eq. 2.’[90])
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Figure 6.15: Temperature dependence of Dcm of ring PE with N = 80. ϕ+ = 0.17 for
MD simulation and ϕ+ = 0.47 for the PRISM theory. The solid line is the fitting curve

to the MD data, which has the form of Dcm(T ) = Dcm(T
′) exp

[︂
− Eapp

a

(︁
1
RT

− 1
RT ′

)︁]︂
, with

Eapp
a = 3.84 kcal ·mole−1.

Owing to the lack of literature data of the temperature dependence of ring PE, MD

simulation of ring PE at different temperatures were performed, and it was found that by

fitting the MD data to the Arrhenius formula, Eapp
a of N = 80 ring PE has a value of

Eapp
a ≈ 3.84 kcal ·mole−1 (cf., Figure 6.15). According to von Meerwall et al. [1], the

temperature dependence of Dcm of linear alkanes can be described by the following:

Dcm(T ) = Dcm(T
′) exp

(︂
− 1

f
+

1

f ′

)︂
exp

[︂
− Ea

(︂ 1

RT
− 1

RT ′

)︂]︂
(6.36)

von Meerwall et al. [90] was unable to use Equation (6.36) to describe influence of tempera-

ture on the N dependence of Dcm of cyclic alkane at 328 K and 338 K. However, we found

that Equation (6.36) is still applicable to account for the temperature dependence of Dcm of

ring PE with a particular N . Note that the first term of Equation (6.36) can be found in

the above free volume analysis in the integral equation and MD simulation. Ea can be then

calculated by the following formula:

Ea = peff

[︂
ϕ+αv+i + (1− ϕ+)⟨vf,i⟩

]︂
(6.37)

peff = p+Aρ2b can be calculated with the knowledge of the GvdW parameter A based on the

above free volume analysis. Equation (6.37) also implies Ea is dependent on ρb and T . We

found that based on g(r) and gintra(r) obtained from the MD simulation with ϕ+ set to be
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0.17, the temperature dependence of Dcm of ring PE N = 80 agrees well with that evaluated

using Equation (6.36) and Equation (6.37) (cf., Figure 6.15). Nonetheless, the temperature

dependence of Dcm predicted by using the parameters obtained from the PRISM theory

does not agree well with the MD simulation data. This is because in the PRISM theory,

f changes with temperature more dramatically than that observed in the MD simulation.

This is supported by our free volume analysis in Section 4.1.2 and Section 4.2.3, in which

we showed that the thermal expansion coefficient was higher in the PRISM theory. The

effective pressure in an ideal PE melt is much lower than that in the MD simulation, in

which intramolecular and intermolecular potentials were explicitly included, which gives a

higher value of ϕ+ in the PRISM theory.

The future plan of our research is as follows:

1. Even in the absence of chain ends, the exponent of the N dependence of Dcm for cyclic

alkanes can be significantly influenced by temperature [90]. Our free volume theory

should be able to account for this anomaly as it is expected that the mean value of

Pd(ϕ) distribution should increase with increasing temperature.

2. The free volume theory that we proposed may be modified so as to predict the diffu-

sivities of a blend of linear and ring PE, and PE in a dilute solution.

3. We also envisage that the free volume analysis presented in this work is useful in the

derivation of a theory based on the distribution of free volume on viscoelastic properties

and the relaxation dynamics of polymer melts and solution, which have been studied

even more extensively than diffusivities [84, 79, 95].

6.5 Conclusion

In conclusion, our free volume theory describes the crossover in the ring size dependence

of Dcm of ring PE melts from unentangled to entangled regimes without the concept of

entanglements and obstacles as introduced in the reptation theory. The parameters in our

free volume theory can be theoretically determined using either the PRISM theory, or more
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accurately, MD simulation. In particular, in MD simulation, Voronoi tessellation analysis can

be performed to obtain accurate values of the probability for a bead to find free volume. ϕ+,

which is a parameter in our free volume theory, is related to the segmental Ea for activation

of diffusion and it can also be used to predict the temperature dependence of Dcm of ring PE

melts. It was found that although the PRISM theory is computationally less expensive than

MD simulation, it is less accurate than that of MD simulation when it comes to predicting

the temperature dependence of Dcm of ring PE melts due to the slightly higher thermal

expansion coefficient obtained by calculation in the PRISM theory.
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Chapter 7

A Theory for the Temperature Effect
on the Chain Length Dependence of
the Diffusivity of Oligomers1

7.1 Introduction

The temperature dependence of the diffusion coefficient of monoatomic liquids is well de-

scribed by the simple Cohen-Turnbull free volume theory [59]:

D = D0 exp(−
αv+

⟨vf⟩
) (7.1)

v+ is the critical free volume for the activation of diffusive motion, which is approximately

the size of the particle. Here, ⟨vf⟩ is the mean free volume and is temperature dependent,

and α is the overlapping parameter. D0 is the Chapman-Enskog diffusion coefficient of dilute

gas, which has the following form [10]:

D0 =
3

8ρ1r2c

√︃
1

mπβ
(7.2)

β = 1
kbT

, where kb is the Boltzmann constant and T is the temperature. ρ1 is the extrapolated

number density of the particle. rc is the minimium incompressible diameter of the particle.

m is the mass of the particle.

Nonetheless, the success of such theory has been undermined by the fact that it is em-

pirical in nature that many parameters in the model can only be obtained by fitting it to

1A version of this chapter has been published in Soft Matter, 2020, 16, 4283-4289.
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the experimental data, instead of being derived from first principle. Owing to this, there

has been impressive effort made in determining parameters, such as ⟨vf⟩, α and v+, with

the use of intermolecular radial distribution function g(r) as well as the equation of state

[64, 65, 62, 67, 66]. In this way, g(r) can be easily obtained using integral equation method

or more accurately derived from Monte Carlo and molecular dynamics (MD) simulations.

The former method is more appealing that the calculation is not computationally expensive,

whereas the latter gives more accurate results.

The conventional and famous Rouse model [20] predicts that Dcm of short polymers

with any structures follows the relation Dcm ∼ N−1. However, it has been argued that

the chain length dependence of the center-of-mass diffusion coefficient of n-alkane does not

indeed agree with that of the Rouse model with the N dependence exponent being slightly

more negative than −1 [60, 1]. In addition, in the Rouse model, Dcm ∼ N−1 and the

exponent is not dependent on the temperature, but it was experimentally demonstrated that

the exponent becomes less negative with increasing temperature. It is worth noting that the

Rouse model was not originally derived for describing the diffusion of polymer melts. In fact,

it is a model for a single chain (i.e., at infinite dilution) diffusing in a continuous medium of

solvent based upon the concept of Brownian dynamics [20]. The chain is modeled by a series

of beads connected by springs and the solvent medium exerts friction, which is quantified

by a temperature independent friction coefficient, on the beads. In the Rouse model, the

many-chain effect is not included. However, one could argue that the many-chain effect is

implicitly included through the use of friction coefficient. Nonetheless, the Rouse model

fails to predict the chain length dependence of the diffusion coefficient for dilute polymer

solutions. Zimm [96] introduced the hydrodynamic interaction to the Rouse model and

yielded the correct chain length dependence. Interestingly, the Rouse model predicts the chain

length dependence correctly for unentangled polymer melts. Since the friction coefficient is

temperature independent in the Rouse model, it is not able to predict the temperature effect

on the chain length dependence of the diffusion coefficient. von Meerwall et al. [1] then

attributed this observation to the chain end effect, and they determined empirically the

fractional free volume in the melt at different temperatures. Nonetheless, their free volume

model contains many adjustable parameters [1] and it is not applicable to cyclic alkane [90].

Recently, our group has developed a free volume theory for the diffusivity of linear polymer
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[85], which is a consolidation of the proposition first demonstrated by Sabbagh and Eu [61].

In such model, the probability for one of the beads of the polymer chain to find sufficient

volume for diffusion (F ) is firstly calculated with the use of radial distribution functions

and the generic van der Waals equation derived by Eu [64]. After that, the distribution of

fraction of beads having that amount of volume (vi ≥ αv+i , v
+
i = πr+3

6
that r+ is the effective

diameter of the bead, α is the overlapping parameter) can be derived (Pd) and is found to

follow a Poisson distribution. Since the total volume of a material is the sum of the van der

Waals volume of the constituent molecules (temperature independent) and the free volume

(temperature dependent), our free volume theory should capture the temperature effect on

the scaling of the diffusion coefficient of unentangled polymer melts. Similar to the intuition

of Cohen and Turnbull [59], diffusive motion of polymer is activated when the fraction of

beads having vi ≥ αv+i (ϕ) greater than a certain value (ϕ+ and it is related to the activation

energy for segmental diffusion of polymers). Otherwise, there would have been no diffusive

motion. Therefore, the diffusion coefficient of polymer (Dcm) averaged over all possible values

of ϕ is:

Dcm =
D

N

∫︂ 1

ϕ+
Pd(ϕ)dϕ (7.3)

The reader can find more details in the derivation of Equation (7.3) in our previous work

[85]. This model was found to be successful in describing the crossover in the N dependence

of diffusivity of polyethylene at T = 450 K, i.e., from Dcm ∼ N−1.5 in the unentangled

regime to Dcm ∼ N−2.2 in the entangled regime. We argue that Equation (7.3) should also

capture the temperature dependence of the exponent in theN dependence ofDcm of n-alkanes

because F and Pd should alter accordingly as temperature changes, and thus influencing the

exponent v in Dcm ∼ N v. In this work, the radial distribution functions were derived from

the integral equations of polymers due to the simplicity of such model and the resultant

pressure equation, compared with that in MD simulations. Equation (7.3) was then tested

against the experimental results of von Meerwall et al. [1].
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7.2 Integral Equation Theory of Polymers

The integral equation for polymers proposed by Schweizer and Curro [97] is as follows:

H(r) =

∫︂
dr1

∫︂
dr2Ω(|r− r1|)C(|r1 − r2|)[Ω(r2) + ρH(r2)] (7.4)

To use propane as an example, if we simply model the methylene and methyl groups as beads,

then we have N = 3:

H =

⎡⎣h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤⎦ (7.5)

C =

⎡⎣c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤⎦ (7.6)

Ω =

⎡⎣ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33

⎤⎦ (7.7)

hαγ = gαγ−1, where gαγ is the intermolecular radial distribution function between sites α and

γ of two different molecules. cαγ is the direct correlation function. ωαγ is the intramolecular

radial distribution function between sites α and γ of the same molecule. ρ is the number

density of the whole alkane molecule. Then, in Fourier space, the equation becomes:

Ĥ(k) = Ω̂ĈΩ̂+ Ω̂ĈĤρ (7.8)

Then, algebric rearrangement allows us to write:

Ĥ = (I− ρΩ̂Ĉ)−1Ω̂ĈΩ̂ (7.9)

I is a N × N identity matrix. The whole model is completed by the Percus-Yevick closure

relation:

cαγ(r) =
{︂
exp [−βuαγ(r)]− 1

}︂
[1 + hαγ(r)− cαγ(r)] (7.10)

uαγ is the intermolecular potential, for which we have used 6-12 Lennard Jones (LJ) potential

in this work.

uαγ(r) = 4εαγ

[︂σ12
αγ

r12
−
σ6
αγ

r6

]︂
(7.11)

εαγ and σαγ are the potential well and distance at uαγ = 0, respectively between sites α and

γ. These interaction parameters are taken from Martin et al. [19]. With these, the final
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average intermolecular radial distribution (g(r)) is as follows:

g(r) =
1

N2

∑︂
α

∑︂
γ

gαγ(r) (7.12)

It is computationally expensive to solve the Equation (7.8) as N is large. Therefore, the

following approximation may be applied, in which the chain ends are neglected.

ĥ =
ω̂ĉ

1− ρbω̂ĉ
(7.13)

ρb = ρ/N . Such that:

h(r) =
1

N2

∑︂
α

∑︂
γ

hαγ(r) (7.14)

ω(r) =
1

N

∑︂
α

∑︂
γ

ωαγ(r) (7.15)

Gaussian approximation gives:

ω̂αγ(k) = exp(−nk2d2/6) (7.16)

And:

ω̂(k) =
1− f 2 − 2N−1f + 2N−1fN+1

(1− f)2
(7.17)

where n is the number of bonds in between site α and site γ. d is the statistical segmental

length, for which we assume d = σαγ, such that f = exp(−k2d2/6). Additionally, in our

calculations, the ρbs of alkane at different chain length and temperature from von Meerwall

et al. [1] were used, which were evaluated using Equation (7.18).

ρb = 43
[︂
0.00076T + 0.93 +

2(0.060T − 2.5)

M

]︂−1

(7.18)

M is the molecular weight of the alkane with the unit of g ·mole−1 and T has the unit of K.

The discrete Fourier transform method and the corresponding inverse transform method

are exactly the same as that were used by Martin et al. [88]. For example, the Fourier

transformation of g can be determined as follows:

ĝj = 4
Ns−1∑︂
i=0

πri∆rgi sin
[︁π(j + 1)(2i+ 1)

2Ns

]︁
(7.19)

whereas, the corresponding inverse transformation is:

gi =
kNs−1∆k

4π2
(−1)iĝNs−1 +

1

2π2

Ns−2∑︂
j=0

kj∆kĝj sin
[︁π(2i+ 1)(j + 1)

2Ns

]︁
(7.20)

Ns is the size of the array.
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7.2.1 Validity of Neglecting Chain Ends

As a test of the validity of neglecting the chain ends, by using N = 3 and ρb = 30, Equation

(7.8) and Equation (7.13) were solved numerically using Picard method. In Equation (7.13),

it is assumed that all the beads interact with one another via 6-12 LJ potential with the same

parameters that all the beads were assumed to be methylene groups, whereas in Equation

(7.8), the exact 6-12 LJ potential parameters for methyl-methyl, methylene-methylene and

methyl-methylene intermolecular interactions were explicitly included. As shown in Figure

7.1, the solution to Equation (7.8) closely resembles to that to Equation (7.13). As it can be

expected as N → ∞, the chain end effect becomes even more trivial, Equation (7.13) is used

in this work.

Figure 7.1: g(r) derived from Equation (7.8) and Equation (7.13). The scalar approximation
in Equation (7.13) is indeed accurate.

7.3 A Brief Introduction of Free Volume Theory

Consider a linear oligomer, each of its beads possesses certain amount of free volume. Due

to many-chain effect, at a particular instant, some beads have free volume (vf,i) greater than

the activation volume (αv+i ) for diffusion, some others do not. The probability for a bead

to get vf,i ≥ αv+i is Fct = exp(− αv+i
⟨vf,i⟩

). Assuming that the chain ends always have enough
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free volume for diffusion, we can calculate the fraction of beads of the chain, which have

vf,i ≥ αv+i , as ϕ =
nf

N−2
, where nf is the number of beads having vf,i ≥ αv+i . The number of

ways arranging nf beads of the chain molecule can be calculated as follows:

W =
(N − 2)!

(N − nf − 2)!nf !
(7.21)

This is because the beads are distinguishable from one another. Then, the probability dis-

tribution of the chain having nf , which is essentially Pd, is:

Pd =
(N − 2)!

(N − nf − 2)!nf !
F
nf

ct (1− Fct)
N−2−nf (7.22)

We would like to rewrite Equation (7.22) in terms of ϕ and Fct. This can be done using

Stirling principle (i.e. a! ≈
√
2πa[ aa

exp(a)
].), which finally leads to:

lnPd = (N−2) ln
[︂(︁ 1− Fct

1− ϕ+ ε

)︁1−ϕ(︁ Fct
ϕ+ ε

)︁ϕ]︂−1

2
ln
[︂
2π(N−2)ϕ(1−ϕ)+exp

(︁
−ϕ

2

ε2
)︁
+exp

[︁
−(ϕ− 1)2

ε2
]︁]︂
+ln(c)

(7.23)

ε is a small number in the order of magnitude of 10−5, which ensures numerical stability,

whereas c is the normalization constant, such that c = (
∫︁ 1

0
Pd̃dϕ)

−1, where Pd̃ is not normal-

ized. There are three terms in Equation (7.23), the last term is for normalization, whereas

the first two terms are consequences of the Stirling approximation. In the second term,

exp(−ϕ2/ε2) + exp[−(ϕ − 1)2/ε2] are arbitrarily included as the Stirling principle is not ac-

curate as ϕ = 0 or ϕ = 1. Hence, the first two terms capture the statistical arrangement and

distribution of activation volume along the chain. The resultant Pd(ϕ) distribution in Equa-

tion (7.23) can be then input in the calculation of Dcm using Equation (3). More detailed

derivation of Pd(ϕ) can be found in our previous work [85].

7.4 Calculation of Parameters and Comparison with

Experimental Data

If we neglect the intramolecular contribution, the pressure equation for Gaussian polymer

chains is as follows [73]:
pβ

ρb
= 1− 2πβρb

3

∫︂ ∞

0

r3
du

dr
g(r)dr (7.24)

A function I(r) can be defined to extract important length scales, such as the hard-core

diameter (rc), cavity diameter (r+). I(r) is expressed in Equation (7.25). g(r) and I(r) at
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different temperatures are plotted in Figure 7.2 and Figure 7.3, respectively, for oligomer

with N = 30 as an example.

I(r) = −r3du
dr
g(r) (7.25)

Figure 7.2: g(r) at different temperatures for alkane with N = 30.

Figure 7.3: I(r) at different temperatures for alkane with N = 30.

The physical meaning of the length scales as shown in Figure 7.3 have been discussed

in our previous work and Laghaei et al. [65]. Briefly, the possibility of beads having en-
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countered a large repulsive energy is the highest at r+, and thus it can be interpreted as the

minimum size of cavity for accomodating a bead, whereas rc corresponds to the minimum

and incompressible diameter of the bead. rfm and rpm are the diameters at force and poten-

tial minima, respectively. These length scales do not vary much with temperature. It was

found that rc ≈ 0.305 nm, r+ ≈ 0.354 nm, rpm ≈ 0.444 nm and rfm ≈ 0.524 nm. These

length scales are important because they allow us to calculate the overlapping parameter

α = (1− |rpm−rfm|
r+

)3 ≈ 0.464 as well as the effective bead size v+i = πr+3

6
≈ 0.0232 nm3, and

finally the probability for a bead to find sufficient activation volume (αv+i ) for diffusion. Such

probability is denoted as Fct, which has an exponential form of Fct = exp(−αv+i /⟨vf,i⟩) fol-

lowing the rationale of Cohen and Turnbull [59]. The calculated Fct at different chain lengths

of alkane and temperatures are plotted and fitted to an empirical form of C1/N+C2 in Figure

7.4. The fitting procedure allows us to extrapolate and obtain the value of Fct(N → 1), which

is necessary in the calculation of D using Equation (7.1). Another important feature is that

Fct decreases with increasing N and increases with increasing T . The former is attributed to

chain end effect, whereas the latter is due to the expansion of free volume with temperature.

Figure 7.4: Fcts at different chain lengths of alkane and temperatures, which were obtained
from the free volume analysis. The markers are results from our calculations, and the solid
lines are best fit to the data with the form: C1/N + C2. The values of C1 and C2 are:
C1 = 0.52, C2 = 0.2 (T = 343.5 K); C1 = 0.61, C2 = 0.22 (T = 363.5 K); C1 = 0.72, C2 =
0.25 (T = 383.5 K); C1 = 0.77, C2 = 0.28 (T = 403.5 K); C1 = 0.86, C2 = 0.31 (T =
423.5 K); C1 = 0.93, C2 = 0.33 (T = 443.5 K).
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To evaluate ⟨vf,i⟩, the classic pressure equation can be recast in to the van der Waals

equation of state, leading to a generic form, which was first demonstrated by Eu [64]:

(p+ Aρ2b)(N −Bρb) = ρbβ
−1 (7.26)

p is the pressure. The parameters A and B are expressed as follows:

A = −2π

3

∫︂ ∞

r+
I(r)dr (7.27)

B =
1

ρb

[︂
N − 1

1 + 2πβρb
3

∫︁ r+
0
I(r)dr

]︂
(7.28)

Such that:

⟨vf,i⟩ =
1

ρb

(︁
N −Bρb

)︁
(7.29)

With Fct obtained from the previous analysis, Pd distributions at different temperatures

can be generated using the continuous approximation of Pd in Equation (7.23).

Figure 7.5: Effect of temperature on Pd(ϕ) distribution of oligomer with N = 30.
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Figure 7.6: Effect of chain length on Pd(ϕ) distribution of oligomers at T = 443.5 K.

Figure 7.5 and Figure 7.6 show the effect of temperature and chain length on Pd(ϕ)

distribution of oligomers with N = 30 and at T = 443.5 K, respectively. The Pd distribution

shifts to a slightly higher average value of ϕ without any significant change in the peak width

as temperature increases whereas at T = 443.5 K, as N increases, Pd distribution becomes

narrower and moves to the left hand side of the plot. (cf., Figure 7.5 and Figure 7.6) This

shows that as temperature increases, the average fraction of bead having sufficient activation

free volume increases, which is in line with our intuition.

Our model is then tested against the N dependence of Dcm at different temperatures as

observed by von Meerwall et al. [1]. As depicted in Figure 7.7, the linear curve was extracted

directly from von Meerwall et al. [1], and the markers in the plot were generated from our free

volume theory, whereas Figure 7.8 shows a plot of the magnitude of 1
N

∫︁ 1

ϕ+
Pd(ϕ)dϕ computed

using our free volume theory (markers) and fitted to the linear curves (solid lines) at different

temperatures. ϕ+ ranges from 0.33 at T = 343.5 K to 0.43 at T = 443.5 K. We are going to

discuss the physical significance of these values of ϕ+s later in the next paragraph. In Figure

7.7 and Figure 7.8, we observed the exponent v is less negative with increasing temperature:

v = −2.53± 0.06, − 2.32± 0.05, − 2.13± 0.05, − 1.94± 0.03, − 1.87± 0.04, − 1.78± 0.03

at T = 343.5 K, 363.5 K, 383.5 K, 403.5 K, 423.5 K, 443.5 K, respectively. This is similar

to what has been reported by von Meerwall et al. [1] that Dcm ∼ N−1.85 at 443.5 K and
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the exponent becomes more negative with decreasing temperature through Dcm ∼ N−2 at

403.5 K. With our obtained parameters, our model can describe the less negative exponent

with increasing temperature in the N dependence of Dcm at different temperatures. Such

behaviour is not captured by the Rouse model as it always gives the relation Dcm ∼ N−1

regardless of the temperature.

Figure 7.7: Dcm calculated using our free volume theory (markers) with that of the exper-
imental data of von Meerwall et al. [1] (solid lines). The indicated slopes are the values
calculated from our theory.

Figure 7.8: The magnitude of the integral 1
N

∫︁ 1

ϕ+
Pd(ϕ)dϕ computed using our free volume

theory at different temperatures (markers) fitted to the linear curves (solid lines).
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As mentioned above, our theory (cf., Equation (7.3)) can capture both the N as well as

temperature dependence of Dcm of alkane as measured by von Meerwall et al. [1], with ϕ+

ranging from 0.33 at T = 343.5 K to 0.43 at T = 443.5 K. One may argue that ϕ+ is an

empirical parameter, but indeed it can be related to the activation energy of diffusion via

the following formula [85]:

Ea = peff
[︁
ϕ+αv+i + (1− ϕ+)⟨vf,i⟩

]︁
(7.30)

peff is the effective pressure, and it can be calculated using peff = p+ Aρ2b . With Equation

(7.30) as well as our calculated parameters, the Ea averaged over all chain lengths and

temperatures (⟨Ea⟩) was found to be ⟨Ea⟩ = 0.84 ± 0.03 kcal/mole, which is close to that

empirically obtained by von Meerwall et al. [1] with ⟨Ea⟩ = 0.81± 0.25 kcal/mole. It is also

pertinent to state that the higher value of ϕ+ compared to that of the MD simulation results

reported by Wong and Choi [85] is due to the fact that a Gaussian chain melt has a relatively

lower peff than that of real chain melt. As a result, a higher value of ϕ+ is expected from

the Gaussian chain approximation so as to reflect the inflexibility of the chain in the reality.

Interestingly, Bulacu and van der Giessen demonstrated that the flexibility of the chain can

influence the exponent v[98, 27]. Such effect of flexibility is reflected in the ϕ+ of our theory

as this parameter defines the influence of a bead’s diffusive motion on its neighbour. The

change in flexibility of the molecule with temperature also implies that ϕ+ is temperature

dependent.

7.5 Conclusion

In summary, our free volume theory is successful in taking into account of the effect of

temperature on the N dependence of Dcm of linear polymers, which is not captured by the

classic Rouse model [20] and it is free of many adjustable parameters in the model proposed

by von Meerwall et al. [1]. The reason for such robustness of our theory is that it has

considered the change in the distribution of fraction of beads having sufficient activation

volume for diffusion with temperature, i.e. such distribution slightly shifts to higher value

as temperature increases, and thus this directly influences the final calculated values of Dcm.

Most of the parameters in such theory can be easily obtained by the integral equation theory

of polymer chains.
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This work also gives insight to the dynamics of entangled polymers as it leads to questions,

such as ‘Does the exponent also change with temperature in the entangled regime?’ One may

argue that the temperature may have an effect on the density of the fixed obstacles in the

surrounding of the chain, but the results of the reptation theory [50, 21] always give us an

exponent of −2 regardless of the density of obstacles and the temperature. As it has been

shown that our free volume theory can be applied to the entangled polymers at a particular

temperature [85], it may not be surprising that it can also predict the change in the exponent

with temperature for entangled polymers. However, without sufficient experimental data, this

is merely our speculation. Owing to this, we decided to postpone such investigation in the

future.
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Chapter 8

Prediction of Crossover in the
Molecular Weight Dependence of
Polyethylene Viscosity Using a
Polymer Free Volume Theory1

8.1 Introduction

Transport phenomenon is a branch of physical science that deals with the rates of mass,

momentum, and heat transfer. Conservation laws yield three separate transport equations

in which transport coefficients, i.e., diffusivity, viscosity and thermal conductivity, determine

the corresponding transport rates. There have been numerous attempts to determine these

transport coefficients from first principle. The Boltzmann equation, an integrodifferential

equation, is the central equation for describing the transport processes in dilute gases. Chap-

man and Enskog, as well as Cowling [10] were the first researchers who developed a method

for solving the Boltzmann equation and derived the exact relations between all transport

coefficients of dilute gases and their intermolecular potential. The concept of Brownian dy-

namics is also used and the diffusivity can be obtained by solving the corresponding equation

of motion (i.e., Langevin equation) in which the position and velocity are the state variables.

Diffusivity (Dcm) and viscosity (η) are two transport coefficients being measured and used

1A version of this chapter has been published in Soft Matter, 2020, 16, 7458-7469.
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frequently in polymer science. They have been observed to change drastically with molecular

weight and molecular structure. For example, in the case of linear polyethylene, the simplest

polymer chemically, experimental and molecular simulation studies have revealed that at

T = 450 K, Dcm and η exhibit a molecular weight dependence of M−1.5 and M1.8 [7, 1],

respectively when M is below the so-called critical molecular weight (Mc), but when M is

greater thanMc, the dependence switches toM
−2.3 andM3.4 [7]. The crossover in the scaling

also occurs to ring polymers but with the scaling being less negative and less positive for

Dcm and η, respectively [4, 6, 99, 100]. To account for the crossovers, Rouse [20] applied the

Brownian dynamics concept to describe the polymer motion below Mc. On the other hand,

de Gennes [50], Doi and Ewards [21] developed the reptation theory based upon the concept

of a chain moving in a tube with the curvilinear coordinate to describe its motion above

Mc. These two impressive attempts serve to unravel the mystery behind the M dependence

below and above Mc, respectively. Nonetheless, there are limitations associated with both

approaches.

The Rouse model only gives us a weaker M dependence, i.e., Dcm ∼ M−1 and η ∼ M1

below Mc if we consider the whole M range below Mc. This has been attributed to the fact

that in reality, the friction coefficient is slightly dependent on the chain length as the number

density of chain ends is inversely proportional to the molecular weight of linear polymer.

Therefore, this effect of free volume has to be removed when the data were compared with

the Rouse model [7]. In this sense, we should expect such effect to be absent in the case of ring

polymer, in which no such chain end effect has to be corrected. However, this is certainly not

the case. The underestimation was also experimentally observed for cyclic polystyrene [84]

and cyclic alkane [90] that the two cyclic polymers obviously do not contain chain ends. For

instance, Mckenna et al. [84] demonstrated that without any so-called free volume correction,

the M dependence of viscosity is more or less the same for both linear and ring polystyrene.

One may still argue that this may be due to the fact that the ring polystyrene samples were

not pure as the more recent findings by Doi et al. [100] and Tsalikis et al. [99] revealed

that the M dependence of η of more pure cyclic polystyrene and ring PEO exhibits η ∼M .

Nonetheless, if the effect of free volume is absent in ring polymer, we should not expect

the M dependence of transport coefficient to change significantly as temperature changes,

which was the case as demonstrated by von Meerwall et al. [90]. von Meerwall et al. even
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demonstrated that Dcm of small cyclic alkane exhibit a scaling relation of Dcm ∼ M−2.5 at

328 K [90], which was later confirmed by MD simulation [91]. von Meerwall et al. [90] and

Alatas et al. [91] then pointed out that the reasons for such deviation from Rouse model are

high rigidity of small cyclic alkane, nonmonotonic change in density with M and topological

constraints.

In the reptation theory, a chain made up of beads is postulated to wiggle in a confining

tube surrounded by the neighboring chains. The tube diameter is significantly greater than

the size of a bead. And the chain exhibits Rouse motion within the tube. Therefore, the

center-of-mass diffusion coefficient of the Rouse chain is equal to its curvilinear diffusion

coefficient. This leads to the M dependence of the center of mass diffusion coefficient (Dcm)

and that of viscosity (η) being Dcm ∼ M−2 and η ∼ M3 above Mc. The M dependence is

slightly weaker than what has been observed in many experiments and molecular simulation

studies (i.e., −2.3 and 3.4). Such discrepancy has later been corrected by applying the

concept of contour length fluctuation to the original reptation theory [101, 44]. However, it

has also been argued that the angle bending and torsional potentials can also be responsible

for the slightly stronger M dependence of diffusivity observed in the entangled regime [27].

Additionally, the identification of primitive path relies on a substantial perturbation of the

system of polymer chains in molecular dynamics (MD) simulation [76, 102, 103, 77, 104]. In

the approach proposed by Everaers et al. [102] as well as Rubinstein and Helfand [103], the

polymer chain ends are fixed and certain intramolecular interaction potentials are switched

off such that the chains only interact with one another via intermolecular potential as the

temperature is gradually decreased to zero. The primitive path identification algorithms of

Kröger [77], as well as Tsoumaneka and Theodorou [104] are athermal in nature, which rely

on geometric operations of a polymer chain with two space-fixed ends. Kröger [77] pointed

out that in the case of ring polymer, the algorithm is not applicable since the algorithm relies

on two space-fixed ends. But if one artificially constructs a ring polymer by simply drawing

a straight line from the head and tail of a linear polymer chain, then the algorithm can still

approximate a primitive path in such case. Also, Robertson et al. [80] and Chapman et

al. [81] argued that cyclic polymers are less ‘capable’ of forming the so-called entanglements

than their linear counterpart as it was found that the diffusivity of cyclic polymer in a

concentrated medium of linear polymers can be substantially reduced, but the reverse is
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not true. In view of the difficulty of applying the entanglement concept to cyclic polymers,

Rubinstein suggested that the motion of a cyclic polymer can be somehow mapped onto that

of a randomly branched polymer to incorporate the entanglement effect [78].

In our free volume theory, which will be discussed in detail below, a chain can be thought

of wiggling in a confining tube that is made up of the local free volume around the beads

of the chain. The wiggling motion of the chain is a result of the free volume redistribution

and it is due to the motion of the neighboring chains (i.e., topological constraints). However,

unlike the tube model, the tube size in our free volume theory is on the same order of

magnitude of the bead size. In addition, the angle bending and torsional potentials can

be easily incorporated into the calculation if MD simulation is used to generate the radial

distribution function, the key input for the theory. Also, there is no difficulty to apply the

free volume concept to cyclic polymers.

The traditional free volume approach as proposed by Turnbull and Cohen [59] relates

diffusivity and viscosity to the probability of finding free volume that is greater than a

certain size around a molecule, the so-called critical free volume above which the molecule

can move. The free volume is assumed to follow an exponential distribution function. At the

outset of last decade, Sabbagh and Eu [61] extended the free volume theory of Turnbull and

Cohen to calculate the diffusivity of polymer melts in both the unentangled and entangled

regimes. In their free volume theory, the critical free volume of each bead in a polymer chain

is assumed to be different and follows a stretched exponential distribution function. Even

though the justification for the use of the stretched exponential distribution function is not

clear, the theory provides the hope that the free volume concept can be used to describe the

crossover in the M dependence of diffusivity observed experimentally. It should be pointed

out that in the free volume theory of Sabbagh and Eu [61], free volume is rigorously defined

by the generic van der Waals (GvdW) equation of state and the required parameters for the

GvdW equation of state are obtained from the integral equations of polymer chains. Based

on their work, our group has recently derived a polymer free volume theory that is able

to account for the crossovers in the M dependence of diffusivity for both linear and cyclic

polyethylene melts [85, 105]. The polymer free volume theory is also capable of describing

the temperature dependence of the scaling for low molecular weight alkanes with M below

Mc [106].
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In our version of the free volume approach, no such stretched exponential distribution

function is assumed that each bead shares the same value of critical free volume v+i . The

distribution of the fraction of beads of a polymer chain having free volume greater than or

equal to αv+i is the key in our free volume theory (α is the overlapping parameter), which

is essentially a Poisson distribution. Armed with this knowledge, we only left with one

empirical parameter, ϕ+, which is the fraction of beads having vf,i ≥ αv+i necessary for

activation of momentum transfer or diffusive motion, and this one empirical parameter can

be used to calculate the activation energy of the macromolecule. Similar to the free volume

theory developed by Sabbagh and Eu [61], the calculation of transport coefficients in our free

volume theory is based on statistical mechanics and kinetic theory. In our theory, the many-

chain effect comes into play in terms of the intermolecular radial distribution function g(r),

which can be obtained by either MD simulation or more conveniently the Polymer Reference

Interaction Site Model (PRISM) theory. Unlike the primitive path determination in the

tube model as mentioned previously, the determination of free volume within the polymer

melts is free of any perturbation and the same calculation can be straightforwardly achieved

regardless of the polymer architecture. Since each methylene group and methyl group of a

polyethylene molecule can be regarded as a bead with a certain interaction potential and the

electrostatic interaction is negligible, theoretical and molecular simulation studies on such

material are simplified to a large extent. As the potential well of the Lennard-Jones 6-12

potential of the beads is not deep, this will ensure the convergence in the PRISM [86] when

it is used along with the GvdW equation of state for the determination of the free volume

parameters. It is worth noting that the PRISM has been extensively used to obtain the

radial distribution function of polyethylene due to its simplicity and elegance. Hence, we

are going to use PRISM theory in this work along with the generic van der Waals equation

developed by Eu and Rah [64] so as to approximate the free volume in polyethylene melt.

Our free volume approach can be summarized in a mind map as illustrated in Figure 8.1.

As shown in Figure 8.1, the boxes in blue are the steps involved in obtaining F , peff as well

as ⟨vf,i⟩ from inputting g(r) to GvdW Equation of State. g(r), which is the intermolecular

radial distribution function, was obtained numerically from the PRISM theory. The obtained

values of F , peff as well as ⟨vf,i⟩ are then input into the free volume theory along with the η0

and D, which are the viscosity and diffusivity of a bead of dilute polymer medium and they

are equal to that of a dilute ideal gas particle, calculated by solving the Boltzmann equation
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using the Chapman-Enskog method (The boxes that are highlighted in green). This finally

gives us values of η as well as Dcm. The inputs of PRISM theory are number density of bead

ρb, as well as parameters of the Lennard-Jones 6-12 potential.

Figure 8.1: A summary of a free volume approach for calculating η and Dcm.

8.2 Theoretical Background

8.2.1 Viscosity of a Dilute Polymer Medium

Before any calculation of free volume, it is important to understand momentum transfer in a

dilute polyethylene medium. As mentioned in the Introduction, it is possible to evaluate the

viscosity with the knowledge of velocity distribution function from the Boltzmann equation,

it is therefore pertinent to discuss the Boltzmann equation in this context. For a polyethy-

lene chain in a dilute medium, the normal solution to Boltzmann equation should have the

following form:

Ψ(0)(r, c, t) = ρb(r, t)
(︂ m

2πkbT (r, t)

)︂1.5

exp
[︂
− m(c− c0(r, t))

2

2kbT (r, t)

]︂
(8.1)

Equation (8.1) is essentially the Maxwell-Boltzmann distribution, with m as the mass of the

bead, c0 as the flow velocity, ρb as the number density of the bead, kb is the Boltzmann

constant. However, Ψ(0) is not that interesting as the evaluation of pressure tensor from such

distribution does not allow us to get the viscosity. We are interested in the first approximation

Ψ(1)(r, c, t), which can be calculated from Ψ(0).

∂Ψ(0)

∂ρb

∂ρb
∂t

+
∂Ψ(0)

∂T

∂T

∂t
+
∂Ψ(0)

∂c0

∂c0
∂t

+ c · ∇rΨ
(0) = −Ψ(1) −Ψ(0)

τ
(8.2)

The equations of changes of ρb, T as well as c0 with respect to time are essentially derived

from the macroscopic mass, energy and momentum conservation laws. A single bead has a
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mean free path of 1
ρbπσ2 . For a polyethylene molecule with N beads, the mean free path for

the whole molecule is therefore N
ρbπσ2 . Therefore, τ , which is the time scale for momentum

transfer in polyethylene, can be calculated as:

τ =
N

ρbπσ2⟨C⟩
(8.3)

⟨C⟩ =
√︂

8kbT
πm

, where C = c − c0, and C is the magnitude of C. The velocity distribution

function of the bead of both a dilute polymer medium and ideal gas must be a Maxwell-

Boltzmann distribution function, as the kinetic energy of each particle or bead in both cases

must be mC2

2
. Then, in this sense, ⟨C⟩ should be the same in both cases as the velocity

distribution functions are the same. Following the derivation in the Supporting Information

(SI) Section 1, the result is obtained as:

Ψ(1)(r, c, t) = Ψ(0)
[︂
1−τ [(−5

2
C·∇r lnT+W

2C·∇r lnT )+2(WW : ∇rc0−
1

3
W 2I : ∇rc0)+C·

∑︂
j

ρjFj

ρbkbT
]
]︂

(8.4)

With W =
√︂

m
2kbT

C. ρj is the number density of the jth bead such that ρb =
∑︁

j ρj and Fj is

the intramolecular force acting upon jth bead. In this case, in a dilute medium of Gaussian

chains without any intermolecular interaction, there exists an additional summation term of

all intramolecular forces among the beads in Equation (8.4). Note that such term, which is

independent of C, has no effect on the shear stress. The pressure tensor P is defined as:

P = m

∫︂ ∞

−∞
CCΨ(1)dC (8.5)

For shear stress, we are interested in the pxy component of P.

pxy =
[︂
− 2m

∫︂ ∞

−∞
τCxCy(WxWy)Ψ

(0)dC
]︂(︂∂c0,y

∂x
+
∂c0,x
∂y

)︂
(8.6)

because: ∫︂ ∞

−∞
CxCyΨ

(0)dC = 0 (8.7)

and

− τ
[︂ ∫︂ ∞

−∞
CxCy(−

5

2
C+W 2C)Ψ(0)dC · ∇r lnT +

∫︂ ∞

−∞
CxCyCΨ(0)dC ·

∑︂
j

ρjFj

ρbkbT

]︂
= 0 (8.8)

The proof of this is shown in SI Section 2. Then, the viscosity is:

ηd = 2mτ

∫︂ ∞

−∞
CxCyWxWyΨ

(0)dC =
m2τ

kbT

∫︂ ∞

−∞
CxCyCxCyΨ

(0)dC (8.9)
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This integral is solved as demonstrated in the SI Section 3. It was found that

ηd = ρbkbTτ (8.10)

With:

ηd = Nη0 (8.11)

We have the following:

η0 =
1

σ2

√︃
mkbT

8π
(8.12)

This form of η0 is also the viscosity of a bead in a dilute polymer medium, which is equal to

that of a monoatomic ideal gas particle.

8.2.2 Free Volume Theory for Polyethylene with Different Struc-
tures

For a polymer with N beads, we can count the number of beads (nf ) having free volume

greater than that of the activation volume, i.e. vf,i ≥ αv+i , where α is the overlapping

parameter and v+i is the effective volume of bead i. Assuming that the bead of the chain

end always possesses enough volume for diffusive motion, the number of ways to arrange nf

beads for a polymer with N is as follows:

W =
(N − x)!

(N − x− nf )!nf !
(8.13)

x is the number of chain ends of the polymers, such that x = 2, x = 0 and x = 4 for linear,

ring and four-arm symmetric polymers, respectively. Therefore, the probability for a polymer

having nf beads can be calculated as follows:

Pd(ϕ) =
(N − x)!

(N − x− nf )!nf !
F nf (1− F )N−x−nf (8.14)

F is the probability for a bead having vf,i ≥ αv+i . Usually, for the sake of simplicity, following

the rationale of Turnbull and Cohen [59], F = exp(−αv+i /⟨vf,i⟩), where ⟨vf,i⟩ is the mean free

volume per bead. And the argument of this distribution Pd(ϕ) is ϕ =
nf

N−x . Equation (8.14)

can be further simplified as a normal distribution with F and F/(N − x) as mean value and

covariance, respectively, (this normal distribution approximation is justified as shown in SI

Section 4) such that we obtain:

Pd(ϕ) ≈
√︃
N − x

2πF
exp

[︂
− (N − x)(ϕ− F )2

2F

]︂
(8.15)
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The integral of Pd(ϕ) from ϕ+ to 1 is of our particular interest as this is important in the

calculation of the viscosity and diffusivity. ϕ+ is the fraction of beads that is necessary for

activation of motion and as ϕ < ϕ+, no motion of polymer is activated. The upper limit of

such integral can be assumed to be ∞ as Pd(ϕ) vanishes when ϕ → 1. In this sense, such

integral tells us the probability of motion of polymer being activated. (cf., Equation (8.16))∫︂ ∞

ϕ+
Pd(ϕ)dϕ ≈ 1

2
− 1

2
erf[

√︃
N − x

2F
(ϕ+ − F )] (8.16)

The error function erf[
√︂

N−x
2F

(ϕ+ − F )] can be approximated by polynomial:

erf[

√︃
N − x

2F
(ϕ+ − F )] ≈ 1− 2

{︂
1 +

[︂
a1 + a2

√︃
N − x

2F

(︁
ϕ+ − F

)︁]︂a3}︂a4
(8.17)

where a1 = 0.6446930, a2 = 0.22908, a3 = 4.874, a4 = −6.158 according to the approxima-

tion formula developed by Burr [107]. Equation (8.16) can be rewritten as:∫︂ ∞

ϕ+
Pd(ϕ)dϕ ≈

{︂
1 +

[︂
a1 + a2

√︃
N − x

2F

(︁
ϕ+ − F

)︁]︂a3}︂a4
(8.18)

In Doolittle equation, it was proposed that viscosity is inversely proportional to the Turnbull

and Cohen probability of finding activation free volume [108]. In this sense, based upon our

polymer free volume theory, the zero-shear viscosity should be inversely related to Equation

(8.18), such that:

η = η0N
{︂
1 +

[︂
a1 + a2

√︃
N − x

2F

(︁
ϕ+ − F

)︁]︂a3}︂−a4
(8.19)

By inspection of Equation (8.19), parameters, such as F , can be determined by PRISM theory

along with generic van der Waals (GvdW) equation. ϕ+ can be related to the activation

energy and the effective pressure of the polymer melt. η0 is the viscosity of dilute gas

determined using Boltzmann Equation as shown in the previous section.

To account for the temperature dependence of η of polyethylene, Equation (8.19) has to

be modified as follows:

η(T ) = η∞ exp
[︂ 1

ρb⟨vf,i⟩
+
peff (ϕ

+αv+i + (1− ϕ+)⟨vf,i⟩)
RT

]︂
N
{︂
1 +

[︂
a1 + a2

√︃
N − x

2F

(︁
ϕ+ − F

)︁]︂a3}︂−a4

(8.20)
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peff is the effective pressure, which can be obtained from first principle that is going to be

discussed in the forthcoming section. η∞ is the viscosity of a single bead as temperature

is infinitely high. η0 is not used in Equation (8.20) as it does not capture the change of

viscosity with temperature and density accurately, which is critical when we attempt to

predict T dependence of η for linear polyethylene with different M . In Equation (8.20),

the term 1
ρb⟨vf,i⟩

accounts for the expansion of free volume with temperature and the term

peff (ϕ
+αv+i + (1− ϕ+)⟨vf,i⟩) is the energy associated with creation of activation volume and

free volume to accomodate the beads in the melt. As shown in the Result and Discussion

Section, the same value of ϕ+ −F in Equation (8.19) and Equation (8.20) can describe both

M dependence and T dependence of linear polyethylene chain reasonably well.

8.2.3 PRISM Theory

The integral equation theory developed by Schweizer and Curro [86] in Fourier space is as

follows:

Ĥ = (I− ρΩ̂Ŷ)−1Ω̂ŶΩ̂ (8.21)

I is a N × N identity matrix. Ĥ is a matrix with components ĥα,γ(k), such that hα,γ(r) =

gα,γ(r) − 1 where gα,γ(r) is the intermolecular radial distribution function between sites α

and γ of two different polymers in real space. Ŷ is a matrix with components ŷα,γ(k), which

is the direct correlation function between sites α and γ in Fourier space. Ω̂ is a matrix with

components ω̂α,γ(k), where ωα,γ(r) is the intramolecular radial distribution function between

sites α and γ of the same polymer. ρ is the number density of the whole polymer such that

ρ = ρb/N . Equation (8.21) can be simplified into a scalar equation with the following:

ĥ(k) =
ω̂2ŷ

1− ρbω̂ŷ
(8.22)

In the calculation, ρb was always fixed at ρb = 32 nm−3 at T = 450 K for M dependence

calculation, and for calculations at different T , ρb(T ) = 43(0.00076T +0.93)−1 [1]. There are

no subscripts in any of these functions ĥ(k), ŷ(k) and ω̂(k) as they are average quantity over

all the sites:

ĥ(k) =
1

N2

N∑︂
α=1

N∑︂
γ=1

ĥα,γ(k) (8.23)
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ω̂(k) =
1

N

N∑︂
α=1

N∑︂
γ=1

ω̂α,γ(k) (8.24)

There are two unknowns in Equation (8.22), which are ĥ(k) and ŷ(k), and thus we need

one more equation relating y(r) to h(r). In this work, y(r) is related to h(r) through the

hypernetted chain closure relation [88], which is a slightly more complicated closure relation

compared to Percus-Yevick closure relation that was used in our previous work on n-alkane

[106].

y(k+1)(r) = e−βu(r)+h
(k)(r)−y(k)(r) − 1− h(k)(r) + y(k)(r) (8.25)

The superscript (k) indicates that these quantities are evaluated at the kth iteration. u(r)

is the 6-12 Lennard-Jones potential.

u(r) = 4ε
[︂(︂σ
r

)︂12

−
(︂σ
r

)︂6]︂
(8.26)

ε = 0.380 kJ ·mole−1 and σ = 0.395 nm based on the forcefield developed by Martin et

al. [19]. For the sake of simplicity, all the beads of linear, ring and four-arm symmet-

rical star polyethylene are assumed to be methylene groups, such that their correspond-

ing 6-12 Lennard-Jones potential parameters are identical. For a Gaussian chain, ω̂α,γ =

exp(−nk2⟨r2⟩/6), for which ⟨r2⟩ = σ2. n is the number of bonds separating site α and site γ

of the same chain. For a linear chain, we have:

ω̂(k) =
1− f 2 − 2 f

N
+ 2f

N+1

N

(1− f)2
(8.27)

For a ring polymer, we have [109, 97]:

ω̂(k) = 1 +
2

N

N−1∑︂
p=1

(N − p)f
p(N−p)

N (8.28)

For a four-arm symmetric star polyethylene, we have:

ω̂(k) =
1

N

[︂
2Na+4

Na−1∑︂
p=1

(Na−p)fp+8

(Na+1)/2∑︂
p=2

(p−1)fp+8

(Na−3)/2∑︂
p=1

(︂Na − 1

2
−p

)︂
fpf (Na+1)/2−1

]︂
(8.29)

where f = exp(−k2σ2/6) and Na is the number of beads of two arms including the central

bead. For example, when N = 33, Na = (N − 1)/2 + 1 = 17. More detailed explanation on

ω̂(k) of different structures can be found in SI Section 5.
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8.2.4 Pressure Equation, Intramolecular Term and GvdW Equa-
tion of State

The contribution to pressure from intramolecular interaction in Gaussian chain molecule,

which does not have any intermolecular interaction, (P1) is as follows:

P1 = −ρb
3

∫︂ ∞

0

4πr3
dubond
dr

P (r)dr (8.30)

With:

P (r) =
(︂ 3

2π⟨r2⟩

)︂3/2

exp
(︂
− 3r2

2⟨r2⟩

)︂
(8.31)

P (r) is the probability distribution function of the distance r between two beads interacting

with one another through a harmonic bond stretching potential ubond(r). ⟨r2⟩ is the mean-

square value of the distance r. The derivation of Equation (8.30) is shown in SI Section 6

and β = 1
kbT

. Without intermolecular potential, we have:

pβ = Nρ− P1β (8.32)

N is the number of beads of a Gaussian chain.

pβ

Nρ
= 1− 4πβ

3

∫︂ ∞

0

r3
dubond
dr

P (r)dr (8.33)

If we assume that, dubond/dr = kbondr and kbond = 3β−1⟨r2⟩−1. We found that without any

intermolecular interaction:

pβ

Nρ
= 1− 4πβkbond

3

∫︂ ∞

0

r4P (r)dr = 1− β3β−1⟨r2⟩⟨r2⟩−1

3
= 0 (8.34)

Additional potentials, such as bending and torsional potentials, can be ignored in the pressure

equation as the change in the bond angle and torsional angle with respect to volume are zeros,

which were previously shown by Honnell et al. [73]. However, effect of these angle potentials

can be reflected in the intermolecular radial distribution function g(r), which can eventually

affect the results derived from the equation of state. In this study, for the sake of simplicity,

we did not incorporate such angle potentials in the calculation using PRISM theory as we

assumed all the polyethylene molecules follow Gaussian statistics. One may derive g(r) from

MD simulations of polyethylene, in which all the bonded potentials, such as bond stretching,

angle bending and torsion potentials, and non-bonded potential are explicitly included. This

may affect values of peff , ⟨vf,i⟩ and F . However, we found that the resultant value of (ϕ+−F )
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in our free volume theory is always within the range of 0.02 to 0.06 in our forthcoming analysis

in the Results and Discussion.

This shows that the compressibility factor of Gaussian chains without intermolecular in-

teraction is 0. For Gaussian chains with both intermolecular and intramolecular interactions,

we then have:

pβ

Nρ
= 1− 2πβρb

3

∫︂ ∞

0

g(r)r3
du

dr
dr − 4πβkbond

3

∫︂ ∞

0

r4P (r)dr (8.35)

And if the intramolecular interaction is neglected, we have:

pβ

Nρ
= 1− 2πβρb

3

∫︂ ∞

0

g(r)r3
du

dr
dr (8.36)

(a) Linear chain (b) Ring

(c) Four-arm symmetrical star

Figure 8.2: Compressibility factor with and without incorporation of intramolecular term in
the pressure equation as a function ofM for linear chain, ring as well as four-arm symmetrical
star at T = 450 K.
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Figure 8.2 shows plots of the compressibility factor with and without the intramolecular

term for polyethylene with different structures and molecular weight at T = 450 K. As

expected, for all the structures, the compressibility factor is reduced by one when the in-

tramolecular term is included. Interestingly, among all these structures, the linear chain has

the highest compressibility factor and it changes withM to the largest extent. This is because

even without the intramolecular term in the pressure equation (cf., Equation (8.35)), the in-

tramolecular effect is still captured in the resultant g(r). Equation (8.35) can be rewritten

as:
pβ

Nρ
= 1 +

2πβρb
3

∫︂ ∞

0

I(r)dr (8.37)

We have let the function I(r) have the following form:

I(r) = −r3du
dr
g(r)− 2kbondr

4P (r)

ρb
(8.38)

This function I(r) was originally developed by Laghaei et al.[65] in their work on Monte

Carlo Simulation of Lennard-Jones monoatomic particle. This function I(r) is related to the

required work done to move the beads in dense polymer melt for a particular distance R per

2π/3.

W(R) = −ρb
∫︂ R

0

[︂
r3
du

dr
g(r) + 2kbondr

4P (r)/ρb

]︂
dr (8.39)

Then, I(r) is the integrand in Equation (8.39), which has a unit of kJ ·mole−1 · nm2. The

amplitude of I(r) reflects the possibility that the bead is going to experience a repulsive

or attractive force as a function of r due to the many-chain effect and the harmonic bond

stretching potential, and this allows us to approximate the amount of excluded volume in a

polymer melt. The repulsive force within the range of 0 to r+ is responsible for the excluded

volume of the bead, as r+ is the cavity diameter of the bead and thus its effective diameter (cf.,

Results and Discussion). And unlike our previous work on n-alkane [106], we have included

the intramolecular interaction in Equation (8.38), even though the contribution is not that

significant. It can be expected that the intramolecular term is going to lead to a slightly

larger free volume due to its attractive nature that the intramolecular force −dubond/dr is

always negative. As shown in our previous work [85], Equation (8.37) can be recast to a van

der Waals equation, which then enables us to quantify effective pressure and free volume in

the melt. This GvdW equation was originally developed by Eu and Rah [64].

(p+ Aρ2b)(N −Bρb) = β−1ρb (8.40)
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With the GvdW parameters A and B defined as:

A = −2π

3

∫︂ ∞

r+
I(r)dr (8.41)

B =
1

ρb

[︂
N − 1

1 + 2πβρb
3

∫︁ r+
0
I(r)dr

]︂
(8.42)

The mean free volume per bead and the effective pressure are then defined as ⟨vf,i⟩ = 1
ρb
(N−

Bρb) and peff = p+Aρ2b , respectively. The lower and upper limit of the integrals in Equation

(8.41) and Equation (8.42), which are r+, is the cavity diameter of the bead obtained from

the plot of I(r) as a function r (cf., Results and Discussion).

8.3 Results and Discussion

8.3.1 Length Scales and GvdW Parameters

Table 8.1: rc, r
+ and α for polyethylene with different structures at T = 450 K. These

quantities are not dependent significantly on M .

Structures rc (nm) r+ (nm) α
Linear chain 0.305 0.354 0.578

Ring 0.307 0.354 0.578
Four-arm symmetrical star 0.306 0.354 0.578

Figure 8.3 shows a plot of I(r) as a function of r for polyethylene with different structures

and M = 14000 g ·mole−1 at T = 450 K. From such plot, four different length scales can

be extracted straightforwardly. In Figure 8.3, these four different lengths are rc, r
+, rpm

and rfm, which correspond to the hard-core diameter, cavity diameter, distances at potential

minimum and force minimum, respectively. The overlapping parameter α is related to the

r+, rpm as well as rfm that α =
[︂
1−

(︁ rfm−rpm
r+

)︁]︂3
. The corresponding values of these length

scales and α, as well as the activation volume v+i = π
6
r+3 for polyethylene with all different

structures are summarized in Table 8.1. Polyethylene with different structures share the

same values of r+, α and v+i , which are 0.354 nm, 0.578 and 0.0232 nm3.

The effect of temperature on these length scales were also investigated as a function of

temperature. Table 8.2 shows the values of these length scales and α at different temperatures
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for linear polyethylene chain with M = 2128 g ·mole−1. It was found that again these

parameters were not strongly dependent on temperature.

Table 8.2: T dependence of different rc, r
+ and α of linear polyethylene chain with M =

2128 g ·mole−1.

Temperature (K) rc (nm) r+ (nm) α
400 0.305 0.352 0.576
416 0.304 0.352 0.575
476 0.302 0.350 0.574
500 0.301 0.349 0.573

Figure 8.3: A plot of I(r) as a function of r for polyethylene with different structures. Four
length scales rc, r

+, rpm and rfm are extracted from this plot at T = 450 K.
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(a) Parameter A (b) Parameter B

Figure 8.4: GvdW parameters A and B as a function of M for polyethylene with different
structures at T = 450 K. A and B are calculated using Equation (8.41) and Equation (8.42).
The solid lines are guides only.

Table 8.3: Parameter B of polyethylene with three different structures and M . These values
are listed in this Table as the difference is not obvious as depicted in Figure 8.4b at T = 450 K.
Yet, we found that a small difference in B can lead to a significant disparity in free volume
calculation.

M (Linear) B (nm3) M (Ring) B (nm3) M (Star) B (nm3)
(g ·mole−1) (g ·mole−1) (g ·mole−1)

420 0.928 420 0.923 462 1.019
560 1.240 560 1.235 574 1.269
700 1.552 700 1.547 686 1.518
840 1.864 840 1.859 798 1.768
980 2.176 980 2.171 910 2.017
1120 2.488 1120 2.484 1022 2.267
1260 2.800 1260 2.796 1134 2.517
1400 3.112 2800 6.233 1302 2.892
2800 6.236 4200 9.358 1470 3.266
4200 9.361 5600 12.483 2870 6.391
5600 12.485 7000 15.608 4270 9.515
7000 15.610 8400 18.733 5670 12.640
8400 18.735 9800 21.858 7070 15.765
9800 21.860 11200 24.983 8470 18.890
11200 24.984 12600 28.108 9870 22.015
12600 28.109 13986 31.202 11270 25.140

Armed with the knowledge of r+, the parameters A and B are calculated using Equation

(8.41) and Equation (8.42) for all structures with different M as shown in Figure 8.4a and
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b, respectively. As mentioned above, they are useful in quantifying the mean free volume

as well as the effective pressure. The magnitude of A can be negative as demonstrated in

simulation of Lennard-Jones particle by Laghaei et al. [65]. Similar to the compressibility

factor, A changes most dramatically with M in linear chain and it remains more or less

at a constant positive value for ring polymer. As for the parameter B, M dependence of

this parameter is more or less the same for polyethylene with different structures. The fact

that B increases with M is expected as B is related to the excluded volume of the whole

polyethylene molecule, of which the molecular size increases with M . The difference in the

parameter B is not obvious as depicted in Figure 8.4. But a small difference in parameter

B can lead to a huge disparity in the calculated mean free volume per bead ⟨vf,i⟩. Such

difference in parameter B is much better apprecipated in Table 8.3.

(a) Parameter A (b) Parameter B

Figure 8.5: GvdW parameters A and B as a function of T for linear polyethylene chain with
different M . A and B are calculated using Equation (8.41) and Equation (8.42). The solid
lines are guides only.

The influence of temperature on A and B for linear polyethylene chain with M =

1190 g ·mole−1, M = 2128 g ·mole−1 and M = 11396 g ·mole−1 is illustrated in Figure

8.5. For A, A becomes less negative as temperature increases; Similarly, the difference in

B seems not to change much with temperature as shown in Figure 8.5. However, a small

change in B with temperature can significantly influence the calculated value of ⟨vf,i⟩ at

different temperatures. Such difference in parameter B at different temperatures for linear

polyethylene is much better observed in Table 8.4.
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Table 8.4: Parameter B as a function of temperature for linear polyethylene with M =
1190 g ·mole−1, M = 2128 g ·mole−1 and M = 11306 g ·mole−1. The change in these values
of parameters B with temperature are listed in this Table as it is not obvious as shown in
Figure 8.5b.

M = 1190 g ·mole−1 M = 2128 g ·mole−1 M = 11306 g ·mole−1

T (K) B (nm3) T (K) B (nm3) T (K) B (nm3)
400 2.440 400 4.369 400 23.434
416 2.464 416 4.411 410 23.578
426 2.478 426 4.438 440 24.009
436 2.493 436 4.464 450 24.152
446 2.508 446 4.491 470 24.439
450 2.514 450 4.502 500 24.870
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8.3.2 Molecular Weight Dependence of Zero-Shear Viscosity

Figure 8.6: Zero-shear viscosity as a function of M for polyethylene with different structures
at T = 450 K calculated using Equation (8.19) and the parameters obtained from the free
volume analysis (filled markers). Our calculation results of linear polyethylene were compared
with experimental data by Pearson et al. ( ) [7] as well as simulation data of Padding and
Briels ( ) [8], as well as Halverson et al. ( ) [6]. Results for ring polyethylene were compared
with simulation data by Halverson et al. ( ) [6] as well as Tsolou et al. ( ) [4]. Results for
four-arm symmetrical star polyethylene are compared with our MD simulation data ( ) [9].
It should be noted that the data from Halverson et al. [6] have been shifted accordingly to
compare with our theory as in their work, the viscosity are in reduced unit. Note that the
blue, red and green colours as depicted in the plots correspond to linear, ring and four-arm
symmetrical polyethylene, respectively. Slopes of these linear curves below and aboveMc are
listed in Table 8.5.

Using Equation (8.19) along with the free volume parameters determined from last section,

viscosity of polyethylene with different structures over the molecular weight range of 420 −

14, 000 g ·mole−1 at 450 K were calculated and the results are shown in Figure 8.6. The

data show a positive non-linear dependence on molecular weight. For each structure, linear

lines were fitted to the low and high molecular weight regimes. The resultant slopes are

indicated in Table 8.5 with Mc ≈ 3, 000 g ·mole−1. As mentioned in the Introduction, for

linear polyethylene, the slopes below and above Mc are always stronger than 1 and 3 than

that predicted in the Rouse model and reptation model, respectively. Comparison among
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different structures reveals that the slope is slightly less positive both below and above Mc

for ring and four-arm symmetrical star polyethylene. This is in good agreement with the

simulation data of Xu et al. [110], which shows that the exponent in the M dependence is

slightly weaker in branched polymers compared to that of linear chain. Due to the absence

of experimental and simulation viscosity of four-arm symmetrical star polymer, η of the four-

arm symmetrical star polyethylene is compared with our own MD simulation data, which

was evaluated using the method as described in one of our previous work [9] and these data

are not yet published.2 We found good agreement between simulation and our free volume

theory that the slopes below and above Mc are similar. For linear and ring polyethylene,

within a range of M = 420 − 14000 g ·mole−1, the calculated viscosity agrees well with the

experimental data of Pearson et al. [7] as well as the simulation data of Halverson et al.

[6], and Padding and Briels [8]. For ring polyethylene melts, our data were compared with

Tsolou et al. [4] as well as Halverson et al. [6]. The slope below Mc for ring polyethylene is

1.1, which is very close to 1, and that this scaling for rings below Mc at T = 450 K agrees

well with that of the Rouse model. The slope above Mc for ring polyethylene is significantly

lower than that of its linear counterpart (cf., Table 8.5). Mckenna et al. [84] found that both

M dependence and T dependence of η is not much different in linear and cyclic polystyrene.

However, a weaker M dependence of cyclic polystyrene compared to its linear counterpart

for M < 105 g ·mole−1 above Mc was observed in a more recent experimental measurement

of high-purity cyclic polystyrene by Doi et al. [100]. Tsalikis et al. [99] also demonstrated a

scaling of η ∼M1.7 aboveMc for ring PEO, which is much weaker than its linear counterpart.

It has to be noted that the slightly higher calculated value of η of ring polyethylene compared

with the MD simulation data of Tsolou et al. [4] observed below Mc is due to the fact

that in our calculation using PRISM theory, the number density of bead ρb is always fixed

at ρb = 32 nm−3 (cf., Section 8.2.3) and that the viscosity obtained from the solution to

Boltzmann equation is not dependent on ρb, whereas in the MD simulation done by Tsolou

et al. [4], the calculated value of ρb is a result from numerical solution to the equation of

motion of bead, which can change with N , leading to different values of η.

2The data as depicted in Figure 8.6 were extracted using the POD method (as described in ref. [9]) on
NPT MD simulation, whereas the data as published in ref. [9] were obtained from NVT MD simulation. In
addition, in the latter case, the data are for unentangled polyethylene only. This is why we claimed that
these data are not yet published.
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Table 8.5: Slopes of the linear curves as shown in Figure 8.6 for polyethylene with different
structures, as well as the corresponding values of ϕ+ − F .

Structures Below Mc Above Mc ϕ+ − F
Linear chain 1.45 3.28 0.06

Ring 1.10 1.40 0.02
Four-Arm Symmetrical Star 1.33 2.72 0.05

One noteworthy point is that the accuracy of the viscosity calculated using Equation

(8.19) is very sensitive to the difference between the two free volume parameters in the

equation (i.e., (ϕ+ − F )). In other words, values other than those shown in Table 8.5 (0.06,

0.02 and 0.05 for the linear, ring and four-arm symmetrical star polyethylene, respectively)

would yield incorrect viscosity prediction. It is also interesting to note that the values of ϕ+

and F are sensitive to the simulation method or model used but their difference (ϕ+ − F )

is not. For example, in our previous work, when the PRISM theory along with the Percus-

Yevick closure was used for linear polyethylene oligomer, a ϕ+ value of 0.43 was obtained at

443.5 K [106]. However, MD simulation yielded a ϕ+ value of 0.22 at 450 K [85]. This is

because ϕ+ is related to the activation energy of the macromolecule, which in turn relies on

the effective pressure. Since the effective pressure of a real polymer chain in MD simulation

is higher than that of a Gaussian chain used in the PRISM theory, ϕ+ determined from

the PRISM theory must be higher than that of the MD simulation as both methods should

give the same activation energy. The PRISM theory also gives higher F value than the MD

simulation. This leads to the situation that (ϕ+−F ) is insensitive to the simulation method

used and was observed in our previous work [85, 105, 106].

8.3.3 Temperature Dependence of Zero-Shear Viscosity

With GvdW parameters at different temperatures as well as the values of ϕ+−F obtained in

the previous section (cf., Table 8.5), it is possible to calculate η as a function of temperature

using Equation (8.20). It is well-known that the temperature dependence of η also follows

an Arrhenius relation in the high temperature region:

η ∼ exp
(︂Eapp

a

RT

)︂
(8.43)
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where Eapp
a is the apparent activation energy and R is the ideal gas constant. This relation

is going to be used as a means to extract Eapp
a from the experimental data of Pearson et al.

[7] and our calculated data from Equation (8.20) so as to evaluate the quality of agreement

between our free volume theory and the experimental measurements. As shown in Figure 8.7,

the calculated results (filled markers) agree well with that of the experimental results (unfilled

markers) for polyethylene chains with all three different Ms (M = 1190 g ·mole−1, M =

2128 g ·mole−1, M = 11396 g ·mole−1). The data were then fitted to the Arrhenius relation

with the solid and dashed lines being fits to the calculated data and experimental data in

Figure 8.7, respectively. The fitting results were also listed in Table 8.6. Our free volume

theory predicts Eapp
a ≈ 5.30 − 7.70 kcal ·mole−1, whereas experimental values are Eapp

a ≈

5.50− 6.75 kcal ·mole−1.3

Table 8.6: GvdW parameters obtained at different temperatures and the very same value of
ϕ+ evaluated from above results were input in Equation (8.20) to calculate η(T ) for polyethy-
lene with different M and structures. The apparent activation energy Eapp

a is derived from
fitting of both the calculated and experimental data to an Arrhenius form.

M (g ·mole−1) Calc. Eapp
a (kcal ·mole−1) Expt. Eapp

a (kcal ·mole−1)
1190 (Linear chain) 5.29 5.49
2128 (Linear chain) 5.46 6.36
11396 (Linear chain) 7.66 6.74

3The deviation in Eapp
a between prediction and experiment changes with M because in the polymer free

volume theory, the integral
∫︁∞
ϕ+ Pddϕ becomes a much stronger function of temperature as M increases, which

then affects the calculated value of viscosity (cf., Equation (8.20)).
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Figure 8.7: Temperature dependence of η for linear polyethylene chain with M =
1190 g ·mole−1, M = 2128 g ·mole−1 and M = 11396 g ·mole−1. The filled markers are
data calculated using Equation (8.20) and the unfilled markers are experimental data of
Pearson et al. [7]. The solid and dashed linear curves are fitting of the calculated and the
experimental to the Arrhenius relation, which gives us the apparent activation energy in
Table 8.6.

Finally, in the future, the temperature dependence of the viscosity of ring and four-

arm symmetrical star polyethylene shall be investigated either experimentally or by MD

simulation, so as to verify the validity of the associated values of ϕ+ −F . We are also aware

of the exponential behavior in the M dependence of viscosity of highly entangled branched

polymers, which is as follows:

η ∼
√︁
Ma/Me exp

(︂
ν
Ma

Me

)︂
(8.44)

Ma andMe are the molecular weight of arm and entanglement molecular weight, respectively

[111]. However, this exponential behaviour is observed in highly entangled star polystyrene

with M >> 105.5 g ·mole−1, which corresponds to around 3000 repeat units [112], whereas

in this work, we only consider star polyethylene with a molecular weight range of M =

420 g ·mole−1 to M = 14000 g ·mole−1, which corresponds to 15 to 500 repeat units. The

tube model predicts that the exponent ν in Equation (8.44) has a value of 15/8; however

experiment showed a value of 0.6 for polyisoprene [111]. As for whether the present free

volume approach could predict such exponential behavior or not, we would like to postpone
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this as a future research plan, which will focus only on branched polymers. The main focus

of the present study is to demonstrate the capability of our free volume theory in predicting

the crossovers in the M dependence of viscosity of polyethylene with different structures.

In addition, owing to the fact that the potential well in the Lennard-Jones potential for

a coarse-grained polystyrene is too deep as the potential well is around 3 kJ ·mole−1 to 4

kJ ·mole−1 [113], which leads to a difficulty in the convergence of PRISM theory calculation,

our plan in the calculation of free volume and viscosity of polystyrene was thwarted. Our

next plan also includes troubleshooting this issue.

8.4 Conclusion

Based upon the Doolittle concept that viscosity and free volume are inversely related, we

applied the Boltzmann equation and the polymer free volume theory of Wong and Choi to

describe the crossovers in the M dependence of viscosity for polyethylene with linear, ring

and four-arm symmetrical star structures over a M range of 420 − 14, 000 g ·mole−1. In

particular, the predicted scaling of M below (1.5) and above (3.3) the crossover for linear

polyethylene and the crossover value (3, 000 g ·mole−1) agrees well with experiment. A

weakerM dependence of η was observed in ring and four-arm symmetrical star polyethylene.

In this work, we demonstrated that the accuracy of the viscosity prediction was sensitive to

the difference between two free volume parameters (i.e., (ϕ+ − F )) and that such differences

are 0.06, 0.02 and 0.05 for the linear, ring and four-arm symmetrical star polyethylene,

respectively. Here, F signifies the probability of a bead finding free volume greater than the

critical free volume while the fraction of such beads (ϕ+) is related to the activation energy.

The corresponding (ϕ+ − F ) value of the linear structure was then used to determine the T

dependence of η at three different M , giving apparent activation energy Eapp
a values in the

range of 5.30 − 7.70 kcal ·mole−1 that are in good agreement with experimental values of

5.50− 6.75 kcal ·mole−1.
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Chapter 9

Conclusion

9.1 Main Findings and Contributions

All in all, this thesis can be divided into two main parts: Rouse model and relaxation

dynamics of polyethylene melts with different structures (Chapter 3 and Chapter 4), and a

free volume theory for the diffusivity and viscosity of linear, ring and four-arm symmetrical

star polyethylene melts (Chapters 5−8).

In the first part of the thesis, we have demonstrated that an inertia term can be incor-

porated into a linear equation of motion of Rouse’s chain so as to extract the velocity time

correlation function, which relies on the eigenvalue and eigenfunction method. When the

equation of motion becomes nonlinear, in which the eigenfunction cannot be analytically

obtained, the POD method can be applied. Based on the numerical solution to the nonlinear

equation of motion, eigenmodes can be determined using the POD method. The eigenmodes

allow us to easily calculate the zero-shear viscosity of the polymer melts.

In the second part of the thesis, a free volume theory, which can account for the crossover

in the size dependence of the diffusivity and viscosity of polymers with different structures,

was presented. Such theory was derived based on the probability for the polymer molecules

having sufficient free volume for activation of diffusive motion or momentum transfer, and

the probability can be theoretically calculated utilizing the radial distribution functions of

the polymer melts, which can be obtained from either MD simulation or PRISM theory. The
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free volume theory is also capable of describing the temperature effect on the size dependence

of the diffusivity of oligomers as reported by von Meerwall et al. [1]. It was found that our

free volume theory is more powerful in prediction of viscosity compared to that of diffusivity

of polymer melts that it covers a wider range of M in the former case.

9.2 Future Work

9.2.1 Nonlinear BD model and POD method

To the best of our knowledge, most theoretical studies on the dynamic properties in the

literature focus on the polyethylene due to its simple structure, whereas studies on other

polymers, such as polystyrene, polybutadiene and polyethylene glycol, seem to be lacking.

As the POD method does not require the knowledge of the analytical solution of equation of

motion, it can be readily applied to these aforementioned polymers even if they are not coarse-

grained. Additionally, the nonlinear BD model presented is only restricted to unentangled

polymers, but not entangled polymers. Future investigation is directed towards the possibility

of incorporating extra terms in the BD equation of motion to account for the entanglement

effect.

In addition, experimental data and simulation data of entangled symmetrical star polyethy-

lene are also lacking in the literature, which makes comparison with our free volume theory

impossible. As mentioned in Chapter 8, preliminary POD analysis was performed for the

MD data of four-arm symmetrical star polyethylene with N > Nc, and these data will be

more thoroughly studied in the future.

9.2.2 Free Volume Theory

Calculation of Shear Relaxation Modulus

Furthermore, it is possible that the analysis of free volume may be incorporated into the

analysis of relaxation times of the macromolecules, such that it can generate shear relaxation

modulus of polymer with different structures. This is an interesting question to think about
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as a plateau modulus is absent in ring polymer with M > Mc, whereas the reverse is true

in linear polymer. We envisage that with the same value of ϕ+ − F in our free volume

theory along with the Verdier-Stockmayer theory [114, 115], one may be able to predict the

shear relaxation modulus as a function of time for polymer melts with different structures in

addition to their corresponding N dependence of η.

Limitation and Possible Improvement of the Free Volume Theory

Despite the success of our free volume theory in describing the crossover in the size dependence

of the diffusivity of linear and ring polymers, there exists a two limitations in our theory:

1. Our free volume theory can only describe the crossover in diffusivity within a particular

range of N (i.e., N < 500) and that in viscosity with N < 1000. As N → ∞, our theory

gives a much more negative and more positive exponent than −2.4 and 3.4, respectively.

As shown in Chapter 7, as N → ∞, the Pd(ϕ) becomes narrower as determined by our

theoretical approximation. This theoretical approximation of Pd(ϕ) may not be valid

anymore as N → ∞, and it may be tested by MD simulation in the future. This is

because in MD simulation, one can count the number of beads of the macromolecule

having sufficient free volume directly, and thus to get the exact Pd(ϕ) distribution.

2. As shown in Chapter 5 and Chapter 6, the justification of ϕ+ still relies on the ex-

perimental data of Dcm and η as a function of temperature due to the absence of a

theoretical method for determining the activation energy of a macromolecule. It is

postulated that such activation energy should be related to the flexibility of the chain

molecule. In other words, the angle bending potential as well as torsion potential may

influence how high the activation energy is. Another way to justify the value of ϕ+

is perhaps the application of the same value of (ϕ+ − F ) in the reproduction of the

experimental value of shear relaxation modulus of the polymer.

3. The theory in the present form depends on free volume analysis of polymer melts, which

is a numerical procedure. This makes our free volume theory less easily accessible.

Hence, another future plan is that we should attempt to simplify the free volume
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analysis such that it is analytical (or at least any numerical calculations are further

minimized) and can be done even without any computer.

Branched Polymer Melts, Blend of Linear and Ring Polymers, as well as Polymer
Solutions

It is envisaged that the existing free volume theory at this stage can be readily applied to

the calculation of diffusivity in other cases, such as a star polymer, a polydisperse polymer

melt, a blend of linear and ring polymers, as well as polymer solutions. The intermolecu-

lar and intramolecular radial distribution functions of these systems can be straightforwardly

calculated using either PRISM or MD simulation for obtaining the probability for the macro-

molecule finding sufficient free volume.

9.2.3 Relation among the Velocity Time Correlation Function, the
POD Method and the Free Volume Theory

The procedures and results as demonstrated in Chapter 3 are useful in the evaluation of

diffusivity and viscosity of dilute polymer medium. The more precise form of the stress

tensor is:

σ =
∑︂
j

mvjvj

V
+

1

2V

∑︂
i

∑︂
j

rijFij (9.1)

In Chapter 1, we have shown that armed with the understanding of binary collision between

two particles, the diffusivity and viscosity of dilute gases can be derived from the velocity

time correlation function and the time correlation function of stress, respectively. In the

Rouse model, the kinetic term in the stress tensor of Equation (9.1) is neglected. In Chapter

4, we have used such assumption in the Rouse model to derive the zero-shear viscosity of

unentangled polyethylene melt. On the contrary, in Chapter 8, we have only considered the

kinetic contribution to the stress tensor, as mathematically it can be shown that the potential

term from intramolecular interaction has no effect on the shear stress. Nonetheless, armed

with the knowledge of velocity time correlation function of polymers in Chapter 3 and the

kinetic theory of gases in Chapter 1, we should also be able to evaluate the viscosity of dilute

polymer medium by integrating the stress correlation function over time instead of using
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Boltzmann equation. This is another possible direction of our future plan. The validity of

neglecting the kinetic contribution to the stress tensor in the Rouse model will also be tested

in the future.

Finally, as demonstrated in Chapter 4 and Chapter 8, the POD analysis and the free

volume theory both give us the zero-shear viscosity of the polyethylene melts, which is rea-

sonably comparable to the experimental values. The zero-shear viscosity calculated by these

two methods will be more thoroughly compared in the future.
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Appendix A

A Review on the Relaxation
Dynamics Analysis of Unentangled
Polymers with Different Structures1

A.1 Introduction

Polyethylene melts exhibit interesting dynamic behavior as a function of the chain length.

Due to the simplicity of its structure, its dynamic properties, such as diffusivity (Dcm) and vis-

cosity (η), have been studied both experimentally and theoretically [21, 116, 50, 7, 1, 20, 43].

In particular, its dynamic properties as a function of its size has drawn a lot of attentions

from both theorists and experimentalists. Generally, it was experimentally observed that

for linear polymers, at a temperature of 175 ◦C, Dcm ∼ N−1.5 and Dcm ∼ N−2.2 in unen-

tangled and entangled regimes, respectively [1, 85, 44, 3] and N is the chain length. Two

classic theoretical models, which are the Rouse model [20] and reptation model [21, 116, 50],

were developed to aid interpretation of experimental data in the unentangled and entangled

regimes, respectively. The studies on the dynamics of polyethylene melts are not only re-

stricted to the classic linear structure, but also ring [117, 5, 79, 6, 3, 4] and branched polymers

[110, 118, 119], due to their peculiar dynamic behavior and topological properties. Under-

standing of the dynamic behavior of ring polymers is also important in the area of molecular

biology due to the fact that DNA exhibits circular structure [80].

1A version of this chapter has been published in Mol Simul, 2020, 1-12.
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It is pertinent to point out that the scaling relation Dcm ∼ N−1 and Dcm ∼ N−2 derived

from the Rouse model and reptation model, respectively, are not perfectly in line with the

experimental and simulation results. For the classic linear structure, the Rouse model can

only account for the scaling relation within a very narrow range of M below the crossover

molecular weight (Mc). Harmadaris et al. [69] showed that Dcm ∼ N−1 only within the range

of 60 < N < Nc, whereas for N < 60, the scaling relation is much stronger as demonstrated

by von Meerwall et al. [1]. The reptation model is only capable for accounting the scaling

relation in the entangled regime only after consideration of contour length fluctuation. [101,

44] In addition, the reptation model cannot be directly applied to polymers with different

architectures. For instance, it was proposed that the motion of branched polymer adopts an

arm retraction mechanism, which should be incorporated in the reptation model [21, 116, 50]

and that the motion of ring polymer has to be mapped to that of branched polymer so as to

elucidate its peculiar dynamic behavior [78, 79]. In spite of these limitations, these models

still give us insight into the motion of a linear chain. In particular, multiple researchers still

applied the eigenfunctions derived from the Rouse model, also known as the Rouse modes,

to the numerical solution of the nonlinear equation of motion and entangled polymer melts

for the determination of different relaxation times (τp), even though the Rouse mode may

not be valid in the case of entangled polymer melts [22, 8, 27].

In this paper, we would like to focus on the relaxation dynamic and the viscosity of

polymers with different structures in the unentangled regime. The Rouse model [20] is useful

in such analysis. Nonetheless, it is limited to the case of unentangled linear polyethylene (i.e.

for short polyethylene), and neglects the inertia term in the equation of motion. This would

make the calculation of velocity time correlation functions impossible. Such inertia term can

be incorporated to the equation of motion and an analytical solution can then be derived as

demonstrated previously by our group [120]. Briefly, such derivation relies on the eigenvalue

and eigenfunction method. In the forthcoming section, we will show that similar analysis can

be applied to ring and four-arm symmetrical star polymers. However, such eigenvalues and

eigenfunctions can only be obtained when the equation of motion is linear. This shows that

the Rouse model can be improved by incorporation of inertia term and it can also be changed

to apply to polymers with different structures, such as ring and four-arm symmetrical star.

As mentioned above, another limitation of the Rouse model is that the harmonic bond
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stretching potential has an equilibrium length of zero, which means that the beads are allowed

to overlap with one another. Nonetheless, if a finite value of equilibrium length was to be

used in the harmonic bond stretching potential, the equation of motion is nonlinear, which

makes the analytical derivation of eigenfunctions impossible [9]. This is also true in MD

simulation, in which angle bending and torsion potentials, as well as 6-12 Lennard-Jones

potential are included, making the equations of motion highly nonlinear. We are going to

discuss Rouse mode analysis and other available relaxation mode analysis methods, such as

proper orthogonal decomposition (POD) method, which offers a way to reduce the order

of the model and allows us to calculate such ‘eigenfunctions’ (also known as eigenmodes)

from the numerical solutions to the nonlinear equations of motion. The eigenmodes can be

applied for obtaining different relaxation times. This method can then be readily applied

to polymers with different structures to obtain dynamic properties, such as the zero-shear

viscosities. Below is an overview of this paper:

• Analytical solutions to the Rouse model with inertia effect for polymers with different

structures.

• Review of the Rouse mode analysis and other available relaxation mode analysis method.

• Time correlation functions of eigenmodes from the POD method and zero-shear viscos-

ity.

A.2 Preliminaries

Consider the simplest case that a single classical particle in one dimensional space is subjected

to a harmonic potential. The Langevin dynamics equation of motion for a single particle

under such potential can be written as follows:

m
d2x

dt2
+ ζ

dx

dt
= −kx+ f(t) (A.1)

ζ is the friction coefficient, m is the mass of that single classical particle, k is the spring

constant and x is the position of the particle. f(t) is the stochastic force. Alternatively,
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Equation (A.1) can be rewritten in a system of two ordinary differential equations.

m
dv

dt
+ ζv = −kx+ f(t) (A.2)

v =
dx

dt
(A.3)

This system of differential equations can be easily solved by rewriting in the state-space

representation.
d

dt

[︃
x
v

]︃
=

[︃
0 1

− k
m

− ζ
m

]︃ [︃
x
v

]︃
+

[︃
0
f(t)
m

]︃
(A.4)

The solution is as follows: [︃
x
v

]︃
= eAt

[︃
x
v

]︃
0

+ eAt
∫︂ t

0

e−Aτ

[︃
0
f(τ)
m

]︃
dτ (A.5)

Laplace transformation of the above solution gives us:[︃
X(s)
V (s)

]︃
= (sI−A)−1

[︃
x
v

]︃
0

+ (sI−A)−1

[︃
0

F (s)
m

]︃
(A.6)

The task has become evaluating (sI−A)−1, which has the following form:

(sI−A)−1 =

⎡⎣ s+ ζ
m

s(s+ ζ
m
)+ k

m

1

s(s+ ζ
m
)+ k

m
− k

m

s(s+ ζ
m
)+ k

m

s

s(s+ ζ
m
)+ k

m

⎤⎦ (A.7)

A.2.1 Case 1: k
m > ζ2

4m2

This can be transformed back to the time domain. If k
m

≫ ζ2

4m2 :

eAt = e−
ζt
2m

⎡⎢⎢⎣cos(
√︂

k
m
− ζ2

4m2 t) +
ζ sin(

√︂
k
m
− ζ2

4m2 t)

2m(
√︂

k
m
− ζ2

4m2 )

sin(
√︂

k
m
− ζ2

4m2 t)√︂
k
m
− ζ2

4m2

−k sin(
√︂

k
m
− ζ2

4m2 t)

m
√︂

k
m
− ζ2

4m2

cos(
√︂

k
m
− ζ2

4m2 t)−
ζ sin(

√︂
k
m
− ζ2

4m2 t)

2m
√︂

k
m
− ζ2

4m2

⎤⎥⎥⎦ (A.8)

Leading to the following solutions:

x(t) = x(0)e−
ζt
2m

[︂
cos(

√︃
k

m
− ζ2

4m2
t) +

ζ sin(
√︂

k
m
− ζ2

4m2 t)

2m(
√︂

k
m
− ζ2

4m2 )

]︂
+ v(0)

e−
ζ

2m
t sin(

√︂
k
m
− ζ2

4m2 t)√︂
k
m
− ζ2

4m2

+ h(t)

(A.9)
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v(t) = −x(0)e−
ζt
2m

k sin(
√︂

k
m
− ζ2

4m2 t)

m
√︂

k
m
− ζ2

4m2

+v(0)e−
ζt
2m

[︂
cos(

√︃
k

m
− ζ2

4m
t)−

ζ sin(
√︂

k
m
− ζ2

4m2 t)

2m
√︂

k
m
− ζ2

4m2

]︂
+g(t)

(A.10)

where,

h(t) = e−
ζ

2m
t

∫︂ t

0

e
ζ

2m
τ
sin(

√︂
k
m
− ζ2

4m2 (t− τ))√︂
k
m
− ζ2

4m2

f(τ)dτ (A.11)

g(t) = e−
ζ

2m
t

∫︂ t

0

e
ζ

2m
τ
[︂
cos(

√︃
k

m
− ζ2

4m2
(t− τ)) +

ζ sin(
√︂

k
m
− ζ2

4m2 (t− τ))

2m
√︂

k
m
− ζ2

4m2

]︂
f(τ)dτ (A.12)

We can then obtain different time correlation functions of the position and velocity:

⟨x(t)x(0)⟩ = ⟨x2⟩e−
ζt
2m

[︂
cos(

√︃
k

m
− ζ2

4m2
t) +

ζ sin(
√︂

k
m
− ζ2

4m2 t)

2m(
√︂

k
m
− ζ2

4m2 )

]︂
(A.13)

⟨v(t)v(0)⟩ = ⟨v2⟩e−
ζt
2m

[︂
cos(

√︃
k

m
− ζ2

4m
t)−

ζ sin(
√︂

k
m
− ζ2

4m2 t)

2m
√︂

k
m
− ζ2

4m2

]︂
(A.14)

A.2.2 Case 2: ζ2

4m2 >
k
m

If ζ2

4m2 ≫ k
m
, then the matrix exponential eAt has the following form:

eAt = e−
ζt
2m

⎡⎢⎢⎣cosh(
√︂

ζ2

4m2 − k
m
t) +

ζ sinh(
√︂

ζ2

4m2−
k
m
t)

2m(
√︂

ζ2

4m2−
k
m
)

sinh(
√︂

ζ2

4m2−
k
m
t)√︂

ζ2

4m2−
k
m

−k sinh(
√︂

ζ2

4m2−
k
m
t)

m
√︂

ζ2

4m2−
k
m

cosh(
√︂

ζ2

4m2 − k
m
t)− ζ sinh(

√︂
ζ2

4m2−
k
m
t)

2m
√︂

ζ2

4m2−
k
m

⎤⎥⎥⎦
(A.15)

Such that, the solution now becomes:

x(t) = x(0)e−
ζt
2m

[︂
cosh(

√︃
ζ2

4m2
− k

m
t)+

ζ sinh(
√︂

ζ2

4m2 − k
m
t)

2m(
√︂

ζ2

4m2 − k
m
)

]︂
+v(0)

e−
ζ

2m
t sinh(

√︂
ζ2

4m2 − k
m
t)√︂

ζ2

4m2 − k
m

+h(t)

(A.16)

v(t) = −x(0)e−
ζt
2m

k sinh(
√︂

ζ2

4m2 − k
m
t)

m
√︂

ζ2

4m2 − k
m

+v(0)e−
ζt
2m

[︂
cosh(

√︃
k

m
− ζ2

4m
t)−

ζ sinh(
√︂

ζ2

4m2 − k
m
t)

2m
√︂

ζ2

4m2 − k
m

]︂
+g(t)

(A.17)
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where,

h(t) = e−
ζ

2m
t

∫︂ t

0

e
ζ

2m
τ
sinh(

√︂
ζ2

4m2 − k
m
(t− τ))√︂

ζ2

4m2 − k
m

f(τ)dτ (A.18)

g(t) = e−
ζ

2m
t

∫︂ t

0

e
ζ

2m
τ
[︂
cosh(

√︃
ζ2

4m2
− k

m
(t− τ)) +

ζ sinh(
√︂

ζ2

4m2 − k
m
(t− τ))

2m
√︂

ζ2

4m2 − k
m

]︂
f(τ)dτ (A.19)

The time correlation functions now become:

⟨x(t)x(0)⟩ = ⟨x2⟩e−
ζt
2m

[︂
cosh(

√︃
ζ2

4m2
− k

m
t) +

ζ sinh(
√︂

ζ2

4m2 − k
m
t)

2m(
√︂

ζ2

4m2 − k
m
)

]︂
(A.20)

⟨v(t)v(0)⟩ = ⟨v2⟩e−
ζt
2m

[︂
cosh(

√︃
k

m
− ζ2

4m
t)−

ζ sinh(
√︂

ζ2

4m2 − k
m
t)

2m
√︂

ζ2

4m2 − k
m

]︂
(A.21)

In this case, we can extract the diffusivity easily by assuming that ζ2

4m2 ≫ k
m

such that the

evaluation of the mean square displacement ⟨(x(t)− x0)
2⟩ can be simplified.

⟨(x(t)− x0)
2⟩ = ⟨h(t)2⟩ (A.22)

With:

⟨h(t)2⟩ = m2

ζ2

∫︂ t

0

∫︂ t

0

(︂
1− e−

ζ
m
(t−τ1)

)︂(︂
1− e−

ζ
m
(t−τ2)

)︂
⟨f(τ1)f(τ2)⟩dτ1dτ2 (A.23)

⟨f(τ1)f(τ2)⟩ = 2kbT
ζ
m2 δ(τ1 − τ2). This is going to give us:

⟨h2(t)⟩ = 2kbT

ζ
t− 3kbTm

ζ2
+

4kbTm

ζ2
e−

ζ
m
t − kbTm

ζ2
e−

2ζ
m
t (A.24)

As time approaches to infinity, we then have:

lim
t→∞

⟨(r − r0)
2⟩ = 2kbTt

ζ
(A.25)

Therefore, D = kbT
ζ
.

A.3 Analytical Solution of Linear Dynamics: Time Cor-

relation Functions and Velocity Correlation Func-

tions of Linear, Ring, and Star Polymers

In this sense, we can also write a Langevin dynamics equation of motion for polymers with

different structures by assuming that beads are collected to one another by a harmonic bond
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stretching potential. By obtaining the solutions to these equations of motion, different time

correlation functions can then be derived.

A.3.1 Linear Polymer

For linear polymer, the Langevin dynamics equation of motion is written as follows:

d

dt

⎡⎢⎢⎢⎢⎢⎢⎣
xn

yn

zn
vx,n

vy,n

vz,n

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I
k
m
A 0 0 ξI 0 0
0 k

m
A 0 0 ξI 0

0 0 k
m
A 0 0 ξI

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
xn

yn

zn
vx,n

vy,n

vz,n

⎤⎥⎥⎥⎥⎥⎥⎦+
1

m

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
fx,n
fy,n
fz,n

⎤⎥⎥⎥⎥⎥⎥⎦ (A.26)

Such that ξ = ζ
m

and A contains the information of how the beads are connected to one

another. For linear polymer, A has the following form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 . . . 0 0
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0

0
...

. . . . . . . . . 0 0
0 . . . . . . 1 −2 1 0
0 . . . . . . 0 1 −2 1
0 . . . . . . 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.27)

I is N × N identity matrix and A is N × N matrix. xn, yn and zn contains Cartesian

coordinates of the N beads in x, y and z directions, respectively; vx,n, vy,n and vz,n contain

velocities of N beads in three different directions; fx,n, fy,n and fz,n contains the stochastic

force component acting upon the N beads in three directions. These position, velocity and

force vectors in a particular direction have a dimension of N × 1. It is a daunting task to

solve matrix Equation (A.26), but the matrix Equation (A.26) can be rewritten into a partial

differential equation with boundary conditions.

∂2rn
∂t2

+ ξ
∂rn
∂t

=
k

m

∂2rn
∂n2

+
fn
m

(A.28)

where rn and fn are vectors containing the positions of and stochastic force acting upon

nth beads. Thus, these two vectors have N components. Note that the mean ⟨fn⟩ and

mean-sqaure ⟨fn(t)fn(t′)⟩ values of stochastic force fn are 0 and 6kbTζδ(t− t′). The partial
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differential equation (cf., Equation (A.28)) is subjected to the following boundary conditions:

∂rn
∂n

⃓⃓⃓
n=0

= 0,
∂rn
∂n

⃓⃓⃓
n=N−1

= 0 (A.29)

Eigenvalues of λ2p =
p2π2

N2 and eigenfunctions of cos(pπ n
N
) for p = 0, 1, 2, ..., N−1 are obtained.

It is convenient to define normal coordinates for reconstruction of different time correlation

functions:

Xp(t) =
1

N

∫︂ N

0

rn(t) cos(pπ
n

N
)dn (A.30)

Vp(t) =
1

N

∫︂ N

0

vn(t) cos(pπ
n

N
)dn (A.31)

vn is the velocity vector. Based on this, different time correlation functions can be derived

easily. More details on the derivation of the analytical forms of Xp(t) and Vp(t) for the linear

polymer are available in our previous work [120], but we are going to show such procedures

in the case of ring polymer in the forthcoming section, which was not demonstrated in our

previous work [120].

A.3.2 Ring Polymer

As mentioned above, A contains information of the structure of polymer. Therefore, in the

case of ring polymers, we have:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 . . . 0 1
1 −2 1 0 . . . 0 0
0 1 −2 1 . . . 0 0

0
...

. . . . . . . . . 0 0
0 . . . . . . 1 −2 1 0
0 . . . . . . 0 1 −2 1
1 . . . . . . 0 0 1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.32)

The partial differential equation (cf., Equation (A.28)) is now subjected to a slight different

set of boundary conditions:
∂rn
∂n

⃓⃓⃓
n=0

=
∂rn
∂n

⃓⃓⃓
n=N−1

= 0 (A.33)

Interestingly, the eigenvalues of this problem are λ2p =
4p2π2

N2 and there are two sets of eigen-

functions: ψp(n) = cos(2pπ n
N
) as well as ψp(n) = sin(2pπ n

N
), for p = 0, 1, 2..., N−1

2
assuming
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that N is an odd number. This leads to two different sets of normal coordinates for positions

and velocities. Xp and Vp now become:

Xp(t) =
1

N

∫︂ N

0

rn(t) cos(2pπ
n

N
)dn (A.34)

Vp(t) =
1

N

∫︂ N

0

vn(t) cos(2pπ
n

N
)dn (A.35)

With an additional set of normal coordinates defined as:

Yp(t) =
1

N

∫︂ N

0

rn(t) sin(2pπ
n

N
)dn (A.36)

Wp(t) =
1

N

∫︂ N

0

vn(t) sin(2pπ
n

N
)dn (A.37)

For instance, considering Xp and Vp, this allows us to write ordinary differential equations

for each value of p:
d

dt
Xp(t) = Vp(t) (A.38)

d

dt
Vp(t) + ξVp(t) = −

λ2pk

m
Xp(t) +

1

Nm

∫︂ N

0

fn cos(2pπ
n

N
)dn (A.39)

In state-space representation, we obtain:

d

dt

[︃
Xp(t)
Vp(t)

]︃
=

[︄
0 1

−λ2pk

m
−ξ

]︄ [︃
Xp(t)
Vp(t)

]︃
+

[︃
0

1
Nm

∫︁ N
0

fn cos(2pπ
n
N
)dn

]︃
(A.40)

We can then obtain the exact solution easily:[︃
Xp(t)
Vp(t)

]︃
= eAt

[︃
Xp(0)
Vp(0)

]︃
+

1

Nm

∫︂ t

0

eA(t−τ)
[︃

0∫︁ N
0

fn cos(2pπ
n
N
)dn

]︃
dτ (A.41)

where the matrix A has the following form:

A =

[︄
0 1

−λ2pk

m
−ξ

]︄
(A.42)

Laplace transformation then gives us:[︃
X̃p(s)

Ṽp(s)

]︃
= (sI−A)−1

[︃
Xp(0)
Vp(0)

]︃
+ (sI−A)−1

[︃
0

1
Nm

∫︁ N
0

f̃n(s) cos(2pπ
n
N
)dn

]︃
(A.43)

which can be written more explicitly as:[︃
X̃p(s)

Ṽp(s)

]︃
=

1

s(s+ ξ) +
λ2pk

m

[︄
s+ ξ 1

−λ2pk

m
s

]︄ [︃
Xp(0)

Vp(0) +
1
Nm

∫︁ N
0

f̃n(s) cos(2pπ
n
N
)dn

]︃
(A.44)
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Inverse laplace transformation can then give us the solution in the time domain:

Xp(t) = e−
ξt
2

{︂
Xp(0)

[︂
cosh

(︁
ωt
)︁
+
ξ sinh

(︁
ωt
)︁

2ω

]︂
+

Vp(0) sinh
(︁
ωt
)︁

ω

}︂
+Hp(t) (A.45)

Vp(t) = e−
ξt
2

{︂
−

Xp(0)λ
2
pk

mω
sinh

(︁
ωt
)︁
+Vp(0)[cosh

(︁
ωt
)︁
− ξ

2ω
sinh

(︁
ωt
)︁
]
}︂
+Gp(t) (A.46)

Note that:

ω =

√︃
ξ2

4
−
λ2pk

m
(A.47)

In this case, ω is a real number, if ξ2

4
is greater than

λ2pk

m
, whereas ω is an imaginary number

if the reverse is true. And:

Hp(t) =
1

Nm

∫︂ t

0

e−
ξ
2
(t−τ) sinh(ω(t− τ))

ω

∫︂ N

0

fn(τ) cos(2pπ
n

N
)dndτ (A.48)

Gp(t) =
1

Nm

∫︂ t

0

e−
ξ(t−τ)

2 [cosh(ω(t− τ))− ξ

2ω
sinh(ω(t− τ))]

∫︂ N

0

fn(τ) cos(2pπ
n

N
)dndτ

(A.49)

The time correlation functions (TCFs) of Xp and the VCFs of Vp can be easily obtained

by multiplying Equation (A.45) and Equation (A.46) with Xp(0) and Vp(0), respectively,

followed by taking average. Using the fact that ⟨Xp ·Gp⟩ = 0, ⟨Xp ·Hp⟩ = 0, ⟨Vp ·Gp⟩ = 0,

⟨Vp ·Hp⟩ = 0, ⟨Xp ·Vp⟩ = 0 as they are not correlated to one another, except themselves,

we can write:

⟨Xp(t) ·Xp(0)⟩ = e−
ξt
2 ⟨X2

p ⟩
[︂
cosh

(︁
ωt
)︁
+
ξ sinh

(︁
ωt
)︁

2ω

]︂
(A.50)

⟨Vp(t) ·Vp(0)⟩ = e−
ξt
2 ⟨V 2

p ⟩[cosh
(︁
ωt
)︁
− ξ

2ω
sinh

(︁
ωt
)︁
] (A.51)

Following these procedures, one should obtain very similar expressions for ⟨Yp(t) · Yp(0)⟩

and ⟨Wp(t) ·Wp(0)⟩.

⟨Yp(t) ·Yp(0)⟩ = e−
ξt
2 ⟨Y 2

p ⟩
[︂
cosh

(︁
ωt
)︁
+
ξ sinh

(︁
ωt
)︁

2ω

]︂
(A.52)

⟨Wp(t) ·Wp(0)⟩ = e−
ξt
2 ⟨W 2

p ⟩[cosh
(︁
ωt
)︁
− ξ

2ω
sinh

(︁
ωt
)︁
] (A.53)

Assuming that N is an odd number. The exact solution rn(t) and vn(t) can be written as:

rn(t) = X0(t) +

(N−1)/2∑︂
p=1

2Xp(t) cos(2pπ
n

N
) + 2Yp(t) sin(2pπ

n

N
) (A.54)
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vn(t) = V0(t) +

(N−1)/2∑︂
p=1

2Vp(t) cos(2pπ
n

N
) + 2Wp(t) sin(2pπ

n

N
) (A.55)

With these solutions, the TCF of 0-to-(N − 1)/2 vector of the ring polymer as well as the

VCF of the nth bead can be easily obtained as:

⟨R(t) ·R(0)⟩ = 16

(N−1)/2∑︂
p=1,odd

⟨Xp(t) ·Xp(0)⟩ (A.56)

⟨vn(t) · vn(0)⟩ = ⟨V0(t) ·V0(0)⟩+
(N−1)/2∑︂
p=1

4⟨Vp(t) ·Vp(0)⟩ cos(2pπ
n

N
)2 + 4⟨Wp(t) ·Wp(0)⟩ sin(2pπ

n

N
)2

(A.57)

A.3.3 Four-Arm Symmetrical Star Polymer

Matrix A for the star structure with four arms was derived using a similar approach as

demonstrated by Ghosh [24]. In such case, the eigenvalues and eigenfunctions (ψp) of A were

obtained numerically.

A =

⎡⎢⎢⎢⎢⎣
A1 0 V 0 0
0 A1 V 0 0
VT VT −4 UT UT

0 0 U A2 0
0 0 U 0 A2

⎤⎥⎥⎥⎥⎦ (A.58)

For which, we let the followings:

A1 =

⎡⎢⎢⎢⎢⎢⎣
−1 1 0 . . . 0
1 −2 1 . . . 0

0
. . . . . . . . . 0

0 . . . 1 −2 1
0 . . . 0 1 −2

⎤⎥⎥⎥⎥⎥⎦ (A.59)

A2 =

⎡⎢⎢⎢⎢⎢⎣
−2 1 0 . . . 0
1 −2 1 . . . 0

0
. . . . . . . . . 0

0 . . . 1 −2 1
0 . . . 0 1 −1

⎤⎥⎥⎥⎥⎥⎦ (A.60)

The dimensions of A1 and A2 are both Nf ×Nf , where Nf is the number of beads per arm,

excluding the central bead.

V =
[︁
0 0 . . . 1

]︁T
(A.61)
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U =
[︁
1 0 . . . 0

]︁T
(A.62)

The eigenvalues and eigenvectors can be computed numerically. We found that three eigen-

vectors can share the same magnitude of eigenvalue and the eigenvectors are not monotonic

functions of n [9]. In the next section, we will demonstrate that this remains true even if

the equation of motion becomes more non-linear and complicated, such as the case in MD

simulations.

Figure A.1: Indices of beads in four-arm star polyethylene N = 9. This figure is reproduced
with permission from [9].

A.4 Application of Rouse Mode, Extraction of Relax-

ation Times from Simulation Data using Rouse

Modes as well as other Available Methods

Based upon the classic Rouse model as well as the analysis in Section A.3, one can see that

by analytically obtaining the eigenfunction, different relaxation times of a polymer chain can

thus be obtained. This allows us to derive different time correlation functions of different

vectors straightforwardly. Such mathematical concept is important in the development of the

tube model by Doi and Edwards [21]. By following the same logic in the Rouse model, the

probability of the polymer chain staying in the tube can also be expressed in terms of different

modes, which have the very same form as that of the Rouse mode, except the independent

variable is the curvilinear variable. This eventually allows them to qualitatively estimate the

shear relaxation modulus of an entangled polymer chain.
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Nonetheless, derivation of such eigenfunctions is only feasible in linear system of equations

of motion, which can be solved analytically. Most equations of motion that can describe the

reality are highly nonlinear, in which the extraction of eigenvalues and eigenfunctions is

impossible. Even though this is the case, other research groups also applied the Rouse modes

directly to their MD data of linear polyethylene.

Padding and Briels [8], Tsolou et al. [4], Kalathi et al.[22, 23] as well as Masubuchi

et al. [121] used such approach to obtain different relaxation times, so as to identify the

scaling behavior of τp with N/p. For instance, Kalathi et al. [22, 23] demonstrated that a

plot of βp, which is the kinetic constraint, derived from the Rouse mode analysis, with N/p

allows one to identify the entanglement chain length. With such analysis, they were also

able to show that the presence of small nanoparticles in the polymer melt serve to reduce

the number of entanglements [23]. Shaffer [26] as well as Bulac and van der Giessen [27]

applied the Rouse mode analysis so as to investigate the effect of angle bending and torsion

potential on the relaxation of polymer. Masubuchi et al. [121] showed that in the Kremer-

Grest simulations, the time correlation function of the shorter wavelength motion (namely

p = 2 and p = 3) of the chain deviates from that of the prediction of Rouse model, whereas

such deviation is absent in dissipative particle dynamics simulations. Padding and Briels

[8] found that by analyzing these Rouse mode relaxations, a dependence of τ ∼ N2.8 and

τ ∼ N3.5 was obtained, which eventually lead to the results of η ∼ N1.8 and η ∼ N3.6 in

the unentangled and entangled regimes, respectively. A more recent studies by Kalathi et

al. [22] reveals a similar trend, but they found a dependence of τ ∼ N2 and τ ∼ N3.4 below

and above N = 100. Even though direct application of Rouse mode seems to work in these

studies, Padding and Briels [8], as well as Kalathi et al. [22, 23] stated that such Rouse mode

may not be true, as it is not directly derived from the available trajectory data, especially

in the entangled regime. In addition, its limitation is that it may not be easily applied

to polymer systems with a much more sophisticated chemical structures, such as randomly

branched and dendrimer polymers. Furthermore, the effect of many-chain and other bonded

potentials, such as bond angle and torsion angle, have not been taken into account in the

derivation of the Rouse mode. Such Rouse mode also may not be applicable in lattice bond

fluctuation model and Monte Carlo simulation.

Intriguingly, there also exists other methods to extract these relaxation times without
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any assumption of the Rouse mode and it can be literally applied in Monte Carlo simulation

as well as MD simulations, which fully relies on the knowledge of the trajectory only. In

the relaxation mode analysis developed by Watanabe [122] and Mitsutake et al. [123, 124],

without the knowledge of Rouse mode, one can construct a so-called equilibrium time cor-

relation matrix (with components Ci,j) based upon the fluctuation in the position of the ith

and jth beads of the polymer chain and obtain the corresponding relaxation rates by solving

the generalized eigenvalues problem (cf., Equation (A.63) and Equation (A.64)), which was

derived from a master equation and variational problem.

3N∑︂
j=1

Ci,j(t0 + τ)fp,j = exp(−λpτ)
3N∑︂
j=1

Ci,j(t0)fp,j (A.63)

t0 is the starting time that one arbitrarily picked for the calculation.

3N∑︂
i=1

3N∑︂
j=1

fp,iCi,j(t0)fq,j = δp,q (A.64)

fp,i is the relaxation mode in their relaxation mode analysis and λp in this context is similar

to that we have derived previously. Hagita et al. [125] applied such method on data from

the Monte Carlo simulation of bond fluctuation lattice model and found that the longest

relaxation time exhibits τ ∼ N3.5 based on the data collected for N = 256, 384, 512 in the

entangled regime and that λp ∼ p2. The degree of freedom associated with this relaxation

mode analysis can be further reduced with the aid of principal component analysis, which

was demonstrated by Mitsutake et al. [123] as well as Nagai et al. [126].

A.4.1 Eigenmodes from POD

The proper orthogonal decomposition (POD) analysis in our case generates a reduced order

model of the numerical solutions to these non-linear equations of motion. The rationale

is very similar to that of the previously mentioned relaxation mode analysis, but it is less

complicated. The procedures in POD analysis is summarized in the flow chart as shown in

Figure A.2.
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Figure A.2: Flow chart showing the procedure of POD analysis.

It basically generates different eigenmodes based on the numerical solution to the highly

nonlinear equation of motion in the MD simulation, which may not be obtained analytically.

The eigenmodes can then be used in the analysis of different relaxation of the polymer

chains in MD simulation. Cartesian coordinates of different beads were subtracted from the

center-of-mass of the polymer, followed by averaging over time. A correlation matrix C is

then constructed, with the eigenvectors of C being the eigenmodes, which can be used as

alternative to the Rouse mode. Contrary to the relaxation mode analysis, our goal in using

POD is to directly extract eigenmodes from MD data, which can then be used to evaluate

relaxation times and viscosity. The normalized eigenmodes ψ̃
q

p can be used for coordinate

transformation. The normal coordinate in a particular direction q can be obtained:

X ′
p,q(t) =

N−1∑︂
n=0

qn(t)ψ̃
q

p(n) (A.65)

With these normal coordinates, it is possible to know the relaxation times of different eigen-

modes. Different time correlation functions can be also derived thence.

In MD simulation, as there are many polymer molecules in the box, the POD analysis was

performed for each molecule. After that, the result was then averaged over all the molecules.

Interestingly, given the fact that the angle bending and torsion potentials, as well as the many

chain effect were explicitly included in the equation of motion, the eigenmodes derived from

the MD simulation are very similar to that of the simpler Brownian Dynamics (BD) model.

This means that in the unentangled regime, the harmonic bond stretching potential plays

the most dominant role in the relaxation dynamics of the polymers. Intuitively, this is not

surprising because the force constant is the largest in the harmonic bond stretching potential

in the forcefield of the MD simulation [19]. For example, in our case of MD simulation, the

force constant in the harmonic bond stretching potential is approximately 100 times greater

than that of the angle bending potential [9, 19]. Therefore, to certain extent, the similarity

of the eigenmodes in nonlinear BD and MD simulations, as demonstrated in our previous
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work [9], is expected even if the former only includes harmonic bond stretching potential.

With the extracted eigenmodes, the corresponding normal coordinates in a particular

direction can be computed using Equation (A.65). The time correlation function of the pth

eigenmode (µp(t)) can be evaluated using Equation (A.66).

µp(t) =
⟨X ′

p,x(t)X
′
p,x(0) +X ′

p,y(t)X
′
p,y(0) +X ′

p,z(t)X
′
p,z(0)⟩

⟨X ′2
p,x +X ′2

p,y +X ′2
p,z⟩

≈ exp
[︁
− (t/τ ∗p )

βp
]︁

(A.66)

It was found that µp(t) can be well described by a stretched exponential function of time

with βp always smaller than unity due to the kinetic constraint imposed on the bead from

the harmonic bond stretching potential [9]. Note that there is no kinetic constraint on the

bead motion if βp = 1, which gives a pure exponential function of time. Distinct τps were

obtained for linear polymers, whereas two and three eigenmodes can share the same value of

τp in ring and star polymers, respectively [9].

A.4.2 Zero-Shear Viscosity: Rouse model and POD method

The Green-Kubo relation tells us that the zero-shear viscosity is related to the the integral

of the stress correlation function. Therefore, the strategy to compute the viscosity is to

know the time correlation function of stress from MD simulation data. Halverson et al. [6]

computed directly the shear stress time correlation function of linear and ring polymer.

η0 =
V

3kbT

∫︂ ∞

0

[︂
⟨σxy(τ)σxy(0)⟩+ ⟨σxz(τ)σxz(0)⟩+ ⟨σzy(τ)σzy(0)⟩

]︂
dτ (A.67)

V is the volume and σxy(τ) is the shear stress acting on the x-plane in the y direction. The

shear stress is pre-averaged stress, which can be computed by considering the velocities of

the bead as well as the separation between the beads and the corresponding force acting

upon them, followed by a time-averaging procedure as demonstrated by Lee and Kremer

[127]. Integration of such shear stress time correlation function allowed them to obtain the

zero-shear viscosity of both linear and ring polymers [6]. Nonetheless, it is not an easy task

to compute the stress as proposed by Lee and Kremer [127] in the case of many-chain system

as one has to know the separation distances among all the beads and the corresponding forces

acting upon them. In such case, the stress tensor is expressed as follows:

σ(t) =
∑︂
j

m

V
vjvj +

1

2V

∑︂
i

∑︂
j

rijFij (A.68)
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Fij is the total force between the ith and jth beads. Consider such stress tensor (cf., Equation

(A.68)), if the velocity tensor term is ignored and with the assumption of the Gaussian

statistics and Rouse dynamics of linear polymer chain without many-chain effect, the stress

tensor can be simplified to a large extent as:

σ(t) =
1

V

∑︂
j

rjFj (A.69)

Fj is the total force acting upon the jth bead. The stress tensor according to Equation (A.69)

can be simplified as:

σ(t) =
1

V

[︂
r0k(r1 − r0) + rN−1k(rN−2 − rN−1) +

N−2∑︂
n=1

rnk
(︁
rn+1 − 2rn + rn−1

)︁]︂
(A.70)

k = 3kbT
b2

. This then gives us:

σ(t) = − k

V

N−2∑︂
n=0

[︂
rn+1(t)− rn(t)

]︂2
(A.71)

In Rouse model, rn+1(t)− rn(t) ≈ ∂rn(t)
∂n

and that rn = X0 + 2
∑︁N−1

p=1 Xp cos(pπ
n
N
). We can

then easily find that:

∂rn
∂n

= −2
N−1∑︂
p=1

Xp sin(pπ
n

N
)
pπ

N
(A.72)

And thus:

N−2∑︂
n=0

[︂
rn+1 − rn

]︂2
≈

N−2∑︂
n=0

N−1∑︂
p=1

XpXp
4p2π2

N2
sin2(pπ

n

N
) =

N−1∑︂
p=1

XpXp
2p2π2

N
(A.73)

This is because:
N−2∑︂
n=0

sin2(pπ
n

N
) ≈

∫︂ N

0

sin2(pπ
n

N
)dn =

N

2
(A.74)

Putting this back to Equation (A.71):

σ(t) ≈ −3kbT

V

N−1∑︂
p=1

Xp(t)Xp(t)2p
2π2

Nb2
(A.75)

Now, in order to further simplify Equation (A.75), we have to know the probability distri-

bution of a Gaussian chain based on our knowledge of statistical mechanics. Consider the

potential energy (UN) of a Gaussian chain:

UN =
3kbT

2b2

N−2∑︂
n=0

(rn+1 − rn) · (rn+1 − rn) (A.76)
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Using the result of Equation (A.73), we can express UN in terms of Xp. Note that the

only difference between the summation term in Equation (A.76) and Equation (A.73) is that

we have a dot product of (rn+1 − rn) · (rn+1 − rn) in Equation (A.76) instead of a tensor

(rn+1 − rn)
2 in Equation (A.73).

UN =
3kbT

b2

N−1∑︂
p=1

Xp ·Xp
p2π2

N
(A.77)

The probability distribution (P ) with Xp as argument is thus:

P = C exp
(︂
− UN
kbT

)︂
= C exp

[︂
− 3

b2

N−1∑︂
p=1

p2π2

N
X2
p

]︂
(A.78)

C is the normalization constant. This kind of distribution is exactly the form of Maxwell-

Boltzmann distribution. It can be shown that using spherical coordinates, the mean-square

value of Xp (⟨X2
p ⟩) from such distribution similar to that demonstrated by Chapman and

Cowling [10] when they derived the mean-square peculiar velocity of ideal gas in different

directions. Consider the pth Rouse mode, the Gaussian distribution has this form:(︂3p2π
Nb2

)︂1.5

X2
p exp

[︂
−

3p2π2X2
p

Nb2

]︂
dXpdϕ sin θdθ (A.79)

The spherical coordinates are defined as:⎡⎣Xp,x

Xp,y

Xp,z

⎤⎦ = Xp

⎡⎣sin θ cosϕsin θ sinϕ
cos θ

⎤⎦ (A.80)

Thus, we have:

⟨X2
p ⟩ =

(︂3p2π
Nb2

)︂1.5
∫︂ 2π

0

dϕ

∫︂ π

0

sin θdθ

∫︂ ∞

0

X4
p exp

[︂
−

3p2π2X2
p

Nb2

]︂
dXp =

Nb2

2p2π2
(A.81)

And that:
⟨X2

p ⟩
3

= ⟨X2
p,x⟩ = ⟨X2

p,y⟩ = ⟨X2
p,z⟩ (A.82)

This is because:∫︂ 2π

0

cos2 ϕdϕ

∫︂ π

0

sin3 θdθ =

∫︂ 2π

0

sin2 ϕdϕ

∫︂ π

0

sin3 θdθ =

∫︂ 2π

0

dϕ

∫︂ π

0

cos2 θ sin θdθ =
4π

3
(A.83)

Hence, the time correlation function of shear stress ⟨σxy(t)σxy(0)⟩:

⟨σxy(t)σxy(0)⟩ ≈
9k2bT

2

V 2

N−1∑︂
p=1

⟨Xp,x(t)Xp,x(0)⟩⟨Xp,y(t)Xp,y(0)⟩
⟨X2

p,x⟩⟨X2
p,y⟩

=
k2bT

2

V 2

N−1∑︂
p=1

[︂⟨Xp(t) ·Xp(0)⟩
⟨X2

p ⟩

]︂2
(A.84)
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The shear relaxation modulus G(t) can be expressed as follows:

G(t) =
ρRT

M

N−1∑︂
p=1

[︂⟨Xp(t) ·Xp(0)⟩
⟨X2

p ⟩

]︂2
(A.85)

With the chain literally following Gaussian statistics, Watanabe [122] also showed that shear

relaxation modulus of polymers can be approximated using different time correlation func-

tions of bond vectors. The result in Equation (A.85) is for a single Rouse chain, which has

the harmonic bond stretching potential as the only bonded potential. However, in reality,

even in unentangled regime, a single polymer chain is surrounded by multiple polymer chains

in the melt. In addition to such many-chain effect, angle bending and torsion potentials also

play roles in the chain relaxation. Such effect is taken into account by rewriting Equation

(A.85) as Equation (A.86) using the results of µp(t) from the POD method as indicated in

Equation (A.66), which is a stretched exponential function of time due to the highly nonlinear

bonded and non-bonded potentials.

G(t) =
ρRT

M

N−1∑︂
p=1

exp
[︂
− 2(t/τ ∗p )

βp
]︂

(A.86)

Furthermore, in Equation (A.86), we argue that in spite of the high nonlinearity of the

equation of motion in MD simulation due to the presence of angle bending and torsion

potentials as well as nonbonded potential, the bond stretching force always dominates the

relaxation dynamics of the polymers. The shear stress should be therefore dominated by

the bond stretching force between beads. This is supported by the fact that the eigenmodes

in nonlinear BD simulation are very similar to that in MD simulation [9]. With Equation

(A.86), it is then possible to approximate the zero-shear viscosity using the time correlation

functions of different eigenmodes or Rouse modes. The shear stress time correlation function

can be approximated using the time correlation functions of the eigenmodes. ρ is the mass

density of the bead. The zero-shear viscosity (η0) can then be obtained by integrating G(t).

η0 =

∫︂ ∞

0

G(τ)dτ (A.87)

As shown in Figure A.3, with such approximation of the stress correlation function and the

values of βp and τ
∗
p from POD method, our results agree with the experimental and simulation

results of other groups satisfactorily for linear and ring polymers [7, 4, 42]. For star polymer,

it is worthwhile to note that the agreement in η0 between the BD and MD simulations is
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excellent. This again proves that relaxation dynamics in polymer melt is mainly stifled by

the bond stretching force. Our results qualitatively agree well with the experimental result

of Pearson et al. [7] that in the MD simulation of linear polymers, η0 ∼ N1.8. The stronger

N dependence of η0 for all structures in MD simulation compared to that of BD simulation

is again attributed to the higher nonlinearity of the equation in the latter case.

(a) Linear Polymer (b) Ring Polymer

(c) Star Polymer

Figure A.3: Dependence of zero-shear viscosities on size of polymer in the unentangled regime
of our nonlinear Brownian dynamic and MD simulation data compared with other simula-
tion and experimental data from other research groups. These figures are reproduced with
permission from [9].

A.5 Conclusion

We have reviewed analytical and numerical methods for analyzing linear and non-linear

dynamics of polymers with different molecular structures. The equation of motion in the
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Rouse model, essentially a BD model, is linear. With the addition of an inertia term, the

equation of motion is still linear. Such linear equations of motion of polymers with linear and

ring structures can be solved analytically using the method of eigenvalue and eigenfunction

to yield relaxation times and velocity correlation functions. Since harmonic bond stretching,

bond bending and torsion potentials, as well as nonbonded potential are included in the

MD simulation, the corresponding equation of motion is nonlinear. Analytical solutions for

such nonlinear systems are impossible. Instead, the POD analysis of the numerical solutions

is used to derive eigenmodes so that relaxation times and time correlation functions can

be determined. The POD analysis not only elucidates the nonlinearity of the relaxation

dynamics of polymers but also allows the estimation of the zero-shear viscosities of the

polymer melts.

It is believed that the POD analysis can be readily applied to polymers with more com-

plicated molecular structures than those of polyethylene that was used in this work, as the

POD analysis only requires the knowledge of the positions of the constituent atoms as a

function of time.
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Appendix B

Supporting Information for Chapter 3

B.1 C++ program for numerical simulation

#include <iostream >

#include <istream >

#include <fstream >

#include <iomanip >

#include <cstdio >

#include <sstream >

#include <eigen/Eigen/Dense >

#include <vector >

#include <stdlib.h>

#include <stdio.h>

#include <random >

#include <chrono >

#include <string >

#include <omp.h>

using namespace std;

using namespace Eigen;

using namespace std:: chrono;

// compile with g++ -std=c++11 -Ofast main2.cpp -o ld4

VectorXd TDMA2(const MatrixXd& A,const VectorXd& b)

{

int row=A.rows();

int col=A.cols();

VectorXd x=VectorXd ::Zero(row);

VectorXd b2=b;

VectorXd c(row);

VectorXd a(row);

for(int i=0;i<row;i++)

{
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if(i==0)

{

c(i)=A(i,i+1);

a(i)=0;

}

else if(i==row -1)

{

a(i)=A(i,i-1);

c(i)=0;

}

else

{

a(i)=A(i,i-1);

c(i)=A(i,i+1);

}

}

double err =1;

double sum1;

VectorXd d1p(row);

VectorXd c1p(row);

VectorXd err1(row);

int count =0;

for(int i=0;i<row;i++)

{

if(i==0)

{

c1p(i)=c(i)/A(i,i);

}

else

{

c1p(i)=c(i)/(A(i,i)-a(i)*c1p(i-1));

}

}

while(abs(err)>pow(10,-6))

{

for(int i=0;i<row;i++)

{

if(i==0)

{

d1p(i)=b2(i)/A(i,i);

}

else

{

d1p(i)=(b2(i)-a(i)*d1p(i-1))/(A(i,i)-a(i)*c1p(i-1));

}

}

x(row -1)=d1p(row -1);
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for(int i=row -2;i>=0;--i)

{

x(i)=d1p(i)-c1p(i)*x(i+1);

}

for(int i=0;i<row;i++)

{

sum1 =0;

for(int j=0;j<col;j++)

{

if(j==i || j==i+1 || j==i-1)

{

;

}

else

{

sum1=sum1+A(i,j)*x(j);

}

}

b2(i)=b(i)-sum1;

}

err1=A*x-b;

err=0;

for(int i=0;i<row;i++)

{

err=err+pow(err1(i) ,2)/row;

}

err=pow(err ,0.5);

count=count +1;

if(count >1000)

{

break;

}

}

return x;

}

int main(int argc , char** argv){

default_random_engine generator;

char* filename;

int N,t_step ,count ,n_save ,f_save ,count2;

double dt;

for(int i=1;i<argc;i++){

if(strcmp(argv[i], "-n") == 0){

N=stoi(argv[i+1],NULL);// length of polymer

}

else if(strcmp(argv[i], "-t") == 0){

t_step=stoi(argv[i+1],NULL);// t_step

}
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else if(strcmp(argv[i], "-dt") == 0){

dt=stod(argv[i+1],NULL);// size of time step dt =0.001 ps

}

else if(strcmp(argv[i],"-f")==0){

filename=argv[i+1];// initial configuration file

}

else if(strcmp(argv[i],"-s")==0){

f_save=stoi(argv[i+1],NULL);// number of steps to be saved

}

else{

;

}

}

n_save=t_step/f_save;

ifstream infile(filename);

VectorXd x(N),y(N),z(N),bx(2*N),by(2*N),bz(2*N),rx(2*N),ry(2*N),rz

(2*N);

MatrixXd x1(N,n_save),y1(N,n_save),z1(N,n_save),vx1(N,n_save),vy1(

N,n_save),vz1(N,n_save);

MatrixXd A=MatrixXd ::Zero(N,N);

MatrixXd I=MatrixXd :: Identity(N,N);

MatrixXd I2=MatrixXd :: Identity(N,N);

MatrixXd E=MatrixXd :: Identity(N,N);

MatrixXd Z=MatrixXd ::Zero(N,N);

I2=dt*I2;

for(int i=0;i<N;i++){

infile >>rx(i);

infile >>ry(i);

infile >>rz(i);

}

for(int i=0;i<N;i++){

rx(i)=0.01* rx(i);

ry(i)=0.01* ry(i);

rz(i)=0.01* rz(i);

}

double lam ,err ,rcmx ,rcmy ,rcmz;

double k_b =1.38065* pow(10,-27);//A^2 kg ps^-2K^-1

double T=450;//K

double xi =5;//ps^-1

double m=2.327* pow(10,-26);//kg

double k=1.8* pow(10,-23);//kg ps^-2

double c2 =900;// k/(m)

double sigma=pow (2* k_b*T*xi*m ,0.5) ;// normal distribution force

double sigma2=pow(k_b*T/m ,0.5);

E=-(xi*dt)*E;

normal_distribution <double > distribution (0,sigma);

normal_distribution <double > distribution2 (0,sigma2);

for(int i=0;i<N;i++){
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rx(i+N)=distribution2(generator);

ry(i+N)=distribution2(generator);

rz(i+N)=distribution2(generator);

}

high_resolution_clock :: time_point t1 = high_resolution_clock ::now

();

count =0;

for(int i=0;i<N;i++){

if(i==0){

A(i,i)=-c2*dt;

A(i,i+1)=c2*dt;

}

else if(i==N-1){

A(i,i)=-c2*dt;

A(i,i-1)=c2*dt;

}

else{

A(i,i)=-2*c2*dt;

A(i,i-1)=c2*dt;

A(i,i+1)=c2*dt;

}

}

MatrixXd A1(A.rows()+A.rows(), A.cols()+A.cols());

A1 << Z, I2 ,

A, E;

MatrixXd I1=MatrixXd :: Identity (2*N,2*N);

A1=A1 -I1;

for(int it=0;it <t_step;it++){

if(it==0){

for(int i=0;i<N;i++){

x1(i,count)=rx(i);

y1(i,count)=ry(i);

z1(i,count)=rz(i);

vx1(i,count)=rx(i+N);

vy1(i,count)=ry(i+N);

vz1(i,count)=rz(i+N);

}

count=count +1;

//cout << "nothing␣wrong␣with␣initialization" << endl;

}

else{

// VectorXd Fr=VectorXd ::Zero (3*N);

for(int i=0;i<N;i++){

bx(i)=-rx(i);

by(i)=-ry(i);

bz(i)=-rz(i);

bx(i+N)=-rx(i+N)-distribution(generator)*dt/m;

by(i+N)=-ry(i+N)-distribution(generator)*dt/m;
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bz(i+N)=-rz(i+N)-distribution(generator)*dt/m;

}

rx=TDMA2(A1 ,bx);

ry=TDMA2(A1 ,by);

rz=TDMA2(A1 ,bz);

if(remainder(it ,f_save)==0){

for(int i=0;i<N;i++){

x1(i,count)=rx(i);

y1(i,count)=ry(i);

z1(i,count)=rz(i);

vx1(i,count)=rx(i+N);

vy1(i,count)=ry(i+N);

vz1(i,count)=rz(i+N);

}

count=count +1;

cout << "Saved␣time␣step=␣"<< count << endl;

}

}

}

ofstream myfile;

myfile.open("trj_x.dat", ios:: binary);

myfile.write((char *) x1.data(), x1.rows() * x1.cols() * sizeof(

double));

myfile.close();

myfile.open("trj_y.dat", ios:: binary);

myfile.write((char *) y1.data(), y1.rows() * y1.cols() * sizeof(

double));

myfile.close();

myfile.open("trj_z.dat", ios:: binary);

myfile.write((char *) z1.data(), z1.rows() * z1.cols() * sizeof(

double));

myfile.close();

myfile.open("trj_vx.dat", ios:: binary);

myfile.write((char *) vx1.data(), vx1.rows() * vx1.cols() * sizeof

(double));

myfile.close();

myfile.open("trj_vy.dat", ios:: binary);

myfile.write((char *) vy1.data(), vy1.rows() * vy1.cols() * sizeof

(double));

myfile.close();

myfile.open("trj_vz.dat", ios:: binary);

myfile.write((char *) vz1.data(), vz1.rows() * vz1.cols() * sizeof

(double));

myfile.close();

high_resolution_clock :: time_point t2 = high_resolution_clock ::now

();

auto duration = duration_cast <seconds >( t2 - t1 ).count();

cout << "run␣time=␣" << duration << "␣seconds" << endl;
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return 0;

}

B.2 Python 3.5 program for initial conformation con-

struction using rotational isomeric state model

#!/usr/bin/env python3

import numpy as np

import matplotlib.pyplot as plt

from numpy import linalg

from mpl_toolkits.mplot3d import Axes3D

from random import randint

import warnings

warnings.filterwarnings("ignore")

def cos(x):

x = x*np.pi/180

f = np.cos(x)

return f

def sin(x):

x = x*np.pi/180

f = np.sin(x)

return f

def lamb1(sigma ,omega):

a = 0.5*( sigma *(1+ omega)+1+np.sqrt((-sigma *(1+ omega)+1) **2+8* sigma

))

return a

def lamb2(sigma ,omega):

a = 0.5*( sigma *(1+ omega)+1-np.sqrt((-sigma *(1+ omega)+1) **2+8* sigma

))

return a

def Z(n,lamb1 ,lamb2):

f=(lamb1 **(n-1)*(lamb2 -1))/(lamb2 -lamb1)+(lamb2 **(n-1)*(1-lamb1))

/(lamb2 -lamb1)

return f

#Evaluation of partition function Z and probability

sigma = 0.54

omega =0.088

l = 1.54

theta= 180 -112

l1 = lamb1(sigma ,omega)

l2 = lamb2(sigma ,omega)

U = np.zeros ((2,2))
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U[0][0] = 1

U[1][0] = 1

U[0][1] = 2*sigma

U[1][1] = sigma *(1+ omega)

v,w = linalg.eig(U)

w_in = linalg.inv(w)

n=50#input the N, which is the number of beads of a chain

n1 = np.arange(2,n,1)

count = 0

bond_i_a = np.arange(2,n,1)

p_i = []

for i in range(len(bond_i_a)):

bond_i = bond_i_a[i]

xl = bond_i -2

xr = n-1-bond_i

U_prim = np.zeros ((2 ,2))

U_prim [0][1] = 2* sigma

U_prim [1][1] = sigma *(1+ omega)

vd = np.zeros ((2 ,2))

if xl == 0:

vd [0][0] = v[0]** xr

vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

T= np.mat(U_prim)*np.mat(Tr)

elif xr == 0:

vd [0][0] = v[0]** xl

vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

else:

vd [0][0] = v[0]** xr

vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

vd [0][0] = v[0]** xl

vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

T = np.mat(T)*np.mat(Tr)

if xl == 0 and xr == 0:

T = U_prim

Zt = Z(n,l1 ,l2)

row = T[0,:]. reshape (1,2).T

p = float (0.5*( row [0]+ row [1]))

p_i.append(p/Zt)
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n1 = np.arange(2,n,1)

count = 0

bond_i_a = np.arange(3,n,1)

p_i_tg = []

for i in range(len(bond_i_a)):

bond_i = bond_i_a[i]

xl = bond_i -2

xr = n-1-bond_i

U_prim = np.zeros ((2 ,2))

U_prim [0][1] = 2* sigma

vd = np.zeros ((2 ,2))

if xl == 0:

vd [0][0] = v[0]** xr

vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

T= np.mat(U_prim)*np.mat(Tr)

elif xr == 0:

vd [0][0] = v[0]** xl

vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

else:

vd [0][0] = v[0]** xr

vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

vd [0][0] = v[0]** xl

vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

T = np.mat(T)*np.mat(Tr)

if xl == 0 and xr == 0:

T = U_prim

Zt = Z(n,l1 ,l2)

row = T[0,:]. reshape (1,2).T

p = float (0.5*( row [0]+ row [1]))

p_i_tg.append(p/Zt)

n1 = np.arange(2,n,1)

count = 0

bond_i_a = np.arange(3,n,1)

p_i_gt = []

for i in range(len(bond_i_a)):

bond_i = bond_i_a[i]
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xl = bond_i -2

xr = n-1-bond_i

U_prim = np.zeros ((2 ,2))

U_prim [1][0] = 1

vd = np.zeros ((2 ,2))

if xl == 0:

vd [0][0] = v[0]** xr

vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

T= np.mat(U_prim)*np.mat(Tr)

elif xr == 0:

vd [0][0] = v[0]** xl

vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

else:

vd [0][0] = v[0]** xr

vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

vd [0][0] = v[0]** xl

vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

T = np.mat(T)*np.mat(Tr)

if xl == 0 and xr == 0:

T = U_prim

Zt = Z(n,l1 ,l2)

row = T[0,:]. reshape (1,2).T

p = float (0.5*( row [0]+ row [1]))

p_i_gt.append(p/Zt)

n1 = np.arange(2,n,1)

count = 0

bond_i_a = np.arange(3,n,1)

p_i_gg = []

for i in range(len(bond_i_a)):

bond_i = bond_i_a[i]

xl = bond_i -2

xr = n-1-bond_i

U_prim = np.zeros ((2 ,2))

U_prim [1][1] = sigma *(1+ omega)

vd = np.zeros ((2 ,2))

if xl == 0:

vd [0][0] = v[0]** xr
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vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

T= np.mat(U_prim)*np.mat(Tr)

elif xr == 0:

vd [0][0] = v[0]** xl

vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

else:

vd [0][0] = v[0]** xr

vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

vd [0][0] = v[0]** xl

vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

T = np.mat(T)*np.mat(Tr)

if xl == 0 and xr == 0:

T = U_prim

Zt = Z(n,l1 ,l2)

row = T[0,:]. reshape (1,2).T

p = float (0.5*( row [0]+ row [1]))

p_i_gg.append(p/Zt)

n1 = np.arange(2,n,1)

count = 0

bond_i_a = np.arange(3,n,1)

p_i_tt = []

for i in range(len(bond_i_a)):

bond_i = bond_i_a[i]

xl = bond_i -2

xr = n-1-bond_i

U_prim = np.zeros ((2 ,2))

U_prim [0][0] = 1

vd = np.zeros ((2 ,2))

if xl == 0:

vd [0][0] = v[0]** xr

vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

T= np.mat(U_prim)*np.mat(Tr)

elif xr == 0:

vd [0][0] = v[0]** xl
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vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

else:

vd [0][0] = v[0]** xr

vd [1][1] = v[1]** xr

Tr = np.mat(w)*np.mat(vd)

Tr = np.mat(Tr)*np.mat(w_in)

vd [0][0] = v[0]** xl

vd [1][1] = v[1]** xl

Tl = np.mat(w)*np.mat(vd)

Tl = np.mat(Tl)*np.mat(w_in)

T = np.mat(Tl)*np.mat(U_prim)

T = np.mat(T)*np.mat(Tr)

if xl == 0 and xr == 0:

T = U_prim

Zt = Z(n,l1 ,l2)

row = T[0,:]. reshape (1,2).T

p = float (0.5*( row [0]+ row [1]))

p_i_tt.append(p/Zt)

qs_gt=np.zeros(len(bond_i_a))

qs_gg=np.zeros(len(bond_i_a))

qs_tt=np.zeros(len(bond_i_a))

qs_tg=np.zeros(len(bond_i_a))

for i in range(len(bond_i_a)):

qs_gt[i]= p_i_gt[i]/(2* p_i[i])

qs_gg[i]= p_i_gg[i]/(2* p_i[i])

qs_tt[i]= p_i_tt[i]/(1 -2* p_i[i])

qs_tg[i]= p_i_tg[i]/(1 -2* p_i[i])

fig=plt.figure ()

plt.rc(’font’, **{’family ’: ’serif’, ’serif’: [’Computer␣Modern ’]})

plt.rc(’text’, usetex=True)

plt.gcf().set_size_inches (3,3,forward=True)

plt.gcf().set_size_inches (3,3,forward=True)

plt.subplots_adjust(left =0.12 , bottom =0.15)

ax = fig.add_subplot (111, projection=’3d’)

xf=[]

yf=[]

zf=[]

n1 = np.arange(2,n,1)

lv = [l,0,0]

lo = [0,0,0]
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xf.append(lo[0])

yf.append(lo[1])

zf.append(lo[2])

xf.append(lv[0])

yf.append(lv[1])

zf.append(lv[2])

T1 = np.zeros ((3 ,3))

T1 [0][0] = cos(theta)

T1 [0][1] = sin(theta)

T1 [1][0] = sin(theta)

T1 [1][1] = -cos(theta)

T1 [2][2] = -1

phi = 180

Tt = np.zeros ((3 ,3))

Tt [0][0] = cos(theta)

Tt [0][1] = sin(theta)

Tt [1][0] = -sin(theta)*cos(phi)

Tt [1][1] = cos(theta)*cos(phi)

Tt [1][2] = -sin(phi)

Tt [2][0] = -sin(theta)*sin(phi)

Tt [2][1] = cos(theta)*sin(phi)

Tt [2][2] = cos(phi)

phi = 60

Tg = np.zeros ((3 ,3))

Tg [0][0] = cos(theta)

Tg [0][1] = sin(theta)

Tg [1][0] = -sin(theta)*cos(phi)

Tg [1][1] = cos(theta)*cos(phi)

Tg [1][2] = -sin(phi)

Tg [2][0] = -sin(theta)*sin(phi)

Tg [2][1] = cos(theta)*sin(phi)

Tg [2][2] = cos(phi)

phi = 300

Tgm = np.zeros ((3,3))

Tgm [0][0] = cos(theta)

Tgm [0][1] = sin(theta)

Tgm [1][0] = -sin(theta)*cos(phi)

Tgm [1][1] = cos(theta)*cos(phi)

Tgm [1][2] = -sin(phi)

Tgm [2][0] = -sin(theta)*sin(phi)

Tgm [2][1] = cos(theta)*sin(phi)

Tgm [2][2] = cos(phi)

p_sw=np.zeros(len(n1))

for i in range(len(n1)):

if i == 0 or i == len(n1) -1:

pn=randint (0 ,100)
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pg=randint (1,2)

if pn <= 23 and pg == 1:

p_sw[i]=1

elif pn <= 23 and pg == 2:

p_sw[i]=2

elif pn > 23:

p_sw[i]=0

else:

pn=randint (0 ,100)

pn = pn/100

pg=randint (1,2)

if (p_sw[i -1]==1 or p_sw[i -1]==2) and pn >qs_gt[i] and pn <= qs_gt[

i]+qs_gg[i] and pg==1:

p_sw[i]=1

elif (p_sw[i -1]==1 or p_sw[i -1]==2) and pn >qs_gt[i] and pn <=

qs_gt[i]+qs_gg[i] and pg==2:

p_sw[i]=2

elif (p_sw[i -1]==1 or p_sw[i -1]==2) and pn <= qs_gt[i]:

p_sw[i]=0

elif (p_sw[i -1]==0) and pn >qs_gt[i]+ qs_gg[i] and pn <= qs_gt[i]+

qs_gg[i]+qs_tt[i]:

p_sw[i]=0

elif (p_sw[i -1]==0) and pn >qs_gt[i]+ qs_gg[i]+ qs_tt[i] and pn <=

qs_gt[i]+qs_gg[i]+qs_tt[i]+qs_tg[i] and pg==1:

p_sw[i]=1

elif (p_sw[i -1]==0) and pn >qs_gt[i]+ qs_gg[i]+ qs_tt[i] and pn <=

qs_gt[i]+qs_gg[i]+qs_tt[i]+qs_tg[i] and pg==2:

p_sw[i]=2

l2=np.zeros (3)

l1=np.mat(T1).dot(lv)

l1 = l1[0 ,:]. reshape (1,3).T

l1 = [float(ii) for ii in l1]

xf.append(l1[0]+l)

yf.append(l1[1])

zf.append(l1[2])

l2[0]=l1[0]+l

l2[1]=l1[1]

l2[2]=l1[2]

for i in range(len(p_sw)):

if i == 0:

if p_sw[i]==0:

l1=np.mat(Tt).dot(lv)

elif p_sw[i]==1:

l1=np.mat(Tg).dot(lv)

elif p_sw[i]==2:

l1=np.mat(Tgm).dot(lv)

l1 = l1[0 ,:]. reshape (1,3).T
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l1 = [float(ii) for ii in l1]

l1=np.mat(T1).dot(l1)

l1 = l1[0 ,:]. reshape (1,3).T

l1 = [float(ii) for ii in l1]

xf.append(l1[0]+l2[0])

yf.append(l1[1]+l2[1])

zf.append(l1[2]+l2[2])

l2[0]=l1[0]+l2[0]

l2[1]=l1[1]+l2[1]

l2[2]=l1[2]+l2[2]

else:

if p_sw[i]==0:

l1=np.mat(Tt).dot(lv)

elif p_sw[i]==1:

l1=np.mat(Tg).dot(lv)

elif p_sw[i]==2:

l1=np.mat(Tgm).dot(lv)

l1 = l1[0 ,:]. reshape (1,3).T

l1 = [float(ii) for ii in l1]

for j in range(i):

if p_sw[i-1-j]==0:

l1=np.mat(Tt).dot(l1)

elif p_sw[i-1-j]==1:

l1=np.mat(Tg).dot(l1)

elif p_sw[i-1-j]==2:

l1=np.mat(Tgm).dot(l1)

l1 = l1[0,:]. reshape (1,3).T

l1 = [float(ii) for ii in l1]

l1=np.mat(T1).dot(l1)

l1 = l1[0 ,:]. reshape (1,3).T

l1 = [float(ii) for ii in l1]

xf.append(l1[0]+l2[0])

yf.append(l1[1]+l2[1])

zf.append(l1[2]+l2[2])

l2[0]=l1[0]+l2[0]

l2[1]=l1[1]+l2[1]

l2[2]=l1[2]+l2[2]

xcm=sum(xf)/len(xf)

ycm=sum(yf)/len(yf)

zcm=sum(zf)/len(zf)

rgx=0

rgy=0

rgz=0

for i in range(len(xf)):

rgx=rgx+(xf[i]-xcm)**2

rgy=rgy+(yf[i]-ycm)**2

rgz=rgz+(zf[i]-zcm)**2
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rgx=np.sqrt(rgx/len(xf))

rgy=np.sqrt(rgy/len(yf))

rgz=np.sqrt(rgz/len(zf))

rg_magn=np.sqrt(rgx **2+ rgy **2+ rgz **2)

a=-rg_magn

b=rg_magn

plt.xlim((a+xcm)*0.1 ,(b+xcm)*0.1)#in nm

plt.ylim((a+ycm)*0.1 ,(b+ycm)*0.1)#in nm

ax.set_zlim ((a+zcm)*0.1 ,(b+zcm)*0.1)#in nm

xf2=[ii*0.1 for ii in xf]

yf2=[ii*0.1 for ii in yf]

zf2=[ii*0.1 for ii in zf]

ax.plot_wireframe(xf2 ,yf2 ,zf2)#in nm

ax.scatter(xf2 ,yf2 ,zf2 ,’o’,c=’b’)#in nm

plt.xlabel("$x~(\ mathrm{nm})$")

plt.ylabel("$y~(\ mathrm{nm})$")

ax.set_zlabel("$z~(\ mathrm{nm})$")

plt.savefig("3d-plot.png",dpi =300)

filename2="initial3.txt"

writefile = open(filename2 ,’w’)

for j in range(n):

writefile.write(str(xf[j]))#in anstrogm

writefile.write("\t")

writefile.write(str(yf[j]))#in anstrogm

writefile.write("\t")

writefile.write(str(zf[j]))#in anstrogm

writefile.write("\n")
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Figure B.1: Initial conformation of chain with N = 50 in the numerical simulation described
in the letter, which is generated using the Python 3.5 program above.
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Appendix C

Supporting Information for Chapter 4

C.1 Harmonic Potential with b = 0

Let us first consider the case of linear polyethylene, the equations of motion of N beads

without the inertia term and hydrodynamic interaction is given as follows:

dq

dt
=
k

ζ
Aq+

g

ζ
(C.1)

In this simple case, the change in the position q with time is equal to sum of the matrix

A operates on itself and the random force g (cf., Equation (C.2)), which has a normal

distribution with ⟨gn,q⟩ = 0 and ⟨gn,q(t)gn,q(t′)⟩ = 2kbTζδ(t− t′).

g =
[︁
g0,x . . . gN−1,x g0,y . . . gN−1,y g0,z . . . gN−1,z

]︁T
(C.2)

It is important to know the form of A, which are formed by blocks of A (N ×N matrix).

A =

⎡⎣A 0 0
0 A 0
0 0 A

⎤⎦ (C.3)

The eigenvalues of A is related to the relaxation time of different modes of the linear chain,

which is critical in the evaluation of different time correlation functions. As pointed out by

Rouse [20], A is a tridiagonal matrix, which has the following form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

0 0
. . . . . . . . . 0

0 0 . . . 1 −2 1
0 0 . . . 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(C.4)
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Equation (C.1) can be solved numerically using the implicit Euler method:

[︁
∆t
k

ζ
A− I

]︁
qj+1 = −∆t

ζ
gj+1 − qj (C.5)

I is a 3N × 3N identity matrix. At each time step j, a system of linear equations can be

solved numerically using algorithm, such as tridiagonal matrix algorithm, to obtain qj+1.

This method was implemented in a C++ program.

C.2 Preliminaries: Linear Brownian Dynamics of Poly-

mer with b = 0

In this section, we would like to demonstrate the eigenfunctions in the Rouse model of

polyethylene with different structures and their applications in obtaining the time correlation

functions of different vectors.

C.2.1 Linear Structure

Interestingly, the operator A can be replaced by the operator ∂2/∂n2 if we are interested in

the long time scale motion of the linear chain [21]. And Equation (C.1) will become a second

order parabolic partial differential equation subjected to the boundary conditions ∂R0

∂n
= 0

and ∂RN

∂n
= 0:

∂Rn

∂t
=
k

ζ

∂2Rn

∂n2
+

fn
ζ

(C.6)

In which Rn =
[︁
Rn,x Rn,y Rn,z

]︁T
and fn =

[︁
gn,x gn,y gn,z

]︁T
. Subjected to the following

boundary conditions:

∂R0

∂n
= 0,

∂RN

∂n
= 0

With these boundary conditions, ψp = cos(pπ n
N
) for p = 0, 1, 2, 3...N − 1. The solution is

therefore:

Rn = X0 + 2
N−1∑︂
p=1

Xp cos(pπ
n

N
)
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With the following:

X0(t) =
1

N

[︂
A0 +

∫︂ t

0

∫︂ N

0

fn
ζ
dndτ

]︂
(C.7)

Xp(t) =
1

N
e−λ

2
pt
[︂
Ap +

∫︂ t

0

eλ
2
pτ

∫︂ N

0

fn
ζ
cos(pπ

n

N
)dndτ

]︂
(C.8)

We can now study the longest relaxation time, which is the relaxation time of the end-to-end

vector,

R = RN−1 −R0 = 2
N−1∑︂
p=1

Xp

[︂
cos(pπ)− 1

]︂
= −4

N−1∑︂
p=1,odd

Xp (C.9)

Therefore, the correlation function for the end-to-end vector is:

⟨R(t) ·R(0)⟩ = 16
N−1∑︂

p=1,odd

⟨Xp(t) ·Xp(0)⟩ = 8
N−1∑︂

p=1,odd

Nb2

p2π2
e−t/τp (C.10)

The random force term in Equations (C.7) and (C.8) disappears when we multiply these ex-

pression by Xp(0) and X0(0), as fn is not correlated with Ap and A0, respectively. Equation

(C.10) is therefore verified numerically (cf., Figure C.1(a)).

Figure C.1: Time correlation function of the end-to-end vector of a linear polyethylene com-
pared with the exact solution.

Armed with this knowledge, we can envisage that once we know the eigenvalues and

eigenfunctions of the operator A for the ring and star structures, we can directly use this

information to construct the corresponding time correlation functions of the particular vec-

tors.
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C.2.2 Ring Structure

The matrix A for the ring structure is as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 . . . 1
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

0 0
. . . . . . . . . 0

0 0 . . . 1 −2 1
1 0 . . . 0 1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(C.11)

We can also make use of the continuous approach for the ring structure and the partial

differential equation is in the same form as that of the linear chain, but with slightly different

boundary condition:

R0 = RN,
∂R0

∂n
=
∂RN−1

∂n

We notice that both eigenfunctions sin(2pπ n
N
) as well as cos(2pπ n

N
) satisfy the boundary

conditions, and eigenvalues λ2p =
4p2π2k
N2ζ

. Therefore, for the ring structure with size N , there

are N
2
eigenmodes with sin(2pπ n

N
) and other N

2
eigenmodes with cos(2pπ n

N
) as eigenfunctions.

The solution now becomes:

Rn = X0 + 2

N/2−1∑︂
p=1

Xp(t) cos(2pπ
n

N
) + 2

N/2−1∑︂
p=1

Yp(t) sin(2pπ
n

N
) (C.12)

As it is known that relaxation times for different normal modes are τp = 1/λ2p. From this

result, we immediately know that relaxation times of different modes of the ring structure

are faster by a factor of 4 compared to its linear counterpart.

Similar to the formulation presented in the previous section of this paper, in the case of

the ring structure, we are interested in the time correlation function of a vector R, which

connects the nth bead to the mth bead. The equation now becomes:

R(t) = Rm(t)−Rn(t) = 2
(︂N/2−1∑︂

p=1

Xp(t)
[︂
cos(2pπ

m

N
)−cos(2pπ

n

N
)
]︂
+Yp(t)

[︂
sin(2pπ

m

N
)−sin(2pπ

n

N
)
]︂)︂

(C.13)

The time correlation function of R is therefore:

⟨R(t) ·R(0)⟩ = 4
(︂N/2−1∑︂

p=1

⟨Y 2
p ⟩e−λ

2
pt
[︂
sin(2pπ

m

N
)− sin(2pπ

n

N
)
]︂2

+ ⟨X2
p ⟩e−λ

2
pt
[︂
cos(2pπ

m

N
)− cos(2pπ

n

N
)
]︂2)︂

(C.14)
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To construct ⟨R(t) ·R(0)⟩, we need to know ⟨X2
p ⟩ and ⟨Y 2

p ⟩. Consider a three dimensional

Gaussian distribution Ψ with a normalization constant C in the case of an ideal ring structure

(Details of derivation of Ψ can be found in the book written by Khokhlov [128]):

Ψ(R0...RN) = C exp
(︂
− 3

2b2/2

m−1∑︂
i=n

(Ri+1 −Ri)
2
)︂

= C exp
(︂
− 3

2b2/2

∫︂ m

n

(︂∂Rn

∂n

)︂2

dn
)︂

= C exp
(︂
−

N/2−1∑︂
p=1

3 · 2p2π2

2Nb2/2

[︂
XpXp +YpYp

]︂)︂
For the simple case that n = 0 and m = N/2, we have:

⟨X2
p ⟩ =

Nb2

4p2π2
(C.15)

And:

⟨Y 2
p ⟩ =

Nb2

4p2π2
(C.16)

For p = 1, 2, 3...N/2− 1. This leads to:

⟨R(t) ·R(0)⟩ = Nb2

2

N/2−1∑︂
p=1

8

p2π2
e−λ

2
pt (C.17)

This exact solution is confirmed by numerical simulation results as shown in Figure C.2(a).

Figure C.2: Time correlation function of the m-to-n vector of the ring structure compared
with the exact solution.
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C.2.3 Star Structure

Matrix A for the star structure with four arms was derived using a similar approach of Ghosh

[24]. In such a case, the eigenvalues and eigenfunctions (ψp) of A were obtained numerically.

A =

⎡⎢⎢⎢⎢⎣
A1 0 V 0 0
0 A1 V 0 0
VT VT −4 UT UT

0 0 U A2 0
0 0 U 0 A2

⎤⎥⎥⎥⎥⎦ (C.18)

For which, we let the followings:

A1 =

⎡⎢⎢⎢⎢⎢⎣
−1 1 0 . . . 0
1 −2 1 . . . 0

0
. . . . . . . . . 0

0 . . . 1 −2 1
0 . . . 0 1 −2

⎤⎥⎥⎥⎥⎥⎦ (C.19)

A2 =

⎡⎢⎢⎢⎢⎢⎣
−2 1 0 . . . 0
1 −2 1 . . . 0

0
. . . . . . . . . 0

0 . . . 1 −2 1
0 . . . 0 1 −1

⎤⎥⎥⎥⎥⎥⎦ (C.20)

The dimensions of A1 and A2 are both Nf ×Nf , where Nf is the number of beads per arm.

V =
[︁
0 0 . . . 1

]︁T
(C.21)

U =
[︁
1 0 . . . 0

]︁T
(C.22)

Figure C.3 shows the plots of the first three most dominant eigenfunctions of A (ψp) for the

star structure. Eigenvalues of A can be used to obtain the relaxation time τp. Interestingly,

as shown in Figure C.4, three normal modes can share the same value τp in star polymer.
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Figure C.3: Eigenfunctions for the three most dominant normal modes of the star structure
with N = 49.

Figure C.4: τp in star polymer with N = 49.

With the numerically determined eigenfunctions and eigenvalues, we can easily calculate

the time correlation function for the arms of the star polymers:

⟨R(t) ·R(0)⟩ =
N−1∑︂
p=1

⟨X2
p ⟩e−t/τp

[︁
ψp(0)− ψp(

N − 1

2
)
]︁2

(C.23)
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Figure C.5: Time correlation function of the arm vector compared with the exact solution.

C.3
√︂

⟨R2
g⟩ of Polyethylene with Different Structures in

BD and MD Simulations

Figure C.6 shows plots of
√︂

⟨R2
g⟩ with N derived from the BD and MD simulations for the

three different structures. In BD simulation, a Gaussian statistics was observed as indicated

by
√︂
⟨R2

g⟩ ∼ N0.5, whereas in MD simulation, N dependence of
√︂

⟨R2
g⟩ with an exponent

slightly greater than 0.5, ranging from 0.66 to 0.70, was observed. Nonetheless, we found

that our MD data of linear and ring structures are in excellent agreement with Hur et al.

[2] as well as Tsolou et al. [4], and the experimental data of Dettenmaier [129]. In addition,

the magnitude of the
√︂
⟨R2

g⟩ is always slightly higher in BD simulation. We speculate that

this may be due to the lack of many-chain effect in BD simulation, as the magnitude of the

characteristic ratio (C∞) can be influenced by the density of the polymer melt.
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(a) Linear structure (b) Ring structure

(c) Star structure

Figure C.6:
√︂

⟨R2
g⟩ of polyethylene with linear, ring and star structures in BD and MD

simulations as well as the literature data.

C.4 Dcm of Polyethylene with Different Structures in

BD and MD Simulations

Figure C.7 shows a plot of Dcm with N for polyethylene with different structures. For all

structures, we observed that the N dependence of Dcm is slightly stronger in MD simulation

for linear and star structures, in which the exponents are −1.8 and −1.5, respectively, than

that in BD simulation with the exponents of −1.3 and −1.1, respectively. The reverse is

true for ring structure that the exponents of −1.3 and −0.9 were observed in BD and MD

simulations, respectively. Our MD simulation data are in good agreement with that of Hur

et al. [2] and Tsolou et al. [4]. For linear structure, our observation that a stronger N
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dependence of Dcm in MD simulation with an exponent greater than unity was also evident

in the experimental data of von Meerwall et al. [1] (cf., Figure C.7(a)). For ring structure,

a smaller exponent of −0.9 in the N dependence of Dcm was obtained (cf., Figure C.7(b)).

This may be due to the fact that there are no chain ends in ring structure, and therefore the

effect of density on the self-diffusion of ring polyethylene is weaker in the MD simulation.

(a) Linear structure (b) Ring structure

(c) Star structure

Figure C.7: Comparison of Dcm derived from MD simulation with different references in the
literature.

233



C.5
√︁

⟨R2⟩ of Polyethylene with Different Structures in

BD Simulation Compared with
√
NC∞b0

(a) Linear structure (b) Ring structure

(c) Star structure

Figure C.8:
√︁

⟨R2⟩ of polyethylene with linear, ring and star structures in BD as well as that
calculated by

√
NC∞b0.

As shown in Figure C.8, the expected
√︁

⟨R2⟩ ∼ N0.5 is reproduced in the BD simulation.

In addition, this also proves that the harmonic bond stretching potential can avoid the

overlapping of beads as the computed values of
√︁

⟨R2⟩ in BD simulation are always slightly

higher than
√
NC∞b0.

C.6 C++ Program for Numerical Simulation of Star

Polymer with b = 0
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#include <iostream >

#include <istream >

#include <fstream >

#include <iomanip >

#include <cstdio >

#include <sstream >

#include <eigen/Eigen/Core >

#include <vector >

#include <stdlib.h>

#include <stdio.h>

#include <random >

#include <chrono >

#include <string >

#include <omp.h>

using namespace std;

using namespace Eigen;

using namespace std:: chrono;

// compile with g++ -std=c++11 -Ofast main2.cpp -o ld4

VectorXd TDMA2(const MatrixXd& A,const VectorXd& b)

{

int row=A.rows();

int col=A.cols();

VectorXd x=VectorXd ::Zero(row);

VectorXd b2=b;

VectorXd c(row);

VectorXd a(row);

for(int i=0;i<row;i++)

{

if(i==0)

{

c(i)=A(i,i+1);

a(i)=0;

}

else if(i==row -1)

{

a(i)=A(i,i-1);

c(i)=0;

}

else

{

a(i)=A(i,i-1);

c(i)=A(i,i+1);

}

}

double err =1;

double sum1;
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VectorXd d1p(row);

VectorXd c1p(row);

VectorXd err1(row);

int count =0;

for(int i=0;i<row;i++)

{

if(i==0)

{

c1p(i)=c(i)/A(i,i);

}

else

{

c1p(i)=c(i)/(A(i,i)-a(i)*c1p(i-1));

}

}

while(abs(err)>pow(10,-6))

{

for(int i=0;i<row;i++)

{

if(i==0)

{

d1p(i)=b2(i)/A(i,i);

}

else

{

d1p(i)=(b2(i)-a(i)*d1p(i-1))/(A(i,i)-a(i)*c1p(i-1));

}

}

x(row -1)=d1p(row -1);

for(int i=row -2;i>=0;--i)

{

x(i)=d1p(i)-c1p(i)*x(i+1);

}

for(int i=0;i<row;i++)

{

sum1 =0;

for(int j=0;j<col;j++)

{

if(j==i || j==i+1 || j==i-1)

{

;

}

else

{

sum1=sum1+A(i,j)*x(j);

}

}
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b2(i)=b(i)-sum1;

}

err1=A*x-b;

err=0;

for(int i=0;i<row;i++)

{

err=err+pow(err1(i) ,2)/row;

}

err=pow(err ,0.5);

count=count +1;

if(count >1000)

{

break;

}

}

return x;

}

int main(int argc , char** argv){

default_random_engine generator;

char* filename;

int N,t_step ,count ,n_save ,f_save ,mid_point ,count_a;

double dt;

for(int i=1;i<argc;i++){

if(strcmp(argv[i], "-n") == 0){

N=stoi(argv[i+1],NULL);// length of polymer

}

else if(strcmp(argv[i], "-t") == 0){

t_step=stoi(argv[i+1],NULL);// t_step

}

else if(strcmp(argv[i], "-dt") == 0){

dt=stod(argv[i+1],NULL);// size of time step dt =0.001 ps

}

else if(strcmp(argv[i],"-f")==0){

filename=argv[i+1];// initial configuration file

}

else if(strcmp(argv[i],"-s")==0){

f_save=stoi(argv[i+1],NULL);// number of steps to be saved

}

else{

;

}

}

n_save=t_step/f_save;

ifstream infile(filename);

VectorXd x(N),y(N),z(N),bx(N),by(N),bz(N);

MatrixXd x1(N,n_save),y1(N,n_save),z1(N,n_save);

MatrixXd A1=MatrixXd ::Zero(N,N);
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MatrixXd I=MatrixXd :: Identity(N,N);

mid_point =(N-1)/2;

int f=(((N-1) /4) +1);

count_a =0;

for(int i=0;i<mid_point +1;i++){

if(i== mid_point){

A1(i,i)=-4;

A1(i,i-1) =1;

A1(i,i+1) =1;

A1(i,i-f)=1;

A1(i,i+f)=1;

}

else{

if(i%(f-1) ==0){

for(int j=0;j<(f-1);j++){

if(j==0){

A1(j+count_a ,j+count_a)=-1;

A1(j+count_a ,j+count_a +1) =1;

}

else if(j==(f-2)){

A1(j+count_a ,j+count_a)=-2;

A1(j+count_a ,j-1+ count_a)=1;

A1(j+count_a ,mid_point)=1;

}

else{

A1(j+count_a ,j+count_a)=-2;

A1(j+count_a ,j-1+ count_a)=1;

A1(j+count_a ,j+1+ count_a)=1;

}

}

count_a=count_a +(f-1);

}

else{

;

}

}

}

int a11=mid_point +1;

count_a =0;

for(int i2=0;i2 <mid_point;i2++){

int i=i2+a11;

if((i-1)%(f-1) ==0){

for(int j=0;j<f-1;j++){

if(j==0){

A1(j+a11+count_a ,j+a11+count_a)=-2;

A1(j+a11+count_a ,j+a11 +1+ count_a)=1;

A1(j+a11+count_a ,mid_point)=1;

}
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else if(j==f-2){

A1(j+a11+count_a ,j+a11+count_a)=-1;

A1(j+a11+count_a ,j+a11 -1+ count_a)=1;

}

else{

A1(j+count_a+a11 ,a11+j+count_a)=-2;

A1(j+count_a+a11 ,j-1+ a11+count_a)=1;

A1(j+count_a+a11 ,a11+j+1+ count_a)=1;

}

}

count_a=count_a +(f-1);

}

else{

;

}

}

for(int i=0;i<N;i++){

infile >>x(i);

infile >>y(i);

infile >>z(i);

}

double c1 ,lam;

double k_b =1.38065* pow(10,-27);//A^2 kg ps^-2K^-1

double T=450;//K

double xi =8;//ps^-1

double b=4.42;//A

double m=2.32664* pow(10,-26);//kg

double k=(3* k_b*T)/(pow(b,2));//kg ps^-2

double sigma=pow (2* k_b*T*xi*m ,0.5) ;// normal distribution force

c1=(k/(m*xi))*dt;

A1=A1*c1 -I;

normal_distribution <double > distribution (0,sigma);

high_resolution_clock :: time_point t1 = high_resolution_clock ::now

();

count =0;

for(int it=0;it <t_step;it++){

if(it==0){

for(int i=0;i<N;i++){

x1(i,count)=x(i);

y1(i,count)=y(i);

z1(i,count)=z(i);

}

count=count +1;

}

else{

VectorXd Fx=VectorXd ::Zero(N);

VectorXd Fy=VectorXd ::Zero(N);

VectorXd Fz=VectorXd ::Zero(N);
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for(int i=0;i<N;i++){

Fx(i)=distribution(generator);

Fy(i)=distribution(generator);

Fz(i)=distribution(generator);

bx(i)=-x(i)-Fx(i)*dt/(m*xi);

by(i)=-y(i)-Fy(i)*dt/(m*xi);

bz(i)=-z(i)-Fz(i)*dt/(m*xi);

}

x=TDMA2(A1,bx);

y=TDMA2(A1,by);

z=TDMA2(A1,bz);

if(remainder(it ,f_save)==0){

for(int i=0;i<N;i++){

x1(i,count)=x(i);

y1(i,count)=y(i);

z1(i,count)=z(i);

}

count=count +1;

cout << "Saved␣time␣step=␣"<< count << endl;

}

}

}

ofstream myfile;

myfile.open("x.dat", ios:: binary);

myfile.write((char *) x1.data(), x1.rows() * x1.cols() * sizeof(

double));

myfile.close();

myfile.open("y.dat", ios:: binary);

myfile.write((char *) y1.data(), y1.rows() * y1.cols() * sizeof(

double));

myfile.close();

myfile.open("z.dat", ios:: binary);

myfile.write((char *) z1.data(), z1.rows() * z1.cols() * sizeof(

double));

myfile.close();

high_resolution_clock :: time_point t2 = high_resolution_clock ::now

();

auto duration = duration_cast <seconds >( t2 - t1 ).count();

cout << "run␣time=␣" << duration << "␣seconds" << endl;

return 0;

}
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C.7 C++ Program for Numerical Simulation of Star

Polymer with b = 4.42 Å

#include <iostream >

#include <istream >

#include <fstream >

#include <iomanip >

#include <cstdio >

#include <sstream >

#include </home/chipuije/eigen/Eigen/Dense >

#include <vector >

#include <stdlib.h>

#include <stdio.h>

#include <random >

#include <chrono >

#include <string >

#include <omp.h>

using namespace std;

using namespace Eigen;

using namespace std:: chrono;

// compile with g++ -std=c++11 -Ofast main2.cpp -o ld4

double dFb_dx(double x1 ,double x2 ,double y1 ,double y2 ,double z1 ,

double z2 ,int p1 ,double k){

// tridiagonal elements of Jacobian matrix

double R12=pow((x2 -x1)*(x2 -x1)+(y2 -y1)*(y2 -y1)+(z2 -z1)*(z2 -z1)

,0.5),l=4.42;

if(p1==0){

return -k*(R12 -l)/R12+k*(x2 -x1)*(x2 -x1)*(R12 -l)/pow(R12 ,3)-k*(x2

-x1)*(x2-x1)/(R12*R12);

}

else if(p1==1){

return -k*(R12 -l)/R12+k*(y2 -y1)*(y2 -y1)*(R12 -l)/pow(R12 ,3)-k*(y2

-y1)*(y2-y1)/(R12*R12);

}

else if(p1==2){

return -k*(R12 -l)/R12+k*(z2 -z1)*(z2 -z1)*(R12 -l)/pow(R12 ,3)-k*(z2

-z1)*(z2-z1)/(R12*R12);

}

}

double dFxdy1(double x1 ,double x2 ,double y1 ,double y2 ,double z1 ,

double z2 ,int p1 ,int p2 ,double k){

//off -tridiagonal elements of Jacobian matrix

double R12=pow((x2 -x1)*(x2 -x1)+(y2 -y1)*(y2 -y1)+(z2 -z1)*(z2 -z1)

,0.5),l=4.42;

if((p1==0 && p2==1) || (p1==1 && p2==0)){
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return k*(x2 -x1)*(y2 -y1)*(R12 -l)/pow(R12 ,3)-k*(x2 -x1)*(y2 -y1)/(

R12*R12);

}

else if((p1==0 && p2==2) || (p1==2 && p2==0)){

return k*(x2 -x1)*(z2 -z1)*(R12 -l)/pow(R12 ,3)-k*(x2 -x1)*(z2 -z1)/(

R12*R12);

}

else if((p1==1 && p2==2) || (p1==2 && p2==1)){

return k*(y2 -y1)*(z2 -z1)*(R12 -l)/pow(R12 ,3)-k*(y2 -y1)*(z2 -z1)/(

R12*R12);

}

}

double Fb(double x1 ,double x2 ,double y1 ,double y2 ,double z1 ,double

z2,int p1,double k){

double R12=pow((x2 -x1)*(x2 -x1)+(y2 -y1)*(y2 -y1)+(z2 -z1)*(z2 -z1)

,0.5),l=4.42;

if(p1==0){

return k*(R12 -l)*(x2 -x1)/R12;

}

else if(p1==1){

return k*(R12 -l)*(y2 -y1)/R12;

}

else if(p1==2){

return k*(R12 -l)*(z2 -z1)/R12;

}

}

int main(int argc , char** argv){

default_random_engine generator;

char* filename;

int N,t_step ,count ,n_save ,f_save ,count2 ,mid_point ,f,count_a;

double dt;

for(int i=1;i<argc;i++){

if(strcmp(argv[i], "-n") == 0){

N=stoi(argv[i+1],NULL);// length of polymer

}

else if(strcmp(argv[i], "-t") == 0){

t_step=stoi(argv[i+1],NULL);// t_step

}

else if(strcmp(argv[i], "-dt") == 0){

dt=stod(argv[i+1],NULL);// size of time step dt =0.001 ps

}

else if(strcmp(argv[i],"-f")==0){

filename=argv[i+1];// initial configuration file

}

else if(strcmp(argv[i],"-s")==0){

f_save=stoi(argv[i+1],NULL);// number of steps to be saved
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}

else{

;

}

}

n_save=t_step/f_save;

ifstream infile(filename);

VectorXd x(N),y(N),z(N),bx(N),by(N),bz(N),res(3*N),delr (3*N),

product1 (3*N),err_v(n_save),count_it(n_save);

MatrixXd x1(N,n_save),y1(N,n_save),z1(N,n_save),r(N,3),r2(N,3);

MatrixXd J=MatrixXd ::Zero (3*N,3*N),JTJ(3*N,3*N),JT(3*N,3*N);

for(int i=0;i<N;i++){

infile >>x(i);

infile >>y(i);

infile >>z(i);

x(i)=x(i)*4.42/1.54;

y(i)=y(i)*4.42/1.54;

z(i)=z(i)*4.42/1.54;

}

double lam ,err ,rcmx ,rcmy ,rcmz;

double k_b =1.38065* pow(10,-27);//A^2 kg ps^-2K^-1

double T=450;//K

double xi =2.58;// ps^-1

double b=4.42;//A

double m=2.32664* pow(10,-26);//kg

double k=(3* k_b*T)/(pow(b,2));//kg ps^-2

double c2=k/(m*xi);

dt=m*xi/k;

double sigma=pow (2* k_b*T*xi*m ,0.5) ;// normal distribution force

normal_distribution <double > distribution (0,sigma);

high_resolution_clock :: time_point t1 = high_resolution_clock ::now

();

count =0;

for(int i=0;i<N;i++){

r(i,0)=x(i);

r(i,1)=y(i);

r(i,2)=z(i);

}

r2=r;

mid_point =(N-1)/2;

f=(((N-1)/4)+1);

for(int it=0;it <t_step;it++){

if(it==0){

for(int i=0;i<N;i++){

x1(i,count)=r(i,0);

y1(i,count)=r(i,1);

z1(i,count)=r(i,2);
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}

err_v(count)=0;

count_it(count)=0;

count=count +1;

}

else{

VectorXd Fr=VectorXd ::Zero (3*N);

for(int i=0;i<3*N;i++){

Fr(i)=distribution(generator)*dt/(m*xi);

}

err =1;

count2 =0;

while(abs(err)>pow(10,-10)){

for(int i=0;i<3;i++){

count_a =0;

for(int i2=0;i2 <mid_point +1;i2++){

if(i2== mid_point){

res(i2+i*N)=Fb(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),r2(i2+1,1)

,r2(i2 ,2),r2(i2+1,2),i,c2*dt)+Fb(r2(i2 ,0),r2(i2

-1,0),r2(i2 ,1),r2(i2 -1,1),r2(i2 ,2),r2(i2 -1,2),i,c2*

dt)+r(i2 ,i)-r2(i2 ,i)+Fr(i2+i*N)+Fb(r2(i2 ,0),r2(i2+f

,0),r2(i2 ,1),r2(i2+f,1),r2(i2 ,2),r2(i2+f,2),i,c2*dt

)+Fb(r2(i2 ,0),r2(i2-f,0),r2(i2 ,1),r2(i2-f,1),r2(i2

,2),r2(i2 -f,2),i,c2*dt);

J(i2+i*N,i2+i*N)=dFb_dx(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),

r2(i2+1,1),r2(i2 ,2),r2(i2+1,2),i,c2*dt)+dFb_dx(r2(

i2 ,0),r2(i2 -1,0),r2(i2 ,1),r2(i2 -1,1),r2(i2 ,2),r2(i2

-1,2),i,c2*dt)+dFb_dx(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),

r2(i2+f,1),r2(i2 ,2),r2(i2+f,2),i,c2*dt)+dFb_dx(r2(

i2 ,0),r2(i2-f,0),r2(i2 ,1),r2(i2-f,1),r2(i2 ,2),r2(i2

-f,2),i,c2*dt) -1;

J(i2+i*N,i2+i*N+1)=-dFb_dx(r2(i2 ,0),r2(i2+1,0),r2(i2

,1),r2(i2+1,1),r2(i2 ,2),r2(i2+1,2),i,c2*dt);

J(i2+i*N,i2+i*N-1)=-dFb_dx(r2(i2 ,0),r2(i2 -1,0),r2(i2

,1),r2(i2 -1,1),r2(i2 ,2),r2(i2 -1,2),i,c2*dt);

J(i2+i*N,i2+i*N+f)=-dFb_dx(r2(i2 ,0),r2(i2+f,0),r2(i2

,1),r2(i2+f,1),r2(i2 ,2),r2(i2+f,2),i,c2*dt);

J(i2+i*N,i2+i*N-f)=-dFb_dx(r2(i2 ,0),r2(i2-f,0),r2(i2

,1),r2(i2 -f,1),r2(i2 ,2),r2(i2 -f,2),i,c2*dt);

if(i==0){

//x direction

J(i2 ,i2+N)=dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),r2(i2

+1,1),r2(i2 ,2),r2(i2+1,2) ,0,1,c2*dt)+dFxdy1(r2(i2

,0),r2(i2 -1,0),r2(i2 ,1),r2(i2 -1,1),r2(i2 ,2),r2(i2

-1,2) ,0,1,c2*dt)+dFxdy1(r2(i2 ,0),r2(i2 -f,0),r2(i2

,1),r2(i2 -f,1),r2(i2 ,2),r2(i2 -f,2) ,0,1,c2*dt)+

dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),r2(i2+f,1),r2

(i2 ,2),r2(i2+f,2) ,0,1,c2*dt);
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J(i2 ,i2+N+1)=-dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),r2

(i2+1,1),r2(i2 ,2),r2(i2+1,2) ,0,1,c2*dt);

J(i2 ,i2+N-1)=-dFxdy1(r2(i2 ,0),r2(i2 -1,0),r2(i2 ,1),r2

(i2 -1,1),r2(i2 ,2),r2(i2 -1,2) ,0,1,c2*dt);

J(i2 ,i2+N+f)=-dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),r2

(i2+f,1),r2(i2 ,2),r2(i2+f,2) ,0,1,c2*dt);

J(i2 ,i2+N-f)=-dFxdy1(r2(i2 ,0),r2(i2-f,0),r2(i2 ,1),r2

(i2 -f,1),r2(i2 ,2),r2(i2-f,2) ,0,1,c2*dt);

J(i2 ,i2+2*N)=dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),r2(

i2+1,1),r2(i2 ,2),r2(i2+1,2) ,0,2,c2*dt)+dFxdy1(r2(

i2 ,0),r2(i2 -1,0),r2(i2 ,1),r2(i2 -1,1),r2(i2 ,2),r2(

i2 -1,2) ,0,2,c2*dt)+dFxdy1(r2(i2 ,0),r2(i2-f,0),r2(

i2 ,1),r2(i2 -f,1),r2(i2 ,2),r2(i2-f,2) ,0,2,c2*dt)+

dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),r2(i2+f,1),r2

(i2 ,2),r2(i2+f,2) ,0,2,c2*dt);

J(i2 ,i2+2*N+1)=-dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),

r2(i2+1,1),r2(i2 ,2),r2(i2+1,2) ,0,2,c2*dt);

J(i2 ,i2+2*N-1)=-dFxdy1(r2(i2 ,0),r2(i2 -1,0),r2(i2 ,1),

r2(i2 -1,1),r2(i2 ,2),r2(i2 -1,2) ,0,2,c2*dt);

J(i2 ,i2+2*N+f)=-dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),

r2(i2+f,1),r2(i2 ,2),r2(i2+f,2) ,0,2,c2*dt);

J(i2 ,i2+2*N-f)=-dFxdy1(r2(i2 ,0),r2(i2-f,0),r2(i2 ,1),

r2(i2-f,1),r2(i2 ,2),r2(i2 -f,2) ,0,2,c2*dt);

}

else if(i==1){

//y direction

J(i2+i*N,i2)=dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),r2(

i2+1,1),r2(i2 ,2),r2(i2+1,2) ,1,0,c2*dt)+dFxdy1(r2(

i2 ,0),r2(i2 -1,0),r2(i2 ,1),r2(i2 -1,1),r2(i2 ,2),r2(

i2 -1,2) ,1,0,c2*dt)+dFxdy1(r2(i2 ,0),r2(i2-f,0),r2(

i2 ,1),r2(i2 -f,1),r2(i2 ,2),r2(i2-f,2) ,1,0,c2*dt)+

dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),r2(i2+f,1),r2

(i2 ,2),r2(i2+f,2) ,1,0,c2*dt);

J(i2+i*N,i2+1)=-dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),

r2(i2+1,1),r2(i2 ,2),r2(i2+1,2) ,1,0,c2*dt);

J(i2+i*N,i2 -1)=-dFxdy1(r2(i2 ,0),r2(i2 -1,0),r2(i2 ,1),

r2(i2 -1,1),r2(i2 ,2),r2(i2 -1,2) ,1,0,c2*dt);

J(i2+i*N,i2+f)=-dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),

r2(i2+f,1),r2(i2 ,2),r2(i2+f,2) ,1,0,c2*dt);

J(i2+i*N,i2 -f)=-dFxdy1(r2(i2 ,0),r2(i2-f,0),r2(i2 ,1),

r2(i2-f,1),r2(i2 ,2),r2(i2 -f,2) ,1,0,c2*dt);

J(i2+i*N,i2+2*N)=dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1)

,r2(i2+1,1),r2(i2 ,2),r2(i2+1,2) ,1,2,c2*dt)+dFxdy1

(r2(i2 ,0),r2(i2 -1,0),r2(i2 ,1),r2(i2 -1,1),r2(i2 ,2)

,r2(i2 -1,2) ,1,2,c2*dt)+dFxdy1(r2(i2 ,0),r2(i2 -f,0)

,r2(i2 ,1),r2(i2-f,1),r2(i2 ,2),r2(i2 -f,2) ,1,2,c2*

dt)+dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),r2(i2+f

,1),r2(i2 ,2),r2(i2+f,2) ,1,2,c2*dt);
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J(i2+i*N,i2+2*N+1)=-dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2

,1),r2(i2+1,1),r2(i2 ,2),r2(i2+1,2) ,1,2,c2*dt);

J(i2+i*N,i2+2*N-1)=-dFxdy1(r2(i2 ,0),r2(i2 -1,0),r2(i2

,1),r2(i2 -1,1),r2(i2 ,2),r2(i2 -1,2) ,1,2,c2*dt);

J(i2+i*N,i2+2*N+f)=-dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2

,1),r2(i2+f,1),r2(i2 ,2),r2(i2+f,2) ,1,2,c2*dt);

J(i2+i*N,i2+2*N-f)=-dFxdy1(r2(i2 ,0),r2(i2-f,0),r2(i2

,1),r2(i2 -f,1),r2(i2 ,2),r2(i2 -f,2) ,1,2,c2*dt);

}

else if(i==2){

//z direction

J(i2+i*N,i2)=dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),r2(

i2+1,1),r2(i2 ,2),r2(i2+1,2) ,2,0,c2*dt)+dFxdy1(r2(

i2 ,0),r2(i2 -1,0),r2(i2 ,1),r2(i2 -1,1),r2(i2 ,2),r2(

i2 -1,2) ,2,0,c2*dt)+dFxdy1(r2(i2 ,0),r2(i2-f,0),r2(

i2 ,1),r2(i2 -f,1),r2(i2 ,2),r2(i2-f,2) ,2,0,c2*dt)+

dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),r2(i2+f,1),r2

(i2 ,2),r2(i2+f,2) ,2,0,c2*dt);

J(i2+i*N,i2+1)=-dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),

r2(i2+1,1),r2(i2 ,2),r2(i2+1,2) ,2,0,c2*dt);

J(i2+i*N,i2 -1)=-dFxdy1(r2(i2 ,0),r2(i2 -1,0),r2(i2 ,1),

r2(i2 -1,1),r2(i2 ,2),r2(i2 -1,2) ,2,0,c2*dt);

J(i2+i*N,i2+f)=-dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),

r2(i2+f,1),r2(i2 ,2),r2(i2+f,2) ,2,0,c2*dt);

J(i2+i*N,i2 -f)=-dFxdy1(r2(i2 ,0),r2(i2-f,0),r2(i2 ,1),

r2(i2-f,1),r2(i2 ,2),r2(i2 -f,2) ,2,0,c2*dt);

J(i2+i*N,i2+N)=dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2 ,1),

r2(i2+1,1),r2(i2 ,2),r2(i2+1,2) ,1,2,c2*dt)+dFxdy1(

r2(i2 ,0),r2(i2 -1,0),r2(i2 ,1),r2(i2 -1,1),r2(i2 ,2),

r2(i2 -1,2) ,1,2,c2*dt)+dFxdy1(r2(i2 ,0),r2(i2 -f,0),

r2(i2 ,1),r2(i2-f,1),r2(i2 ,2),r2(i2 -f,2) ,1,2,c2*dt

)+dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2 ,1),r2(i2+f,1),

r2(i2 ,2),r2(i2+f,2) ,1,2,c2*dt);

J(i2+i*N,i2+N+1)=-dFxdy1(r2(i2 ,0),r2(i2+1,0),r2(i2

,1),r2(i2+1,1),r2(i2 ,2),r2(i2+1,2) ,1,2,c2*dt);

J(i2+i*N,i2+N-1)=-dFxdy1(r2(i2 ,0),r2(i2 -1,0),r2(i2

,1),r2(i2 -1,1),r2(i2 ,2),r2(i2 -1,2) ,1,2,c2*dt);

J(i2+i*N,i2+N+f)=-dFxdy1(r2(i2 ,0),r2(i2+f,0),r2(i2

,1),r2(i2+f,1),r2(i2 ,2),r2(i2+f,2) ,1,2,c2*dt);

J(i2+i*N,i2+N-f)=-dFxdy1(r2(i2 ,0),r2(i2-f,0),r2(i2

,1),r2(i2 -f,1),r2(i2 ,2),r2(i2 -f,2) ,1,2,c2*dt);

}

}

else{

if(i2%(f-1) ==0){

for(int i3=0;i3 <(f-1);i3++){

int j2=i3+count_a;

if(i3==0){
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res(j2+i*N)=Fb(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(

j2+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*dt)+r(j2 ,i)-

r2(j2,i)+Fr(j2+i*N);

J(j2+i*N,j2+i*N)=dFb_dx(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*dt)

-1;

J(j2+i*N,j2+i*N+1)=-dFb_dx(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*

dt);

if(i==0){

//x direction

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2

*dt);

J(j2+i*N,j2+N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2)

,0,1,c2*dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2

(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,

c2*dt);

J(j2+i*N,j2+2*N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0)

,r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2)

,0,2,c2*dt);

}

else if(i==1){

//y direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,0,c2*

dt);

J(j2+i*N,j2+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,0,c2

*dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2

(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,

c2*dt);

J(j2+i*N,j2+2*N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0)

,r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2)

,1,2,c2*dt);

}

else if(i==2){

//z direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,2,0,c2*

dt);

J(j2+i*N,j2+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,2,0,c2

*dt);
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J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,2,1,c2

*dt);

J(j2+i*N,j2+N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2)

,2,1,c2*dt);

}

}

else if(i3==(f-2)){

res(j2+i*N)=Fb(r2(j2 ,0),r2(mid_point ,0),r2(j2 ,1)

,r2(mid_point ,1),r2(j2 ,2),r2(mid_point ,2),i,

c2*dt)+Fb(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),r2(j2

-1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*dt)+r(j2 ,i)-r2

(j2 ,i)+Fr(j2+i*N);

J(j2+i*N,j2+i*N)=dFb_dx(r2(j2 ,0),r2(mid_point ,0)

,r2(j2 ,1),r2(mid_point ,1),r2(j2 ,2),r2(

mid_point ,2),i,c2*dt)+dFb_dx(r2(j2 ,0),r2(j2

-1,0),r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2)

,i,c2*dt) -1;

J(j2+i*N,j2+i*N-1)=-dFb_dx(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*

dt);

J(j2+i*N,mid_point+i*N)=-dFb_dx(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2),i,c2*dt);

if(i==0){

//x direction

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(mid_point ,0)

,r2(j2 ,1),r2(mid_point ,1),r2(j2 ,2),r2(

mid_point ,2) ,0,1,c2*dt)+dFxdy1(r2(j2 ,0),r2(

j2 -1,0),r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2

-1,2) ,0,1,c2*dt);

J(j2+i*N,j2+N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2)

,0,1,c2*dt);

J(j2+i*N,mid_point+N)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,0,1,c2*dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(mid_point

,0),r2(j2 ,1),r2(mid_point ,1),r2(j2 ,2),r2(

mid_point ,2) ,0,2,c2*dt)+dFxdy1(r2(j2 ,0),r2(

j2 -1,0),r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2

-1,2) ,0,2,c2*dt);

J(j2+i*N,j2+2*N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0)

,r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2)

,0,2,c2*dt);

J(j2+i*N,mid_point +2*N)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2
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,2),r2(mid_point ,2) ,0,2,c2*dt);

}

else if(i==1){

//y direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(mid_point ,0),

r2(j2 ,1),r2(mid_point ,1),r2(j2 ,2),r2(

mid_point ,2) ,0,1,c2*dt)+dFxdy1(r2(j2 ,0),r2(

j2 -1,0),r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2

-1,2) ,0,1,c2*dt);

J(j2+i*N,j2 -1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2

*dt);

J(j2+i*N,mid_point)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,0,1,c2*dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(mid_point

,0),r2(j2 ,1),r2(mid_point ,1),r2(j2 ,2),r2(

mid_point ,2) ,1,2,c2*dt)+dFxdy1(r2(j2 ,0),r2(

j2 -1,0),r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2

-1,2) ,1,2,c2*dt);

J(j2+i*N,j2+2*N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0)

,r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2)

,1,2,c2*dt);

J(j2+i*N,mid_point +2*N)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,1,2,c2*dt);

}

else if(i==2){

//z direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(mid_point ,0),

r2(j2 ,1),r2(mid_point ,1),r2(j2 ,2),r2(

mid_point ,2) ,0,2,c2*dt)+dFxdy1(r2(j2 ,0),r2(

j2 -1,0),r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2

-1,2) ,0,2,c2*dt);

J(j2+i*N,j2 -1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2

*dt);

J(j2+i*N,mid_point)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,0,2,c2*dt);

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(mid_point ,0)

,r2(j2 ,1),r2(mid_point ,1),r2(j2 ,2),r2(

mid_point ,2) ,1,2,c2*dt)+dFxdy1(r2(j2 ,0),r2(

j2 -1,0),r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2

-1,2) ,1,2,c2*dt);

J(j2+i*N,j2+N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2)
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,1,2,c2*dt);

J(j2+i*N,mid_point+N)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,1,2,c2*dt);

}

}

else{

res(j2+i*N)=Fb(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(

j2+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*dt)+Fb(r2(j2

,0),r2(j2 -1,0),r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),

r2(j2 -1,2),i,c2*dt)+r(j2 ,i)-r2(j2 ,i)+Fr(j2+i*

N);

J(j2+i*N,j2+i*N)=dFb_dx(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*dt)

+dFb_dx(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),r2(j2

-1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*dt) -1;

J(j2+i*N,j2+i*N-1)=-dFb_dx(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*

dt);

J(j2+i*N,j2+i*N+1)=-dFb_dx(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*

dt);

if(i==0){

//x direction

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2

*dt)+dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),r2

(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*dt);

J(j2+i*N,j2+N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2)

,0,1,c2*dt);

J(j2+i*N,j2+N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2)

,0,1,c2*dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2

(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,

c2*dt)+dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),

r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2*dt);

J(j2+i*N,j2+2*N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0)

,r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2)

,0,2,c2*dt);

J(j2+i*N,j2+2*N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0)

,r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2)

,0,2,c2*dt);

}

else if(i==1){

//y direction
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J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2*

dt)+dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),r2(

j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*dt);

J(j2+i*N,j2+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2

*dt);

J(j2+i*N,j2 -1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2

*dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2

(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,

c2*dt)+dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),

r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,c2*dt);

J(j2+i*N,j2+2*N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0)

,r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2)

,1,2,c2*dt);

J(j2+i*N,j2+2*N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0)

,r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2)

,1,2,c2*dt);

}

else if(i==2){

//z direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,c2*

dt)+dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),r2(

j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2*dt);

J(j2+i*N,j2+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,c2

*dt);

J(j2+i*N,j2 -1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2

*dt);

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,c2

*dt)+dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),r2

(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,c2*dt);

J(j2+i*N,j2+N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2)

,1,2,c2*dt);

J(j2+i*N,j2+N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2)

,1,2,c2*dt);

}

}

}

count_a=count_a+f-1;

}
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}

}

int a11=mid_point +1;

count_a =0;

for(int i2=0;i2 <mid_point;i2++){

int i3=i2+a11;

if((i3 -1)%(f-1) ==0){

for(int j=0;j<f-1;j++){

int j2=j+a11+count_a;

if(j==0){

res(j2+i*N)=Fb(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(j2

+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*dt)+Fb(r2(j2 ,0),

r2(mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2),i,c2*dt)+r(j2 ,i)-r2(j2 ,i)+

Fr(j2+i*N);

J(j2+i*N,j2+i*N)=dFb_dx(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*dt)+

dFb_dx(r2(j2 ,0),r2(mid_point ,0),r2(j2 ,1),r2(

mid_point ,1),r2(j2 ,2),r2(mid_point ,2),i,c2*dt)

-1;

J(j2+i*N,j2+i*N+1)=-dFb_dx(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*dt);

J(j2+i*N,i*N+mid_point)=-dFb_dx(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2 ,2),

r2(mid_point ,2),i,c2*dt);

if(i==0){

//x direction

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2*dt)

+dFxdy1(r2(j2 ,0),r2(mid_point ,0),r2(j2 ,1),r2(

mid_point ,1),r2(j2 ,2),r2(mid_point ,2) ,0,1,c2*

dt);

J(j2+i*N,j2+N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2*

dt);

J(j2+i*N,N+mid_point)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,0,1,c2*dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,c2*

dt)+dFxdy1(r2(j2 ,0),r2(mid_point ,0),r2(j2 ,1),

r2(mid_point ,1),r2(j2 ,2),r2(mid_point ,2) ,0,2,

c2*dt);

J(j2+i*N,j2+2*N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,

c2*dt);

J(j2+i*N,2*N+mid_point)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2
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,2),r2(mid_point ,2) ,0,2,c2*dt);

}

else if(i==1){

//y direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1)

,r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2*dt)+

dFxdy1(r2(j2 ,0),r2(mid_point ,0),r2(j2 ,1),r2(

mid_point ,1),r2(j2 ,2),r2(mid_point ,2) ,0,1,c2*

dt);

J(j2+i*N,j2+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2*dt)

;

J(j2+i*N,mid_point)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,0,1,c2*dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,c2*

dt)+dFxdy1(r2(j2 ,0),r2(mid_point ,0),r2(j2 ,1),

r2(mid_point ,1),r2(j2 ,2),r2(mid_point ,2) ,1,2,

c2*dt);

J(j2+i*N,j2+2*N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,

c2*dt);

J(j2+i*N,2*N+mid_point)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,1,2,c2*dt);

}

else if(i==2){

//z direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1)

,r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,c2*dt)+

dFxdy1(r2(j2 ,0),r2(mid_point ,0),r2(j2 ,1),r2(

mid_point ,1),r2(j2 ,2),r2(mid_point ,2) ,0,2,c2*

dt);

J(j2+i*N,j2+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,c2*dt)

;

J(j2+i*N,mid_point)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,0,2,c2*dt);

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,c2*dt)

+dFxdy1(r2(j2 ,0),r2(mid_point ,0),r2(j2 ,1),r2(

mid_point ,1),r2(j2 ,2),r2(mid_point ,2) ,1,2,c2*

dt);

J(j2+i*N,j2+N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,c2*

dt);
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J(j2+i*N,N+mid_point)=-dFxdy1(r2(j2 ,0),r2(

mid_point ,0),r2(j2 ,1),r2(mid_point ,1),r2(j2

,2),r2(mid_point ,2) ,1,2,c2*dt);

}

}

else if(j==f-2){

res(j2+i*N)=Fb(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),r2(j2

-1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*dt)+r(j2 ,i)-r2(

j2,i)+Fr(j2+i*N);

J(j2+i*N,j2+i*N)=dFb_dx(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*dt) -1;

J(j2+i*N,j2+i*N-1)=-dFb_dx(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*dt);

if(i==0){

//x direction

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*dt)

;

J(j2+i*N,j2+N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*

dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2*

dt);

J(j2+i*N,j2+2*N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,

c2*dt);

}

else if(i==1){

//y direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1)

,r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*dt);

J(j2+i*N,j2 -1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*dt)

;

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,c2*

dt);

J(j2+i*N,j2+2*N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,

c2*dt);

}

else if(i==2){

//z direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1)

,r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2*dt);

J(j2+i*N,j2 -1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2*dt)
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;

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,c2*dt)

;

J(j2+i*N,j2+N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,c2*

dt);

}

}

else{

res(j2+i*N)=Fb(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1),r2(j2

-1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*dt)+Fb(r2(j2 ,0),

r2(j2+1,0),r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2

+1,2),i,c2*dt)+r(j2 ,i)-r2(j2 ,i)+Fr(j2+i*N);

J(j2+i*N,j2+i*N)=dFb_dx(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*dt)+

dFb_dx(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(j2+1,1),

r2(j2 ,2),r2(j2+1,2),i,c2*dt) -1;

J(j2+i*N,j2+i*N-1)=-dFb_dx(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2),i,c2*dt);

J(j2+i*N,j2+i*N+1)=-dFb_dx(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2),i,c2*dt);

if(i==0){

//x direction

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*dt)

+dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(j2

+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2*dt);

J(j2+i*N,j2+N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*

dt);

J(j2+i*N,j2+N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2*

dt);

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,c2*

dt)+dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(j2

+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,c2*dt);

J(j2+i*N,j2+2*N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,

c2*dt);

J(j2+i*N,j2+2*N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,

c2*dt);

}

else if(i==1){

//y direction
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J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1)

,r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*dt)+

dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(j2

+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2*dt);

J(j2+i*N,j2 -1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,1,c2*dt)

;

J(j2+i*N,j2+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,1,c2*dt)

;

J(j2+i*N,j2+2*N)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2*

dt)+dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(j2

+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,c2*dt);

J(j2+i*N,j2+2*N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),

r2(j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,

c2*dt);

J(j2+i*N,j2+2*N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),

r2(j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,

c2*dt);

}

else if(i==2){

//z direction

J(j2+i*N,j2)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2 ,1)

,r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2*dt)+

dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(j2

+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,c2*dt);

J(j2+i*N,j2 -1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,0,2,c2*dt)

;

J(j2+i*N,j2+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2

,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,0,2,c2*dt)

;

J(j2+i*N,j2+N)=dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(j2

,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,c2*dt)

+dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(j2 ,1),r2(j2

+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,c2*dt);

J(j2+i*N,j2+N-1)=-dFxdy1(r2(j2 ,0),r2(j2 -1,0),r2(

j2 ,1),r2(j2 -1,1),r2(j2 ,2),r2(j2 -1,2) ,1,2,c2*

dt);

J(j2+i*N,j2+N+1)=-dFxdy1(r2(j2 ,0),r2(j2+1,0),r2(

j2 ,1),r2(j2+1,1),r2(j2 ,2),r2(j2+1,2) ,1,2,c2*

dt);

}

}

}

count_a=count_a +(f-1);

}
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}

}

//delr=TDMA2(J,res);

JT=J.transpose ();

product1=JT*res;

JTJ=JT*J;

JTJ=JTJ.inverse ();

delr=JTJ*product1;

for(int i=0;i<N;i++){

r2(i,0)=r2(i,0)-delr(i);

r2(i,1)=r2(i,1)-delr(i+N);

r2(i,2)=r2(i,2)-delr(i+2*N);

}

err=0;

for(int i=0;i<3*N;i++){

err=err+res(i)*res(i)/(3*N);

}

err=pow(err ,0.5);

if(count2 >1000){

break;

}

count2=count2 +1;

}

//cout << (J(mid_point ,mid_point)+1)/(c2*dt) << "\t" << (J(

mid_point+N,mid_point+N)+1)/(c2*dt) << endl;

r=r2;

if(remainder(it ,f_save)==0){

for(int i=0;i<N;i++){

x1(i,count)=r(i,0);

y1(i,count)=r(i,1);

z1(i,count)=r(i,2);

}

err_v(count)=err;

count_it(count)=count2;

count=count +1;

cout << "Saved␣time␣step=␣"<< count << ";␣Err=" << err << ";

␣count2=" << count2 << endl;

}

}

}

ofstream myfile;

myfile.open("trj_x.dat", ios:: binary);

myfile.write((char *) x1.data(), x1.rows() * x1.cols() * sizeof(

double));

myfile.close();

myfile.open("trj_y.dat", ios:: binary);

myfile.write((char *) y1.data(), y1.rows() * y1.cols() * sizeof(

double));
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myfile.close();

myfile.open("trj_z.dat", ios:: binary);

myfile.write((char *) z1.data(), z1.rows() * z1.cols() * sizeof(

double));

myfile.close();

myfile.open("err.dat", ios:: binary);

myfile.write((char *) err_v.data(), err_v.rows() * err_v.cols() *

sizeof(double));

myfile.close();

myfile.open("count_it.dat", ios:: binary);

myfile.write((char *) count_it.data(), count_it.rows() * count_it.

cols() * sizeof(double));

myfile.close();

high_resolution_clock :: time_point t2 = high_resolution_clock ::now

();

auto duration = duration_cast <seconds >( t2 - t1 ).count();

cout << "run␣time=␣" << duration << "␣seconds" << endl;

return 0;

}
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C.8 Proper Orthogonal Decomposition Analysis

import scipy.io

import numpy as np

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings("ignore")

import scipy

import sys

for i2 in range(len(sys.argv)):

if sys.argv[i2]=="-ns":

ns=int(sys.argv[i2+1])

elif sys.argv[i2]=="-nx":

nx=int(sys.argv[i2+1])

elif sys.argv[i2]=="-cm":

cm=int(sys.argv[i2+1])

else:

pass

print("y␣direction")

u=np.fromfile("y.dat", dtype=float)

#u=data["xt"]

#u=np.transpose(u)

#ns =4000

ms=1

#nx=30

dx1=1

u_mean=np.zeros(ns)

x=np.arange(1,nx+dx1 ,dx1)

cn=1

us=np.zeros ((nx ,ns))

for ti in range(ns):

for j in range(nx):

us[j][ti]=u[j+(ti*ms)*nx]

#com=np.zeros(ns)

#for i in range(ns):

# for j in range(nx):

# com[i]=com[i]+us[j][i]/30

for i in range(ns):

for j in range(nx):

u_mean[i]= u_mean[i]+(us[j][i])/nx

up=np.zeros ((nx ,ns))

for i in range(ns):

for j in range(nx):

up[j][i]=(us[j][i])-u_mean[i]
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C=np.zeros ((nx,nx))

for i in range(nx):

for j in range(nx):

if i<j:

pass

else:

inner_p=np.zeros(ns)

for k in range(ns):

inner_p[k]=up[i][k]*up[j][k]

C[i][j]=np.trapz(inner_p ,dx=dx1)/ns

if i==j:

pass

else:

C[j][i]=C[i][j]

lam ,v=scipy.linalg.eig(C)

np.savetxt("lamy.txt",lam)

idx = lam.argsort ()[::-1]#sort eigenvalues

lam = lam[idx]

v=v[:,idx]#sort eigenvectors

phi=np.zeros((nx ,nx))

for i in range(nx):

for k in range(nx):

phi[k][i]=v[k][i]#phi[k][i]+up[k][j]*

norm=np.zeros(nx)

inner_p=np.zeros(nx)

for p in range(nx):

for j in range(nx):

inner_p[j]=phi[j][p]*phi[j][p]

norm[p]=np.sqrt(np.trapz(inner_p ,dx=dx1))

for j in range(nx):

phi[j][p]=phi[j][p]/norm[p]

for p in range (4):

for j in range(nx):

inner_p[j]=phi[j][0]* phi[j][p+1]

print(np.trapz(inner_p ,dx=dx1))

for p in range (6):

plt.figure ()

plt.rc(’font’, **{’family ’: ’serif’, ’serif’: [’Computer␣Modern ’

]})

plt.rc(’text’, usetex=True)

plt.gcf().set_size_inches (4,3,forward=True)

plt.subplots_adjust(left =0.18 , bottom =0.15)

filename="phi_"+str(p+1)+"y.png"

for j in range(nx):
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plt.plot(x[j],phi[j][p],’^’,markerfacecolor=’w’,markeredgecolor=

’r’,markersize =4)

plt.savefig(filename ,dpi =300)

str_emode="phiy"+str(cm)+".mat"

scipy.io.savemat(str_emode ,{’phi’:phi})

filename2="phiy.txt"

writefile = open(filename2 ,’w’)

for i in range(nx):

for j in range(nx):

writefile.write(str(phi[i][j]))

writefile.write("\t")

writefile.write("\n")

print("x␣direction")

u=np.fromfile("x.dat", dtype=float)

#u=data["xt"]

#u=np.transpose(u)

#ns =4000

ms=1

#nx=30

dx1=1

u_mean=np.zeros(ns)

x=np.arange(1,nx+dx1 ,dx1)

cn=1

us=np.zeros ((nx ,ns))

for ti in range(ns):

for j in range(nx):

us[j][ti]=u[j+(ti*ms)*nx]

#com=np.zeros(ns)

#for i in range(ns):

# for j in range(nx):

# com[i]=com[i]+us[j][i]/30

for i in range(ns):

for j in range(nx):

u_mean[i]= u_mean[i]+(us[j][i])/nx

up=np.zeros ((nx ,ns))

for i in range(ns):

for j in range(nx):

up[j][i]=(us[j][i])-u_mean[i]

C=np.zeros ((nx,nx))

for i in range(nx):

for j in range(nx):

if i<j:

pass

else:

inner_p=np.zeros(ns)
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for k in range(ns):

inner_p[k]=up[i][k]*up[j][k]

C[i][j]=np.trapz(inner_p ,dx=dx1)/ns

if i==j:

pass

else:

C[j][i]=C[i][j]

lam ,v=scipy.linalg.eig(C)

np.savetxt("lamx.txt",lam)

idx = lam.argsort ()[::-1]#sort eigenvalues

lam = lam[idx]

v=v[:,idx]#sort eigenvectors

phi=np.zeros((nx ,nx))

for i in range(nx):

for k in range(nx):

phi[k][i]=v[k][i]#phi[k][i]+up[k][j]*

norm=np.zeros(nx)

inner_p=np.zeros(nx)

for p in range(nx):

for j in range(nx):

inner_p[j]=phi[j][p]*phi[j][p]

norm[p]=np.sqrt(np.trapz(inner_p ,dx=dx1))

for j in range(nx):

phi[j][p]=phi[j][p]/norm[p]

for p in range (4):

for j in range(nx):

inner_p[j]=phi[j][0]* phi[j][p+1]

print(np.trapz(inner_p ,dx=dx1))

for p in range (6):

plt.figure ()

plt.rc(’font’, **{’family ’: ’serif’, ’serif’: [’Computer␣Modern ’

]})

plt.rc(’text’, usetex=True)

plt.gcf().set_size_inches (4,3,forward=True)

plt.subplots_adjust(left =0.18 , bottom =0.15)

filename="phi_"+str(p+1)+"x.png"

for j in range(nx):

plt.plot(x[j],phi[j][p],’^’,markerfacecolor=’w’,markeredgecolor=

’r’,markersize =4)

plt.savefig(filename ,dpi =300)

str_emode="phix"+str(cm)+".mat"

scipy.io.savemat(str_emode ,{’phi’:phi})

filename2="phix.txt"

writefile = open(filename2 ,’w’)

for i in range(nx):

for j in range(nx):
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writefile.write(str(phi[i][j]))

writefile.write("\t")

writefile.write("\n")

print("z␣direction")

u=np.fromfile("z.dat", dtype=float)

#u=data["xt"]

#u=np.transpose(u)

#ns =4000

ms=1

#nx=30

dx1=1

u_mean=np.zeros(ns)

x=np.arange(1,nx+dx1 ,dx1)

cn=1

us=np.zeros ((nx ,ns))

for ti in range(ns):

for j in range(nx):

us[j][ti]=u[j+(ti*ms)*nx]

#com=np.zeros(ns)

#for i in range(ns):

# for j in range(nx):

# com[i]=com[i]+us[j][i]/30

for i in range(ns):

for j in range(nx):

u_mean[i]= u_mean[i]+(us[j][i])/nx

up=np.zeros ((nx ,ns))

for i in range(ns):

for j in range(nx):

up[j][i]=(us[j][i])-u_mean[i]

C=np.zeros ((nx,nx))

for i in range(nx):

for j in range(nx):

if i<j:

pass

else:

inner_p=np.zeros(ns)

for k in range(ns):

inner_p[k]=up[i][k]*up[j][k]

C[i][j]=np.trapz(inner_p ,dx=dx1)/ns

if i==j:

pass

else:

C[j][i]=C[i][j]

lam ,v=scipy.linalg.eig(C)

np.savetxt("lamz.txt",lam)

idx = lam.argsort ()[::-1]#sort eigenvalues
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lam = lam[idx]

v=v[:,idx]#sort eigenvectors

phi=np.zeros((nx ,nx))

for i in range(nx):

for k in range(nx):

phi[k][i]=v[k][i]#phi[k][i]+up[k][j]*

norm=np.zeros(nx)

inner_p=np.zeros(nx)

for p in range(nx):

for j in range(nx):

inner_p[j]=phi[j][p]*phi[j][p]

norm[p]=np.sqrt(np.trapz(inner_p ,dx=dx1))

for j in range(nx):

phi[j][p]=phi[j][p]/norm[p]

for p in range (4):

for j in range(nx):

inner_p[j]=phi[j][0]* phi[j][p+1]

print(np.trapz(inner_p ,dx=dx1))

for p in range (6):

plt.figure ()

plt.rc(’font’, **{’family ’: ’serif’, ’serif’: [’Computer␣Modern ’

]})

plt.rc(’text’, usetex=True)

plt.gcf().set_size_inches (4,3,forward=True)

plt.subplots_adjust(left =0.18 , bottom =0.15)

filename="phi_"+str(p+1)+"z.png"

for j in range(nx):

plt.plot(x[j],phi[j][p],’^’,markerfacecolor=’w’,markeredgecolor=

’r’,markersize =4)

plt.savefig(filename ,dpi =300)

str_emode="phiz"+str(cm)+".mat"

scipy.io.savemat(str_emode ,{’phi’:phi})

filename2="phiz.txt"

writefile = open(filename2 ,’w’)

for i in range(nx):

for j in range(nx):

writefile.write(str(phi[i][j]))

writefile.write("\t")

writefile.write("\n")
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Appendix D

Supporting Information for Chapter 6

D.1 PRISM Theory Calculation Program

Python 3.6 source code for PRISM theory calculation of a polymer ring with different N at

T = 450 K.

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

import warnings

warnings.filterwarnings("ignore")

plt.style.use("classic")

from scipy.fftpack import dst

def lj_f(e,sigma ,r):

f=4*e*( -12*( sigma **12/r**10) +6*( sigma **6/r**4))

return f

def lj_p(r):

f=4*(1) *((1/(r)**12) -(1/(r)**6))

return f

def omega(k,N):

d=1

sum1=0

for i in range(N):

if i==0:

pass

else:

sum1=sum1+(N-i)*np.exp(-k**2*d**2*i*(N-i)/(6*N))

return 1+(2/N)*sum1
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sigma=1

beta =0.101

dr =0.001

r=np.arange(dr ,100,dr)

dk=np.pi/(dr*(len(r)+1))

k=np.linspace(dk,dk*len(r),len(r))

g=np.zeros(len(r))

h=np.zeros(len(r))

y=np.zeros(len(r))

y_o=np.zeros(len(r))

err=10

count=0

alpha =0.2

d=0

c=np.zeros(len(r))

for i in range(len(r)):

if r[i]<=d:

pass

else:

g[i]=np.exp(-beta*lj_p(r[i]))

h[i]=g[i]-1

c[i]=h[i]

coeff_to_fourier =2.0*np.pi*r*dr

coeff_to_real=k*dk/(4*np.pi**2)

hk=np.zeros(len(r))

ck=np.zeros(len(r))

ci=np.zeros(len(r))

wk=np.zeros(len(r))

err=1

count=0

#gk=dst(coeff_to_fourier*g,type =2)/k

#gr=dst(coeff_to_real*gk,type =3)/r

N=input("number␣of␣beads:␣")

N=int(N)

rho =32.73318525 -23.78266866/ float(N)

rho=float(rho)*0.395**3

frac=1

while(err >10**( -6)):

#get direct correlation function to approximate c according to

closure

for i in range(len(r)):

c[i]=(np.exp(-beta*lj_p(r[i])) -1)*(1+h[i]-c[i])

#Fourier Transform 1D

ck=dst(coeff_to_fourier*c,type =2)/k

for i in range(len(h)):
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hk[i]=omega(k[i],N)**2*ck[i]/(1-rho*omega(k[i],N)*ck[i])#omega12

[i]**2* ck[i]/(1-rho*omega12[i]*ck[i])

#Inverse Fourier Transform 1D

h2=dst(coeff_to_real*hk ,type =3)/r

err=0

for i in range(len(h)):

err=err+(h[i]-h2[i])**2/ len(h)

h[i]=frac*(h2[i])+(1-frac)*h[i]

err=np.sqrt(err)

if count >=2000:

break

count=count +1

if count %1==0:

print(count ,err)

plt.figure ()

plt.rc(’font’, **{’family ’: ’serif’, ’serif’: [’Computer␣Modern ’]})

plt.rc(’text’, usetex=True)

plt.gcf().set_size_inches (4,3,forward=True)

plt.subplots_adjust(left =0.18 , bottom =0.15)

g=[ii+1 for ii in h]

plt.plot(r,g,’-r’)

plt.plot(r,g,’o’,markerfacecolor=’w’,markeredgecolor=’r’,markersize

=4)

plt.xlim (0,4)

plt.xlabel("$r$")

plt.ylabel("$g(r)$")

plt.savefig("g-"+str(N)+".png",dpi =300)

filename2 = "g-"+str(N)+"-py.txt"

writefile = open(filename2 ,’w’)

for i in range(len(r)):

writefile.write(str(r[i]))

writefile.write("\t")

writefile.write(str(g[i]))

writefile.write("\n")
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Appendix E

Supporting Information for Chapter 8

E.1 First Approximation

First term:
∂Ψ(0)

∂ρb

∂ρb
∂t

= −Ψ(0)∇r · c0 −
Ψ(0)c0
ρb

· ∇rρb (E.1)

Second term:

∂Ψ(0)

∂c0

∂c0
∂t

= Ψ(0) m

kbT
(c− c0) · (−

kb
m
∇rT − c0∇r · c0 −

kbT

mρb
∇rρb +

∑︂
j

ρjFj

mρb
) (E.2)

= −Ψ(0)C · ∇r lnT −Ψ(0) m

kbT
C · (c0∇r · c0)−

Ψ(0)

ρb
C · ∇rρb +Ψ(0)C ·

∑︂
j

ρjFj

ρbkbT
(E.3)

Third term:

∂Ψ(0)

∂T

∂T

∂t
=

3

2
Ψ(0)c0 · ∇r lnT +Ψ(0)∇r · c0 −Ψ(0)W 2c0 · ∇r lnT −Ψ(0)2

3
W 2∇r · c0 (E.4)
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We have used W 2 = m
2kbT

(c−c0)
2 and the conservation laws of mass, momentum and energy.

1 Eventually, the last term:

c · ∇rΨ
(0) =

cΨ(0)

ρb
· ∇rρb −

3

2
Ψ(0)c · ∇r lnT +Ψ(0)W 2c · ∇r lnT + 2Ψ(0)

√︃
m

2kbT
W · (c∇r · c0)

(E.5)

To reiterate, we have let C = c− c0, this leads to:

Ψ(0)
(︂
[−5

2
C·∇r lnT+W

2C·∇r lnT ]+2[WW : ∇rc0−
1

3
W 2I : ∇rc0]+C·

∑︂
j

ρjFj

ρbkbT

)︂
= −Ψ(1) −Ψ(0)

τ

(E.6)

Ψ(1) = Ψ(0)
[︂
1−τ [(−5

2
C·∇r lnT+W

2C·∇r lnT )+2(WW : ∇rc0−
1

3
W 2I : ∇rc0)+C·

∑︂
j

ρjFj

ρbkbT
]
]︂

(E.7)

I is a 3 × 3 identity matrix. ρj is the number density of the jth bead such that ρb =
∑︁

j ρj

and Fj is the intramolecular force acting upon the jth bead.

E.2 Evaluation of the Component pxy

C is the magnitude of the vector C, Cx and Cy are the x and y components of the vector C.

To be more explicit,

C =

⎡⎣CxCy
Cz

⎤⎦ (E.8)

C =
√︂
C2
x + C2

y + C2
z (E.9)

1To reiterate, the terms ∂ρb

∂t ,
∂c0

∂t and ∂T
∂t can be known by conservation laws along with the normal

solution Ψ(0), which gives us P(0) = ρbkbT I and q(0) = 0. To be explicit:

∂ρb
∂t

= −∇r · (ρbc0)

∂c0
∂t

= −c0∇r · c0 − 1

mρb
∇r · P(0) +

∑︂
j

ρjFj

mρb

∂T

∂t
= −c0 · ∇rT − 2

3kbρb
(P(0) : ∇rc0)

These equations of conservation are exactly the same as that in continuum mechanics.
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In spherical coordinates, we have:

C =

⎡⎣C sin θ cosψ
C sin θ sinψ
C cos θ

⎤⎦ (E.10)

Then: ∫︂ ∞

−∞
CxCyΨ

(0)dC =

∫︂ 2π

0

sinψ cosψdψ

∫︂ π

0

sin3 θdθ

∫︂ ∞

0

C4Ψ(0)dC (E.11)

The integral
∫︁ 2π

0
sinψ cosψdψ = 0, therefore:∫︂ ∞

−∞
CxCyΨ

(0)dC = 0 (E.12)

Now, consider the terms: ∫︂ ∞

−∞
CxCy(−

5

2
C+W 2C)Ψ(0)dC · ∇r lnT (E.13)

And: ∫︂ ∞

−∞
CxCyCΨ(0)dC ·

∑︂
j

ρjFj

ρbkbT
(E.14)

By considering terms in three different directions:

(W 2 − 5

2
)
∂ lnT

∂l

∫︂ 2π

0

∫︂ π

0

∫︂ ∞

0

CxCyClΨ
(0)C2dC sin θdθdψ (E.15)

(︂∑︂
j

ρjFj,l
ρbkbT

)︂∫︂ 2π

0

∫︂ π

0

∫︂ ∞

0

CxCyClΨ
(0)C2dC sin θdθdψ (E.16)

where l can be x, y or z. Fj,l is the intramolecular force acting upon jth bead in the l

direction. Consider the integral over ψ, by the fact that Cx = C sin θ cosψ, Cy = C sin θ sinψ,

and Cz = C cos θ, we only have to confirm that the followings are zeros:∫︂ 2π

0

cos2 ψ sinψdψ = −1

3

[︂
cos3 ψ

]︂2π
0

= 0 (for, l = x) (E.17)

∫︂ 2π

0

cosψ sin2 ψdψ =
1

3

[︂
sin3 ψ

]︂2π
0

= 0 (for, l = y) (E.18)

∫︂ 2π

0

cosψ sinψdψ = −1

2

[︂
cos2 ψ

]︂2π
0

= 0 (for, l = z) (E.19)
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We then come to the conclusion that:∫︂ ∞

−∞
CxCy(−

5

2
C+W 2C)Ψ(0)dC · ∇r lnT = 0 (E.20)

∫︂ ∞

−∞
CxCyCΨ(0)dC ·

∑︂
j

ρjFj

ρbkbT
= 0 (E.21)

Hence, combining Equation (E.20) and Equation (E.21) together and multiply it by −τ , we

then get Equation (8).

E.3 Integration in Evaluation of ηd

Consider the integral in Equation (9),∫︂ ∞

−∞
CxCyCxCyΨ

(0)dC (E.22)

In spherical coordinate, this gives us:∫︂ 2π

0

∫︂ π

0

∫︂ ∞

0

CxCyCxCyC
2Ψ(0) sin θdCdθdψ (E.23)

It is known that Cx = C sin θ cosψ and Cy = C sin θ sinψ. Then, we have:∫︂ 2π

0

cos2 ψ sin2 ψdψ

∫︂ π

0

sin5 θdθ

∫︂ ∞

0

C6Ψ(0)dC (E.24)

Firstly, we consider the integration over ψ:

cos2 ψ sin2 ψ =
(︂eiψ + e−iψ

2

)︂2(︂eiψ − e−iψ

2i

)︂2

(E.25)∫︂ 2π

0

cos2 ψ sin2 ψdψ = − 1

16

∫︂ 2π

0

[︁
(e4iψ + e−4iψ)− 2

]︁
dψ (E.26)

= − 1

16

[︂e4iψ
4i

− e−4iψ

4i
− 2θ

]︂2π
0

(E.27)

= − 1

16

(︂2i sin 4ψ
2

)︂2π

0
=
π

4
(E.28)
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where i =
√
−1. Secondly, the integration over θ is considered:∫︂ π

0

sin5 θdθ = −
∫︂ π

0

(1− cos2 θ)2d cos θ (E.29)

= −
∫︂ π

0

(1− 2 cos2 θ + cos4 θ)d cos θ (E.30)

= −
(︂
cos θ

)︂π
0
+

2

3

(︂
cos3 θ

)︂π
0
− 1

5

(︂
cos5 θ

)︂π
0

(E.31)

= −(−1− 1) +
2

3
(−1− 1)− 1

5
(−1− 1) = 2− 4

3
+

2

5
(E.32)

=
16

15
(E.33)

The integration over C is evaluated:

ρb

(︂ b
π

)︂1.5
∫︂ ∞

0

e−bC
2

C6dC (E.34)

∫︂ ∞

0

C6e−bC
2

dC =

∫︂ ∞

0

e−br
2

2b
5C4dC (E.35)

=
5

2b

∫︂ ∞

0

e−bC
2

2b
3C2dC (E.36)

=
15

4b2

∫︂ ∞

0

e−bC
2

C2dC (E.37)

=
15

4b2

∫︂ ∞

0

e−bC
2

2b
dC (E.38)

=
15

8b3
· 1
2

√︃
π

b
=

15

16b3

√︃
π

b
(E.39)

where b = m
2kbT

. Finally, we have:∫︂ ∞

−∞
CxCyCxCyΨ

(0)dC = ρb
4π

15

(︂ b
π

)︂1.5 15

16b3

√︃
π

b
=

ρb
4b2

=
ρbk

2
bT

2

m2
(E.40)

E.4 Normal Distribution Approximation of
∫︁∞
ϕ+ Pd(ϕ)dϕ

In our previous work [85, 105, 106], the following form of Pd(ϕ) distribution was used:

lnPd = (N−x) ln
[︂(︁ 1− F

1− ϕ+ λ

)︁1−ϕ(︁ F

ϕ+ λ

)︁ϕ]︂−1

2
ln
[︂
2π(N−x)ϕ(1−ϕ)+exp

(︁
−ϕ

2

λ2
)︁
+exp

[︁
−(ϕ− 1)2

λ2
]︁]︂
+ln(µ)

(E.41)

272



where λ is a small number of order of magnitude of 10−5, and µ is the normalization constant.

Equation (E.41) is a result of Stirling approximation. Consider the integral:∫︂ ∞

ϕ+
Pd(ϕ)dϕ (E.42)

It can be either approximated as a normal distribution with mean value and covariance being

F and F/(N −x), respectively, (cf., Equation (18)) or evaluated numerically based upon the

distribution as illustrated in Equation (E.41). Figure S1 shows a plot of Equation (E.42) as a

function of N computed using the more complicated form in Equation (E.41) and the normal

distribution approximation in Equation (18) with F = 0.45 and x = 2, and ϕ+ = 0.49 as well

as ϕ+ = 0.50 in the former and latter cases, respectively. The approximation is reasonably

good.

Figure S1: Comparison of
∫︁∞
ϕ+
Pd(ϕ)dϕ as a function of N evaluated using Equation (E.41)

and Equation (18) with F = 0.45 and x = 2, as well as ϕ+ = 0.49 and ϕ+ = 0.50 in the
former and latter cases, respectively.
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E.5 ω̂(k) of Polyethylene with Different Structures

The total number of ω̂α,γ(k) of a Gaussian polyethylene is always N2 regardless of their

architectures. If this is not clear, one can write a N ×N matrix as shown below:⎡⎢⎢⎢⎢⎣
ω̂1,1 ω̂1,2 ω̂1,3 ω̂1,4 ω̂1,5

ω̂2,1 ω̂2,2 ω̂2,3 ω̂2,4 ω̂2,5

ω̂3,1 ω̂3,2 ω̂3,3 ω̂3,4 ω̂3,5

ω̂4,1 ω̂4,2 ω̂4,3 ω̂4,4 ω̂4,5

ω̂5,1 ω̂5,2 ω̂5,3 ω̂5,4 ω̂5,5

⎤⎥⎥⎥⎥⎦ (E.43)

where we have let N = 5 as an example. Note that ω̂α,γ(k) is the Fourier Transform of

the probability of finding site γ of the polyethylene with site α as reference site (ωα,γ(r)).

We assume that such probability is a normal distribution function of r. Consider two beads

that are separated by one bond in linear and four-arm symmetrical star polyethylene, then

ωα,α+1(r) is:

ωα,α+1(r) =
(︂ b
π

)︂1.5

4πe−br
2

r2 (E.44)

where b = 3
2⟨r2⟩ . To evaluate the Fourier Transform of ωα,α+1(r), we have:

1

k

(︂ b
π

)︂1.5

4π

∫︂ ∞

0

e−br
2

r
(︂eikr − e−ikr

2i

)︂
dr (E.45)

where k is the magnitude of a wavevector and i =
√
−1.

Then, it can be rewritten:

1

2ik

(︂ b
π

)︂1.5

4π
[︂
e−

k2

4b

∫︂ ∞

0

e−b(r−
ik
2b

)2rdr − e−
k2

4b

∫︂ ∞

0

e−b(r+
ik
2b

)2rdr
]︂

(E.46)

=
1

2ik

(︂ b
π

)︂1.5

4πe−
k2

4b
ik

2b

√︃
π

b
(E.47)

= e−
k2

4b (E.48)

Given the fact that b = 3
2⟨r2⟩ , we get:

1

k

(︂ b
π

)︂1.5

4π

∫︂ ∞

0

e−br
2

r
(︂eikr − e−ikr

2i

)︂
dr = exp

(︂
− k2⟨r2⟩

6

)︂
(E.49)

And if site α and site γ is separated by n bonds, then we have ω̂α,γ = exp(−nk2σ2

6
). In ring

polymer, it is slighly more tricky that [109, 97]:

ω̂α,γ = exp
[︂
− k2σ2n(N − n)

6N

]︂
(E.50)
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To see the effect of architecture on the resultant sum ω̂(k) more clearly, consider again the

case when N = 5:

1 2 3 4 5

(a) Linear structure.

1
2

3

45

(b) Ring structure.

1

2

3

45

(c) Star structure.

Figure S2: Nomenclature of different bead in polyethylene with different structure.

Let f = exp(−k2σ2

6
), then based on the illustration as shown in Figure S2, the corre-

sponding matrices for these three different structures are as below, for linear structure:⎡⎢⎢⎢⎢⎣
1 f f 2 f 3 f 4

f 1 f f 2 f 3

f 2 f 1 f f 2

f 3 f 2 f 1 f
f 4 f 3 f 2 f 1

⎤⎥⎥⎥⎥⎦ (E.51)

For ring structure: ⎡⎢⎢⎢⎢⎣
1 f 4/5 f 6/5 f 6/5 f 4/5

f 4/5 1 f 4/5 f 6/5 f 6/5

f 6/5 f 4/5 1 f 4/5 f 6/5

f 6/5 f 6/5 f 4/5 1 f 4/5

f 4/5 f 6/5 f 6/5 f 4/5 1

⎤⎥⎥⎥⎥⎦ (E.52)

For four-arm symmetrical star structure:⎡⎢⎢⎢⎢⎣
1 f f 2 f 2 f 2

f 1 f f f
f 2 f 1 f 2 f 2

f 2 f f 2 1 f 2

f 2 f f 2 f 2 1

⎤⎥⎥⎥⎥⎦ (E.53)

To reiterate, ω̂(k) for a particular structure is the summation of all the components in the

corresponding matrix.
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E.6 Intramolecular Contribution to the Equation of State

To incorporate the intramolecular term in the pressure equation, we firstly have to know the

nature of the g(1)(r), which must be normalized as follows:

1

V

∫︂ ∞

0

4πr2g(1)(r)dr = 1 (E.54)

For monoatomic particle, g(1)(r) = 1 as it does not have any internal structure like polymer.

Similarly, for a Gaussian polymer, in which g(1)(r) is the intramolecular radial distribution

function per two interacting beads of the same chain. Then, this means that for Gaussian

polymer, g(1)(r)/V must be a normalized probability distribution function P (r) describing the

intramolecular interaction of two beads that P (r) = g(1)(r)/V . Such probability distribution

function for two beads connected with one another in a Gaussian chain is well-known:

P (r) =
(︂ 3

2π⟨r2⟩

)︂3/2

exp
(︂
− 3r2

2⟨r2⟩

)︂
(E.55)

⟨r2⟩ is the mean square statistical step length of the Gaussian chain. Now, we consider the

harmonic bond stretching potential ubond.

dubond
dV

=
dubond
dr

dr

dV
(E.56)

r, which is the distance between two beads interacting with one another by ubond(r), can be

expressed as follows:

r =
√︂
V 2/3(x′2 + y′2 + z′2) (E.57)

Then,
dr

dV
=

r

3V
(E.58)

Therefore:
dubond
dV

=
dubond
dr

dr

dV
=

r

3V

dubond
dr

(E.59)

The internal energy of one Gaussian chain with only intramolecular interaction is:

UN =
N−1∑︂
α=1

ubond(rα, rα+1) (E.60)

In statistical mechanics, the pressure of one chain with only intramolecular interaction, P1

can be expressed as:

P1β =
1

Z

(︂∂Z
∂V

)︂
N,T

(E.61)
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where Z =
∫︁∞
0
e−βUNdr1dr2...drN if we only consider the intramolecular harmonic bond

stretching interaction. Then, we have:(︂∂Z
∂V

)︂
N,T

= −
∫︂ ∞

0

e−βUNβ
dUN
dV

dr1dr2...drN (E.62)

It is known that:
dUN
dV

= N
d

dV
ubond(r1, r2) (E.63)

This is because all the bonds are identical, and ubond(r) is a type of two-body interaction. In

addition, by definition, for a single chain, we have:

g(1)(r1, r2) =
ρ−1V

∫︁∞
0
...
∫︁∞
0
e−βUNdr3dr4...drN

Z
(E.64)

Therefore, we can rewrite Equation (E.62) in spherical coordinates:

1

Z

(︂∂Z
∂V

)︂
N,T

= −4πNρ

∫︂ ∞

0

g(1)(r)βr2
dubond
dV

dr = −4πNρ

3V

∫︂ ∞

0

g(1)(r)βr3
dubond
dr

dr (E.65)

Note that ρb = Nρ. Then we have:

P1 = −4πρb
3V

∫︂ ∞

0

g(1)(r)r3
dubond
dr

dr (E.66)

Honnell et al. [73] also demonstrated similar results. We then obtained Equation (30) by the

fact that P (r) = g(1)(r)/V .
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