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Abstract

Multi-agent pathfinding problems involve finding plans for agents that must travel from their start

locations to their targets without colliding. Recent work produced a number of algorithms to solve

the problem as well as an ample supply of related theory. This work is based on a related work that

studied the feasibility of multi-agent pathfinding problems on trees. Our work takes this further to

actually provide a constructive proof of how to solve multi-agent pathfinding problems in a tree and

culminates in a novel approach that called tree-based agent swapping strategy (TASS). I also provide

a family of algorithms that decompose graphs to trees. Experimental results showed that TASS can

find solutions to multi-agent pathfinding problems on a highly crowded tree with 1000 nodes and 996

agents in less than 3 seconds. Further experiments compared TASS with other modern contending

algorithms and the results were very favorable.
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Chapter 1

Introduction

In this section I will give a brief introduction to the problem I am attempting to solve, my approach

to solving it, and an overview of how well my approach performed.

1.1 Problem Definition

In this thesis I study the multi-agent pathfinding problem. In this problem agents occupy locations

in an environment, each must move to its target location, and no two agents can occupy the same

location simultaneously. When there is only one agent, the problem becomes that of single-agent

pathfinding. This involves finding a series of moves that the agent needs to make so that it arrives

at its target while avoiding obstacles; usually in the least number of moves or shortest total travel

time.1 The multi-agent pathfinding problem is a generalization of the single-agent problem; one

where we want to simultaneously find complete paths for each agent that avoids not only locations

that have obstacles, but also the other agents in the environment. The agents cooperate together to

find the best overall solution. In this thesis I assume that at any given time step only a single agent

can be moving. In Chapter 3 I will define the problem in full detail. Figure 1.1 shows an example

of a simple multi-agent pathfinding problem on a tree. In this small example the agents, identified

by a number in the tree, need to reach the nodes indicated by the arrows. Some problems have no

possible solutions, such as the one shown in Figure 1.2, and it is typically desirable to be able to

detect whether a given problem has a solution or not before attempting to find one.

1.2 Motivation

The multi-agent pathfinding problem is not a purely theoretical exercise; it has many significant real-

life applications. It frequently manifests itself in fields like robotics, traffic routing, transportation,

and video games. In most of these domains the difficulty that faces current optimal state-of-the art

algorithms is that they do not scale up to large problems, while non-optimal algorithms typically

1In general any criteria can be selected to favor particular paths. For example it may be desirable to find traffic routes that
minimize the number of intersections.
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Figure 1.1: A solvable multi-agent pathfinding problem on a tree. The numbers in the nodes indicate
the different agents and the arrow labels indicate the targets for each agent.

Figure 1.2: An unsolvable multi-agent pathfinding problem on a tree. The numbers in the nodes
indicate the different agents and the arrow labels indicate the targets for each agent.
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offer no guarantee of completeness.

The main objective of this work was to have the ability to quickly find solutions to as many hard

multi-agent pathfinding problems, with a completeness guarantee, as possible. Completeness means

that whenever a problem within our domain has a solution we are certain to find one in polynomial

time. By solving the fundamental problem in the virtual, but representative, grid maps domain, my

work can be applied to a wide range of real-life problems with little effort.

1.3 Overview of Existing Work

The single-agent pathfinding problem has been extensively studied and efficient optimal, and sub-

optimal, algorithms exist for it. These same algorithms, however, were not designed to scale up to

the multi-agent problem domain. In multi-agent problems there is an added difficulty that arises from

the fact that the other agents in the environment are obstacles whose positions change over time and

it is not known beforehand which exact nodes will be blocked at any given time step. The problem

space grows exponentially because we consider the joint space resulting from the combination of

all the possible decisions for each agent at each time step. Finding optimal solutions in the general

multi-agent pathfinding problem is NP-Complete2 so work in this direction has been limited to the

smallest of problems.

Multi-agent pathfinding research has often focused on non-optimal solutions. A large number

of algorithms were built to solve multi-agent pathfinding problems by sacrificing solution quality

for speed. Most of them, however, have failed to be both complete and efficient. There has been

some work to define narrower scopes within which certain algorithms can be guaranteed to be com-

plete. The majority of fast algorithms, like [22] and [32], try to solve each agent individually with

little collaboration between agents. They will typically fail in certain situations like congested bot-

tlenecks, by reaching a deadlock where no progress can be made towards a solution. This occurs

more often in the more crowded scenarios where free space is limited and simple local avoidance

techniques cannot lead to solutions. This research direction is most useful for scenarios that are not

highly crowded and where the number of agents have been restricted as well as in problems that

provide a lot of open space where the number of possible solutions is sufficiently large.

My work builds on the work of Masehian and Nejad [14] which attempts to identify situations

in which multi-agent tree problems can be solved. The details of their approach and how I extend it

is covered in Chapter 3.

1.4 Contributions

My main contribution in this work is an approach that can solve all solvable multi-agent pathfinding

problems on trees based on properties deduced from the work of [14], which can be checked in linear

2It reduces to the sliding-tile puzzle [16]. Furthermore [7] showed that coordinated movement in two dimensional space
is P-SPACE hard.
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time. Central to my approach is a novel tree-based agent swapping strategy (TASS) that can be used

to efficiently solve any multi-agent pathfinding problem on solvable trees.3 To solve problems on

general graphs, we take the original graph along with the agents’ configuration and decompose it

into a tree. I have efficient tests for tree solvability based on [14] that we can apply to any tree

we generate, but I have also devised algorithms that can take graphs and generate trees that can

be checked for solvability in linear time. Once we get a solvable tree, we use TASS to solve the

problem on the tree and then present it as a valid solution on the original graph. It has to be noted

that not all problems that are solvable on general graphs will remain solvable on the induced trees.

So the contributions of my work can be enumerated as follows:

1. A simple check for solvable trees directly derived from [14].

2. A complete constructive proof that the solvability criteria are sufficient.

3. A polynomial time algorithm,4 TASS, for solving problem instances on solvable trees.

4. A family of Graph-to-Tree Decomposition (GTD) algorithms that take a general graph as

input and output a solvable tree, if possible.

1.5 Summary of Results

I was able to establish that TASS has a polynomial runtime bounded by O(m2n(n−m)) where m

is the number of agents and n is the number of nodes in the tree. I were also able to prove that a

given GTD algorithm, GTD-SLIDEABLE, can convert any problem that belongs to the class of prob-

lems that Wang and Botea [33] call SLIDEABLE into a solvable tree, confirming that SLIDEABLE

problems are a strict subset of the problems we can solve using TASS and a GTD algorithm.

Empirically, I conducted a number of experiments to test the performance of TASS and the

GTD algorithms in practice. TASS was able to solve multi-agent pathfinding problems on almost

fully congested ternary trees with 1,000 nodes and 996 agents in less than 3 seconds and problems

of 10,000 nodes with 9,996 agents in less than 3 minutes. This by far exceeds the state-of-the-art

algorithms as far as I know and shows that my approach scales up very well with an increased

number of agents. Table 1.1 summarizes the result of running TASS on binary and ternary trees of

various sizes. In Chapter 5 I will discuss the details of the various experiments I have conducted.

1.6 Thesis Outline

In this chapter I introduced the problem I have attempted to solve and provided a quick summary

of how well my solution works. In the following chapters I will provide all the details necessary

3A solvable tree is a tree that meets certain fairly relaxed conditions that guarantee that any valid configuration of agents
on this tree will have a solution. For more details see Chapter 3.

4Whenever we refer to time complexity in this work it is always assumed, unless otherwise mentioned, to be in the number
of nodes in the graph which is also an upper bound for the number of agents.
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Number of Nodes Binary Trees Ternary Trees
Number of Moves Time (ms) Number of Moves Time (ms)

10 170 1 71 1
100 16,617 64 12,257 51

1,000 556,296 3,026 295,188 2,424
10,000 12,597,322 206,534 5,499,014 164,291

Table 1.1: Summary of running TASS of tree problems of various sizes. The number of agents in
each case is equal to the total number of nodes - 4. The “Number of Moves” column refers to the
total steps all agents need to take to reach their target nodes.

to understand and evaluate my approach, beginning with some essential background information in

Chapter 2 that lays the foundation on which my work is based and defines the domain to which my

work belongs. I will then provide in detail my constructive proof as well as the GTD algorithms in

Chapter 3. I will then survey a number of important papers that are related to my work in Chapter 4.

Finally, since my work is intended to be applicable to real world problems, I will show how well it

performed in practice in Chapter 5 and present various ways it could be improved further as well as

its limitations in Chapter 6.
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Chapter 2

Essential Background

This section provides some essential background information necessary to understand our work.

2.1 Fundamental Definitions

I will start this section by giving some essential definitions starting with the most general ones. I

am assuming in all that follows that we have an underlying discrete virtual environment on which

virtual agents can move. One commonly used virtual environment type is a grid world. This can

be easily visualized as a bounded 2D surface which is divided into a grid of tiles such as the one

shown in Figure 2.1. This is a common simplification to many real life problem spaces, including

video games. When I refer to grids in this document I will assume that agents can move in the four

cardinal directions on the grid to travel from one tile to another if there are no obstacles in their way.

Note that our work is not tied to grids in particular.

Definition An agent is the main entity that interacts with the environment. It could represent a robot

in a physical world or some virtual unit in a video game. Agents are assumed to occupy space and

as such two agents can never co-exist at the same location.

Definition A node, also called a vertex, is the smallest unit of space in which an agent can exist. At

a given point in time a node can contain no agents at all, in which case I call it a vacant node, or a

hole. Any node can contain at most one agent at any given time.

Definition An edge is a link between a pair of nodes that allows an agent to move from one of the

nodes to the other. Nodes connected by an edge are said to be adjacent nodes. In our context, all

edges are undirected, which means they allow motion in both directions. There is at most one edge

between any given pair of nodes (i.e., I do not allow multi-edges). Like nodes, in our context an edge

can be traversed by a single agent at a time. This means that two agents standing at two adjacent

nodes cannot swap positions directly in one move.

Definition A graph, in our context, is a representation of a virtual environment. It is a set of nodes

and edges that make up the structure of the graph.
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Figure 2.1: An example grid map. S is the symbol for start and G is the symbol for goal. Dark cells
have obstacles while white ones do not.

Definition Given two nodes a and b a path is the set of nodes a, n1, n2, ..., nk, b where edges exist

between a and n1, between ni−1 and ni for i ∈ [1, k], and between nk and b. In our context the

graphs do not allow multiple edges between any pair of nodes so a path can be uniquely identified

by only the nodes of which it is composed.

Definition A cycle, or simple loop, is a set of nodes and edges that together construct a path that an

agent can take to move from one node back to itself without visiting any of the other nodes in the

cycle twice.

Definition In our domain where all graphs are undirected, a tree is a connected graph that contains

no cycles.

Definition A configuration of agents is a set of agents on a graph each having a pair of start and

target nodes. A valid configuration is one where no two agents share a start node or an end node.

2.2 Basic Pathfinding

Pathfinding refers to the process through which a path between two nodes is found on a graph.

2.2.1 Breadth First Search (BFS)

BFS works by expanding1 one node at a time, starting with the agent’s start location, and adding the

current node’s neighbors to a queue for later expansion. The algorithm keeps running until either
1Expanding a node in this context means looking at its neighbors and potentially performing some action for each of

them.
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Figure 2.2: An example of a solved 15 tile puzzle. A tile can move if it is adjacent to the blank by
sliding into the blank position [34].

(1) the queue is depleted, in which case it concludes that no path is possible or (2) the goal node, the

agent’s destination node, is generated, in which case it concludes that a path exists. BFS will find

the shortest path between both nodes, provided the edges are unweighted.2

2.3 Multi-agent Pathfinding

The generalization of the basic pathfinding problem is that of multi-agent pathfinding. Instead of

having a single agent that needs to navigate to some destination through a graph, in this general-

ization I have multiple agents that need to reach their respective destinations without colliding with

one another. The main complexity arises from the interaction of the agents. Instead of each agent

having to decide at each step which action to take in isolation, agents now have to order their moves

in such a way that no two agents end up at the same location.

Multi-agent pathfinding problems can vary in difficulty mostly depending on the number of

agents. On one extreme, if we have a single agent, it becomes a basic pathfinding problem that can

be efficiently solved optimally. On the other extreme, we can consider the sliding puzzle problem

[6], shown in Figure 2.2, a multi-agent pathfinding problem where each tile is an agent. For this

reason finding optimal solutions for the multi-agent pathfinding problem is NP-complete [16]. One

notable optimal approach used the idea of operator decomposition to reduce the problem space and

be able to handle larger problems [24].

There are different variations on how a multi-agent pathfinding problem can be approached.

2Weights on edges allow them to have varying costs. In this work, I assume all edges are unweighted and always have a
unit cost.
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2.3.1 Centralized vs Distributed

We can classify solution approaches to solving multi-agent pathfinding problems into two classes:

centralized and distributed. Centralized approaches plan a global solution taking into consideration

the locations of all agents. They are typically used when optimality or completeness is needed.

These approaches usually scale up poorly. Distributed approaches plan for each individual agent

with minimal communication with other agents, this typically relies on agents leaving cues that

other agents can use to make their decisions at a later time. Distributed approaches usually trade

off completeness and optimality for performance so they scale up much better, but may end up in

deadlocks.

2.3.2 Sequential vs Simultaneous Moves

There are two ways to look at how the agents move through the graph. The moves can be sequential,

which means at any time step only a single agent can be traveling through some edge in the graph.

The sliding puzzle problem falls into this group. At each time step there are m× a possible moves,

where a is the average number of actions available to each agent and m is the number of agents.

Alternatively we could allow simultaneous moves which means at any given time multiple agents

can be moving through different edges. It also means that an agent can move into an occupied node

if the agent occupying it is also moving out at the same time. Figure 2.3 shows an example where

agents are packed tightly with no free space and need to rotate anti-clockwise. Solving this kind of

problem requires simultaneous moves. The combined search space when simultaneous moves are

allowed is exponential in the number of agents as we now get am possible combined moves at each

time step. It is easy to see that even for a moderate number of agents, and just the moves in the

cardinal directions as actions, we get a huge number of possibilities per time step.

My approach in this work belongs to the centralized class, however, it scales up very well to

large problems by not looking for optimal solutions. I also use sequential moves and will guarantee

completeness within a specific domain of problems but will produce suboptimal solutions.

2.4 Relevant work: Solvability of Multi Robot Motion Planning
Problems on Trees

The paper by Masehian and Nejad [14], on which a core part of our own work is based, focuses on

multi-agent path planning problems on trees and does not attempt to solve the problem, but rather

detect whether or not it is solvable. Using the number of “holes” (H) in the graph, a set of zones

called “Influence Zones (IZ)” are constructed around junctions3 containing nodes that are within a

distance bounded by H. Pairs of IZ’s are then merged into “Interconnected Influence Zones (IIZ)” if

the distance between their junctions is not greater than H-2. Building a chain of theoretical proofs

3A junction is a node that has more than two neighbors
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Figure 2.3: A rotation loop example that cannot be solved with sequential moves. This is easily
solved by approaches that allow simultaneous moves like Operator Decomposition [24].

that reason about stars, extended stars, and finally general trees, the paper presents conditions for

complete solvability for general trees and thus presents the notions of a “Solvable Tree (ST),” a

“Partially Solvable Tree (PST),” and a “Minimal Solvable Tree (MST)” for a particular number of

agents. The paper uses these notions to provide an instance feasibility checking algorithm on trees

using what they call “Maximum Reachability Space” but we are only concerned with ST’s in this

work.
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Chapter 3

Theory

In this section I give a formal definition of our agent swapping algorithm, TASS, as well as proof

of its polynomial bounds. I also prove that a certain class of problems, SLIDEABLE [33], is a strict

subset of the problems we can solve with the help of graph-to-tree conversion algorithms. Finally, I

will present a worked step-by-step example to clarify how TASS actually works.

3.1 Definitions

I will begin by providing a few key definitions, the first two of which are restated from [14]. In all

of these definitions and lemmas there is some fixed (given) undirected tree T in which each node is

either a “hole” or contains an “agent”. All agents are distinct. An agent that is adjacent to a hole

can swap places with it. The number of nodes in T is n, the number of agents is m, and the number

of holes is H = n−m. Agents have goal locations that they are trying to reach; each goal location

must be distinct for a problem to be solvable.

Definition [14] A junction is any node in T with 3 or more neighbors.

Definition [14] Two junctions are near if there is no junction on the path between them.

Definition Let v be any node in T and S any set of nodes in T . Trees(v, S) is defined as the set of

trees that result when v is removed from T , excluding any such tree that contains one or more nodes

in S. Refer to Figure 3.1 for an example.

Definition Let v be any node in T and S any set of nodes in T . Holes(v, S) is defined to be the

total number of holes in Trees(v, S).

Definition Let u and v be any two nodes in T . P (u, v) is the set of all nodes on the path from u to

v in T , including u but excluding v.

Definition Let u and v be any two nodes in T . E(u, v) is the number of edges on the path from u

to v in T .
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Figure 3.1: Trees(0, {10}) is the set of all trees resulting from removing vertex 0 except the tree
that contains node 10.

Note: If u 6= v then E(u, v) is also the number of nodes on P (u, v). That is how we are going

to think of it in most of what follows.

Definition Let u and v be any two nodes in T . H(u, v) is the number of holes on the path from u

to v in T excluding u.

Note: H(u, v) and H(v, u) will differ by one if one of the endpoints is a hole and the other one

is not.

Definition Let u and v be any two nodes in T . A(u, v) is the number of agents on the path from u

to v excluding u. This is equal to E(u, v)−H(u, v).

3.2 Tree Solvability Conditions

Based on the work in [14] I have derived the following three simplified, but equivalent, sufficient

conditions for a tree, T , to be solvable for any configuration of agents:

1. T contains at least one junction.

2. There are at most H − 1 edges on the path between any node and the junction nearest to it.

3. The path connecting any two junctions that are near contains at most H − 2 edges.

Any tree meeting all these conditions is called a “Solvable Tree”. In what follows we will always

assume that T is solvable.

3.3 Polynomially Solving Solvable Trees

In this section I will show that we can solve, in polynomial time as [14] has proven possible, any

problem instance on a solvable tree, thus guaranteeing completeness within the domain of solvable

trees.
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Lemma 3.3.1 Let x and y be any two adjacent nodes in T , and J any junction nearer to y than

to x such that Holes(J, {x, y}) ≥ A(y, J) + 2. Then there exists a sequence of moves that, when

completed, swaps the contents of x and y and leaves the contents of all other nodes unchanged.

Proof. Figure 3.2, ignoring the holes for now, depicts the general situation, where y and J are

distinct. There are E(y, J) nodes between y and J (including J but not y) and J has at least

two neighbors, which I will refer to as “ports,” A and B, in addition to the neighbor on the path

between y and J . Let T ′ be the tree rooted at J excluding the subtree that contains x and y. By the

premise of the lemma, T ′ contains at least A(y, J) + 2 holes. This is enough holes to clear all the

nodes between y and J (including J but not y) and to clear A and B as well, since in the starting

configuration there are A(y, J) agents on the path from y to J (including J but not y). A sequence

of moves S that establishes the configuration in Figure 3.2 is constructed as follows. Move holes

within T ′ as necessary so that there are at least A(y, J) + 2 holes in the A and B subtrees combined

and at least one hole in each. Now move these holes into the nodes on the path from y to J , starting

with the node closest to y and finishing with J , being sure to always leave at least one hole in each

of the A and B subtrees. Finally, move a hole from A’s subtree into A and a hole from B’s subtree

into B. All this can be done without disturbing x and y since the holes are all being drawn from

and moved to the part of the tree on the opposite side of y from x. This establishes the configuration

shown in Figure 3.2. Let S be the sequence of moves executed thus far. Now move y into A and

x into B, and then move y to the node in which x began and then x to the node in which y began.

x and y have swapped positions. All that remains is to reverse sequence S to get all the nodes that

have been disturbed by S back into their initial positions. S did not disturb x and y when it was

executed, so reversing S will not disturb them either.

Figure 3.2: This configuration of agents allows x and y to be swapped if we can move holes to fill
the blank nodes in the figure (cf. Lemma 3.3.1). Any node not labeled with a letter inside it should
be a hole for the problem to be solvable. There may be more nodes to the left of x; they are irrelevant
and so are not shown. The triangles on the right side represent the remainder of the graph beyond
the ports, it is from these subtrees that we will try to bring holes as necessary.
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When y = J the above reasoning does not apply since the sequence S may move y out of J .

This case divides into four sub-cases. In the first two there are holes in different subtrees while in

the last two all holes are in a single subtree.

1. If J has two neighbors (not counting x), A and B, whose subtrees each contain at least one

hole then, just as we did above, we can clear A and B using those holes without disturbing x

and y (let S′ be the sequence that does this), move y into A and x into B, and then move y to

the node in which x began and then x into J . x and y have swapped positions, and A and B

are clear. We can now reverse S′ to restore the A and B subtrees to their original configuration

without disturbing x and y.

2. If there is at least one hole on the opposite side of x from y, it can be moved to J . Let S′ be the

sequence that does this. This keeps x and y adjacent and does not decrease Holes(J, {x, y}),

but y is no longer in J so we can apply the general case (y 6= J , above) to swap x and y.

When this is finished J will be clear and when we apply S′ in reverse x will move into J , y

will move into the node that originally contained x and the other nodes that were disturbed to

get this hole into J will be restored to their original configuration.

3. All holes are in the Trees(x, {y}). This case can never occur because, by the premise of the

lemma, we have Holes(J, {x, y}) ≥ A(y, J)+2. So at least 2 holes are not in Trees(x, {y}).

4. If none of the preceding cases applies it means all H holes are in one subtree rooted at a

neighbor of J other than x. This subtree must contain a junction because it contains at least

H nodes and T has the property that there are at most H − 1 edges on the path between

any node and the junction nearest to it. Let J ′ be the junction in this subtree that is nearest

to J . J ′ is obviously nearer to y than x and does not contain y so if we can establish that

Holes(J ′, {x, y}) ≥ A(y, J ′)+2, then we can use this junction and the method in the general

case (y 6= J , above) to swap x and y. T has the property that the path connecting any two

junctions that are near contains at most H−2 edges. J and J ′ are near, so this property ensures

that E(y, J ′) ≤ H−2. Since A(y, J) = E(y, J)−H(y, J) then A(y, J ′)+H(y, J ′) ≤ H−2

and so we get A(y, J ′) + 2 ≤ H−H(y, J ′). But H−H(y, J ′) is equal to Holes(J ′, {x, y})

because all H holes are in this subtree, so H − H(y, J ′) of them are in Trees(J ′, {x, y}).

Thus we have established that Holes(J ′, {x, y}) ≥ A(y, J ′) + 2 and J ′ can be used to swap

x and y.

Definition A safe junction, J , for two agents u and v, where u is closer to J , is a junction where the

two agents can be swapped. This means that all nodes on the path between u and J can be cleared

in addition to two other nodes adjacent to J that are not on P (u, J).

Definition Let u and v be any two adjacent nodes in T . J(u, v) is the junction in T , if it exists, that

is closest to u and closer to u than to v.
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Lemma 3.3.2 Let u and v be any two adjacent nodes in T . Then at least one of J(u, v) and J(v, u)

always exists.

Proof. Let J be a junction closest to u. This must exist because T contains at least one junction. If

J is closer to u than to v then J(u, v) exists (because J satisfies the definition of J(u, v)). If J is

closer to v than to u then J(u, v) does not exist but J(v, u) does (because J satisfies the definition

of J(v, u)).

Theorem 3.3.3 Let u and v be any two adjacent nodes in T . Then there exists a junction J such

that at least one of the following conditions holds:

1. Holes(J, {u, v}) ≥ A(u, J) + 2

2. Holes(J, {u, v}) ≥ A(v, J) + 2

Proof. From Lemma 3.3.2 we know that at least one of Ju = J(u, v) and Jv = J(v, u) exists. I will

show that at least one of these satisfies the requirements for J in the Theorem statement.

I will begin with the general case, shown in Figure 3.3, where both Ju and Jv exist, u 6= Ju, and

v 6= Jv .

I will simplify our notation to make the following proof simpler. K1, H1,K2, H2,W1, and W2 in

the figure are E(u, Ju), H(u, Ju), E(v, Jv), H(v, Jv), Holes(Ju, {u, v}) and Holes(Jv, {v, u})

respectively. So to prove the theorem is to prove that either W1 ≥ (K1 − H1 + 2) or W2 ≥

(K2 −H2 + 2).

Ju and Jv are near junctions, so there are at most H − 2 edges on the path connecting them, i.e.,

at most H − 1 nodes including both Ju and Jv . Hence K1 +K2 + 2 ≤ H − 1, i.e., K1 +K2 + 3 ≤

H = H1 + H2 + W1 + W2. Hence 3 + (K1 −H1) + (K2 −H2) ≤W1 + W2.

Now suppose that the theorem is false, i.e., that W1 ≤ (K1−H1 +1) and W2 ≤ (K2−H2 +1).

This implies W1 + W2 ≤ (K1 − H1 + 1) + (K2 − H2 + 1) = 2 + (K1 − H1) + (K2 − H2),

contradicting the fact we just derived, W1 + W2 ≥ 3 + (K1 −H1) + (K2 −H2).

The same reasoning applies when either u = Ju or v = Jv (or both) since these are just the

cases K1 = H1 = 0 and K2 = H2 = 0 respectively.

Figure 3.3: The general case analyzed in Theorem 3.3.3.
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The final case to consider is when one of the junctions, say Ju, does not exist. In this case we

have W1 = 0 and a total of K1 + K2 + 2 nodes from the “leftmost” node on this chain, X (which

can be visualized as Ju in Figure 3.3 with the understanding that the subtree to its left is empty), to

Jv (including X , Jv , u and v) which means K1 + K2 + 1 edges. We know the number of edges

on the path from X to Jv (the junction nearest to X in this case) cannot exceed H − 1 (this is

one of the properties we have assumed of T ), so K1 + K2 + 2 ≤ H = H1 + H2 + W2. This

implies that W2 ≥ 2 + (K1 − H1) + (K2 − H2). Since (K1 − H1) ≥ 0 we are guaranteed that

W2 ≥ 2 + (K2 −H2) as required by the theorem.

Corollary 3.3.4 Let u and v be any two adjacent nodes in T . Then there exists a sequence of moves

that, when completed, swaps the contents of u and v and leaves the contents of all other nodes

unchanged.

Proof. Use Theorem 3.3.3 to obtain a junction J . If condition (1) of Theorem 3.3.3 holds, invoke

Lemma 3.3.1 with J , x = v and y = u; otherwise invoke Lemma 3.3.1 with J , x = u and y = v.

Lemma 3.3.5 The number of moves described in Corollary 3.3.4 is polynomially bounded.

Proof. Finding the correct safe junction, as required by Theorem 3.3.3 and Lemma 3.3.1, can be

performed in O(1) since we need to look at no more than two junctions, and the nearest one to each

node can be pre-computed.1 The maximum distance between a node and a junction is bounded by

H if the problem meets our solvability requirements. So to clear a junction for a swap we may need

to move H holes (all of them) a distance of n; this can be done in O(nH). Doing the actual swap

is O(n) and returning the agents again is O(nH) so the total complexity of swapping two agents is

still O(nH) or, equivalently, O(n(n−m)).

Putting together the ideas from Theorem 3.3.3, Corollary 3.3.4, and Lemma 3.3.1, I present the

outline of the complete Tree-based Agent Swapping Strategy (TASS):

• Pick an agent that is not at its target node.2

• Move this agent to its target node by swapping it with any agents along the path to the target

(See below).

• Repeat until all agents are on their target nodes.

The swapping algorithm is:

• Find the nearest junction that has enough holes to allow the agents to swap at that junction

(see Theorem 3.3.3).
1This pre-computation can be performed in O(n) by running a search algorithm like BFS with all junctions on the start

queue and terminating when all nodes have been visited.
2In my implementation I picked agents in the order they were supplied in.
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• Move all holes towards the agent until the junction can be used for the swap (see Theo-

rem 3.3.3).

• Swap the agents as described in Lemma 3.3.1.

• Return the holes to their original positions, restoring all other agents as well.

Theorem 3.3.6 On trees meeting our solvability conditions listed in Section 3.2, we can solve any

multi-agent problem in polynomial time.

Proof. We have m agents that may need to be swapped with all other agents to reach their final

destinations for a total of m2 swaps and from Lemma 3.3.5 we know that we can swap any two

agents in O(nH). In addition to all swaps moving the agent through free space takes O(n), so we

can solve a complete multi-agent problem in O(m2nH) or, equivalently, O(m2n(n−m)).

Theorem 3.3.7 On rooted balanced trees where the branching factor of all nodes, except the leaves

and possibly the root, is fixed and is greater than 2, TASS can solve multi-agent problems in

O(mlog2(n)) complexity.3

Proof. In these trees we have a constant distance, one, from any node to its nearest junction and

O(1) at most to a safe junction. Furthermore, the distance between any two nodes in the tree is

bounded by 2log(n) so we can clear a junction along with its two ports and the path leading to it

in O(log(n)). We also have m agents that are at most 2log(n) nodes away from their destinations,

since the depth of the tree is log(n). The agents will never need more swaps than the length of the

path to their targets, so this is an upper bound on how many swaps each needs. In total we get a total

complexity of O(mlog2(n)).

These bounds also apply to the maximum solution length, meaning that solutions will be no

larger than O(m2nH), or O(m2n(n − m)), moves long for general trees and O(mlog2(n)) for

balanced trees.

3The base of the log is equal to the fixed branching factor of the tree - 1.
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Figure 3.4: Original tree. We want to switch u and v.

3.4 Worked Example

To illustrate how TASS works, we will go over a quick example on the tree shown in Figure 3.4.

Suppose we want to swap agents u and v on the shown tree. The first step would be to identify

a junction that meets the conditions of Theorem 3.3.3. The first such junction we have is the one

currently occupied by u. This meets the conditions of the theorem, however, it is not safe to do the

swap as it falls under the third category of Lemma 3.3.1, i.e., the junction does not have enough

holes where they are needed. Following the reasoning in the proof, we use another junction that is

safe, as labeled in Figure 3.4, and use it to swap the agents instead.

The first step of TASS is to clear the junction and two of its ports.4 To do this TASS moves

agents 1, 2, and 5 out of the way and ends up with the configuration in Figure 3.5. TASS then

clears the path between u and the junction by moving the holes in the lower left5 and we get the

configuration in Figure 3.6. Now that the junction, the path to it, and two of its ports are clear we

can do the swap. As shown in Figure 3.7 we swap by moving u into one port, v into the other, and

then pull them out in reverse order to obtain the configuration shown in Figure 3.8. The final step is

to return the other agents to their original locations at the beginning of the process by reversing the

sequence of actions that displaced them. This achieves the final state in Figure 3.9.

4The exact order of which nodes to clear first is not significant, since holes can be easily moved around the graph.
5Note that when we move a hole, agents on its path are shifted one node along the path.
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Figure 3.5: First step: Clear the junction and the two ports.

Figure 3.6: Second step: Clear the path to the junction.

Figure 3.7: Third step: Move the two agents to the ports.
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Figure 3.8: Fourth step: Move the agents to their goals in reverse order.

Figure 3.9: Fifth step: Return all other agents back to where they were.
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3.5 Graph To Tree Decomposition

The long term objective of our work is to be able to solve multi-agent pathfinding problems on the

most general problem domain. This can be achieved by finding ways to decompose graphs into

solvable trees. In this section I will present two Graph-to-Tree Decomposition (GTD) algorithms

that convert graphs to trees. The first is GTD-SLIDEABLE which takes as input a graph, along with

a configuration of agents, that belongs to a family of problems called SLIDEABLE [33]. This class

of problems was shown to be solvable in polynomial time. The original definition for SLIDEABLE

problems given in [33] can be rewritten as follows:

Definition A problem is SLIDEABLE if the following conditions hold:

1. A path, call it Pi, exists for each agent i from its starting location to its target.

2. For each three consecutive steps a, b, and c on the path Pi, an alternative path, Ωiac, exists

from a to c that does not pass through b.

3. The first step on Pi is vacant.

4. No target for any agent, j, will be on any Pi where i 6= j.

5. No target for any agent will be on any of the alternative paths for any of the agents, including

itself except for the alternative path leading to this target.

3.5.1 Slideable Induced Trees

GTD-SLIDEABLE converts a given SLIDEABLE problem into a set of solvable trees, which I will

call SLIDEABLE Induced Trees.

GTD-SLIDEABLE

The GTD-SLIDEABLE algorithm creates a forest of trees as follows. Create the induced tree by

adding all the nodes and edges on Pi for i ∈ [1,m], breaking any cycles that are created arbitrarily.

The following lemma proves that each of the SLIDEABLE induced trees are solvable.

Lemma 3.5.1 We can always decompose a SLIDEABLE problem into a set of induced trees where

each is guaranteed to be solvable.

Proof. When GTD-SLIDEABLE produces more than a single tree resulting from the conversion, we

can obtain a solution for each tree separately and concatenate the solutions to reach a global plan.

The global plan is valid because the final resulting trees (after potentially merging some of them)

are non-intersecting. Note that we may merge some of the initial trees as described below, so in that

case we consider the merged tree a single tree. In what follows I will focus on solving a single tree.
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Figure 3.10: Example of a worst case scenario for Condition 2 showing a tree with three junctions
where a node q is picked so that it is as far as possible from its nearest junction.

I will prove the solvability for the general case first where the induced tree has at least 3 junctions

and then I will prove it for 2 or fewer junctions.

If all agents are adjacent to their target nodes, or on their target nodes, then the problem becomes

trivially solvable. Otherwise, if a portion of the agents are adjacent to, or on, their target nodes, then

they can be considered solved and removed from further consideration. In what follows I assume a

non-trivial problem.

Observation Let ` be the number of leaves in T . By the definition of SLIDEABLE we know that

no Pi for any i goes through a target node for any other agent except i. Tree T only contains edges

from Pi for any i and thus it can never have a path going through a target node, except when it is the

target for agent i in which case the path ends at the target node. This means that every target node

must be on a leaf in T . The only agent that can possibly occupy the target node for agent i is agent i

itself, and since we have a non-trivial problem, the target node for each agent has to be empty. This

implies that ` ≥ m, so H = n−m ≥ n− `.

The general case: Three junctions or more

Now, consider the three conditions required for tree solvability:

Condition 1: (T contains at least one junction.) This is satisfied trivially since we are assuming

we have 3 junctions.

Condition 2: (There are at most H − 1 edges on the path between any node and the junction

nearest to it.) Pick any node q and let J be a junction nearest to q. I will prove this condition

by counting the number of nodes that cannot be on P (J, q). We can easily see that E(J, q) ≤

n − ` + 1 − 2 − 1. On the right-hand side of the equation we add 1 because q can be a leaf node.

We subtract 2 for the two junctions that cannot be on the path and an additional 1 because the

left-hand side is expressed in edges instead of nodes. Figure 3.10 shows which nodes have to be

subtracted from n in a worst case scenario. We end up with E(J, q) ≤ n− `− 2. Since H ≥ n− `,

E(J, q) ≤ n− `− 2 ≤ H − 2, which is stronger than required.

Condition 3: (The path connecting any two junctions that are near contains at most H − 2

edges.) As in the proof of Condition 2, I will prove this condition by counting the number of nodes
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Figure 3.11: Example of a worst case scenario for Condition 3 showing a tree with three junctions
where two of them are as far as possible.

that cannot be on P (J1, J2). Because we have at least three junctions in total, ` ≥ 5. For all near

junctions J1 and J2, E(J1, J2) ≤ n − ` − 1 − 1. This is because (1) leaves cannot be on the path

between junctions, (2) at least one other junction will not be on the path between J1 and J2 and (3)

E(J1, J2) counts edges which is one less than the number of nodes on the same path. Figure 3.11

shows the nodes that cannot be on P (J1, J2) in a worst case scenario. I have already established

that H ≥ n− ` so E(J1, J2) ≤ n− `− 2 ≤ H − 2. This establishes that the distance between any

two near junctions is less than or equal to H − 2.

Special case #1: A single junction

In general we do not guarantee that the induced tree is solvable, but I will show that if it is not we

can use the alternate paths to make it solvable.

Condition 1: (T contains at least one junction.) This is satisfied trivially since I am assuming

we have a junction.

Condition 2: (There are at most H − 1 edges on the path between any node and the junction

nearest to it.) Let q be a leaf node furthest from J , the only junction. Let E(J, q) > H − 1 because

otherwise the condition is already satisfied. Figure 3.12 shows a typical example. Since all leaves

except one, are not on P (q, J) then E(J, q) ≤ n−`. H−1 < E(J, q) ≤ n−` then n−m−1 < n−`

which leads to m+ 1 > ` but by the observation above m ≤ ` so m = ` (i.e., all leaves are targets).

This results in H − 1 < E(J, q) ≤ H which means E(J, q) = H and so to satisfy the condition

we need to either add one extra hole or find another path between J and q that is at least one edge

shorter.

Let p be the node adjacent to J on P (J, q) and let w be the node adjacent to p on P (p, q).6 Since

all leaves are targets and there exists an edge between p and w in the induced tree then one of the

leaves connected to J is a target for an agent that is not in J or p. This means that there must exist

an alternate path from w to J that does not go through p. There are three cases for this alternate

path: (1) it includes at least one node not in T , in which case we just add this node (which must be a

hole) and the edge connecting it to any node in T , (2) w is connected directly to J in which case we

6Note that w can be the same node as q.
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Figure 3.12: Example of a tree with a single junction.

break the edge between p and w and add the edge between w and J to shorten the distance between

q and J by one, or (3) the alternative path goes through another node on P (w, q), call it u, which is

directly connected to J via an edge not in T and in this case we break the edge between p and J and

add the edge between u and J to reduce the distance between q and J by more than one.

Condition 3: (The path connecting any two junctions that are near contains at most H − 2

edges.) This is satisfied trivially since there is only one junction.

Special case #2: Exactly 2 junctions

Condition 1: (T contains at least one junction.) This is satisfied trivially since I am assuming we

have 2 junctions.

Condition 2: (There are at most H − 1 edges on the path between any node and the junction

nearest to it.) Pick any node q and its nearest junction J , we want to show that E(J, q) ≤ H−1. We

know that at least `−1 leaves are not on the path as well as the other junction. So E(J, q) ≤ n−`−1.

One leaf node can be potentially on the path (that is q itself) so we subtract one for this leaf and

another for the junction, and one node has to be added to the RHS of the inequality since the LHS is

expressed in number of edges instead of nodes. We know that m ≤ ` so E(J, q) ≤ (n−m)− 1 or

equivalently E(J, q) ≤ H − 1.

Condition 3: (The path connecting any two junctions that are near contains at most H − 2

edges.) We only have two junctions, call them J1 and J2, so we want to show E(J1, J2) ≤ H − 2.

As illustrated in Figure 3.13, none of the leaves can be on the path and so E(J1, J2) ≤ n − ` − 1.

Now assume that E(J1, J2) > H − 2, otherwise we are done. We know that H ≥ m + 1 for any

SLIDEABLE induced tree since at least one extra node is vacant because the first step of Pi is vacant

for any i. An exception is if every agent is adjacent to its target node, in which case the problem

is trivially solved by moving every agent directly to its target. So we have H − 2 < E(J1, J2) ≤

n− `− 1 which leads to n−m− 2 < n− `− 1 and we get m+ 1 > `. So m = `. This means that

all leaves are target nodes and so no alternate paths can go through any of the leaves. This means we
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Figure 3.13: Example of a tree with 2 junctions.

are, at worst, lacking just one extra hole.7 Let q be any node on P (J1, J2) excluding the junctions

(if such node does not exist then the junctions are adjacent and the condition holds trivially since we

have at least two agents and 3 holes). Since the tree is connected, then at least one agent on one side

of q has a target on the opposite side. This means there must be some alternate path, Ω, between the

two nodes adjacent to q that does not include q. Ω does not go through any of the leaves, so we have

two possibilities:

1. Ω uses a node that is not in T . This node must be a hole since all agents are on T and thus

adding this node as a leaf and the edge leading to it to T will increase the number of holes by

one and we are done.

2. Ω uses only nodes in T . This means that a node on P (q, J1) is connected to a node on P (q, J2)

in the tree. If they are connected directly with an edge then adding this edge and removing

one of the edges incident on q will keep T a tree but will reduce the distance between the two

junctions by at least one and we are done. If they are connected through some other node not

in T , then we add this extra node along with its incident edge to increase the number of holes

by one.

Now that I have proven that with the aid of a GTD algorithm, TASS can solve all SLIDEABLE

problems, I have shown that the SLIDEABLE class of problems is a strict subset of the problems that

TASS + GTD can solve. Figure 3.14 shows an example that is not SLIDEABLE because there are

no alternate paths, yet this can easily be solved by TASS. Observe that problems on trees can never

belong to the SLIDEABLE class.

3.5.2 GTD-MaxJunction

The GTD-MaxJunction algorithm aims to maximize both the number of junctions and the degrees

of the junctions when inducing a tree. This is a subtractive algorithm that starts with the complete

graph and keeps removing edges as long as a cycle exists. For each cycle, one at a time and in no

particular order, the edge with the least priority is broken first. The priorities are assigned to edges

as follows (when I refer to nodes, I mean the pair of nodes that the edge connects):

• If either node has a degree of 1, then the edge has priority 4 (highest).
7Because E(J1, J2) ≤ n− `− 1 leads to E(J1, J2) ≤ H − 1 when m = l.
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Figure 3.14: A problem which is not SLIDEABLE, but can be solved by TASS. Agents at J1 and J2
need to swap positions.

• If either node has a degree of 3, then the edge has priority 3.

• If either node has a degree of 2, then the edge has priority 2.

• All other edges have priority 1 (lowest).

The priorities are assigned in order, so the first condition that is met assigns the priority. For

example, if an edge connects nodes whose degrees are 1 and 3, then it would get priority 4. These

priorities force the algorithm to avoid isolating any nodes as well as breaking junctions unless there

is no other alternative. It also tries to maintain as much connectivity as possible, so when given the

choice it would favor removing an edge between two large-degree junctions than to remove an edge

on a long chain. Whenever an edge is removed, its neighboring edges’ priorities are updated.

The GTD-MaxJunction algorithm runs in polynomial time. Detecting cycles is O(n) and we

may need to break up to n2−n cycles in a fully connected graph. However, this bound is on general

graphs. On grid graphs, it is easy to see that breaking at most one edge for each tile8 will break all

the cycles, in effect bringing down the bound to O(n) and in total we can run the whole algorithm

in O(n2). Note that identifying the edges to break can be done while detecting the cycles instead

of sorting after it is done so it has no effect on the complexity. It has to be noted that unlike GTD-

SLIDEABLE, GTD-MaxJunction is not instance-based. That is, for a given graph we only need to

run it once and use the induced graph for all instances. This means that it will typically be a pre-

processing step done of graphs when they are created instead of part of the solver algorithm. The

same is not true for GTD-SLIDEABLE as it makes use of the actual configuration of agents to induce

its tree, and so it must be executed for each problem instance.

8Four nodes forming a unit square.
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Chapter 4

Related Work

The problem of multi-agent pathfinding has been extensively studied over the years. This section

surveys papers that are related to our work. Some papers present centralized algorithms for solving

the problem, where a global plan is built by taking into consideration the locations of all agents in

the system, like [19] and [13]. Other works present distributed algorithms, where agents cooperate

not by communicating but by finding individual plans that are less likely to conflict with the plans

of other agents, such as [22] and [32]. The works can also be divided into theoretical papers like [1],

[12], and [33], and papers that include experiments like [29] and [24]. In addition, we can classify

work as optimal (and therefore complete1) like [24] and suboptimal such as [22]. Finally we can

classify work as complete, but not necessarily optimal, as in [19] and [33] and incomplete such as

[17] and [32]. In what follows, unless otherwise mentioned, it will be assumed that simultaneous

agent moves are allowed.

Table 4.1 lists the related works I cover in this chapter as well as their classification. The com-

pleteness column in the table refers to the completeness of an algorithm for the domain of problems

it claims to solve, and not necessarily all problems that have solutions. The empirical column indi-

cates whether or not the paper had an empirical section. Some works may have an empirical section

that is irrelevant to our work or uses a different metric that is incomparable to ours. Finally, the last

column indicates whether or not I have performed my own experiments to compare the algorithm to

TASS.

1A complete algorithm is guaranteed to eventually find a solution if one exists, whereas an incomplete algorithm may fail
to find a solution in some cases.
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4.1 Finding Optimal Solutions to Cooperative Pathfinding Prob-
lems

One of the efficient optimal solvers relied on what Standley calls Operator Decomposition (OD)

[24]. Instead of branching for all possible moves for all agents at every search node as is typical in

pathfinding search, OD proposes a different representation for the search space that is then searched

using A*. The idea is that a single agent will be considered at any “intermediate” node and either

assigned a move or a wait action. Once all agents have been assigned an action, the time step

is incremented and a “standard” node is reached. This approach cuts down the branching factor

tremendously (from 9n to 9) while increasing the depth of the tree by a factor of n where n is the

number of agents. The implementation guarantees optimality by allowing moves conflicting with

agents that have not yet been assigned moves. A heuristic based on single agent distances is built

using Reverse Resumable A* (RRA*) [22] or a similar exhaustive search and is used to guide the

search for A*. A* with OD cannot solve problems with more than 9 agents on general grids (and

even with 9 agents it solved very few problems) [24], despite its improvement over the standard

approach. For this reason an Independence Detection (ID) algorithm is used to partition the agents

into non-conflicting groups of minimal size. Two groups are said to be non-conflicting if none of

the planned paths of either group conflicts with those of the other. The total runtime will naturally

be dominated by the size of the largest group. Each time the ID algorithm adds a unit to a group

it computes cooperative paths using OD for the new group (since the work will be insignificant

compared to that of the same group with one more unit). This approach is both complete and

optimal.

It has to be noted that the problem definition used in this paper is different from ours in that

simultaneous moves are allowed. In other words, an agent can move into an occupied node if the

agent in this occupied node will move out to a different node at the same time.

4.2 Complete Algorithms for Cooperative Pathfinding Problems

Standley’s more recent work [25] builds on his previous work [24] and attempts to make Operator

Decomposition (OD) applicable to larger problems. It presents two related algorithms: Maximum

Group Size (MGS) and Optimal Anytime (OA). The key idea of MGS is to dynamically drop the

optimality conditions for both OD and ID whenever the size of an independent group reaches a

given constant bounding value, thus speeding up the search but keeping it complete. OA applies the

concept of iterative deepening [11] to MGS by calling MGS with increasing group sizes such that

whenever the algorithm is terminated, it would have a valid solution from the last iteration ready

to be returned. Given sufficient time, OA would eventually reach the optimal solution. The paper

shows that on grid of 32x32 with 250 agents, MGS with a bounding value of 1 could solve 94% of

the instances on which it was run in under 1 second and provided suboptimal plans for these agents.
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4.3 The Increasing Cost Tree Search for Optimal Multi-Agent
Pathfinding

Another attempt at optimal solvers was provided in [20] in the form of a data structure, called the

Increasing Cost Tree (ICT), that holds path lengths for all agents per node. The root of the tree

holds a vector of the optimal single-agent distances between each agent to its destination. The tree

grows by adding one step to the plan length of one of the agents and creating a new node for it.

If the tree is searched in breadth-first manner, then the first node that has a valid plan is an optimal

solution. For each node, a low-level test is performed to find out whether there is a global plan for the

agents with the specific path lengths in the node. This lower level test makes use of a data structure

called Multi-value Decision Diagram (MDD) [23] to hold all possible paths of a given cost for a

given agent. The MDDs are then used to define a search space within which the low level search

is performed. Obviously the ICT itself is still exponential in the difference between the heuristic

optimal plan length and the real optimal plan length. This approach does not adequately handle

congested scenarios where the optimal solution differs greatly from the combined optimal solution

lengths for each agent individually, but is a good choice when the difference is small. Independence

Detection [24] was employed for this work to allow it to solve larger problems. The paper reported

that ICT search was able to solve problems with up to 9 agents in a single independent group. On an

8x8 grid, solutions for 9 agents were found in almost half a minute while on a 3x3 grid, solutions for

8 agents were found in a bit more than a minute. Further pruning techniques were presented in [21]

to speed up the runtime of this approach. The paper reports that with pruning techniques problems

with 11 agents in a single independent group on a 8x8 grid could be solved in less than a second

while on more general large game maps the best reported was 7 agents in about half a minute.

4.4 A Novel Approach to Path Planning for Multiple Robots in
Bi-connected Graphs

Surynek’s BIBOX [29] is guaranteed to solve multi-agent pathfinding problems in bi-connected

graphs in polynomial time (O(n3)) as long as they contain 2 unoccupied nodes. According to [29],

any bi-connected graph can be created from an original cycle to which additional loops are added.

To solve the problem BIBOX works in two steps. First it solves all agents whose targets are on the

additional loops (this excludes the original cycle and the first loop). This leaves a graph shaped like

Theta (Θ), composed of the original cycle and the first loop, which is solved in the second step. For

each loop, the agents whose targets are on the loop are pushed into the loop in a stack-like manner

by rotating agents deeper in the loop whenever a new agent is pushed into it. When the last agent

is pushed, all agents on the loop will be at the right positions and the problem will become simpler

by having one less loop to worry about. The experimental section of this work shows that BIBOX

outperforms a number of general planners and more importantly the algorithm presented in [12] in
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both runtime and solution quality. The general planners that made it to the empirical section in [29]

were SGPLAN 5.1 [2] and LPG-td 1.0 [4]. In this paper, BIBOX was reported to solve instances of

problems with 400 nodes in about 4 seconds.

4.5 Making Solutions of Multi-robot Path Planning Problems
Shorter Using Weak Transpositions and Critical Path Par-
allelism

Surynek improved the work on BIBOX [29] by shortening the suboptimal solutions it produces

[30]. The Weak Transpositions approach aims to relax the conditions required to re-arrange agents

in a cycle with a loop, or more precisely a Theta-like graph, so that instead of keeping all agents

constant and swapping only two of them at a time, only a subset of agents is kept in order while the

two agents are exchanged. The Critical Path Parallelism method uses a partial ordering predicate

to decide whether two moves are dependent or not. This is done using the critical path method, of

operations research, where time step “slacks” can be detected and such moves are started earlier.

The paper’s main concepts are partially based on Ryan’s work on subgraph decomposition [19] but

with a focus on ring topologies in particular. The paper claims that any graph with one or two holes,

depending on the underlying algorithm used, can be represented as a ring (cycle) with loops and is

guaranteed to have a solution.

These approaches among others can augment our work by improving solution quality in post-

processing steps after we quickly produce a valid solution.

4.6 Exploiting Subgraph Structure in Multi-robot Path Plan-
ning

Perhaps the most relevant piece of work that could augment ours is Ryan’s subgraph planning [19]

in the sense that both could potentially be combined to capitalize on the strengths of each.

Subgraph planning is a centralized approach that is based on the idea of dividing the original

graph into disjoint induced subgraphs and then reasoning about them as units while maintaining

completeness by ensuring that any abstract plan making use of the subgraphs can be resolved into

a concrete plan on the original graph. Central to subgraph planning is the distinction between “ar-

rangements” and “configurations.” An arrangement is an exact representation of a complete state of

agents within a subgraph. A configuration is a set of “equivalent” arrangements in a subgraph. Two

arrangements within a subgraph are equivalent if there exists a plan to move the agents from one

of configuration to the other without having any of the agents leave the subgraph during the plan

execution.

Search on the abstract level uses two main actions. More precisely an agent can leave or enter

a subgraph. These actions are identified by the leaving or entering edge and the agent doing the
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action. Either of these two actions results in changing the configuration of both subgraphs. The

location of the entering edge as well as the current configuration dictates the resulting configuration.

For example in a long hallway with multiple entrance points, the number of agents before and after

the entrance point used will dictate the final configuration after a new agent enters the subgraph.

The paper presents a number of pre-designated subgraph types. For each subgraph type there

are three operations that can be performed: Enter, Exit, and Terminate. For each operation we need:

(1) a way to check whether the operation is possible and, if it is, a way for calculating the resulting

configuration and (2) a resolution plan that algorithmically defines how to reach the resulting con-

figuration that was calculated. A terminate operation refers to the process that moves all agents in

the subgraph to their destinations in the required terminating configuration. The resolution plans are

customized for each subgraph type.

If we can build an abstract plan using only the subgraph operations that are valid and we find a

solution, then we are guaranteed to have at least one concrete plan to make this solution valid. We

are also guaranteed that the search is complete and so there is no possibility of missing a possible

concrete solution at the abstract level search. This algorithm is complete. It will also be very efficient

whenever the graph topology allow for adequate partitioning. However, finding optimal partitions is

hard to do automatically. The choice of the partition affects both the runtime and solution quality.

In general, the larger the subgraphs are, the faster the abstract plan can be computed but the lower

the quality of the solution will be. Furthermore, the original work uses only a limited number of

subgraph types which are easily resolved but does not allow easy partitioning of most practical

scenarios. Most notably, none of the subgraph types mentioned in the paper handles free space

efficiently. Intuitively, this approach would be well suited to handle mazes, worlds with lots of

obstacles, and partially segmented worlds (those without huge free space zones). This solver, like

most centralized solvers, does not scale up well and the experiments presented in the paper did not

go beyond 20 agents.

The concept of subgraph planning can be used as a framework for TASS where the original

graph is decomposed into solvable trees instead of pre-defined subgraph types. Our work provides

a quick way to identify whether a given tree is solvable and as such can grow the tree subgraphs

incrementally as needed. We also guarantee polynomial solution time within each tree. In effect,

the larger the size of individual trees, the faster the overall solution would be found thus allowing

the algorithm to scale up much better. The added benefit is that more general graphs can be solved

efficiently while guaranteeing completeness. We can easily create tiny trees to fill in gaps left by

the larger trees, or we can mix different sizes to balance solution lengths vs computation speed. It is

also conceivable that this combination could result in better solution quality or faster execution than

using TASS alone, as there is more guidance given to the search within the trees. However, handling

the propagation of holes across multiple trees would need to be studied further to verify the validity

of this combination.
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4.7 Constraint-based Multi-agent Path Planning

This approach [18] is based on Ryan’s previous Subgraph Planning work [19]. It uses the same

concept of partitioning the original graph into a number of smaller induced subgraphs which are

then used in abstract planning. This time the choice of subgraph structures has been restricted to

“halls” only where a hall resembles a long corridor with multiple side exits. Apparently, the reason

is that the configuration of agents in a hall can be expressed numerically much easier than other types

of subgraphs; two agents will always have a strict ordering inside a hall. The key component added

to the subgraph planning approach is modeling the problem as a Constraint Satisfaction Problem

(CSP). By presenting the problem in mathematical formulation as a CSP problem, it can be solved by

a standard CSP solver. This is combined with search at the abstract level to produce an abstract plan

which can then be algorithmically resolved into a concrete plan very efficiently by just following a

fixed subgraph resolution procedure.

The results presented in the paper were promising. This abstract method has outperformed

a priority planner, encoded as a CSP as well but whose details were not mentioned, in terms of

memory, run time, and number of instances solved. In the example presented, problems of up to

40 agents were solved in 10 seconds in the median case, in an original graph of 1808 vertices and

3029 edges. It has to be mentioned, however, that the structure of the map itself plays a role in

what the subgraph planning approach can achieve. In this case, the map was naturally divided

into long roads which were partitioned into 40 halls by hand; producing an abstract graph with

only 187 edges. While the paper claims that no optimizations were done on the partition to give

the algorithm an advantage, and it is true that most of these halls could have been detected by the

automatic partitioning algorithm presented in the previous paper, it still remains a challenge to apply

this algorithm on general problems without human intervention.

4.8 Push and Swap: Fast Cooperative Path-Finding with Com-
pleteness Guarantees

The approach of Luna and Bekris, Push and Swap [13], attempts to solve multi-agent pathfind-

ing problems on general graphs that have at least two holes. The approach used is sequential and

very close to what we use in TASS. Agents “push” their way towards their destinations until they get

stuck, at which point they attempt a “swap” using the holes. The paper does not have a separate solv-

ability check, but declares that no solution is possible if a swap or a push operation fails. This still

occurs in polynomial time. GTD and TASS have a narrower scope defined by more strict require-

ments on the topology of the graphs we can handle so far, however, TASS has a lower asymptotic

runtime2 and was orders of magnitude faster in practice, see Section 5.3.2 for more details about

2While not explicitly stated in the paper, the runtime of Push and Swap appears to be O(|L| ∗m ∗ |J | ∗ n2) where L is
the solution length, m is the number of agents, J is the number of junctions, and n is the number of nodes in the graph.
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our experiment. The paper reported running the Push and Swap algorithm on graphs with up to 100

agents on graphs of 600 nodes. These were solved in around 180 seconds.

4.9 A Complete and Scalable Strategy for Coordinating Multi-
ple Robots within Roadmaps

This work by Peasgood et al. [15] attempts to solve multi-agent pathfinding problems on roadmaps

by finding a spanning tree, with a heuristic which maximizes the number of leaves while minimizing

the distance between them, of the network and then solving the problem sequentially on this tree.

This is very similar to what our GTD algorithms do. There is a severe restriction here that the

number of agents in the system be strictly smaller than the number of leaves on the spanning tree

that was created. This restriction means that any reasonably crowded problem would be unsolvable.

For those problems that meet the restriction, the solution is then trivially generated by moving all

agents to the leaves, swapping agents where needed by using the extra vacant leaf, and then moving

the agents back in order of goal depth to their final goal nodes. The paper claimed solving 100 agents

in 1.5 seconds. The problems this approach can solve are a strict subset of what TASS + GTD can

solve efficiently.

4.10 Tractable Multi-agent Path Planning on Grid Maps

Wang and Botea presented a family of problems called SLIDEABLE in [33] containing problems

which are defined by a few strict conditions (see definition 3.5).

The definition of SLIDEABLE is of great importance to my work because it serves as an important

step in applying TASS to general graphs in a way that is proven to be solvable when the conditions

are met. As more classes of problems are proven to be solvable, I approach my objective of solving

the problem on general graphs.

In [33], only the case for 4 directions was handled in the paper. The Multi-Agent Path Planning

(MAPP) algorithm works by progressing agents on paths that are precomputed when the algorithm

starts. The units will then get assigned priorities and the master unit will traverse its path, if other

agents are blocking its path then a “blank” (hole) is moved all the way to the master unit’s next step

to allow it to make its move. This will potentially push lower priority units off their optimal paths,

so a repositioning step will have them retrace their steps back to their optimal paths to continue

the process. This algorithm is complete, but not optimal, and runs in polynomial time when the

problem is SLIDEABLE. Otherwise it is not complete in the general case. This work focused on the

theoretical guarantees rather than on solving problems quickly or effectively and as such the quality

of solutions was typically poor.
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Figure 4.1: A commonly occurring situation where agents need to cross a tunnel that has a single
open side gap. Si represents the start for agent i while Gi is the target for agent i.

4.11 Cooperative Pathfinding

In his paper [22], Silver discusses a number of distributed solutions to the cooperative multi-agent

pathfinding problem. He compares his work with Local Repair A* (LRA*) which he mentions is

typically used in many practical situations.

4.11.1 Local Repair A* (LRA*)

LRA* is very simple to implement and is probably the most intuitive of all approaches. It simply

plans complete paths for each agent from start to end and only recalculates paths when a collision

is imminent, thus repairing the global solution locally. LRA* is a quick way to compute a potential

solution quickly and works adequately in non-congested areas, however it is not complete and may

result in deadlocks where multiple agents keep alternating between a finite number of paths on

collision. This approach cannot solve situations requiring real collaboration between agents, such as

the corridor with a gap example shown in Figure 4.1. The reason for failing often in examples such

as this one is that regardless of the priority of agents, if one of them is to follow a shortest path to

the destination, then they may all fail to find a global solution. This algorithm is obviously prone to

cycles and deadlocks due to the lack of global coordination.

4.11.2 Cooperative A* (CA*)

The Cooperative A* algorithm is a simple decentralized approach that takes the 2D world space

and expands it to a 3D space by adding a time dimension. Each agent then plans its path indepen-

dently, reserving the spatial-temporal steps used in the path in a reservation table, while avoiding

obstacles and previously reserved points in space and time. A wait move in this case is still moving

through the 3D space. Naturally, the order of agent selection affects the outcome of the search. This
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approach is thus neither complete nor optimal and will not work for situations requiring elaborate

collaboration. It is also infeasible in practice due to the huge search space resulting from adding the

time component.

4.11.3 Hierarchical Cooperative A* (HCA*)

HCA* adds a heuristic function to CA* based on the space component of the search problem (i.e.,

ignoring the time component and reservation table) to CA*. The heuristic data is built incrementally,

for each agent, by running a Reverse Resumable A* (RRA*) [22] search from the goal state and

proceeding until it hits the specific node we are interested in, resuming from where it left when we

require a heuristic value for a new node for which a heuristic value was never computed. This speeds

up search, but still suffers from the same problems of CA* and is mostly impractical. In particular

agents that reach their destinations may block the paths of other lower-priority agents permanently.

4.11.4 Windowed Hierarchical Cooperative A* (WHCA*)

The main contribution of Silver is WHCA*. This adds the idea of a window abstraction to HCA*.

The agents no longer search for full solutions cooperatively, rather only within a small window

around their current positions. To prevent the agents from getting misled into dead ends, the agents

plan a complete path but for the segment outside their window they ignore all other agents. This is

achieved by considering the window itself as an abstract node in the abstract space without worrying

about the details within this window. Every k steps a new window will be used to compute another

partial cooperative path. This algorithm is feasible, unlike CA* and HCA*, but is neither complete

nor optimal. It can very well lead to deadlocks, although less often than LRA*. Intuition says it

would work well in open worlds, segmented worlds, and worlds with scattered obstacles. It can

solve problems like the one in Figure 4.1, but only if the window size is large enough. It is expected

to perform poorly on maze worlds and road networks where the size of the window will be small

compared to the regions where the cooperation is needed. This is exactly where TASS shines since

maze worlds are by nature trees. It is conceivable that WHCA* or a similar algorithm can be used

beside TASS to solve simpler instances and delegate to TASS the harder problems that are expected

to require a lot of computation time. On a 4-connected grid of 32x32 nodes with up to 100 agents

and 20% obstacles, the paper claims that up to 98% of the agents could successfully reach their

targets with an average of 0.6ms per agent at each invocation of WHCA* until the agents arrive at

their targets.

4.12 Improving Collaborative Pathfinding Using Map Abstrac-
tion

Sturtevant and Buro [27] presented two ways to improve WHCA* [22] with Partial-Refinement A*

(PRA*) [28]. PRA* uses a hierarchy of abstractions that start at the ground level (original graph)
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and abstract groups of highly connected nodes, such as cliques, into single nodes in the higher

abstraction level. This process is repeated a number of times. Whenever a path needs to be found

between two points A and B, an abstract search is conducted at a high level between their parent

nodes, A’ and B’ to get an abstract path. This abstract path can then be projected down to lower

levels to create a corridor of nodes to which a lower level pathfinding operation between the parents

of A and B at this level, A” and B”, is restricted. This process is repeated until the ground level

is reached, where a simple A* search will be performed. The restriction to the corridors makes

the search much faster, but sacrifices optimality. Besides abstraction, PRA* also uses the concept

of refinement to incrementally refine paths as needed within a window. The first way this work

combines WHCA* and PRA* is by replacing the RRA* heuristics with an abstract space search

and so allowing an extra level of control over WHCA* while decreasing the memory requirements.

The resulting algorithm is WHCA*(w, a) where w is the window size and a is the abstraction level

that will be used to calculate the heuristic values. The second combination is Cooperative Partial-

Refinement A* (CPRA*) where PRA*’s ground level A* search is replaced by WHCA* limited by

the resulting corridor. WHCA* in this setting will not need to worry about long term plans because

the abstract levels guarantee that it will not be misled into dead ends.

4.13 Fast and Memory-Efficient Multi-Agent Pathfinding

This paper by Wang and Botea [32] introduces a distributed multi-agent pathfinding algorithm called

Flow Annotation Replanning (FAR) which overlays direction restrictions (flow annotations) on the

grid map. It then finds independent solutions for the agents and merges them to form a global

plan. This initial overlaying step occurs before the problem instances are solved. The solutions

are then generated and cached to be followed at different time steps when possible. The overlay

abstraction process maintains connectivity by adding shortcuts to restore it whenever it is lost due

to the flow annotations. During execution, local mechanisms are employed to avoid collisions, like

alternating between vertical and horizontal flows. A deadlock detection algorithm is run frequently

to identify deadlocks and resolve them when they are about to occur by detecting the critical unit

(the one causing most trouble) and moving it away from its path temporarily. This approach is very

fast but is neither optimal nor complete. It will fail when real cooperation is needed in constrained

areas. This method is best applied in large maps with low densities where agents have lots of room

to navigate, but the number of choices makes search time for centralized algorithms prohibitive.

The authors experimented with a set of huge maps with number of nodes ranging from 13,765 to

51,586. On various maps FAR could solve instances with up to 2,000 agents in less than a minute.

In contrast to TASS, FAR is best suited to problems on large graphs with large numbers of agents but

few congestion points. These problems are generally the ones where simpler algorithms like LRA*

would be acceptable.
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4.14 Direction Maps for Cooperative Pathfinding and A New
Approach to Cooperative Pathfinding

The idea of direction maps [8] [9] by Jansen and Sturtevant is quite simple: record the direction

vectors of agents as they move through tiles and encourage them to follow the directions used before.

As more agents go through a tile, its direction vector gets updated to represent the total traffic so

far. The direction vector is then used as a negative weight when a search is running. The result

is that agents will adhere more to common paths without any direct communication between them.

This algorithm is very efficient since it plans for agents independently, but cannot handle complex

scenarios requiring real cooperation; as in the case where an agent reaches its destination and blocks

other agents causing a global solution to never be found. This is expected to work very well in

open space worlds regardless of the density. It should perform reasonably well in scattered obstacle

worlds and worlds with few large obstacles as there is a lot of room for manoeuvring and forming

virtual lanes on the fly. In this sense it is similar to [32] but with learned annotations. The papers

report experiments with up to 50 agents.

4.15 Modeling Collision Avoidance Behavior for Virtual Humans

The paper by Guy et al. [5] focuses mostly on the realistic simulation of crowd movement using

reciprocal cooperation between agents that are on collision courses. The emphasis is on adjusting

agent speeds and movement angles to achieve smooth transitions. This emphasis puts this paper

in a domain that is different from ours. However, a large number of crowd motion and flocking

techniques can be used to augment complete planners, like TASS, to make the motion more realistic

in open spaces.

4.16 A Cellular Automata Based Algorithm for Agents with Com-
mon Goal

This paper by Tavakoli et al. [31] focused on a different scenario, one where all agents share a single

goal. This approach attempts to solve the problem by representing the problem in cellular automata

formulation. It divides time into discrete steps in increments of 10 or 14 for cardinal and diagonal

moves respectively. It then gives the definitions and equations that constitute the system, and then

builds a table of distances to goal, the V-scheme, in terms of time steps.3 It also builds another

table with the direction of the optimal path at each cell, the D-scheme. These tables are built using

dynamic programming on the table and the paper implicitly claims that this is much more efficient

than running A* for each agent’s position. It then uses hill climbing to find the paths. An interesting

idea introduced in [31] was using the D-scheme to calculate the multi-agent heuristics based on the

number of expected collisions if all agents followed their shortest paths.
3The V-scheme is of the same size as the map.
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4.17 Cooperative Multi-robot Path Planning by Heuristic Pri-
ority Adjustment

This work by Regele and Levi [17] uses the idea of adding a time dimension to the spatial search

space proposed in [22]. It works by maintaining two maps per agent. The first is a distance map

which maintains the distance from each cell to the desired goal, this is similar to the V-Scheme of

[31], and performs a function close to what RRA* does for CA*. These distances take into consid-

eration only the static obstacles and ignore the time dimension. The second map is the environment

map which includes the time dimension and the obstacles in a small subset of the map. This is

similar to the window in WHCA* [22]. The agents use this environment map to encode knowledge

about both the static obstacles and the paths of the other agents. The agents start with a priority

and take their decisions based on mutual expectations of what other agents would do with minimal

communication. This was desirable since this work was meant for the motion of robots. The envi-

ronment map is the accumulation of all plans of other agents of higher priority. When an agent is

planning, it ignores the lower priority agents and merges the plans of the higher ones into its envi-

ronment map. Using the distance map information the current agent will select the most promising

node leading to its target and plan a path for it, then broadcast the updated environment map to the

other agents. When conflicts arise, priorities are manipulated to solve the problem. If an agent is

blocked,4 then its priority will be increased. If it is not blocked then its priority gradually decreases.

This approach tries to minimize communication, which is not a concern in our case, and presents a

reasonable solution to the problem. Of course it is not complete, as agents in a tunnel can still get

stuck if the wrong agent claims the right of way first. A randomization of priorities is performed

when priorities shoot too high since this means agents are in a deadlock, but this is not guaranteed

to quickly solve the deadlocks. This approach would be more suited to worlds with ample free

space. Initial priorities can also be assigned to agents based on other attributes like their expected

destinations. For highly congested worlds, if the number of viable solutions is small, then the idea

of pushing agents around until a solution is found for the higher priority agents may not work at all.

The paper reports experiments with up to 100 agents, however it did not report the planning time

nor the plan length for the experiments.

4.18 Coordinating Pebble Motion On Graphs, The Diameter Of
Permutation Groups, And Applications

The pebble motion problem is equivalent to the multi-agent pathfinding problem with sequential

moves where only a single pebble, which is equivalent to an agent, can be moved at each time step.

Kornhauser et al. showed in [12] that a lower bound on the number of moves required to solve the

4Being blocked is defined as being forced to stay in the same tile for two consecutive time steps. This definition allows it
to be pushed back/away by a higher priority agent instead of alternating priorities.
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problem is O(n3). It also shows that the required number of moves is bounded above by O(n3) as

well. While [12] presented an outline for a solving algorithm with no empirical experiments, [29]

showed that their own algorithm, BIBOX, performs better in terms of runtime and solution quality.

4.19 A Linear-time Algorithm for the Feasibility of Pebble Mo-
tion on Trees

Auletta et al. studied the feasibility of solving specific instances of the pebble motion problem on

trees [1]. The paper presents a linear time feasibility check that works by reducing the problem into

an equivalent permutations problem which is then further reduced into a set of exchanges (swaps)

between pairs of agents that can be verified in O(n). If all pairs of exchanges are verified, then the

problem is declared to be feasible. This paper also claims that an algorithm to solve problem in-

stances in O(n3) can be derived from their work, although such algorithm is not explicitly described

in the paper.

4.20 Biased Cost Pathfinding (BCP)

The core idea of the work of Geramifard et al. in [3] is to build an influence map that pushes agents

away from specific points on the map. This works by planning paths for agents independently,

then identifying points of intersection, in both time and space, and forming a field around such

points. This field is then used as a heuristic additive and discourages all units involved, except

the one with highest priority, from getting too close to these points. This process is repeated a

number of iterations. In each iteration, the conflicts of the previous iteration are factored in to

update the influence map. This approach is simple enough and like other prioritized planners, seems

to perform efficiently. However, it is obviously neither complete nor optimal. It does seem to be

an improvement over LRA* and its solutions can be tuned based on the time available. However,

stopping the algorithm before all collisions are avoided does not guarantee a sound solution was

necessarily found. Intuition suggests this would work in scenarios where free space is abundant.

The empirical section of the paper reports results obtained from testing BCP in a tiny real time

strategy scenario.
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Chapter 5

Evaluation

I performed a number of experiments to better understand the practical performance of our approach.

The purpose of the experiments was two-fold: firstly, I wanted to get a feel of how TASS, on its own

as well as combined with GTD algorithms, would perform in practice and secondly, I wanted to

compare it with the most notable contending approaches to find out how far did I push the state-of-

the-art, if at all. This chapter is thus divided into two sections: one for the independent experiments

and the other for comparative experiments. For each experiment when multiple algorithms were

compared, all tests were done on the same machine. However, different sets of experiments were

conducted on different machines, so comparing the results of one experiment with a different ex-

periment would not be recommended unless the machine specifications mentioned are identical.

Whenever time results are mentioned they are assumed to be in milliseconds unless otherwise noted

and plan sizes are always measured in total number of steps for all agents.

5.1 Testing Methodology

The experiments on TASS were conducted as follows. I load a scenario1 file along with its underly-

ing graph file into memory and analyze the files to ensure that they represent a valid configuration of

agents. It is at this stage that a GTD algorithm may be optionally executed and the problem instance

is tested to see whether it meets our solvability conditions (see Section 3.2). I also collect some

basic information about the problem instance. I then start running TASS and time its execution. The

GTD algorithms time is not included in the solver time and will be indicated separately when it is

used. The reason for the separation is that a GTD algorithm may be executed only once on a graph

and the induced tree may be used many times without a need to re-run the GTD algorithm again.2

1A scenario file is a file that describes the configuration of agents on a particular graph. A scenario file along with its
associated graph together fully describe a complete problem instance.

2This is only true for GTD algorithms that do not rely on the configuration of agents. GTD-MaxJunction, for example,
relies only on the original graph’s topology.
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Number of Nodes Binary Trees Ternary Trees
Number of Moves Time (ms) Number of Moves Time (ms)

10 170 1 71 1
100 16,617 64 12,257 51

1,000 556,296 3,026 295,188 2,424
10,000 12,597,322 206,534 5,499,014 164,291

Table 5.1: Summary of running TASS of tree problems of various sizes. The number of agents is
always equal to the number of nodes - 4.

5.2 Independent Experiments

The purpose of the independent experiments I conducted was to evaluate in concrete terms how

much time TASS takes when solving multi-agent pathfinding problems on trees of various sizes and

topologies, as well as how long the plans that it produces are.

Our experiments were primarily performed on binary and ternary trees, as shown in Figures 5.1

and 5.2. These trees have branching factors of 3 and 4 respectively for most of their internal leaves.

They grow exponentially in the depth, so they are different from the trees that could be induced from

grid maps; however, 4-connected grid maps will have a branching factor similar to the ternary trees,

as each state in a grid has at most four neighbors. Table 5.1 shows a quick overview of the results I

obtained in some of these experiments.

5.2.1 Scaling Experiments

The first set of experiments were conducted to measure the scalability of TASS. In each experiment

trees of increasing sizes were systematically populated with agents with which they are solvable.

The experiments were run on a 2.66 GHz Q8400 processor with 8 GB of RAM.

To make the experiments easily replicable, I have incrementally built binary and ternary trees

starting with trees of size 6 all the way up to 1000 in increments of one node. For a tree of size n,

there are m = n− 4 agents in the tree.

As shown in Figures 5.1 and 5.2, the tree nodes are labeled starting from 0 at the root all the way

to TreeSize-1. The sequence of node labels, for consistency, goes level by level; so the first level

only has the 0 node which is connected to nodes 1 and 2 on the second level. Then on the third level

we have 3 and 4 which are connected to node 1, 5 and 6 are connected to node 2, and so on.

The agents start on nodes TreeSize-1 through node 4 and their destinations span the nodes from

0 to TreeSize-5 respectively. So for an agent i we have Starti + Targeti = TreeSize − 1. For

example, in the binary tree shown in Figure 5.1, there would be three agents that start on locations

6, 5 and 4 with respective goals of 0, 1 and 2.

In the results below, for binary and ternary trees, two graphs are presented to show the relation-

ships between the number of nodes and the computation time and between the number of nodes and

the solution length.
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Figure 5.1: Sample of the binary trees used in the experiments.
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Figure 5.2: Sample of the ternary trees used in the experiments.
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Figure 5.3: Time taken for binary and ternary tree problems.

Figure 5.3 shows the solving time for TASS on binary and ternary trees. For binary trees, I could

solve a tree of 513 nodes (509 agents) in less than a second. On the other hand, a ternary tree of

1000 nodes and 996 agents took about 2 seconds and 295,188 moves to solve, which is slightly faster

and half the solution length required to solve the 1000-node binary tree. I believe that the solution

lengths are shorter for ternary trees because the increased branching factor causes all the nodes, and

thus junctions, to be closer together. In Section 5.2.4 I run an experiment to test this conjecture.

It is important to note that these trees are almost completely filled with agents. This make the

problems far more difficult by requiring much longer solutions. The solution sizes are, as expected,

quite large. These problems are hard in nature and only minor attempts have been made to optimize

the solution lengths.3 In future work, I intend to further improve the suboptimality of the solutions,

refer to Section 6.2 for more details.

5.2.2 Plan length distribution

Since it is possible that our experiment problems were particularly easy or hard, I wanted to get a

better understanding of the distribution of the solution lengths over a fixed tree size. To do this, I

fixed the size of two ternary search trees, one with 14 nodes and the other with 40 nodes. On the

smaller tree I ran TASS on all permutations of destinations within the set of nodes [0, 9]. On the

larger tree, I ran TASS on 6,499,475 problems with 36 of the 40 nodes occupied with the destination

set, [0, 35] was shuffled each time. Results are in Figures 5.5 and 5.6. The x-axis is the plan length,

while the y-axis is the frequency of paths of that length in thousands. The arrows indicate where

our chosen configurations for the scaling experiments lie. As can be seen, our chosen configurations

3Most of our optimizations were focused on speeding up the algorithm.
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Figure 5.4: Solution lengths for binary and ternary tree problems.

were among the harder instances on both tree sizes with plan lengths among the top 25%.

The distributions appear to be heavy-tailed. It is an open question as to whether this is the

result of the optimal solutions being skewed, or the result of how TASS handles different problem

instances.

5.2.3 Effects of the proximity and size of Junctions

I have intuitively assumed that having junctions closer to one another as well as junctions of larger

sizes would make problems easier to solve. The scalability experiments on binary and ternary trees

hinted to this effect. To validate whether this is indeed the case, I conducted a small experiment on

trees of the same sizes, the same number of junctions, and the same configuration of agents but with

different topologies.

All trees have 18 nodes, 6 junctions and 5 agents. Tree #1, shown in Figure 5.7, has the longest

distance between a pair of near junctions with the rest of the junctions on either side of the graph.

Tree #2, shown in Figure 5.7, has junctions that are close to one another. Tree #3, shown in Fig-

ure 5.7, is similar to Tree #2 except that the junctions are made larger, in this tree every node in the

graph is adjacent to a junction.

Our intuition suggested that the trees in the above order would have decreasing plan lengths and

this appears to be in line with our findings in this experiment. Running TASS produced plans of

lengths 84, 81, and 74 for trees #1, #2, and #3 respectively. It is easy to see that any solution TASS

produces on Tree #2 is directly applicable on Tree #3 as well. It is also easy to see that swaps in the

middle of the trees would require agents on Tree #1 to travel the most distance to the nearest safe

junctions, while swaps near sides can be executed with fewer moves. Due to the small sample size
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Figure 5.5: Solution length distribution for all permutations within a set of 10 nodes in a 14 node
trees. The arrow shows where our configuration for the scaling experiment on this tree size goes.

Figure 5.6: Solution length distribution over 6,499,475 random permutations within a set of 36
nodes in a 40 node tree. The arrow shows where our configuration for the scaling experiment on this
tree size goes.
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Figure 5.7: Tree #1: The junctions are clustered on either side of the graph.

of this experiment, I cannot generalize its results without further testing.

5.2.4 Congestion Analysis

Theorem 3.3.7 showed that the complexity of TASS on balanced trees is bounded by O(mlog2(n)).

I conducted an empirical experiment on a 720QM processor running at 1.6 GHz with 8GB of RAM

to verify this result. On a fixed ternary tree of n =10,000 nodes I varied the number of agents (m)

from 10 to 9,990 and recorded the solution lengths and times. Figure 5.10 shows the growth of plan

lengths as the number of agents increases. The upper bound plot represents the number of moves in

the worst case and the lower bound is the total of all distances from all agents to their targets. While

the growth does not appear to be polynomial, it is clearly well below the theoretical upper bound

which is linear in the number of agents. Keep in mind that this is as far as it could get. To increase

the number of agents further the tree itself needs to grow. I am not sure why exactly problems get

harder at specific congestion levels, but I have a few observations. The first is that the graph appears

to be segmented, rather than being a smooth curve despite the large number of data points. This

suggests that there might be different phases of complexity as the graph gets more crowded, the

identification of the cause of these phase shifts is a point of future research. I also observed that on

running the same experiment on a 1000-node tree, I got a similar curve which shows that the steep

growth is a function of the congestion level and not the tree size.
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Figure 5.8: Tree #2: The junctions are evenly distributed over the tree.

Figure 5.9: Tree #3: The junctions are evenly distributed and are as large as possible. Every node is
one step away from its nearest junction.
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Figure 5.10: Growth of plan lengths as number of agents grow on a fixed-size tree. The graph is in
logarithmic scale

5.3 Comparative Experiments

In this section I aim to put my work in perspective with other significant works in the field. While

I have relied on the fact that the input graphs were trees in our independent experiments, I will now

broaden the scope of the experiments to include graphs that are not trees. The experiments were

done by finding common scenarios that can be tested on two or more algorithms at the same time

and their runtimes and solution lengths4 were compared.

5.3.1 Multi-Agent Path Planning (MAPP) Algorithm

I have shown in Section 3.5 that the SLIDEABLE [33] family of problems is a strict subset of the prob-

lems that can be solved with TASS with a GTD algorithm. Wang and Botea also presented a poly-

nomial time algorithm, MAPP [33], that could solve SLIDEABLE problems efficiently. MAPP could

also provide partial solutions for problems that have some agents whose configuration is SLIDEABLE

along with some that are not. It does this by dealing with the non-SLIDEABLE agents as moving ob-

stacles that will not necessarily end up at their desired destinations, but can be moved around so that

other agents can reach their destinations.

Wang has provided us with the code for MAPP as well as a dataset of about 2,000 Hierarchical

4Solution length, also referred to as plan size, is measured as the total number of moves all agents need to make to solve
the problem.
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Figure 5.11: The points represent the time each scenario took to run by the two algorithms. Points
above the dark y=x line indicate that TASS performed faster while points below the line indicate
that MAPP was faster.

Open Graph (HOG) [26] scenarios using 10 different HOG maps with the number of agents ranging

from 100 to 2,000 per scenario in increments of 100. For a given number of agents on a given map,

10 random scenarios were tested. Note that these scenarios included a number of agents that were

not SLIDEABLE and as mentioned above these agents were dealt with as moving obstacles by MAPP.

To run the experiment, the HOG scenarios were converted into a format compatible with the TASS

code and then both MAPP and TASS were run on a machine with a 2.66 GHz Q8400 processor and

8 GB of RAM.

MAPP had a success rate of 95% over all agents in all scenarios, SLIDEABLE or not. On the

same set of scenarios TASS had a success rate of 100%.

In terms of speed, TASS executed faster than MAPP on all runs as can be seen in Figure 5.11.5

Despite the fact that both algorithms run in polynomial time, this shows that in practice TASS is a

good option when speed is an important factor.

When it comes to solution lengths, though, the results were mixed. In most cases, MAPP pro-

duced better solutions than TASS. However, in the few cases, 418 cases to be exact, where TASS
5Note that in general the GTD, which took up to 32 seconds in the worst case and 7 on average, would also contribute

to the total run time. However, since the GTD-MaxJunction algorithm used is independent of the configuration or scenario,
it could easily be encoded with the map once when it was generated and thus its time does not affect the results. In this
experiment, it is easy to see that adding the GTD time would not affect the conclusions made.
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Figure 5.12: The points represent the plan size for each scenario running on either algorithm. Points
above the line indicate that TASS produced longer (poorer) plans where points below the line indi-
cate that MAPP produced longer plans.

produced a shorter solution, the difference was more profound as can be seen in Figure 5.12. In

fact, when averaging the difference between plan lengths over all the runs, it turns out that TASS

produced paths that were 280,226.5 steps shorter than the plans that MAPP produced on average.

5.3.2 Push & Swap

The approach Luna and Bekris presented in [13] has a core similarity to our work. Both approaches

rely on agent swaps as a main building block of solutions. For this reason, I felt that this approach

would yield results that are comparable to TASS. Push & Swap solves general graphs that have at

least 2 holes. It solves the problem by using two basic operations the “push” and the “swap.” Each

agent tries to push its way to its goal, by pushing the agents on its path, as much as possible until

it reaches a point where no further progress can be made by pushing alone in which case it starts

swapping positions with the agents on its path.

For this experiment I obtained the original code and test data set from the authors of [13] and

added a few additional trees to the list to come up with a set of 32 problems. Table 5.2 lists the

scenarios in the combined dataset along with its basic information. The broader domain of Push &

Swap clearly meant that it can solve graphs that are not necessarily trees. As such, TASS was not
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expected to be able to solve the majority of those problems. In fact only 9 of the problems were

trees. So for this experiment I had to invoke GTD algorithms in addition to TASS. I tested with

GTD-SLIDEABLE and GTD-MaxJunction.6

The experiments were conducted on a 720QM processor running at 1.6 GHz with 8GB of RAM.

Table 5.3 summarizes the results of these runs. For each problem the best time and plan length is in

bold. The number of edges remaining after GTD is executed on a graph is also reported in the two

“edges” columns. There have been slight fluctuations of a few milliseconds when experiments were

repeated on the same problems multiple times, so small differences in time should be ignored.

The first 26 problems came from the original Push & Swap data set that the authors had shared

with us and were used unchanged. The last 6 were among the binary and ternary trees used in

the independent TASS experiments. There was a set of problems included in the Push & Swap

composed of loops with agents lining up on the nodes forming the loop and need to be rotated

around the loop one step each. This set was removed from the experiment since its problems would

always be unsolvable when the loops are broken.

From the table it can be seen that for non-tree graphs, Push & Swap found solutions of shorter

lengths compared with TASS with either GTD algorithm. This naturally follows from the fact that

TASS does not make use of all the available edges in the graph and is thus working on a far more

constrained graph. Despite this fact, we can see that TASS + GTD-MaxJunction was able to solve

most graph problems.

As problems start growing in size, the speed advantage of TASS becomes more prominent. This

is true both on graphs and trees. On the largest graph problem, RandomBig 100, which is a large

grid world with 500 nodes and 100 agents placed at random locations, TASS with GTD-MaxJunction

solved the problem in less than one tenth of the time Push & Swap took. On trees, TASS in almost

all cases produced much shorter solutions and was 4 orders of magnitude faster on the 1000-nodes

trees.

The challenge with the large trees was not only the size, but also the high congestion. The trees

had only 4 holes and were thus very difficult problems to solve. These problems emphasize the

difference between the effective polynomial degrees of both TASS and Push & Swap. What I could

solve in less than 4 seconds, took Push & Swap about 33 minutes and the solution TASS produced

was a bit more than half the length of that produced by Push & Swap.

These results indicate that for small problems on general graphs, using Push & Swap would be a

better option due to its higher solution quality. For larger graphs, where the runtime would become

impractical, using TASS + GTD would be a more viable option. When the problem graph is a tree

by nature, like mazes, then running TASS without GTD would produce better results in less time.

This experiment also serves as a good comparison between GTD-SLIDEABLE and GTD-MaxJunction.

6Note that in our experiments I only implemented a simplified version of GTD-SLIDEABLE where I do not alter the tree if
it is not solvable, instead I just declare failure. The reason for this is that this algorithm was devised for theoretical purposes,
where in practice GTD-MaxJunction should be used.
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In almost all but the smallest of cases GTD-MaxJunction produced shorter paths in less time com-

pared to GTD-SLIDEABLE. This is reasonable given that it maintains a larger tree in most cases and

thus provides more room for the agents to maneuver. It also led to an interesting question: “Can

I run TASS directly on a graph that is not a tree?” This question makes sense because adding any

extra edges to the trees induced by GTD-MaxJunction would necessarily result in a cycle. I decided

to answer this question empirically by running TASS, unmodified, on graphs that were not trees to

observe how often it would crash or yield incorrect output. I detect wrong output by feeding the out-

put plans into a tracer that validates every move and ensures that applying the plan to a new instance

of the problem will end up with all agents at their target nodes as expected.

The result was very interesting. TASS was able to solve all but 4 of the problems in the set.

On two it simply crashed, one of which was unsolvable by either GTD algorithm. On two other

problems it produced wrong plans. Most interestingly, it was able to correctly solve one problem that

neither GTD algorithms were able to handle. The runtime was about half that of GTD-MaxJunction

(not even counting the GTD time) and the paths were around one third of the those produced by

TASS + GTD-MaxJunction. While we obviously lose completeness guarantees with this approach,

it is an interesting direction for future work. It may be possible to adapt TASS to work directly on

graphs and detect problem graphs. As it is, however, running TASS on a non-tree graph and then

tracing the solution to ensure it is correct is still a viable option.
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Scenario Number of Agents Number of Nodes Number of Edges
Tree 3 7 6

Corners 4 12 12
Tunnel 4 9 8
String 5 11 10

LoopChain 7 9 9
Connector 6 18 19

Stacks 16 24 35
RandomBig 10 10 500 788
RandomBig 20 20 500 788
RandomBig 30 30 500 788
RandomBig 40 40 500 788
RandomBig 50 50 500 788
RandomBig 60 60 500 788
RandomBig 70 70 500 788
RandomBig 75 75 500 788
RandomBig 80 80 500 788
RandomBig 90 90 500 788

RandomBig 100 100 500 788
Circle Rotate 12 12 16 24
Circle Rotate 16 16 24 36
Circle Rotate 20 20 32 48
Circle Rotate 24 24 49 84
Circle Rotate 48 48 169 312
Circle Rotate 72 72 361 684
Circle Rotate 96 96 625 1200
Circle Swap 16 16 24 36

Binary10 6 6 10 9
Binary100 96 96 100 99

Binary1000 996 996 1000 999
Ternary10 6 6 10 9

Ternary100 96 96 100 99
Ternary1000 996 996 1000 999

Table 5.2: A list of the scenario names along with their basic properties.
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BIBOX TASS
Average Time 21,944 ms 29,562 ms

Average Plan Length 471,056,960 29,571,558
Median Plan Length 515,411,465 9,180,781.5

Instances Faster 293 175
Instances Shorter 24 444

Table 5.4: Aggregate statistics for running 468 problem instances on BIBOX and TASS. Best results
are in bold.

5.3.3 BIBOX

Surynek’s algorithm BIBOX [29] was designed to be a complete algorithm that solves multi-agent

pathfinding problems on bi-connected graphs in polynomial time. While bi-connected graphs ex-

clude trees by definition, the polynomial complexity of BIBOX makes it a good candidate to com-

pare with TASS. Obviously TASS had to be coupled with a GTD algorithm, GTD-MaxJunction in

this case, to be able to solve the problems on bi-connected graphs. Surynek has shared code that

generates bi-connected graphs by creating one main cycle and adding loops7 to it incrementally. The

size of the individual loops was selected at random bounded by a parameter that I varied from 10 to

100. Similarly, I varied the size of the original cycle from 10 to 100 nodes. And finally I varied the

number of loops from 10 to 100 as well. For the sake of time, resulting graphs with more than 1,500

nodes were removed from the experiment and I was left with 468 problem instances with randomly

placed agents. The number of agents varied from 44 to 1,378.

The experiment showed that BIBOX performed slightly faster than TASS but the quality of the

solutions TASS produced was higher on average. The reason BIBOX is usually faster could be

attributed to the fact that it works on the original graph which has more edges while TASS works on

the induced tree. This is a limitation of TASS that I hope will be addressed in future work. Table 5.4

summarizes the differences between both algorithms in terms of time and solution lengths.

Figure 5.13 shows a scatter graph of the runtime of each problem instance on both algorithms,

the higher number of points above the line show that BIBOX performs faster than TASS by a small

margin. On the other hand, Figure 5.14 shows the solution lengths obtained by both algorithms

for each problem instance. It is clear from the graph that not only did TASS produce shorter solu-

tions more frequently, but also the magnitude of the difference between the solution lengths of the

algorithms was greatly in TASS’s favor.

5.3.4 Suboptimality Experiment

Measuring the speed of TASS gives us good insights about its practical applicability, but speed was

only half of the question. The second half was how suboptimal were our solutions? Since traditional

optimal algorithms were too slow to run on even the small trees, I decided to use the Standley’s

7A loop in this context refers to a chain of nodes that connect two nodes on the original main cycle.
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Figure 5.13: Execution times of BIBOX and TASS on the same problem instances.

Figure 5.14: Plan sizes of BIBOX and TASS on the same problem instances.
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Figure 5.15: A 19-node maze that resembles a ternary tree. The car icons represent the agents and
the numbered flags represent their targets.

Operator Decomposition (OD) [24] algorithm on small problems and calculate the suboptimality of

TASS based on this.

The first problem I attempted was a small maze adapted from our 14-node ternary trees by adding

a few extra nodes to be representable on a grid. I followed the same agent configuration convention

as that used for the independent experiments and ended up with the configuration shown in Figure

5.15.

TASS solved this problem instance in 2 milliseconds and came up with a solution of length

459 moves. OD initially timed out on this experiment using the default settings, I then increased

the time out period and it quickly ran out of memory. I believe that the reason for this failure is

that this type of configuration makes all agents’ paths overlap and thus prevents the independence

detection algorithm from partitioning the problem into smaller easier subproblems. An independent

experiment confirmed the difficulty of finding the optimal solution for this problem. Sharon reported

that Standley’s A*+OD+ID exhausted all the available memory after 20 hours while ICTS [20] was

unable to solve the problem within 48 hours.8

I then attempted to solve a binary tree of size 15 nodes and were able to get a solution of length

234 moves in 1 millisecond using TASS. The representation for this problem on a grid did not require

any additional nodes and can be seen in Figure 5.16. OD took hours on this problem before running

out of memory. I was thus unable to obtain a good quantitative measure for the suboptimality of

TASS on non-trivial problems. Further reducing the problem to a tree of 10 nodes as shown in

Figure 5.17, OD still ran out of memory.

8Personal communication with Guni Sharon.
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Nodes OD TASS
Moves Time (ms) Moves Time (ms) Suboptimality

7 18 7 30 1 167%
8 18 62 34 1 189%
9 32 131,358 58 1 181%

10 - Memory Out 170 1 -

Table 5.5: Summary of running TASS and OD on tree problems of various sizes.

Figure 5.16: A grid representation of a 15-node binary tree. The car icons represent the agents and
the numbered flags represent their targets.

Only when I scaled down to binary trees with 9 nodes or less were I able to compute optimal so-

lutions using OD. On the largest problem OD could solve, having 9 nodes, shown in Figure 5.18, OD

took 131,357.76 milliseconds to run as opposed to 1 millisecond with TASS, but was able to produce

an optimal solution of 32 moves where TASS produced a solution of length 58. Table 5.5 shows a

summary of the results on grids representing binary trees of sizes 7, 8, 9, and 10. Figures 5.19 and

5.20 show the 7-nodes and 8-nodes grids respectively. Note that the grids were constructed using the

same methodology and agent ordering used in the independent experiments, refer to Section 5.2.1.

It is hard to generalize from the limited results I obtained in this experiment. However, we can

see that TASS was always within a factor of 2 of the optimal length in this experiment, while its

runtime was negligible. In contrast, we can clearly see the exponential time growth of the optimal

solver even in such small grids. It is this exponential growth that makes suboptimal solutions much

more practical in many of the real life problems we face today.
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Figure 5.17: A grid representation of a 10-node binary tree. The car icons represent the agents and
the numbered flags represent their targets.

Figure 5.18: A grid representation of a 9-node binary tree. The car icons represent the agents and
the numbered flags represent their targets.
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Figure 5.19: A grid representation of a 7-node binary tree. The car icons represent the agents and
the numbered flags represent their targets.

Figure 5.20: A grid representation of a 8-node binary tree. The car icons represent the agents and
the numbered flags represent their targets.
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Chapter 6

Conclusions

In this work I presented a new approach to solving multi-agent pathfinding problems on a subset

of general graphs. Our approach relies on two components: a Tree-based Agent Swapping Strategy

(TASS) and a Graph-to-Tree Decomposition (GTD) family of algorithms. Running a GTD algorithm

on a general graph induces a tree on which TASS can very efficiently find solutions for multi-agent

pathfinding problems. The solutions obtained on the tree are valid on the graphs because no edges

are ever added to the tree that did not belong to the original graph.

The key limiting factor to the applicability of TASS is the fact that not all graphs remain solvable

after being converted to trees. For this reason I also presented some solvability conditions adapted

from the work of Masehian and Nejad [14] to quickly identify whether a certain tree can be solved

for a given number of agents. To take our work further in terms of general application, I proved

analytically, and empirically, that the family of problems on general graphs meeting the SLIDEABLE

conditions defined in [33] are completely solvable using TASS with a GTD algorithm.

Finally, I conducted a number of experiments that verified that TASS was a time-efficient al-

gorithm that could handle highly congested problems of up to 10,000 nodes in less than 3 minutes

and 1,000 nodes in less than 3 seconds. A number of comparative experiments were also con-

ducted to compare TASS with current state-of-the-art algorithms. The results were very favorable

and showed that TASS was more efficient than most existing algorithms, especially on trees and

maze-like graphs, and produced solutions of comparable quality.

6.1 Limitations

One of the most notable topologies that our GTD algorithms fail to handle are loop graphs. There

is typically no possible way to break a loop into a solvable tree, unless there is only a single agent.

This is because breaking a loop creates a long corridor where no agents can swap. It may be possible

to have instance solvability on loops or tunnels, which our approach will fail to detect. These cases

are, however, trivial to handle as special cases, because no agents ever swap position. If a problem

is solvable it would be possible to directly move agents to their targets by sweeping from one end of
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the tunnel or any goal node in a loop then moving each agent in turn to its goal node.

Another limitation is that our definition excludes simultaneous moves and thus may fail to solve a

range or problems where the only viable solutions require agents to move at the same time. Updating

TASS to work with simultaneous agents is a future direction.

Finally, all of the optimizations performed during the course of this work were aimed at improv-

ing the runtime of the algorithm but not the solution quality. It is natural, therefore, that the next

aspect to optimize would be the quality of the produced solutions. This could either be achieved

by refining TASS itself, by applying post-processing to bring down the solution length possibly

by executing moves in parallel, or by augmenting TASS with more optimal solvers for the smaller

instances as mentioned earlier.

6.2 Future Work

Currently TASS performs very efficiently on trees in terms of runtime. For example I could solve

problems with ten thousand agents in less than three minutes. However, when coupled with GTD

algorithms, we usually lose a lot of maneuvering space when we induce a tree from a graph. This

typically results in poor solution quality, especially in easy problems like those consisting mostly of

open space. In this section I discuss ideas that can potentially improve the quality of the solutions

we get as well as to speed up the computation even further.

6.2.1 Selectively Repositioning Agents

Once TASS has performed a swap, it moves back all agents disturbed during the operation back to

their original positions. It is, however, only necessary to restore agents that were already at their

target nodes and, perhaps, those that would block them from returning to their original positions. I

believe this would further reduce the plan sizes generated by TASS.

6.2.2 Breaking Cycles Intelligently

When breaking cycles the best GTD algorithm so far, GTD-MaxJunction, orders edges by a priority

value based on the degrees of their two nodes. This maintains desirable properties in the trees, but

this can be further improved by intelligently deciding among edges of equal priority. One idea that is

worth testing is breaking edges that are furthest from junctions first. This would potentially reduce

the distances to the newly created leaves and the closest junctions.

6.2.3 Target Ordering

For some simple problems on trees that are not completely solvable, we can still solve specific

instances if we sort the target nodes such that those that are unoccupied in the initial configuration

are solved first. This allows us for example to solve problems like loops where agents need to rotate

in some manner, or tunnels where the agents need to all move in one direction without swapping.
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6.2.4 Agent Sorting

When running TASS it may be possible to swap agents more times than necessary. In particular an

agent that reaches its destination may be disturbed many times as other agents move around. One

way to reduce this is to sort agents by their target nodes. Those with targets on the leaves are solved

first, and then we move inwards. A quick experiment showed that this indeed improves both runtime

and plan sizes significantly. In particular on binary trees agent sorting brought down the plan size of

a 1000-node tree from 556,296 to 508,948 moves and the time from 3,026 ms to 2,029 ms. Similar

results were obtained on a 1000-node ternary tree where the plan size went down from 295,188

moves to 254,116 moves and the time from 2,424 ms to 1,583 ms. This optimization is in our final

implementation, but due to time constraints was not used in our experiments.

6.2.5 Agents Push

When an agent encounters another agent on its path, we should first check whether this blocking

agent is at its target node or not. If it is not, then we could attempt to push it instead of swapping

with it. Of course, for the push to be valid, none of the agents on the whole chain of agents that

will be pushed should be at its final target. This idea is inspired directly from the work of Luna

and Bekris [13]. Figure 6.1 shows an example where this would produce shorter solutions, to move

agent u to its target we can just push the chain of agents one step to the right each, then move u

to its target directly. Without pushing agents, we will need to swap agents u and 1 together which

involves pushing the same chain in the same way, then moving u to its target and out again, then

moving agent 1 into u’s original position to complete the swap before finally moving u to its final

target node once more. Similarly, if we decide to move 2 to its target next, then we will have to

disturb u again to swap 1 and 2 twice, where just pushing 1 to the left would quickly put both agents

on their target nodes.

6.2.6 Multiple Decompositions

This concept was hinted at in our discussion but was not implemented in the algorithm. When a

graph is decomposed, there is no need to come up with a single tree. In fact, it is probably more

effective to break it down into separate isolated trees and solve smaller problems on these trees. The

trees would only include agents whose paths overlap. GTD algorithms that act on the whole map

can still be effectively used to generate a single main tree, but have slight variants of it that do not

include the nodes that are occupied by agents from other subsets. This means we would still have

multiple instances of trees containing different subsets of agents but share most of the nodes. We

can then solve each subset in isolation, without risk of colliding with agents from other subsets.

Care has to be taken to ensure that all the subtrees remain solvable and if they are not, they should

be merged incrementally until they become solvable. This is expected to improve solution quality

when agents are close to their destinations in the original graph but far in the induced tree.
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Figure 6.1: An example problem where pushing a chain of agents would require less work than
doing full swaps. I assume this is part of a larger tree with enough holes to be solvable, but the rest
is irrelevant.

6.2.7 Run TASS on General Graphs

During our experiments (see Section 5.3.2), I noticed that running TASS on graphs directly without

converting them to trees first worked on the majority of the cases and produced better results than

with a GTD algorithm. On the few (4 out of 32) where it failed, it either produced wrong results or

crashed. Noting that this version of TASS had the assumption that it was running on trees, it may

be possible to identify the cases where it fails and refine TASS so that it runs on graphs directly.

Another possible extension to make use of this would be to run TASS on graphs first and then check

the results as part of the algorithm for correctness. The total time for producing a solution and

checking it would still be smaller than that of running TASS with a GTD algorithm, mainly because

checking correctness is a very quick linear time operation in the number of moves.

6.2.8 Shadow Graphs

Another alternative to running TASS unmodified on general graphs is using Shadow Graphs. Con-

sider a graph that represents a grid of open space where each node is connected to its four adjacent

neighbors. It is clear that when this kind of graph is decomposed into a tree a large number of edges

will be cut off which would cause simple problems to require convoluted solutions. Using what

I call “shadow graphs” we can work around this limitation. Here is a brief overview of how this

system would work.

I define a “First Complement Graph” as a graph containing all the nodes of the original graph

and all edges that are not already on the induced tree. On this I take a subset, call it the “First

Shadow Graph,” that keeps only sufficient edges to maintain connectivity for all the nodes on the

induced tree. Connectivity is maintained by ensuring that paths exist between any pair of points but

without using any edges or nodes of the induced tree, except for the pair of nodes at the two ends of
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each path. I also define a “Second Complement Graph” similarly to the first, but excluding all edges

in the “First Shadow Graph” and I similarly create a “Second Shadow Graph” that does not use any

nodes in the first shadow graphs (except for the nodes of the induced tree that it connects).

Now whenever we want to do a swap1 between two nodes we have one of three situations:

1. There is no direct path between the two nodes in any shadow graphs. In this case we use the

original TASS.

2. There is a path in the first shadow graph between the two nodes, but not in the second. One

agent moves as dictated by TASS, while the other takes a shortcut through the first shadow

graph. This reduces the solution length to a about half (considering that a direct path is usually

insignificant compared with a busy path through the tree).

3. There are paths in both shadow graphs. In this case both agents can swap directly via both

shadow graphs without any internal swaps. This almost eliminates the complexity of this one

swap.

This is one of the most promising future ideas for our work as it is expected to significantly cut

down the solution lengths of the plans TASS produces.

6.3 Closing Remarks

TASS was developed to be applicable in practice and for this reason its performance was our top

priority. However, with our focus on speed, we sacrificed solution quality. This allowed us to solve

huge problem sizes that most existing algorithms would fail to handle, making TASS ideal for hard

problems but a poor choice for simpler ones. When thinking of realistically applying our work in

practice, I believe that the best way would be to integrate it as a part of a larger framework that

uses slower but more path size-efficient algorithms for small problems and delegate the hard ones to

TASS to get the best of both worlds.

1In this case the agents do not need to be adjacent.

66



Bibliography

[1] V. Auletta, A. Monti, M. Parente, and P. Persiano. A linear-time algorithm for the feasibility
of pebble motion on trees. Algorithmica, 23(3):223–245, 1999.

[2] Y. Chen, C.W. Hsu, and B.W. Wah. Sgplan: Subgoal partitioning and resolution in planning.
Edelkamp et al.(Edelkamp, Hoffmann, Littman, & Younes, 2004), 2004.

[3] Alborz Geramifard, Pirooz Chubak, and Vadim Bulitko. Biased cost pathfinding. In AIIDE,
pages 112–114, 2006.

[4] A. Gerevini and I. Serina. Homepage of lpg. http://zeus.ing.unibs.it/lpg/, 2008.

[5] S.J. Guy, M.C. Lin, and D. Manocha. Modeling collision avoidance behavior for virtual hu-
mans. In Proceedings of the 9th International Conference on Autonomous Agents and Multia-
gent Systems: volume 2-Volume 2, pages 575–582. International Foundation for Autonomous
Agents and Multiagent Systems, 2010.

[6] R. Hayes. The Sam Loyd 15-puzzle. Puzzle, 2001:06, 2001.

[7] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. On the complexity of motion planning for multiple
independent objects; pspace-hardness of the” warehouseman’s problem”. The International
Journal of Robotics Research, 3(4):76, 1984.

[8] M.R. Jansen and N.R. Sturtevant. Direction maps for cooperative pathfinding. In The Fourth
Arftificial Intelligence and Interactive Digital Entertainment Conference (AIIDE poster), 2008.

[9] R. Jansen and N. Sturtevant. A new approach to cooperative pathfinding. In Proceedings of the
7th International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 3,
pages 1401–1404. International Foundation for Autonomous Agents and Multiagent Systems,
2008.

[10] Mokhtar M. Khorshid, Robert C. Holte, and Nathan R. Sturtevant. A polynomial-time algo-
rithm for non-optimal multi-agent pathfinding. In SOCS, 2011.

[11] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, 1985.

[12] D. Kornhauser, G. Miller, and P. Spirakis. Coordinating pebble motion on graphs, the diameter
of permutation groups, and applications. Annual IEEE Symposium on Foundations of Com-
puter Science, 0:241–250, 1984. doi: http://doi.ieeecomputersociety.org/10.1109/SFCS.1984.
715921.

[13] Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative path-finding with com-
pleteness guarantees. In IJCAI, pages 294–300, 2011.

[14] Ellips Masehian and Azadeh Hassan Nejad. Solvability of multi robot motion planning prob-
lems on trees. In IROS, pages 5936–5941, 2009.

[15] M. Peasgood, C.M. Clark, and J. McPhee. A complete and scalable strategy for coordinating
multiple robots within roadmaps. IEEE Transactions on Robotics, 24(2):283–292, 2008.

[16] D. Ratner and M. K. Warmuth. Finding a shortest solution for the N × N extension of the
15-puzzle is intractable. In National Conference on Artificial Intelligence (AAAI-86), pages
168–172, 1986.

67

http://zeus.ing.unibs.it/lpg/


[17] R. Regele and P. Levi. Cooperative multi-robot path planning by heuristic priority adjustment.
In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5954–
5959. IEEE, 2006.

[18] Malcolm Ryan. Constraint-based multi-robot path planning. In ICRA, pages 922–928, 2010.

[19] Malcolm R. K. Ryan. Exploiting subgraph structure in multi-robot path planning. Journal
of Artificial Intelligence Research, 31:497–542, March 2008. ISSN 1076-9757. URL http:
//portal.acm.org/citation.cfm?id=1622655.1622670.

[20] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increasing cost tree search
for optimal multi-agent pathfinding. pages 662–667, 2011.

[21] Guni Sharon, Roni Tzvi Stern, Meir Goldenberg, and Ariel Felner. Pruning techniques for the
increasing cost tree search for optimal multi-agent pathfinding. In SOCS, 2011.

[22] David Silver. Cooperative pathfinding. In AIIDE, pages 117–122, 2005.

[23] A. Srinivasan, T. Ham, S. Malik, and R.K. Brayton. Algorithms for discrete function manip-
ulation. In IEEE International Conference on Computer-Aided Design. ICCAD-90. Digest of
Technical Papers., pages 92–95. IEEE, 1990.

[24] Trevor Scott Standley. Finding optimal solutions to cooperative pathfinding problems. In AAAI,
2010.

[25] Trevor Scott Standley and Richard E. Korf. Complete algorithms for cooperative pathfinding
problems. In IJCAI, pages 668–673, 2011.

[26] N. Sturtevant. Hog-hierarchical open graph. http://webdocs.cs.ualberta.ca/∼nathanst/hog.html,
2005.

[27] Nathan Sturtevant and Michael Buro. Improving collaborative pathfinding using map abstrac-
tion. In AIIDE, pages 80–85, 2006.

[28] Nathan R. Sturtevant and Michael Buro. Partial pathfinding using map abstraction and refine-
ment. In Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI, pages 1392–1397.
AAAI Press / The MIT Press, 2005. ISBN 1-57735-236-X.

[29] P. Surynek. A novel approach to path planning for multiple robots in bi-connected graphs.
In IEEE International Conference on Robotics and Automation, 2009. ICRA’09., pages 3613–
3619. IEEE, 2009.

[30] Pavel Surynek. Making solutions of multi-robot path planning problems shorter using weak
transpositions and critical path parallelism. In Proceedings of the 2009 International Sympo-
sium on Combinatorial Search, 2009.

[31] Y. Tavakoli, H.H.S. Javadi, and S. Adabi. A cellular automata based algorithm for path plan-
ning in multi-agent systems with a common goal. IJCSNS, 8(7):119, 2008.

[32] Ko-Hsin Cindy Wang and Adi Botea. Fast and memory-efficient multi-agent pathfinding. In
ICAPS, pages 380–387, 2008.

[33] Ko-Hsin Cindy Wang and Adi Botea. Tractable multi-agent path planning on grid maps. In
IJCAI’09: Proceedings of the 21st international Joint conference on Artificial intelligence,
pages 1870–1875, San Francisco, CA, USA, 2009.

[34] Wikipedia. Sliding puzzle. URL http://commons.wikimedia.org/wiki/File:15-puzzle.svg. [On-
line; accessed 9-August-2011].

68

http://portal.acm.org/citation.cfm?id=1622655.1622670
http://portal.acm.org/citation.cfm?id=1622655.1622670
http://webdocs.cs.ualberta.ca/~nathanst/hog.html
http://commons.wikimedia.org/wiki/File:15-puzzle.svg

	Frontmatter
	Title Page
	Abstract

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Definition
	Motivation
	Overview of Existing Work
	Contributions
	Summary of Results
	Thesis Outline

	Essential Background
	Fundamental Definitions
	Basic Pathfinding
	Breadth First Search (BFS)

	Multi-agent Pathfinding
	Centralized vs Distributed
	Sequential vs Simultaneous Moves

	Relevant work: Solvability of Multi Robot Motion Planning Problems on Trees

	Theory
	Definitions
	Tree Solvability Conditions
	Polynomially Solving Solvable Trees
	Worked Example
	Graph To Tree Decomposition
	Slideable Induced Trees
	GTD-MaxJunction


	Related Work
	Finding Optimal Solutions to Cooperative Pathfinding Problems
	Complete Algorithms for Cooperative Pathfinding Problems
	The Increasing Cost Tree Search for Optimal Multi-Agent Pathfinding
	A Novel Approach to Path Planning for Multiple Robots in Bi-connected Graphs
	Making Solutions of Multi-robot Path Planning Problems Shorter Using Weak Transpositions and Critical Path Parallelism
	Exploiting Subgraph Structure in Multi-robot Path Planning
	Constraint-based Multi-agent Path Planning
	Push and Swap: Fast Cooperative Path-Finding with Completeness Guarantees
	A Complete and Scalable Strategy for Coordinating Multiple Robots within Roadmaps
	Tractable Multi-agent Path Planning on Grid Maps
	Cooperative Pathfinding
	Local Repair A* (LRA*)
	Cooperative A* (CA*)
	Hierarchical Cooperative A* (HCA*)
	Windowed Hierarchical Cooperative A* (WHCA*)

	Improving Collaborative Pathfinding Using Map Abstraction
	Fast and Memory-Efficient Multi-Agent Pathfinding
	Direction Maps for Cooperative Pathfinding and A New Approach to Cooperative Pathfinding
	Modeling Collision Avoidance Behavior for Virtual Humans
	A Cellular Automata Based Algorithm for Agents with Common Goal
	Cooperative Multi-robot Path Planning by Heuristic Priority Adjustment
	Coordinating Pebble Motion On Graphs, The Diameter Of Permutation Groups, And Applications
	A Linear-time Algorithm for the Feasibility of Pebble Motion on Trees
	Biased Cost Pathfinding (BCP)

	Evaluation
	Testing Methodology
	Independent Experiments
	Scaling Experiments
	Plan length distribution
	Effects of the proximity and size of Junctions
	Congestion Analysis

	Comparative Experiments
	Multi-Agent Path Planning (MAPP) Algorithm
	Push & Swap
	BIBOX
	Suboptimality Experiment


	Conclusions
	Limitations
	Future Work
	Selectively Repositioning Agents
	Breaking Cycles Intelligently
	Target Ordering
	Agent Sorting
	Agents Push
	Multiple Decompositions
	Run TASS on General Graphs
	Shadow Graphs

	Closing Remarks

	Bibliography

