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Abstract

This thesis studies a virtual power plant (VPP) that trades the bidirectional

charging flexibility of privately owned plug-in electric vehicles (EVs) in a real-

time electricity market to maximize its profit. The main contribution of this

thesis is the development of scalable and efficient algorithms for the procure-

ment and scheduling of this flexibility. Specifically, to incentivize EVs to allow

bidirectional charging, we design incentive-compatible, variable-term contracts

between the VPP and EVs. Through deliberate aggregation of the energy stor-

age capacity of individual EVs, we construct an abstraction of the aggregate

flexibility that can be provided by the connected EVs. This abstraction is

called a virtual battery and its operation is scheduled in real-time by learning

a reinforcement learning (RL) policy. This policy efficiently trades the avail-

able flexibility, independent of the number of accepted contracts and connected

EVs. The proposed aggregation method ensures the satisfaction of individual

EV charging requirements by constraining the optimal action returned by the

RL policy within certain bounds. We then develop a disaggregation scheme

to allocate power to bidirectional chargers. We formulate this as a resource

allocation problem, in which the total amount of energy traded in the mar-

ket is distributed in a proportionally fair manner among the connected EVs.

Evaluation on a real-world dataset demonstrates robust performance of the

proposed method despite high variability of electricity prices and shifts in the

distribution of EV mobility.
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Preface

This thesis is based on two conference papers. The first one was authored

by myself, and former M.Sc. student Saidur Rahman (both of us with equal

contribution), along with my supervisor. This was published in ACM e-Energy

2023 [70]. The second was authored by myself and my supervisor, and it is

recently accepted for publication in the upcoming ACM e-Energy 2024 [77].

In the first paper [69], I contributed the analysis and interpretation of one-

dimensional V2G contracts, considerable work on the implementation, and the

final experimentation process. In this thesis, I do not include the contributions

made by my co-author, Saidur Rahman. These were the initial design of one-

dimensional contracts, proofs of equivalence for the simplified formulation of

one-dimensional contract design problem, and trading strategies in the day-

ahead market.

I was primarily responsible for the contributions of the second conference

paper [77], developed under the guidance of Prof. Ardakanian. These were:

the development of two-dimensional V2G contracts (Chapter 3), revised VPP

and EV charging models (Chapter 4), an efficient and scalable reinforcement

learning agent (Chapter 5), experimental validation on two real-world datasets

(Chapter 6), and a new streamlined codebase for the implementation of our

methods.

Furthermore, this thesis expands on the second paper [77] by develop-

ing proofs that simplify the formulation of two-dimensional contracts (Chap-

ter 3). These are based on the ones that Saidur presented for one-dimensional

contracts in his thesis [69]. Moreover, it expands on the literature review

(Chapter 2), presents additional experiments (Chapter 6), and provides a brief

overview of the accompanying codebase (Appendix A).
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All of the experiments and the development of the accompanying code

repository for this thesis were done by myself. The code repository for the

second paper [77] and this thesis is completely independent of the one that

was released together with the first paper [70].
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“In theory there is no difference between theory and practice.

In practice there is.”

– Yale Literary Magazine, 1882.
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Chapter 1

Introduction

Modern electrical grids face several pressing challenges. The rise of renewable

energy sources has made power generation more intermittent and less pre-

dictable [44]. This intermittency forces the grid operator to rapidly adjust the

output of their generating plants to match demand, which may require burn-

ing more fossil fuels (e.g. natural gas) to ramp up quickly [94]. Conversely,

during periods of excess energy production, that extra energy goes to waste

if it cannot be exported. A notable example of these challenges is illustrated

by the “duck curve” phenomenon [19]. The example shown in Figure 1.1 is

taken from California’s grid operator (CAISO). The graph shows the net load,

i.e. the demand that the operator needs to cover after subtracting solar gen-

eration. We observe reduced load, even negative, during the midday due to

increased solar production. However, in the morning there is a sudden dip,

and there is a precipitous increase followed by a peak in the evening.

Implementing storage solutions in the grid can address these issues [29].

In particular, short-term storage can balance supply and demand, improving

overall grid reliability. It can also be used to shave peaks in demand [14]

and smooth out fluctuations in renewable energy generation. Leveraging the

storage capacity of electric vehicles (EVs) while they are connected to charging

stations has emerged as a viable grid storage solution, especially considering

the significant decline in the cost of EV lithium-ion batteries. These have

dropped by over 97% since 1991 [72]. The need to control EV charging sessions

becomes even more pressing when we consider that most EVs are plugged in
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Figure 1.1: Evolution of California’s duck curve 2015-2023, source [10]

when people come home after work during peak demand times [7].

EVs are positioned to serve as crucial assets for short-term grid storage.

By the end of 2025, the USA is expected to have over 111 GWh of grid-

scale energy storage capacity [79]. At the same time, there are 2.5 million EVs

already operating in that country [40]. With a back-of-the-envelope calculation

and assuming each EV has an 80 kWh battery capacity1, this amounts to 200

GWh of potential storage. Indeed, not all of this can be accessed by the grid,

and EVs are not suitable for long-term storage. Nonetheless, this highlights

the significant role that EVs can play. Factors such as monetary and non-

monetary incentives, consumer participation, guaranteeing charging deadlines,

and intelligent (and possibly bidirectional) charging strategies will determine

their impact. This thesis directly tackles these pressing challenges by studying

how to procure and schedule the flexibility that can be offered by EVs.

1This assumption is explained in Section 6.1
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1.1 Virtual Power Plants

Climate change has increased the frequency and intensity of extreme weather

events, such as heat waves, wildfires, hurricanes, ice storms, and floods. In

recent years, some of these events caused a grid emergency and left millions

without power for several hours [89] due to loss of generation capacity, spik-

ing demand for electricity, or weather-related impacts on transmission and

distribution systems. Virtual power plants (VPP) – networks of distributed

energy resources that are aggregated and controlled to serve the grid – could

strengthen the resilience and reliability of the grid in the face of extreme

weather events [24]. When these resources are owned by individual customers

rather than power utilities, the VPP offers a low-cost alternative to infrastruc-

ture upgrades that would otherwise be necessary to improve grid reliability.

An emerging type of VPP aggregates privately owned plug-in EVs connect-

ing to residential or public chargers to replenish their battery. This VPP can

take advantage of three kinds of flexibility offered by EV chargers to participate

in one or multiple electricity markets. First, chargers can regulate their power

within certain bounds allowing the charging demand to be shaped. Second,

EVs typically remain connected to the charger longer than is needed for their

battery to fully charge. This makes it possible to shift the charging demand

in time. Finally, as bidirectional chargers with vehicle-to-grid (V2G) function-

ality become available on the market [12], the EV battery can be discharged

for some time before it is charged to the desired state-of-charge (SOC). Com-

pared to VPPs that control a fleet of EVs owned by a company or city [68],

e.g. electric taxis or buses, this VPP is capable of offering sizable flexibility to

the grid because it can potentially control thousands of privately owned EVs

in a large area. An illustration of this type of VPP, including our proposed

flexibility abstraction layer, is shown in Figure 2.1.

Interest in V2G technology is at an all-time high. EVs that support bidi-

rectional charging, such as the Ford F-150 Lighting and the Nissan Leaf are

already available in the market [9]. GM has announced that all its electric

models will support this feature by 2026 [34], with a similar commitment from

3



Flexibility Abstraction

Scheduling

Virtual
Power Plant

Connect to
charging stations

Individual
(dis)charge actions

Flexibility features Control action

Privately
owned EVs

Figure 1.2: Multiple EV charging sessions can be coordinated by a VPP

Tesla [57]. Hyundai initiated a pilot project with 25 V2G enabled IONIQ 5

vehicles in Utrecht, Netherlands [43], while Toyota has ongoing V2G research

projects with major utility companies in Texas and California [21], [82]. In

2023, Ford, Honda and BMW unveiled plans to establish a V2G company

aimed at connecting electric utilities and private EV owners [39]. Numerous

other companies like Nissan, Volvo and Polestar are also involved in V2G

projects [17], [61], [95]. Octopus Energy, a utilities company in the UK, al-

ready offers a V2G tariff for customers charging at home, estimating potential

savings of up to £880 (1,500 CAD) per year for each user. Customer interest

is evident, with reports of EV owners supporting local grids during contingen-

cies, as illustrated by a Sydney resident who earned $100 in just two hours

during a heatwave in early 2024 [98]. Additionally, algorithms that control

charging to support the grid might already exist in your pocket. In late 2023,

Apple introduced “Clean Energy Charging” to selectively charge iPhones in a

way that reduces their carbon footprint2 [2].

1.2 Challenges

Despite the vast potential of V2G VPPs, ensuring its efficient operation is ex-

tremely challenging, especially as the number and diversity of pooled resources

increases. This is mainly due to two reasons. First, incentivizing privately
2To check, go to Settings > Battery > Battery Health & Charging
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owned EVs to allow their battery to be charged and discharged at variable

rates is difficult because of individual differences in appraising flexibility and

battery degradation costs, and concerns about whether their energy demand

would be fulfilled before departure (feasibility concern) and their battery would

be discharged by the same amount as others who received the same incentive

(fairness concern). Second, volatile prices and stochastic EV mobility make it

difficult to guarantee that the available flexibility can be traded efficiently in

an electricity market. To address these challenges, in our previous work [70]

we designed fixed-term V2G contracts that are offered to EVs upon arrival at

the charging station, and develop an online scheduling algorithm to trade their

charging flexibility in the imbalance market given knowledge of the accepted

contracts and price forecasts. However, fixed-term contracts are too strict,

either preventing many electric vehicles from participating in the VPP (when

the contract term is too long) or failing to fully utilize their charging flexibility

(when the contract term is too short). Additionally, in the real world, price

forecasts for several hours in the future are inaccurate, so flexibility cannot be

optimally managed by solving a deterministic optimization problem.

Real time market
Charging schedule &

Trading decisions

New arrivals &
departures

Valid V2G 
contracts

Figure 1.3: Our VPP takes in EVs, V2G contracts, and trades in the market.
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1.3 Contributions

We design a set of incentive-compatible, variable-term V2G contracts that

optimize the expected utility of the VPP. These contracts are offered to each

EV as soon as it connects to the charger, allowing it to choose the contract that

is best for it. Each contract signifies the VPP’s commitment to EV owners that

it will pay them a certain amount of money for discharging a certain amount of

energy from their battery over the contract term. The VPP then uses a scalable

and efficient reinforcement learning (RL) policy to buy electricity to supply

the charging demand of all EVs and effectively trade the flexibility in real-

time.3 Since the available flexibility depends on the number of EVs that have

accepted a contract, making decisions for each EV independently increases the

dimension of the action space, making it difficult to (a) learn a good policy

when the number of EVs varies in the dataset, and (b) ensure fairness among

EVs that accepted the same V2G contract. To overcome these challenges,

our flexibility management approach involves aggregating the energy storage

capacity of all EVs into a virtual battery, real-time scheduling of the virtual

battery operation and accordingly trading flexibility in aggregate in a real-

time market, and finally disaggregating the (dis)charge power of the virtual

battery into the (dis)charge power of individual EVs, while ensuring fairness

and feasibility of these schedules. A diagram showing the overall structure of

the VPP can be seen in Figure 1.3. We make five specific contributions in this

work:

• To incentivize privately-owned EVs to join the coalition, i.e. the VPP,

we design self-revealing and variable-term V2G contracts based on the

principal-agent model [13] and by extending the agent type to two di-

mensions. Using realistic parameters for the utility function of the VPP

and EV owners, we get nine distinct contracts with three different terms.

• We learn a reinforcement learning policy for trading energy every hour

in an electricity market using the single-agent soft actor-critic algorithm
3By buying or selling more/less energy, the VPP offers bidirectional flexibility to the

grid.
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that respects time-varying constraints on the action. We show that

these constraints can be efficiently calculated by aggregating the laxity

and contract-related constraints of individual EV owners. As a result,

the learned policy makes reasonable trading decisions irrespective of the

number of EVs controlled by the VPP and enforces charging deadlines

and terms of accepted contracts.

• We draw a parallel between flexibility disaggregation and resource allo-

cation, as both of them involve self-interested parties, and borrow the

notion of proportional fairness from resource allocation to design a fair

and efficient flexibility disaggregation algorithm. We compare this al-

gorithm with priority-based disaggregation algorithms that incorporate

the notion of laxity.

• We evaluate our real-time scheduling approach using real data from a

network of public charging stations and prices from an imbalance market.

Our result reveals that, despite distribution shifts, noisy forecasts, and

changes in the number of connected EVs, the learned policy achieves

comparable performance with offline optimization problems that receive

the same forecasts.

• We develop a gym-like environment, dubbed EvChargeGym, that sim-

ulates EV arrivals, charging and departures. We use this to run our

experiments and validate our methods. This environment is open source

and publicly available, more details are given on Chapter 5.
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1.4 Outline

The remainder of this thesis is structured as follows. In Chapter 2, we conduct

a literature review, identifying gaps in the literature, and pointing out the

works that formed the basis of this work. Chapter 3 explains the design of

incentive-compatible V2G contracts, accomplished by constructing and solving

an optimization problem. We scrutinize and simplify the constraints, and

analyze the resulting optimal contracts. Subsequently, Chapter 4 details the

operation of the VPP and the dynamics of EV charging. Specifically, we

explore optimal VPP operation while adhering to constraints from the EV

charging dynamics and V2G contracts. In Chapter 5, we present the scalable

reinforcement learning agent that trades flexibility in aggregate, along with

its respective aggregation and disaggregation algorithms. Next, Chapter 6

empirically validates our claims by comparing our proposed methods against

other baselines using real-world datasets under various scenarios. Finally, we

present our conclusions, discussion about limitations, and ideas for future work

in Chapter 7.
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Chapter 2

Related Work

In this chapter, we conduct a literature review. We identify the strengths and

weaknesses of existing solutions and analyze how our approach contributes to

the existing body of knowledge. The chapter is organized as follows. First, we

introduce and define the concept of a Virtual Power Plant (VPP) to set the

context. Next, we examine the various types of electricity markets in which

a VPP can participate. Then, we delve into general approaches for flexibility

management in the power grid, focusing on those specifically designed for

EVs. We explore how some of these approaches utilize an abstraction to model

flexibility, and review existing literature on disaggregation, drawing parallels

to the field of resource allocation in computer networks. Subsequently, we shift

our attention to Reinforcement Learning (RL) for EV charging, proposing a

taxonomy to categorize different approaches. We also discuss methods for

ensuring safety in RL, i.e. how agents can adhere to hard constraints. Lastly,

we explore approaches to incentivize private users to engage in V2G, with a

specific emphasis on contract theory.

2.1 Virtual Power Plants

Virtual Power Plants (VPPs) aggregate multiple distributed energy resources

(DERs) into a single system [73]. This provides many advantages, among

them, each DER will be able to access energy markets that support dealing

in larger volumes than those available to individual consumers. This enables

them to maximize their revenue by optimizing their position in the market

9



with the help of the VPP’s market intelligence. Furthermore, this can simplify

the grid operator’s task as it can treat the VPP as a single entity instead of

managing each DER individually. Lastly, as all DERs can be utilized and

optimized, the power grid as a whole will benefit [66].

The VPPs that combine the flexibility of multiple resources of the same or

different types and subsequently trade in the electricity market(s) are exten-

sively studied in the literature [25], [68], [70], [93], [96]. This includes VPPs

that aggregate wind and solar generating plants, battery energy storage sys-

tems, and EVs.

2.1.1 Participation of VPPs in Electricity Markets

VPPs offer a significant benefit to distributed energy resource owners by ac-

cessing the wholesale electricity markets on their behalf [59]. Electricity mar-

kets can be categorized based on their operating timescale, which can range

from years to minutes. The definition of these markets varies across regions

and evolves over time. There is a specific phenomenon known as energy market

liberalization, this entails making regulations and systems that reduce barriers

to entry, and promote fair competition among market players [32]. It aims to

enhance operational efficiency and incentivize broader goals such as reducing

electricity costs and meeting decarbonization targets. Energy market liberal-

ization has been a longstanding trend since before the turn of the century [46].

Below, we provide a brief overview of electricity markets based on the survey

paper [59].

Before Dispatch These markets operate in a scale ranging from weeks to

years. An example is bilateral contracts, where buyers and sellers agree on a

specified amount of energy to be used at a future date. Additionally, energy

can be traded in the form of financial products in the futures and forward

markets which helps avoid electricity market price uncertainty.

Day Before Dispatch In this category we find the day-ahead market, which

enables the sale and purchase of electricity for each hour of the following day

10



through energy bids. Additionally, ancillary services markets ensure security

and reliability by maintaining the balance between generation and demand.

Moreover, the reserve market handles additional generation reserves to guar-

antee that demand is met, a role becoming increasingly critical due to the

expansion of non-dispatchable renewable energy sources such as wind and so-

lar.

Day of Dispatch During the operation day, intraday markets aim to adjust

the energy transactions of the day-ahead market, as they have more informa-

tion about electricity production and consumption. Typically, these markets

deal with smaller trading volumes compared to the day-ahead market. The

final market responsible for balancing supply and demand is the real-time or

imbalance market, operating on a timescale ranging from a few minutes to an

hour. Real-time imbalance markets may adopt dual-price mechanisms, where

different prices per kWh are set for buying and selling. However, there has

been a recent transition towards single-price markets, where unit prices re-

main consistent for both buying and selling, with the purpose of streamlining

market operations. To name a few examples, both the European (ENTSO-E)

and Nordic Transmission System Operators have opted for single-price im-

balance markets [30], [31]. Likewise, our study focuses on real-time markets

with single-pricing scheme. These short-term electricity markets have an in-

creasingly important role to play due to the higher penetration of renewable

generation and its unpredictable nature.

Bilateral contracts

Future and forward
market

Day-ahead
market

Ancillary services
market

Reserve market

Intraday market

Real-time balancing
market

Time

Before dispatch Day before dispatch Day of dispatch

Figure 2.1: Different electricity markets sorted by timescale, adapted from [59]
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2.1.2 Flexibility Management

In the context of the power grid, flexibility is defined as the ability of a re-

source, or a set of resources, to adjust their consumption or production over

time in accordance with an external signal [50]. In the same work [50], the

authors attempt to formally classify different definitions of flexibility based on

their mathematical characteristics. The precise definition of flexibility greatly

depends on the resources available, the participants that are considered, and

the specific project objectives. A versatile way of modeling flexibility is using

FlexOffers (FOs) [60], which define a framework for describing and managing

flexibility from heterogeneous resources. The work presented in [85] describes

the interaction of different market players using FOs, and in [90] methods for

aggregating and disaggregating flexibility while trading in an electricity mar-

ket are proposed. Moreover, Lilliu et al.[54] expand the definition of FOs by

incorporating additional constraints and bidirectional charging. While an indi-

vidual EV’s bidirectional flexibility presented in this work can be expressed as

FOs, our aggregation schemes are incompatible with FOs as we are interested

in preserving the exact flexibility limits through aggregation and disaggrega-

tion, while FOs deal with approximate methods.

2.1.3 Leveraging Flexibility of Electric Vehicles

An approach specific to utilizing the flexibility in EV charging is presented

in [26]. The same authors implement scheduling algorithms in their follow-

up work [75], where unidirectional flexibility is defined in terms of connection

time and energy delivered. This flexibility can be managed to flatten the

load on the grid or to maximize the utilization of renewables. Furthermore,

Schlund et al. [78] propose a methodology to aggregate EV flexibility with

unidirectional charging to guarantee the availability of bidirectional flexibility

over a fixed time horizon. Vandael et al.[92] propose trading EV flexibility

over a finite horizon using dynamic programming. Danner et al. [23] solve

the optimal scheduling of a stationary battery and EVs (without V2G) under

various forecast conditions. The flexibility requests are then accommodated
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by adjusting charging schedules using an iterative algorithm.

2.1.4 Aggregation and Disaggregation of Flexibility

Aggregation A VPP serves as a de facto aggregator from the perspective of a

grid operator. However, the manner in which this is handled internally varies.

Some VPPs consider individual DER requirements to calculate the power flow

in each of them, as seen in [14], [25], [93], among others. Conversely, others

create an aggregate abstraction and either base their decisions on it or ex-

pose it to the grid operator. Various techniques exist for aggregation. For

instance, in the case of FlexOffers, multiple offers from individual devices can

be merged into a single aggregate FlexOffer, approximating the total available

flexibility [86]. Moreover, Martin et al. propose a software system in [58] ca-

pable of controlling a network of batteries as a single unit, managing capacity,

charge, and discharge collectively. In [65], Pertl et al. aggregate EV batter-

ies into a virtual storage model, predicting the evolution of its characteristics

through time using autoregressive methods, with the purpose of trading in

the day-ahead market. Our approach shares similarities with this, aggregat-

ing multiple car batteries connected to chargers into a single virtual battery.

However, a key distinction is our emphasis on modeling and enforcing charging

deadlines, ensuring feasibility in scheduling.

Disaggregation Disaggregation refers to the process of taking a decision

made for the regarding the total flexibility that is available, and turning it

into control signals sent to individual DERs. We are concerned with design-

ing a disaggregation scheme that considers fairness. We base our approach

on seminal work in resource allocation [48], [101], which introduces the no-

tion of proportional fairness and elucidate its properties for elastic traffic in

computer networks. We compare our fair disaggregation approach with a

priority-based allocation that was previously adopted in [91]. Other disag-

gregation approaches exist in the literature, such as [22], where Danner et al.

design a genetic algorithm that considers a fairness index, among other criteria.

However, running a genetic algorithm at each timestep might be prohibitively

computationally costly. In contrast, in our work we perform disaggregation
13



through a single call to a convex optimization solver.

2.2 Reinforcement Learning for EV Charging

A large number of studies use RL to find an optimal charging schedule for EVs.

Some focus on a decision-making problem involving a single EV [38], [52], [84].

However, we focus our literature review on the papers that control the charging

of multiple EVs as it aligns with the objective of this thesis. We categorize

the approaches in the literature into three categories: multi-agent, single agent

taking individual actions, and single agent taking aggregate actions.

Multi-Agent Reinforcement Learning In multi-agent reinforcement learn-

ing (MARL), each EV charger is a decision-making agent. For example, Zishan

et al. propose an adaptive distributed control algorithm aimed at preventing

grid congestion in [5]. They tune each EV’s controller parameters using a

MARL framework. In [83], Shi et al. design a multi-agent system for manag-

ing a fleet of ride-sharing EVs, where each EV can decide to idle, charge or

accept a trip request from a user. Similarly, Wang et al. [97] address charging

and routing problems jointly by formulating a Partially Observable Markov

Game for discrete and continuous actions. Their focus is on enhancing re-

silience in electrical grids after extreme events. Furthermore, Yan et al. [102]

propose a multi-agent strategy that controls the charge for each vehicle in or-

der to minimize the cost for each individual and prevent transformers from

overloading.

The MARL framework is widely acknowledged by recent reviews [1], [67]

as the most popular for managing the charge of multiple EVs that do not

have the same information about the environment, including the distribu-

tion grid. There are also opportunities to integrate the MARL framework

with distributed algorithms. However, there remain disparities in the ap-

plication of this framework. For instance, valid MARL approaches include

centralized training with centralized execution (CTCE), centralized training

with distributed execution (CTDE), and distributed training with distributed
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execution (DTDE) [67]. Each approach has its trade-offs. In CTCE, decision-

making is centralized, facilitating the modeling of interactions between agents,

but imposing significant computational load on a single player. Conversely,

DTDE faces challenges in learning optimal policies and enforcing coupling

constraints since agents only interact with each other through the environ-

ment [67]. Additionally, for all of the MARL approaches, the computational

complexity can increase as more EVs join the systems and more agents need

to be executed.

Single Agent Taking Individual Actions A second approach involves a

single RL agent, typically with a Neural Network (NN) policy, directly manag-

ing a group of EVs by assigning the charge rate for each EV through its output

nodes. Rahman et al. design a SAC agent capable of V2G that controls a fixed

number of EVs based on imbalance market prices and day-ahead commitments

in [68]. Similarly, Karatzinis et al. [47] train PPO and DDPG agents to con-

trol 10 electric vehicles, aiming to minimize electricity costs while penalizing

missed charging deadlines. Cording et al. [20] propose a PPO agent to charge

five EVs while minimizing costs and avoiding grid overloads. This is a simple

approach to controlling a fleet of EVs, as it does not require a multi-agent

system or separate aggregation and disaggregation algorithms. Additionally,

the agent has full knowledge of each of the EVs’ individual features. However,

it relies on knowing the maximum number of concurrent arrivals in advance to

set the number of output nodes in the NN. Moreover, uneven use of charging

stations during training can skew the agent’s learning, and there’s no assur-

ance of consistent treatment for vehicles with similar features. Consequently,

coupling constraints are overlooked, such as fairness. Moreover, any changes

in the total number of charging spots require architecture adjustments, leading

to a need to re-train the agent.

Single Agent Taking Aggregate Action In this third approach, a single

agent operates on an aggregate level, making decisions based on the aggregate

flexibility provided by all connected EVs. Individual features are combined
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using a separate aggregation algorithm, and aggregate actions are then broken

down into individual decisions using a disaggregation algorithm. Vandael et

al. [91] use a single RL agent to lay out a day-ahead consumption plan, then use

priority-based dispatch to disaggregate the action. However, the disaggregated

action is not guaranteed to be feasible, so it is clipped at the individual level.

Li et al. [53] develop an aggregator-operator scheme that combines RL with

predictive control for discrete binary charging actions by calculating multiple

trajectories. Sadeghianpour et al. [74] propose a streamlined binning approach

for unidirectional charging only. Another binning approach is taken by Alshe-

hhi et al. [6] to create a scalable representation of EV fleets in order to train

a deep neural network to solve a combinatorial optimization problem. Our

approach handles charging and V2G contract constraints by aggregating them

from an individual level and learning an aggregate action that is guaranteed

to be feasible at the individual level.

This category offers improved scalability compared to “Single Agent Tak-

ing Individual Actions”, and eliminates the need for information sharing or

collaboration among multiple agents. It also allows for the enforcement of

coupling constraints (e.g. fairness) during the disaggregation stage. However,

it requires the design of an additional aggregation-disaggregation scheme, po-

tentially leading to the loss of some nuances present in the individual data

once aggregated.

We argue that our “Single Agent Taking Aggregate Action” approach com-

bines the strengths of the two other approaches, namely the ability to scale

like MARL and the simplicity of training and deploying a single agent like

“Single Agent Taking Individual Action”. At the same time, it offers some ad-

ditional benefits, such as being able to incorporate coupling constraints during

disaggregation. A summary of the strengths and weaknesses of each approach

is provided in Table 2.1.

2.2.1 Incorporating Constraints in RL

Learning policies that are guaranteed to produce actions within a safe or fea-

sible set is an active area of research. In 2019, OpenAI published a report
16



Multiple Agents Single Agent Taking
Individual Actions

Single Agent Taking
Aggregate Action

✓ Direct to set up
for multiple EVs.

✓ Agent has knowledge of
every EV’s features.

✓ Can handle arbitrary
amount of connected EVs.

✓ Potential for distributed
decision making.

✓ No need to design
(dis)aggregation methods.

✓ Disaggregation can be
designed for properties
like fairness.

× Difficult to incorporate
coupling constraints.

× Number of connected EVs is
limited by NN architecture.

× Need to design separate
(dis)aggregation methods.

× Increased complexity of
running multiple agents.

× Behaviour might change for
EVs in different output nodes.

× Some information may be
lost during aggregation.

Table 2.1: Comparison of different approaches.

benchmarking various RL methods for safety during exploration, i.e. while

training a policy [71]. They considered Lagrangian penalized [11] versions of

policy gradient methods, specifically Trust Region Policy Optimization [80]

and Proximal Policy Optimization [81], and Constrained Policy Optimiza-

tion (CPO) [3] – which sets to analytically include constraints at each policy

update. However, none of these methods satisfy our requirements as the La-

grangian approaches merely penalize the reward function without guarantees,

and large penalty factors may sacrifice optimality. Moreover, the CPO per-

forms poorly in the benchmarks [71] due to approximation errors.

We seek methods that ensure the satisfaction of hard constraints during

training and after deployment. To achieve this, we review architectures that

constrain the output of the neural network directly. Chen et al. [18] proposed

embedding a differentiable convex optimization layer [4] into the policy net-

work (as the last layer) to ensure that the action complies with the constraints

that form a convex set. Another approach uses the activation function in

the last layer to constrain the action to a predefined range, then the action

is projected to a sample-specific feasible set using a gauge function [15]. In

our work, we also use an activation function to limit the range of the output.

However, we use linear interpolation to deduce the action value between ag-

gregate bounds. We prefer this approach because it has lower computational

overhead than differentiable optimization layers and works well when there are
17



only simple range constraints for the action. Despite its simplicity, we warn

that linear interpolation of the action may be problematic when the upper and

lower bounds of the action change over time. This is because you may never

see a certain range for the action during training. This is one drawback of this

approach.

2.3 Monetary Incentives for V2G

There are various approaches for incentivizing private EV owners to partici-

pate in V2G. For instance, a mechanism is designed in [99] where an aggregator

dynamically changes the price to incentivize EVs to provide frequency regu-

lation service. In [103], a two-level reverse auction is used to achieve demand

response management in V2G systems.

We incentivize V2G using contract theory [76], which is concerned with de-

signing a set of contracts between two self-interested parties. These contracts

represent a commitment where one party agrees to pay the other upon success-

ful fulfillment of the terms of the contract. In our setting, a contract signifies

the VPP’s promise to pay a certain amount to EV owners for discharging a

specific amount of energy from their battery for an agreed period of time. The

study conducted in [41] surveys EV owners about their preferences regarding

their participation in V2G contracts. It inquires about parameters such as

monthly payoff, required connected time, guaranteed minimum battery level

and number of discharge cycles. Jember et al. [45] propose a two-tiered ap-

proach where the aggregator finds the optimal energy price through a game

theoretic approach, and subsequently provides V2G contracts to motivate EV

owners to participate. But the aggregator’s interactions with the electricity

markets are not studied in that work. To design V2G contracts without any

prior knowledge of the EV owners’ willingness to participate, Gao et al. [33]

develop an algorithm that learns the optimal unit price based on its ongoing

interactions with EVs. We base our formulation of contracts on [70], where

the authors design fixed-term contracts that specify the maximum discharge

energy that is allowed and the corresponding payoff. In Chapter 3, we extend
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this formulation to design variable-term contracts. This requires considering

two dimensions for the EV owner type. As a result, more of the owners’ pref-

erences are captured in the resulting contracts. Multidimensional contracts

have been studied in diverse areas, such as mobile networks [100], federated

learning [55], and radio communications [16].

2.4 Summary

In this chapter, we explored the relevant literature to highlight the novelty

of our work, and compared our approach with the approaches taken in the

literature to address a similar problem. In the next chapters, we will present

our methodology, providing detailed explanations, and present empirical vali-

dation of our ideas.

19



Chapter 3

Contract Design

In this chapter, we focus on designing variable-term contracts aimed at in-

centivizing private EV owners to let the VPP control their charging to take

advantage of their bidirectional flexibility. We adopt the principal-agent model

from contract theory [13] to design V2G contracts. According to this model,

the VPP (principal) offers a set of V2G contracts to EV owners (agents) who

decide to accept one of them or opt out based on their private information

that determines their type. This relationship is shown in Figure 3.1.

We start by delineating the two-dimensional types employed to categorize

EV owners. Then, we will define the contracts as a 3-tuple found by solving

an optimization problem. This optimization involves defining utility functions

for the agents, parameterized by their type, and another one for the VPP.

Subsequently, we present the optimization problem to maximize the expected

utility of the VPP, noting that the number of constraints can grow rapidly. We

then look at how to simplify the constraints without altering the solution of the

optimization problem, justifying this process with a proof. We will empirically

compare the performance of the simplified version against the original version

of the optimization problem. Finally, we will solve the optimization problem

to derive the contract values, which will be visualized and analyzed to ensure

they comply with their desired properties.

Two-dimensional Types We assume that the agent type is two-dimensional.

The first dimension, called energy type, indicates how much they are willing to

discharge their vehicle battery. This mainly depends on how they perceive the
20



battery degradation cost which could be influenced by various factors, from

the characteristics of their vehicle battery and the difficulty of replacing it to

the climate in which they live. We assume the energy type can take a finite

number of values that belong to Θw = {θw1 , . . . , θwI }. Note that the types are

listed in ascending order, e.g. θw1 < θw2 . The second dimension, called persis-

tence type, indicates how long they are willing to allow their vehicle battery to

be discharged. This depends on how they perceive the cost of staying longer or

idling at the charging station. We assume the persistence type can take a finite

number of values that belong to Θℓ = {θℓ1, . . . , θℓJ}, also in ascending order.

The VPP operator does not know the type of a specific EV since it depends on

their private information. This condition is known as information asymmetry.

However, it knows the probability distribution over the two-dimensional types,

i.e. it knows that an arbitrary EV may be of type (θwi , θ
ℓ
j) with probability

ρi,j; (
∑

i,j ρi,j=1).

Figure 3.1: Principal-Agent Model

Contract Definition A variable-term V2G contract is characterized by a

3-tuple (gi,j, wi, ℓj), indicating respectively the payoff to agent (in €), the

maximum amount of energy that can be discharged from their vehicle battery

(in kWh), and the contract duration (in hours). If this contract is accepted,

the VPP can withdraw up to wi kWh from the vehicle battery during the

first ℓj hours after accepting the contract. We seek contracts that possess

two properties: individual rationality (IR) and incentive compatibility (IC).

Individual rationality means that an EV owner will only accept a contract if

it provides non-negative utility, that is, the payoff gi,j is enough to outweigh
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the perceived battery degradation and idling costs. Incentive compatibility

guarantees that an EV gains the highest utility by choosing the contract that

was specifically designed for its type. This way the contracts will be self-

revealing [76], addressing the information asymmetry between the principal

and agents.

Agent’s Utility The utility of an EV owner that accepts V2G contract

(gi,j, wi, ℓj) is defined as:

UEV = gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
(3.1)

where gi,j is the payoff for accepting the contract and the next two terms are the

cost incurred by discharging wi from the vehicle battery over a set duration of

ℓj. The coefficient c1 represents the actual battery degradation cost measured

in €/kWh. This is multiplied by the amount of discharged energy wi and

gets divided by θwi , implying that this cost will be higher for lower energy

types. Similarly, c2 represents the cost of having the vehicle battery available

for discharge for the first ℓj hours of the charging session, measured in €/hr.

This is multiplied by the contract duration ℓj and gets divided by θℓj, implying

that this cost will be higher for lower persistence types. As θwi and θℓj appear

in the denominator, higher values indicate that the EV owner is more willing

to participate.

Principal’s Utility The utility function for the VPP is defined as:

UV PP =
I∑

i=1

J∑
j=1

ρi,j(κ1 log(wi + 1) + κ2 log(ℓj + 1)− gi,j). (3.2)

This is the VPP’s expected utility, as it shows the sum of utilities over the EV

types multiplied by their probability. For each EV type, the VPP appraises

the amount of energy withdrawn from the battery (wi) as well as the time

window during which it can be used (ℓj). As the VPP is risk-averse, these two

values are inside the concave log function. The relative importance of these

two terms can be adjusted by tuning hyper-parameters κ1 and κ2. Finally, the
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payoff gi,j for each type must be subtracted as this corresponds to the money

that will be transferred to the EV owner.

Optimal Contract Mechanism The variable-term V2G contracts that will

be offered by the VPP are the solution to an optimization problem that maxi-

mizes its expected utility. We overload the notation for sets Θw and Θℓ to also

denote the corresponding index sets, so we can write i ∈ Θw, and j ∈ Θℓ.

maximize
{(gi,j ,wi,ℓj)}

i=1,...,I; j=1,...,J

UV PP (3.3)

subject to:

(IR) gi,j−
c1 · wi

θwi
−c2 · ℓj

θℓj
≥ 0; ∀(i, j) ∈ Θw ×Θℓ

(IC) gi,j−
c1 · wi

θwi
−c2 · ℓj

θℓj
≥ gi′,j′−

c1 · wi′

θwi
−c2 · ℓj′

θℓj
;

∀i, i′ ∈ Θw, ∀j, j′ ∈ Θℓ; i ̸= i′ ∨ j ̸= j′

(PC) wI ≤ αd · ℓJ

(MO)

(w(·)) 0 ≤ w1 ≤ w2 ≤ · · · ≤ wI

(ℓ(·)) 0 ≤ ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓJ

(g(i,·)) 0 ≤ gi,1 ≤ gi,2 ≤ · · · ≤ gi,J ∀i ∈ Θw

(g(·,j)) 0 ≤ g1,j ≤ g2,j ≤ · · · ≤ gI,j ∀j ∈ Θℓ

(g(·,·)) gi,j ≤ gi′,j′ ; ∀(i, j), (i′, j′) ∈ Θw ×Θℓ; i ≤ i′ ∧ j ≤ j′

The first constraint in Problem (3.3), (IR), ensures that for every type

(i, j) ∈ Θw ×Θℓ, the contract offers non-negative utility. The second con-

straint, (IC), ensures that an EV owner of type (θwi , θ
ℓ
j) gets lower utility from

accepting contract (gi′,j′ , wi′ , ℓj′) than contract (gi,j, wi, ℓj) where i ̸= i′ or
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j ̸= j′. The third constraint, (PC), reflects the physical constraint of bidirec-

tional chargers. It ensures that the maximum discharge energy wI is less than

or equal to the charger’s rated discharge power αd (measured in kWh) multi-

plied by the maximum contract duration ℓJ . Thus, the VPP can effectively

discharge wI while the contract remains active. The last group of constraints,

(MO), ensures the monotonicity of each contract parameter.

3.1 Simplifying V2G Contracts

The number of constraints in Problem (3.3) is of O((I × J)2). This is partic-

ularly because of constraint (IC), which compares every type against every

other type. By extending the proofs in a manner similar to [70] with methods

used in multidimensional auctions [56], this problem can be simplified to have

O(I × J) constraints. Both formulations will still have the same number of

decision variables, namely I + J + I × J . However, the smaller number of

constraints will result in faster solve times.

3.1.1 Preliminaries

For this simplification, let us first define a shorthand to express the EV’s utility

in Eqn. (3.1), but separating the contract parameters from the owner’s true

type.

VEV ( θwi′ , θ
ℓ
j′ ;︸ ︷︷ ︸

Contract params.

θwi , θ
ℓ
j︸ ︷︷ ︸

True types

) = gi′,j′ −
c1 · wi′

θwi
− c2 · ℓj′

θℓj
(3.4)

Note how the contract parameters (gi′,j′ , wi′ , ℓj′) have different indices than the

true types (θwi , θ
ℓ
j) on the right hand side of Eqn. (3.4) Now, we can express

individual rationality (IR) as:

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ 0 ∀i× j ∈ Θw ×Θℓ

Similarly, incentive compatibility (IC) can be expressed as:

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV (θ

w
i′ , θ

ℓ
j′ ; θ

w
i , θ

ℓ
j); ∀θwi , θwi′ ∈ Θw,∀θℓj, θℓj′ ∈ Θℓ
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As we know, the (IC) constraints relate every type to every other type. We

categorize these constraints into the following groups in order to talk precisely

about these relationships.

• Vertical IC Constraints: For i ̸= i′ ∧ j = j′

• Horizontal IC Constraints: For i = i′ ∧ j ̸= j′

• Other IC Constraints: For i ̸= i′ ∧ j ̸= j′

• Downward IC Constraints (DIC): For i > i′ ∨ j > j′

• Upward IC Constraints (UIC): For i < i′ ∨ j < j′

• Local IC Constraints: When |i− i′| = 1 ∨ |j − j′| = 1

(θwi , θ
ℓ
j) (θwi , θ

ℓ
j+n)

(θwi+m, θ
ℓ
j) (θwi+m, θ

ℓ
j+n)

ODIC
OUICVUIC VDIC

HUIC

HDIC

Figure 3.2: Relationships between IC constraints

Furthermore, these categories of IC constraints can be combined in such

a way that a Vertical Downward IC is VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV ( θ

w
i′ , θ

ℓ
j; θ

w
i , θ

ℓ
j)

where i > i′. Another example is a Horizontal Local Upward IC: VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥

VEV (θ
w
i , θ

ℓ
j+1 ; θ

w
i , θ

ℓ
j). This nomenclature will be used throughout the remain-

der of this chapter. Additionally, as a shorthand of two-dimensional types we

define θw,ℓ
i,j = (θwi , θ

ℓ
j) and Θw,ℓ = Θw ×Θℓ, such that θw,ℓ

i,j ∈ Θw,ℓ.
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3.1.2 Simplified Problem

The simplified problem is presented here as Problem (3.5). The first constraint

(C1) sets the utility to zero for the first type of EV owner (θw1 , θ
ℓ
1). Then,

constraint (C2) only deals with Vertical Local Downward IC’s, and (C3) deals

with Horizontal Local Downward IC’s. Note that these constraints are taken

to be binding, that is, the “less or equals” sign is substituted by an “equals”

sign. Notice that all of the monotonicity constraints are omitted. Lastly, the

physical constraint (PC) remains unchanged.

maximize
{(gi,j ,wi,ℓj)}

i=1,...,I; j=1,...,J

UV PP (3.5)

subject to:

(C1) g1,1 −
c1 · w1

θw1
− c2 · ℓ1

θℓ1
= 0

(C2) gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
= gi−1,j −

c1 · wi−1

θwi
− c2 · ℓj

θℓj
;

∀i ∈ Θw \ {1}, ∀j ∈ Θℓ

(C3) gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
= gi,j−1 −

c1 · wi

θwi
− c2 · ℓj−1

θℓj
;

∀i ∈ Θw, ∀j ∈ Θℓ \ {1}

(PC) wI ≤ αd · ℓJ

3.1.3 Proof of Equivalence

This proof is structured as a series of lemmas that simplify certain aspects

of the constraints. After all the lemmas are presented, they will be strung

together to form the final proof that Problems (3.3) and (3.5) are equivalent.

Lemma 3.1.1. At the solution, the IR constraint is active for the lowest type,

(θw1 , θ
ℓ
1). Further, the IR constraints for higher types can be derived from the

IC constraints.
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Proof. Take {(gi,j, wi, ℓj)}i=1,...,I; j=1,...,J to be a feasible point for the optimiza-

tion problem, and {(g∗i,j, w∗
i , ℓ

∗
j)}i=1,...,I; j=1,...,J to be its solution. We know that

every feasible point satisfies the IC constraints, therefore:

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV (θ

w
1 , θ

ℓ
1; θ

w
i , θ

ℓ
j) (3.6)

Now, if contract {(g1,1, w1, ℓ1)} is offered to both type (θw1 , θℓ1) and type (θwi , θℓj),

with i, j > 1. The owner of latter type will gain higher utility since (θw1 , θ
ℓ
1) ⪯

(θwi , θ
ℓ
j), because these variables appear in the denominator, and we have

c1, w1, c2, ℓ1 ≥ 0. Therefore:

g1,1 −
c1 · w1

θwi
− c2 · ℓ1

θℓj
≥ g1,1 −

c1 · w1

θw1
− c2 · ℓ1

θℓ1

=⇒ VEV (θ
w
1 , θ

ℓ
1; θ

w
i , θ

ℓ
j) ≥ VEV (θ

w
1 , θ

ℓ
1; θ

w
1 , θ

ℓ
1)

Combining this with (3.6) and the IR constraint for type (θw1 , θℓ1) we have that:

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV (θ

w
1 , θ

ℓ
1; θ

w
i , θ

ℓ
j) ≥ VEV (θ

w
1 , θ

ℓ
1; θ

w
1 , θ

ℓ
1) ≥ 0

Thus, given the IC constraints, the IR constraints for higher types are natu-

rally satisfied for every feasible point in Problem (3.3).

Next, we establish by contradiction that the IR constraint for the lowest

type, (θw1 , θℓ1), is binding at the solution. First, suppose that the IR constraint

is not binding, then it would stand that:

VEV (θ
w
1 , θ

ℓ
1; θ

w
1 , θ

ℓ
1) > 0

=⇒ g∗1,1 −
c1 · w∗

1

θw1
− c2 · ℓ∗1

θℓ1
> 0

Next, consider a new contract (g′1,1, w
∗
i , ℓ

∗
j), such that g′1,1 = g∗1,1 − ϵ where

0 < ϵ ≤ g∗1,1 − (c1 · w∗
1)/θ

w
1 − (c2 · ℓ∗1)/θℓ1. Then the utility for that user would

be:

g′1,1 −
c1 · w∗

1

θw1
− c2 · ℓ∗1

θℓ1
= (g∗1,1 − ϵ)− c1 · w∗

1

θw1
− c2 · ℓ∗1

θℓ1
=⇒ VEV (θ

w
1 , θ

ℓ
1; θ

w
1 , θ

ℓ
1)− ϵ > 0

Since the new contract, {(g′1,1, w∗
1, ℓ

∗
1)}, satisfies the IR as well as the rest of

constraints, and it increases the expected utility of the VPP as g′1,1 < g∗1,1,
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then it follows that {(g∗1,1, w∗
1, ℓ

∗
1)}i=1,...,I; j=1,...,J cannot be the solution. So, by

contradiction, it is proved that the IR constraint for type (θw1 , θ
ℓ
1) is binding.

Lemma 3.1.2. All “other” monotonicity constraints in (g(·,·)) can be derived

from vertical (g(·,j)) and horizontal (g(i,·)) monotonicity constraints for g.

Proof. Take an instance of gi,j and gi+m,j+n where i ≤ i+m ∧ j ≤ j + n. We

can simply follow the vertical monotonicity constraints in order to find that

gi,j ≤ gi+m,j. From there, we follow the horizontal monotonicity constraints

to find that gi+m,j ≤ gi+m,j+n. From transitivity, it follows that gi,j ≤ gi+m,j+n

without explicitly employing the “other” monotonicty constraints.

Lemma 3.1.3. Given the vertical and horizontal IC constraints, monotonicity

in g(·,j) follows from monotonicity in w(·), and monotonicity in g(i,·) follows

from monotonicity in ℓ(·). Therefore, we only need to keep monotonicity in

w(·) and ℓ(·).

Proof. We begin by showing that if wi ≥ wi′ then gi,j ≥ gi′,j′ . For this, we

take the vertical IC constraint for some type (θwi , θ
ℓ
j) ∈ Θw ×Θℓ.

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV ( θ

w
i′ , θ

ℓ
j; θ

w
i , θ

ℓ
j)

=⇒ gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
≥ gi′,j −

c1 · wi′

θwi
− c2 · ℓj

θℓj

=⇒ gi,j −
c1 · wi

θwi
≥ gi′,j −

c1 · wi′

θwi

=⇒ gi,j − gi′,j ≥
c1 · (wi − wi′)

θwi

From this inequality we can observe that if wi ≥ wi′ then the right side of

the inequality must be positive. Hence, the left side must be positive too, so

gi,j ≥ gi′,j.

The second part of this proof is to show that if ℓj ≥ ℓj′ then gi,j ≥ gi,j′ . In
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this case, we take the horizontal IC constraint:

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV (θ

w
i , θ

ℓ
j′ ; θ

w
i , θ

ℓ
j)

=⇒ gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
≥ gi,j′ −

c1 · wi

θwi
−

c2 · ℓj′
θℓj

=⇒ gi,j −
c2 · ℓj
θℓj
≥ gi,j′ −

c2 · ℓ′j
θℓj

=⇒ gi,j − gi,j′ ≥
c2 · (ℓj − ℓj′)

θℓj

As before, we can see from this inequality that if ℓj ≥ ℓj′ then the right side

of the inequality is positive. Then, the left side is also positive, such that

gi,j ≥ gi,j′ .

Lemma 3.1.4. Given vertical IC constraints, we can derive monotonicity in

(w(·)) from monotonicity in θw. Additionally, given horizontal IC constraints,

we can derive monotonicity in (ℓ(·)) from monotonicity in θℓ.

Proof. Let us start by deriving monotonicity in w from monotonicity in θw. For

this, we consider two types (θwi , θwj ), (θwi+m, θ
ℓ
j) ∈ Θw×Θℓ, such that θwi < θwi+m.

We write and reorganize the vertical IC constraint for type (θwi+m, θ
ℓ
j) with

respect to type (θwi , θ
w
j ), like so:

VEV (θ
w
i+m, θ

ℓ
j; θ

w
i+m, θ

ℓ
j) ≥ VEV ( θ

w
i , θℓj; θ

w
i+m, θ

ℓ
j)

=⇒ gi+m,j −
c1 · wi+m

θwi+m

− c2 · ℓj
θℓj
≥ gi,j −

c1 · wi

θwi+m

− c2 · ℓj
θℓj

=⇒ gi+m,j − gi,j ≥
c1 · wi+m

θwi+m

− c1 · wi

θwi+m (3.7)

Subsequently, we write the vertical IC constraint for type (θwi , θwj ) with respect

to type (θwi+m, θ
ℓ
j) and reorganize in the same manner.

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV ( θ

w
i+m , θℓj; θ

w
i , θ

ℓ
j)

=⇒ gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
≥ gi+m,j −

c1 · wi+m

θwi
− c2 · ℓj

θℓj

=⇒ gi,j − gi+m,j ≥
c1 · wi

θwi
− c1 · wi+m

θwi (3.8)
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By adding Inequalities (3.7) and (3.8), we have that:

0 ≥ c1 · wi+m

θwi+m

− c1 · wi

θwi+m

+
c1 · wi

θwi
− c1 · wi+m

θwi

=⇒ 0 ≥ wi+m

θwi+m

− wi

θwi+m

+
wi

θwi
− wi+m

θwi
; Since c1 > 0

=⇒ 0 ≥ 1

θwi+m

· (wi+m − wi)−
1

θwi
· (wi+m − wi)

=⇒ 0 ≥
(

1

θwi+m

− 1

θwi

)
· (wi+m − wi)

(3.9)

Since we know that θwi+m > θwi then
(

1
θwi+m
− 1

θwi

)
< 0. Hence, (wi+m−wi) ≥ 0

in order for Inequality (3.9) to be satisfied. Thus, we have derived monotonic-

ity in (w(·)) from monotonicity in θw. A similar process can be followed to

derive monotonicity in (ℓ(·)) from monotonicity in θℓ by using horizontal IC

constraints. For conciseness, we skip these derivations.

Lemma 3.1.5. “Other” (non-vertical or non-horizontal) IC constraints, where

θwi ̸= θwi ∧ θℓj ̸= θℓj′, can be derived from vertical and horizontal ICs, where

θwi ̸= θwi′ XOR θℓj ̸= θℓj′.

Proof. We start by considering three types: (θwi , θ
ℓ
j), (θ

w
i′ , θ

ℓ
j), (θ

w
i′ , θ

ℓ
j′) ∈ Θw ×

Θℓ. Note that in this proof we do not make any assumption about the rela-

tionship between i and i′, or j and j′. We will follow the vertical IC constraint

(θwi , θ
ℓ
j) → (θwi′ , θ

ℓ
j) and the horizontal IC constraint (θwi′ , θ

ℓ
j) → (θwi′ , θ

ℓ
j′) to

arrive to the “other” IC constraint (θwi , θ
ℓ
j)→ (θwi′ , θ

ℓ
j′).

We start by writing the vertical IC constraint (θwi , θ
ℓ
j) → (θwi′ , θ

ℓ
j), and

reorganizing it:

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV ( θ

w
i′ , θ

ℓ
j; θ

w
i , θ

ℓ
j)

=⇒ gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
≥ gi′,j −

c1 · wi′

θwi
− c2 · ℓj

θℓj

=⇒ gi,j − gi′,j ≥
c1
θwi

(wi − wi′) (3.10)

Then we write the horizontal IC constraint for (θwi′ , θ
ℓ
j) → (θwi′ , θ

ℓ
j′), and reor-

ganize:
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VEV (θ
w
i′ , θ

ℓ
j; θ

w
i′ , θ

ℓ
j) ≥ VEV (θ

w
i′ , θ

ℓ
j′ ; θ

w
i′ , θ

ℓ
j)

=⇒ gi′,j −
c1 · wi′

θwi′
− c2 · ℓj

θℓj
≥ gi′,j′ −

c1 · wi′

θwi′
− c2 · ℓj′

θℓj

=⇒ gi′,j − gi′,j′ ≥
c2
θℓj
(ℓj − ℓj′) (3.11)

We then add Inequalities (3.10) and (3.11) and reorginize them in order to

construct an “other” IC constraint, like so:

gi,j − gi′,j′ ≥
c1
θwi

(wi − wi′) +
c2
θℓj
(ℓj − ℓj′)

=⇒ gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
≥ gi′,j′ −

c1 · wi′

θwi
− c2 · ℓj′

θℓj

=⇒ VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV (θ

w
i′ , θ

ℓ
j′ ; θ

w
i , θ

ℓ
j)

Therefore, we have shown that all “other” IC constraints are redundant since

we can derive them from vertical and horizontal IC constraints.

Lemma 3.1.6. The vertical and horizontal DICs and UICs can be derived

from Local DICs (LDICs) and Local UICs (LUICs) respectively.

Proof. For the vertical case consider three types of owners:

(θwi−1, θ
ℓ
j), (θ

w
i , θ

ℓ
j), (θ

w
i+1, θ

ℓ
j); with θwi−1 < θwi < θwi+1.

Step 1. First consider the vertical LDIC of type (θwi , θ
ℓ
j), expressed as:

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV ( θ

w
i−1 , θ

ℓ
j; θ

w
i , θ

ℓ
j)

=⇒ gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
≥ gi−1,j −

c1 · wi−1

θwi
− c2 · ℓj

θℓj

=⇒ gi,j −
c1 · wi

θwi
≥ gi−1,j −

c1 · wi−1

θwi

=⇒ gi,j − gi−1,j ≥
c1 · (wi − wi−1)

θwi

Now, since θwi+1 > θwi we can write the following:
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gi,j − gi−1,j ≥
c1 · (wi − wi−1)

θwi+1

This can be reorganized as:

gi,j −
c1 · wi

θwi+1

≥ gi−1,j −
c1 · wi−1

θwi+1

=⇒ gi,j −
c1 · wi

θwi+1

− c2 · ℓj
θℓj
≥ gi−1,j −

c1 · wi−1

θwi+1

− c2 · ℓj
θℓj

=⇒ VEV (θ
w
i , θ

ℓ
j, θ

w
i+1, θ

ℓ
j) ≥ VEV (θ

w
i−1, θ

ℓ
j, θ

w
i+1, θ

ℓ
j)

Next, let us write the LDIC constraint for the EV owner type (θwi+1, θ
ℓ
j):

VEV (θ
w
i+1, θ

ℓ
j; θ

w
i+1, θ

ℓ
j) ≥ VEV ( θ

w
i , θℓj; θ

w
i+1, θ

ℓ
j)

We can combine the two previous inequalities to get a non-local Downward

Incentive Constraint, as such:

VEV (θ
w
i+1, θ

ℓ
j; θ

w
i+1, θ

ℓ
j) ≥ VEV (θ

w
i−1, θ

ℓ
j; θ

w
i+1, θ

ℓ
j) (3.12)

Therefore, we can employ the same approach for any type θwi , with a constant

θℓj, to show that if its vertical Local DIC is satisfied, then the rest of vertical

DICs will be satisfied as well.

Step 2. Next, we prove that vertical UICs can be derived from LUICs. To

start, take the LUIC for an EV owner of type (θwi , θ
ℓ
j):

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV ( θ

w
i+1 , θ

ℓ
j; θ

w
i , θ

ℓ
j)

=⇒ gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
≥ gi+1,j −

c1 · wi+1

θwi
− c2 · ℓj

θℓj

=⇒ gi,j −
c1 · wi

θwi
≥ gi+1,j −

c1 · wi+1

θwi

=⇒ gi+1,j − gi,j ≤
c1 · (wi+1 − wi)

θwi

As θi > θi−1 and wi+1 ≥ wi, we can say that:

gi+1,j − gi,j ≤
c1 · (wi+1 − wi)

θwi−1
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Then, we reorganize the inequality as such:

gi+1,j −
c1 · wi+1

θwi−1

≤ gi,j −
c1 · wi

θwi−1

=⇒ gi+1,j −
c1 · wi+1

θwi−1

− c2 · ℓj
θℓj
≤ gi,j −

c1 · wi

θwi−1

− c2 · ℓj
θℓj

=⇒ VEV (θ
w
i , θ

ℓ
j; θ

w
i−1, θ

ℓ
j) ≥ VEV (θ

w
i+1, θ

ℓ
j; θ

w
i−1, θ

ℓ
j)

As before, let us write the LUIC constraint for type (θwi−1, θ
ℓ
j)

VEV (θ
w
i−1, θ

ℓ
j; θ

w
i−1, θ

ℓ
j) ≥ VEV ( θ

w
i , θℓj; θ

w
i−1, θ

ℓ
j)

If we combine the two previous inequalities, we obtain a non-local Upward

Incentive Constraint:

VEV (θ
w
i−1, θ

ℓ
j; θ

w
i−1, θ

ℓ
j) ≥ VEV (θ

w
i+1, θ

ℓ
j; θ

w
i−1, θ

ℓ
j) (3.13)

Parallel to the reasoning in the previous step, we can make use of the same

approach for each type θwi , with a constant θℓj, to prove that if its vertical

LUIC is satisfied then the rest of vertical UICs will be satisfied too.

Furthermore, we can repeat Steps 1 and 2 for constant type θwi and vari-

able type θℓj, e.g. (θwi , θ
ℓ
j−1), (θ

w
i , θ

ℓ
j), (θ

w
i , θ

ℓ
j+1); with θℓj−1 < θℓj < θℓj+1. Then

we can prove that horizontal DICs and UICs can be derived from horizontal

LDICs and LUICs, respectively. For conciseness, we skip that analysis as it is

almost identical to that of vertical ICs.

Lemma 3.1.7. Vertical and horizontal LDICs are active (binding) at the so-

lution.

Proof. Firstly, we denote the solution as {(g∗i,j, w∗
i , ℓ

∗
j)}i=1,...,I; j=1,...,J , and then

proceed to prove this by contradiction for the vertical LDICs. Suppose that

for type (θwi , θ
ℓ
j) the vertical LDIC is not active. This would be written as:

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) > VEV ( θ

w
i−1 , θ

ℓ
j; θ

w
i , θ

ℓ
j)

=⇒ g∗i,j −
c1 · w∗

i

θwi
−

c2 · ℓ∗j
θℓj

> g∗i−1,j −
c1 · w∗

i−1

θwi
−

c2 · ℓ∗j
θℓj

(3.14)
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Then, we introduce (g′i,j, w
∗
i , ℓ

∗
j) as a replacement for (g∗i,j, w

∗
i , ℓ

∗
j), with g′i,j =

g∗i,j − ϵ such that ϵ > 0 and it is less than the difference between the two sides

of (3.14). This new contract will increase the VPP’s profit by lowering the

payoff to the EV owner while still satisfying (3.14). This is a contradiction

and thus (g∗i,j, w
∗
i , ℓ

∗
j) cannot be the solution. Therefore, vertical LDICs must

be active at the solution.

The same reasoning can be applied to the horizontal LDICs to prove how

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) ≥ VEV (θ

w
i , θ

ℓ
j−1 ; θ

w
i , θ

ℓ
j)

will be active at the solution.

Lemma 3.1.8. LUICs can be relaxed if LDICs are active.

Proof. First, we prove this for the vertical ICs. Take the binding vertical

LDIC for type (θwi , θ
ℓ
j):

VEV (θ
w
i , θ

ℓ
j; θ

w
i , θ

ℓ
j) = VEV ( θ

w
i−1 , θ

ℓ
j; θ

w
i , θ

ℓ
j)

=⇒ gi,j −
c1 · wi

θwi
− c2 · ℓj

θℓj
= gi−1,j −

c1 · wi−1

θwi
− c2 · ℓj

θℓj

=⇒ gi,j −
c1 · wi

θwi
= gi−1,j −

c1 · wi−1

θwi

=⇒ gi,j − gi−1,j =
c1 · (wi − wi−1)

θwi

Because we know that θwi−1 < θwi , then we can substitute and rearrange such

that:

c1 · (wi − wi−j)

θwi−1

≥ gi,j − gi−1,j

=⇒ gi−1,j −
c1 · wi−1

θwi−1

≥ gi,j −
c1 · wi

θwi−1

=⇒ gi−1,j −
c1 · wi−1

θwi−1

− c2 · ℓj
θℓj
≥ gi,j −

c1 · wi

θwi−1

− c2 · ℓj
θℓj

=⇒ VEV (θ
w
i−1, θ

ℓ
j; θ

w
i−1, θ

ℓ
j) ≥ VEV (θ

w
i , θ

ℓ
j; θ

w
i−1, θ

ℓ
j)
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This is a vertical LUIC. Using a similar approach we can prove how vertical

LUICs for different types can be derived from vertical LDICs when they are

binding.

Moreover, we can follow the same steps to show how horizontal LUICs can

be derived from horizontal LDICs.

Theorem 3.1.9. Problem (3.3) and Problem (3.5) are equivalent

Proof. For this we make use of the previous lemmas and go through a series

of steps as follows:

1. Use Lemma 3.1.1 to replace (IR) with (C1).

2. Then omit monotonicity for (g(·,·)), as a result of Lemma 3.1.2.

3. With the help of Lemma 3.1.3, remove monotonicity for (g(·,j)) and (g(i,·)).

4. Lemma 3.1.4, leads to removing monotonicity for (w(·)) and ℓ(·).

5. Remove all “other” ICs and just keep the vertical and horizontal with

Lemma 3.1.5.

6. All UICs and DICs can be reduced to LUICs and LDICs by using

Lemma 3.1.6.

7. Change LDICS to an equality since they will be binding because of

Lemma 3.1.7, these are separated into vertical (C2) and horizontal (C3).

8. Because of Lemma 3.1.8, remove LUICs.

Thus, we have proven that Problem (3.3) and Problem (3.5) are equivalent.

Figure 3.3 shows the solver runtime for varying numbers of types, I × J of

Problem (3.3) and (3.5), non-tractable and tractable formulations. Results

are averaged over 5 runs and the error bars indicate the standard deviation.

Both x and y axes follow a linear scale. Notice how the tractable formulation

shows dramatically lower computation time as the number of types increases.
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Figure 3.3: Solver runtime for a varying number of types. Plot (a) shows the
comparison between the non-tractable and tractable formulations, while plot
(b) shows the detail for the tractable case.

3.2 Optimal V2G Contracts

We solve the optimization problem with κ1=0.4, κ2=0.6, c1=0.01 €/kWh, and

c2=0.05 €/hr. These parameters are chosen based on medium-term predic-

tions of battery prices [35] and an analysis of rates in the electricity market

similar to [70]. For the EV owner types, we are interested in three cases

for each dimension, representing individuals that have low, average, and high

value functions: Θw
i =Θℓ

j={0.75, 1, 1.25}. This results in 9 distinct types. We

assume a uniform distribution of types and set ρi,j=1/9 for all i and j values.
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Figure 3.4: Visualizing the resulting contracts

We obtain the variable-term contracts that are shown in Tbl. 3.1.

ℓ1 = 5 ℓ2 = 9 ℓ3 = 14

w1 = 19.01 g1,1 = 0.59 g1,2 = 0.79 g1,3 = 0.99

w2 = 32.33 g2,1 = 0.72 g2,2 = 0.92 g2,3 = 1.12

w3 = 49.00 g3,1 = 0.85 g3,2 = 1.05 g3,3 = 1.25

Table 3.1: Pivot table of the contract values. Row headers indicate the amount
of discharge energy in kWh, column headers indicate the contract duration in
hours. The value in each cell is the payoff in €.

Figure 3.4 visualizes the values in Table 3.1. First, subplot (a) shows

the contract duration vs. the discharge energy. All of the plotted contracts

are below the shaded gray area because of the physical constraint (PC). Also,

note how they are not equally spaced. Since the VPP is risk-averse, and values

energy and duration logarithmically, recall Eqn. (3.2), the gap between w2 and

w3 is larger than the one between w1 and w2. A similar observation can be
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made about the payoffs in subplots (b) and (c). Looking closely at a group

of three points on either of these subplots, we can see that the payoff does

not increase linearly with the amount of resources offered by the EV. Instead,

its slope decreases slightly. Again, this is because of the choice of the VPP’s

utility function. Lastly, subplot (d) shows a 3D barplot of the values of the

contracts.

Figure 3.5: EV utility from the perspective of different owner types

From Figure 3.5 we can observe the desired properties of individual ratio-

nality and incentive compatibility. This figure shows 9 subplots. Each subplot

is the point of view of a particular type of EV owner as indicated by the “True

θw” and “True θℓ” axis. Within each subplot, we observe the valuation of all

the feasible contracts, as seen by that type of EV owner. The value is given

by Eqn. (3.1). The contract designed for their specific type is enclosed by a

black rectangle. The property of individual rationality is confirmed, as the

value inside the black rectangle is non-negative in each of the subplots. Fur-

thermore, these contracts show incentive compatibility. This is because the

enclosed value is greater or equal to all other values inside that subplot.
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3.3 Summary

In this chapter, we developed variable-term V2G contracts tailored to EV

owners with two-dimensional types. Additionally, we introduced a simplified

optimization problem that drastically reduces the computational time required

for finding the solution. We then presented the V2G contracts that will be

used in the rest of this work, confirming their adherence to the properties of

individual rationality and incentive compatibility. In the next chapter, we will

explain the VPP’s approach to offering and managing the contracts, along-

side its participation in the real-time electricity market, and how the EVs get

(dis)charged while they are connected to the VPP.
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Chapter 4

Optimal VPP Operation

This chapter explains the VPP’s operation including processing arriving/de-

parting EVs, (dis)charging them, and trading their available flexibility in the

real-time market. We use a discrete-time model to optimize the VPP opera-

tion. This is motivated by the fact that the VPP participates in a real-time

market that has one-hour resolution. In each time step (hour), the proposed

algorithm goes through a loop that starts with receiving new arrivals and of-

fering them a subset of the variable-term V2G contracts, then scheduling their

charging based on the accepted contracts, stay times, energy demands, and

price forecasts. Finally, the required amount of energy will be traded in the

electricity market in that hour. This process is depicted in Fig. 4.1. In this

chapter, we will model the optimal flexibility trading without discussing ag-

gregation and disaggregation of flexibility of individual EVs. We will introduce

trading aggregate flexibility in the next chapter.

The rest of this chapter is organized as follows. Initially, we explain the

participation of the VPP in the real-time market. Subsequently, we delve into

the formulation of equations modeling the EV charging dynamics. Following

this, we outline the protocol through which the VPP offers V2G contracts and

EVs accept them. Lastly, we design an optimization problem that aims to

maximize the VPP’s profitability within the constraints dictated by contract

parameters and EV charging dynamics.
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Select a V2G contract or opt out

Price
predictions Flexibility trading

EVs arrive

Charging
complete

Repeat every
timestep

VPP

Disaggregate

Aggregate

Real-time scheduling

Figure 4.1: Overview of our methodology

4.1 Market Participation

The VPP is assumed to participate in an electricity market that runs once

every hour so that electricity can be traded in real-time and uses a single price

for buy and sell in each hour. The hourly price reflects market demand and

is treated as an exogenous random variable. We denote the next h+ 1 hourly

prices starting from hour t in vector form as pt:t+h = (pt, . . . , pt+h). Note that

every element of this vector is a random variable.

Although the trading strategy developed in this paper is suitable for par-

ticipation in a single-stage electricity market, it can be used as part of a

multi-stage optimization problem if the VPP participates in other electricity

markets, such as the day-ahead market [70].

4.2 EV Charging Dynamics

The VPP must charge EVs in a way that ensures their energy demand will be

satisfied by their specified deadline while abiding by the physical limitations of

charging equipment. This is referred to as a feasible charging schedule. Given
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the hourly timescale of the market, the VPP readjusts the (dis)charge power

of chargers every hour. We denote the set of EVs that are plugged in at time t

as Nt and the set of EVs that are plugged in and have accepted a V2G contract

as ND
t ⊆Nt. Hence, Nt \ ND

t contains all EVs that have opted out. An EV

n ∈ Nt arrives in the charging station at tnarr and departs at tndep. At any t

between the arrival and departure time, its remaining connection time is given

by τnt = tndep − t.

The amount of energy charged or discharged from each vehicle’s battery

at time t forms a vector yt = (y1t , . . . , y
|Nt|
t ). To apply charge and discharge

efficiencies, we divide each element ynt into a positive component (charged

energy), denoted ACn
t , and a negative component (discharged energy), denoted

ADn
t . We assume that all chargers are of the same type, with αc > 0 being their

maximum charge power and αd > 0 being their maximum discharge power.

Since the length of each timeslot is 1 hour, we reuse αc and αd to express

the maximum amount of energy (in kWh) that can be charged or discharged

from the battery in one timeslot. The constraints for EV charge and discharge

energy are given below:

ynt = ACn
t + ADn

t ∀n ∈ Nt (4.1a)

0 ≤ ACn
t ≤ αc ∀n ∈ Nt (4.1b)

ADn
t = 0 ∀n ∈ Nt \ ND

t (4.1c)

− αd ≤ ADn
t ≤ 0 ∀n ∈ ND

t (4.1d)

Note that all of these constraints are defined only at times when EV n is

connected to a charger, i.e. for t ∈ {tnarr, . . . , tndep}. We denote the energy

capacity of its battery as Bn and its SOC at time t as socnt . At tnarr, socnt

is initialized with the observed SOC at arrival, socnarr. For the schedule to

be feasible, by tndep, socnt must reach the SOC specified by the EV owner,

denoted as socndep. Furthermore, socnt must be maintained between minimum

and maximum levels, δmin and δmax, at all times. While connected, socnt is

calculated using a recursive formula after accounting for the energy charged

or discharged by the VPP and incorporating the battery charge and discharge

efficiencies, denoted as ηc and ηd respectively. We assume that the battery
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self-discharge is negligible at this timescale and can be ignored. The SOC

constraints are given below:

δmin ≤ socnt ≤ δmax ∀n ∈ Nt (4.2a)

socnt = socnarr when t = tnarr (4.2b)

socnt = socndep when t = tndep (4.2c)

socnt+1 = socnt +
ηcAC

n
t

Bn
+

ADn
t

ηd Bn
∀n ∈ Nt (4.2d)

Lastly, the accepted V2G contracts pose additional constraints on the charging

schedule. Let us use w̄n
t and ℓ̄nt to track the remaining energy that can be

discharged and the remaining time to discharge this energy from the battery

of the nth EV. If this EV refuses to accept a contract, i.e. n ∈ Nt \ ND
t , then

both w̄n
t and ℓ̄nt are set to zero. Recall that wi and ℓj are the initial parameters

of the V2G contract. Thus, when EV n arrives at tnarr and accepts contract

(gi,j, wi, ℓj), then we initialize w̄n
t = wi and ℓ̄nt = ℓj. It follows from these

definitions that every time the battery of this EV is discharged, we have to

update w̄n
t by subtracting the amount of energy that is discharged. Moreover,

ℓ̄nt is reduced by one in every timeslot regardless of whether the battery is

discharged. An EV can be discharged only if w̄n
t > 0 and ℓ̄nt > 0. If one of

them reaches zero, the EV is removed from ND
t and put into Nt \ ND

t , then

both w̄n
t and ℓnt are set to zero.

w̄n
t+1 = w̄n

t + ADn
t /ηd ∀n ∈ ND

t (4.3a)

ℓ̄nt+1 = ℓ̄nt − 1 ∀n ∈ ND
t (4.3b)

− ADn
t ≤ w̄n

t ηd ∀n ∈ ND
t (4.3c)

Note how the discharge efficiency ηd is taken into account in Eqn.(4.3c). This

is because the contract specifies how much energy can be withdrawn directly

from the battery. But due to discharge inefficiency, the VPP will receive

slightly less energy.

In summary, for EV n at time t, the variables that are updated at ev-

ery timestep are: (i) state-of-charge, socnt ; (ii) time left until departure, τnt ;

(iii) remaining energy available for discharge, w̄n
t ; (iv) remaining term of the

contract, ℓ̄nt .
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4.3 Pruning V2G Contracts

At the start of each timeslot t, the VPP receives the list of newly connected EVs

along with their battery capacity Bn, initial SOC socnarr, arrival time tnarr=t,

specified departure time tndep, and desired SOC at departure socndep. With this

information, the VPP calculates the laxity of each EV which is defined as the

difference between the time left until departure and the minimum amount of

time that is required to bring the battery SOC to their desired SOC. Calcu-

lating laxity is helpful because it must remain nonnegative at all times for the

charging schedule to be feasible [68].

laxn
t = τnt −

(socndep − socnt )B
n

αcηc
∀n ∈ Nt (4.4a)

laxn
t ≥ 0 ∀n ∈ Nt (4.4b)

We assume that EVs arrive with non-negative laxity, so initially there is at

least one feasible charging schedule. Note that the laxity at arrival can be

calculated by substituting tnarr for t in Eqn. (4.4a).

Once the laxity is calculated for each EV, the VPP offers a subset of V2G

contracts presented in Table 3.1 by pruning the V2G contracts that, if ac-

cepted, there will be no feasible charging schedule for the respective EV. To

find this subset, the VPP performs three entry checks: (i) The EV does not

depart before the contract term is over, tndep − tnarr ≥ ℓj. (ii) The energy

content of its battery at arrival is not less than the contract discharge en-

ergy, Bnsocnarr ≥ wi. (iii) The time required to discharge wi from the battery

and then charge it by the same amount does not exceed its laxity at arrival:

wi · ηd/αd + wi/(αc · ηc) ≤ laxn
tarr . A diagram explaining how contracts go

through these checks and are added to the menu is shown in Figure 4.2.

If there are no feasible contracts or none of them provides positive utility

to the EV owner, then they will opt out of V2G. In that case, their battery

is still charged to the desired SOC, and their laxity is used to offer flexibility,

which is less than the flexibility they could offer if they permitted bidirectional

charging. Otherwise, the EV owner will choose the contract that corresponds

to their type (θwi , θ
ℓ
j) ∈ Θw×Θℓ as the contracts are incentive compatible. If
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the contract designed specifically for their type is not feasible, the EV owner

will choose one with a lower discharge energy or a shorter term (whichever

maximizes their utility), as long as it is feasible and provides positive utility

as outlined in Eqn. (3.1).

Prune contract

Repeat for every contract in the set of optimal contracts

New arrival

VPP knows:

EV declares:

No

No

No

Yes

Yes

Yes

Opt out

...
Add

Menu of feasible contracts

Select a contract

Figure 4.2: A demonstration of how a VPP contract menu is constructed for
each EV.

4.4 Optimal VPP Scheduling

Once the set of newly arrived EVs that accepted a V2G contract is determined,

the VPP decides how much energy it should trade in in the real-time market by

solving an optimization problem to maximize its total profit by minimizing the

cost of trading in the market. Indeed, this problem is a stochastic optimization

problem due to the uncertainty of EV mobility and hourly prices. A fast and

robust approach to trading flexibility under uncertainty will be discussed in

the next section. For now, we assume perfect information about the future

and solve this problem in an offline fashion. This serves as a baseline enabling

us to quantify the optimality gap due to uncertainty in Chapter 6.

The cost of trading in the market depends on the net energy delivered to
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EVs in that timeslot:

yaggt =
∑
n∈Nt

ynt (4.5)

Note that yaggt would be negative if the amount of energy discharged from EVs

surpassed the amount of energy used to charge them.

Problem (4.6) finds the charging schedule that minimizes the cost of trading

in the market from the current time t∅ up to the next h hours. For the solution

to be the true optimal, the optimization horizon should be the maximum

departure time of all the cars currently connected. That is h = max(τnt , ∀n ∈

Nt). The cost is calculated by multiplying the predicted market price for

that hour by the net energy delivered to EVs in that hour, yaggt . For the

solution to be optimal, price predictions are assumed to be perfect. The main

optimization variable is a matrix containing the charging amount for every

currently connected EV n ∈ Nt∅ from the current time t∅ up to t∅ + h, that is

Yt∅:t∅+h =
[
yt∅ , . . . ,yt∅+h

]
, with each yt =

[
y1t , . . . , y

|Nt∅ |
t

]
. Note that ACt∅:t∅+h

and ADt∅:t∅+h are auxiliary variables that determine Yt∅:t∅+h.

minimize
Yt∅:t∅+h;ACt∅:t∅+h;ADt∅:t∅+h

t∅+h∑
t=t∅

p̂t · yaggt (4.6)

subject to:

Charging constraints Eqns. (4.1)

State-of-charge constraints Eqns. (4.2)

V2G contract constraints Eqns. (4.3)

Remark 4.4.1. In the above problem, we do not need a constraint to explicitly

prevent a battery from being charged and discharged at the same time, i.e.

forcing ACn
t AD

n
t = 0. Due to battery imperfections, such opposing actions

would waste energy and are therefore suboptimal.

Remark 4.4.2. Since there are no coupling constraints between EVs in Prob-

lem (4.6), the VPP does not need predictions for arrivals that will occur be-

tween t∅ and t∅ + h in order to find the optimal solution for the current time

t∅.
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Observe that in Problem (4.6), the objective function is linear and all con-

straints are affine. Thus, it is a linear program that can be solved in polyno-

mial time using interior point or simplex-based methods. Nevertheless, when

the VPP aggregates a large number of EVs and some of them remain con-

nected to a charger for an extended period of time, solving this problem with

noisy or perfect predictions takes a considerable amount of time because of the

optimization horizon and the number of decision variables and constraints.

Let us denote the solution of the above optimization problem as Y⋆
t∅:t∅+h.

The first row of this matrix, y⋆
t∅

, denotes the optimal decision that must be

implemented at t = t∅.

4.5 Summary

In this chapter, we explained the VPP’s participation in the market, its man-

agement of V2G contracts, and its approach to EV charging while ensuring

compliance with all the constraints. However, the optimization problem out-

lined here, Problem (4.6), exhibits two primary limitations. Firstly, it relies

on the assumption of perfect electricity price predictions, making it poten-

tially brittle to noisy forecasts, a common occurrence in real-world scenarios.

Secondly, the number of constraints depends on the number of connected EVs

at any given timestep, consequently prolonging the time needed to find the

solution. In the worst-case scenario, where a considerable number of EVs is

connected, the optimization problem might not be solved within the allotted

time resolution of 1 hour. To mitigate these challenges, the next chapter will

introduce a Reinforcement Learning agent capable of taking an aggregate ac-

tion within the region defined by aggregate constraints. We will derive the

aggregate constraints, detail how the agent takes an aggregate action, and

illustrate the transformation of this aggregate action into individual charg-

ing or discharging actions. We will keep Problem (4.6) as a baseline for our

experiments in Chapter 6 to evaluate these claims.
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Chapter 5

Trading Flexibility in Aggregate

In this chapter, we present our methodology for solving the stochastic opti-

mization problem presented in Chapter 4. Our goal is to design a scalable

and efficient algorithm for flexibility trading that does not rely on accurate

forecasts, and its running time does not change drastically as more EVs are

controlled by the VPP. Moreover, it should guarantee that there is a feasi-

ble charging schedule for all EVs regardless of whether they accepted a V2G

contract, and that EVs are treated fairly. To achieve this goal, we attempt

to trade flexibility in aggregate using an RL agent that, once trained, can be

quickly executed.

The proposed methodology has three steps which are shown inside the

dashed box in Fig. 4.1. First, we create an aggregate representation of the

state, denoted as saggt , by aggregating individual EVs into a virtual battery. In

this process, we also aggregate constraints defined for individual EVs to ensure

that the action taken for the virtual battery will not violate a constraint defined

for an EV. In the second step, we pass the aggregate state representation to

a safe RL agent that outputs an action to operate the virtual battery. This

action is denoted as yaggt and minimizes the expected cost of trading in the

market. Due to the way that we aggregate constraints and the design of our

RL agent, this action is guaranteed to satisfy constraints defined for individual

EVs after it is disaggregated to their respective actions. In the last step, we

disaggregate yaggt into (y1t , . . . , y
|Nt|
t ) by incorporating a fairness criterion.

In Figure 5.1, we illustrate the concepts of aggregation and disaggregation.
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Subplot (a) depicts the upper and lower bounds for the (dis)charging power

that each EV can receive at time t to maintain a feasible charging session.

These bounds are summed to create aggregate upper and lower bounds, labeled

as Agg. In subplot (b), we show the process of disaggregation. Initially, an

aggregate action, indicated by the grey bar, is taken within the aggregate

bounds. This action is then broken down into individual actions, represented

by the blue bars, ensuring each falls within its respective individual bounds.

The sum of these individual actions must match the aggregate action.

Figure 5.1: Illustration of aggregation and disaggregation schemes, shown in
subplots (a) and (b) respectively.

5.1 Aggregation

Aggregating the energy storage capacity of individual EVs into a virtual bat-

tery is essential for using a single-agent reinforcement learning framework for

real-time scheduling of flexibility, independent of the number of connected

EVs. The main challenge in learning an action for (dis)charging this virtual

battery is ensuring that it does not violate the feasibility requirement of indi-

vidual charging schedules. In this section, we show that this can be achieved

by carefully aggregating the constraints defined for the (dis)charge action of

each individual EV, i.e. ynt , in Problem (4.6). Specifically, we inspect the con-

straints defined for individual EVs and identify those that can be translated to

upper and lower bounds for ynt . This allows us to aggregate lower and upper
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bounds separately to obtain bounds for yaggt .

We first examine Eqn. (4.1b) which states that 0 ≤ ACn
t ≤ αc. Since we

know from Eqn. (4.1a) that ynt = ACn
t +ADn

t and that ACn
t and ADn

t cannot

be nonzero at the same time at the optimal point (see Remark 4.4.1), we can

rewrite (4.1b) as 0 ≤ ynt ≤ αc when the battery is charging. From this, we get

an upper bound on ynt :

ynt,upper1 = αc ∀n ∈ Nt (5.1)

Using the same arguments, we get a lower bound on ynt from combining

Eqns. (4.1c) and (4.1d):

ynt, lower1 = −αd n ∈ ND
t (5.2)

For EVs that accepted a V2G contract, Eqn. (4.3c) forces the VPP to respect

the discharge energy in the contract. This gives the following lower bound:

ynt, lower2 = −w̄n
t ηd n ∈ ND

t (5.3)

Next, we consider the SOC constraints in (4.2a) and (4.2d). By substitut-

ing (4.2d) in (4.2a) for the two cases where the battery charges and discharges,

we get an upper bound and a lower bound on ynt :

ynt,upper2 = Bn(δmax − socnt )/ηc ∀n ∈ Nt (5.4)

ynt,lower3 = Bnηd(δmin − socnt ) ∀n ∈ ND
t (5.5)

Finally, we turn our attention to constraints (4.4a) and (4.4b) which deal with

laxity. Notice that ynt should maintain the non-negativity of laxity in the next

step, as laxn
t+1 ≥ 0 indicates that it is possible for the SOC of this EV to reach

socndep by tndep. To get the definition of laxn
t+1, we write (4.4a) for t+1. We then

substitute (4.2d) in (4.4a) to relate laxity at t+1 to the action taken at t, and

replace τnt+1 with τnt −1. To obtain a lower bound for ynt , we set laxn
t+1 to zero.

Finally, we consider the two cases where ynt = ACn
t > 0 and ynt = ADn

t < 0

separately as the efficiencies are handled differently in Eqn. (4.2d). Solving

each case for ynt , we get Eqns. (5.5) and (5.6):

ynt,lower4 = Bn(socndep−socnt )/ηc−αc(τ
n
t −1) ∀n ∈ Nt (5.6)

ynt,lower5 = Bnηd(soc
n
dep−socnt )−αcηcηd(τ

n
t −1) ∀n ∈ ND

t (5.7)
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Now that we have all constraints posed on ynt , we can write the overall indi-

vidual upper and lower bounds as follows:

ynt, upper=min
(
ynt, upper1, y

n
t, upper2

)
∀n∈Nt

ynt, lower= ynt, lower4 ∀n∈Nt \ ND
t

ynt, lower=max
(
ynt, lower1, . . . , y

n
t, lower5

)
∀n∈ND

t

Finally, we get the upper (lower) bound for the action of the virtual battery,

yaggt , by aggregating the upper (lower) bounds of individual EVs:∑
n

ynt, lower ≤ yaggt ≤
∑
n

ynt, upper (5.8)

It follows from the above derivations that if the yaggt returned by the RL

policy satisfies (5.8), there exists a disaggregation of yaggt into (y1t , . . . , y
|Nt|
t )

such that every element of this vector satisfies the feasibility requirement of the

respective EV charging schedule. We denote the aggregate lower and upper

bounds in Eqn. (5.8) as yaggt, lower and yaggt, upper, respectively.

5.2 Soft Actor-Critic Reinforcement Learning

To schedule the charge and discharge of the virtual battery, we use the Soft

Actor-Critic (SAC) algorithm which trains a stochastic policy with entropy

regularization [37]. Our SAC agent, called Aggregate SAC, receives the aggre-

gate state representation (defined below) and outputs the (dis)charge action of

the virtual battery. This action determines the amount of energy that will be

traded in the market in real-time. The three main components of Aggregate

SAC are the actor, critic, and replay buffer, as shown in Fig. 5.2.

5.2.1 Aggregate State

To make the state of the SAC agent truly independent of the number of con-

nected EVs, we argue that the number of state variables (dimension of the

state space) and the scale of each state variable should be independent of

the number of connected EVs. This leads us to design an aggregate state
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representation denoted as sagg. Specifically, we take the average of features

characterizing individual EVs, such as SOC, upper and lower bounds of the

action, etc. Additionally, price predictions for the current time step and the

next h time steps, p̂t:t+h, and its discrete derivative, ∆p̂t:t+h/∆t, are included

in the state. Below, we provide the full list of state variables. All of these

variables are concatenated and the resulting 1D vector is fed to the agent.

Aggregate State Definition

The following features constitute the state of our RL agent. Firstly, we consider the
features that describe EVs:

• Average upper bound; 1
|Nt|

∑
n∈Nt

ynt, upper.

• Average lower bound; 1
|Nt|

∑
n∈Nt

ynt, lower/Nt.

• Average minimum power to maintain non-negative laxity; 1
|Nt|

∑
n∈Nt

ynt, lower4

• Average state of charge of the EVs; 1
|Nt|

∑
n∈Nt

socnt

• Average energy demand of the EVs.; 1
|Nt|

∑
n∈Nt

(
socndep − socnt

)
• Average remaining time connected of the EVs.; 1

|Nt|
∑

n∈Nt
τnt

• Average laxity of the EVs.; 1
|Nt|

∑
n∈Nt

laxnt

• Proportion of connected cars with contracts; |ND
t |/|Nt|;

• Average energy available for discharge in EVs with contracts; 1
|ND

t |
∑

n∈ND
t
w̄n
t

• Average remaining time of contracts; 1
|ND

t |
∑

n∈ND
t
l̄nt

Note that for the features normalized by Nt, if Nt = 0 then the feature is set
to 0. The same applies to the features normalized by ND

t . In addition to these
aggregate features, the agent also receives some additional features about the rest of
the environment:

• One-hot encoded hour of the day

• One-hot encoded day of the week

• Price predictions over the next h hours; p̂t:t+h. Experimentally, we used h = 8.

• Discrete derivative of the price predictions; ∆ p̂t:t+h

∆t

• Average slope of the price over the next h hours; 1
h−1

∑h−1
i=0 (p̂t+1+i − p̂t+i)
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5.2.2 Reward

The reward signal is defined as rt = −pt−1 · yaggt−1 which is the negated single-

step version of the objective function of Problem (4.6). As the SAC agent

maximizes the cumulative reward over an episode, the reward must be defined

as the negative transfer to the imbalance market at a single timeslot t. Note

that rt > 0 implies that the VPP receives money from trading in the market,

while rt < 0 implies that the VPP pays for the trade.

5.2.3 Actor and Critic Networks

The actor is a neural network that takes the aggregate state saggt , and producing

the mean and standard deviation, µt and σt, of a Gaussian distribution from

which a coefficient β̄t is sampled. We use the sigmoid activation function in

the last layer before outputting µt to ensure that this coefficient falls in the

range of [0, 1]. The sampled β̄t is then clipped between 0 and 1 to obtain the

final coefficient βt. Subsequently, βt is used for linear interpolation between

the upper and lower bounds, yaggt, upper and yaggt, lower respectively:

yaggt = βt · yaggt, upper + (1− βt) · yaggt, lower (5.9)

The resulting yaggt represents the total amount of energy that must be charged

or discharged from the virtual battery at t. This value is then passed to

the disaggregation algorithm described in Section 5.3) to determine individual

(dis)charging actions.

The other two components, the critic and replay buffer, play central roles

in the model-free RL algorithm outlined in [37]. Essentially, the SAC algo-

rithm seeks to find the policy that maximizes an objective function, combining

the accumulated expected reward and the entropy of the policy at any given

state. The entropy encourages the policy to act more randomly, promoting

exploration. The extent to which the entropy is considered is tuned by a

temperature term. The critic learns a value function, indicating the expected

reward of selecting an action at a given state. This helps to provide learning

updates to the actor to enhance the policy. In our implementation, tuples of
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state, action, reward, and next state are saved to the buffer, and subsequently

sampled to perform updates to the actor and the critic (labeled in Fig. 5.2 as

(saggi , β̄i, ri, s
agg
i+1)).

Agent

Environment

Actor 

Bounds

Aggregate

Disaggregate

Interp.Sample

Critic 

Buffer

Learning
updates

SAC

Clip

Learning
algorithm

Figure 5.2: Block diagram of the agent, Aggregate SAC.

5.3 Proportionally Fair Disaggregation

The VPP employs a disaggregation algorithm to compute yt = (y1t , . . . , y
|Nt|
t ),

which is a feasible charging schedule for individual EVs, given yaggt returned by

the RL agent. While there are various ways to disaggregate yaggt , we compute

yt by solving a convex optimization problem. In particular, we maximize the

sum of the logarithm of every EV owner’s utility function, where the utility

function of EV owner n is given by:

Un
t (y

n
t ) = ynt − ynt, lower + 1 (5.10)

This utility function is greater than or equal to 1 and increasing in ynt . We

wish to emphasize that this function is different from (3.1) and is defined for all

EVs regardless of whether they have accepted a V2G contract. The following
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optimization problem is solved at every timeslot.

maximize
yt=

(
y1t ,...,y

|Nt|
t

) ∑
n∈Nt

log (Un
t (y

n
t )) (5.11a)

subject to:∑
n∈Nt

ynt = yaggt (5.11b)

ynt, lower ≤ ynt ≤ ynt, upper ∀n ∈ Nt (5.11c)

The significance of this formulation is that the solution of this convex problem,

which we call a proportionally fair disaggregation, satisfies fairness axioms

from game theory [101]. We have borrowed the notion of proportional fairness

from the resource allocation literature to ensure that all EVs are treated fairly.

5.4 Priority-Based Disaggregation

To evaluate the performance of the proportionally fair disaggregation algo-

rithm, we borrow a priority-based resource allocation algorithm and use it for

flexibility disaggregation. The basic idea of a priority-based algorithm is that

we can assign an arbitrary scalar that signifies priority to each EV n at every

timeslot t. Let us denote this priority as prnt . The algorithm sorts the EVs from

highest to lowest priority and they receive their share of yaggt in that order.

Concretely, the algorithm receives the priority list prt, the aggregate action of

the virtual battery (yaggt ) which is either charge or discharge this amount of

energy depending on its sign, and the upper and lower bounds of the action

of each EV (ynt ). Next, it starts by fulfilling the lower bound of each EV. If

there is surplus energy after that, the maximum possible energy is allocated

to the EV with the highest priority. It continues down the list until yaggt is

used up. The pseudocode for this algorithm is presented in Section 5.4. In

Chapter 6, we define the priority of each EV based on its laxity. This results

in two versions of this algorithm, namely most laxity first and least laxity first.

Algorithm for Priority-Based Disaggregation

Algorithm 1 starts by calculating the indices that would sort the priority array,

prt, in descending order. These indices will allow us to loop through the other
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Algorithm 1: Priority-Based Disaggregation
Inputs:
Total energy available yaggt

Individual upper bounds yt, upper = {y1t, upper, . . . , yNt
t, upper}

Individual lower bounds yt, lower = {y1t, lower, . . . , y
Nt
t, lower}

Priority of each EV prt = {pr1t , . . . , prNt
t }

Output:
Energy allocated to each car yt = {y1t , . . . , yNt

t }

1 indexpr ← indices that would sort prt by descending;
2 yt ← yt, lower;
3 yaggt, surplus ← yaggt −

∑
(yt, lower);

4 for i← 1 to |Nt| do
5 n← indexpr [i];
6 ytemp ← min(yaggt, surplus , (y

n
t, upper − ynt, lower));

7 ynt ← ynt + ytemp;
8 yt, surplus ← yt, surplus − ytemp;
9 if yaggt, surplus == 0 then

10 break;
11 end
12 end
13 return yt;

arrays from highest to lowest priority. Line 2 sets the output vector yt to

yt, lower, because each EV must have at least its lower bound met. Next, in

Line 3, we subtract the energy we just allocated from the total available. The

result is stored in the new variable yt, surplus.

We then enter the main loop. During the first iteration, we select, in Line 5,

the index of the EV with the highest priority, and the EVs with progressively

lower priorities will be selected in later iterations. In Line 6, we check if we

can assign all the surplus energy, yt, surplus to EV n. If not, we saturate it to its

upper bound. In Line 7, that energy is allocated, and in Line 8 it is subtracted

from the surplus. The loop breaks when all of the surplus energy has been

allocated.
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5.5 Implementation Considerations

The code, available at https://github.com/J27avier/EvCharge, is struc-

tured in a Gym-like fashion, following Farama’s Gymnasium [88]. There are

separate classes for the environment and the agent as shown in Figure 5.3. The

different agents (Aggregate SAC and the baselines) can be swapped without

changing the environment class. Furthermore, the settings for each run are

passed as command-line arguments. This setup streamlines the experimenta-

tion and ensures consistent results across all the agents. An example of the

code for this implementation is given in Appendix A.

Agent

Environment

Debug Print
 * Cars depart
 * Cars arrive
    (and select contracts)

(dis)charge EVs

Calculate Reward

Figure 5.3: Diagram of the main blocks in the EvCharge Gym code.

5.6 Summary

In this chapter, we presented our design for a soft actor-critic reinforcement

learning agent that trades flexibility in the real-time market. We presented

the aggregation algorithm together with the aggregate state representation.

Moreover, we covered our approach to guaranteeing that the agent operates

within the specified constraints. We also presented two options for disaggre-

gation. First is the proportionally fair disaggregation, which relies on solving

an optimization problem. Second, we presented an algorithm for performing

priority-based disaggregation. With this groundwork established, let us move
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on to the experimental chapter. There we will explore the performance of our

approach, comparing it against baselines, and analyzing how different factors

can have an effect on its performance.
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Chapter 6

Experimentation

In this chapter, we evaluate the proposed methods for energy trading in the

real-time market through aggregation and disaggregation of flexibility pro-

vided by individual EVs. We begin by introducing the datasets used in our

evaluation, detailing the data preparation procedures, and providing a brief

overview through visualization. Following this, we establish the baselines,

which are derived from the optimization problem outlined in Chapter 4, in

particular Problem (4.6). We investigate the operation of the VPP through

five experiments. Initially, we analyze the proportion of EVs accepted V2G

contracts and which contract they chose. Next, we look at the performance of

the Aggregate SAC agent during training and test under various forecasting

conditions, and compare it against the baselines. Subsequently, we assess how

this performance impacts the overall profitability of the VPP. Later, we eval-

uate the effect of different disaggregation algorithms on the agent’s real-time

market performance. Finally, we quantify the time required for the Aggre-

gate SAC agent to generate a charging schedule for our dataset, comparing it

against the baselines.

6.1 Datasets & Baselines

We use two real datasets that contain data collected between Jan. 1 and Dec.

31, 2019, from the Netherlands. The first dataset contains settlement prices

in the imbalance market operated by TENNET [87]. This market has a 15-

minute timescale, so to make it compatible with our 1-hour timeslots, we take
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the price at the top of every hour. This results in a total of 365× 24 = 8, 760

data points.

The second dataset is the ElaadNL dataset [28]. It contains 10,000 charging

sessions that took place in 2019 in a network of public charging stations in the

Rotterdam region. Each session is characterized by a charger ID in addition

to the arrival time tnarr, departure time tndep, and amount of energy delivered

to the EV that connected to this charger. To calculate the SOC at arrival,

we assume each EV was charged to socndep = 0.97 before departure. Then, we

calculate its socnarr based on the amount of energy delivered in that charging

session. We assume all chargers support bidirectional charging, their rated

charge and discharge power is αc, αd = 11 kW, and the battery charge and

discharge efficiency is ηc, ηd = 0.98. The SOC bounds are set to δmin = 0 and

δmax = 1, and the energy capacity of the battery is set to B = 80 kWh.1 While

the methodology is designed to handle a heterogeneous set of EVs, we chose

this to simplify the data pre-processing. As discussed in Chapter 4, we assume

that all EVs have non-negative laxity upon arrival, so we discard all EVs with

negative laxity in the dataset. That leaves us with 9, 997 sessions. Fig. 6.1

shows the box plot of hourly prices throughout the year. The number of daily

sessions is depicted in Fig. 6.2a. Histograms of arrival and departure times

on each day are shown in Fig. 6.2b. Finally, Fig. 6.2c shows the histogram of

laxity at arrival time.

When the EVs arrive at charging stations operated by the VPP, their type

with respect to energy and persistence is sampled from a discrete uniform

distribution between 1 and 3. We build the contract menu for each EV based

on their specified charging deadline and energy demand after applying the

entry checks outlined in Section 4.3. As a result, a subset of the nine contracts

presented in Table 3.1 will be offered to that EV.

As we need some of the data to train the RL agent, we split the price

and EV charging datasets into training and test. The training dataset spans

from January to June, while the test dataset spans from July to December.
1This is approximately the capacity of common EV models such as Hyundai IONIQ 5

(77.4 kWh), Tesla Model 3 Long Range (82 kWh), and Ford Mustang Mach E (88 kWh).
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Thus, the training set contains 4, 764 sessions, and the test set contains 5, 233

sessions. Unless otherwise stated, the main disaggregation algorithm that is

used in our experiments is the proportionally fair algorithm, and the real-time

scheduling algorithm that is based on this disaggregation scheme is called

Aggregate SAC PF.
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Figure 6.1: Distribution of prices in the imbalance market, whiskers show
1.5×IQR.
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Figure 6.2: EV charging sessions dataset. Subplot (a) shows a boxplot of daily
sessions per month, whiskers are 1.5×IQR. Subplot (b) shows a histogram of
arrivals and departures. Subplot (c) shows a histogram of laxity at arrival.

61



Baselines We use three baselines to evaluate our approach. The first is

No-Control, when an EV is charged at the maximum power supported by the

charger as soon as it connects to the charger. This ‘charging as soon as possible’

policy minimizes the length of the charging session without taking advantage

of any kind of flexibility. The second is No-V2G which solves Problem (4.6)

with perfect information, but without offering any V2G contracts. In this

case, the VPP only uses the flexibility allowed by the EVs’ laxity at arrival.

Lastly, we have OPT-V2G which solves Problem (4.6) in an offline fashion,

taking into account the V2G contracts. As we solve this problem with perfect

information, it gives the best solution that can be possibly achieved. For a fair

comparison with Aggregate SAC PF, we also solve Problem (4.6) with noisy

price predictions. In that case, we renamed it to LP-V2G since it no longer

represents the optimal solution.

Implementation Details The VPP is implemented in an in-house envi-

ronment developed in Python 3.10 on an Ubuntu 22 machine with an AMD

EPYC 7313 CPU (64 cores), onboard ASPEED GPU, and 516 GB of RAM.

We model the optimization problems (3.3), (4.6) and (5.11) in CVXPY [27]

and solve them using Mosek [8]. The implementation of Aggregate SAC agent

is based on the code provided by CleanRL’s continuous-action SAC [42] for

PyTorch [63].

6.2 Contract Acceptance

We first analyze how the EV owners accept or opt out of the variable-term

V2G contracts. Fig. 6.3 depicts the distributions of V2G contracts that were

accepted in our experiment. Interestingly, most EV owners opted out and only

21% of them accepted a V2G contract. This is because their energy or time

type creates a contract menu without any feasible contracts or with contracts

that provide negative utility. For example, many EVs do not have enough

laxity at arrival to participate in V2G for 5 hours or more. This is evident

from Fig. 6.2c. Focusing on the EV owners that accepted a contract, we see
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Figure 6.3: Plot (a) shows EVs that opted out or accepted a V2G contract;
(b) shows the distribution of accepted contracts.

that the most popular contract is (g1,1, w1, ℓ1) = (0.59 €, 19.01 kWh, 5 hr)

with 33% of the total share of accepted contracts. As the contract increases

in energy or duration, it is selected less frequently.

6.3 Evaluation of Aggregate Trading Agent

Training and Testing The Aggregate SAC PF agent is trained via inter-

action with the environment in discrete time steps, where each episode of

interaction starts on January 1, 2019, and ends on June 30, 2019. We consider

200 episodes for training and deploy the policy obtained at the end of episode

200 to trade EV charging flexibility in the imbalance market during the sec-

ond half of the year (July to December 2019). Thus, the training and testing

episodes will have nearly the same number of 1-hour time steps, that is 4,344

and 4,416 time steps respectively. We continue making learning updates after

the agent is deployed, provided they are done based on information we have

seen from deployment till now.

Fig. 6.4a shows the learning curve of the Aggregate SAC PF agent. The

agent is trained on perfect price predictions. In accordance with best prac-

tices [64], we perform five independent runs. The shaded area shows the cost

(lower is better) of the best and worst performing agents in every episode (i.e.

the tolerance bounds), and the solid line shows the average performance. The
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horizontal dotted lines show the baseline performance for comparison. We can

see that there are some variations in the agents during the early episodes (5-

25), but the gap narrows as more episodes are used for training. Furthermore,

this figure shows that during training, the Aggregate SAC PF settles on a

performance around 40% higher than OPT-V2G.

When we evaluate the agent, we consider different qualities of price fore-

cast. These are generated by adding synthetic noise to the prices: p̂t = pt+ ϵt.

Here, ϵt is sampled from a normal distribution with a mean of 0 and a standard

deviation σ = 0, 0.01, 0.02, 0.04, 0.06. The case where σ = 0 corresponds to

perfect predictions, and the other ones correspond to progressively worse pre-

dictions. To directly relate σ to the quality of price forecasts, we demonstrate

in Table 6.1 how a certain σ affects the coefficient of determination, R2, of the

prediction. As explained in [51], the coefficient of determination is defined as

R2 = 1−
∑T

t=1(pt − p̂t)
2/

∑T
t=1(pt − p̄t)

2, with p̄t being the mean price.

σ 0.00 0.01 0.02 0.04 0.06
R2 1.000 0.974 0.897 0.588 0.075

Table 6.1: Relating synthetic noise ϵt to R2

After letting the agent train for 200 episodes (using perfect information during

training), we perform five runs on each of our forecast scenarios. These are

shown in Fig. 6.4b, where the x-axis shows the amount of noise added to the

predictions when the agent is deployed, and the y-axis shows the transfer to

the imbalance market during the test episode. A small offset along the x-axis

is added to the points to avoid overlaps. As before, the shaded area shows

the best and worst performance. We compare the performance of Aggregate

SAC PF to the two baselines, which were run five times as well. Recall that

LP-V2G solves the same problem as OPT-V2G, but with noisy predictions.

When predictions are perfect (σ = 0), Aggregate SAC PF achieves a trans-

fer to market that is lower (better) than No-V2G and, as expected, higher

than LP-V2G which is equivalent to OPT-V2G in this case. The good perfor-

mance of Aggregate SAC PF shows that it is able to translate what it learned

during training to the new charging sessions and prices in the test set. There-
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Figure 6.4: Aggregate SAC PF with perfect and noisy predictions. Subplot
(a) shows the learning curve during training. Subplot (b) shows the final test
performance compared with baselines under different forecasting scenarios.

fore, it is robust to distribution shifts.2 Moreover, it can be seen that as the

prediction quality decreases, the gap between Aggregate SAC PF and LP-

V2G quickly narrows. When the noise is very high, σ = 0.04, 0.06, Aggregate

SAC PF achieves marginally better performance than LP-V2G. This shows

that Aggregate SAC PF is more robust to imperfect price forecasts than the

baselines.
2Note the difference in prices from Jan.-Jun. to Jul.-Dec. in Fig. 6.1, and the difference

in daily charging sessions between the first and second halves of the year in Fig. 6.2a.
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Figure 6.5: Performance for the baselines and top performing Aggregate SAC
PF on the test dataset (Jul-Dec) with each subplot being a different noise
level. Our analysis focuses on subplot (b).
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6.4 Profitability

The total VPP’s profit is calculated by subtracting the transfer to the im-

balance market and payoffs for the accepted V2G contracts from the revenue

received from the EVs for supplying their charging demand. We assume EV

owners pay a fixed retail price, pR, for the energy delivered to them, which is

Bn(socndep − socnarr). The rate is pR = 0.064 €/kWh which corresponds to the

85th percentile of the imbalance price over the year.

In Fig. 6.5, we compare the profit made by our top performing Aggregate

SAC PF on the test dataset, under imperfect price forecasts at every noise

level. In this analysis, we will focus on the scenario with the smallest noise

level, i.e. σ=0.01, corresponding to subplot (b). The No-Control baseline

has the lowest profit due to its inability to control EV charging. Next is the

No-V2G baseline that achieves a higher profit by reducing the transfer to

the market to approximately 45% of the previous baseline, underscoring the

significance of unidirectional flexibility. Further reduction in the transfer to

market is achieved by Aggregate SAC PF, precisely 29% compared to No-V2G,

resulting in higher profitability. This suggests that, despite the payoffs given to

EVs, V2G contracts lead to increased profitability. By using information about

individual EVs and knowledge of the state evolution model, LP-V2G attains

the highest profit. Again, the performance of Aggregate SAC PF is noteworthy,

given its model-free approach and the fact that it utilizes aggregate state

information instead of information about every individual EV and considers

only 1-step ahead flexibility. Finally, the profitability of OPT-V2G is shown

as a horizontal dotted line.

6.5 Performance of Disaggregation Algorithms

To evaluate the performance of the Proportionally Fair disaggregation algo-

rithm, we utilize the five Aggregate SAC PF agents that we previously trained.

The evaluation on the test dataset with imperfect price predictions, σ=0.01,

is repeated once more, but this time, disaggregation is done using the priority-

based algorithms described in Section 5.4.
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Disaggregation Algorithm Min. Mean Max.
Least Laxity First 2,966 3,026 3,088

Proportionally Fair 3,022 3,058 3,180

Most Laxity First 3,311 3,358 3,477

Table 6.2: One-shot performance (transfer to market in €) of different disag-
gregation algorithms in the imbalance market with noise level σ=0.01.

The results are presented in Table 6.2. Among these, the Least Laxity First

is the most effective one in terms of the average performance, showcasing a

slight improvement over Proportionally Fair. On the other hand, Most Laxity

First performs the least favorably, accumulating around 9.8% higher cost than

Proportionally Fair. These findings showcase how the choice of the disaggre-

gation algorithm affects performance, as it decides which specific EVs receive

energy, thereby changing the flexibility available in future time steps to the

RL agent. Nonetheless, it can be argued that the fairness property offered

by Proportionally Fair disaggregation is advantageous, considering its perfor-

mance is on a par with Least Laxity First, which does not take fairness into

account.

6.6 Computation Time

To verify the claim that our Aggregate SAC agent, once trained, is more

computationally efficient than solving an optimization problem, we timed the

agents on a single test episode. The results are shown in Fig. 6.6, averaged

over 5 runs, with error bars indicating the range (max-min) of execution time.

The fastest scheduler is No-Control with a time of 0.85 minutes, as it does

not make decisions, consistently charging at maximum power until reaching

the desired State of Charge (SOC). Following is Aggregate SAC. When utilizing

priority-based allocation, particularly Least Laxity First, the agent averages

2.31 minutes, represented as Agg. SAC LL in the figure. Conversely, with Pro-

portionally Fair Allocation, it averages 2.91 minutes, denoted as Agg. SAC PF.

This disparity arises because Proportionally Fair Allocation requires solving a
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Figure 6.6: Time (minutes) for 1 test episode for the different agents. Each
bar is the average of 5 runs and the error bars show (max-min) time.

convex optimization problem. However, this discrepancy is minor when com-

pared to baselines that solve an optimization problem for the (dis)charging

action: No-V2G and LP-V2G. Their running times are 18.36 and 22.78 min-

utes, respectively. The longer time for LP-V2G is attributed to additional

constraints associated with V2G contracts. Thus, it is evident that Aggre-

gate SAC agents can generate a charging schedule significantly faster than the

No-V2G and LP-V2G baselines.

6.7 Summary

In this chapter, we evaluated our methods using two real-world datasets con-

taining charging sessions and electricity imbalance prices from the Netherlands

in 2019. In the first experiment, we investigated the acceptance of different

V2G contracts. Next, we assessed the training of Aggregate SAC, and tested

its performance on new data. The agent was compared against three baselines:

a solution that does not control the charging process (No-Control), and two

based on Linear Programming (No-V2G, LP-V2G). Aggregate SAC demon-

strated robust performance in environments with noisy price predictions.

We then analyzed the detailed profitability of the agent and the baselines
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across different scenarios. Subsequently, we evaluated the performance of vari-

ous disaggregation algorithms on the pre-trained model. Finally, we compared

the running time of Aggregate SAC and the baseline methods, finding that

our method could generate feasible charging schedules faster than the Linear

Programming methods.
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Chapter 7

Conclusion

We proposed a real-time scheduling algorithm for a VPP that trades aggre-

gate flexibility in a real-time electricity market with hourly resolution. The

VPP procures V2G participation by offering contracts to EV owners. This

increases its profitability despite offering V2G incentives. At the core of our

scheduling algorithm is a model-free RL agent capable of making decisions on

behalf of all EVs that are controlled by the VPP and trading their flexibility.

This is accomplished by aggregating them into a virtual battery with specific

constraints. This aggregation is performed in a way that ensures the aggre-

gate action results in a feasible schedule for all EVs. The aggregate action

is then broken into individual actions using a proportionally fair disaggrega-

tion scheme. Our evaluation shows remarkable performance of this real-time

scheduling algorithm, especially when it receives noisy forecasts for future

hours.

In this thesis, we have made five key contributions:

• We devised variable-term incentive-compatible V2G contracts that mo-

tivate private EV owners to allow the VPP to control their charging.

These contracts consider two-dimensional EV owner types in order to

cater to a wider range of users.

• We proposed a scalable and efficient reinforcement learning agent that

takes in an aggregate abstraction of the flexibility present in the con-

nected EVs, and outputs an aggregate action that is guaranteed to be
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feasible at every timestep. The aggregate constraints are calculated by

adding the upper and lower charging bounds of each individual EV.

• We constructed a disaggregation algorithm that draws on a popular re-

source allocation scheme to provide individual charging decisions that

have proportional fairness. We compared this disaggregation method to

others that use a priority-based disaggregation algorithm.

• We assessed the performance of our real-time scheduling approach us-

ing real data from public charging stations and prices in the imbalance

market.

• We developed a charging simulation environment that uses some of the

conventions of Farama’s Gymnasium Library to test our agents.

7.1 Limitations and Discussion

In our work, we have made some simplifying assumptions. Firstly, we have not

taken into account any grid constraints. This means that the VPP operates

without knowledge of the underlying electricity distribution infrastructure. For

instance, if there were an overloaded transformer near an EV charging facility,

the VPP would not factor this into its decision-making process. While these

grid constraints could be incorporated into the methods presented here, they

are currently beyond the scope of this work.

Secondly, we assume that users always depart at the time they declare

upon arrival. While we incentivize EV owners to truthfully reveal their pref-

erences, in reality, uncertainties may arise, leading to unexpected departures

either earlier or later than specified. However, such departures are unlikely

to significantly impact the VPP’s performance. Early departures automati-

cally result in penalties as the desired SOC may not be reached, while delayed

departures simply indicate underutilized flexibility by the VPP.

Additionally, the EV charging dynamics described in Chapter 4 allow for

various max/min (dis)charging rates, desired SOC at departure and battery

capacities. However, for simplicity in our evaluation, we opted for uniform
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values for these variables across all cases. Furthermore, we standardized the

timescale to one hour, whereas different real-time markets might have different

time scales. To accommodate these (e.g. 15 minutes), the equations can be

easily adapted by introducing the time scale, ∆t, where necessary. Moreover,

while less straightforward, one can extend the equations to allow the VPP

to operate at a shorter timescale than the market. In this scenario, the VPP

could make decisions more frequently than the price updates, potentially being

more responsive as cars arrive and depart.

7.2 Future Work

The work presented in this thesis can be expanded in several directions. Firstly,

the parameters for finding optimal V2G contracts, as outlined in Problem (3.5),

could be dynamically adjusted based on fluctuations in electricity market

prices. This adjustment intuitively aligns with market dynamics; in a stable

price environment, the need for V2G would be minimal, whereas in volatile

markets, V2G procurement becomes crucial for the VPP. Moreover, insights

from financial products, whose value is often tied to volatility, could inform

pricing strategies for V2G contracts while keeping their desired properties of

individual rationality and incentive compatibility.

The V2G contracts can also be supplemented by providing additional in-

centive mechanisms tailored to different types of flexibility. For instance, offer-

ing No-V2G contracts for EVs that exclusively wish to provide unidirectional

charging flexibility. Furthermore, this strategy could be integrated with partic-

ipation in different markets, such as the day-ahead market. This could entail

committing to energy transactions one day in advance based on predictions for

EV energy demand and available V2G discharge energy while modifying the

operation in the real-time market to take these commitments into account.

To address uncertainties stemming from electricity price predictions in the

real-time market, we plan to compare our result with the solution found via ro-

bust optimization or risk-aware reinforcement learning as they are expected to

better handle uncertainties arising from market prices and EV traffic patterns.
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There are several emerging methods for risk-aware reinforcement learning, a

suitable candidate for this would be the Cross-Entropy Soft-Risk method pre-

sented by Greenberg et. al. in [36].

Moreover, we intend to conduct tests on datasets featuring a higher num-

ber of charging sessions per day (10x-100x) to explore the scalability of the

proposed algorithm and measure any potential performance degradation. Syn-

thetic data generation methods, such as those outlined in [49], could facilitate

the creation of additional charging sessions.

Expanding the heterogeneity of flexibility resources available to the VPP,

such as incorporating stationary batteries or renewable energy sources like

solar or wind, would enable more strategic energy management decisions. For

example, when to use the generated energy to charge the battery or the EVs

instead of selling it to the market. Moreover, incorporating grid constraints

could help us understand the effect of the VPP on grid congestion. That could

help us create new schemes for its operation, and further investigate where to

place charging stations within the distribution grid.

Finally, making the in-house EV charging environment fully compatible

with Gymnasium [88] could facilitate broader adoption by other research groups.

This would enable easier benchmarking against clear and accessible baselines.

Later on, this might lead to the establishment of competitions akin to AI

Crowd’s Citylearn [62], where researchers could submit their own algorithms

for VPP-controlled EV charging. There are many substantial areas of oppor-

tunity in this field to promote the widespread adoption of VPPs managing

bidirectional charging in electrical vehicles in the real world.
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Appendix A

Implementation Details

In this appendix we will go over the main parts of the code, the most impor-

tant parameters for training, the architecture of the neural networks, and the

commands used to run our program. Recall that we base our implementation

of the agent on CleanRL’s code of continuous-action SAC [42] for PyTorch [63].

A.1 Code

In Listing A.1 we show an example of how we train our implementation of

Aggregate SAC. First, we import some general modules. Then we import the

user-defined modules, mainly the environment (ChargeWorldEnv), the actor

(agentSAC_sagg), and the critic (SoftQNetwork).

In the body of the program, we initialize ChargeWorldEnv with the dataset

that contains the charging sessions (df_sessions), the dataset that contains

the real-time prices (df_prices), the contract parameters (contract_info),

and a random number generator (rng).

For the agent, we initialize the actor (agentSAC_agg) with the price dataset

(df_price), arguments read from the command line (args), and the device

(device). This device is needed for certain PyTorch functionalities. The

critic is composed of two Q networks (SoftQNetwork). Additionally, soft actor-

critic uses a replay buffer (rb).

We can train the agent for many episodes, each with a predetermined

number of timesteps. Similar to Farama’s Gym, the environment is initialized

with a world.reset(). During training, the agent receives an observation
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from the environment, and it outputs an action with agent.get_action().

The environment receives the action and moves forward one timestep with

world.step(). The loop keeps going on until all the timesteps are completed

for all the episodes. At each iteration, the training of the agent is performed.

The charging sessions dataset, real-time prices dataset and state are im-

plemented in Pandas DataFrames. Additionally, the environment also receives

a Pandas DataFrame for the action. Conversely, the agent works mainly

with PyTorch Tensors. To convert the state DataFrame into a PyTorch Ten-

sor, we employ agent.df_to_state(). Similarly, to convert the agent’s ac-

tion into the required Pandas format that the environment prefers, we use

agent.action_to_env().
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# Import modules
import torch
import pandas as pd
import numpy as np
. . .

# Import user−de f ined modules
from EvGym. charge_world import ChargeWorldEnv
from EvGym. charge_sac_agent import agentSAC_sagg , SoftQNetwork

def main ( ) :
. . .
# I n i t i a l i z e environment
world = ChargeWorldEnv ( d f_sess ions ,

df_price ,
contract_info ,
rng )

. . .

# I n i t i a l i z e agent
agent = agentSAC_sagg ( df_price , args , dev i c e ) . to ( dev i c e )
q f1 = SoftQNetwork ( args ) . to ( dev i c e )
q f2 = SoftQNetwork ( args ) . to ( dev i c e )
rb = ReplayBuffer (

args . bu f f e r_s i z e ,
. . . )

. . .

# Training
for ep i sode in range ( ep i s ode s ) :

d f_state = world . r e s e t ( )
obs = agent . df_to_state ( df_state , ts_min )
. . .
for t in range ( t imes teps ) :

. . .
a c t ions , _, _ =
agent . get_act ion ( torch . Tensor ( obs ) . to ( dev i c e ) )
. . .
# Take a step , i t r e c e i v e s the ac t i on o f the agent
df_state , rewards , te rminat ions , i n f o s =
world . s tep ( agent . action_to_env ( a c t i on s ) )
next_obs = agent . df_to_state ( df_state , t )
. . .
obs = next_obs
. . .

Listing A.1: Some examples of the implementation of the environment and
the agent
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A.2 Parameters

The main implementation parameters are shown in Table A.1.

Parameter Value Description
-–agent SAC-sagg Agent to use for real-time scheduling
-–save-name sac_a Name used for logs, results, etc.
-–pred-noise 0.00 Nosie for price predictions in training
-–seed 42 Seed for random number generators
-–years 200 Number of episodes to train
-–batch-size 512 Batch size to sample from the replay buffer
–alpha 0.02 Temperature parameter in SAC
-–policy-frequency 4 How often to update the policy (timesteps)
-–target-network-frequency 2 How often to update the second Q NN (timesteps)
-–disagg PF (Proportional fairness) Disaggregation algorithm
-–buffer-size 1e6 Number of experiences to save in replay buffer
-–save-agent True Save the weights of the trained agent
-–general True Run training (False is for deployment)

Table A.1: The main implementation parameters.

A.3 Architecture

The architecture for the actor, the policy network, is shown in Table A.2. The

architecture for the two critics, soft Q networks, is shown in Table A.3.

Layer In Out
Linear (ReLU) 59 256
Linear (ReLU) 256 256
Head 1, Mean: Linear (Sigmoid) 256 1
Head 2, Logstd: Linear (Tanh) 256 1

Table A.2: Architecture for the Actor.

Layer In Out
Linear (ReLU) 60 256
Linear (ReLU) 256 256
Linear 256 1

Table A.3: Architecture for the Critics.
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A.4 Running the Scripts

The command to run the experiment with the parameters in Table A.1 is

shown in Listing A.2.

python3 RunSACChargeWorld . py −−agent SAC−sagg −−save−name sac_a \
−−pred−no i s e 0 .00 −−seed 42 −−years 200 \
−−batch−s i z e 512 −−alpha 0 .02 \
−−po l i cy−f r equency 4 \
−−target−network−f r equency 2 \
−−d i sagg PF −−save−agent True \
−−gene ra l True

Listing A.2: Run a training experiment.
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