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Abstract

Let v(G) denote the number of conjugacy classes of non-normal subgroups
of a group G. This thesis is concerned with what knowledge of v(G) can tell
us about the structure of a group G. We first consider finite groups.

If 'Gi=pl'py?...p." then {(G) = n; +ny = --- = ng is defined to be the
prime length of G. We prove rthat if G is a finite group and v{G) = 0. then
there is a cvclic subgroup C of prime power order contained in the centre of
G such that the prime length of G, C is at most v(G) = 1. Using this result
we also show that for any finite group G. either {(G) is bounded above by
3v(G)+1 or G is the semidirect product of a p’-group A with a p-group B and
G has further restrictions on its structure. A classificarion of all p-zroups with
v(G) < p is also provided.

The first result mentioned above extends to infinite gronps. with the sub-
group ' being an infinite Priifer p-group. but only when G has finitely manv
non-normal subgroups. It is shown that an infinire. non-Dedekind group G
with only finitely many non-normal subgroups is the direct limit of a sequence
of finite. nilpotent groups each having the seme conjugacy classes of non-
normal subgroups.

An infinite group G wirth v(G) finite and with an infinite number of non-
normal subgroups does not have so nice a structure. This is to be expected
hecause of the existence of monsters of rhe tvpe constructed by S.V. Ivanov
and A. Yu. Ol'shanskii. The structure of this type of group is also studied. It
is shown. among other rhings. that such groups have only a finite number of
normal subgroups and have finite FC - centres. [t is also true that for a group
G of this type. ({G/R) is bounded above by v(G) + 1. where R is the finite

residual of G.
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1 Introduction

1.1 Summary of Main Results

Suppose we know the number of conjugacy classes of non-normal subgroups of
a group G. What can we conclude about the structure of the group? This is the
underlying question that motivates the results in this thesis. For convenience.
let v(G) denote the number of conjugacy classes of non-normal subgroups.

It will be assumed that the reader is familiar with fundamental concepts
of group theory (especially finite nilpotent group theory). The basic concepts
and terminology can be found in any contemporary. introductory text in group
theory. Examples include [Rob! and ‘Rot]. The list of svmbols located before
Chapter 1 may also prove useful.

This work began when my supervisor showed me a paper he co-authored
that proved that the nilpotency class of a finite group G could be bounded
above by a function of v(G). {see [PR’). He asked me to trv ro find a bound
for the order of the commutator subgrcup of a finite group G in terms of v(G).
[ was successful and subsequent investigation vielded the many results in this
thesis. Many of the results proved here are in either the paper Some Erplicit
Bounds in Groups With a Finite Number of Non-normal Subgroups('L}) or the
paper Groups With a Bounded Number of Conjugacy Classes of Non-normal
subgroups({LR]).

This first Chapter serves several purposes. This first section introduces the
topic of the thesis and summarizes the main results. Section 1.2 presents a brief
history of the examination of conjugacy classes of non-normal subgroups and
points out related areas of development. Section 1.3 outlines basic properties
of v(G) (considered as an operator on a group) and records results dealing

with non-normal subgroups. The results in this section are used frequently in



later Chapters. The only new result appearing in Section 1.3 is that a group
G with 0 < v(G) < x must be torsion.

Chapters 2 and 3 concentrate on what knowiedge of v(G) can tell us ahout
a finite group G. It is convenient to examine nilpotent groups first. This is
done in Chapter 2. In Chapter 3 most results are generalized to all finite
groups. Define the prime length of a finite group G. ¢(G). to be the number of
primes involved in the order of G. (counting multiplicity). Thus. if the order
of G. |G| = p{'p5* ... pp* then ¢(G) = ny + na +- - - = n,. The main results on

finite groups are as follows:

Result 1: [f G is a finite group and v(G) = O then there erists a cyclic.

central subgroup C of prime power order in G such that €(G:C) <G =1,

Result 2: Let G be a finite group with viG) = v > 0. If G is nilpotent and
£(G) > 2v — 1 then for some prime p.G = A x B where A is a Dedekind
p'-subgroup. B 15 a p-subqroup and there is an element = = Z(B) such thuat
B’ is a subgroup of (=i, and UGz < vlG) = 1. If G 15 not nilpotent hut
HG) > 3v — 1 then for some prime p. G = A x B where A is a Dedekind
p' -subgroup and B 15 a p-subgroup. There erists an elemeni > € BN ZiG)
such that ((G/{()} < G) -1 and B' < [z). B = Uity where U = Cg(A)

and B < t). If H is a subgroup of G and H < AH. then B' < H.

Chapter 2 also makes some initial steps toward classifving p-groups in rerms
of their number of conjugacy classes of non-normal subgroups. It is shown that
if G is a finite p-group then v(G) = 0. 1. or is at least p. All p-groups with
v(G) = p are given (up to isomorphism). in terms of generators and relations.

Chapters 4 and 5 concentrate on infinite groups. In Chapter 4 infinite
groups with only a finite. positive number of non-normal subgroups are dis-

cussed. There we see that if G is an infinite group with only a finite. positive

o



number of non-normal subgroups then G is the direct limit of a sequence of
finite. nilpotent subgroups each having exactly the same conjugacy classes of
non-normal subgroups. (Direct limits are discussed in Chapter 4). This allows

us to apply the results of Chapter 2 to conclude. among other things that:

Result 3: If G is an infinite group with a finite. positive number of non-
normal subgroups then there erists a prime p and a central. Priifer p-subgroup

C of G such that £(G;C) < v(G) + 1.

Chapter 5 deals with groups G with an infinite number of non-normal
subgroups and v(G) < . The structure of such groups is vastly different
from the previously discussed groups. For example. such groups satisfy both
the maximal and minimal condition on subgroups and if the finite residual of
such a group is R. then ¢(G/R) < v(G)+1 and R is a perfect group containing
an infinite. simple quotient R, @ such that 0 < v(R,Q) < x. Theorem 5.9
summarizes the properties of such groups and examples are given in Section

.-

R

1.2 Overview

The aim of this section is to put the current investigation into a historical

perspective. First recall that a group G acts on a set S if there is a function
a:SxG—S

denoted by a(s.g) = s & g such that
sol=sforall s€ S
it)s = (gh) =(s 5 g) T hfor all s € S and elements g. h £ G.
The action of interest to us is conjugation. Letting S = G we have an

action on G given by ¢ & r = ¢* = r7gx, for each r.g € G. The orbit of the

3



element g. '{ g }, is also known as the conjugacy class of ¢ and
{gti={9": 2 €G}.

We also say that & is conjugate to g if g = A for some r € G. It is well known
that the cardinality of i{g}] is [G : Cs(g); where Coig) = {r € G : ¢° = g} is
the centralizer of g in G. Recall Cz(g) < G. The conjugacy classes of elements
form a partition of G.

Similarly. if S is the family of all subgroups of a group G then we have the

action on S given by H = r = H* = r~'Hz. The conjugacy class of H. is
{H} ={K <G:H" =R for some r € G}

and if H¥ = K for some r € G then H is conjugate to A" The cardinality of
{H} is G: NgiHIl. where Ng(H) = {r £ G : H* = H} is the normalizer of
H in G. The subgroup Ng(H) is also rhe largest subgroup of G in which H is
normal.

Thus we have a partition of the family of all subgroups of G into conju-
gacy classes. The blocks of the partition containing onlv one element are the
conjugacy classes of the normal subgroups of G and the remaining blocks of
rhe partition are the conjugacy classes of non-normal subgroups of G.

The work of B. Neumaun concerning conjugacy classes of elements and
subgroups {sce N1y and IN2!) is of great importance to group rheory. In [N2!
he showed that the class of groups with centre of finite index (F7Z groups) is
precisely the class of groups where the classes of conjugate subgroups are finire.
Furthermore. he showed that the commurtator subgroup G’ of an arbitrary
group G is finite precisely when the conjugacy classes of elements of G have
boundedly finite size (ie when G is a BFC group).

The FC groups are those groups where all the conjugacy classes of elements

are finite. Neumann showed in [N2] that the class of F/Z groups is properly
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included in the class of BFC groups which is in turn a proper subclass of the
class of FC groups.
The fact that G’ is finite only for a BFC group prompted Neumann to ask

his Master’s student J. Wiegold whether {G’| can be bounded by a function of
n = lub{{{h}|: h <G}

Wiegold did bound |G’| with a function of n in his Master’s thesis (W
He and others have since improved on his initial eforts. P. Neumann and M.R.
Vaughan-Lee in [N\ provide a description of the early history of this problem

and give the bound

G < nl,’2(3+510gn).

[.D. Macdonald contributed to the solution of above problem in M]. Therein

he also gave a hound for {G : Z(G)] in terms of

m = lub{{{H} : H <G}
for an FIZ group G. Namely.

G:Z(G)< m3tlog.m*,

As mentioned earlier we will give a bound for the prime length of G/Z(G).
HG/Z(G)). in terms of v(G). A bound for £(G") in terms of v(G) will also be
provided. In some sense this mimics the above mentioned results.

With respect to the further study of BFC groups and FC groups we note
only that there is extensive literature on the subject. (see {T]) and that the
theory of F'C groups is used in dealing with an infinite group G with v(G)
finite.

In Chapter 4 we use the property that a torsion FC group is locally finite.

(A group G is torsion if all of its elements have finite order and G is locally P



if all of its finitely generated subgroups are P. P a property of groups). This
property was first established by Neumann in 'N1j and can be found in {Rob)]
(see 14.5.8) for example. FC groups also make an appearance in Chapter
5 where the FC centre of a group G. FC(G). which is the subgroup of G
consisting of all the elements of G with a finite number of conjugates. plavs an
important role.

Anyone familiar with elementary group theory can appreciate the impor-
tance of normal subgroups. In 1896 Dedekind showed that any group with all
of its subgroups normal must have a very special form. (See Theorem 1.1 for
details). Since then many papers have dealt with some generalization of this
result.

Oune direction of research was to generalize the concept of normal subgroups
and consider groups all or most of whose subgroups were of the stated type.
Examples of this phenomena include the studies of almost normal. subnornal
and quasinormal subgroups noted below.

A subgroup A is an almost normal subgroup of G if H is normal in a
subgroup of finite index in G. Thus the F/.Z groups Neumann studied in N2
are precisely those groups where all the subgroups are almost normal.

A subgroup H of GG is subnormal in G if there is a finite series of subgroups
H=Hy<H/q--<«H,_<H,=0GC.

If such a series exists we sav H is subnormal of defect ar most n. This too
has been a fruitful area of investigation (see. in particular (LS]). One notable
result in this area is by Roseblade who found in ‘Ros] that if G is a group
all of whose subgroups are subnormal of bounded defect then G is nilpotent.
Subnormal subgroups will arise again in the next section and in Chapter 3.
Define a quasinormal subgroup of a group as follows. A subgroup S of G is

a quasinormal subgroup of G if SU = U'S for all subgroups U of G. Iwasawa
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(see Su2}) was one author looking at describing groups with all subgroups of
G being quasinormal. \ore generalizations of Dedekind's Theorem are noted
in Chapter 6 of [LS].

Another direction of research is to restrict the number of non-normal sub-
groups. Hekster and Lenstra consider groups with only a finite number of
non-normal subgroups in [HL] and give a very satisfving description of the
structure of such groups. Their main results are stated in Chapter 4.

Since all the conjugates of a non-normal subgroup are non-normal as well. it
is not surprising that someone would eventually consider imposing restrictions
on the conjugacy classes of non-normal subgroups.

Some of the earlier investigarion conicerning the conjugacy classes of non-
normal subgroups dealt with partiallv ordering these conjugacy classes and
considering the poset.

If 5; and S» are subgroups of a group G a natural partial order on the

conjugacy classes of subgroups of G is defined by
{Si} < {Sa}]

if and only if at least one element of [{S}] lies in an element of {S}. The
Mobins width «.(G) is the maxinum number ¢ of subgroups Sy. Ss.. ... S, of
G with the property that no S, is conjugate to anv subgroup of S; for every
i # J. If there is no such ¢ then ~.(G) = x and < (1) = 0. In (Br1l. BV1].
and 'BV2] for example. certain finite groups are characterized in terms of their
Mobius widch.

In ‘BV3] the same two authors. R. Brandl and L. Verardi. consider groups
where the posets of conjugacy classes of non-normal subgroups are order iso-
morphic. Finally, in ‘Br2] Brandl decided to look at the number of conjugacy
classes of non-normal subgroups of a group G, which he denoted v(G) and we

do likewise.

=1



In Br2| finite groups with v(G) = 1 were characterized and in PR! .
Poland and A. Rhemtulla considered the nilpotency class of finite nilpotent
groups in terms of v(G). These results are reviewed in the next section.

With respect to infinite groups with a finite number of conjugacy classes of
non-normal subgroups recent papers such as {BDF!. [Sm2} and {Sm1! contribute
to the current body of research. The first two papers actually consider an
arbitrary infinite group G with 14(G) < > where v (G) is the number of
conjugacy classes of subgroups of G that are not subnormal of defect < k. &
some positive integer. e state a few of the results from [BDF] in Section
1.3. (See Theorem 1.10 and Corollary 1.11). The main result of 'Sm?2' is a
generalization of Theorem 1.10.

In Sml’ Smith takes another avenue of research by restricting the number
of conjugacy classes of subgroups that do not have a certain property. (He
considers the properties of nilpotence and solvabilitv in this context). In rthis
work we are interested in restricring the total number of conjugacy classes of
non-normal subgroups of a group. The resulrs in the next section will be quite

useful later oun.

1.3 Basic Properties and Related Results

We now record important. previously known results and basic facts which are
needed in later chapters. Interested readers can find proofs of the results in the
given references. First note that the structure of groups G with v(G) =0or 1
is known. A group G has no non-normal subgroups precisely when v(G) = 0
and such groups are called Dedekind groups (or Hamiltonian groups if they

are non-Abelian.)



Theorem 1.1 (Dedekind, Baer)(see 5.3.7 of ‘Rob}). IfG is a group then
v(G) =0 if and only if G is Abelian or G is the direct product of a quaternion
group of order 8. an elementary Abelian 2-group and an Abelian group with all

elements of odd order.

Theorem 1.2 Let G be a group with v(G) = 1.

i) (Brandl) Br2j If G is a finite p-group then
G=\M(p") = <\'ila.b " =10 =1. and «® = a""—z‘ll\ :

where n >4 if p =2 and n > 3 otherwise.

ii) (Brandl) Br2; If G is finite but not a p-group then G 15 a non-Abelian
split extension of a group N of prime order by a cyclic subgroup P of
prime power order. I.e..

G=\NxP
and 'N.®(P)l = 1. where B(P) is the Frattini subgroup of P.

iii) (Brandl, De Giovanni and Franciosi) BDF] If G is an infinite group
then G:Z(G) is a Tarski p-group for some prime p and Z(G) is a cyclic
p-group. Moreover. Z{G) = (¢P) for ecach element g of G\ Z{G).

(We give the definition of a Tarski p-group in Chapter 5 where theyv are dis-
cussed). Now consider “1/” as an operator on a group. By this we simply mean
that v is a map from the category of all groups to the positive integers together

with oc. The following property is a vital tool for proofs in Chapters 2 and 3.

Lemma 1.3 (Brandl)[Br2| Let G be a group and N < G. Then v(G/N) <
v(G).



It was pointed out by Poland and Rhemtulla in {PR] that we can think of
v(G/.N) as the number of conjugacy classes of non-normal subgroups of G such
that each subgroup in each of the conjugacy classes contains V. (i.e. V< H
for each conjugacy class [{H}]).

The case when v(G) = v(G/N) for a finite. non-Abelian group G will often
be of interest. If v(G) = v(G/N) £ 0 for some non-trivial. normal subgroup
of G then .V is contained in the intersection of all the non-normal subgroups
of G. Clearly knowledge about finite groups with the intersection of all the
non-normal subgroups non-trivial would be useful. The following 2 theorems

of N. Blackburn address the possibilities.

Theorem 1.4 (Blackburn) Blj If G is a finite p-group and the non-normal
subgroups of G have non-trivial intersection N then p=2 and one of the fol-

lowing happens:

(i) G /s the direct product of a quaternion group Q(8) of order 3. a cyclic

group C'y. of order { and an elementary Abelian qroup. L :

(ii) G is the direct product of two quaternion groups of order 3 and an rle-

mentary Abelian group. E:

(iii) G = (A.r.. A s Abeliun. the exponent of A. exp(A) = 2. N = 2 < 4.
and a* = ™! for alla € A. Furthermore if G is not Dedekind then N is

the only normal subgroup such that v(G) = v(G,/N).

Theorem 1.5 (Blackburn)Bl} If G is a finite group that is not of prime-
power order and v(G) = v(G/N) # 0 for some normal subgroup N of G then
.V is a p-group for some prime p and there erists a p-group P and a p'-group
Q@ so that

G=QxP

10



where every subgroup of Q is normal in G. In fact. one of the following holds:

a) G has a normal. Abelian subgroup - of ezponent kp™ where n > 1. p is

prime. and (k.p) = 1. G/A is cyclic of order p" and if Au generates
G/A. then u can be so chosen that u”” has order p*. There erists an

integer v =1 mod p" such that r* = r¥ for all zr £ 4.

b) G is the direct product of an Abelian group of odd order and one of the

groups described in (i) or (ii) of the previous theorem.

c) G has a subgroup H of the kind described in (a) with p=2andr=1H
15 of index 2 and if G is generated by H and t. then t can be s0 chosen

that u* = u™'. t* = u? and r* = 17 for some n = —1 mod 2".

t-

M

d) G has an Abelian subgroup A of inder 2. G is generated by A and t where
2 A and t* =2 If r is an element of A. then rt

= r\ for some
\ = —1 mod 2.

e) G is the direct product of H. a quaternion group of order 3. and an elemen-

tary Abelian 2-group. where H is of odd order and is of the kind described
mia).

Note that the description of G as the semidirect product of Q with P
conies from the proof of Theorem 1.5 as given by Blackburn. In the discussion

in Chapter 3 where this theorem is used. it is easier to work with this property
than the 5 group-tvpes mentioned.

The following result is useful when generalizing from p-groups to nilpotent
groups.

Proposition 1.6 (Poland and Rhemtulla)iPri If G = 4 x B is a finite
group then

v(G) 2 v(AW(B) + v(A)p(B) + p(A)v(B)

11



with equality if the orders of A and B are relatively prime. where u(X) denotes

the number of normal subgroups of a group X.

A corollary to this result given in [PR] is that for each positive integer n
there is a finite. nilpotent group G with v(G) = n. We will see in the examples
in section 3.2 that for n > 0 there is an infinite. non-nilpotent group with
(G) = n as well.

Also p-groups with cyclic subgroups of index p arise in Chapter 2 so it is
convenient to include the following result from 'PR] based on a well-known

result (see 'Sul] Theorem 4.1).

Proposition 1.7 (Poland and Rhemtulla) [PR] Let G be a finite. non-
Abelian p-group having a cyclic subgroup of inder p. Then one of the following

occurs:.

(1) G=D2M = ab:ai=2"L2=1. anda® =a"'". the dihedral group
of class n — 1 and v(G) = 2n — 4. where n > 3.

Bl

(if) G = S(2" = \a.b:a =210 = 1. anda® = a~'a¥ 7). the quasi-
dihedral gqroup of class n — 1 and v{G) =2n — 3. where n > 4.

-

(i) G = Q(2") = (a.b:al =" 0> =u* . anda® =a™"). the general-

ized quaternion group of class n ~ 1 and v(G) = 2n — 6 where n > 3.
(iv) G = M(p") = {a.b:laj=p" .0 = 1. and a® = ap"-zi‘l;\). where p is a

prime and n >4 if p=2.n >3 otherwise. v(G) = 1 and the class is 2.

Finally. consider an infinite group & with v(G) finite. First note the fol-
lowing result from BDF].(Their version is actually more general than the one

given below (see Lemma 2.2 of [BDF!)).



Lemma 1.8 (Brandl, De Giovanni and Franciosi) .BDF! If G is an
infinite group with v(G) finite and H is a normal subgroup of finite inder in
G then v(H) is finite us well.

The following result appeared in the submitted paper (LR]. The proof helow
is similar to that of Lemma 1 in Howard Smith's paper Sm2]. However the

conditions in our hypothesis are slightly weaker and so is the conclusion.

Lemma 1.9 Let G be a group such that 0 < v(G) < 2. Then G is periodic.

Proof: Suppose r € G has infinite order. First assume that (r) < G. Since
(n.m} =1 implies that ™ and r™ together generate ‘). then for all but at
most one prime. r?} < G. In fact. there will be an infinite number of positive
integers n such that ‘r"} is a non-normal subgroup of G. By replacing r with
some power of r if necessary. we mayv assume that there is an infinite sot of
primes p; so that /1) is conjugate to (r? "} for some positive integer /.

Suppose that {27 )9 = r=! g £ G. Then
g
<ty < <L

so that A, = /29" 'n > 0) = U,se(r?”) is locally evelic. Furthermore. since
19" = (197777 K, is p,-divisible and K, /{r) = C, where C, is a Priifer
p;—group (see 'Rob: 4.1.3). Also. since there exists a prime p; # pj. a positive
. . . . tk — .
integer iy and an element A in G so that (z?+ )* = r=! then (r") has order
s e 1k ) h Z - , N .. - -

dividing pi* mod (x) and hence r* ¢ K, < G. Clearly A, 2 K, unless
p; = px. 50 that we have produced an infinite number of conjugacy classes of
non-normal subgroups.

Thus we may assume that all infinite cyclic subgroups of G are normal.

Suppose that {r) < Z(G). If (t) 4 G then by the arsument above it] < o¢. Also

13



{t.x™) @ G and {t.z™) is not conjugate to (¢t.r™) if n # m. again contradicting
the finiteness of v(G).

So. if r € G has infinite order. it must generate a normal subgroup that
does not intersect the centre of G and [G : Ce((z))] = 2. Suppose that G =

Co((z))(h). Then z* = ==L (rY N (k) = 1 and for m > 2. thox™y 4 G as

£2 g {(h.r™). Also. if (n.m) =1 then (h.z") is not conjugate to th.r™ and

—

—
o

we again have a contradiction. Thus G is periodic as required.

We shall leave most of the remaining pertinent results unstated until they
are needed in Chapters 4 and 5. In Chapter 4 we will need Hekster and
Lenstra’s classification of infinite groups with a finite number of non-normal
subgroups and in Chapter 5 a few results of Isozev and Sesekin concerning
groups with only a finite number of infinite conjugacy classes of non-normal
subgroups are recalled.

As a final note. we point out the following. If G is an infinite group with
v{G) finite then G is nilpotent preciselv when G has ounlv a finite number of
non-normal subgroups.

This follows from the fact that the infinire groups with a finite number of
non-normal subgroups classified by Hekster and Lenstra are nilporent and the

following theorem and corollary from BDFI.

Theorem 1.10 (Brandl, De Giovanni and Franciosi) {BDF] If G is an
infinite group whose chief factors are either locally solvable or locally finite and

vk(G) < > for some positive integer k then G is nilpotent.

Corollary 1.11 (Brandl, De Giovanni and Franciosi) ‘BDF] IfG isa
group with v(G) < >c and the chief factors are either locally solvable or locally

finite then G contains only a2 finite number of non-normal subgroups.

14



2 Results for Finite Nilpotent Groups

2.1 Bounding the Prime Length of a Central Quotient

We begin by showing that every finite p-group and every finite nilpotent group
G has a cyelic. central subgroup (z) of prime power order such that the prime
length of G/{z) is bounded above by v(G) + 1. This fact will be used in sub-
sequent sections to derive further information about the structure of finite
nilpotent groups with a given number of conjugacy classes of non-normal sub-
groups. It will also be generalized in the discussion of finite groups in the nexr

chaprer.

Lemma 2.1 Let G be a finite p-group with viG) < 0. Then there is an element

2 #F 1 in the centre Z(G) of G such that £(G/<{z)) is at most v(G = 1.

Proof: The proof is by induction on the prime length ¢{G}. Ler G be a counter
example of least prime length. We shall split the proof into three cases. In
each case we cousider a quotient G/N of G. where .V is a minimal normal 1and

hence central) subgroup of G.

Case 1. ¥(G/N) = v(G) for some minimal normal subgroup .V of G. Then
for any r in G. (zr) < G implies .V < (r). In particular. the intersection of all
non-normal subgroups of G contains .V and Theorem 1.4 applies. forcing us to
conclude that G is a 2-group satisfving one of the following conditions.

(1) G =@Q x Cyx E where Q = Qg. Cy is cvclic of order 4 and E is
elementary Abelian of order 27, for some r > 0. Let p equal the number of non-
trivial subgroups of E. Then ¢(G/C,) = r+3.and v(G) > (p+1) x v(Q x Cy)
by Proposition 1.6. We show below that v(Q x Cy) = 3 and clearly p > r so

that r+3 < p+3<3(p+1) and s0 ¢(G/Cy) < v(G) + 1.



2

Suppose G = Q x Cy = {r.y) x {z). Then the elements r* % and r?:°
are the three elements of order 2 in G. Since G’ = (r?) and G /(% = Q = (%
is Dedekind. it follows that everv non-normal subgroup of GG contains exactly
one element of order 2. namely 12:2.

Now @ x C'; has no elements of order larger than 4 and
('l.ty‘):aj)’l — (1.1.)2('!/_])2:].1' y_](: ,

onlvif « = 1 or 3 mod 4 and 2y € {r.y. r3 y3. xy.(ry)®}. Thus there are 6
cyclic subgroups of G properly containing (r2z2). Since |G’ = 2 it follows thar
the 6 cyvelic subgroups are non-normal and fall into 3 conjugacy classes.

Now if S « G and S is not cvelic then § = @ and (r*:?) is the unique
subgroup of order 2. S would have to contain two elements from the set
{rz.yz. 23z 3z ryz. (ry)®:}. But the group generated by anyv 2 elements from
this set contains r*. Thus v(G) = 3 as claimed.

2) G =Q; x Q2 x E where @ = @y = Qs and E is elementary Abelian
of order sax 27. Let (z) be in the centre of @;. Then ¢(G/{z)) = r — 5. Note
that v(Q x @Q2) > 9 (see below) and v(G) > 9(p = 1) bv Propostion 1.6
where p is the number of non-trivial subgroups of E. Now r < p so rhat
(G/(z))=r+5<9p+1)+1<vG)+1.

To see that v(Qq X Q2) > 9 we proceed as follows. Suppose G = @, x Q2 =
(z.y) x (s.t). Then @Q; x @2 has three elements of order 2. all central. namely
22,5 and r%s%. The rest of the non-identity elements all have order 4.

Now G/(r?) = G/(s?) = Qs x Cy x Cy. Thus all non-normal subgroups of
G contain r2s%. If

(Iaybsntm)2 — 1'282

then z2y® and s™t™ both have order 4. There are 36 such elements and hence

18 cvclic subgroups of G that are non-normal since they contain z2s? strictly.

16
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Finally. since G' = (r*) x (s*). for any g € G

. 2 . 9 9 3
(‘l,ayosntm)g c {.l'aybsntm.I“yb.s"fmr'..r“ybs"f"lf's‘).J.‘“qbsnfms'}

which generates only 2 distinct cvelic groups so that each non-normal subgroup
has exactly 2 conjugates. Also note that (zs. yt) generates a non-normal. non-
cyvelic subgroup of G so that v(G) > 9. as claimed.

(3) G = ({x.4)is a2-group. - is Abelian of exponent greater than two.

1£2N=0<d af=a"lforalae 4and v(G) = 0. Then everv non-

“t

normal subgroup of G contains .V and v(G) = v(G/N). Notice that Z(G) is

the ser of all elements of order at most 2 and G’ = 4% £ 1. Also note that
rt=1as (2?2 =17 = (27" Let ‘G| = 2" and G’ = 2*. There arc two
possibilities to consider.

(3a) Suppose 12 € A% Note that A% £ {72 since v(G} = 0. Thus A? =

2% > 2. We can construct a strictly increasing series of subgroups

=By < Ba< - < B, = A2

and obrain from this series. a second strictly increasing series
(.B)) < {1.By) < -+ < {r.B,) = {r. 4%).

Note that {r.B;) 4 G if / < s since if a® € A®\ B, then r° = ra? € (z. B,>.
Also note that by virtue of size. we can see that (r.B;) is not conjugate to

{(r.Bj) if i # j. Thus there are at least s — 1 conjugacy classes of non-normal

;

subgroups contained in {r. 42).
Now |4/A?% = 2"—1-9 Let
A/4% = (1) A%/ A% x (a2) A2/A% x - x (ap_,_,) 42/ 42

Thenforeachi =1,2.... ,n—s—1, (za;) 4 G. Indeed (za;)® = zb%a; & (za;) =

1.za;, 22, 23a;}. for any b € A of order greater than 4 or any b of order 4 not
g

17



containing (r?). But if exrp(4) = 4 and A? = (32) = .V then v(G/N) =0 - a
contradiction.
Moreover. if

n V9 — (vr. A = 1 . 3
(ra;)* = ra,jra;.g = ra, or r'a,

for some g € G then a, = a; mod G’ = A? and so i=j. Thus {ra,) is not
conjugate to (ra,) if i # j. Since {(z) = (r.B,) is the only {r.B,) of order
{1and r.¢! # a;. and r.g # 1%a;. i€ {1.2..... n}. {ra,; is not conjugare
to any 'r.B,;) either. Hence v(G) > (n—-s5—-1)+is—1)=n -2 and =0

HGHz)) S vlG) = 1. for any = £ Z{G) Y {1}. as required.

]

{3b)  Suppose 22 € 42. Then corresponding to the subgronps

l=By< B <--< B, =4

3

we obtain s conjugacy classes of non-normal subgroups. These are represented

bv (r).{r.Bp)..... r.Bs_1}. The proof of this fact is nearly identical to the
. . p . 2 . -

one given in (3al. just remember 1° & A2

Next consider

AiA? = (T A A7 x (@) A% A% x - X (Ao AT AR

—

By the same reasoning as used in (3a). (ra;) is non-normal for each i &
{2..... n—s—1}. Also (ra;) and {(za;) are not conjugate if i % j since
(ra;)¥ = ra;ra;.g] implies that a; = a; mod G’ or a; = r%¢; mod G’. Finally
{ra;) is not conjugate to {r.B;) if i # j. Indeed. by virtue of size the only
possibility is that (z) is conjugate to (ra;) and 2% # a; mod A2 = G’. So again

we have v(G) > (n—s—2)+s=n—2, and G is not a counter example. This

concludes case 1.

Case 2. v(G/N) # 0 for some minimal normal subgroup N of G.

18



Having dealt with the situation v(G/N} = v(G) in case 1. we mayv as-
sume that v(G/N) < v(G) and there exists a .V € Z(G'N) such that

00G (= N3) < w(G/N)— 1. Note that z? € Z{G) since

foreach g € Gas z.g' € N C Z(G). We now consider the various possibilities.

Case 2(a). If 2 = 1 then /(G/N) < v(G/N)+2 < v(G)~+ 1. and the result

holds for G.
Case 2(b). If - € Z(G) then G is not a counter example since

G =Gz N =1 < uvG/INY=2< (G -1

Case 2(c). If NV < (z). then
HGHPN =FHG (=N =1 <G/ Ny +2<viGi—1
and the result holds in this case.
Case 2(d). If v(G) > v{G:N)+1 then
HG/{(2P)) =G/ (. \)) +2 < viG/N)+3 < v(G)~ 1.

and so this case is done.

In view of the above cases we may assume that |zj = p**!. exrp(Z(G)) = p".
n>0.v(G) =v(G/NV)+1. and since [2.G] < .V £ (2).(z) € G. Let A =
(zF"). Now. v(G/AI) # 0 as (z) is not normal in G. If ¥(G/Af) = v(G) then we
are done by Case 1 and if v(G/M) # v(G) then by the argument above there
isazM € Z(G/A) such that (Z) ¢ G and v(G) = v(G/M)+1. Thus N < (3)
just as M/ < (z). Consider the minimal normal subgroup L = (mn), where

(m) = M and (n) = N. If v(G/L) # 0 then another repetition of the above
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argument will vield a contradiction by forcing v(G/L) + 1 = v(G) so that
(z) and {Z) would have to be conjugate-vet contain different minimal normal
subgroups of G. Otherwise. since M.V C G'. (G/L) = 0. G/'L = Qg x E
(£ elementary abelian) and G’ = MN. Now. ()% = 27° = mn and so
TG = L else {(zT) ¢« G yet contains L. (Note [Fz.G] # 1 since for each

g€ G Zigl=(Zglz.gl =lonlvifzg] = Z.g = 1) Let x £ G such
that [r.z] = n. Then [x.T} = m. It follows that (r) <1 G. Since v(G/N )+ 1 =
v(G My+1=uv(G). either M < {r}or.V < {r). Assume that M/ < {r:. Then

IS a

n

since v(G/ N =1 = v(G) we conclude that (r) is conjugate to (z}. Thi
contradiction because r9 € {r.rn.rm.rnm} for each ¢ € G bur r.: = n.

This completes the second case.

Case 3. v(G) > v(G/N) = 0 for all minimal normal subgroups .\ of G.

(1]

We split the proof into two cases depending on whether p > 2 or p =

Case 3{a). p > 2. Then G’ = \ is the unique minimal normal subgroup
of G. from which it follows that Z(G) is cvelic and ¢? € Z(G) for all g £ G.
Let Z(G) = {z) and let \G/Z(G} = p*™' Let {x;.i = 1...... s+ 1} be a
minimal set of generators of G mod Z(G) such that a maximum number of
the z; satisfv (2,) < G. If this number is zero then every subgroup of G is
normal and G is Abelian. a contradiction. So assume {z;) < G.i = 1..... t.
Then (r,_;.....x541.2) is Abelian and every subgroup of this group is normal
in G. This group must be cyclic because Z(G) is cvclic and hence ¢t = 5. Now
HG/Z(G)) =s+1and v(G) > ssince (1;) 9« G.i=1..... s and these non-
normal subgroups lie in distinct conjugacy classes since (z;) £ (z;) mod G".

Thus the result holds in this case.

Case 3(b). p = 2. Here G/\N is either Abelian or isomorphic to Qg x E

where E is an elementary Abelian 2—group. In either case V' is the unique
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minimal normal subgroup of G. This mayv be argued as follows:

If M is another such subgroup then v(G/M) = 0. Take r € G where
(r) € G. Since ()N, (r)) are normal in G. there exists an element + € &
such that r* =r'n = r’m forsome 1 #n € N andsome l = m € M. Ifr* = 4
then n =mand NV = M. If " # 17 then 1 # /mn) < (r) and v(G (mn}) 2 0.
a contradiction.

From the uniqueness of the minimal normal subgroup V. it follows rhar
Z(G) is cyclic. say Z(G) = (z). (In other words. forall v # 1 £ G. ‘1) <G if
and only if V < {2)). Indeed. 1 # (r} <& implies that () N Z(G) £ 1 which
mweans that .\ < {r). Converselv. if N < 7r) then (r} <G as viG/\N) = 0. Thus
{r) < G implies (r; = . Indeed. if {1} 4 G then (r) "N = 1. If N = G then
r? € Z(G) and so ix! = 2. Otherwise G\ = Qg x E and if |r. > 2 there exists
a y € G such that [r.y] = 22 or r®n. But then {r* < G ver (2°.y = 1 and
w2 E; =1 and this is a contradiction. since G = (r.y. E. N and 22 2 Z.G).

Now if G/N = Qg x E and H = (r.y) < G such thar (7. y; N'NV = Q..
then [zl = yl =8 N < ()N (y). > = y*> mod N and |H| = 16. Under these
circumstances .V is the unique subgroup of order 2 in H. also H is non-Abelian
and Dedekind. By Dedekind's theorem no such group of order 16 exists. Thus
we may assume that G/ is Abelian so that G/Z(G) is an elementary Abelian
2—group.

Let |G/Z(G)  =25*!. Let {ry.i=1..... s+ 1} be a minimal set of genera-
tors of G mod Z(G) such that a maximum number of the r, satisfy {r;) ¢ G.
Say {r;.i=1..... t} is such a set. Then every subgroup of (zi4...... Toiy.2)
is normal in G. If this group is Abelian then it is cyclic as Z(G) is cyclic.
Hence t = 5. ((G/(z)) = s+ 1 and v(G) > s since {r;) 4 G.i = 1..... s and

they lie in distinct conjugacy classes. In this case the result holds.



If this group is not Abelian then it is isomorphic to Qg. Z(G) = N. f = s—1
and £(G) =s—2. Now t > 0 since G is not 1somorphic to Q3. Let {' = (r;.7 =
L..... thand V= wrpoy. 2pin) = Q. Forany i < tand any € VN (rp)? =
vPe = 1?n or v? = 1 or v2. By the maximality of ¢. (r;0')% 2 1 as ‘x,0) is nor
a subgroup of {". Hence [r,.v| =1 for each i and so " centralizes 1" Thus [ is
non-Abelian. Say (1.x9) = n # 1. Then (riryr, )2 = (ryr)2r2 | =02 =1
and this contradicts the maximality of t. Thus this case can not arize and the

result is established. =

Thiz bound is sharp in the sense that there are p-groups in which the
bound is attained. Indeed. all p-groups G with v(Gi = 1 do have a central.

A

cvelie subgroup (z) such that the primme length of G /¢ is v{G} = L. However.
improvement may be possible and a better bound could be nused to improve
the bounds in many of the subsequent results.

We next extend this result to all finite nilpotent groups.

Proposition 2.2 Let G be a finite nilpotent group with v(Gy = 0. Then for
some prime p. there is a p-element = £ 1 in the centre ZiG) of G such that

E§G iz < v(G) + 1.

Proof: Since v(G) # 0 there is a prime p. such that v(S,) # 0 for some Sylow
p-subgroup S,. Write G as the direct product S, x K. By Proposition 1.6 and

the fact that every p-group P has a normal subgroup of each order 1. p. . ... Py
U(G) = v(Sp)v(K) + v(Sp)u(K) + pu(S,)v(K) > v(S,)(€(K) + 1).

where p(K') is the number of normal subgroups of K. Byv Lemma 2.1. there

exists an element z € Z(S,) such that
€G/(2)) = UG/Sp) + €(Sp/(2)) S E€K) +v(S,) + 1
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and this is cerrainly less than or equal to v(S,)(F(A) = 1) = | as v(S,) > 1.

—
-

This completes the proof.

Note that the above proof actually shows that if ¢ is a finite nilporent
group. rhen for any prime p such that v({S,) # 0. there exists a central
p-elenient = # 1 such that £(G/{z)) < v((G) ~ 1.

In fact. the bound given in the above proposition is a poor one if G is
a nilpotent group that is not a p-group. This is clear from Proposition 1.6.
since as the number of primes involved in the order of G grows. v(G) increases
much more quickly than the prime length of the centre. Information abour rhe
Svlow subgroups of G vields a better estimate of the prime lengrh of G. .
The following bound of £{G,/Z((G)) is an example of this fact.

Corollary 2.3 Let G be a finite. non-Dedekind. nilpotent group. If G = S,, x

-

8 . - e
Spy X+ X Sy . where S, 15 a non-trivial Sylow-p; subgroup of G then

v{Sp ) = viSpt+ - =Sy 0 =k if 240G

WG ZIGY) < : | ,
viSp ) +=uiSp ) — = (S, —k—1 2. G.

Proof: Let GG be as described above. Assume without loss of generality that

v(Sp)#0.0€{1.2..... stand v(S,)=0fori=s+1..... k. If 241G then

Sp, is central foreach i =s+1..... k and so by Lemma 2.1.
HG/Z(G)) = €Sp/Z(Sp)) =+ E(Sp./Z(Sp,))
< v(Sp)+1—-+u(S5,,)+1
= v(Sy)+ - +v(Sp) +s
< v(Sp)+ -+ u(Sy,) + K

If2 | |G| then let S; be the Sylow-2 subgroup. If v(S,) # 0 or S, is Abelian then

the argument above still holds. Otherwise. S; = Qg x E for some elementary
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Abelian subgroup E. so that £(S5;/Z(S5)) = 2. Again by Lemma 2.1.
AG/ZIGN < viSp )+ ... S, i~k + L.
(The extra | was needed because #(Ss/Z(S2)) = v(Sa) =1 + 1.} 7

Note that if G = M(p™) > Qg for some n > 3 and some prime p = 2 (M {p™
as decribed in Proposition 1.7). then /(G /Z(G)) = 4 = v(M(p*" N+ Qs )+2~1

so that the bound must indeed be increased by 1 if 2 | {G!.

The following result was conjectured by Brandl in Br2] and first proved by
Poland and Rhemtulla in [PR.. It follows as a natural corollary to Proposition

2.2,

Corollary 2.4 (Poland and Rhemtulla) [PR! Let G be a finite nilpotent
group of class ¢ and let G have precisely v(G) > 0 conjugacy classes of non-

normal subgroups. Then

c<1—uviGh.

Proof: First assume G is a p-group. Then by Lemma 2.1. /G Z1G) < i Gi—1
and since either G is Abelian or £(G;Z._;(G)) > 2. the upper central series of
G has length at most 1 + v(G) as required.

Next assume that G = S, x 5p, x-- - x S, . where S, is a non-trivial Sylow-
p; subgroup of G foreach i =1.2..... k. It is well-known that the nilpotency
class of G is the maximum of the nilpotency classes of the S,,. If S, has the

maximal nilpotency class. ¢(S,, ). then
o(G) = c(Sp) < U(Sp) +1 < W(G) +1.

as required.
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2.2 Restrictions on v(G)

The main purpose of this section is to point out that for p-groups with p a
fixed prime. there are some values v(G) can not attain. Specifically. we show

that v(G) # 2.3.....p — 1 for any p-group. (p odd).

Lemma 2.5 Let G be a finite p-group with v(G) > 0. Then either (G = 1

orviG) > p.

Proof: Assume not and that G is a counter example of minimal order p*. For
each minimal normal subgroup V' of G. either v(G/N) = 0 or (G 'N) = 1.
Let N < Z(G and V' = p. Note that we mav assume that p > 2.

First suppose that v(G/\) = 0. for some minimal normal subgroup N of G.
Then ¢’ = N < Z(G) and for each g £ G. ¢? € Z(G). We first show that Z(G)
must be cvelic. Indeed. suppose that M\ < Z(G).i M = p.and M NN = L.
Then v(G M1 = 1. The structure of p-groups with a unique conjugacy class
of non-normal subgroups has been outlined. these are precisely the p — groups
M{p™) = {a.b:a?" ™ = = 1.a® = a®" =) where n > 4 in the case p = 2 and
n 2 3 otherwise (see Theorem 1.2). Hence G/ has a non-normal subgroup
of order p and consequently G has a cyclic non-normal subgroup of order at
most p?. Let M/ = (m) and N = (n).

If (g) £ G has order p then none of the following p-subgroups are normal

in G since thev are of order p and are not central

(g). {gm).(gm?)..... (gmP~1y.

In fact these p subgroups represent p distinct conjugacy classes of non-normal

subgroups. since G’ = .V implies that for each h € G and j € {0.1..... p—1}
(gmj)h - gmjna — gimki — (grnk)i
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onlvifi=1l.a=0and j =k as {(g) " Z(G) = L and M 7N = 1. Thus
v(G) > p — 1. contradicting the assertion that G is a counrer example. Thus
G has no non-normal subgroups of order p.

Since v(G/M) = 1 there is a non-normal subgroup (r) of G such that
M < (x).|r| = p*. Furthermore. if L, = (mn%).i € {0.1..... p — 1} then by
the above argument. v(G/L;) = 1 and there is an (r,; < G such that L, < (1,3
and i{r;}i = p*. By the normality of the L;.i =0.1..... p — 1. we see that (r,;
can not be conjugare to {r;) unless { = j. Thus v(G) > p.

So assume that Z(G) is evelic. Note that g? £ Z(G) for each g £ G so that

if {(g; < G then g = p. If (x}. (t) < G that are not conjugare. then
: N 9 . —1-
(I frty (et {rtP~1
are distinet non-normal subgroups since
TR psyp st oy (B)
()P = PP ) = 1

Furthermore these subgroups are not conjugate. Indeed. since G’ = \ the
element rt' is only conjugate to rt'nl.j € {0.1..... p— L} and wat/ =
r5t9°n” . for some integer ~. So rt'n? = r*t*n” implies r'~* = #*"'n>"J and
because (r) and (t) are not conjugate s = 1./ = jsand ~ = j. Thus { = j
and v(G) > p. This contradicts the initial assumption. Thus G has a unique
conjugacy class of cyclic. non-normal subgroups represented by (r).

Suppose H < G and H is not cyclic. Then since all subgroups of order p
have the form .V or (zn?).j € {0.1..... p — 1}. any non-cyclic subgroup of G
must contain N and hence H <« G. In this instance. v(G) = 1 and G is not a
counter example.

If (G/N) = 1 then by Theorem 1.2 G = (r,y)N/N, zP € N. 7" € N,
and [y.z] = y»""n%. for some a € {0,1...., p—1}. Note that NV £ (y) else (y)
hasindex pin G and G = M (p") or G is Abelian (by Theorem 4.1. Chapter 4 of
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[Sul}). and viG) < 1. Also. {{z.y;| = p. Now G’ = {ir.y}) and hence G/i[r.y))
is Abelian. Indeed. G = {z'y’n* : i. j. k are integers}. Moreover [r. y! is cenrral
so that for all integers i. j.a.b. 7'y’ £%y®! is a power of [r. y] using the standard
commutator identities. (see 'Rob} 5.1.5). Therefore G’ = ([r. y]) as required.
So by appealing to the first case. G is not a counter example and we have

the required result. —

In the previous section. we produced a bound for the prime length of a
certain central quotient of G. It is natural to ask if we can produce a bound
not only for the length but also for the order of the central quotient of G in
terms of v(G). In the paper L. a bound for (G : Z(G) was produced in terms
of v(G) and the primes involved in the order of G. where G is any finite group.
Counsider finite groups with v(G) = 1. (see Theorem 1.2).

-
A

a9 .y . n—1 . + -
p- G = ry:a? =y =1liry =0t "

G:Z(G) =
pg fG=PxQ.|Pl=p.Q =q" p.q distiner primes.

From these examples we can see that bounding (G : Z(G)] by a function of
v(() alone is not always possible. However. in the case that G is a p-group we
can write {G : Z(G); as a function of v(G). except in the instance that v(G) <

1. This follows from the previous Lemma.

Corollary 2.6 If G is a finite p-group with v(G) > 1 then there exists an
element : € Z(G) so that

G 1 (2)] < p(G)HO,

Proof: This follows immediately from Lemmas 2.1 and 2.5. ad

V]
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We can. in fact. explicitly srate all finite p-groups G with v(G) = p. We
shall see that an infinite number of such groups exist. The crux of the proof
is the fact that if V is a minimal normal subgroup of G then by Lemma 2.5
either v(G/N) = 0.1 or v(G/N) = v(G) = p. and we know the structure of

such groups.

Lemma 2.7 Let G be a finite p-group. If v(G) = p then either p = 2 and
G = D(8). or G = Q(16) or p is any prime and

3.

G=(ry: 2P =y =lLay=r"""n>4

Proof: We begin by verifving that each of the above groups do indeed saristy

v(G) = p. By Proposition 1.7. vt D(8)) = v(Q{16)) = 2. Consider

—2

=y =11y =17 "\.n>4

. el
G=r.y: 1P

- ' . n=J3. TR . N
Note that G' = (P ) has order p. 27 € Z(G) and that the subgroup . r?: x

[y} is central of index p® in G and hence equal to Z(G). Also

(bl.zyJ)P': — (J_"')p“(yj)pd { [yj. T J o

fp#2orifp=2anda>1.1fp=2
(r*y)? = ()Pl 1)

[t follows that all elements of order p lie in Z(G) : Either p # 2 and
(z'y?)? = 1 only when (r*)? = 1 and (y?)? = 1 or p = 2 and (z'y?)? = 1 means
that j = 0 or 2 mod 4 as (z) N (y) = 1 and so (z)? = ()2 = 1. Hence if
H < G is not cyclic, then G’ < H <G since any 2 distinct subgroups of order p
generate a group containing G’ and H = Qg implies G’ C H. In fact, (z'y?) is

normal if |z?| > p? since under such circumstances G’ lies inside the subgroup.
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Finally. (r*y?) < G if and only if 2'y| = p? and [y?| = p°. Indeed. {rtyd)
1s non-normal precisely when it has order p® and does not contain G’. In other
words. when [yt = p? and /i = p®. The number of such subgroups is
p?. Since ‘G'; = p. each non-normal subgroup (r'y’) has p conjugares and so
v(G) = p. as required.

Now. let G be a p-group with v(G) = p and |G| = p". First we will dispense
with a few special cases. mainly where 2-groups cause extra problems.

If G has a maximal subgroup that is cyvclic then G = D(8; or G = Q(16:.
This follows from Proposition 1.7. where the p-groups G with a maximal cyvelic
subgroup are described and v(G) is given as a function of n.

If G has a unique subgroup of order p then G = Q(16). Indeed by Theorem
4.4 of Sul. G is cyclic or G = Q(2") for some n. Thus by Proposition 1.7
n = 4 is the only possibility.

It v(G) = v(G/N) = p for some minimal normal subgroup V of G then
p=2and G=Q(16)or G = (r.y: 2 = y* = 1.{z.y = r?. Indeed. we noted
in the proof of Lemma 2.1 that if v(G) = v{G/N) then G is a 2-group with
only three possible forms and lower bounds for v(G) were also given in terms
of n. For the first two types of 2-groups. v(G) = v(G/N) > 3. thus the only
possibility is G = (2)4. /G| = 2™ Note n < 4. as v(G) > n — 2. Since neither
G nor G/.N is Abelian. n = 4 is the only valid possibility. Using GAP aud
the library of 2-groups contained therein.( see [Sc]). one can establish that
there are. up to isomorphism. only 2 groups of order 16 with v(G) = 2. The 2
groups given above are non-isomorphic with exactly two conjugacy classes of
non-normal subgroups each (Q(16) has only one element of order 2 while the

second group has 3, so they are not isomorphic), and so they are the required

groups.



If(G/Ny =0 and G' = V for some minimal normal subgroup .V of G
then |Gi = 3.16 or 32 and G has one of the forms stated in rhe lemma. Indeed
by Theorem 1.1 G- N = Q(8) x E for some olementar}' Abelian group £ and
so exrp(Z(G)) = 2or+4 By Lemma 2.1 (GG : {z})] = 4 or 8. for some central
element z and so iG] = 8. 16. or 32. Again by using GAP ane establishes that
there is exactly one group of order 8. 2 of order 16 and one of order 32. up to
isomorphism. with v(G) = 2. We have provided descriptions of these groups
in the hyvpothesis. as required.

Now let us consider the general case. Ler \ be a minimal normal subgroup
of G. By the comments above aud Lemma 2.5. we mayv assume thar either

VG Ny=0and G'=Norv|G NVi=1.

Assume that v(G/V) = 0 and G’ = V. Then we mayv assume that Z(G is
not cvclic. This may be established as follows. Assume ZiG) is cvelic. Then
N = G’ is the only normal subgroup of order p. If .¢* and (# are rwo non-
conjugate. non-normal subgroups of order p in G and p = 2 then by the same

argument used in Lemima 2.3. the groups
(). Ry ghd.gh® L. g

represent p -1 distinct conjugacy classes of non-normal subgroups of order p.
contradicting the fact that v(G) = p.

If p=2and (g). (h) are as defined above with order 2. then either (gh) < G-
a contradiction or {{gh)| = 4 and {(gh)?) = N. Let ¢ € Z(G) such that !c| = 4.
(If no such c¢ exists then ¢{G) < v(G) =2 < 4 so that ;G! < 16 and we know

the possible structures.)

Now (ghc) € Z(G) and if N = (n).
(ghe)® = (gh)*c* =n* = 1.

Thus (ghc) & G. Since ghc # gn and ghc # hn we have a third conjugacy

I‘J

class of non-normal subgroups and a contradiction.
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If G has exactly one conjugacy class of non-normal subgroups of order p
then the elements of order p in G consist of the set (g)x V' {1}. Let H < G such
that (H: > p*. If H is cvclic. sav H = (h) then G’ € H since h? = 1 £ Z(G).
If H is not cyclic then either G’ < H or H has a unique subgroup of order p.
This would mean that H is generalized quaternion and non-Abelian and hence
contains G'. Thus v(G) = 1. Consequently. we can assume Z{G) is not cvelic.

Let 1/ be a second minimal normal subgroup of G. Then v(G) 2 v(G M)
by the comments above and v(G/M) # 0 as G’ = V. Thus v(G M) = 1. Thus
by Theorem 1.2. we may assume that there exists n >4 (n > 5 if p = 21 and
elements r and y in G so that 22" 7> € M. y» € M. 7.y = 2"’ mod M aud

We mayv assume that "7 = 1 else ¢ has a maximal sttbgroup which
is cvelic - a possibility that has alreadyv been considered. Now suppose thar

M <L (yysothat y' = pand () 4 G. Then the subgroups
yyolymo. L. cymPh

are non-central subgroups of order p and hence nou-normal. Furthermore rthey

are pairwise non-conjugate since
(ym')? = ym'n® = y*m’®

implies that y'=¢ € Z(G) which means that ¢ = 1 mod p and i = j. Since
(W)W < G as well. v(G) > p + 1. a contradiction.

Thus we may assume that M < {(y) & G and |y = p®. Now. M, =
(mn').i = 0.1.....p — 1 are p minimal normal subgroups of G such that
M; N = 1. By the above argument, for each i there is a subgroup (y;) of
order p? such that AL; < (y;) 4 G. Since v(G) = p we have just accounted
for all the conjugacy classes of non-normal subgroups. If n > 4 then since

lz| > p?.(z) <G and [r.y] = zP"7". This completely determines G as the
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semi-direct product of (1) and (y} as 1 # r.y € Z(G). In this case

n=-2 2 - - 1-=13
yo=1l oy =12

G={r.y:rz?

If n =4 then G/M = M{p®).p#2.G' = \. Note that G has one element
of order 1. p> — 1 elements of order p {as Z{G) = M/ V) and we mav assune
that G has 0 elements of order p* to avoid the existence of a maximal cvelic
subgroup. Hence G has p* — p? elements of order p®. Since v(G) = p and all
non-normal subgroups of &G have p conjugates (as !G’i = Vi we mav assunie
that G has p* cyclic non-normal subgroups and p normal cyvelic subgroups
of order p®. Let (T} <G such that 'T! = p®. Then if ‘y: < G. iy = p° and

Ty = 1sothat G = T {y;. Now

Replace y by a power of y if necessarv and we can assume that. even when
n =4,

G=(r.y:z°

as required.

Finally. assume that v(G /M) £ 0 for each minimal normnal subgroup ./ of
G. Then we may assume that v(G/M) = 1. If Z(G) is not cyvelic then there
are at least p + | minimal normal subgroups. each contained in a non-normal
subgroup of order p*. Hence v(G) > p = 1.

If Z(G) is cvclic then we may assume that v(G/N) = 1.n > 4 and there
exists 7.y € G so that 2" = 1.4» = 1 mod N.(y)V ¢ G and r.yl =
27" mod N. Now. since ¥ £ (r) and [zP.y] = 1. we conclude z? € Z(G) and

obtain the contradiction that |z| = p. This establishes the lemma. a

We have now given two sets of examples of p-groups where v(G) is “small”.

(v(G) =1 and v(G) = p) but where £(G) can be arbitrarily large. We note
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in the next section. that for finite nilpotent groups G. if £1G) is much larger

than v(G) then something can be said about the structure of the group G.

2.3 Bounding the Prime Length of (¢ and G’

Having bounded #£(G/{z)) by a function of v(G). we now investigate bounding

£{G) with a function of v(G). To this end we note the following.

Lemma 2.8 Let G be a finite p-group with viG) = v > 0. If ((G) > 21 — 1
then there erists an element = in the centre Z(G) of G. such that G 'z is

Abelian and £(G/{z)) < v —~1.

Proof: Let G be a counter example of minimal prime length £(G1 > 21 G — L.
By Lemima 2.1 there exists an element = £ Z{G} such that /G (2 <1~ 1.
By assumption G/ € (). Let w = z?"7" where p” is the order of z. Observe
that r > 1. otherwise /(G) = (G (2)) =1 < r—2 <2+ 1. Now consider the

/ (2

group G,/ {w). lf v(G/{(w})) =0 then since G' € (w). p=2. {G' w) w =

(3]

and Z(Gwp ) is of exponent 2. Thus (20 < 4 and /(G) < HG 21 =2 <
r+3 < 2v+1. (Recall from Theorem 1.2 rhat the only finite p-groups G wirh
v(G) =1lare (a.b:a”"” =b =1.a> =" 71 where n > 1 in the case p = 2.
These groups do not have a central quotient that is non-Ahelian as the centre
is cyelic and G’ is of order p ). If v(G/(uw)) = v(G). then G is one of three
types as described in Case 1 of the proof of Lemma 2.1. In all these cases.
(G < 20(G) + 1.

Indeed. if G = @ x Cy x E as in Case 1(1) then {(G) = ¢(E) + 5 and
v(G) 2 3(¢(E) + 1) so that

LG)=EE)+5<v(G)-1+5<20(G)+ 1.
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IfG = Q) <@y x E as in Case 1{2) then A(G) = {E)+ 6 and v1 G} >
9(F(E) = 1) so that

FGY=HE)+06<uv(G)~3 < WwiG)~ 1.
Finally. if ¢ = {r)d. as in Case 1(3) then v(G) > #(G) — 2 so that
MG < viG)=2<2G)+1

We may thus assume that 0 < v(G/{w)) < v(G). By the minimality of
£{G). there exists an element y € G such that [y. G < ‘wh.yP € ZIGi. (G "y wy <
V(G eyt =Tand G' < Geayd as (G lwed)y > wiG iy = 1 I Ly, D ey = 1.

then {y) 7 {2} = 1 and since /{G/{z)) < 1+ 1 it follows thar fi¢y:1 < . Thus

HGY =Gy u) =iy +1 < vG/lud)+rv=2<(v-D+r+2=2~1

and we are done.

Hence assume w € (y}. Then G' < {y}. {(G/iy)) <vand (G P ) < v=1.
Recall. y? € Z(G) and so if G' < (yP'. then we are done.

If G’ = (y) then by a Lemma of Schur {see 10.1.4 Rob’) the exponent of
G’ is at most p*7! since ({(G/Z(G)) < v+ 1. As G is cvelic. H{G') < v+ 1: s0

G' = (y) implies {({y)) < v + 1 and hence
LG)=HG/ (M + ) <v=v+1=Ww+1
This completes the proof. O

Next we extend this result to all finite nilpotent groups.

Lemma 2.9 Let G be a finite nilpotent group with v(G) = v > 0. If €(G) >
2v + 1 then for some prime p.G = A x B where A is a Dedekind p’-subgroup.
B is a p-subgroup and there is an element z € Z(B) such that B’ is a subgroup
of (z). and £(G/(2)) < v(G) + 1.
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Proof: 1f G is a p-group then the result follows from Lemma 2.8. so assume
G = []5;. (where S; is a Sylow-q subgroup of G). is the direct product of at
least two non-trivial Svlow subgroups. Recall that a p-group of order p* has
normal subgroups of sizes p* for each integer 0 < & < n.(This can be proved
by induction on n.) Thus. if x(S,) is the number of normal subgroups of S,
then /1(5g) > £(5y) + 1.

Suppose that G has at least two non-Dedekind Sylow subgroups. S,, and
Sp,. Then by Proposition 1.6.

V(G 2 Sy ) [[(F(Sq) = 11 = i,y 1Sy — 1)
q=p g=pz
so that
VIG) 2 viSy ) = 1 Sp 1= > (15,

where the sum runs over all primes q. dividing ‘G!. In this case. ¢/G) < v(Gi <
Gy + L.

Next assume that G = 4 x B. where 4 is a Dedekind p'-subgroup and B
is a p-subgroup with v(B) > 0. If {(B) < 2v(B) + 1 then using the relation

v(G) > v(B) Hp#q('é'(sq‘) -~ 1). (which follows from Proposition 1.61. we have
(Gr =) £S) <Y S)+2w(B)+1<2w(G)+1.
q=p

as required.

Finally. if {(B) > 2v(B)+1 then by Lemma 2.8 above. G = 4 x B where 4
is a Dedekind p’-subgroup. B is a p-subgroup and there is an element z € Z(B)
such that B’ is a subgroup of (z), and ¢(B/(z)) < v(B). By Proposition 1.6.
€G/(2)) < v(G) + 1. as required. c

A natural question is whether there is a converse to Lemma 2.9. where we
bounded £(G) above with a function of v(G) except for groups with a specified

structure. We can always bound v(G) trivially by a function of |{G|. (indeed.
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the total number of subgroups of G is bounded by 2% ). In the caze when G is
nilpotenr and £(G) > 2v(G) + 1 we can obtain the following upper bound for
viG) in terms of £(G,(z)) and the prime divisors of |G|. where {2, is a central

element of G of prime power order of the type mentioned in Lemma 2.9.

Lemma 2.10 Let G bhe a finite nilpotent group with v(G) = v > 0 and /(G >
2v + 1. Suppose that G = A x B where A is a Dedekind p'—qroup and B i~ o
p-group and C is a cyclic subgroup of Z(B} such that B' < C and 11GC) <
v(Gy+ 1. Then

VG < p(A) Y 1T Clp -1
C<J<B

where p{ Ay 1s the number of subgroups of A.

Proof: By Proposition 1.6. v(G) = p{Aw({B). So we can assume that 4 =1
and G = B is a finite p-group. Note that if H < B. then since B’ < (. H ix
normal in B if and only if [HC. B; C H N C. Thus the number of non-normal
subgroups of B is precisely 3, n;p where the sum ranges over all pairs of
subgroups ¢' < J < B and D < C such that .J' < Dbut /. B Z D and np
is the number of subgroups H such that HC = J and H nC = D.

Indeed. if H < G then there exists a subgroup J of G so that (' < .J < B
and HC = J. (HC # Celse H < C and HC # Belse J'= B’ = J. B"\. Let
D=HNC. Then H=J <HNC=Dbut [H.B]={J.B|Z D. Thus H is
accounted for by the term ngyc g~c of the summation. Conversely. if H < G
such that HC'=J and HNC = D then H ¢ G since [H.B] € D=HnNC.

Fix J. C < .J < B. Since the only restriction on D is that J' < D < [J. B].
the number of possible D is ¢([.J. B1/J’). Now fix D. Eithernyp =0or nyp =
|.J/C|. We prove this fact below. Assume n;p % 0. Work modulo D. Let
H < Bsuchthat HC = Jand HNC = D. Then we can say HC = H x( (since

we are working modulo D). First note that. modulo D. n;p = |[Hom(H,C)|.
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Indeed. it o € Hom(H.C) then let H, = {hoth): h € H}. H, < B since. for
each h.k € H.
hothiko(k) = hkolh)olk) = hko{hk)

and

(hoth))™ = oth)™th™t = A lorh™),

Furthermore if ¢ = 0 € Homn(H.C') then H, = H, since hoth) = kaik)
implies that Ak~ = o(kloth™') € HNC =1 mod D. Also H.C' = .J and
H, " C = 1 mod D since holhy € C implies that h € H A C = 1. Thus
nygp > Hom(H.C); modulo D.

Conversely. let A < Bsuchthat N\C=Jand A~oC=D.lero: H—C

such that h — z; where h = bpzp. kn € R and 2, £ C. 0 is well defined since
h=kpzy = ki3 = A'hkl'l = :h"l:z sAnC=1modD

which means that & = &4 and =z, = . 0 is a homomorphism since. it h = &y, 2,

and [ = k;z are two elements of H then
O(‘h[\J = O(A‘h:hkllli‘) = olkpbizpz) = w3 = 0olh ot/

Thus if nyp # 0 then n;p = ‘Hom(H.C); modulo D. But. modulo D.
Hom{H.C)| < '!H|. Indeed. modulo D. H is Abelian (as H' € D). Sav

H = (k) x (ha) x -+ x (hg).

Anv o € Hom(H.C') is completely determined by where it sends the h;

and the fact that [o(h;)| < |h;!. Hence.
nygp = [Hom(H.C)| < [hillths] ... |h| = |H| modulo D.

Hence if n;p # 0 then n;p < |J/C| (with equality if |C] > exrp(H) mod D.)



Thus the total number of non-normal subgroups of B is at most

Z Z’L/.DS Z JICECTBYT.

C<J<B D C<J<B
From this we can now obtain a crude upper bound for v(G). We shall see

that if H 4 G then H has at least ![B. H|/H N C| conjugates in B. Indeed.
the number of conjugates of H in B is (B : Ng(H).. Since B’ is cvelic we can
choose g € B and h € H such that iB.H = ({g.h]}. Now. g £ Ng(H i and
since B' T Z(B)
gt okl =g k)

so that g% € Ng(H) if and only if (ig. A2 € H C.

Thus.

expt B/ NgiH}) 2 erpt HB HNCi= H.B - H~C..

since B’ is cvelic.

Finallv. as D = HNC varies from J' < D < {J. B]. ||H. Bl  H"C' decreases

froni say p” to p and so

. 1 l 1
viBi < JC (_r s )
C<J<B pp p
- .

= ¥ i <—> <p 1 )
C<J<B P/ \pP-

< > WJCp-1)
C<J<B

—
[}

as required.

Note that. since p(.4) is a function of the prime divisors of . it is generally

not sufficient to know £(G/C) to bound v(G). we need to know all the prime

divisors of |G| as well.
Finally we bound ¢(G’) above by a function of v(G). Note by Proposition
2.2 and the Lemma of Schur( 10.1.4 [Rob]). the existence of such a bound is

known. The following bound is more exact.
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Lemma 2.11 If G s a finite p-group. and G s not Hamiltonian. then
G < v(G).

Proof: Induct on n where G' = p". If G is Abelian then v{(G) =0 = ¢{G":. In
particular this is the case if n < 2. So assume v(G) > 0 and the result holds for
all groups of order p*. Let |G| = p*~!. Let .V be a minimal normal subgroup of
G. By the induction assumption either v(G/Nj = 0 or FI{G/N)) < v(G/N).
First suppose that v(G/N) £ 0. Then ((G') < v(G,/N)= 1. If(G/N) = vi(5)
then we are done. If v(G) = v(G/N) then p = 2 and by Case I of the proof of

Lemma 2.1 either
1. G=QQ8) <« Q) x E.viG)>9and IG" =4 or
2.G=2QRRY<xCyx E.viG)>23and \G" =2or

3. G = iryA. v(G) > n—2and ¢’ = 4% has length at most n — 2 since

A = dand r £ A

In all three instances the assertion holds.
It v{(G/N) = 0 then either G' = N (and since v{G) # 0 we are donej or
G/N = Q(8) x E. E an elementary Abelian 2-group so that /(G’) < 2. Bur if

v(G) = 1 we know from Theorem 1.2 that {{G’) = 1 so we can assume that

]

v(G) > 2 and the result holds. O

Note that if G is Hamiltonian then v{G) = 0 and £{(G’) = 1.

Corollary 2.12 Let G be a finite nilpotent group. Then

V(G)+1 if2]1G].

€GN < _
v(G) if2+1G|.
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Proof: Suppose that G = 5, x 5, x

x Sp.. Then rhe result follows imme-
diately from the previous lemma and remark . the facr that ¢’

o >
=9y, < Op,
x S, and Proposition 1.6.

.

In the next chapter we consider finite groups. We extend manyv of rhe
results from this Chapter to all finite groups.
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3 Results for Finite Groups

In this Chapter we extend some of the results from Chaprer 2 to all finite

groups. We start by generalizing Proposition 2.2.

3.1 Bounding the Prime Length of a Central Quotient

Theorem 3.1 Let G be a finite group with v(G) £ 0. Then for some prime p.

there is a p-element = in the centre Z{G) of G such that ¥#iG ')y < viGi—1.

Proof: The proof is by induction on the prime length #(G.

Let G be a counter example of least prime length. Observe thar if G is a
simple group of order p®¢”...r>. then none of the subgroups of prime power
order are normal so thar v(G) > a~J3—- .-+~ =G} and rhe theorem holds
in this case. Assume that G is not simple. By Proposition 2.2 we can also

assume that G is not nilporent. Now split the proof into four cases.

Case 1. v1G'N) = v(G) for some minimal normal subgroup N of G.

As was noted in case 1 of the proof of Lemma 2.1. every non-normal sub-
group of GG will contain .V and so by Theorem 1.5. .\ is of primne order p.

Indeed. .V must be cyclic because there are cyclic. non-normal subgroups.
.V must be of prime power order else .\ lies in none of the Sylow subgroups
and hence all are normal and G is nilpotent. .\" must be of prime order because
it is a minimal normal subgroup of G.

Since N has order p all p’-subgroups of G are normal. If S is a Sylow p
subgroup of G then S 4 G else G is nilpotent. Thus G = D x S. where S is
Sylow p. D is of p’ order and every subgroup of D is normal in G. Moreover
N<Z(G)since N.D] < NND=1and [N.S] =1since N >[V.S] and

is a minimal normal subgroup of G.
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We shall now show that ZiGi is a cvelic subgroup of 5. If Z(G; <8
then it has a subgroup M = {m} of prime order ¢ # p. Now we may assime
that v(G M) # 0 else G/ is nilpotent and hence G would be nilpotent.
Also v(G/M) £ v(G). since S is a non-normal p-subgroup intersecting A/
trivially.  Thus there exists some element » £ G such that G/ r. M) <
v(G'M) = 1. r.G < M and » is of prime power order. ([t is clear thar
there is a prime r and an integer n such that ™" £ M. if necessary replace
r by 19 to obtain an element with the desired properties). If r € ZiG) then

HG o)y = AG{r M)+ 1 < viGiM) =2 < uiGy— 1 and we are done. In

particular this would be the case if r is a ¢’ —elemenr. Indeed. if \r. = r". then
l=171".g =ir.¢" =m" foreach g £ G and some 77 = M and =o g =1

for each g € G as T = q and ¢ is coprime to r.

Thus. (i1 is a g—subgroup and 27 £ Z1G). If M < (r . then again
HG/rt) =G M) =1 <G M) =2< 111G = 1. Bur if .r; > M then
ir; € G and hence contains .\ resulting in a contradiction since . .iN ; = 1.
Thus Z(G) < S.

Suppose Z{G) is not cvclic. Then there is another subgroup \; of order 17
in Z(G). Note that 0 < v(G/Ny) < v(G) since v(G N1} = 11G) =viG N as
G has a cyclic. non-normal subgroup and v(G/\) = 0 as G is nor nilpotent.
Hence there exists a prime power element y € G such thar {y.G* < N} and
G/ y-ND)) S v(G/N) + 1. 1f y € Z(G) or {y) > N,. then we are done.
using the same argument as above with » replaced by y. Similarly v(G) <
v(G/Ny) + 2 else €(G/(y?)) < v(G) + 1. and y? € Z(G). The only remaining
possibility is v(G/N1) + 1 = v(G). {y) 4 G and so (y) > .V. Now let .V = (n).
N1 = {m) and L = (nm). Repeat the above argument with .V; replaced by I to
obtain a (t) ¢ G such that [t.G] = L and .V < (¢) and ver (¢} is not conjugate

to (y). since N1 £ (t). This contradicts the fact that v(G/N}) +1 = v(G).



Thus we can assume that Z{G) is cvelic.

Note that V' is the unique subgroup of order p: for if {" is another such
subgroup then (" < G since everv non-normal subgronp contains \N. Then
L.D!'=1="T.5. and Z(G) is not cvelic. Thus bv Theorem 4.4 of Sul
S is either cyclic or generalized quaternion Q{27 for some integer n > 3.
By hypothesis. there exists a p-element F £ G such that T.G. < NV and
HGHT. N} S vlG'Ni+1 I Siseyclic. then G' < D. and ‘7. G <D N =1.
Hence T € Z{G) and 4(G/(T)) = (G 'T. NV < iGN = 1 = viGi — | and
we are done.

Thus assume S is generalized quaternion and p = 2. Then D is a Dedekind
group of odd order and therefore is Abelian. Ler 1" be a subgroup of prime
order in D. Assume v(G 1) =0. Then G 1" = Qs 4. S=Qsand ¢’ =1\
If D is cyclic of prime power order. sav ' D: = ¢" then suppose d € D hax order
g*. Since G’ = 1"\, (d?) = 1" < Z(G). contradicting the fact that Z.G) < 5.
If D =gqthen £iG/(T)) =2 < viG. N) = 1. If G is a counter example then
(G) = 1. But if v(G) = 1. then G £ C, x Qs. see Theorem 1.2.

So there exists a second subgroup V3 of prime order in . Since 1"\ = 15\")
v(G/13) # 0. and we may assume the existence of some subgroup 1 of prime
order ¢ in D so that v(G/1V7) = 0.

Now v(G) > v(G/V") > 0 since S is a non-normal 2—subgroup of G which
does not contain 1" By hypothesis. there exists some element t € G. of prime
power order. such that {t.G] < V" and £(G/{t.1")) < (G V) = 1. Note that
(t)<G. Indeed.(t) < G implies .V < (t) and hence ¢t is a 2-element and so may
be taken to liein S. Then .5} < SNV =150t € Z(S) = N = Z(G) and
(t) G after all. Thus {t.G] < V' N (t) so that either V' < () or (¢) < Z(G). If
t € Z(G) then

LG/()) =G/t V) +1<v(G/V)+2<v(G)+1
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and the resulr holds. If (¢; > V7 then ¢ € D and t7 € Z(G which implies that

t9 =1 and {¢) = \" In this case
AG' N =HGE NV =0G V0 < vG V=1 <G~ 1.

Thus no minimal counter example exists with the propertv thar vi(G, =

v(G '\ for some minimal normal subgroup V.

Case 2. Z(G) # 1. In this case there exists a normal subgroup .\ of prinie
order p in Z(G). If v(G/N) = 0. then we have the contradiction thar & is
nilpotent by the same reasoning as in Case 1. So assume. bv Case 1. thar
0 < viG N < wi@). By hypothesis. there exists = € G of prime power order
such that .G < N and /(G (:. N1 < v(G N1+ 1. Note that 27 = Z1(). as
G. If 2 =1then £iG N < viG Ni=2

[A

m

2Py = 2.9g7 =1 for each g
V(G — 1 so the result holds. If : € Z(G) then ¢(G:/'z) < HG 2. Ny =1 <
V(G- \N) =2 < v(G)— 1. So to avoid having = £ Z{G} we may assume thar =

has order a power of p. If V < .z} then
HG 22 =06 2 N+ 1< (G Ni=2<11Gr+1

and G is not a counter example. If v(G) > v(G/N) =1 then G can not be a

counfer example as
/(2P)) =6G/{)N)=2<v(G/N)+3<v(G)~1

In view of above. we may assume that z is of order p*™ 1. n > 0. N < (z}.
(z) £ G and v{G) = v(G/N) + 1. Now (") = M < Z(G). Repeat the
argument using A/ in place of .V to conclude that there exists y € G such that
EG/Hy. AD) S v(G/M) +1=v(G).ly.Gl =AM, 1#y" € Z(G) and M £ (y).
Observe {(y) 4 G since [y.G- < M. Since (y) and {(z) are non-normal non-

conjugate subgroups. .V < (y). Repeat the above argument using 1 # [ <
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MN.L=13.L £ N, L] =p. Then there exists {r} < G. r of p-power order.
v(G) =Gy Ly~1and L £ (r}). Since all non-normal subgroups of G contain L
except (r! and its conjugates. we have the contradiction that both fyyand (3
are conjugate to (r) which is impossible since thev contain different minimal
normal subgroups. Thus we can assume the center of the minimal counrer

exaniple is trivial.

Case 3. Z(G) = 1 and there exists a minimal normal subgroup N of G
such that v(G:N) = 0. Note that {N. ¢ = \.

(3a) Suppose that .V is a finite p-group so thar G is solvable. Let Sy be a
Svlow p-subgroup of G. Then S, 2 N so that S, <G, By the minimalitv of .
Sp- N =landso S, < CeiN). Since G is solvable, G = Sp ¢ Q where Q is a
p'-group.

Let h.g € S, such that 1 = {h.g. Then for anv zr £ Q. ‘h.r £ S, and
(2;.V <G sothat h* = h mod .\ Similarly. ¢* = ¢ mod \. Also. h.g® =
h*.g%! = h.g' since S, < Cg{\V). Thus S, 25,1 < Z1G) = 1 so0 that 5,
is Abelian. It follows that [S,.G! < N as 'h.Q] € NV and 5.5, =1 for each

h

Mm

S,.

Observe that .V is the unique minimal normal subgroup of G. Indeed. if A/ is
another then /PN =1.{1[.G' = M and G’ = NV sothat G'N = Q¢ x £ x A.
for some elementary Abelian 2-group E and an Abelian 2-group 4. Then
IG'"=21Nso \/|=2and M/ < Z(G) =1.

We shall next show that S, is elementarv Abelian. Suppose false: then
since 5,7 is characteristic in the normal group S,. 3, <G and also V' < Sp7
since, by assumption. 1 # SpP. Since [S,. G, < SpP. it follows that S, lies in the
hypercentre of G. Indeed. if A € S, and z € G then [h, 2] = ¢ for some o € Sp.
Thus ({h.2].y] = lo.y}? € S, for each y € G. Consequently h € Zis,(G) and

so Sp is contained in the hypercentre of G as claimed. But this contradicts the
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fact that N.G} = \.

Thus S, = N « L for some subgroup L which we mayv assume is normal
in G by Maschke’s theorem (see Rob.. Theorem 3.1.2). Thus. S, = V as .\
is the unique minimal normal subgroup of G and ¢({G) < v(G) = 1 as everv
non-trivial subgroup of @ is non-normal in G and every proper non-trivial

subgroup of V' is non-normal in G as well.

(3b) We are now left with the case where \V = 1_[;1‘ N, where NV, = \,. for
every / and V] is a non-Abelian simple gronp. Note rhat in this case every
non-trivial p--subgroup for every prime p is non-normal in G. For it 1/ is a
p—subgroup of G and M <G then M.G.G < NnM =1a3G. V= Qi< E x4
and so M < Z(G) = 1. a contradiction. Thus /(G < G and the result

holds.

Case 4. Final Case: Zi(G) = 1l and 0 < iGN} < w1 for every
minimal normal subgroup .V of G.
(4a) Suppose that every minimal normal subgroup .\ iz non-Abelian. Then

for each prime p. every p—subgroup of G is non-normal. G < viGi and we

are done.
(4b) Assume |Ni = p” for some integer r > 1. for each minimal normal
subgroup NV of G. The subgroups of .V of order p.p*..... p~~!. are all non-

normal and represent at least r — 1 conjugacy classes. Since 0 < v(G/.N) <
v(G). there exists some element z of prime power order such that z.G] = .V
and ((G/(z.V)) < v(G/N) = 1. Note N £ (r) as N is isomorphic to the
direct product of r copies of C},. Every non-trivial subgroup of {z) is non-
normal. Indeed. [z".G] = ({z".g] : g € G) <G and this subgroup lies in V.
so either [:*.G] = N or [z*.G] = L. Since Z(G) = 1 then for each " #
1. [z",G} = N. This produces ¢({z. N)/N) additional conjugacy classes of

subgroups. which do not contain N. Finally. since v(G/N) # 0. there exists
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an element 1 # r € G . {z. \) generating a non-normal subgroup (r: thar is
not conjugate to any of the above (or there is a normal subgroup of order pi.
Thus viG) 2 (G N} — (. N /N) = (V) = 1) = 1 and G is not a counter
example since

HG = 0G (2o N =0z N S v(GiNY =1 =6 2. N NT=00 N < G -1,

(4c)Thus we may assume that .\ has prine order p. Let C' = C'o:( N1 50 thar
G C is isomorphic to a cyclic group of order dividing p— 1. Bv hvporhesis there
exists a prine power element = € G such that [=.G: < Vand 1G 2. V1 <
viG N') + 1. First suppose z is a p-elenient. Then = € C since C contains all
the Sylow p-subgroups of GG. Hence :» € Z(Gi=1and <0 :» = 1. If = =\

then ({G) < viGY—1 as claimed. otherwise (z} < G. It r € G+ (. then . < G

as . N =N< .z and so v(G) > viGr N — 2 and
AG)=0G {z N =2< G, N)=3<uviGi~1.

So we may assume that : is a g-element for some prime ¢ = p. Again : = C.
otherwise it would be a central element as [z*.G = =.G? =1= .G and
Z{Gi = 1. Conclude for the same reason that (z) ~C = 1. It now foliows that
G =(C.

Indeed. note that all non-trivial subgroups of (:} are non-normal in G
because (z) NC'=1and 1 # 277, V! < V. if 29" £ 1. Thus.

v(G) 2 v(G/N) + £((2)).
Now £{(G) = £G/H{(DINY+ () +1 < v(G/N) +~{({z))+2. For G to be a
counter example.

v(G) = v(G/N) + £({2)).
Let z € G\ (z)C'. We can assume ‘z{ is of order coprime to p. Now. 1 5 [r, N] <
N so (r) ¢ G. But this contradicts the fact that v(G) = v(G/N) + £((z)).
Hence G = (z)C. as required.



We next show that ¢ = N. Suppose that ¢ € ¢ N Consider “z¢,. For all
n&e.\.
ceoni=lznfenl="zn.
Thus I # ze. NP = =V < V. Since N < {z¢). 'z¢; < G. The elenent
2 € {z2; NV G and so {ze; is not conjugate to (22} for anv power of a. This
contradicts the fact that (G = viG:N) = fiizy). Thus G = N % 'z and

AG) =6{z;) + 1 <viG) = 1. as required. =

3.2 Bounding the Prime Length of G and G’

We now shall generalize Lemma 2.9. The following lemma establishies some
properties of finite. non-nilpotent groups whose prine lenagrh is much larger

than the number of conjugacy classes of non-normal subgroups thev conrain.

Lemma 3.2 Let G be a finite group with v(iG) = v > 0. If G > 3v — 1
then for some prime p.G = A x B where A 15 a Dedekind i/ -subgroup. B 15 a

p-subgroup and B’ is a cyclic subgroup in Z{(G).

Proof: Let a central element z be chosen as in the statement of Theorem 3.1.
Put " = (z}. By Lemma 2.9 we may assume that G is not nilpotent so thar
G/C is not Dedekind. Then there is some element r € G \ C of prime power
order such that (2.Y) <& G for every subgroup ¥ < C. If {{z)}}! # [{2)}3;
when Y]] # 1Y then there are at least £(C') — | conjugacy classes of these

subgroups and by the choice of :.
LG)=EG/C)+EC)<v+1+¢C)< .

In particular, if the order of z is coprime to p. then this would be the case. So
we may assume that G = 4 x B where A4 is a Dedekind p’-subgroup (in fact.

all subgroups of .4 are normal in G). and B is a p-group containing C. B 4 G.
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Note that if 1118} = 0 rhen either B is Abelian and the result holds or
B = Qs x E. where E is an elementary Abelian 2—group. Orherwise this

lemma still holds as
HG =G/ C)=#HCY<v+1-1<3v-1.

Observe thar if H. K" are subgroups of B then H is conjugate to A" in G
only if A is conjugate to A in B. Indeed. if a € A and b € B =0 that H* =
then h* £ B for each 1 € H and since ‘a} <G and B A = 1. /h.a = | and
H® = K.

Thus 0 < v(B) < viG) (B < Gi and by Lemuma 2.9, either /B <
2v(B) — 1 {and since B = ( then #(G) < 3v — 1 by Theorem 3.1 or rhere

exists an element T € Z(B) such that B’ < %y, and /(B T 1 <11 Bi—1. Ler

N

" be the centralizer of A in B. Since for alla € 4. 'v: <G. ‘B 4 =1 and 0

B' < U Hence B' < Z{G. =

Now we are ready to prove the general result concerning the strncture of

finite groups G with v(G) much smalier than A G).

Theorem 3.3 Let G be a finite group with v(G) = v > 0. If G 15 nilpoteni
and €(G) > 2v — 1 then for some prime p.G = A x B where A is a Dedekind
p'-subgroup. B is a p-subgroup and there is an element = € Z(B) such that
B’ is a subgroup of {z). and £(G/{z)) < v(G) + 1. If G is not nilpotent but
£€(G) > 3v + 1 then for some prime p. G = A x B where A is a Dedekind
p'~subgroup and B is a p-subgroup. There erists an element = € BN Z(G)
such that €(G/(z)) < v(G) +1 and B' < (z). B = U(t). uwhere U = Cg(A)
and B' < (t). If H is a subgroup of G and H €4 AH. then B’ < H.

Proof: By Lemma 2.9 we may assume that G is not nilpotent and #(G) >

3v(G) + 1. We continue the analvsis started in Lemima 3.2. using the same
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notation. Note that B’ < €. Indeed. /(G > 31— 1. and s0 £(C'' > 21 By the
previous Lemma B’ < (T and £iB/(Z}} < wtBy— 1 < v. Since (i T:C (T =
HC COTh < uiBr—1 < v £Z7C)>v > (B). Hence B < C as
required.

Now assunie thar v(B) # 0. Observe that B/L" is evelie: if not then for
some r.y £ B U, r.y.B"/B" = {xB" /B~ yB"/B' But B < ‘T so rhar
1) T < B'or {ys N Ty < B'. Sav the former holds.

Now for each D < B. {r;D < G asr 2 . Thus v1G) > B/ r. T —
FUZ it Zh). Now. £0B') < v(B)+1 < 11tG). Hence £(ir;~ 'S 3 < 4G . Note
that £(¢Z)) > €(C') since (T) is a maximal cvelic subgroup of ZiB) and ' <
Z(Biiscvelie. Thus. (G < AG/Ci~F0T) IR i—0E0ir ) < 30nGh— L.
Hence we can assume that B = U{t} for some t € B. where {7 = Cgi A1,

Also observe that if H < G and A does not normalize H. then H > B'.
Indeed. by replacing H by a conjugate if necessary. we can assume that rhere
exists an element h € (H 1 B)\ U so that (A’ < G and by a similar argument
to the one used in rhe previous paragraph. B’ C ¢h). In particular. if H < B
and H < HA. then H < B.

If viB) = 0 vet #(G) > 3v =1 then B is Abelian. If # is an element of
maximal order in B then by 4.2.7 of Robl B = ¢#) x S for some § < B. Now
CNit) # Isince £((t)/{YNC) < v=1and F({t)) > €(C) > 2w. Thus SNC = 1.
Now if s € S\ Cg(A) then (s) ¢ G and (VD < G for each 1 < D < € which
means that v(G) > £(C). a contradiction. Thus even if v(Bj = 0 we can still
say that B = ()L where U = Cg(4).

O

The following Lemma will allow us to answer the following question: Sup-
pose we have a finite. non-nilpotent group G and we know that the prime

length of G is much larger than v(G). Can we find an upper bound for v(G)?
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Lemma 3.4 Let G be a finite. non-nilpotent group with £(GY > 3u(Gi ~ 1.
Let N =n{H<B: H <G} wvhere G = A x B. A. B as described in Theorem

3.3 Then if qiA) is the number of normal subgroups of A then
viG) =uviBiu Ay~ viG/NP
and £{G'NP?) < 3u(G). In fact. if v(Bj £ 0. then F(G/N?1 < 200G,

Proof: Let G = A x B. 4. C = !z) and B = Ut} just as Theorem 3.3
describes. Ler .\ be as defined above. First note that \ is cvelic as V< ¢

Furthermore. N = \| where
M=n{h<G:b aB}.

Indeed. N Z N7 obviously. Suppose V' £ N|. Then there exists an element
7€ NV .\ and for every (b) < B such that (b < G. r £ .b3. On the other hand
there exists H <B. H < G and r ¢ A. Hence for each b £ H either :b <G or
b « B.If b £ U then {b) is not normalized by 4. But bv Theorem 3.3 this
means that B’ < (h; and so b} < B. a conrradiction. Hence H < [". But if
H < B and H < U then H is a normal subgroup of . a contradiction. Thus
N = \]. as required.

Next note that NP is a normal subgroup of G. Indeed. \ < B as the
intersection of normal subgroups of B and N? is a characteristic subgroup of
V. Either W2 = N =1 or \? < .V and by the definition of N. N?<G.

Now. consider £(G/NP). It is enough to show that £(G/C N NP) < 3uv{G).
Since C is cyclic. there exists a (b} 4 G. /b} < B such that (?) NC' = NP N C.
Since every subgroup of B containing (b) is non-normal in G. we conclude that
v(G) > €(B/{b)) + 1. Furthermore. by Lemma 1.3 ¢(4) < v(G). In fact. if
v(B) # 0. then we have at least ;(4) > £(.4) more non-normal subgroups so

that in this case v(G) > £(A) + £(B/(b)). Also by Lemma 2.1 £((b)/(b)NC) =
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AU CoCy < v(G so thar

HG WP, o CY <AV 8B b —ilihy b~y — 1

\

which is at most 3v(G) if v(B) = 0 and 2v(G) if v{ B) # 0. as required.
Finally. let H < G. Clearly p :H! as all p’-subgroups of G are normal. By
replacing A with one of its conjugates if necessary. we may assume that A has
a non-trivial Sylow—p subgroup H, in B. Since H is not normal in G neirher
is Hy. If Hy< B then N? < H, < H. Otherwise v{B: = 0. /(G NP, < 204G
and the conjugacy class of H is counted in the term v Bjui A1, Indeed. H is

conjugate to H,S for some S < dand forall 1 <5< 4 A5 < G Thus
G < viB)uidl = uv(G NP

In fact. we must have equality. Recall from the proof of Lemma 3.2 thar if
H. K < B then they are conjugate in G only if thev are conjngate in B. So no
two of the distinct conjugacy classes of non-normal subgroups in B combine
into one in G. The only other possible way to have inequality- is for there 10 exisr
a subgroup A < B such that N7 lies inside A and £(G-\N?) < 20(G). Since
B’ C N by Theorem 3.3. this would mean that B = N and £{\) < (G — 1.

p—

Under such circumstances. £(G) < 3v(G) + 1. a contradiction. =

We can now give an estimate for an upper bound on v{G) provided that

we know:
1. The prime length of G is "much” larger than v(G).

2. The quotient groups G/C and G, NP where NV is the intersection of all
the non-normal subgroups of B. (G = A x B as above.) Note that.

modulo VP. B is an Abelian group.

(4]
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Since we established in the above Lemma that £(G., N?) is bounded by a func-
tion of (G, the requirement of knowledge of G N? is no more unreasonable
than the requirement that we know the group G'C as used in Lemma 2.10.

In fact. we shall need Lemma 2.10 to prove the following.

Corollary 3.5 Let G be a finite. non-rilpatent group with £(Gi > 31 Gi ~ 1.
Then

v(G) < pfd) Z L, C p =1y —=viG NPy,
C<J<B

where p{ Ay, C are as described in Lemma 2.10 and A. B and N are as described

5

in Lemma 3.4.

Proof: Bv Lemma 3.4 we know that v(G) = p(AWwiBi+=viG NP Alo ({ B >
2v(B)+1due to the fact that v(B) < v(GY—1and #G) > 31 G1~1. Applving

Lemma 2.10 ro estimate (B} gives us the stated bound. _

Finally we show thar in all instances that G is finite we can bound the

prime length of the commurator subgroup above by v(G) or i Gy — 1.

Theorem 3.6 Let G be a finite group. Then

viGi=1 if2! G

(G <
v(G) iF241G .

Proof: If the result is false. then there exists a finite counter example G of
minimal order. By Corollary 2.12. G is not nilpotent. Note that G cannot be
simple. Indeed. if G is a simple. non-Abelian group of order p}'p3* ... pp* then
k > 1 and G has proper subgroups of orders p;.p7.....p". i € {1.....k} so
that v(G) > S5 n; = €(G").

Let .V be a minimal normal subgroup of G of prime power order. Note
that if v(G/V) = 0 then {(G’) < €(N) (€(N)+1if 2! |G|.) In this case then

for G to be a counter example. v(G) = £(N) =1 ( v(G) > £(N) — 1 by the
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minimality of .V) and all non-normal subgroups of G lie in \. But in this case
G is nilpotent. a contradiction.
Otherwise. suppose that v(G,V} # 0. Then by the minimalitv of G as a
counter example.
((G/N)=1)=£6N) if21 G

(G <
v(G/NY =6\ if2+ G .

Since .\ has prime power order. no proper subgroup of .\ is normal in G so if
N = p¢ then v(G) > v(G/N)+a—1. If v(G) > (G 'N)~athen G is not a
counter example. Assume v(G) = v(G/N) —a — |.

Since G is not a p-group. all p; # p; power subgroups are normal. Let 1/
be a minimal normal subgroup of order p;. Repeating the above argument
with 1/ replacing V. v{G/M) = v{G) else G is nor a counter example. So
every p;-subgroup is normal in G yielding the contradiction rhat G is both a

counter example and nilpotent.

Finally. if .V is not a prime power. say '\i = phph .pz*. A > 1 then
.\ has proper subgroups of at least b; — by — ... — b, distinet orders and so
prop =) k

v(G) > v(G/N) = Zf.;l bi. guaranteeing that G is not a counter example.



4 Infinite Nilpotent Groups G with v(G) finite

First recall from Section 1.3 that we can use the descriptions “an infinire
group G with only a finite number of non-normal subgroups”™ and “an infinire
nilpotent group G with v(G finite” mterchangeably. The structure of infinire
groups with only a finire number of non-normal subgroups was first described
by Hekster and Lenstra in Groups with finitely many non-normal subgroips.
Their two main results are given below.

The main purpose of this Chapter is to extend or parallel resulrs for finite
nilpotent groups in Chapter 2 to the infinite nilpotent groups with onlv a finire
number of conjugacy classes of non-normal subgronps. First however. we stare
the main resulrts of Hekster and Lenstra’s paper. The first is Theorem 2 of the

paper.

Theorem 4.1 (Hekster and Lenstra) HL The group G has only a finite
number of non-normal subgroups if and only if G is finute. or G is Dedekind

or there exists groups A. B and a prime p such that

(a) G= 4 x B.

(b) A is a finite Dedekind group with order coprime to p:

(¢) B has a normal. central subgroup C' such that C = Co~ and B'C is a

finite. Abelian p-group.

Hekster and Lenstra also provided a formula to count the number of non-
normal subgroups of an infinite group with only a finite number of non-normal

subgroups. It was obviously motivation for Lemma 2.10 of Chapter 2.

Lemma 4.2 (Hekster and Lenstra) [HL' Let the notation be as defined
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above. Then the number of non-normal subgroups of the group G equals
WA Y LC UGB = LT
C<J<B

where j(4) s the number of subgroups of A.

We shall continue to use the notation from Theorem 4.1 throughour this
Chapter. This first Lemma points out the link between finite nilpotenr agroups
and infinite nilpotent groups with only a finite number of non-normal sub-

groups.

Lemma 4.3 Let G be an infinite group with only a finite. positive nimber of
non-normal subgroups. Then there erists an infinite char of finite subgroups
of G.

Go< Gy <Gr<-+-<CGr<---<G

i) G and G; have the same non-normal subgroups.

) viG) = viGy)

i) G'=G!

w) G/C = G;/Cy. where C; is a central. cyclic subgroup of G;.

Proof: Let G be an infinite group with only a finite number of non-normal
subgroups. Ler A, B and C be as described in Theorem 4.1 and let G/C =
U?=l.rl-C'. Let

Xo = Ui {z:} U{S £ G} U {co}
where ¢y € C such that |co| > |z;!. i = 1.....n. Then the set Xy is finite.

This follows from the fact that all the non-normal subgroups of G are finite,
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a fact proved by Hekster and Lenstra ((HL' Lemma 9). Since G is a torsion
FC-group. it is locally finite. bv 14.5.8 of ‘Robj. Thus. Gy = (Xg! is a finite

group. Note that if g € G and S < G. then

59 = §°%. — g7

[

for some ¢ £ C. 7 = 1.2..... n. Thus G and Gy do indeed have the same
non-normal subgroups and (G} = v(Gy).

Note that G = GoC and so clearly G' = G} and
GC' = G()C/’C' = GO/VGQ N = Gor C'o.

Thus Gy has all the required properties. e can even nse the {r,}.) =
L.2... .. n as the coset representatives of Cy in Gy.
Now. assume that the finite subgroup G; of G has been created with the

stated properties. { > 0. Then let
Gy = Gi-Cz»l,’

where ¢,_; € C such that ‘c;—;i > |C,. Then the above argument shows rhar

Gi+1 has the stated properties and contains G;. as required. =

Next we point out that any infinite group G with onlv a finite number of
non-normal subgroups is the direct limit of a sequence of finite groups. (Given
a sequence of groups Gi.Gas..... and inclusions o; : G; — Gi-;. the direct

limit group D is the union of the chain of subgroups
G1 < GQ <....

and we can think of G;.G,. ... as being subgroups of D. This is a special case

of a direct limit. see Section 1.4 of [ Robj for a precise definition).

(S]]
~!



Lemma 4.4 Let

Go<Gr <Gy < ...
be an infinite sequence of finite groups such that for each i =0.1.2.. ..
1) G, has the same non-normal subgroups as Gi_;.
) viGi = vi(G,.g).

Then G. the direct limat of the {G;}. 15 an infinite group with a finite number

of non-normal subgroups. the same ones as Go.

Proof: First nore that we are given an infinite family of groups {&, : / =
0.1....} with a family of monomorphisms. namelv the =trict inclusions a?
G, — G,.i < j such that a! = 1; and oja% = af. Hence the direct limit G
exists and is an infinite group. (See ‘Rob; Section 1.4 for details.:

Note that G; <G. i =0.1.2.... . This follows from the fact that if g = G
then g € G;_, for some positive integer j and so G? = G,.

Also note thar it 'r} 4 G then there exist finite subgronps G, and G, such
that € G; and 29 € (r) for some g € (. Hence ‘r: < G-, and hence
(r) € Gq. Thus all non-normal subgroups of G are finite and lie inside of Gy.
Indeed. if H ¢ G. but H € Gy then there is an elemeut h € G, N H \ Gy for
some /. Let {hg.hy..... hn} be the set of all cvelic non-normal subgroups in
H. Then they. together with h. generate a subgroup S of Gg. Now S <G since
it lies in G;\ Gq. Thus since H is the join of this group with a possiblyv infinite

number of cyclic normal subgroups. H < G. as required. C

We now parallel some of the results from Chapter 2.

Theorem 4.5 Let G be an infinite group with only a finite number of non-

normal subgroups and let v(G) > 0. Then for some prime p. there is a Priifer
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p— group C in the centre Z{G) of G such that

HG'Cy < vG) -~ 1.

P

Proof: This follows immediatelyv from Lemma 4.3 and Proposirion 2.2.

Corollary 4.6 If G 1s an infinite group with only a finite number of non-
normal subgroups then the intersection of the non-normal subgroups of G o1s

trivial.

Proof: Assume that G = A x B. 4. B and C as described in Theorem 4.1.
Since A is finite and Dedekind. all non-normal subgroups of G contain a non-
normal subgroup of B. Consider B. Bv Lemma 4.3 there exists a seqience of
subgroups

BU<BI<BQ<.,.

such that B; is a finite p-group and the exponent of the centre of B, increases
as ¢ increases. Also the intersection of the non-normal subgroups of B, is
the same as the intersection of the non-normal subgroups of B. Assume rhis
intersection is non-trivial. Then by Theorem 1.4 each B, is a 2-group with

centre of exponent at most 4. This is a conrradiction. —

The following result can be viewed as a dednetion from Lemma 4.2, (In
(HL] it was noted that the number of non-normal subgroups of an infinite

group G with v(G) > 0 was at least p(p = 1)).

Corollary 4.7 If G 1s an infinite p-group with only a finite. non-zero number

of non-normal subgroups then v(G) > p.

Proof: Apply Lemma 4.3. Thereis an increasing sequence of finite subgroups of
G with v(G) = v(G;) for each G; in the sequence. By Lemmma 2.5 v(G;) =0.1

or is at least p. But v(G) # 0 and we know from their structure that groups
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with v(Gi = 1 can nor be embedded into one another nor can groups wicth

viG) = p. (See Theorem 1.2 and Lemmia 2.7.} Hence (G > p- as required.
Also we bound the number of conjugacy classes of non-normal subgroups

of G in rerms of p and the group G/C. Due to the fact thar Lemuma 4.2 tells

us the exact number of non-normal subgroups of & this result is not profound.

Lemma 4.8 Let G be a infinite group with only a finite nuniber of non-rormal
subgroups and let viGy=v > 0. Then
G < piA) E JCop =14
C<J<b
where A.B and C are as defined in Theorem {.1 and pi A* s the numbsr of

subgroups of A.

Proof: Apply Lemma 4.3. Let Gy be the first element of the series. Note that
AT Ghas AN B =1. Thus Gg = 4 x By. for some By < B. Thns bv Lemma
2.10

Cu<Jy< B,

Since By/Cq = B/C' the result follows. _

Finally. note the following:

Corollary 4.9 Let G be a infinite nilpotent group with v\G) < c. Then

U(G) -1 lf?_ , xG'

(G <
(G) if211G.

—

Proof: The proof fellows immediately from Lemma 4.3 and Corollary 2.12. T

We shall see in the next Chapter that the infinite. non-nilpotent groups

with v(G) finite do not behave as nicely-
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5 Infinite Non-Nilpotent Groups G With
v(G) Finite

5.1 Structural Properties

We now consider a gronp G such that 0 < (G < x vet G possesses an
infinite number of non-normal subgroups. In a similar vein A.\". [zosov and
[.LF. Sesekin considered all groups with only a finite number of infinire classes
of conjugate subgroups. see 'IS]). but in their case v1G) could srill be infi-
nite.  Among orher things theyv described the structure of such group~ with
FC —centre of finite index. We note one of rhe resulrs from rheir paper below.
The following result is the combination of Theorem 1 and Corollury 3 of their

paper. Let FCi{G) denote the FC-centre of a group G.

Theorem 5.1 [f G is a group with a finite. positive number of infinite conju-
gacy classes of non-normal subgroups then for each H < FCiG). the conjugacy

class of H is finite. This 1s equivalent to saying that ‘G : Co FCiGY )i flnte.

From this result Izosov and Sesekin point out that if G is an infinite group
with a finite. positive number of infinite conjugacy classes of non-normal sub-
groups then G is not an FC-group. They go on to describe the groups G with
/G : FC(G)! finite and a finite. positive number of infinite conjugacy classes
of non-normal subgroups . Other results from [IS] could be used in our present
investigation. but in order to be fairly self-contained we will make do with the
above theorem.

We now determine. through a series of Lemmas. the structure of a group
G with 0 < ¥(G) < ¢ and an infinite number of non-normal subgroups. First

we note that FC(G) is finite.
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Lemma 5.2 Let G be a group with v(G) < x such that G has an infinite
number of non-normal subgroups. Then G FC(GY is infinite and the FC -

centre us finite so that G'FC{G) has no non-trivial. finite normal subgroups.

Proof: Bv Theorem 5.1 above. G : Co(FCiGYis finite. Let Ga = Cal FC\GH).
G is not Abelian by Corollary 1.11. Then FC(Gyy = FCLG) 1 Ga. Indeed.
it iz clear that FC(GY "™ Gy & FC{Go) and if r = FC{Gy) then r = FC(G

since .G : G} < . Hence it is sufficient to show that ' FC (Fa1, < ¢ since
FCIGIGy /Gyl = FCIG FCIG "Gy < x.

Observe that FC(Gyi = Z(Go).

Suppose that Z(G,) is infinite. By Lemma 1.9 (7 is torsion and by Theoreny
4.3.11 of Rob; either Z(G,) contains a Priifer p-group C for sowme prime p or
by repeated application of 4.3.11. it contains an infinite direct sum of cvelic
groups of prime power orders ('} x Ca x (3 x --- = (.

If the former then for each positive integer i let C; < C such that #1Cy = /.
Let x € Gy FC(Gj;). Since the order of r is bounded. there exizrs an inreger
J such that

(HNC=x)niCy.Ca.. ... ).

Then S5; = (2.Cy.Cs. .. .. Ck) < G for each integer & (as the conjugacy class
of (r) is infinite and S is finite.) If j < k < [.1Sk] # 1S/ and so v{G) is
infinite. a contradiction. Hence FC(G,) and FC{G) are finite. Finally. note
that if N, FC(G) is a finite. normal subgroup of G/FC(G) then N is finite
and normal and hence lies in FC(G). as required.(See .LR]. Lemma 10 for a

.
4

shorter proof relying more heavily on [IS)). g

Lemma 5.3 Let G be a group with v(G) < oc such that G has an infinite

number of non-normal subgroups. Then s < v(G) for any strictly increasing
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chain of subgreups
].:H0<H1<"'<HS<HS.;.1=G

with H; £ FC(G) if H; < G. Hence every subgroup of G/FC(G) is finitely

generated by at most v(G) + 1 elements.

Proof: First note that for i # j. H; is not conjugate to H;. Indeed. if Hf = H;
for some i < jand g € G then we have a strictly increasing series of non-normal
subgroups

Hi<H <H? < ...

Since g| < x this yvields the contradiction that H, < H;‘"g = H,.

We now produce non-normal subgroups A75.A%s.....A, no two of which
are conjugate. If H, € G then put K; = H,. If H, <G then pick », € H,_, .
(H; U FC(G)) (since 'H;! is infinite and FC{G) is finite. such an r; exists.j
Let A; = (2;). Note that A} is not conjugate to any of the R; )<t

Indeed. either

i) K; = H; < H; = K; and the two subgroups of G are not conjugate by the

initial comments. or

ii) K; = H; < H; <G and all conjugates of K lie in the normal subgroup H;

while Ki fE Hi, or
iii) H; <G and all conjugates of A} lie in H; <G and K; £ H;. or
iv) H; 4G and H; = K; and since |H; is infinite. K; is not conjugate to Kj.

Thus s < v(G). as required. The rest now follows. O
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Lemma 5.4 Let G he a group with v(G) < x and such that G has an mnfinite

number of non-normal subgroups. Then the finite residual. R of G.
R=n{H<G: G:H < x}

has finite inder in G. R = R'. v(R) < o< and {(G/R) < v(G) ~ 1.

Proof: By Lemmas 5.2 and 5.3. G has the minimal condition on subgroups.
Thus. {G : R} is finite. It follows that v(R) < ~x by Lemma 1.5. Note thar
R/R'is finitely generated. Abelian and torsion by Lemmas 5.3 and 1.9 and so
R=R.

Consider G'R. Let \G/R = pripyt ... pit. with the p,’s distinet primes
and the n;’s positive integers. Let H,;,R be a subgroup of G R such thar

|Hi; 'Ri =p?.0<j < n;. Further suppose that
R=Hg< Hy<---< Hin-z

for each prime p;. Use these subgroups to produce non-conjugate. non-normal
subgroups as follows. If H,; 4 G. then it is not conjugate to anyv other Hj;
unless j = k and i = [ because |H;;/R| = p}. Choose H,; as our non-normali
subgroup. If H;; «G. (j > 0) then choose r ¢ Hi; \ (Hij-1 © FC{G)). (Since
FC(G) is finite and the H; are infinite. this can be done.) Now {(z) < G
since G is torsion and z € FC(G). Note that (r} will not be conjugate to any
non-normal subgroup chosen above. Indeed. r € H;; <G and z' is a power
of p; mod R. so the only possible conjugates would be the chosen non-normal

subgroups arising from the chain

Hi0<Hi1<"'<Hij-

However. either H;;_1<G and (z) cannot be conjugate to any of the previous

subgroups or Hjj_; ¢ G and since it is infinite it can not be conjugate to (z).
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The same reasoning shows that (1) iz not conjugare to anyv of the orher non-

normal subgroups chosen. as required. Thus FiG. R) < v(G) ~ 1. _
Note that Lemma 3.4 implies thart for anv gronp G such thar 0 < (G < .
UG Cat FCIGYy )y < G — 1.

However. the fact that G Cg(FC(Gyj} is finite is not sufficient ro describe
the groups with a finite number of conjugacy classes of non-normal subgroups.
Indeed. Theorem 5.1 points our that all groups with onlv a finite number of
infinite conjugacy classes of non-normal subgroups have Co( FCiG)i of finite

index.

Lemma 5.5 Let G he a group with viGy < xc and such that G has an infinice

number of non-normal subgroups. Then
1)Every finite. subnormal subgroup of G lies in FC'\G).

11 G ohas only a finite number of normal subgroups and the number of normal

subgroups of G FC(G) is bounded above by a function of (G .

uij Every subnormal subgroup of G contained in the firite residial R is normal
in R and the number of subnormal subgroups of G lying in R:R ™ FC\G) is

bounded above by a function of v(G).

Proof: By Lemmas 5.2 and 5.3. &G has the minimal condition on subnormal
subgroups. By Theorem 13.3.8 of [Robl. the Wielandt subgroup of G. which
is the intersection of the normalizers of all the subnormal subgroups of G. has
finite index in G. Thus any subnormal subgroup of G has only a finite number
of conjugates. It follows that if H < G is a finite subnormal subgroup of G then

H < FC(G). It is also clear. since R is contained in the Wielandt subgroup
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of (. thar the finite residual R normalizes every subnornial siuberoup and so
every subnormal subgroup of G Iving in R is actually normal in R.

Next consider {1y : A £ A}, the ser of all minimal normal sithgroups
of G/FC(G). The subgroups are characteristically simple. infinite and non-
Abelian. For p# 7. (M, M. = 1. Also M, {My - A € AN {s}: =1 <ince \[,
centralizes this centreless group. Thus we can construct the strictly inereasing

chain of subgroups
FCGVFCIGYy< My < My < Ma< ...

By Lemma 5.3 there are at most v(G) minimal normal subgroupsin G- FC'\ G .

Next. cousider G/ \M,.i = 1.2...... s. Repeat this argument to conclude
G /M, has at most v G /M) minimal normal subgroups. Since there exists an
element r, € M. (r;v < G. v(G/)M;) < viG). Repear. and by Lemma 3.3, in
at most v(G) repetitions we will have accounted for all normal subgroups of
G/ FC{G). Thus we may conclude that the number of normal subgroups of

G/FC(G) is bounded above crudely by

viGh = v(GY (G = 1) — - = (G} < t{GYanGi'y.

Since FC'(G) is finite by Lemma 5.2. G has onlyv a finite number of normal
subgroups.

Next consider R/R N FC(G). Recall that any subnormal subgroup of G
lving in R is normal in R. Hence repeat the above argument on the minimal
normal subgroups of R/R N FC(G) = R/FC(R) = R/Z(R). Then there are
again at most v(G) minimal normal subgroups in R/RN FC(G). Indeed. given

a sequence
RNFC(G)/RONFC(G) <My < My x My < ...

with the AJ; distinet minimal normal subgroups of R/Z(R). we can find 1, €

M \ (A x Ay x -+ x M;U(RNFC(G))) and so (z;) ¢ G and we can have
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at most /(G such non-normal subgroups. The rest of the argument follows
similarly. Just keep in mind that anv strictly increasing chain of subgroups in

R/RFC(G) is still bounded above by a funcrion of viG. —

Corollary 5.6 The class of groups with only a finite number of conjugacy
classes of subgroups (both normal and non-normal) consists of the finite qroups
together with all groups G such that 0 < viG) < ~ and G has an 1fincte

number of non-normal cubgroups.

Proof: Thix follows immediately from Lemma 5.5 above and Theorem 4.1.

Lemma 5.7 Let G be a group with vtGy < xc sucl that G has an infinite

nuriber of non-normal subgroups. Then

i/ Forallr € G\ FC(G). €ir FC\G1/ FCiGi <wili.

wl Forallx € Co{FC{G))\ FC(G). £ FCIGY ey < vi G
tii) The number of primes involved in G.FC\G} < 11\G 1.

i) The exponent of G'FC(GY is bounded above by viG rand the primes oc-

curing as orders of elements of G and so the erpornent of G is finite.

Proof: f r € G\ FC(G) then (r) 4 G. Let L FC(G) FCIGY) = n.
This determines n distinct conjugacy classes of non-normal subgroups. Hence
F{T)FC{G) ' FC(G)) is bounded above bv v(G).

Ifr € Co(FC(G))\ FC{(G) then r generates a non-normal subgroup and
for each subgroup 1A/ such that (r) N FC(G) < M < FC{G). {v’M is a
non-normal subgroup as well. (This subgroup is finite and so cannot contain
all the conjugates of (r).) This produces at least EFCGY/ ()N FC(G)) =1
distinct conjuzacy classes of non-normal suhgroups and so £({x) FC(G)/{zx))

is bounded above hy v(G).



Finally =uppose that &; FC(G has an clement g FC G of order pTipl . pl

Then there exists elements ry. 1. .. . .. resuchthat o, =plor=1.2... .. Aomod FC{GH)Y.
Thus we produce ny —ny—---—ny distinet conjugacy class of non-normal sub-
groups. so that v{G) > ny —ny—---=ng. as required. It is also now clear thar

the exponent of &/ FC(G) is at most v(G) and the number of prines involved

in ¢ FCiG) is at most v(G). as well. -

Lemma 5.8 Let G be a group with viG1 < >xc and such that G has an infinite
number of non-normal subgroups. Suppose that R i< the finite residual of G

and that

Then J < ZiR) and
1 If 1= then for some fired prime p. .J s a cyclic p—group end R Zi R} 12
also a p—group.

1) FLZORY ) is bounded above by a function of viG.

Proof: Note that since R C Cg{g) for each g € FC{G.
ROFC(GY=FC(Ry=2Z(R).

Let J be as defined above. Clearly .J is a finite. cyclic normal subgroup of R
and hence lies in Z(R). Suppose that .J = 1. If J does not have prime power
order then for ecach r € R\ Z(R). x does not have prime power order and so it
is possible to generate (z) from its prime power order subgroups which must
lie in Z(R). This contradicts the fact that » € R\, Z(R).

So assume |.J| = p* for some prime p. If r € R\ Z(R) such that 2 does

. ., - . b .
not have p power order then there is a positive integer b so that 1 # 2P is of

68



p'—power order and since .J € r?"3. {17 < Z(R). as required. The rest of 7}
now follows.
Letr € R ZiRj. Note that (( FC(G)\r " FCiGyi = HFCIGY o iy <
v(G) by Lemma 5.7, Thus £Z(R)/{x) © Z(Ry) < v{G). I
(Ve ZiRi < K < 0 0 ZiR;
95G
then A" 4 G. Thus
FLr D ZIR) [ V{9 Y ZIRY) < viGh
95G
and so

HZ(R) ﬂ (Y9N ZIR)) < 2u(G).

¢=G
Finallyv. since there are at most v1G) conjugacy classes of cvelic. non-normal

subgroups of G lving in R. and

then £(Z(R)/J) < (2v(G}*{% . as required. =

Now. we sununarize the results found in this section.

Theorem 5.9 Let G be a group with 0 < v(G) < o and such that G has an
infinite number of non-normal subgroups. Then

1) G is a torsion group end for all £ € G. €({r) FC(G)/FC(G)) < v(G). Also.
the exponent of G/FC(G) is bounded abore by v(G). (and the primes occuring
us orders of elements of G. Also the erponent of G is bounded.

it) The FC—centre of G. FC(G) is finite and equal to the FC-hypercentre of
G.
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1) Any strictly increasing chain of subgroups of G no tern of which is a finite.
normal subgroup of G. is of length at most v(G) — 1. Thus ervery suhgroup
of G/FC{G) is generated by at most (G — 1 elements. Also the number
of normal subgroups of G is finite and the number of normal subgroups of

G/FC(G) is bounded above by a function of v(G).
1) The fimite residual R of G has the following properties:
a/R = R'.
byi(G'R) < v(G)~ 1.
ciall subnormal subgroups of R are normal in R.
d)ZIR) = FC{R) = RN FC{G) and the number of normal
subgroups of R/Z(R) is hounded by a function of 11 G).
e) FC(R/Z(R)) = 1 and either ¥{Z(R)) is bounded abore by o
function of UiG or there erists a 1 = .J < Z\ Ry such that

J = m VI

TER.Z\R;
s a cyclic p—group. €(Z\R)/.J) Is bounded by a function of v G

and R/Z{R) is also a p—group.

Proof: See Lemmas 5.2 through 3.8.

Note that if G is a p-group with v(G) finite but G has an infinite number
of non-normal subgroups then p # 2. Indeed. by Theorem 14.4.3 of [Rob;
all infinite 2-groups which satisfy the minimal condition are Cernikov groups.
Such groups have infinite exponent and so cannot be of the desired tvpe. It
may be true that other small primes can not be used as well.

Finally. we can expand on Lemma 5.8 and other previous work to obtain the
following generalization of Blackburn's results on gronps where the intersection

of the non-normal subgroups is non-trivial.
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Theorem 5.10 Let G be e group with 0 < 1 G) < x. [f
T=r{H<G:H<G}=1
then either

i) G is finite and its structure is outlined in Theorcms 1.1 and 1.5 hy Black-

burn. or

i) G has an infinite number of non-normal subgroups and. modulo ¢ finite
p'-group Q. of length bounded by a function of 11 G). G = A B where A
Is a finite p’-group. every subgroup of which is normal :n G and 'modulo

Q) B is a p-group with
J<Z{Ri<R<B.

where R is described in Theorem 5.9. Also. J < Z{G). viFC . B'1 =10
and ( FC(G}/J) is bounded abore by a function of v(Gh.

Proof: Tt is sufficient to consider G an infinite group with 0 < 4G < x. Bv
Corollary 4.6 G must have an infinite number of non-normal subgroups. Nore

that J <« G and that J is cvelie.

Now v(R) # 0 as R does not lie in the finite FC-centre of G. Thus.
1 # J < Nzervzry{T).

and so by Theorem 5.9. .J is a cyclic p-group for some prime p. Let h € G such
that (jh|.p) = 1. Then (k) <G and so h € FC(G). Thus all p’ order elements
of G lie in FC(G) and generate a finite normal p’-subgroup. A.

Note that £(Z(R)/J) is bounded by a function of +(G) by Theorem 5.9. Let
Q Le the p' component of Z(R). Then R/Q is a p-group . Consequently. G/Q =
A/Q x B/Q where A is a finite p’-group, B/Q is a p-group and J < Z(R) <
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R < B. tJust let B/R be a Sylow-p subgroup of G/R). Since #(G R} <
v(GY = 1 we may conclude that £(FC(G)/J) is bounded above by a function
of viG.

Lastly we must show J < Z(G). We know that R is not a 2-group by the
comments made after Theorem 5.9. Thus by Theorem 1.4 we conchide that
VIECiB)) = 0 and FCIB) is Abelian. Thus [J. FCtB) = 1. Also. by the
normality of A and J. JA/=1land Jb = 1forall b€ B FCiBj because

J < /b; for such elements b. Thus .J is cenrral. as required. -

We will now give some examples of infinite. non-nilporent groups with v1G

Anire.

5.2 Some Examples

The results of the previous section do point out that there are many differences
between infinite. non-nilpotent groups G with v(G} finite and all other groups
with only a finite number of conjugacy classes of non-normal subgronps. The
following examples will further illustrate this fact.

By definition. a Tarski p-group (also known as a Tarski group or a Tarski
monster) is an infinite group all of whose proper. non-trivial subgroups have
prime order p. A. Yu Ol'shanskii has proven the existence of Tarski p-groups
with exactly one conjugacy class of non-normal subgroups. provided p is a
large enough prime. see 10! Take these groups to be our first examples of
infinite. non-nilpotent groups with few conjugacy classes of non-normal sub-
groups. These groups are easily seen to be simple and generated by 2 elements.

Recall that Theorem 1.2 (or see {BDF}) shows that if G is an infinite group
with ¥(G) = 1 then G has a Tarski monster as a central quotient. This theorem
motivated results in the previous section. It can now be viewed as a corollary

to Theorem 3.9 and a few other results.
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Theorem 5.11 (Brandl. De Giovanni and Franciosi) [BDF [f G i< an
infinite group with a unique conjugacy class of non-normal subgroups then
Gi/Z(G) is a Tarski p-group for some prime p and Z(Gi 15 a1 cyche p-group.
Moreover. ZIG) = {gP) for each element g of G\ Z1G ).

Proof: We know by Corollary 4.7 thar G can not have a finire number of
non-normal subgroups. By Theorem 5.91). G is torsion and for each ¢ = G.

g° € FC(G) for some fixed prime p. By ii) of the same theorem. FC(G) is

finite. Note that G/FC(G) is simiple. Indeed. if a sequence
FCIGY< N<G. VZG

exists then we can find + € NV and y € G\ .V generaring non-normal and
non-counjugate subgroups. Thus G = R and FC(G) = ZiG .

It now follows that all non-trivial subgroups of G/ FC{G" have prime order
p since. if

FCGi<H<G

then H € G and if (WNFC(G) FC{G) < H'FC(G) then we have v Gy > 2.
Thus. G/Z{G) is a Tarski p-group.

Finally. by Lemma 5.7 ii). since FC(G) = Z(G). £iZ(Gi/\g)NZ:1Gy) < 1

t

and so Z(G) = {g?) for each g € G\ (Z(G). as required. Z

We can generate many more examples of infinite. non-nilpotent groups G
with v(G) finite using the following theorem of Sergei V.. Ivanov [I'. Here the
set A will be a free amalgam of some groups G,. o € I (I a countable index
set) if 4 is the union of the pairwise disjoint sers G,. o € I with identified

identity elements.

Theorem 5.12 (Ivanov) 1] Let A be the free amalgam of some groups Go.a €

I cuch that A contains no involutions. A is finite or countable and one of the
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groups Gn.a € [ contains an element of order n >> 1 ie.g. 0 > 10%. 11 = x
ts permissablej.  Then A can be embedded into a 2-generator group GiA)

(A 2 GiA) wath the following properties:

1. Every marimal subgroup of G is conjugate to one of the subgroups G, Z

G(A). In particular. G{A) = Upegia, 7 e

2AfrtAr 0 A £ L owhere 1 2 GiA). then 1 € G, for some o and

riirnA=G,.

First apply this theorem to obrain a simple. 2-generared aroup with ele-

ments of & > 1 distinet prime orders so that (G =& > 1.

Example 5.13 Ler A4 be the free amalgam of C, . C,,.. . .. Cp, with & > 2. the
p; s distinct odd primes. and C, cyelic of order p; and p; > 10%. By [vanov's
Theorem. 4 C G(A). G(A) a group with the nored properties.

First note that. since G(A4) = U:EG(A) 7 Ar. any element of Gilt has
order 1.py.ps. .. .. Pr—1 or ppand if 1 # h € G{ A} then (A is conjngate to ¢,
for some i =1.2..... k.

Note that 1 # (h) is also a maximal subgroup of G( 4. Indeed. (=™ = g
is maximal so G = (h.x). Let S = {k" < G : (h) < K. € K'}. Then 5 is
not empty so that by Zorn's Lemma S will have a maximal element /. Now
M < G and if M < N then N contains both h and r so that N = G. Thus
M is a maximal subgroup of G and so M/ = {h) by size. Thus v(G) = k and
G is simple since all proper subgroups have prime order. Although Ivanov's
theorem does not explicitly state that G(A) is infinite. it is apparent it must
be. as the Sylow subgroups are maximal and nor normal and |G| # pips . . . pi

else we would violate the second condition of Ivanov's Theorem. d

Note that we can also find infinite groups G with an infinite number of
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non-normal subgroups and v(G) finite 20 that G has non-normal subaroups
not of prime power order.

Example 5.14 Let A be the free amalgam of G, = (,.,, , with Gy =
Cp._,- & > 1. and suppose the primes are distiner with p; > 10%. By [vanov's
Theorem there is a group G(4) with the nored propertie<. Hence. by similar

reasoning to thar used in the last example. all elements of G4} have order

Lpi.pa.pipaps..--. PiP2. .- Di OF pr_y.

Similarly. if 1 # ‘h: < G(A) then either ‘A" is conjugate o Cp, . and is
maximal or A is a subgroup of a maximal subgroup conjugate o G. It follows
again by reasoning similar to the last example thar Gi-i is shimple. infinire

and all subgroups of G{.A4) have orders 1. py. pa. pypa.ps. .. .. DiPa .. Pk O Dpy.

'

Consequently. v(G) = (2% — [) + 1 = 2% =
The method of generating examples is now established. It is apparent rhar
we can generate p-groups of the desired type. take A to be rhe free amalgam

of Cp, with Cpr.n > 1.py > 10% for example.
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