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ABSTRACT

To monitor the progress of a thermal recovery project, such as a stearn injection operation,
it is important to have a knowledge of the volume swept by the injecting fluid. Well testing
offers a comparatively rapid and economical way of estimating the swept volume. Well
tests conducted on wells undergoing a thermal recovery process typically have been
idealized using a two or three-region cbmposite reservoir model. Each of these regions has
different rock and fluid properties. However, for continuous variations of mobility and
storativity within the swept region, a simple two- or three-region model may not be

appropriate. .

A multi-region, composite reservoir model has been developed to study the effects of
various trends of mobility and storativity variations, within the swept region, on well tests
for composite reservoirs. This study has been designed to address analytically the problem
of multi-region composite reservoir by using the Laplace transformation technique. The
solution to the problem in Laplace space is inverted numerically to real space by means of

the Stehfest algorithm.

The multi-region composite reservoir model has been used to analyze drawdown tests from
reservoirs undergoing a thermal recovery process such as steam injection or in-situ
combustion. Based on the mobility and/or storativity of these reservoirs, three zones may
be identified for a reservoir undergoing a thermal recovery process. These zones are: a

swept zone with the highest mobility and/or storativity, a transition zone with continuously



changing mobility and/or storativity, and an unswept zone with the lowest values for
mobility and/or storativity. This study is intended to investigate how representing these
reservoirs by different numbers of regions affects the pressure behaviour analysis. It has
been found that representing the transition zone by one region may generate pressure
behaviours which may show higher contrasts in physical properties than what actually
exist. Using various regions to represent the transition zone will avoid these apparently

high or non-existing property contrasts.

The purpose of investigating how these factors change the reservoir pressure behaviour is
to ascertain what effect these factors will have on the estimation of swept volume and
effective properties of the reservoir. This si..dy geesents an evaluation of the applicability,
utility and accuracy of the pseudosteady state method to estimate the swept volume in a

steam injection project.

Finally, this work is intended to demonstrate how storativity variation can affect
significantly the results obtained from some reservoir characterization methods. It has been
shown that reservoir characterization methods, in which mobility is considered io be the
only variable affecting the pressure behaviour from a reservoir, will i} when there is a
storativity variation in the reservoir. This is consistent with the well known fact that the

pressure behaviour from a reservoir is affected by both mobility and storativity.
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NOMENCLATURE

Area, nR2 or ntre2, m2

Matrix of coefficients

Dimensionless observation well distance, a/ry
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CHAPTER 1

INTRODUCTION

Over the years, thermal oil recovery methods have gained considerable interest and much
use. Two of the most important' thermal processes are in-situ combustion and
steamflooding. Currently, thermal recovery by steamflooding is the dominant method for
producing heavy oil around the world. The determination of the swept volume in thermal
recovery processes is important. A knowledge of the steam swept volume provides an

estimate of heat losses to the surrounding formation as well as the thermal efficiency of the

operation.

In displacement projects, the swépt volume has been estimated occasionally by coring
and/or temperature observations at wells, during the injection process. These methods of
estimating the steam swept volume are very expensive and uncertain due to reservoir
heterogeneity. One practical and economical way of estimating the swept volume is by well

test analysis, which also provides an estimation of flow capacity and skin factor.

The concept of determining the swept volume by pressure transient techniques has been
studied by several authors. The most commonly used thermal well test has been the falloff
test developed by Eggenschwilér et al. (1980). Their study utilizes a composite system, in
which a steamflood or combustion process is represented as a reservoir model with two

regions having highly contrasting fluid mobilities. Such a model seems ideally suited for



thermal oil recovery, due to the high mobility contrast between the swept and unswept
regions. At early times, a semi-log graph of pressure versus time would generate a straight
line corresponding to the inner-region mobility. Following this semi-log straight line, a
pseudosteady Cartesian straight line may develop with a slope that can be related to the

swept volume.

The pseudosteady state method developed by Eggenschwiler et al. (1980) is independent of
the geometry of the swept region and has been applied by several investigators to field and
simulateu cases, with apparent success. However, simulated thermal falloff tests have
shown that mobility and storativity may be continuously changing in the swept region. For
continuous variations of mobility and storativity within the swept region, a simple two- or
three-region model may not be appropriate. In this study, an analytical solution to a multi-
region model is presented. Infinitesimally thin skins at the discontinuities are included.
This work is intended to study the effects of various trends of mobility and storativity,

within the swept region, on well tests for composite reservoirs.

The literature survey conducted for this study is presented in Chapter 2. The statement of
the problem and objectives of this study are discussed in Chapter 3. The mathematical
model and its validation are presented in Chapter 4. The transient pressure behaviour of
multi-region composite reservoirs is discussed in Chapter 5. Finally, Chapter 6 presents

conclusions drawn from this study and recommendations for future research.



CHAPTER 2

LITERATURE REVIEW

In recent years, the behaviour of composite reservoirs has attracted much attention and
many studies have appeared on this shbject. A composite reservoir is made up of two or
more regions. Rock and fluid properties are different in each region. The origin of
composite systems may be natural or artificial. Examples of naturally created multi-zone
composite systems include a reservoir with different permeability zones, an oil reservoir in
communication with an aquifer, and an oil well with a finite-thickness skin zone
surrounding the wellbore. Enhanced oil recovery projects, such as CO> miscible flooding,
polymer flooding, in-situ combustion and steam injection, are examples of artificially
created conditions, wherein the reservoir can be viewed as a multi-region system with
different rock and/or fluid properties. A reservoir undergoing a thermal recovery process

typically has been idealized as a composite reservoir.

Figure 2.1 schematically illustrates the reservoir model considered in this study. This
model represents a radial multi-region composite reservoir in which there are interfaces or
discontinuities between each region. In Figure 2.1, the distances R; are ii:e different
positions where a discontinuity or front can be recognized. Discontinuities are the locations
where rock and/or fluid properties have a significant variation. These discontinuity
distances are important parameters when analyzing well tests in composite reservoirs.

Strictly speaking, fronts in many enhanced oil recovery operaticns are not cylindrical. The



Figure 2.1 - Top view of a multi-region composite reservoir.




front's shape may be distorted by gravity and/or viscous fingering effects. Thus, the front
radius exists only in some average sense. It is perhaps better to speak of the volume of the

inner re<ion, instead of front radius, especially when pseudosteady state data are available.

In general, reservoirs with contrasts in physical properties have been analyzed using
analytical or numerical composite reservoir models. The pressure behaviour of composite
reservoirs has been considered extensively in many studies. All these studies can be
classified in three large groups: two-region composite, three-region composite and multi-
region (more than three regions) composite reservoir models. However, the great majority

of studies have considered the case of two-region composite reservoirs.

2.1 Two-region Composite Models

The two-region composite model is the most commonly used model in the pewroleum
industry. There are several publications detailing the application of two-region composite
models to describe pressure behaviour in petroleum reservoirs. Numerous two-region
composite reservoir studies have defined the general principles to analyze composite

reservoirs. Some of these studies will be discussed briefly in this section.

2.1.1 Analytical Approach

Hazebroek et al. (1958) developed an analytical method using pressure falloff data from
pattern waterflood injection wells. Their method determines the reservoir static pressure

by trial and error. By plotting log(p - pe) versus shut-in time, they are able to estimate the



permeability-thickness product and skin factor. However, the permeability-thickness
product obtained may be reflecting only a part of the reservoir and the use of trial and error

may involve inaccuracies.

Hurst (1960) analyzed unsteady flow of fluids through two sands in series with different
mobilities in each sand. He used the Laplace transform to obtain a solution for a single
well located at the center of concentric sands. Hurst (1960) also considered the
interference between two oil fields sharing the same aquifer as a two-region system with

different physical properties in each region.

Loucks and Guerrero (1961) proposed radial composite reservoir solutions, using the
Laplace transformation. Loucks and Guerrero (1961) studied the pressure distribution in
an infinite composite reservoir composed of two adjacent concentric regions of different
permeabilities. They found that, under certain conditions, the permeability in both zones,

as well as the size of the inner zone, can be determined from transient pressure test data.

Larkin (1963) presented solutions to the diffusion equation for a line source located
anywhere in a region bounded by a circular discontinuity. He used Green's functions
presented by Jaeger (1944). Larkin ‘s (1963) solution considers different rock and fluid
properties on opposite sides of the discontinuity. Jones (1962) studied the behaviour of a
composite reservoir, using the Laplscz transformation. Jones (1962) made predictions for
the behaviour of wells located near a gas-water contact. He extended the application of
Larkin’s (1963) solution by including mobility and diffusivity terms for several fluid
phases in series. However, neither Larkin (1963) nor Jones (1962) specified the times for

which their approximate solutions are valid.



Carter (1966) analyzed the pressure transient behaviour of a closed, radial, composite
system with a well producing at a constant rate. He stated that in a graph of pressure
versus time, an early semilog straight line may be observed. This semilog straight line
corresponds to the inner region mobility. After this semilog straight line, a pseudosteady
state period may follow. During this peried, a Cartesian graph of pressure versus time will
yield a straight line. From the slope of this Cartesian line, a volume can be estimated.

Carter (1966) pointed out that this estimated volume would be greater than the inner region

volume.

Odeh (1969) analyzed well tests from infinite outer boundary composite reservoirs. He
stated that if a large contrast of physical properties exist, the pressure transient behaviour of
an infinite outer boundary composite reservoir would be the same as the closed outer
boundary case. The reason for this behaviour lies in the effects of the discontinuity being
the same as those of a closed outer boundary. However, once the effect of the
discontinuity ends, a second semilog straight line may follow the pseudosteady state

period. This second semilog straight line will correspond to the outer region mobility.

Eggenschwiler et al. (1980) presented an analytical solution in Laplace space for the
transient pressure behaviour of a well, producing at a constant rate, from a two-region,
radial composite reservoir. Their method is widely used to estimate the swept or burned
volume from well tests in thermal recovery projects, such as steamflooding or in-situ
combustion. Eggenschwiler et al. (1980) modeled the swept volume as a radial region
adjacent to the injection well. Wellbore storage and skin effects were also considered.
Reservoir and fluid properties, such as permeability, porosity and compressibility of the

reservoir fluid, were considered to be different in the inner (swept zone) and the outer



region (unswept zone). Horne et al. (1980) extended the Eggenschwiler et al. (1980)
solution to finite composite reservoirs. Tang (1982) used the Eggenschwiler et al. (1980)
method to calculate a front radius on the basis of a tt.-oretical deviation time. Tang (1982)
analyzed an in-situ combustion case. He found that the error involved in the estimated

radius of the burned zone increases with an increase in the diffusivity ratio.

Walsh et al. (1981) used the Eggenschwiler et al. (1980) model to analyze falloff test data
from in-situ combustion and steam injection projects. They observed that a long transition
zone between the two semilog straight lines, for the swept and unswept regions, contains
an approximate pseudosteady state region that may provide the information required to
estimate the inner zone volume. To compute the swept zone volume, the mean temperature
and pressure of the swept zone are required. Walsh et al. (1981) explained that, since the
concept of pseudosteady state is based on material balance principles, the estimated volume

of the swept zone is independent of the shape of the actual swept volume.

Sarman (1981) analyzed transient flow in multi-layer, radial, and infinitely large composite
reservoirs with fluid banks. Sarman (1981) studied how the swept volume can be
estimated by using a Cartesian graph of well test data, taken after the end of the first
semilog straight line of a falloff test. He concluded that the average properties of the swept
zone in a multi-layer system can be determined from the first semilog straight line of the
well test data. Sarman (1981) also stated that the first discontinuity radius can be found by
using the time at which pressure data deviate from the first semilog straight line. Sarman
and Oskay (1985) studied the effects of a tilted front on well test analysis for multi-layer

radial composite reservoirs. Their study suggests that if a sharp front model is used to



estimate the front radius from a tilted front reservoir, the estimated front radius will be

lower than the actual front radius.

Rosa and Horne (1983) developed a solution applicable to composite reservoirs. They
used the Laplace transform technique to develop their model. Rosa and Horne (1983)
showed that the Stehfest (1970) numerical inversion scheme could be used to invert exact
solutions from Laplace space to real space. Their study also showed a way to broaden the

application of automated type-curve matching in well test analysis.

Da Prat et al. (1985) used the Eggenschwiler et al. (1980) composite model to determine
the burned volume and the location of the fire-front in an in-situ combustion project. Da
Prat et al. (1985) reported that the real pressure profile from the project matched quite well
with the predictions made with the composite model. They also stated that the values

obtained for the burned volume and the location of the burning front were reliable and

simple to interpret.

Brown (1985) analyzed the drawdown pressure derivative behaviour of two region, radial
and infinitely-large composite reservoirs. He studied the nature and duration of the
transition region between the two semilog straight lines observed on a composite
reservoir's pressure profile. He concluded that storativity influences only the timing and
shape of the transition region, but does not affect the slope of the two semilog straight
lines. Brown (1985) also discussed how the transition region shape is affected by the

mobility ratio between regions.



Barua and Horne (1987) discussed the application of automated type-curve matching to
analyze well tests from reservoirs undergoing a thermal recovery process. Barua and
Horne (1987) used the Eggenschwiler et al. (1980) analytical model in their automated
type-curve analysis. Rosa and Horne's (1983} solution was also considered in their study.
With their automated type-curve matching method, an average radius of the swept zone tan
be obtained. The Barua and Horne (1987) method might give good estipnates for the inner
zone properties, even when the mobility ratio is not high or when the falloff test has beca
preceded by a short injection period. 4However, a lot of computer operations are required

and the estimated outer zone properties might be unrealistic.

Olarewaju and Lee (1987) proposed an analytical solution in Laplace space for two-region,
radial composite reservoirs produced either at a constant bottomhole pressure or at a
constant rate. Their solution includes wellbore phase redistribution as suggested by Fair
(1981). However, their study did not consider storativity variation. Olarewaju and Lee's
(1987) study indicates that the phase redistribution effect is larger for a damaged system
than for a stimulated one. They concluded that when the effect of phase redistribution is
not severe enough to cause the characteristic pressure distortion (hump), it could lead to a

misinterpretation of the reservoir pressure behaviour.

Olarewaju and Lee (1989) developed a two-region composite model to determine reservoir
parameters, such as permeabilitics of the inner and outer zones, radius of the inner zone,
and wellbore storage. Olarewajs: and Lee (1989) stated that for radial flow in an infinite-
acting reservoir, the value of the semilog pressure derivative is shifted from 0.5 by a factor

equal to the mobility ratio between the outer and the inner zones.
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Ambastha (1988) presented an analytical study of the transient pressure derivative
behaviour of a well in a two-region composite reservoir with a thin skin at the front.
Ambastha (1988) found that the transition period between the end of the first semilog
straight line and the beginning of the second semilog straight line is longer for larger
mobility ratios. However, the effect of the storativity ratio on the timing of the semilog
straight lines can be assumed as negligible. Ambastha (1988) found that the time to the
maximum semilog pressure derivative and the magnitude of the maximum pressure
derivative are affected by the mobility ratio. He also showed that, although the storativity
ratio mildly affects the time to the maximum semilog pressure derivative, the magnitude of

the maximum pressure derivative is affected significantly by the storativity ratio.

Ambastha and Ramey (1990) investigated the effect of skin at the front on composite
reservoirs well tests. They showed how the effects of skin at the front on the transient
pressure derivative behaviour are similar to the effects of storativity ratio. Ambastha and
Ramey (1990) explained how skin at the front may be the cause of a short duration

pseudosteady state period corresponding to the inner swept volume, for small mobility and

storativity contrasts.

Olarewaju et al. (1991) presented type curves from a two-region composite model. They
analyzed radially-damaged or -stimulated wells. Their type curves can be used to analyze
the extent and magnitude of impairment in a damaged system or the extent or quality of
improvement achieved from stimulation. The effect of phase redistribution was also

included in their type curves. However, storativity variation was not considered.
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2.1.2 Numerical Approach

Bixel and van Poollen (1967) numerically solved a two-region infinite system in which a
well was located at the center of a circular region surrounded by a radial discontinuity.
They showed how to estimate the inner region transmissibility by using the slope of the
early straight line segment of the drawdown curve. Bixel and van Poollen (1967) studied
the effect of mobility ratio on transient pressure behaviour. Each set of type curves had a
fixed value of storativity ratio. Hﬁwever, the effect of storativity ratio on pressure

behaviour was not discussed.

A finite thickness skin zone was treated by Wattenbarger and Ramey (1970) as a composite
system. They used a numerical technique to obtain pressure transient behaviour for such
systems. They concluded that the infinitesimally thin skin concept is applicable for
damaged zone dimensionless radii from 1 to about 10. Their work suggested that if the
damaged zone dimensionless radius is equal to or larger than 10, two straight lines will be

evident on a semi-logarithmic plot.

In 1972, Kazemi et al. analyzed simulated pressure falloff tests in reservoirs with fluid
banks. They emphasized how wellbore storage can mask the information that can be
obtained from the early data of a falloff test. Kazemi et al. (1972) studied the two straight
lines that can be observed on a falloff test pressure profile. They concluded that the slope
ratio of the second straight line to that of the first straight line segment approximates the
mobility ratio for the two zones, only when the storativity ratio is near unity. Kazemi et al.

(1972) stated that when the storativity ratio is greater than one, the ratio of the slopes is
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usually greater than the mobility ratio, whereas if the storativity ratio is less than unity, the

ratio of the slopes is less than the mobility ratio.

In 1974, Merrill et al., using the same type of simulator as Kazemi et al. (1972),
investigated the pressure behaviour of two-zone composite systems. Merrill et al. (1974)
defined what type of information can be obtained from a falloff test, depending on the
conditions of the system tested. They concluded that proper analysis of falloff tests from
waterflood systems with two contrastiﬁg fluid zones can yield information about mobilities

and saturations on both sides of the front as well as the distance to the front. Analysis of

gas injection systems can give information about the mobility of the first zone and the

distance to the front.

Sosa et al. (1381) considered the effect of saturation distribution in the swept region on
waterflood falloff tests. They used a radial numerical simulator to account for the relative
permeability characteristics of the system. Their study showed how the transition region
between the water and oil regions affects significantly the falloff test data. Sosa et al'’s

(1981) analysis provides some qualitative information about waterflooding processes.

Messner and Williams (1982) applied theWalsh et al. (1981) procedure and used an implicit
thermal simulator to analyze falloff data from steam injection projects. The swept volume
comparison between the results from the two methods appeared to be favourable.
However, thermal efficiencies calculated by the pseudosteady state method tended to be
very low, indicating larger than expected overburden heat losses and excessive chanelling.

Messner and Williams (1982) stated that the low thermal efficiencies could also be due to
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the inability of the method to accurately assess the reservoir heat content, ahead of the

steam zone.

Fassihi (1988) numerically simulated falloff tests of steamflood and in-situ combustion
processes using areal and radial models. He analyzed whether the swept volume estimated
by applying the Eggenschwiler et al. (1980) analytical model agreed with the simulated
swept volume. In this comparison, the effects of several parameters were studied. These
parameters included reservoir and operational characteristics, such as wellbore gridblock
size, non-uniform permeability, layering, flowing non-condensable gas, and oil
vaporization. Fassihi (1988) concluded that, in reservoirs with highly contrasting
homogeneous zones, estimated swept volumes from steam falloff tests, using the analytical
model, were in good agreement with simulated swept volumes. However, continuously
changing the reservoir's physical characteristics may mask the pseudosteady state period,
making the analysis impossible. Fassihi (1988) also observed that in some in-situ
combustion processes, the high mobility of the gases ahead of the front tends to distort the

pseudosteady state period, making estimation of the burned volume inaccurate.

Ziegler (1990) analyzed pressure falloff data from a steam injection project. He compared
results from the Eggenschwiler et al. (1980) analytical model and a simulator. Ziegler
(1990) concluded that the analytical model yields results which are in good agreement with
numerical simulation predictions. Ziegler (1990) recommended the use of the analytical

model to determine reservoir parameters from steam injection falloff tests.
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2.2 Three-region Composite Models

Solutions for a well located in a radial, three-region reservoir are available. However, very
few studies have investigated the transient pressure response from these reservoirs. This

section will present some of the most important analysis in this area of well testing.

2.2.1 Analytical Approach

Onyekonwu and Ramey (1986) developed an analytical solution for three-region, radially
infinite, composite reservoirs. They showed, how in a two-region reservoir model, the
assumption of a sharp mobility contrast between the zones is not exactly correct.
Onyekonwu and Ramey (1986) discussed the existing gradation in fluid properties from
the swept zone to the unswept zone. They explained that, in a three-region model, the
middle zone is used to represent the region where the gradual change in fluid properties
between the swept and unswept zones occurs. In their study, Onyekonwu and Ramey
(1986) also analyzed the effect of the transition zone, mobility ratio and storativity ratio on
pressure behaviour. The transition zone causes a departure from pseudosteady state
behaviour. This departure is directly proportional to the size of the transition zone. The
time of departure from pseudosteady state behaviour is directly proportional to the mobility
ratio between the swept and the unswept zones. However, the time of departure from

pseudosteady state is independent of the storativity ratio.

Barua and Horne (1985) compared analytical solutions for two-region and three-region,
radially infinite, composite reservoirs. The three-region model included a transition region

between the swept and unswept regions. Barua and Horne (1985) used automated type-
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curve matching in their analysis. When trying to match the two-region model to the three-
region model, they found several data points did not match. They concluded that this
failure to match indicated the presence of an intermediate zone between the swept and the
unswept zones. Barua and Horne 's (1985) work suggests that, by including the

intermediate zone in the analysis, the estimates of the discontinuity radii will improve.

Ambastha and Ramey (1992) studied the transient pressure response of a well in a three-
region composite reservoir. They discussed in detail the effective physical properties of a
three-region composite reservoir. Ambastha and Ramey (1992) showed how the deviation
time method would yield a front radius R, if the mobility ratio and the storativity ratio, at
the first discontinuity, are balanced in such a way that a correct deviation time is observed.
They also concluded that the pseudosteady state method will yield the second front radius
R2, if the effective storativity is used in the analysis. Ambastha and Ramey (1992)
defined a criterion to distinguish apparent pseudosteady state from real pseudosteady state.
This criterion uses the effective time to the start of pseudosteady state. When an apparent

pseudosteady state is developed, the analysis yields an overestimated value for the second

front radius R .
2.2.2 Numerical Approach

Merrill et al. (1974) used a simulator to study the application of a three-region composite
model when analyzing well tests from enhanced oil recovery projects. They used the
deviation time concept in their analysis. Merrill et al.’s (1974) work includes a tabulation
of deviation times for different conditions of three-zone reservoirs. From this table, they

obtained an averaged deviation time. They concluded that for three-zone systems, the
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average dimensionless deviation time is 0.485. This value of time can be used to estimate

the distance to the first discontinuity in the reservoir.

Onyekonwu et al. (1984) analyzed in-situ combustion falloff data by using two thermal
simulators. He studied how to determine the proper average temperature when using the
the pseudosteady state concept to estimate the swept volume. Onyekonwu et al. (1984)
found that the swept volume, determined from pressure analysis, includes both a burned
volume and a high gas saturation zone ahead of the front. They emphasized that an
effective value of temperature is required for evaluation of compressibility and the
formation volume factor. These variables are important for accurate interpretation of falloff
data. In their work, Onyekonwu et al. (1984) show how the effective temperature is
strongly dependent on the wellbore and peak temperatures. They also concluded that this

effective temperature is usually lower than the average temperature based on an energy

balance.

2.3 Multi-region Composite Models

Very little research has been reported about multi-region (more than three regions)
composite reservoir models. Normally, multi-region composite models are used to
characterize reservoirs with different permeability zones. However, very few studies have
investigated the transient pressure response from these reservoirs. The application of

multi-region composite models in reseivoir characterization will be addressed briefly.
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2.3.1 Analytical Approach

Nanba and Horne (1989) presented a method to estimate water and oil relative
permeabilities from pressure transient analysis of water injection well data. In their work, a
nonlinear regression algorithm was implemented. Nanba and Horne’s (1989) solutions
were derived based on analytical multicomposite and stepwise(numerical) multicomposite
systems. These solutions were compared with the line source moving bank solution and
with numerical results. The comparison indicated that multicomposite analytical solutions
are appropriate for the analysis of water injection problems. Field examples supported the

practicality of the proposed interpretation procedure.

Abbaszadeh-Dehghani and Kamal (1989) analyzed pressure transient tests of water
injection wells using two-region and multi-region composite reservoir models. They found
that the assumption of a stationary front during falloff is generally acceptable, and that
waterflooding is better represented by a multi-region composite reservoir. Abbaszadeh-
Dehghani and Kamal (1989) also studied how the duration of the transition region is

increased by storativity contrast between regions.

Oliver (1990) presented a process of estimating a permeability distribution from well-test
data. He described the relative contribution of the permeability of various regions to the
estimate of the average permeability. Oliver (1990) showed that permeability estimates
using the semilog pressure derivative are some type of volume-averaged reservoir
permeability. He concluded that the instantaneous semilog pressure derivative from
drawdown pressure data depends upon a weighted average of the permeability within the

annular region of the reservoir. Oliver's (1990) work only considered the unit storativity
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ratio case and the variation of mobility was very small. The maximum mobility ratio

considered was five.

2.3.2 Numerical Approach

In 1989, Yeh and Agarwal simulated a multicomposite model to study how a reservoir
mobility profile can be obtained from the reservoir transient pressure behaviour. They
defined a term called "instantanecus mobility” which is inversely related to the
instantaneous value of the semilog pressure derivative. Yeh and Agarwal (1989) also
established a relation between instantaneous mobility and the radius of investigation.
From simulation runs, they concluded that the instantaneous mobility represents a
volumetric average of the true reservoir mobility. They developed an equation to relate the
instantaneous mobility to the real reservoir mobility. The theoretical basis for their
equations was not explained. Yeh and Agarwal 's (1989) characterization method
apparently yields satisfactory results when there are low mobility contrasts and storativity is

constant within the reservoir.

Using Oliver's (1990) results, Feitosa et al. (1993a) expanded Yeh and Agarwal 's (1989)
algorithm. Feitosa et al. (1993a) concluded that Yeh and Agarwal's (1989) method can be
improved by establishing a different relationship between instantaneous mobility and the
actual reservoir mobility. They considered that the instantaneous mobility represents the
harmonic volumetric average of the reservoir's real mobility. Feitosa et al.'s (1993a)
characterization method seems to yield slightly better results than Yeh and Agarwal ‘s
(1989) algorithm. Feitosa et al. (1993a) also developed a new characterization method

called the inverse solution algorithm (ISA). This algorithm yields similar results to those
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obtained from the modified version of Yeh and Agarwal 's (1989) method. In all the cases
studied, the mobilitiy contrasts were low and storativity remained constant within the
reservoir. In the same year, with the purpose of expanding their previous work, Feitosa et
al. (1993b) included porosity variation in their analysis. They studied porosity variation
cases by using the inverse solution algorithm (ISA). Feitosa et al. (1993b) concluded that
since, in real situations, porosity variations are small compared to permeability variations,
the ISA can be applied to obtain a reasonably good approximation to the actual permeability

distribution.

2.4 Drawdown Analysis

Drawdown tests may prc - ide information about formation permeability, skin factor, and
the reservoir volume communicating with the well. Thus, obtaining information from a
drawdown test is of great importance. In 1988, Ambastha investigated the drawdown
pressure derivative response of a two-region composite reservoir. In his work, Ambastha
(1988) defined the parameters used in a pressure derivative drawdown analysis. When
wellbore storage is negligible, the drawdown pressure derivative is not affected by skin at
the wellbore. In the absence of wellbore storage, the parameters for the drawdown
pressure derivative are the mobility ratio and the storativity ratio. A consideration of
wellbore storage introduces two additional parameters: the dimensionless wellbore storage

coefficient and the skin factor.



After obtaining drawdown data from a composite reservoir, a dimensionless graph of pwp
versus In zp may yield two semilog straight lines with a transition period in between. The
first semilog straight line develops in an early period and it is related to the inner region
mobility. The second semilog straight line develops in a late period and it is related to the
outer region mobility. Wellbore storage effects may mask the semilog line corresponding
to the inner region mobility. Thus, in composite reservoir well tests, wellbore storage
should be minimized. As for the second semilog straight line, this line may be observed as
long as the test is run long enough to .see the effects of the outer region. However, outer

boundary effects may mask the second semilog line.

2.5 Estimating Swept Volume in Thermal Recovery Projects

Many authors have applied different methods to estimate the swept or burned volume from
pressure transient analysis. These methods include the deviation time method, the
intersection time method, the type-curve matching method and the pseudosteady state
method. The correct use of these methods will depend on the conditions of the well test

and the reservoir characteristics.
2.5.1 Deviation Time Method

This method states that when falloff test data are being plotted, a graph of pressure vs. time
would generate an early semilog straight line corresponding to the inner-region (swept
zone) mobility. When the effects of the interface (or front) are felt, a deviation from the

straight line can be observed. The time at the end of the semilog straight line is used to
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calculate a front radius on the basis of a theoretical dimensionless deviation time. The
deviation time method was first used by van Poollen (1964) to locate the flood front in an

in-situ combustion process.

Bixel and van Poollen (1967) found a value of 0.25 for the dimensionless deviation time.
Merrill et al. (1974), after running several simulation cases, found that the dimensionless
deviation time should lie in a range between 0.13 and 1.39. The arithmetic average of this
range was 0.389. Tang (1982) obtaincd an approximated value of dimensionless
deviation time equal to 0.4. Ambastha and Ramey (1989), based on the semilog pressure

derivative behaviour, found a value of 0.18 for the dimensionless deviation time.

Many authors have studied the deviation time method obtaining significantly different
values for the dimensionless deviation time. This significant difference in values for
dimensionless deviation time indicates that an accurate and reliable specification for
dimensionless deviation time is required to obtain meaningful results from this method.
Another disadvantage of the deviation time methad is that the flood front is considered to be
cylindrical, which is often not the case for thermal recovery projects, since gravity and/or
viscous fingering effects distort the front's shape. Furthermore, it is possible for wellbore
storage effects to mask the initial semilog straight line, making the method incapable of

producing any results.
2.5.2 Intersection Time Method

Following the end of the early semilog straight line, falloff data deviates for a period of

time, known as the transition period. After this interval of time, it may be possible to
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observe a second semilog straight line, characteristic of the fluid mobility in the outer
(unswept) zone. The time at which the two semilog straight lines intersect can be used to
estimate a front radius, by using a theoretical dimensionless intersection time as a basis.
Bixel and van Poollen (1967) proposed this method when discussing the effects of linear

and radial discontinuities in composite reservoirs on pressure transient behaviour.

Odeh (1969) presented an equation relating the dimensionless discontinuity (or front)
radius with the dimensionless intersection time, for equal storativity in both regions. Merrill
et al. (1974) presented a graphical correlation using a simulator. They showed that for
mobility ratios close to or less than unity, the dimensionless intersection time is a constant.
However, Merrill et al. (1974) observed that for mobility ratios much greater than unity,
the dimensionless intersection time is affected by both the mobility ratio and the storativity
ratio. Sosa ez al. (1981) used the intersection method to analyze the effects of mobility ratio
on simulated falloff tests. Ambastha and Ramey {1989) provided a number of reasons as
to why the intersection time method is not suitable for thermal recovery well test analysis.
They stated that in most thermal well test cases, the falloff test will not be run long enough
to see the second semilog straight line, or the outer boundary effects may mask the second

semilog straight line, or wellbore storage and skin may mask the first semilog line.

2.5.3 Type-Curve Matching Method

Type curves are dimensionless functions of pressure or pressure derivatives versus time,
with mobility and storativity ratios as parameters. Generally, theoretical dimensionless
type curves are generated by a mathematical model. The type-curve matching procedure

involves fitting the entire well test data to a set of type curves. Once a match is obtained, an
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arbitrary point of the data is selected and related to the definition of dimensionless variables
of the type curve. By relating data and dimensionless variables definitions, unknown
variables are obtained. These variables include important reservoir information, such as
permeability, wellbore storage, wellbore skin factor and discontinuity radii. However, the
non-uniqueness of the match is still the major disadvantage of type curve matching

methods.

Several type curves were developed b); Bixel and van Poollen (1967) with mobility ratio as
a correlating parameter. Barua and Horne (1987) successfully used automated type-curve
matching to analyze thermal recovery well tests. Olarewaju and Lee (1987) used their type
curves to analyze field tests exhibiting composite reservoir behaviour. Qlarewaju and Lee’s
(1987) type curves include Fair’s (1981) phase- redistribution parameter. Ambastha and
Ramey (1989) presented pressure derivative type curves applicable for all front radii, with
mobility and storativity ratios as parameters for infinitely-large composite reservoirs. The
time match point is used to calculate the front radius, while the pressure derivative match
point yields the mobility of the inner (swept) region. Wellbore storage was not'considered.
Ambastha and Ramey (1989) explained that because of enhancement of detail in a pressure
derivative graph, improved type-curve matching may be possible by using a pressure

derivative type curve.
2.5.4 Pseudosteady State Method

Eggenschwiler et al. (1980) proposed a pseudosteady state method to calculate the inner

swept volume for composite reservoirs with large mobility and storativity contrasts
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between the swept and unswept regions. They observed that due to these contrasts, the
swept region can behave like a closed system for a short duration after the end of the
semilog line corresponding to the inner zone mobility. During this time, a pseudosteady
Cartesian straight line may originate. The slope of this Cartesian line is inversely
proportional to the swept volume. As the pseudosteady state method is independent of the
geometry of the swept region, it is not necessary for the flood front to be cylindrical to get a
good estimate of the swept volume. Eggenschwiler et al. (1980) successfully validated

their work against van Poollen (1965) and Kazemi (1966) falloff data.

Walsh et al. (1981) applied the pseudosteady state method to determine swept volume and
heat distribution in steamflooding and in-situ combustion wells. They emphasized the use
of a two-phase effective compressibility when applying the pseudosteady state method to
estimate the swept volume in a steam injection process. The two-phase compressibility
accounts for volumetric changes caused by steam condensation. Satman et al. (1980) and
Tang (1982) extended the pseudosteady state method to cases where the pseudosteady state

did not develop completely due to insufficient mobility and storativity contrasts between the

two regions.

Onyekonwu et al. (1984) used the pseudosteady state concept to interpret combustion
falloff data. The swept volume calculated by using the pseudosteady state method and
simulated swept volume showed a good agreement. Onyekonwu et al. (1984) developed
correction graphs to relate the burned and swept volumes. Da Prat et al. (1985) applied the
pseudosteady state method to locate the burning front in an in-situ combustion project.
They concluded that the estimated front radius (assuming the front to be cylindrical) was in

good agreement with the actual locations of the injection and production wells.
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Issaka and Ambastha (1992) simulated steam injection falloff tests for a horizontal well.
The effects on falloff data of various parameters, such as wellbore grid block sizes,
injection time, permeability anisotropy, injection rate and front shape were investigated.
Their study showed that swept volume might be overestimated, by 5% to 60%, for
horizontal wells. Issaka and Ambastha (1992) indicated that longer injection times prior to
shut-in may have an adverse effect on the estimated swept volume. The reason for this
adverse effect is that for longer injection times, the shape of the swept region is more

irregular.

Sheng (1992) applied the pseudosteady state method to analyze thermal recovery projects
by using theStanislav et al. (1989) approach. He simulated falloff data and studied the
effects of parameters such as gravity, dip, permeability anisotropy and irregular shape of
the swept volume. Sheng (1992) found that all these parameters do not affect the results
significantly. He also concluded that, although the estimated swept volume and skin are
reasonably calculated by the pseudosteady state method, the permeability might be
overestimated by 30% to 40%. His study showed how the estimation of permeabilities and
swept volumes depends on the vertical position of a pressure recorder, where pressure

falloff data are measured.

2.6 Mobility and Storativity Profiles

Previocus simulation studies have reported profiles of mobility ratio and storativity ratio,
most commonly observed in thermal recovery projects. The mobility ratio and the

storativity ratio values used in this study are in a range from 1 to 1000. The characteristic
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profiles used in this study are within the range of values given in previous studies from the

literature. We refer to some of these studies in this section.

Fassihi (1988) simulated several falloff tests to analyze the pressure transient behaviour in
steamflood and in-situ combustion processes. His table of estimated physical properties

includes values of mobility ratio from 7 to 600 and values of storativity ratio from 23 to

33000.

Onyekonwu et al. (1984) made a comparison between analytical and numerical composite
reservoir models. They used a three-zone model in the comparison. The estimated value
of mobility ratio between the inner region and the transition region was 16 and the
estimated value for mobility ratio between the first and the third region was 1840. The
storativity ratio between the first and the transition region was 4, while the storativity ratio

between the first and the third region was 110.

Onyekonwu and Ramey (1986) studied the effect of the transition region on the pressure
behaviour of a three-region composite system. The mobility ratio between the first zone
and the transition zone was 25, while the mobility ratio between the first and last zone was

1000. Storativity ratios for the first and second discontinuities were 5 and 35, respectively.

2.7 Discontinuity Radii

Previous studies have analyzed well tests in enhanced oil recovery operations. These

studies have considered cases of injection of fluids to displace and produce 0il. Some other
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well test analyses have considered cases in which a fraction of oil is burned creating a heat
gradient to mobilize and produce oil. Normally, all these types of well test analysis
consider the reservoir as a system with multiple banks. Three main banks are considered in
these systems. A bank, which represents the injected fluid, is also known as the swept
zone. A bank, in which the injected fluid and oil are present, is also known as the
transition zone. A bank, which represents the oil region, is termed the unswept zone. Two
discontinuities are distinguished within these three banks: a discontinuity between the
swept zone and the start of the transition zone, and a discontinuity between the end of
transition zone and the unswept zone. The distances from the wellbore to the
discontinuities are known as the first and last discontinuity radii, respectively. Although a
multi-region composite reservoir may have several discontinuity radii, whenever a ratio of
discontinuity radii is mentioned in this study, it will be referring to the ratio between the last

and the first discontinuity radii.

Several studies have reported the ratios of discontinuity radii most commonly observed in
thermal recovery projects. Some of the ratios of discontinuity radii used in this analysis
are: 1.4, 1.9, 2.8 and 10. The ratios of discontinuity radii used in this study are within the

range of values given in the studies to be discussed subsequently.

Merrill et al. (1974) simulated the pressure behaviour of three-zone composite systems.
They analyzed gas injection processes. In their analysis, Merrill et al. (1974) used ratios of

discontinuity radii of 1.6 and 2.

In 1984, Onyekonwu et al. simulated falloff tests to analyze an in-situ combustion project.

Onyekonwu et al. (1984) reported a table with simulation results. They showed how the
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discontinuity radii depend on fluid saturation, temperature and reservoir physical
characteristics, such as mobility and storativity. Depending on the interpretation applied to

their simulation results, the ratios of discontinuity radii range from 1.6 to 5.6.

Onyekonwu and Ramey (1986) simulated an in-situ combustion project to generate data

for an analytical model. Their data included a range of ratios of discontinuity radii from 1.1
to 1.4.

In 1989, Yeh and Agarwal analyzed injection well test pressure data from reservoirs with
multiple fluid banks. They studied reservoirs undergoing a waterflood or chemical
injection. They generated simulation results by using a two-phase, two-dimensional
numerical model. Yeh and Agarwal ‘s (1989) study used more than 20 sets of relative

permeability data and some field tests. Their study included ratios of discontinuity radii of

4.4, 4.8, 10.5 and 20.
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CHAPTER 3

STATEMENT OF THE PROBLEM

As discussed in the literature review, over the years, the pressure behaviour of composite
reservoirs has gained considerable interest and many studies have appeared on this subject.
A composite reservoir represents a number of well testing scenarios. Well test scenarios in
thermal recovery operations have been typically represented by the use of a two- or three-
region composite reservoir model. In some cases, the two- or three-region composite
models may not be adequate to describe systems in which the mobility and storativity
change continuously within the swept region. For these reservoirs, a multi-region
composite model is more suitable. Therefore, this study investigates the pressure and
pressure derivative responses of a multi-region, radial composite system. Thus, the main

objectives of this study are:

1. To develop an analytical solution, similar to the Eggenschwiler et al. (1980)
solution, for multi-region, radial composite reservoirs with infinitesimally thin skin

at the discontinuities.

2. To develop new pressure derivative type curves for type-curve matching analysis of

well tests in either homogeneous or multi-region composite reservoirs.



To analyze how previous two-region and three-region composite reservoir solutions

compare with the multi-region composite solution.

To analyze effective mobility and storativity behaviour in multi-region composite

reservoirs.

To study how mobility and storativity variations affect the swept volume estimation

using the pseudosteady state method.

To analyze the possibility of improving previous composite reservoir analysis by

means of the multi-region composite model.

To study briefly some reservoir characterization methods from the literature.
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CHAPTER 4

MATHEMATICAL MODEL FOR A MULTI-REGION
COMPOSITE RESERVOIR WITH SKIN AT THE
DISCONTINUITIES

A mathematical model developed in this study is presented. This mo. . considers a multi-

region radial composite reservoir with wellbore storage and skin at the active (injection or

production) well and infinitesimally thin skin at the discontinuities. The surface production

(or injection) rate is assumed to be constant. The outer boundary may be infinite, closed or

at a constant pressure. The solution for this model is obtained by using the Laplace

transformation technique.

Some other assumptions in this model are:

‘i)
2)
3)
@
(5)
(6)

The formation is homogeneous, horizontal and of uniform thickness.

The front is of infinitesimal thickness in the radial direction.

The fluid flowing is considered to be of slight, but constant, compressibility.

The front can be considered stationary throughout the few hours of a testing period.
Flow is considered to be single phase, radial and laminar.

Gravity and capillarity effects are considered negligible.



4.1 Mathematical Development

The governing equations and boundary conditions in dimensionless form for a multi-region

radial composite reservoir are:

4.1.1 Governing Equations:

first (1) region
d
fD ( apD’) = ZPD for 1 <rp <Rp,
arp dip 4.1)
any (i) region
fori=2.3,..n
( dpD = Nj5— 9pD, for Rp., <rp < Rp, or rep(or o)
I'D arD i- a i1 ] 4.2)
4.1.2 Inner Boundary Conditions:
dPWD (G?Dl)
D a
P (4.3)

Po: - S(§apr_’l;))rp=l

(4.4)



4.1.3 Conditions at the Discontinuities:
any discontinuity - regions (i) and (i+1)

Ip— = "le(pDa'pDn) forrp=Rp,andtp >0
drp fori=12,.n-1 (4.5

— forrp= RDiand tD>0
drp orp fori=1,2,.n1 (4.6)

4.1.4 Outer Boundary Conditions:
Infinite:

pDn(rD,tD)rD - = 0

4.7)
Closed:
apDn) - 0
oD Jrp=rg (4.8)

Constant pressure:

0

PD.(TeD-tD) 4.9)

34



35

4.1.5 Initial Condition:

Pp(rp.0) = 0 fori=1,2,...n (4.10)

4.1.6 Dimensionless Variables:

Dimensionless variables used in Equations 4.1 through 4.10 are defined as:

Dimensionless pressure:

PD;, = M(po‘l’i)
qBm fori=1,2,...n @4.11)

Dimensionless pressure at the wellbore

= 21(1(1 h

PwD (Po- Pw)

q P (4.12)

Diffusivity ratios:

_ (Kk/¢uc);
(k / opcyivg fori=1,2,...n-1 (4.13)



Mokbility - vios:

(k/p)

M; = — 2t h
(k/ W)

Dimensionless radii:

I

D = i
- Te
TeD = Tw
R;
RDi = r“:

Dimensionless time:

kit
(duc r2

tp =

Dimensionless wellbore storage

Cp=——C
2r(pcy hrd

Wellbore skin factor:

s = 2mkih

Aps
qB

coefficient:

fori =1,2,..n-1 (4.14)

(4.15)

(4.16)

fori=1,2,..n-1 (4.17)

(4.18)

(4.19)

(4.20)

36



Discontinuity skin factor:

= 21tk]h

Apﬂ'i
qrB 11 fori=12,.n-1 (4.21)

4.1.7 General Solution

A general solution for the governing equations (Equations 4.1 and 4.2) was obtained by
using the Laplace transformation technique with the appropriate initial and boundary

conditions. The general solution in Laplace space for each region is:
first (1) region

PD,(rD,2) = Cil(rpvZ) + C2Ko(ripvz)  for 1 <rp < Rp, (4.22)

any (i) region
fori=2,3,...n

PD(rD,2) = Cai116(rpvM;12)+C2iKo(rpvN;; Z) for Rp,,<rp<Rp, or r.p(or °°)(4.23)

In Equations 4.22 and 4.23 and in all subsequent equations, the transformed time variable
is identified by the symbol z. The dimensionless wellbore pressure drop in Laplace space

is:

Pob@ = Ci[ 142) - svZ 1162) ] + Co[ Ko@) + svZ K1(v2)} (4.24)
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4.1.8 Solution's Constants

All constants C) through C2n are obtained by solving the system of equations resulting

from the use of boundary conditions (Equations 4.3 through 4.9) in Laplace space:

For example:

from Equations 4.3 and 4.4

oq,Ci1+oq2C2 = 1/z (4.25)
from Equation 4.5 -
02.2-)Ca1 + 0@.2Cz + 0@.2.9Can1 + 042,242Cz42 = 0 fori=1,2,..n-1 (4.26)
from Equation 4.6

02412 0C21 + A2, 2)Ca + 030124 )Ce1 + A(241.2+2C242 = 0 for i

I

1,2,..n-1 4.27)

from Equations 4.7 or 4.8 or 4.9
Aen2n1Cm1 + An2mC;n = 0 (4.28)

The term a j) denotes the coefficient of the Cj in the i th equation. Equation 4.25 is the

first equation, and Equation 4.28 is the last equation in a composite system of n -regions.

The terms oy; j) are:

oy = Cpz(1,6@ - 2 1,6®) - 2 1,6D (4.29)



1.2y = Cpz(Kod) + svZ K10D) + vZ K103 (4.30)
a1y = Io(Rpv2) + sgRpvZ 11 (Rp, o) (4.31)
o22) = Ko®p1¥2) - s, Rp,vZ K1(RpyV2) (4.32)
a@3,1) = Mz 11(Rpiv2) (4.33)
x@3.2) = -Mivz Ki(Ro¥2) (4.34)
02i2i-1) = lo(Ro¥ZHD) + sRp¥zNit hROYZED  fori=23,.n-1  (4.35)

a@2i2i) = Ko(Ro¥zmi) - stRp¥zni-y KiRo¥aL)  for i = 2.3...n-1 (4.36)

a2i2i+1) = -Io(Royzni)

fori =1,2,..n-1 4.37)
002 2i+2) = -Ko(Rpyzn) fori = 1,2,...n-1 (4.38)
o@2i+1.2i-1) = M;¥zn;) LI(Royzn) fori =2.3....n-1 (4.39)

oi+1,2i) = -Mi¥zni Ki(Royzni) fori = 2,3,...n-1 (4.40)

o(2i+1.2i+1) = -¥Yzn; LHLRoyz) fori=1,2,..n-1 (4.41)

®2i+1.2i+2) = Yzm; Ki(Royzam) fori = 1,2,...n-1 (4.42)



The remaining coefficients depend on the specified outer boundary condition and are

defined by:

Infinite outer boundary:

A bounded solution for pp,(rp—e°, 2) is obtained from Equation 4.23 provided that
Can-1 = 0, as lo(rp¥Nn.1z)—° as rp—°, Therefore, & (2n-2,2n-1)» ®(2n-1,2n-1) and
O4(2n.2n-1) are set io zero in the system of equations. Also, 0(2n,2n) =0, as Ko(fp¥Mn.12) in

Equation 4.23 approaches zero as TD—°°. Thus:
0(2n-2,2n-1) = O(2n-1,2n-1) = O(2n,2n-1) = %(2n,2n) = 0 (4.43)

The values of 0y2n.22n-1) and (2n-1,2n-1) are to be used based on Equation 4.43 for infinite

reservoirs overriding the values corresponding to i = n-1 for these o's from Equations 4.37
and 4.41, respectively.

Closed outer boundary:

Excepting the coefficients due to the outer boundary condition, all coefficients remain as

defined before in Equations 4.29 through 4.42.

O2n.2n-1) = Ij(repVzfn1) (4.44)

®2n.2n) = -K1(redvZa) (4.45)
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Constant-pressure outer boundary:

As in the previous case, the only different coefficients are those due to the outer boundary

condition:
O (2n.2n-1) = Lo(fedVzMa1) (4.46)
®(2n,2n) = Ko(repVzia1) (4.47)

In this section, the solution to the transient pressure problem for a radial multi-region
composite reservoir with skin at the discontinuities has been described. The problem was
arranged as a system of 2n equations with 2n unknowns (constants Cj). To solve the
problem, all the coefficients were grouped in a matrix called A, all the unknown constants
Cj were grouped in an unknown vector called ¢ and all right-hand-side terms from
Equations 4.25 through 4.28 were arranged in a known vector called b. Once the system
was set in the form Ac = b, the unknown vector ¢ was obtained by multiplying the inverse
of matrix A by the known vector b. After obtaining the values of the constants C;j,
dimensionless transient pressure and dimensionless pressure derivative (semilog and
Cartesian) responses in Laplace space were generated. These responses were numerically

inverted from the Laplace space to real space by means of the Stehfest (1970) algorithm.

Appendix A contains the development of expressions for the physical properties of multi-
region composite reservoirs. Appendix B contains the development of the dimensionless

form for instantaneous mobility and radius of investigation. Appendix C contains the input



data used to analyze the transient pressure behaviour of multi-region composite reservoirs.

Appendix D contains the computer program used in this study.

It is important to note that at very early times (tp = 100), the matrix of coefficients A,
mentioned previously, may become singular or very close to singular (over the working
precision limit of the computer). This is because at very early times, there are very small
coefficients as well as very large coefficients, which causes the singular behaviour of the

matrix. Appendix E explains how the singularity problem was overcome.

Appendix F shows sample results for a particular run of the computer program. Finally,
appendix G shows some additional figures for the transient pressure response of multi-
region composite reservoirs. These graphs were used during the development of this
study, however no discussions have been done about these figures since other figures

(Chapter S) are considered to be more significant for the objectives of this study.

4.2 Verification of Solution

The solution presented in section 4.1 was verified against the Agarwal et al. (1970)
solution for a well in a homogeneous reservoir with and without skin at the wellbore. To
reproduce Agarwal et al. (1970) by using this study's solution, the model presented in this
work was run as a multi-region (i.e., three, five and ten regions) composite model with no
skin at the discontinuities and in which all the mobility and storativity ratios at the
discontinuities were equal to unity. The model successfully reproduced the homogeneous

reservoir pressure responses (Figures 4.1, 4.2).
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The multi-region composite model was alsc validated against theWattenbarger and Ramey
(1970) solution for a well in a homogeneous reservoir with a finite skin zone.
Wattenbarger and Ramey (1970) showed how the thick skin concept can be visualized as a
zone near the wellbore with a permeability lower or higher than the reservoir's
permeability. Thus, a homogeneous reservoir with a thick skin zone is a two-region
composite reservoir. Wattenbarger and Ramey (1970) presented an equation and a table
relating thick skin to the mobility ratio between the two zones as well as the discontinuity
radius corresponding to that mobility x;atio. To verify the multi-region composite reservoir
model against theWattenbarger and Ramey (1970) solution, the model was run as a multi-
region (ie. three, five and ten regions) composite model with one value of mobility for the
region closest to the wellbore and another value of mobility for the rest of the regions
beyond the first discontinuity radius. The multi-region composite reservoir model was run
with no skin at the discontinuities, and with unit storativity ratios at the discontinuities. It
is important to note that the model was run with no skin at the wellbore, and that the values
of skin factor observed ii: Figures 4.3 and 4.4 are values for the thick skin factor. The
multi-region composite reservoir model successfully reproduced Wattenbarger and

Ramey’s (1970) dimensionless pressure responses (Figures 4.3, 4.4).

This study was also verified (Figures 4.5 and 4.6) against Ambastha’s (1992) two-region
radial composite model pressure and pressure derivative responses. The multi-region and
two-region model solutions were compared with and without skin at the front, with and
without wellbore storage and skin. To reproduce Ambastha’s (1992) results, the multi-
region model was run as reservoirs with three, five and ten regions in which all the
mobility and storativity ratios at the discontinuities were equal to unity, except one

discontinuity at a specified dimensionless radius.
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The multi-region composite reservoir model has also been verified against Ambastha and
Ramey 's (1992) three-region radial composite model pressure and pressure derivative
responses. Same type of previous analysis was employed. The comparison between the
two studies was also completely satisfactory (Figures 4.7 and 4.8). INo further venification

secms necessary.
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CHAPTER §

DRAWDOWN TEST ANALYSIS FOR MULTI-REGION
COMPOSITE RESERVOIRS

As discussed in Chapter 2, enhanced oil recovery processes, such as in-situ combustion
and steam injection, are examples of artificially-created composite systems. In these
situations, the reservoir can be viewed as a multi-region system with different rock and/or
fluid properties. This study analyzes drawdown test data from a multi-region composite

reservoir model represent. g a reservoir undergoing steam injection.

5.1 Description of a Reservoir undergoing Steam Injection

A rescrvoir undergoing steam injection has three characteristic zones. A first inner zone,
czlicd the "swept zone", is full of steam and has the greatest values of mobility and
storativity. Beyond the inner zone, there exists a second zone in which the mobility and/or
the storativity may be continuously changing. This second zone is called the "transition
zone". Steam, oil and condensed water are present in the transition zone. At the end of the
transition region, towards the reservoir outer boundary, there is a cold heavy oil region

called the "unswept zone". This last zone has the lowest mobility and storativity values,

and extends as far as the reservoir's outer boundary.



Figure 5.1 represents a mobility ratio and/or storativity ratio profile from a reservoir in
which steam is being injected to recover heavy oil. As the pressure transient moves from
the swept region to the unswept region, the mobility and storativilty will decrease.
However, because of the definition of mobility ratio and stcrativity ratio used in this study,
the mobility ratio and the storativity ratio will increase as the pressure transient moves from
the swept region to the unswept region. Also, based on the definition, the mobility ratio
and storativity ratio of the swept region will be equal to one, while the unswept region will
have the largest values for mobility.ratio and storativity ratio. The unswept region's
mobility ratio and storativity ratio are the overall mobility and storativity ratios. Thus, the
swept and unswept regions have well-defined values for mobility ratio and storativity
ratio. However, the values for the transition region's mobility ratio or storativity ratio are
difficult to define, since mobility and storativity are continuously changing in this region.
In the particular case of steam injection, mobility and storativity ratios continuously
increase in the transition region. The values for mobility ratio and storativity ratio in the
transition region will fall in a range from one to a value lower or equal to the unswept

region's ratios.

Though the transition region's mobility and/or storativity ratio profiles c:ir: be represcated
in any suitable manner judged to mimic the real situation, this study analyzes cases in
which the transition region’s mobility ratio and/or storativity ratio profiles are linear
functions of dimensionless radius. Figure 5.1 represents the case of the transition's region
linear relationship between mobility and/or storativity ratio versus dimensionless radius.
The reason for this transition region's profile not appearing as a straight line is that a
Cartesian straight line is being plotted on a log-log scale in Figure 5.1. It is important to

note that the definition of mobility ratio in Figure 5.1 is different from the definition in
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function of dimensionless radius.
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Equation 4.14. This new definition of mobility ratio will be used with the sole purpose of
presenting results. There are not any mathematical implications from this new definition of
mobility ratio and the mathematical model remains the same as defined in Chapter 4. In
Figure 5.1, an arrow and the symbol for infinity are observed. The purpose of the arrow
and the infinity symbol is to represent the fact that the unswept region’s outer limit is not

defined on the graph, since the reservoir has an infinite outer boundary.

Figures 5.2 and 5.3 are the different mobility and storativity ratio profiles considered in this

study. In these figures, three variables should be explained:

1 Rp; is the radius where the inner region ends and the transition region starts.

Rp; will be referred to as the first discontinuity radius.

2 Rpnp-1 is the radius where the transition region ends and the unswept region starts.

Rpn-1 will be referred to as the last discontinuity radius.

3. my, is the slope of the line that represents the transition region's relationship
between the mobility and/or storativity ratios, and the dimensionless radius.

myr will be referred to as the transition region's slope.

The transition region can be represented by one region with an averaged value for mobility
ratio and/or storativity ratio or by several regions with different values of mobility ratio and
storativity ratio. Both representations are intended to approximate the transition region's
profile. Figures 5.4 through 5.8 show different ways of representing the transition region

in this study. The composite models used in this analysis vary from -a three-region
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composite model to a ten-region composite model. The three-region composite model
represents the transition region using one region. The ten-region composite model
represents the transition region using eight regions. In all composite models, the swept and

the unswept regions are represented by one region each.

The three-region composite model and the ten-region combositc model use different values
of mobility ratio and/or storativity ratio to represent the transition region's linear profile.
To represent this linear profile, a matérial balance method is used. This method was first
proposed by van Everdingen et al. (1953) when analyzing the pressure behaviour of an
aquifer. Based on this method, there will be two areas between the actual profile line and
the value selected. One area is above the actual profile and the other area is under the actual
profile line. These areas have triangular shapes (see Figures 5.4 through 5.8). For the
case of the three-region composite model, there exists one triangular area above the profile
line and one triangular area below the profile line. For the case of a ten-region composite
model, there are eight triangular areas above the profile line and eight triangular areas below
the profile line. The criterion to select the values representing the transition region is that
the areas above the profile should be the same as the areas below the profile line. The
smaller the triangular areas, the better is the representation of the straight line profile for

mobility and/or storativity variation in the transition region.

Representing a steam injection project by a three-region composite model may yield
significantly different pressure transient responses compared to a representation using a
ten-region composite model. This study considers such differences in the transient
pressure behaviour when the reservoir is represented by a multi-region (three or more

regions) composite model.
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5.2 Steam Injection Pressure Transient Bifraviour

Depending on reservoir properties, well conditions and the amount of steam injected, the
pressure transient behaviour of a reservoir undergoing steam injection, can be described by

different ransient flow periods. These periods are:

1. A wellbore storage dominated flow period,

An early radial flow period which reflects the mobility of the inner region,

An early transition flow period reflecting mobility and/or storativity changes,

A pseudosteady state flow period reflecting a large mobility or storativity contrast,

A late transition flow period reflecting mobility and/or storativity changes, and

A A

A late radial flow period which reflects the mobility of the outer region.

A pressure derivative graph enhances the detail in the information that can be obtained from
a well test. Therefore, by using pressure derivative graphs, the pressure transient analysis
from a reservoir may be improved. In most of this study, pressure derivative graphs have

been used.

A log-log plot of the semilog pressure derivative (dpwp / dln tp) versus dimensionless time

(tp) may be used to identify the different flow regimes. Various regimes are identified by:

1. A unit slope line for the wellbore dominated period,

[ 35

A zero slope line for for early radial flow in the swept region,

A unit slope line for the pseudosteady state flow period, and

S~Ww

A zero slope line for the late radial flow in the unswept region.
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A log-log plot of the dimensionless Cartesian pressure derivative (dpwp / dipA) versus
arca-based dimensionless time {tpA) may be used to obtain valuable information from a
reservoir's pressure transient behaviour. Throughout this study, the area used in the
definition of area-based dimensionless time is the area to the last discontinuity radius
Rpn-1- When analyzing a log-log graph of Cartesian pressure derivative versus arca-based

dimensionless time, various flow regimes are identified by:

1. A zero slope line for the wellbore dominated period,

2. A negative unit slope line for early radial flow in the swept region,
3. A zero slope line for the pseudosteady state flow period, and

4.

A negative unit slope line for the late radial flow in the unswept region.

Although the wellbore dominated flow period has been mentioned for completeness sake,
this study only considers cases with no wellbore storage. Skin at the wellbore and skin at
the discontinuities are also considered to be zero. Since wellbore storage and skin effects
have been sufficiently analyzed in previous studies, other features of transient pressure

behaviour are considered in this study.

When there is a well defined pseudosteady state period, a log-log graph of the semiifog
pressure derivative (dpwbD / dIn tp) versus dimensionless time (tp) will exhibit a unit slope
line. During the pseudosteady state period, the slope of a Cartesian straight line on a
pressure versus time graph is inversely proportional to the volume to the discontinuity at
which sharp contrasts in mobility and/or storativity cccur. In some cases, after observing

the early radial flow and a transition flow period, the semilog pressure derivative data falls
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on a straight line, whose slope is less than unity. In such cases, application of the
pseudosteady state concept leads to an overestimation of the volume to the last discontinuity
radius. Sheng (1992) explained that this phenomenon may be caused by a small hot water
zone, thermal effects and/or low mobility contrasts between regions. This study further

investigates the reasons for this phenomenon.

In a graph of dimensionless Cartesian pressure derivative (dpwp / dtpa) versus area-based
dimensionless time (tpa). a flattening or a zero slope line segment may indicate a
pseudosteady state flow period. The condition to be able to see this flattening is a
significant mobility and/or storativity contrast between regions. When this flattening
occurs at a value of the dimensionless Cartesian pressure derivative equal to 2x, the
property contrasts observed exist at the radius used to compute the area-based
dimensionless time (tpa). In this study, the radius used to compute area-based
dimensionless time (ipa) is the last discontinuity radius Rpp.;. Thus, if a flattening is
observed, when the Cartesian pressure derivative is equal to 2, then there is a significant
mobility and/or storativity contrast at the last discontinuity radius Rpp-3. If a flattening is

observed and the value m.p of the Cartesian pressure derivative is different from 2x, then

there is a significant mobility and/or storativity contrast at radius Rp given by:

Rp = Rpni (q)cl)l
S\ (ocdar

2x 5.1

For analytical pressure responses shown in this study, Equation 5.1 is useful to check if a

correct mgp occurs with respect to Rpy, as Rpy-1 is an input for data generation
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purposes. However, field application of Equation 5.1 is limited because Rpg-1 may not be
known accurately. In Equation (5.1), it is important to note that (¢pcy)efr is the effective

storativity corresponding to the volume up to Rp.

5.3 Analyzing Pressure Transient Responses for a Multi-region

Composite Reservoir

This section contains a study of transient pressure responses corresponding to the mobility

ratio and storativity ratio profiles shown on Figures 5.4 through 5.8.

Figure 5.9 compares the dimensionless semilog pressure derivative behaviour of several
composite models. For all the models, an early and a late radial flow period are observed.
The semilog pressure derivative has a value of 0.5 for the early radial flow period and a
value of 500 for the late radial ilow period. These two values for the semilog pressure
derivative represent the swept and unswept region's mobility ratios, respectively. By
definition, the mobility ratios of the swept and unswept regions are equal to two times the
value of the semilog pressure derivative on the early and late radial flow periods
respectively. In our case, the swept region has a mobility ratio of 1, as defined in section

5.2, and the unswept region has a value of 1000.

In Figure 5.9, it can be observed that neither the departure time from the early radial fi.
period nor the transition region’s duration are affected by the number of regions of the
composite model. However, the transition region's transient pressure behaviour is affected

by the number of regions of the model. Therefore, the information that can be obtained
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from the transition region is affected by the number of regions of the model. As observed
in Figure 5.9, the transition region's values for the semilog pressure derivative are higher
for the three-region composite model than for the ten-region composite model. Thus, this
suggests that the value of the transition region's effective mobility ratio for the three-region
model is higher than the effective mobility ratio for the ten-region model. Values for the
transition region's effective mobility ratio were computed by applying Equation A.9 to the
data input values (Tables C2 and C10) of the composite models. A value of 3.07 was
obtained for the effective mobility ratib of the ten-region model, while a value of 4.16 was
obtained for the effective mobility ratio of the three region composite model. These values

confirm the observations from Figure 5.9.

Also, from: Figure 5.9, it can be seen that the three-region composite model shows an initial
transition period, after the early radial flow, in which the dimensionless semilog pressure
derivative falls on a line. This line appears, because of the mobility contrast at the inner
region radius. This mobility contrast is the consequence of only one region representing
the transition zone. The slope of this line is less than one and suggests a low mobility
contrast between regions. The dimensionless Cartesian pressure derivative on Figure 5.10
confirms that there is a low mobility contrast at early times of the pressure transient
behaviour. This low mobility contrast is indicated by a deviation of the Cartesian pressure
derivative from the negative unit slope line. However, since the mobility contrast is low,
the Cartesian pressure derivative does not flatten as it does when there is a high contrast in

mobility or storativity. A high contrast in mobility or storativity originates a pseudosteady

state period.
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Figure 5.10 shows that all the composite models deviate from the negative unit slope at the
same time, 4 x 104, approximately. At this deviation time, the dimensionless Cartesian
pressure derivative has a value mc¢p of approximately 630. By applying Equation 5.1, a
first dimensionless discontinuity radius of approximately i00 was found. This estimated

value of first dimensionless discontinuity radius satisfactorily agrees with the input value.

Figure 5.9 shows that there is a time, when, for all of the composite models, the semilog
pressure derivative 1alls on a unit slope straight line. This unit slope straight line indicates a
pseudosteady state period due to a high mobility contrast. Figure 5.10 confirms this high
contrast by a flattening of the Cartesian pressure derivative. This flattening occurs, when
the Cartesian pressure derivative has a value of 2m. As explained in Section 5.2, this

transient pressure behaviour shows a high mobility contrast at the last discontinuity radius

Rpn-1, as expected.

Figure 5.11 shows the effect of increasing the first discontinuity radius on pressure
transient behaviour. Although the input mobility ratios are the same as for Figures 5.9 and
5.10, it seems that changing the first and last «jiscontinuity radii affects ihe effective
mobility ratio of the multi-region (three or more regions) composite systems. By applying
Equation A.9 to the input mobility ratios of the three-region composite model, an effective
mobility ratio of 2.35 was foqnd, while doing the same thing for the ten-rcgion model
yielded an effective mobility ratio of 2.12. This is one likely reason as to why the pressure
behaviour for all the composite models are closer to each other than those in the previous

case of smaller first discontinuity radius (see Figure 5.9 for comparison).

65



1e+03

e e i B B s p s
E — -region 3
- —Four-region 1
i — Six to Ten-region
1eH02 =3
2 - 3
- o =
£ i 7 !
o i 4
S— -—
o let01 | Rpy =500
=9 : Rp,, = 1400 3
© C m_ =002
[ Foi = 1
let£ilr oo -
E 3
— 3
1e-01 l._a_u.u-ni_—t-u

1e-03 1e-01 le+01 1le+03 le+05

tp/ Rgnl

'T:Tgure 5.11 - Dimensionless semilog pressure derivative for Ry = 500,
R, _,=1400,m = 0.0Z,and F .= 1.

66



Also, from Figure 5.11, it is observed that the transition region's effects are felt later than
the previous case on Figures 5.9 and 5.10, as expected. Thus, increasing the first
discontinuity radius increases the deviation time. Another effect of increasing the first
discontinuity radius is that the transition region's effects become weaker and the duration of

the transition region is shoster.

A general behaviour for all composit¢ models is observed in Figure 5.11. Soon after the
end of early radial flow, the semilog pressure derivative falls on a straight line for a short
time period. The slope of this straight line is lower than unity. As the number of regions
representing the transition region increases, this straight line slope becomes smaller
indicating a lower mobility contrast. Thus, more regions in a multi-region composite
model, mimicking continuous property va: -ions for an actual reservoir, reduce the
possibility of obtaining a unit slope line for thc 2.5 =1 pressure behaviour. In theoretical
pressure transient models, a unit slope linc appesss as a consequence of representing a zone
with continuously changing mobility or storativity as one region. This one-region
representation also erroneously increases the duration of any real pseudosteady state flow

period.

At a later period of time in the transition region response, Figure 5.11 shows that all
compeisite models join together and the semilog pressure derivative falls on a straight line.
The slope of this straight line is unity, indicating a pseudosteady state period due to a high
mobility contrast. Figure 5.12 confirms this high contrast by a flattening of the Cartesian
pressure derivative. This flattening occurs, wher the Cartesian pressure derivative has a
value of 27t. This indicates that a large mobility contrast exists at the last discontinuity

radius Rpp-1. By using Equatior 5.1, the first dimensionless discontinuity radius can also
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be estimated for the response in Figure 5.12. The first point when the Cartesian pressure
derivative deviates from the negative unit slope line indicates a Cartesian pressure derivative
value of approximately 49. By applying Equation 5.1 as discussed previously, a value of
approximately 500 was obtained for the first dimensionless discontinuity radius. This

estimat.d first dimensionless discontinuity radius is the same as the input value of 500.

Figures 5.13 and 5.14 show the effects of different values of first discontinuity radius on
the semilog pressure derivative and tﬁe Cartesian pressure derivative behaviour. Figure
5.13 shows that the larger the first discontinuity radius, the larger is the deviation time.
Increasing the first discontinuity radius reduces the effects of the transition region on
pressure behaviour. The duration of the transition region effects on the pressure behaviour
is inversely related te the first discontinuity radius. If the first discontinuity radius is too
large compared with the last discontinuity radius, the inner region effects may mask all the
transition region effects on the pressure behaviour. Except for the case of totally masked
transition region effects, the method based on Equation 5.1 is not affected by the first

discontinuity radius.

Figure 5.15 shows thic semilog pressure derivative behaviour of another mobility profile.
The overall mobility ratio is 1000 as in previous cases. However, a slope(my) of 0.5 is
assigned to the transition region's straight line mobility profile. Thus, the mobility ratio at
the first discontinuity radius is greater than in previous cases. Increasing the transition
region's slope causes a high mobility contrast between the swept region and the transition
region. This contrast is observed in Figure 5.15 at the beginning of the transition region
effects, when for all the models, the semilog pressure derivative falls on a straight line with

a unit slope indicating the pseudosteady state period soon afier the end of early radial flow.
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Another effect of increasing the transition region's siope myy is that now there is a lower
mobility contrast between the transition region and the unswept zone. The effects of this
low mobility contrast can be observed in Figure 5.15 at the late transition flow period.
This period shows that, for all composite models, the semilog pressure derivative curves
fall on a straight line with a slope lower than one. With data from this period of time, the
pseudosteady state method may be used to estimate the last discontinuity radius. However,

the last discontinuity radius would be overestimated.

Figure 5.16 shows a flattening of the Cartesian pressure derivative, confirming the high
contrast in mobility between the swept region and the transition region. Applying Equation
5.1 to the value mcp of the Cartesian pressure derivative at the first deviation point from the
negative unit slope line will yield the first discontinuity radius. The estimated first

discontinuity radius is 93, which is slightly lower than the input value of 100.

Figures 5.17 and 5.18 show the effects on the semilog pressure derivative and the
Cartesian pressure derivative behaviour of several values of the transition region's slope.
In general, increasing the transition region's slope causes an increase in the mobility
contrast between the swept and the transition region, while the mobility contrast between
the transition region and the unswept region decreases. The higher the mobility contrast,

the higher are the chances of existence of a pseudosteady state period.

For low mobility contrasts between the swept and transition regions, EqQuation 5.1 yields
good estimates of the first discontinuity radius. For high mobility contrasts, the
pseudosteady state method yields good estimates of the appropriate discontinuity radius, if

a correct effective compressibility is used for the analysis. When an adequate flattening in
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ABSTRACT

To monitor the progress of a thermal recovery project, such as a stearn injection operation,
it is important to have a knowledge of the volume swept by the injecting fluid. Well testing
offers a comparatively rapid and economical way of estimating the swept volume. Well
tests conducted on wells undergoing a thermal recovery process typically have been
idealized using a two or three-region cbmposite reservoir model. Each of these regions has
different rock and fluid properties. However, for continuous variations of mobility and
storativity within the swept region, a simple two- or three-region model may not be

appropriate. .

A multi-region, composite reservoir model has been developed to study the effects of
various trends of mobility and storativity variations, within the swept region, on well tests
for composite reservoirs. This study has been designed to address analytically the problem
of multi-region composite reservoir by using the Laplace transformation technique. The
solution to the problem in Laplace space is inverted numerically to real space by means of

the Stehfest algorithm.

The multi-region composite reservoir model has been used to analyze drawdown tests from
reservoirs undergoing a thermal recovery process such as steam injection or in-situ
combustion. Based on the mobility and/or storativity of these reservoirs, three zones may
be identified for a reservoir undergoing a thermal recovery process. These zones are: a

swept zone with the highest mobility and/or storativity, a transition zone with continuously



changing mobility and/or storativity, and an unswept zone with the lowest values for
mobility and/or storativity. This study is intended to investigate how representing these
reservoirs by different numbers of regions affects the pressure behaviour analysis. It has
been found that representing the transition zone by one region may generate pressure
behaviours which may show higher contrasts in physical properties than what actually
exist. Using various regions to represent the transition zone will avoid these apparently

high or non-existing property contrasts.

The purpose of investigating how these factors change the reservoir pressure behaviour is
to ascertain what effect these factors will have on the estimation of swept volume and
effective properties of the reservoir. This si..dy geesents an evaluation of the applicability,
utility and accuracy of the pseudosteady state method to estimate the swept volume in a

steam injection project.

Finally, this work is intended to demonstrate how storativity variation can affect
significantly the results obtained from some reservoir characterization methods. It has been
shown that reservoir characterization methods, in which mobility is considered io be the
only variable affecting the pressure behaviour from a reservoir, will i} when there is a
storativity variation in the reservoir. This is consistent with the well known fact that the

pressure behaviour from a reservoir is affected by both mobility and storativity.
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CHAPTER 1

INTRODUCTION

Over the years, thermal oil recovery methods have gained considerable interest and much
use. Two of the most important' thermal processes are in-situ combustion and
steamflooding. Currently, thermal recovery by steamflooding is the dominant method for
producing heavy oil around the world. The determination of the swept volume in thermal
recovery processes is important. A knowledge of the steam swept volume provides an

estimate of heat losses to the surrounding formation as well as the thermal efficiency of the

operation.

In displacement projects, the swépt volume has been estimated occasionally by coring
and/or temperature observations at wells, during the injection process. These methods of
estimating the steam swept volume are very expensive and uncertain due to reservoir
heterogeneity. One practical and economical way of estimating the swept volume is by well

test analysis, which also provides an estimation of flow capacity and skin factor.

The concept of determining the swept volume by pressure transient techniques has been
studied by several authors. The most commonly used thermal well test has been the falloff
test developed by Eggenschwilér et al. (1980). Their study utilizes a composite system, in
which a steamflood or combustion process is represented as a reservoir model with two

regions having highly contrasting fluid mobilities. Such a model seems ideally suited for



thermal oil recovery, due to the high mobility contrast between the swept and unswept
regions. At early times, a semi-log graph of pressure versus time would generate a straight
line corresponding to the inner-region mobility. Following this semi-log straight line, a
pseudosteady Cartesian straight line may develop with a slope that can be related to the

swept volume.

The pseudosteady state method developed by Eggenschwiler et al. (1980) is independent of
the geometry of the swept region and has been applied by several investigators to field and
simulateu cases, with apparent success. However, simulated thermal falloff tests have
shown that mobility and storativity may be continuously changing in the swept region. For
continuous variations of mobility and storativity within the swept region, a simple two- or
three-region model may not be appropriate. In this study, an analytical solution to a multi-
region model is presented. Infinitesimally thin skins at the discontinuities are included.
This work is intended to study the effects of various trends of mobility and storativity,

within the swept region, on well tests for composite reservoirs.

The literature survey conducted for this study is presented in Chapter 2. The statement of
the problem and objectives of this study are discussed in Chapter 3. The mathematical
model and its validation are presented in Chapter 4. The transient pressure behaviour of
multi-region composite reservoirs is discussed in Chapter 5. Finally, Chapter 6 presents

conclusions drawn from this study and recommendations for future research.



CHAPTER 2

LITERATURE REVIEW

In recent years, the behaviour of composite reservoirs has attracted much attention and
many studies have appeared on this shbject. A composite reservoir is made up of two or
more regions. Rock and fluid properties are different in each region. The origin of
composite systems may be natural or artificial. Examples of naturally created multi-zone
composite systems include a reservoir with different permeability zones, an oil reservoir in
communication with an aquifer, and an oil well with a finite-thickness skin zone
surrounding the wellbore. Enhanced oil recovery projects, such as CO> miscible flooding,
polymer flooding, in-situ combustion and steam injection, are examples of artificially
created conditions, wherein the reservoir can be viewed as a multi-region system with
different rock and/or fluid properties. A reservoir undergoing a thermal recovery process

typically has been idealized as a composite reservoir.

Figure 2.1 schematically illustrates the reservoir model considered in this study. This
model represents a radial multi-region composite reservoir in which there are interfaces or
discontinuities between each region. In Figure 2.1, the distances R; are ii:e different
positions where a discontinuity or front can be recognized. Discontinuities are the locations
where rock and/or fluid properties have a significant variation. These discontinuity
distances are important parameters when analyzing well tests in composite reservoirs.

Strictly speaking, fronts in many enhanced oil recovery operaticns are not cylindrical. The



Figure 2.1 - Top view of a multi-region composite reservoir.




front's shape may be distorted by gravity and/or viscous fingering effects. Thus, the front
radius exists only in some average sense. It is perhaps better to speak of the volume of the

inner re<ion, instead of front radius, especially when pseudosteady state data are available.

In general, reservoirs with contrasts in physical properties have been analyzed using
analytical or numerical composite reservoir models. The pressure behaviour of composite
reservoirs has been considered extensively in many studies. All these studies can be
classified in three large groups: two-region composite, three-region composite and multi-
region (more than three regions) composite reservoir models. However, the great majority

of studies have considered the case of two-region composite reservoirs.

2.1 Two-region Composite Models

The two-region composite model is the most commonly used model in the pewroleum
industry. There are several publications detailing the application of two-region composite
models to describe pressure behaviour in petroleum reservoirs. Numerous two-region
composite reservoir studies have defined the general principles to analyze composite

reservoirs. Some of these studies will be discussed briefly in this section.

2.1.1 Analytical Approach

Hazebroek et al. (1958) developed an analytical method using pressure falloff data from
pattern waterflood injection wells. Their method determines the reservoir static pressure

by trial and error. By plotting log(p - pe) versus shut-in time, they are able to estimate the



permeability-thickness product and skin factor. However, the permeability-thickness
product obtained may be reflecting only a part of the reservoir and the use of trial and error

may involve inaccuracies.

Hurst (1960) analyzed unsteady flow of fluids through two sands in series with different
mobilities in each sand. He used the Laplace transform to obtain a solution for a single
well located at the center of concentric sands. Hurst (1960) also considered the
interference between two oil fields sharing the same aquifer as a two-region system with

different physical properties in each region.

Loucks and Guerrero (1961) proposed radial composite reservoir solutions, using the
Laplace transformation. Loucks and Guerrero (1961) studied the pressure distribution in
an infinite composite reservoir composed of two adjacent concentric regions of different
permeabilities. They found that, under certain conditions, the permeability in both zones,

as well as the size of the inner zone, can be determined from transient pressure test data.

Larkin (1963) presented solutions to the diffusion equation for a line source located
anywhere in a region bounded by a circular discontinuity. He used Green's functions
presented by Jaeger (1944). Larkin ‘s (1963) solution considers different rock and fluid
properties on opposite sides of the discontinuity. Jones (1962) studied the behaviour of a
composite reservoir, using the Laplscz transformation. Jones (1962) made predictions for
the behaviour of wells located near a gas-water contact. He extended the application of
Larkin’s (1963) solution by including mobility and diffusivity terms for several fluid
phases in series. However, neither Larkin (1963) nor Jones (1962) specified the times for

which their approximate solutions are valid.



Carter (1966) analyzed the pressure transient behaviour of a closed, radial, composite
system with a well producing at a constant rate. He stated that in a graph of pressure
versus time, an early semilog straight line may be observed. This semilog straight line
corresponds to the inner region mobility. After this semilog straight line, a pseudosteady
state period may follow. During this peried, a Cartesian graph of pressure versus time will
yield a straight line. From the slope of this Cartesian line, a volume can be estimated.

Carter (1966) pointed out that this estimated volume would be greater than the inner region

volume.

Odeh (1969) analyzed well tests from infinite outer boundary composite reservoirs. He
stated that if a large contrast of physical properties exist, the pressure transient behaviour of
an infinite outer boundary composite reservoir would be the same as the closed outer
boundary case. The reason for this behaviour lies in the effects of the discontinuity being
the same as those of a closed outer boundary. However, once the effect of the
discontinuity ends, a second semilog straight line may follow the pseudosteady state

period. This second semilog straight line will correspond to the outer region mobility.

Eggenschwiler et al. (1980) presented an analytical solution in Laplace space for the
transient pressure behaviour of a well, producing at a constant rate, from a two-region,
radial composite reservoir. Their method is widely used to estimate the swept or burned
volume from well tests in thermal recovery projects, such as steamflooding or in-situ
combustion. Eggenschwiler et al. (1980) modeled the swept volume as a radial region
adjacent to the injection well. Wellbore storage and skin effects were also considered.
Reservoir and fluid properties, such as permeability, porosity and compressibility of the

reservoir fluid, were considered to be different in the inner (swept zone) and the outer



region (unswept zone). Horne et al. (1980) extended the Eggenschwiler et al. (1980)
solution to finite composite reservoirs. Tang (1982) used the Eggenschwiler et al. (1980)
method to calculate a front radius on the basis of a tt.-oretical deviation time. Tang (1982)
analyzed an in-situ combustion case. He found that the error involved in the estimated

radius of the burned zone increases with an increase in the diffusivity ratio.

Walsh et al. (1981) used the Eggenschwiler et al. (1980) model to analyze falloff test data
from in-situ combustion and steam injection projects. They observed that a long transition
zone between the two semilog straight lines, for the swept and unswept regions, contains
an approximate pseudosteady state region that may provide the information required to
estimate the inner zone volume. To compute the swept zone volume, the mean temperature
and pressure of the swept zone are required. Walsh et al. (1981) explained that, since the
concept of pseudosteady state is based on material balance principles, the estimated volume

of the swept zone is independent of the shape of the actual swept volume.

Sarman (1981) analyzed transient flow in multi-layer, radial, and infinitely large composite
reservoirs with fluid banks. Sarman (1981) studied how the swept volume can be
estimated by using a Cartesian graph of well test data, taken after the end of the first
semilog straight line of a falloff test. He concluded that the average properties of the swept
zone in a multi-layer system can be determined from the first semilog straight line of the
well test data. Sarman (1981) also stated that the first discontinuity radius can be found by
using the time at which pressure data deviate from the first semilog straight line. Sarman
and Oskay (1985) studied the effects of a tilted front on well test analysis for multi-layer

radial composite reservoirs. Their study suggests that if a sharp front model is used to



estimate the front radius from a tilted front reservoir, the estimated front radius will be

lower than the actual front radius.

Rosa and Horne (1983) developed a solution applicable to composite reservoirs. They
used the Laplace transform technique to develop their model. Rosa and Horne (1983)
showed that the Stehfest (1970) numerical inversion scheme could be used to invert exact
solutions from Laplace space to real space. Their study also showed a way to broaden the

application of automated type-curve matching in well test analysis.

Da Prat et al. (1985) used the Eggenschwiler et al. (1980) composite model to determine
the burned volume and the location of the fire-front in an in-situ combustion project. Da
Prat et al. (1985) reported that the real pressure profile from the project matched quite well
with the predictions made with the composite model. They also stated that the values
obtained for the burned volume and the location of the burning front were reliable and

simple to interpret.

Brown (1985) analyzed the drawdown pressure derivative behaviour of two region, radial
and infinitely-large composite reservoirs. He studied the nature and duration of the
transition region between the two semilog straight lines observed on a composite
reservoir's pressure profile. He concluded that storativity influences only the timing and
shape of the transition region, but does not affect the slope of the two semilog straight
lines. Brown (1985) also discussed how the transition region shape is affected by the

mobility ratio between regions.



Barua and Horne (1987) discussed the application of automated type-curve matching to
analyze well tests from reservoirs undergoing a thermal recovery process. Barua and
Horne (1987) used the Eggenschwiler et al. (1980) analytical model in their automated
type-curve analysis. Rosa and Horne's (1983} solution was also considered in their study.
With their automated type-curve matching method, an average radius of the swept zone tan
be obtained. The Barua and Horne (1987) method might give good estipnates for the inner
zone properties, even when the mobility ratio is not high or when the falloff test has beca
preceded by a short injection period. 4However, a lot of computer operations are required

and the estimated outer zone properties might be unrealistic.

Olarewaju and Lee (1987) proposed an analytical solution in Laplace space for two-region,
radial composite reservoirs produced either at a constant bottomhole pressure or at a
constant rate. Their solution includes wellbore phase redistribution as suggested by Fair
(1981). However, their study did not consider storativity variation. Olarewaju and Lee's
(1987) study indicates that the phase redistribution effect is larger for a damaged system
than for a stimulated one. They concluded that when the effect of phase redistribution is
not severe enough to cause the characteristic pressure distortion (hump), it could lead to a

misinterpretation of the reservoir pressure behaviour.

Olarewaju and Lee (1989) developed a two-region composite model to determine reservoir
parameters, such as permeabilitics of the inner and outer zones, radius of the inner zone,
and wellbore storage. Olarewajs: and Lee (1989) stated that for radial flow in an infinite-
acting reservoir, the value of the semilog pressure derivative is shifted from 0.5 by a factor

equal to the mobility ratio between the outer and the inner zones.
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Ambastha (1988) presented an analytical study of the transient pressure derivative
behaviour of a well in a two-region composite reservoir with a thin skin at the front.
Ambastha (1988) found that the transition period between the end of the first semilog
straight line and the beginning of the second semilog straight line is longer for larger
mobility ratios. However, the effect of the storativity ratio on the timing of the semilog
straight lines can be assumed as negligible. Ambastha (1988) found that the time to the
maximum semilog pressure derivative and the magnitude of the maximum pressure
derivative are affected by the mobility ratio. He also showed that, although the storativity
ratio mildly affects the time to the maximum semilog pressure derivative, the magnitude of

the maximum pressure derivative is affected significantly by the storativity ratio.

Ambastha and Ramey (1990) investigated the effect of skin at the front on composite
reservoirs well tests. They showed how the effects of skin at the front on the transient
pressure derivative behaviour are similar to the effects of storativity ratio. Ambastha and
Ramey (1990) explained how skin at the front may be the cause of a short duration

pseudosteady state period corresponding to the inner swept volume, for small mobility and

storativity contrasts.

Olarewaju et al. (1991) presented type curves from a two-region composite model. They
analyzed radially-damaged or -stimulated wells. Their type curves can be used to analyze
the extent and magnitude of impairment in a damaged system or the extent or quality of
improvement achieved from stimulation. The effect of phase redistribution was also

included in their type curves. However, storativity variation was not considered.
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2.1.2 Numerical Approach

Bixel and van Poollen (1967) numerically solved a two-region infinite system in which a
well was located at the center of a circular region surrounded by a radial discontinuity.
They showed how to estimate the inner region transmissibility by using the slope of the
early straight line segment of the drawdown curve. Bixel and van Poollen (1967) studied
the effect of mobility ratio on transient pressure behaviour. Each set of type curves had a
fixed value of storativity ratio. Hﬁwever, the effect of storativity ratio on pressure

behaviour was not discussed.

A finite thickness skin zone was treated by Wattenbarger and Ramey (1970) as a composite
system. They used a numerical technique to obtain pressure transient behaviour for such
systems. They concluded that the infinitesimally thin skin concept is applicable for
damaged zone dimensionless radii from 1 to about 10. Their work suggested that if the
damaged zone dimensionless radius is equal to or larger than 10, two straight lines will be

evident on a semi-logarithmic plot.

In 1972, Kazemi et al. analyzed simulated pressure falloff tests in reservoirs with fluid
banks. They emphasized how wellbore storage can mask the information that can be
obtained from the early data of a falloff test. Kazemi et al. (1972) studied the two straight
lines that can be observed on a falloff test pressure profile. They concluded that the slope
ratio of the second straight line to that of the first straight line segment approximates the
mobility ratio for the two zones, only when the storativity ratio is near unity. Kazemi et al.

(1972) stated that when the storativity ratio is greater than one, the ratio of the slopes is
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usually greater than the mobility ratio, whereas if the storativity ratio is less than unity, the

ratio of the slopes is less than the mobility ratio.

In 1974, Merrill et al., using the same type of simulator as Kazemi et al. (1972),
investigated the pressure behaviour of two-zone composite systems. Merrill et al. (1974)
defined what type of information can be obtained from a falloff test, depending on the
conditions of the system tested. They concluded that proper analysis of falloff tests from
waterflood systems with two contrastiﬁg fluid zones can yield information about mobilities

and saturations on both sides of the front as well as the distance to the front. Analysis of
gas injection systems can give information about the mobility of the first zone and the

distance to the front.

Sosa et al. (1381) considered the effect of saturation distribution in the swept region on
waterflood falloff tests. They used a radial numerical simulator to account for the relative
permeability characteristics of the system. Their study showed how the transition region
between the water and oil regions affects significantly the falloff test data. Sosa et al'’s

(1981) analysis provides some qualitative information about waterflooding processes.

Messner and Williams (1982) applied theWalsh et al. (1981) procedure and used an implicit
thermal simulator to analyze falloff data from steam injection projects. The swept volume
comparison between the results from the two methods appeared to be favourable.
However, thermal efficiencies calculated by the pseudosteady state method tended to be
very low, indicating larger than expected overburden heat losses and excessive chanelling.

Messner and Williams (1982) stated that the low thermal efficiencies could also be due to
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the inability of the method to accurately assess the reservoir heat content, ahead of the

steam zone.

Fassihi (1988) numerically simulated falloff tests of steamflood and in-situ combustion
processes using areal and radial models. He analyzed whether the swept volume estimated
by applying the Eggenschwiler et al. (1980) analytical model agreed with the simulated
swept volume. In this comparison, the effects of several parameters were studied. These
parameters included reservoir and operational characteristics, such as wellbore gridblock
size, non-uniform permeability, layering, flowing non-condensable gas, and oil
vaporization. Fassihi (1988) concluded that, in reservoirs with highly contrasting
homogeneous zones, estimated swept volumes from steam falloff tests, using the analytical
model, were in good agreement with simulated swept volumes. However, continuously
changing the reservoir's physical characteristics may mask the pseudosteady state period,
making the analysis impossible. Fassihi (1988) also observed that in some in-situ
combustion processes, the high mobility of the gases ahead of the front tends to distort the

pseudosteady state period, making estimation of the burned volume inaccurate.

Ziegler (1990) analyzed pressure falloff data from a steam injection project. He compared
results from the Eggenschwiler et al. (1980) analytical model and a simulator. Ziegler
(1990) concluded that the analytical model yields results which are in good agreement with
numerical simulation predictions. Ziegler (1990) recommended the use of the analytical

model to determine reservoir parameters from steam injection falloff tests.
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2.2 Three-region Composite Models

Solutions for a well located in a radial, three-region reservoir are available. However, very
few studies have investigated the transient pressure response from these reservoirs. This

section will present some of the most important analysis in this area of well testing.

2.2.1 Analytical Approach

Onyekonwu and Ramey (1986) developed an analytical solution for three-region, radially
infinite, composite reservoirs. They showed, how in a two-region reservoir model, the
assumption of a sharp mobility contrast between the zones is not exactly correct.
Onyekonwu and Ramey (1986) discussed the existing gradation in fluid properties from
the swept zone to the unswept zone. They explained that, in a three-region model, the
middle zone is used to represent the region where the gradual change in fluid properties
between the swept and unswept zones occurs. In their study, Onyekonwu and Ramey
(1986) also analyzed the effect of the transition zone, mobility ratio and storativity ratio on
pressure behaviour. The transition zone causes a departure from pseudosteady state
behaviour. This departure is directly proportional to the size of the transition zone. The
time of departure from pseudosteady state behaviour is directly proportional to the mobility
ratio between the swept and the unswept zones. However, the time of departure from

pseudosteady state is independent of the storativity ratio.

Barua and Horne (1985) compared analytical solutions for two-region and three-region,
radially infinite, composite reservoirs. The three-region model included a transition region

between the swept and unswept regions. Barua and Horne (1985) used automated type-
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curve matching in their analysis. When trying to match the two-region model to the three-
region model, they found several data points did not match. They concluded that this
failure to match indicated the presence of an intermediate zone between the swept and the
unswept zones. Barua and Horne 's (1985) work suggests that, by including the

intermediate zone in the analysis, the estimates of the discontinuity radii will improve.

Ambastha and Ramey (1992) studied the transient pressure response of a well in a three-
region composite reservoir. They discussed in detail the effective physical properties of a
three-region composite reservoir. Ambastha and Ramey (1992) showed how the deviation
time method would yield a front radius R, if the mobility ratio and the storativity ratio, at
the first discontinuity, are balanced in such a way that a correct deviation time is observed.
They also concluded that the pseudosteady state method will yield the second front radius
R2, if the effective storativity is used in the analysis. Ambastha and Ramey (1992)
defined a criterion to distinguish apparent pseudosteady state from real pseudosteady state.
This criterion uses the effective time to the start of pseudosteady state. When an apparent

pseudosteady state is developed, the analysis yields an overestimated value for the second

front radius R .
2.2.2 Numerical Approach

Merrill et al. (1974) used a simulator to study the application of a three-region composite
model when analyzing well tests from enhanced oil recovery projects. They used the
deviation time concept in their analysis. Merrill et al.’s (1974) work includes a tabulation
of deviation times for different conditions of three-zone reservoirs. From this table, they

obtained an averaged deviation time. They concluded that for three-zone systems, the
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average dimensionless deviation time is 0.485. This value of time can be used to estimate

the distance to the first discontinuity in the reservoir.

Onyekonwu et al. (1984) analyzed in-situ combustion falloff data by using two thermal
simulators. He studied how to determine the proper average temperature when using the
the pseudosteady state concept to estimate the swept volume. Onyekonwu et al. (1984)
found that the swept volume, determined from pressure analysis, includes both a burned
volume and a high gas saturation zone ahead of the front. They emphasized that an
effective value of temperature is required for evaluation of compressibility and the
formation volume factor. These variables are important for accurate interpretation of falloff
data. In their work, Onyekonwu et al. (1984) show how the effective temperature is
strongly dependent on the wellbore and peak temperatures. They also concluded that this

effective temperature is usually lower than the average temperature based on an energy

balance.

2.3 Multi-region Composite Models

Very little research has been reported about multi-region (more than three regions)
composite reservoir models. Normally, multi-region composite models are used to
characterize reservoirs with different permeability zones. However, very few studies have
investigated the transient pressure response from these reservoirs. The application of

multi-region composite models in reseivoir characterization will be addressed briefly.
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2.3.1 Analytical Approach

Nanba and Horne (1989) presented a method to estimate water and oil relative
permeabilities from pressure transient analysis of water injection well data. In their work, a
nonlinear regression algorithm was implemented. Nanba and Horne’s (1989) solutions
were derived based on analytical multicomposite and stepwise(numerical) multicomposite
systems. These solutions were compared with the line source moving bank solution and
with numerical results. The comparison indicated that multicomposite analytical solutions
are appropriate for the analysis of water injection problems. Field examples supported the

practicality of the proposed interpretation procedure.

Abbaszadeh-Dehghani and Kamal (1989) analyzed pressure transient tests of water
injection wells using two-region and multi-region composite reservoir models. They found
that the assumption of a stationary front during falloff is generally acceptable, and that
waterflooding is better represented by a multi-region composite reservoir. Abbaszadeh-
Dehghani and Kamal (1989) also studied how the duration of the transition region is

increased by storativity contrast between regions.

Oliver (1990) presented a process of estimating a permeability distribution from well-test
data. He described the relative contribution of the permeability of various regions to the
estimate of the average permeability. Oliver (1990) showed that permeability estimates
using the semilog pressure derivative are some type of volume-averaged reservoir
permeability. He concluded that the instantaneous semilog pressure derivative from
drawdown pressure data depends upon a weighted average of the permeability within the

annular region of the reservoir. Oliver's (1990) work only considered the unit storativity
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ratio case and the variation of mobility was very small. The maximum mobility ratio

considered was five.

2.3.2 Numerical Approach

In 1989, Yeh and Agarwal simulated a multicomposite model to study how a reservoir
mobility profile can be obtained from the reservoir transient pressure behaviour. They
defined a term called "instantanecus mobility” which is inversely related to the
instantaneous value of the semilog pressure derivative. Yeh and Agarwal (1989) also
established a relation between instantaneous mobility and the radius of investigation.
From simulation runs, they concluded that the instantaneous mobility represents a
volumetric average of the true reservoir mobility. They developed an equation to relate the
instantaneous mobility to the real reservoir mobility. The theoretical basis for their
equations was not explained. Yeh and Agarwal 's (1989) characterization method
apparently yields satisfactory results when there are low mobility contrasts and storativity is

constant within the reservoir.

Using Oliver's (1990) results, Feitosa et al. (1993a) expanded Yeh and Agarwal 's (1989)
algorithm. Feitosa et al. (1993a) concluded that Yeh and Agarwal's (1989) method can be
improved by establishing a different relationship between instantaneous mobility and the
actual reservoir mobility. They considered that the instantaneous mobility represents the
harmonic volumetric average of the reservoir's real mobility. Feitosa et al.'s (1993a)
characterization method seems to yield slightly better results than Yeh and Agarwal ‘s
(1989) algorithm. Feitosa et al. (1993a) also developed a new characterization method

called the inverse solution algorithm (ISA). This algorithm yields similar results to those
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obtained from the modified version of Yeh and Agarwal 's (1989) method. In all the cases
studied, the mobilitiy contrasts were low and storativity remained constant within the
reservoir. In the same year, with the purpose of expanding their previous work, Feitosa et
al. (1993b) included porosity variation in their analysis. They studied porosity variation
cases by using the inverse solution algorithm (ISA). Feitosa et al. (1993b) concluded that
since, in real situations, porosity variations are small compared to permeability variations,
the ISA can be applied to obtain a reasonably good approximation to the actual permeability

distribution.

2.4 Drawdown Analysis

Drawdown tests may prc - ide information about formation permeability, skin factor, and
the reservoir volume communicating with the well. Thus, obtaining information from a
drawdown test is of great importance. In 1988, Ambastha investigated the drawdown
pressure derivative response of a two-region composite reservoir. In his work, Ambastha
(1988) defined the parameters used in a pressure derivative drawdown analysis. When
wellbore storage is negligible, the drawdown pressure derivative is not affected by skin at
the wellbore. In the absence of wellbore storage, the parameters for the drawdown
pressure derivative are the mobility ratio and the storativity ratio. A consideration of
wellbore storage introduces two additional parameters: the dimensionless wellbore storage

coefficient and the skin factor.



After obtaining drawdown data from a composite reservoir, a dimensionless graph of pwp
versus In zp may yield two semilog straight lines with a transition period in between. The
first semilog straight line develops in an early period and it is related to the inner region
mobility. The second semilog straight line develops in a late period and it is related to the
outer region mobility. Wellbore storage effects may mask the semilog line corresponding
to the inner region mobility. Thus, in composite reservoir well tests, wellbore storage
should be minimized. As for the second semilog straight line, this line may be observed as
long as the test is run long enough to .see the effects of the outer region. However, outer

boundary effects may mask the second semilog line.

2.5 Estimating Swept Volume in Thermal Recovery Projects

Many authors have applied different methods to estimate the swept or burned volume from
pressure transient analysis. These methods include the deviation time method, the
intersection time method, the type-curve matching method and the pseudosteady state
method. The correct use of these methods will depend on the conditions of the well test

and the reservoir characteristics.
2.5.1 Deviation Time Method

This method states that when falloff test data are being plotted, a graph of pressure vs. time
would generate an early semilog straight line corresponding to the inner-region (swept
zone) mobility. When the effects of the interface (or front) are felt, a deviation from the

straight line can be observed. The time at the end of the semilog straight line is used to
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calculate a front radius on the basis of a theoretical dimensionless deviation time. The
deviation time method was first used by van Poollen (1964) to locate the flood front in an

in-situ combustion process.

Bixel and van Poollen (1967) found a value of 0.25 for the dimensionless deviation time.
Merrill et al. (1974), after running several simulation cases, found that the dimensionless
deviation time should lie in a range between 0.13 and 1.39. The arithmetic average of this
range was 0.389. Tang (1982) obtaincd an approximated value of dimensionless
deviation time equal to 0.4. Ambastha and Ramey (1989), based on the semilog pressure

derivative behaviour, found a value of 0.18 for the dimensionless deviation time.

Many authors have studied the deviation time method obtaining significantly different
values for the dimensionless deviation time. This significant difference in values for
dimensionless deviation time indicates that an accurate and reliable specification for
dimensionless deviation time is required to obtain meaningful results from this method.
Another disadvantage of the deviation time methad is that the flood front is considered to be
cylindrical, which is often not the case for thermal recovery projects, since gravity and/or
viscous fingering effects distort the front's shape. Furthermore, it is possible for wellbore
storage effects to mask the initial semilog straight line, making the method incapable of

producing any results.
2.5.2 Intersection Time Method

Following the end of the early semilog straight line, falloff data deviates for a period of

time, known as the transition period. After this interval of time, it may be possible to
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observe a second semilog straight line, characteristic of the fluid mobility in the outer
(unswept) zone. The time at which the two semilog straight lines intersect can be used to
estimate a front radius, by using a theoretical dimensionless intersection time as a basis.
Bixel and van Poollen (1967) proposed this method when discussing the effects of linear

and radial discontinuities in composite reservoirs on pressure transient behaviour.

Odeh (1969) presented an equation relating the dimensionless discontinuity (or front)
radius with the dimensionless intersection time, for equal storativity in both regions. Merrill
et al. (1974) presented a graphical correlation using a simulator. They showed that for
mobility ratios close to or less than unity, the dimensionless intersection time is a constant.
However, Merrill et al. (1974) observed that for mobility ratios much greater than unity,
the dimensionless intersection time is affected by both the mobility ratio and the storativity
ratio. Sosa ez al. (1981) used the intersection method to analyze the effects of mobility ratio
on simulated falloff tests. Ambastha and Ramey {1989) provided a number of reasons as
to why the intersection time method is not suitable for thermal recovery well test analysis.
They stated that in most thermal well test cases, the falloff test will not be run long enough
to see the second semilog straight line, or the outer boundary effects may mask the second

semilog straight line, or wellbore storage and skin may mask the first semilog line.

2.5.3 Type-Curve Matching Method

Type curves are dimensionless functions of pressure or pressure derivatives versus time,
with mobility and storativity ratios as parameters. Generally, theoretical dimensionless
type curves are generated by a mathematical model. The type-curve matching procedure

involves fitting the entire well test data to a set of type curves. Once a match is obtained, an
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arbitrary point of the data is selected and related to the definition of dimensionless variables
of the type curve. By relating data and dimensionless variables definitions, unknown
variables are obtained. These variables include important reservoir information, such as
permeability, wellbore storage, wellbore skin factor and discontinuity radii. However, the
non-uniqueness of the match is still the major disadvantage of type curve matching

methods.

Several type curves were developed b); Bixel and van Poollen (1967) with mobility ratio as
a correlating parameter. Barua and Horne (1987) successfully used automated type-curve
matching to analyze thermal recovery well tests. Olarewaju and Lee (1987) used their type
curves to analyze field tests exhibiting composite reservoir behaviour. Qlarewaju and Lee’s
(1987) type curves include Fair’s (1981) phase- redistribution parameter. Ambastha and
Ramey (1989) presented pressure derivative type curves applicable for all front radii, with
mobility and storativity ratios as parameters for infinitely-large composite reservoirs. The
time match point is used to calculate the front radius, while the pressure derivative match
point yields the mobility of the inner (swept) region. Wellbore storage was not'considered.
Ambastha and Ramey (1989) explained that because of enhancement of detail in a pressure
derivative graph, improved type-curve matching may be possible by using a pressure

derivative type curve.
2.5.4 Pseudosteady State Method

Eggenschwiler et al. (1980) proposed a pseudosteady state method to calculate the inner

swept volume for composite reservoirs with large mobility and storativity contrasts
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between the swept and unswept regions. They observed that due to these contrasts, the
swept region can behave like a closed system for a short duration after the end of the
semilog line corresponding to the inner zone mobility. During this time, a pseudosteady
Cartesian straight line may originate. The slope of this Cartesian line is inversely
proportional to the swept volume. As the pseudosteady state method is independent of the
geometry of the swept region, it is not necessary for the flood front to be cylindrical to get a
good estimate of the swept volume. Eggenschwiler et al. (1980) successfully validated

their work against van Poollen (1965) and Kazemi (1966) falloff data.

Walsh et al. (1981) applied the pseudosteady state method to determine swept volume and
heat distribution in steamflooding and in-situ combustion wells. They emphasized the use
of a two-phase effective compressibility when applying the pseudosteady state method to
estimate the swept volume in a steam injection process. The two-phase compressibility
accounts for volumetric changes caused by steam condensation. Satman et al. (1980) and
Tang (1982) extended the pseudosteady state method to cases where the pseudosteady state

did not develop completely due to insufficient mobility and storativity contrasts between the

two regions.

Onyekonwu et al. (1984) used the pseudosteady state concept to interpret combustion
falloff data. The swept volume calculated by using the pseudosteady state method and
simulated swept volume showed a good agreement. Onyekonwu et al. (1984) developed
correction graphs to relate the burned and swept volumes. Da Prat et al. (1985) applied the
pseudosteady state method to locate the burning front in an in-situ combustion project.
They concluded that the estimated front radius (assuming the front to be cylindrical) was in

good agreement with the actual locations of the injection and production wells.
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Issaka and Ambastha (1992) simulated steam injection falloff tests for a horizontal well.
The effects on falloff data of various parameters, such as wellbore grid block sizes,
injection time, permeability anisotropy, injection rate and front shape were investigated.
Their study showed that swept volume might be overestimated, by 5% to 60%, for
horizontal wells. Issaka and Ambastha (1992) indicated that longer injection times prior to
shut-in may have an adverse effect on the estimated swept volume. The reason for this
adverse effect is that for longer injection times, the shape of the swept region is more

irregular.

Sheng (1992) applied the pseudosteady state method to analyze thermal recovery projects
by using theStanislav et al. (1989) approach. He simulated falloff data and studied the
effects of parameters such as gravity, dip, permeability anisotropy and irregular shape of
the swept volume. Sheng (1992) found that all these parameters do not affect the results
significantly. He also concluded that, although the estimated swept volume and skin are
reasonably calculated by the pseudosteady state method, the permeability might be
overestimated by 30% to 40%. His study showed how the estimation of permeabilities and
swept volumes depends on the vertical position of a pressure recorder, where pressure

falloff data are measured.

2.6 Mobility and Storativity Profiles

Previocus simulation studies have reported profiles of mobility ratio and storativity ratio,
most commonly observed in thermal recovery projects. The mobility ratio and the

storativity ratio values used in this study are in a range from 1 to 1000. The characteristic
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profiles used in this study are within the range of values given in previous studies from the

literature. We refer to some of these studies in this section.

Fassihi (1988) simulated several falloff tests to analyze the pressure transient behaviour in
steamflood and in-situ combustion processes. His table of estimated physical properties

includes values of mobility ratio from 7 to 600 and values of storativity ratio from 23 to

33000.

Onyekonwu et al. (1984) made a comparison between analytical and numerical composite
reservoir models. They used a three-zone model in the comparison. The estimated value
of mobility ratio between the inner region and the transition region was 16 and the
estimated value for mobility ratio between the first and the third region was 1840. The
storativity ratio between the first and the transition region was 4, while the storativity ratio

between the first and the third region was 110.

Onyekonwu and Ramey (1986) studied the effect of the transition region on the pressure
behaviour of a three-region composite system. The mobility ratio between the first zone
and the transition zone was 25, while the mobility ratio between the first and last zone was

1000. Storativity ratios for the first and second discontinuities were 5 and 35, respectively.

2.7 Discontinuity Radii

Previous studies have analyzed well tests in enhanced oil recovery operations. These

studies have considered cases of injection of fluids to displace and produce 0il. Some other
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well test analyses have considered cases in which a fraction of oil is burned creating a heat
gradient to mobilize and produce oil. Normally, all these types of well test analysis
consider the reservoir as a system with multiple banks. Three main banks are considered in
these systems. A bank, which represents the injected fluid, is also known as the swept
zone. A bank, in which the injected fluid and oil are present, is also known as the
transition zone. A bank, which represents the oil region, is termed the unswept zone. Two
discontinuities are distinguished within these three banks: a discontinuity between the
swept zone and the start of the transition zone, and a discontinuity between the end of
transition zone and the unswept zone. The distances from the wellbore to the
discontinuities are known as the first and last discontinuity radii, respectively. Although a
multi-region composite reservoir may have several discontinuity radii, whenever a ratio of
discontinuity radii is mentioned in this study, it will be referring to the ratio between the last

and the first discontinuity radii.

Several studies have reported the ratios of discontinuity radii most commonly observed in
thermal recovery projects. Some of the ratios of discontinuity radii used in this analysis
are: 1.4, 1.9, 2.8 and 10. The ratios of discontinuity radii used in this study are within the

range of values given in the studies to be discussed subsequently.

Merrill et al. (1974) simulated the pressure behaviour of three-zone composite systems.
They analyzed gas injection processes. In their analysis, Merrill et al. (1974) used ratios of

discontinuity radii of 1.6 and 2.

In 1984, Onyekonwu et al. simulated falloff tests to analyze an in-situ combustion project.

Onyekonwu et al. (1984) reported a table with simulation results. They showed how the
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discontinuity radii depend on fluid saturation, temperature and reservoir physical
characteristics, such as mobility and storativity. Depending on the interpretation applied to

their simulation results, the ratios of discontinuity radii range from 1.6 to 5.6.

Onyekonwu and Ramey (1986) simulated an in-situ combustion project to generate data

for an analytical model. Their data included a range of ratios of discontinuity radii from 1.1
to 1.4.

In 1989, Yeh and Agarwal analyzed injection well test pressure data from reservoirs with
multiple fluid banks. They studied reservoirs undergoing a waterflood or chemical
injection. They generated simulation results by using a two-phase, two-dimensional
numerical model. Yeh and Agarwal ‘s (1989) study used more than 20 sets of relative

permeability data and some field tests. Their study included ratios of discontinuity radii of

4.4, 4.8, 10.5 and 20.
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CHAPTER 3

STATEMENT OF THE PROBLEM

As discussed in the literature review, over the years, the pressure behaviour of composite
reservoirs has gained considerable interest and many studies have appeared on this subject.
A composite reservoir represents a number of well testing scenarios. Well test scenarios in
thermal recovery operations have been typically represented by the use of a two- or three-
region composite reservoir model. In some cases, the two- or three-region composite
models may not be adequate to describe systems in which the mobility and storativity
change continuously within the swept region. For these reservoirs, a multi-region
composite model is more suitable. Therefore, this study investigates the pressure and
pressure derivative responses of a multi-region, radial composite system. Thus, the main

objectives of this study are:

1. To develop an analytical solution, similar to the Eggenschwiler et al. (1980)
solution, for multi-region, radial composite reservoirs with infinitesimally thin skin

at the discontinuities.

2. To develop new pressure derivative type curves for type-curve matching analysis of

well tests in either homogeneous or multi-region composite reservoirs.



To analyze how previous two-region and three-region composite reservoir solutions

compare with the multi-region composite solution.

To analyze effective mobility and storativity behaviour in multi-region composite

reservoirs.

To study how mobility and storativity variations affect the swept volume estimation

using the pseudosteady state method.

To analyze the possibility of improving previous composite reservoir analysis by

means of the multi-region composite model.

To study briefly some reservoir characterization methods from the literature.
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CHAPTER 4

MATHEMATICAL MODEL FOR A MULTI-REGION
COMPOSITE RESERVOIR WITH SKIN AT THE
DISCONTINUITIES

A mathematical model developed in this study is presented. This mo. . considers a multi-

region radial composite reservoir with wellbore storage and skin at the active (injection or

production) well and infinitesimally thin skin at the discontinuities. The surface production

(or injection) rate is assumed to be constant. The outer boundary may be infinite, closed or

at a constant pressure. The solution for this model is obtained by using the Laplace

transformation technique.

Some other assumptions in this model are:

‘i)
2)
3)
@
(5)
(6)

The formation is homogeneous, horizontal and of uniform thickness.

The front is of infinitesimal thickness in the radial direction.

The fluid flowing is considered to be of slight, but constant, compressibility.

The front can be considered stationary throughout the few hours of a testing period.
Flow is considered to be single phase, radial and laminar.

Gravity and capillarity effects are considered negligible.
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4.1 Mathematical Development

The governing equations and boundary conditions in dimensionless form for a multi-region

radial composite reservoir are:

4.1.1 Governing Equations:

first (1) region
d

fD ( apD’) = ZPDy for 1 <rp <Rp,

arp drp oip 4.1)
any (i) region
fori=2.3,..n
_L_.g_ dpD,y _ , .9PD <rp < oo
D oG arD ) = M;, o for Rp,, <rp < Rp, or rep(or o) 42)

4.1.2 Inner Boundary Conditions:
dPWD (G?Dl)
D a
P (4.3)

(),

(4.4)
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4.1.3 Conditions at the Discontinuities:

any discontinuity - regions (i) and (i+1)

l'Da_’2 = "le(pDa'pDn) forrp =Rp,and tp >0

drp fori=12,.n-1 (4.5
iP—E!l- Miip—g forrp=Rp,and tp >0
drp orp fori=1,2,.n1 (4.6)

4.1.4 Outer Boundary Conditions:
Infinite:

pDn(rD,tD)rD o = 0

4.7)
Closed:
apDn) - 0
oD Jrpyergy (4.8)

Constant pressure:

0

PD.(TeD-tD) 4.9)
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4.1.5 Initial Condition:

Pp(rp.0) = 0 fori=1,2,...n (4.10)

4.1.6 Dimensionless Variables:
Dimensionless variables used in Equations 4.1 through 4.10 are defined as:

Dimensionless pressure:

PD;, = M(po‘l’i)
qBm fori=1,2,...n @4.11)

Dimensionless pressure at the wellbore

= M(po-pw)

qBu (4.12)

wD

Diffusivity ratios:

_ (k/¢ucy,

(k /oucyis fori=1,2,...n-1 (4.13)



Mokbility - vios:

(k/p)

M; = — 2t h
(k/ W)

Dimensionless radii:

I

D = i
- Te
TeD = Tw
R;
RDi = r“:

Dimensionless time:

kit
(duc r2

tp =

Dimensionless wellbore storage

Cp=——C
2r(pcy hrd

Wellbore skin factor:

s = 2mkih

Aps
qB

coefficient:

fori =1,2,..n-1 (4.14)

(4.15)

(4.16)

fori=1,2,..n-1 (4.17)

(4.18)

(4.19)

(4.20)
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Discontinuity skin factor:

= 21tk]h

Apﬂ'i
qrB 11 fori=12,.n-1 (4.21)

4.1.7 General Solution

A general solution for the governing equations (Equations 4.1 and 4.2) was obtained by
using the Laplace transformation technique with the appropriate initial and boundary

conditions. The general solution in Laplace space for each region is:
first (1) region

PD,(rD,2) = Cil(rpvZ) + C2Ko(ripvz)  for 1 <rp < Rp, (4.22)

any (i) region
fori=2,3,...n

PD(rD,2) = C2i1lo(rpyM;12)+C2iKo(rpvT; 1 Z) for Rp,,<rp=Rp, or rep(or =) (4 23)

In Equations 4.22 and 4.23 and in all subsequent equations, the transformed time variable
is identified by the symbol z. The dimensionless wellbore pressure drop in Laplace space
is:

pwb(@ = Ci[102) - svZ [1(2)] + Co[ Ko(¥2) + v K1(¥2) ] (4.24)
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4.1.8 Solution's Constants

All constants C) through C2n are obtained by solving the system of equations resulting

from the use of boundary conditions (Equations 4.3 through 4.9) in Laplace space:

For example:

from Equations 4.3 and 4.4

oqCr + aq2C2 = 1/2 (4.25)
from Equation 4.5 -
02.2-)Ca1 + 0@.2Cz + 0@.2.9Can1 + 042,242Cz42 = 0 fori=1,2,..n-1 (4.26)

from Equation 4.6

02412 0C21 + A2, 2)Ca + 030124 )Ce1 + A(241.2+2C242 = 0 for i

I

1,2,..n-1 4.27)

from Equations 4.7 or 4.8 or 4.9
Aen2n1Cm1 + An2mC;n = 0 (4.28)

The term a j) denotes the coefficient of the Cj in the i th equation. Equation 4.25 is the

first equation, and Equation 4.28 is the last equation in a composite system of n -regions.

The terms oy; j) are:

o1y = Cpz(1,0D - 2 16D) - vz 1,6 (4.29)



0(1,2) CDZ(KO(@ + SVZ Kl(ﬁ)) + vZ K|(+2

(4.30)
a1y = Io(Rpv2) + sgRpvZ 11 (Rp, o) (4.31)
222) = KoRpi¥2) - s;,Rp,vZ K1 (Rp1¥2) (4.32)
a@3,1) = Mz 11(Rpiv2) (4.33)
x@3.2) = -Mivz Ki(Ro¥2) (4.34)
02i2i-1) = lo(Ro¥ZHD) + sRp¥zNit hROYZED  fori=23,.n-1  (4.35)

a2i2i) = KoRoyziin) - stRpy¥zniy KiRo¥AD)  for i = 2,3,..n-1 (4.36)

o2i2i+1) = -lo(Rpyzni) fori=1,2,...n-1 “4.37)
0 2i2i+2) = -KoRpyzn) fori =1,2,...n-1 (4.38)

o@2i+1.2i-1) = M;¥zn;) LI(Royzn) fori =2.3....n-1 (4.39)

oi+1,2i) = -Mi¥zni Ki(Royzni) fori = 2,3,...n-1 (4.40)

o(2i+1.2i+1) = -¥Yzn; LHLRoyz) fori=1,2,..n-1 (4.41)

®2i+1.2i+2) = Yzm; Ki(Royzam) fori = 1,2,...n-1 (4.42)



The remaining coefficients depend on the specified outer boundary condition and are

defined by:

Infinite outer boundary:

A bounded solution for pp,(rp—e°, 2) is obtained from Equation 4.23 provided that
Con-1 = 0, as lotD¥Mp.12)—ee as Ip—, Therefore, 0.(2n-2,2n-1)» ®%(2n-1,2n-1) and
O4(2n.2n-1) are set io zero in the system of equations. Also, 0(2n,2n) =0, as Ko(fp¥Mn.12) in

Equation 4.23 approaches zero as TD—°°. Thus:
0.(2n-2,2n-1) = O(2n-1,2n-1) = O4(2n,2n-1) = %2n,2n) = 0 (4.43)

The values of 0y2n.22n-1) and (2n-1,2n-1) are to be used based on Equation 4.43 for infinite

reservoirs overriding the values corresponding to i = n-1 for these o's from Equations 4.37
and 4.41, respectively.

Closed outer boundary:

Excepting the coefficients due to the outer boundary condition, all coefficients remain as

defined before in Equations 4.29 through 4.42.

Q@2n.2n-1) = Ij{repVzin1) (4.44)

canzm) = -Ky(teoi@) (4.45)
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Constant-pressure outer boundary:

As in the previous case, the only different coefficients are those due to the outer boundary

condition:
O (2n.2n-1) = Lo(fedVzMa1) (4.46)
®(2n,2n) = Ko(repVzia1) (4.47)

In this section, the solution to the transient pressure problem for a radial multi-region
composite reservoir with skin at the discontinuities has been described. The problem was
arranged as a system of 2n equations with 2n unknowns (constants Cj). To solve the
problem, all the coefficients were grouped in a matrix called A, all the unknown constants
Cj were grouped in an unknown vector called ¢ and all right-hand-side terms from
Equations 4.25 through 4.28 were arranged in a known vector called b. Once the system
was set in the form Ac = b, the unknown vector ¢ was obtained by multiplying the inverse
of matrix A by the known vector b. After obtaining the values of the constants C;j,
dimensionless transient pressure and dimensionless pressure derivative (semilog and
Cartesian) responses in Laplace space were generated. These responses were numerically

inverted from the Laplace space to real space by means of the Stehfest (1970) algorithm.

Appendix A contains the development of expressions for the physical properties of multi-
region composite reservoirs. Appendix B contains the development of the dimensionless

form for instantaneous mobility and radius of investigation. Appendix C contains the input



data used to analyze the transient pressure behaviour of multi-region composite reservoirs.

Appendix D contains the computer program used in this study.

It is important to note that at very early times (tp = 100), the matrix of coefficients A,
mentioned previously, may become singular or very close to singular (over the working
precision limit of the computer). This is because at very early times, there are very small
coefficients as well as very large coefficients, which causes the singular behaviour of the

matrix. Appendix E explains how the singularity problem was overcome.

Appendix F shows sample results for a particular run of the computer program. Finally,
appendix G shows some additional figures for the transient pressure response of multi-
region composite reservoirs. These graphs were used during the development of this
study, however no discussions have been done about these figures since other figures

(Chapter S) are considered to be more significant for the objectives of this study.

4.2 Verification of Solution

The solution presented in section 4.1 was verified against the Agarwal et al. (1970)
solution for a well in a homogeneous reservoir with and without skin at the wellbore. To
reproduce Agarwal et al. (1970) by using this study's solution, the model presented in this
work was run as a multi-region (i.e., three, five and ten regions) composite model with no
skin at the discontinuities and in which all the mobility and storativity ratios at the
discontinuities were equal to unity. The model successfully reproduced the homogeneous

reservoir pressure responses (Figures 4.1, 4.2).
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The multi-region composite model was alsc validated against theWattenbarger and Ramey
(1970) solution for a well in a homogeneous reservoir with a finite skin zone.
Wattenbarger and Ramey (1970) showed how the thick skin concept can be visualized as a
zone near the wellbore with a permeability lower or higher than the reservoir's
permeability. Thus, a homogeneous reservoir with a thick skin zone is a two-region
composite reservoir. Wattenbarger and Ramey (1970) presented an equation and a table
relating thick skin to the mobility ratio between the two zones as well as the discontinuity
radius corresponding to that mobility x;atio. To verify the multi-region composite reservoir
model against theWattenbarger and Ramey (1970) solution, the model was run as a multi-
region (ie. three, five and ten regions) composite model with one value of mobility for the
region closest to the wellbore and another value of mobility for the rest of the regions
beyond the first discontinuity radius. The multi-region composite reservoir model was run
with no skin at the discontinuities, and with unit storativity ratios at the discontinuities. It
is important to note that the model was run with no skin at the wellbore, and that the values
of skin factor observed ii: Figures 4.3 and 4.4 are values for the thick skin factor. The
multi-region composite reservoir model successfully reproduced Wattenbarger and

Ramey’s (1970) dimensionless pressure responses (Figures 4.3, 4.4).

This study was also verified (Figures 4.5 and 4.6) against Ambastha’s (1992) two-region
radial composite model pressure and pressure derivative responses. The multi-region and
two-region model solutions were compared with and without skin at the front, with and
without wellbore storage and skin. To reproduce Ambastha’s (1992) results, the multi-
region model was run as reservoirs with three, five and ten regions in which all the
mobility and storativity ratios at the discontinuities were equal to unity, except one

discontinuity at a specified dimensionless radius.
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The multi-region composite reservoir model has also been verified against Ambastha and
Ramey 's (1992) three-region radial composite model pressure and pressure derivative
responses. Same type of previous analysis was employed. The comparison between the
two studies was also completely satisfactory (Figures 4.7 and 4.8). INo further venification

secms necessary.
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CHAPTER §

DRAWDOWN TEST ANALYSIS FOR MULTI-REGION
COMPOSITE RESERVOIRS

As discussed in Chapter 2, enhanced oil recovery processes, such as in-situ combustion
and steam injection, are examples of artificially-created composite systems. In these
situations, the reservoir can be viewed as a multi-region system with different rock and/or
fluid properties. This study analyzes drawdown test data from a multi-region composite

reservoir model represent. g a reservoir undergoing steam injection.

5.1 Description of a Reservoir undergoing Steam Injection

A rescrvoir undergoing steam injection has three characteristic zones. A first inner zone,
czlicd the "swept zone", is full of steam and has the greatest values of mobility and
storativity. Beyond the inner zone, there exists a second zone in which the mobility and/or
the storativity may be continuously changing. This second zone is called the "transition
zone". Steam, oil and condensed water are present in the transition zone. At the end of the
transition region, towards the reservoir outer boundary, there is a cold heavy oil region
called the "unswept zone". This last zone has the lowest mobility and storativity values,

and extends as far as the reservoir's outer boundary.



Figure 5.1 represents a mobility ratio and/or storativity ratio profile from a reservoir in
which steam is being injected to recover heavy oil. As the pressure transient moves from
the swept region to the unswept region, the mobility and storativilty will decrease.
However, because of the definition of mobility ratio and stcrativity ratio used in this study,
the mobility ratio and the storativity ratio will increase as the pressure transient moves from
the swept region to the unswept region. Also, based on the definition, the mobility ratio
and storativity ratio of the swept region will be equal to one, while the unswept region will
have the largest values for mobility.ratio and storativity ratio. The unswept region's
mobility ratio and storativity ratio are the overall mobility and storativity ratios. Thus, the
swept and unswept regions have well-defined values for mobility ratio and storativity
ratio. However, the values for the transition region's mobility ratio or storativity ratio are
difficult to define, since mobility and storativity are continuously changing in this region.
In the particular case of steam injection, mobility and storativity ratios continuously
increase in the transition region. The values for mobility ratio and storativity ratio in the
transition region will fall in a range from one to a value lower or equal to the unswept

region's ratios.

Though the transition region's mobility and/or storativity ratio profiles c:ir: be represcated
in any suitable manner judged to mimic the real situation, this study analyzes cases in
which the transition region’s mobility ratio and/or storativity ratio profiles are linear
functions of dimensionless radius. Figure 5.1 represents the case of the transition's region
linear relationship between mobility and/or storativity ratio versus dimensionless radius.
The reason for this transition region's profile not appearing as a straight line is that a
Cartesian straight line is being plotted on a log-log scale in Figure 5.1. It is important to

note that the definition of mobility ratio in Figure 5.1 is different from the definition in
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Equation 4.14. This new definition of mobility ratio will be used with the sole purpose of
presenting results. There are not any mathematical implications from this new definition of
mobility ratio and the mathematical model remains the same as defined in Chapter 4. In
Figure 5.1, an arrow and the symbol for infinity are observed. The purpose of the arrow
and the infinity symbol is to represent the fact that the unswept region’s outer limit is not

defined on the graph, since the reservoir has an infinite outer boundary.

Figures 5.2 and 5.3 are the different mobility and storativity ratio profiles considered in this

study. In these figures, three variables should be explained:

1 Rp; is the radius where the inner region ends and the transition region starts.

Rp; will be referred to as the first discontinuity radius.

2 Rpnp-1 is the radius where the transition region ends and the unswept region starts.

Rpn-1 will be referred to as the last discontinuity radius.

3. my, is the slope of the line that represents the transition region's relationship
between the mobility and/or storativity ratios, and the dimensionless radius.

myr will be referred to as the transition region's slope.

The transition region can be represented by one region with an averaged value for mobility
ratio and/or storativity ratio or by several regions with different values of mobility ratio and
storativity ratio. Both representations are intended to approximate the transition region's
profile. Figures 5.4 through 5.8 show different ways of representing the transition region

in this study. The composite models used in this analysis vary from -a three-region
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composite model to a ten-region composite model. The three-region composite model
represents the transition region using one region. The ten-region composite model
represents the transition region using eight regions. In all composite models, the swept and

the unswept regions are represented by one region each.

The three-region composite model and the ten-region combositc model use different values
of mobility ratio and/or storativity ratio to represent the transition region's linear profile.
To represent this linear profile, a matérial balance method is used. This method was first
proposed by van Everdingen et al. (1953) when analyzing the pressure behaviour of an
aquifer. Based on this method, there will be two areas between the actual profile line and
the value selected. One area is above the actual profile and the other area is under the actual
profile line. These areas have triangular shapes (see Figures 5.4 through 5.8). For the
case of the three-region composite model, there exists one triangular area above the profile
line and one triangular area below the profile line. For the case of a ten-region composite
model, there are eight triangular areas above the profile line and eight triangular areas below
the profile line. The criterion to select the values representing the transition region is that
the areas above the profile should be the same as the areas below the profile line. The
smaller the triangular areas, the better is the representation of the straight line profile for

mobility and/or storativity variation in the transition region.

Representing a steam injection project by a three-region composite model may yield
significantly different pressure transient responses compared to a representation using a
ten-region composite model. This study considers such differences in the transient
pressure behaviour when the reservoir is represented by a multi-region (three or more

regions) composite model.
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5.2 Steam Injection Pressure Transient Bifraviour

Depending on reservoir properties, well conditions and the amount of steam injected, the
pressure transient behaviour of a reservoir undergoing steam injection, can be described by

different ransient flow periods. These periods are:

1. A wellbore storage dominated flow period,

An early radial flow period which reflects the mobility of the inner region,

An early transition flow period reflecting mobility and/or storativity changes,

A pseudosteady state flow period reflecting a large mobility or storativity contrast,

A late transition flow period reflecting mobility and/or storativity changes, and

A A

A late radial flow period which reflects the mobility of the outer region.

A pressure derivative graph enhances the detail in the information that can be obtained from
a well test. Therefore, by using pressure derivative graphs, the pressure transient analysis
from a reservoir may be improved. In most of this study, pressure derivative graphs have

been used.

A log-log plot of the semilog pressure derivative (dpwp / dln tp) versus dimensionless time

(tp) may be used to identify the different flow regimes. Various regimes are identified by:

1. A unit slope line for the wellbore dominated period,

[ 35

A zero slope line for for early radial flow in the swept region,

A unit slope line for the pseudosteady state flow period, and

S~Ww

A zero slope line for the late radial flow in the unswept region.
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A log-log plot of the dimensionless Cartesian pressure derivative (dpwp / dipA) versus
arca-based dimensionless time {tpA) may be used to obtain valuable information from a
reservoir's pressure transient behaviour. Throughout this study, the area used in the
definition of area-based dimensionless time is the area to the last discontinuity radius
Rpn-1- When analyzing a log-log graph of Cartesian pressure derivative versus arca-based

dimensionless time, various flow regimes are identified by:

1. A zero slope line for the wellbore dominated period,

2. A negative unit slope line for early radial flow in the swept region,
3. A zero slope line for the pseudosteady state flow period, and

4.

A negative unit slope line for the late radial flow in the unswept region.

Although the wellbore dominated flow period has been mentioned for completeness sake,
this study only considers cases with no wellbore storage. Skin at the wellbore and skin at
the discontinuities are also considered to be zero. Since wellbore storage and skin effects
have been sufficiently analyzed in previous studies, other features of transient pressure

behaviour are considered in this study.

When there is a well defined pseudosteady state period, a log-log graph of the semiifog
pressure derivative (dpwbD / dIn tp) versus dimensionless time (tp) will exhibit a unit slope
line. During the pseudosteady state period, the slope of a Cartesian straight line on a
pressure versus time graph is inversely proportional to the volume to the discontinuity at
which sharp contrasts in mobility and/or storativity cccur. In some cases, after observing

the early radial flow and a transition flow period, the semilog pressure derivative data falls
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on a straight line, whose slope is less than unity. In such cases, application of the
pseudosteady state concept leads to an overestimation of the volume to the last discontinuity
radius. Sheng (1992) explained that this phenomenon may be caused by a small hot water
zone, thermal effects and/or low mobility contrasts between regions. This study further

investigates the reasons for this phenomenon.

In a graph of dimensionless Cartesian pressure derivative (dpwp / dtpa) versus area-based
dimensionless time (tpa). a flattening or a zero slope line segment may indicate a
pseudosteady state flow period. The condition to be able to see this flattening is a
significant mobility and/or storativity contrast between regions. When this flattening
occurs at a value of the dimensionless Cartesian pressure derivative equal to 2x, the
property contrasts observed exist at the radius used to compute the area-based
dimensionless time (tpa). In this study, the radius used to compute area-based
dimensionless time (ipa) is the last discontinuity radius Rpp.;. Thus, if a flattening is
observed, when the Cartesian pressure derivative is equal to 2, then there is a significant
mobility and/or storativity contrast at the last discontinuity radius Rpp-3. If a flattening is

observed and the value m.p of the Cartesian pressure derivative is different from 2x, then

there is a significant mobility and/or storativity contrast at radius Rp given by:

Rp = Rpni (q)cl)l
S\ (ocdar

2x 5.1

For analytical pressure responses shown in this study, Equation 5.1 is useful to check if a

correct mgp occurs with respect to Rpy, as Rpy-1 is an input for data generation
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purposes. However, field application of Equation 5.1 is limited because Rpg-1 may not be
known accurately. In Equation (5.1), it is important to note that (¢pcy)efr is the effective

storativity corresponding to the volume up to Rp.

5.3 Analyzing Pressure Transient Responses for a Multi-region

Composite Reservoir

This section contains a study of transient pressure responses corresponding to the mobility

ratio and storativity ratio profiles shown on Figures 5.4 through 5.8.

Figure 5.9 compares the dimensionless semilog pressure derivative behaviour of several
composite models. For all the models, an early and a late radial flow period are observed.
The semilog pressure derivative has a value of 0.5 for the early radial flow period and a
value of 500 for the late radial ilow period. These two values for the semilog pressure
derivative represent the swept and unswept region's mobility ratios, respectively. By
definition, the mobility ratios of the swept and unswept regions are equal to two times the
value of the semilog pressure derivative on the early and late radial flow periods
respectively. In our case, the swept region has a mobility ratio of 1, as defined in section

5.2, and the unswept region has a value of 1000.

In Figure 5.9, it can be observed that neither the departure time from the early radial fi.
period nor the transition region’s duration are affected by the number of regions of the
composite model. However, the transition region's transient pressure behaviour is affected

by the number of regions of the model. Therefore, the information that can be obtained
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from the transition region is affected by the number of regions of the model. As observed
in Figure 5.9, the transition region's values for the semilog pressure derivative are higher
for the three-region composite model than for the ten-region composite model. Thus, this
suggests that the value of the transition region's effective mobility ratio for the three-region
model is higher than the effective mobility ratio for the ten-region model. Values for the
transition region's effective mobility ratio were computed by applying Equation A.9 to the
data input values (Tables C2 and C10) of the composite models. A value of 3.07 was
obtained for the effective mobility ratib of the ten-region model, while a value of 4.16 was
obtained for the effective mobility ratio of the three region composite model. These values

confirm the observations from Figure 5.9.

Also, from: Figure 5.9, it can be seen that the three-region composite model shows an initial
transition period, after the early radial flow, in which the dimensionless semilog pressure
derivative falls on a line. This line appears, because of the mobility contrast at the inner
region radius. This mobility contrast is the consequence of only one region representing
the transition zone. The slope of this line is less than one and suggests a low mobility
contrast between regions. The dimensionless Cartesian pressure derivative on Figure 5.10
confirms that there is a low mobility contrast at early times of the pressure transient
behaviour. This low mobility contrast is indicated by a deviation of the Cartesian pressure
derivative from the negative unit slope line. However, since the mobility contrast is low,
the Cartesian pressure derivative does not flatten as it does when there is a high contrast in

mobility or storativity. A high contrast in mobility or storativity originates a pseudosteady

state period.
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Figure 5.10 shows that all the composite models deviate from the negative unit slope at the
same time, 4 x 104, approximately. At this deviation time, the dimensionless Cartesian
pressure derivative has a value mc¢p of approximately 630. By applying Equation 5.1, a
first dimensionless discontinuity radius of approximately i00 was found. This estimated

value of first dimensionless discontinuity radius satisfactorily agrees with the input value.

Figure 5.9 shows that there is a time, when, for all of the composite models, the semilog
pressure derivative 1alls on a unit slope straight line. This unit slope straight line indicates a
pseudosteady state period due to a high mobility contrast. Figure 5.10 confirms this high
contrast by a flattening of the Cartesian pressure derivative. This flattening occurs, when
the Cartesian pressure derivative has a value of 2m. As explained in Section 5.2, this

transient pressure behaviour shows a high mobility contrast at the last discontinuity radius

Rpn-1, as expected.

Figure 5.11 shows the effect of increasing the first discontinuity radius on pressure
transient behaviour. Although the input mobility ratios are the same as for Figures 5.9 and
5.10, it seems that changing the first and last «jiscontinuity radii affects ihe effective
mobility ratio of the multi-region (three or more regions) composite systems. By applying
Equation A.9 to the input mobility ratios of the three-region composite model, an effective
mobility ratio of 2.35 was foqnd, while doing the same thing for the ten-rcgion model
yielded an effective mobility ratio of 2.12. This is one likely reason as to why the pressure
behaviour for all the composite models are closer to each other than those in the previous

case of smaller first discontinuity radius (see Figure 5.9 for comparison).
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Also, from Figure 5.11, it is observed that the transition region's effects are felt later than
the previous case on Figures 5.9 and 5.10, as expected. Thus, increasing the first
discontinuity radius increases the deviation time. Another effect of increasing the first
discontinuity radius is that the transition region's effects become weaker and the duration of

the transition region is shoster.

A general behaviour for all composit¢ models is observed in Figure 5.11. Soon after the
end of early radial flow, the semilog pressure derivative falls on a straight line for a short
time period. The slope of this straight line is lower than unity. As the number of regions
representing the transition region increases, this straight line slope becomes smaller
indicating a lower mobility contrast. Thus, more regions in a multi-region composite
model, mimicking continuous property va: -ions for an actual reservoir, reduce the
possibility of obtaining a unit slope line for thc 2.5 =1 pressure behaviour. In theoretical
pressure transient models, a unit slope linc appesss as a consequence of representing a zone
with continuously changing mobility or storativity as one region. This one-region
representation also erroneously increases the duration of any real pseudosteady state flow

period.

At a later period of time in the transition region response, Figure 5.11 shows that all
compeisite models join together and the semilog pressure derivative falls on a straight line.
The slope of this straight line is unity, indicating a pseudosteady state period due to a high
mobility contrast. Figure 5.12 confirms this high contrast by a flattening of the Cartesian
pressure derivative. This flattening occurs, wher the Cartesian pressure derivative has a
value of 27t. This indicates that a large mobility contrast exists at the last discontinuity

radius Rpp-1. By using Equatior 5.1, the first dimensionless discontinuity radius can also
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be estimated for the response in Figure 5.12. The first point when the Cartesian pressure
derivative deviates from the negative unit slope line indicates a Cartesian pressure derivative
value of approximately 49. By applying Equation 5.1 as discussed previously, a value of
approximately 500 was obtained for the first dimensionless discontinuity radius. This

estimat.d first dimensionless discontinuity radius is the same as the input value of 500.

Figures 5.13 and 5.14 show the effects of different values of first discontinuity radius on
the semilog pressure derivative and tﬁe Cartesian pressure derivative behaviour. Figure
5.13 shows that the larger the first discontinuity radius, the larger is the deviation time.
Increasing the first discontinuity radius reduces the effects of the transition region on
pressure behaviour. The duration of the transition region effects on the pressure behaviour
is inversely related te the first discontinuity radius. If the first discontinuity radius is too
large compared with the last discontinuity radius, the inner region effects may mask all the
transition region effects on the pressure behaviour. Except for the case of totally masked
transition region effects, the method based on Equation 5.1 is not affected by the first

discontinuity radius.

Figure 5.15 shows thic semilog pressure derivative behaviour of another mobility profile.
The overall mobility ratio is 1000 as in previous cases. However, a slope(my) of 0.5 is
assigned to the transition region's straight line mobility profile. Thus, the mobility ratio at
the first discontinuity radius is greater than in previous cases. Increasing the transition
region's slope causes a high mobility contrast between the swept region and the transition
region. This contrast is observed in Figure 5.15 at the beginning of the transition region
effects, when for all the models, the semilog pressure derivative falls on a straight line with

a unit slope indicating the pseudosteady state period soon afier the end of early radial flow.
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Another effect of increasing the transition region's siope myy is that now there is a lower
mobility contrast between the transition region and the unswept zone. The effects of this
low mobility contrast can be observed in Figure 5.15 at the late transition flow period.
This period shows that, for all composite models, the semilog pressure derivative curves
fall on a straight line with a slope lower than one. With data from this period of time, the
pseudosteady state method may be used to estimate the last discontinuity radius. However,

the last discontinuity radius would be overestimated.

Figure 5.16 shows a flattening of the Cartesian pressure derivative, confirming the high
contrast in mobility between the swept region and the transition region. Applying Equation
5.1 to the value mcp of the Cartesian pressure derivative at the first deviation point from the
negative unit slope line will yield the first discontinuity radius. The estimated first

discontinuity radius is 93, which is slightly lower than the input value of 100.

Figures 5.17 and 5.18 show the effects on the semilog pressure derivative and the
Cartesian pressure derivative behaviour of several values of the transition region's slope.
In general, increasing the transition region's slope causes an increase in the mobility
contrast between the swept and the transition region, while the mobility contrast between
the transition region and the unswept region decreases. The higher the mobility contrast,

the higher are the chances of existence of a pseudosteady state period.

For low mobility contrasts between the swept and transition regions, EqQuation 5.1 yields
good estimates of the first discontinuity radius. For high mobility contrasts, the
pseudosteady state method yields good estimates of the appropriate discontinuity radius, if

a correct effective compressibility is used for the analysis. When an adequate flattening in
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Cartesian pressure derivative is not observed, a discontinuity radius computed using the
pseudosteady state method would generally be an overestimated value. This normally
occurs when the contrast between the transition region and the unswept region is too low to

observe significant flattening on the Cartesian pressure derivative curves.

Figures 5.19 and 5.20 show the semilog pressure derivative and the Cartesian pressure
derivative of a reservoir in which storativity in th~, transition region changes linearly with
respect to the dimensionless radius. This profile is shown in Figure 5.2 in which the
overall storativity ratic is 1000 and the slope {ur the transition region profile is 0.02. In
this case, a con:iant mobility throughout the reservoir has been used. Thus, mobility ratio
is equal to one everywhere in the reservoir. From Figures 5.19 and 5.20, it can be
observed that there is a small difference between the three-region model and the ten-region
model. This small difference is directly related to the value of effective storativity in the
transition region. By applying Equation A.14 to the input storativity ratios of the ten-
region model (Table C10), an effective storativity ratio was computed. An effective
storativity ratio of 9.14 was obtained for the ten-region model, while for the three-region
model (Table C2), a value of 9.59 was obtained. These results explain small differences,
especially for Cartesian pressure derivative (see Figure 5.20), among three- to ten-region

reprer®atations of storativity variation in the transition region.

Figure 5.19 shows that the number of regions does not affect the deviation time when
analyzing a reservoir with a changing storativity profile. Before the semilog pressure
derivative reaches its maximum value, for all of the models, the semilog pressure derivative

falls on a straight line. This straight line's slope is considerably lower than unity. Thus, if
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the pseudosteady state method is used with pressure data from this period, the estimated
last discontinuity radius would be much higher than the actual one, provided that the correct

effective storativity is used for the analysis.

At a dimensionless time tpa of 1x10-3, the Cartesian pressure derivative on Figure 5.20
shows a slight deviation from a line of slope -1 indicating a very low contrast in storativity.
The value of the Cartesian pressure derivative at this first point of deviation is
approximately 630. If Equation 5.1 is applied, a value will be computed for the first
discontinuity radius. The estimated first discontinuity radius is approximately 100, which

agrees with the input value.

At a dimensionless time tpa of about 1.8x10-2, the Cartesian pressure derivative on Figure
5.20 shows an additional deviation. This deviation shows another low contrast in
storativity, since the Cartesian pressure derivative deviates, but does not flatten
significantly. Also, Figure 5.20 shows that this deviation occurs for values of the
Cartesian pressure derivative greater than 2n. This behaviour suggests that estimating the
last discontinuity radius by the pseudosteady state method will vie'd an underestimation of
the actual last discontinuity radius. However, this assumption is incorrect since the
Cartesian pressure derivative in Figure 5.20 does not account for the effects of effective
storativity for multi-region composite reservoirs. Figure 5.21 shows the behaviour of the
effective Cartesian pressure derivative for the same storativity profile as in Figure 5.20.
The effective Cartesian pressure derivative in Figure 5.21 accounts for the effects of
storativity for each of the multi-region composite models. The effective Cartesian pressure
derivative on Figure 5.21 shows also as in Figure 5.20, an incomplete flattening at the last

discontinuity radius. However, contrary to what was observed in Figure 5.20, the
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incomplete flattening of the effective Cartesian pressure derivative on Figure 5.21 has a
value lower than 27 (horizontal iine). This value of effective Cartesian pressure derivative
suggests that using the pseudosteady state method to estimate the last discontinuity radius
will yield an overestimated value. This is consistent with the observation made in Figure

5.19 for the semilog pressure derivative straight line with a slope lower than unity.

Different possible values were observed for the incomplete flattening (at the last
discontinuity radius) of the effective Cartesian pressure derivative on Figure 5.21. These
values give an idea of what will be the overestimation of the volume to the last discontinuity
radius if the pseudosteady method is used. For this case, the volume to the last

discontinuity radius may be overestimated by 25 to 60 per cent.

For Figures 5.10 and 5.20, the discontinuity radii and the slope of the transition region are
the same. Both profiles have the same overall ratio in properties. However, for Figure
5.10, mobility changes and storativity is constant, while in Figure 5.20, storativity changes
and mobility is constant. In Figure 5.20, the time for the second deviation of the Cartesian
pressure derivative is approximately two orders of magnitude smaller than that in Figure
5.10. Thus, the second deviation time due to a storativity variation occurs earlier than a
mobility variation of the same magnitude for the transition region of a composite reservoir.
However, the first deviation time is independent of mobility and/or storativity variation.
The first deviation time depends only on the inner (first) region mobility and the first
discontinuity radius. Figures 5.10 and 5.20 also show that a mobility contrast will yield
larger and better defined pressure derivative deviations than a storativity contrast of the
same magnitude. Thus, mobility contrasts are more likely to develop a pseudosteady state

flow period than storativity contrasts.
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As observed in Figures 5.19 and 5.20, the greatest difference between the threc-region
model and and the ten-region model is at the beginning of the transition region effects.
This difference between the two models is the result of representing the transition region as
one or as several regions. When the transition region is represented as one region, the
pressure derivative behaviour shows a higher contrast in physical properties than when the

transition region is represented by a greater number of regions.

Figure 5.22 shows the semilog pressure derivative for a storativity profile with the same
characteristics as the profile for Figures 5.19 and 5.20. However, the first and last
discontinuity radii are different. While in Figures 5.19 and 5.20, the profile's first and last
dimensionless discontinuity radii are 100 and 1000, respectively, in Figure 5.22, the first
and last dimensionless discontinuity radii @t 300 and 1400, respectively. Figure 5.22
shows that there is a smaller difference betwex i the three-region model and the ten-region
model than it was ir Figure 5.19. The reasons for this smaller difference are explained

below.

After observing Figures 5.10 through Figure 5.22, a general characteristic for pressur

derivative responses is evident. Whenever there is a significant contrast in the reservoir's
physical properties, the semilog pressure derivative will show a straight iine. For a large
property contrast, the slope of this line is unity, showing a pseudosteady state fiow period.
For a small property contrast, the slope of this line is less than unity. The occurrence of the
straight line is also related to the reservoir's volume that this line corresponds to. Thus, for
the same contrast in physical properties, this straight line may or may not occur, depending

on the reservoir's volume affecting the responses. The early straight line developed at the
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beginning of the transition region, in a semilog pressure derivative, reflects the volume of
the inner zone. The occurrence of a straight line is inversely related to the reservoir's
volume affecting the responses. Thus, if the volume of the inner zone increases and the
contrast is still the same, there are less possibilities for this straight line to develop. In
Figure 5.22, the difference between the first and the last discontinuity dimensionless radius
has not changed from what it was in Figure 5.19. However, the volum:s of the inntELZOIIC
and the transition zone have changed. The volume of the inner zone for Figure 5.22 is 25
times the volume of the inner zonc in Figure 5.19. Thus, in Figure 5.22, the semilog
pressure derivative does not develop a straight line corresponding to the inner region
volume, since the inner region volume is too large in this case. Since no straight line
corresponding to the inner region volume develops, no major deviation in the pressure
derivative occurs at the beginning of the transition region effects. Since it is at the
beginning of the transition region effects that the three-region model and the ten-region
model are more different, it follows that both models in Figure 5.22 must show a very

similar behaviour.

In Figures 5.22 and 5.19, the semilog pressure derivative develops a straight line at a late
period of the transition region effects. This straight line reflects the volume of the swept
and the transition region together. The slope of this straight line in Figure 5.22 is larger
than the slope in Figure 5.19. In this case, the slope of this line is directly related 1o the
contrast of storativity, since the mobility is constant. This suggests that the storativity
contrast between the transition region and the unswept region is greater in Figure 5.22 than
in Figure 5.19. Since input storativity ratios are the same in both figures, the discontinuity
radii must have affected the value of the effective storativity ratio. Effective storativity

ratios for the volume corresponding to the sum of the swept and the transition regions were
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computed for storativity profiles for Figures 5.19 and 5.22 using the ten-region model.
The computed effective storativity ratio for the profile in Figure 5.19 is 9.14, while the
computed effective storativity ratio for the profile in Figure 5.22 is 4.28. The value of the
unswept zone storativity ratio is 1000 for both figures. Thus, there is a larger storativity
contrast between the transition region and the unswept region in Figure 5.22 than in Figure
5.19. This higher storativity contrast explains why the slope of the straight line in Figure

5.22 is larger than the slope of the straight line in Figure 5.19.

In Figure 5.23, the Cartesian pressure derivative of the same storaiivity profile as for
Figure 5.22 is graphed. A log-log graph of Cartesian pressure derivative appears to be less
sensitive than a log-log graph of semilog pressure derivative at early and intermediate
times, when the Cartesian pressure derivative values are large. Thus, the difference among
the composite models is even smaller than in Figure 5.22, and the responses from all of the
models overlap. The Cartesian pressure derivative shows a very low contrast in storativity

at a dimensionless time tpa of 1x10-2. By using Equation 5.1, a value of 500 was found
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for the first discontinuity radius. The estimated discontinuity radius agrees with the input-

value. However, the deviation corresponding to the last discontinuity cannot be identified.
It seems that all of the effects of the low storativity contrast at the first discontinuity and the
higher storativity contrast at the last discontinuity are joined together and the transition
region's effects are not distinguishable. However, according to the semilog pressure
derivative behaviour in Figure 5.22, the storativity contrast at the last discontinuity radius is
the one affecting more the pressure derivative responses. Using the pseudosteady state
method in these types of reservoirs may lead to an overestimation of the last discontinuity

radius, as explained before.



le+04
< le+02
o
doesd
=2
a
Q.; 1e+00
o
le-02
——Thrce to Ten-region
le-04
le-05 le-03 le-01 le+01 le+03

tpa

Figure 5.23 - Dimensionless Cartesian pressure derivauve for R = 500,

RDn_l = 1400, m = 0.02, and Mli = 1.

84



Figure 5.24 shows how the first discontinuity radius and the discontinuity radii ratio affect
the semilog pressure derivative behaviour. For all cases, Rpn.1 = Rpy + 900. For smaller
values of the first discontinuity radius and larger discontinuity radii ratio, the deviation time
is earlier, while the transition region’s duration is longer. The maximum value of the
semilog pressure derivative is mildly affected by the discontinuity radii ratio. The smaller
the discontinuity radii ratio, the higher the wvalue of the maximum semilog pressure
derivative. This is because the smaller the discontinuity radii ratio, the larger the effective

overall storativity ratio.

.Fi gure 5.25 shows the semilog pressure derivative for a reservoir with a first discontinuity
radius of 100 and a last discontinuity radius ¢f 1000. Mobility is uniform along the
reservoir and storativity within the transition region changes linearly with dimensionless
radius. The slope of the storativity linear profile within the transition region is 0.5. Thus,
the storativity ratio within the transition region is larger than in the previous cases of
Figures 5.19 and 5.20. However, the overall storativity ratio is still 1000 as in previous
cases. From Figure 5.25, it can be seen that the contrast between the swept and the
transition regions has increased. This first discontinuity contrast is shown when the
semilog pressure derivative falls on a straight line in an early period of the transition regioii.
The slope of this straight line is less than one, indicating that this contrast is not too high
and that using the pseudosteady state method to estimate a value for the first discontinuity
radius will lead to an overestimation of the actual one. Also, from Figure 5.25, there is
almost no difference between the three-region model and the ten-region model, indicating
that the effective storativity ratio in both models is almost the same. Another observation. is

that the effects of the storativity contrast at the last discontinuity is not identifiable, which
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means that the storativity contrast at the last discontinuity is too low to produce any

characteristic behaviour.

Figure 5.26 shows the Cartesian pressure derivative for the same storativity profile as for
Figure 5.25. There is an early deviation that indicates a low storativity contrast, since the
Cartesian pressure derivative does not flatten significantly. By using Equation 5.1, it was
found that the first discontinuity radius is 100, as expected from the input value. However,
it is impossible to estimate the last discontinuity radius, since the siorativity contrast at the
last discontinuity is not high enough to produce a characteristic change in the Cartesian

pressure derivative behaviour.

Figure 5.27 represents the semilog pressure derivative behaviour of a uniform mobilirv
case, in which the transition region's storativity varies linearly with dimensionless radius.
Figure 5.27 shows the effects on the semilog pressure derivative behaviour of several
values of the transition region's slope. In general, it can observed that increasing the
transition region's linear profile slope increases the storativity contrast between the swept
and the transition region. This happens while the contrast between the transition region and
the unswept region decreases. Figure 5.27 shows that increasing the transition region's
slope mildly affects the maximum value of the semilog pressure derivative. However, the
smaller the transition region's linear profile slope, the larger the transition region's
duration. This happens because when the transition region’s slope is smaller the contrast at

the iast discontinuity radius is larger.

Figure 5.28 shows the Cartesian pressure derivative for a reservoir in which the transition

region's mobility and storativity change linearly with respect to the dimensionless radius.
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Figure 5.28 shows, in general, that a slowly changing storativity ratio, as for the ten-region
case, reduces the transition region's effects. The Cartesian pressure derivative flattening
occurring on Figure 5.28 corresponds to significant mobility and storativity contrasts at

appropriate discontinuity radii.

Figures 5.29 and 5.30 show the semilog pressure derivative and the Cartesian pressure
derivative for a reservoir in which the transition region's mobility changes linearly with
respect to dimensionless radius. The mobility profiles are the same for the four curves on
Figures 5.29 and 5.30, while the storativity profiles are different. Fg represents the
transition region storativity ratio, Fgs1p, represents the last region storativity ratio, Fg); means
the storativity ratio at any peint in the reservoir and "lin." is an abbreviation meaning that
storativity ratio changes linearly with respect to dimensionless radius within the transition
region. All the rest of the terms are as defined previously. In Figures 5.29 and 5.30, the
profile with a unit storativity ratio will be referred to as Type 1. The profile with a linear
variation of storativity will be referred to as Type 2. The profile in which the transition
region's storativity ratio is 100 and the unswept region's storativity ratio is 1000 will be
referred to as Type 3. Finally, the profile in which the transition region and the unswept
region storativity ratios are 1000 will be referred to as Type 4. All the input data used for
Figures 5.29 and 5.30 are in Table C11. Figures 5.29 and 5.30 show that intermediate
time pressure derivative behaviour can exhibit varied characteristics depeading on the

magnitude of storativity contrasts at different discontinuity radii.
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pressure derivative for a ten-region composite reservoir.
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5.4 Analyzing Characterization Methods

As mentioned previously in Section 2.3.2, Yeh and Agarwal (1989) developed a reservoir
characterization method in which the reservoir's mobility profile can be obtained from the
transient pressure data collected at a well. In their study, they developed relations between
the semilog pressure derivative, mobility and radius of investigation. Yeh and Agarwal ‘s
(1989) equations were in field units. However, this study uses Sl units to present their
equations. Since all this study has been performed with dimensionless variables, Yeh and
Agarwal 's (1989) equations will also be shown in dimensionless form. Appendix B

shows how the dimensionless equations were obtained.

Yeh and Agarwal (1989) related "instantaneous mobility" A, and the semilog pressure

derivative. This relation is:

=3B
dAp

h—2F
din (A1) (5.3a3)

Equation 5.3a, in dimensionless form, is-

M =29PD
dintp (5.3b)

Equation 5.3b defines the relation between "instantaneous mobility ratio”, M, and the

dimensionless semilog pressure derivative.
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From a definition of radius of investigation, Yeh and Agarwal (1989) suggested that the
radius corresponding to a particular value of "instantaneous mobility", 7\-1‘, in Equation 5.3a

is:

Y 0.5

éc, (5.4a)

Equation 5.4a, in dimensionless form, is:

05
p=15 (‘—_D—)
M (5.4b)

The variable rjp in Equation 5.4b is a dimensionless radius of investigation.

Yeh and Agarwal (1989) explained in their work that the "instantaneous mobility", 7\-1,
represents a volumetric averaged mobility of the actual reservoir mobility profile.
However, the theoretical basis for this relation was not explained in their work. Yeh and
Agarwal’s (1989) equation to relate the instantaneous mobility At and the real reservoir

mobility, A;, at the radius rj is:

_dVA) _ g
A= dv 2

dx‘ + 5[
dr; ' (5.52)



Equation £.5a in dimensionless form is:

d(l)
M
N[._ I'D

)

+L
drip M

(5.5b)

Thus, Equations 5.3a through 5.5a (or Equations 5.3b through 5.5b) are the basis for Yeh

and Agarwal’s (1989) characterization method.

In 1993, Feitosa et al., based on Oliver’s (1990) work, expanded Yeh and Agarwal’s
(1989) algorithm. Feitosa 2t al. (1993a) explained that Yeh and Agarwal’s (1989) method
may be improved by establishing a different relationship between "instantaneous mobility"
and the actual reservoir mobility. They considered that the "instantaneous mobility”
represents a harmonic volumetric average of the reservoir's actual mobility profile. Also,
as in Yeh and Agarwal ‘s (1989) work, no theoretical explanation was given for the
relationship between the "instantaneous mobility” and the reservoir's actual mobility. This
relationship was developed intuitively based on Oliver’s (1990) study. Feitosa et al.’s

(1993a) equation to relate the "instantaneous mobility" and the actual reservoir's mobility at

aradiusrj is:

t (5.6a)
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Equation 5.6a in dimensionless form is:

-TD M
M=pdM .

a.lal

(5.6b)

The definitions of "instantaneous mobility" and radius of investigation remain the same as
in Yeh and Agarwal ‘s (1989) study. Thus, Equations 5.3a, 5.4a and 5.6a (or Equations
5.3b, 5.4b and 5.6b) are the basis for Feitosa et al.’s (1993a) characterization method.
This method was called the "modified Yeh and Agarwal method" by Feitosa et al. (1993a)

In this section, a further analysis ¢ both methods is reported.

Figure 5.31 represents the dimensionless form of a permeability profile shown in Figure 1
of Feitosa et al. (1993a). Figure 5.31 shows a graph of mobility ratio versus
dimensionless radius of investigation for a unit storativity ratio along the reservoir. The
continuous line represents the actual mobility ratio profile, while the other symbols
represent the mobility ratio profiles from the various characterization methods. The actual
profile considered in Figure 5.31 shows a mobility ratio range from 0.5 to 2. Thisis a
relatively small mobility variation. The three methods to obtain the mobility ratio profile
seem to perform satisfactorily for this type of mobility ratio variation. The Yeh and
Agarwal, and the modified Yeh and Agarwal methods yield better results than the
instantaneous mobility profile. Also, the modified Yeh and Agarwal method developed by
Feitosa et al. (1993a) is the best of the three approaches. For completeness sake, Figure
5.32 shows results for a slightly different profile than in Figure 5.31. However, again, ihe

modified Yeh and Agarwal method yields the best results.
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Figure 5.31 - Mobility ratio versus dimensionless radius of investigation for a
five-region composite reservoir with F_. =1 and M, =05.
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Figure 5.33 represents the dimensionless form of a permeability profile shown in Figure 8
of Feitosa et al. (1993a). In Figure 5.33, mobility ratio changes asymptotically with the
dimensionless radius of investigation, until it reaches a value of approximately 7.
However, storativity remains constant, as in Figures 5.31 and 5.32. Also, as for Figures
5.31 and 5.32, the Yeh and Agarwal method, and the modified Yeh and Agarwal method
yield better results than by using the instantaneous mobility concept to represent the
reservoir's mobility profile. For this mobility profile, the Yeh and Agarwal method, and
the modified Yeh and Agarwal method yield almost the same results. Both methods yield

satisfactory results for this particular mobility profile.

Figure 5.34 represents one possible mobility profile from a thermal recovery project, as
shown in the previous section. In this figure, the mobility ratio varies considerably as in a
thermal recovery processes. However, similar to Feitosa et al. (1993a), the storativity ratio
along the reservoir, Fg)j, is equal to unity. Also, as in previous cases, the modified Yeh
and Agarwal method yields satisfactory results, which are better than the results generated
by the instantaneous mobility approach. However, for this case, the Yeh and Agarwal
method is not defined for certain sections of the mobility profile, where large contrasts in
mobility occur. For these cases of large contrasts in mobility, the first term on the right
hand side of Equation 5.5a is negative and larger than the second term on the right hand
side of the same equation. Under this condition, Equation 5.5a yields a negative mobility.
Thus, the Yeh and Agarwal method is only valid to characterize reservoirs with low

mobility contrasts.
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Figures 5.31 through 5.34 represent reservoir mobility profiles in which storativity remains
constant along the reservoir. However, for actual situations, storativity also varies along
the reservoir. Figures 5.35 through 5.38 represent the same mobility profiles as in Figures
5.31 through 5.34, respectively, but with different storativity profiles. All the storativity
profiles in these figures are as described in the previous section for thermal well test
analysis. There will be a swept region with unit storativity ratio, a transition region with
continuously changing storativity ratio and an unswept region with an overall storativity
ratio of 1000. As in Section 5.3, the &ansition region's storativity ratio will change linea-ly
with dimensionless radius. The definition of variables remains the same as in the previous
section. In Figures 5.35 and 5.36, the first and last discontinuity radii are 106.66 and
3516.66, respectively. In Figures 5.37 and 5.38, the first and last discontinuity radii are
100 and 1000, respectively. For all Figures 5.35 through 5.38, the slope of the transition

region's linear storativity profile is 0.10.

For all Figures 5.35 through 5.38, none of the three approaches to characterize the
reservoir's mobility profile worked. This is because, for all the approaches, the reservoir
mobility is a function of the semilog pressure derivative. However, the semilog pressure
derivative is influenced by both mobility and storativity. Thus, the effect of storativity
changes on a reservoir's transient pressure behaviour must be considered, when
developing a method for reservoir mobility characterization. The effect of storativity
variation on transient pressure behaviour is quite significant for a reservoir undergoing a

thermal recovery process, such as in-situ combustion or steam injection.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In this study, a multi-region composite reservoir model has been developed. This model
has been used to analyze drawdown tests from reservoirs undergoing a thermal recovery
process, such as steam injection or in-situ combustion. The cffect on pressure derivative
behaviour of representing these reservoirs by a different number of regions has been
studied. An analysis has been conducted of how discontinuity radii, and mobility and
storativity contrasts affect the transient pressure derivative behaviour. A brief evaluation of
reservoir characterization methods is also presented. In the following, Section 6.1 presents
the conclusions based on this study. Section 6.2 presents recommendations for future

studies.

6.1 Conclusions

By analyzing the drawdown response of multi-region composite reservoirs, the following

conclusions may be drawn:

1. Neither the departure time from the early radial flow period nor the duration of the
transition region effects are affected by the number of regions of the composite

model.
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The transient pressure derivative behaviour corresponding te the transition zone

effects is affected by the number of regions representing the transition zone.

Representing the transition zone by one region may generate transient pressure
derivative responses which may appear to be due to a higher mobility (or
storativity) contrast than what actually exists. Using several regions to represent
the transition zone allows a more realistic representation of property variation in the

transition region.

If the first discontinuity radius is increased while decreasing the discontinuity radii
ratio, the deviation time from the early radial flow period becomes larger, while the

duration of the transition region effects becomes smaller.

Equation 5.1 yields a good estimate for the first discontinuity radius when there is a
reasonable contrast in mobility or storativity between the swept and the transition
regions. This reasonable property contrast would cause a deviation of the Cartesian
pressure derivative from a line of slope equal to -1 on a log-log graph of the
Cartesian pressure derivative versus time. Equation 5.1 has, thus, been

successfully used to partly verify the accuracy of our solution.

For a high contrast in mobility (or storativity), between the swept and the transition
regions, the pseudosteady state method may yield a good estimated value for the
first discontinuity radius. Howevzr, for a low property contrast, the pseudosteady

state method may yield an overestimated result.
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In some cases, during the intermediate time period, the semilog pressure derivative
data from a reservoir falls on a straight line whose slope is less than unity. This
phenomenon is due to continuously changing mobility or storativity. The transient
pressure derivative behaviour from these continuous changes corresponds to the

case of small contrasts in mobility or storativity.

Using the pseudosteady state meihed 1o estimate the last discontinuity radius Rpp-1
will normally yield overestimated results and, in some cases, it may be impossible

to use due to insignificant flattening of the Cartesian pressure derivative.

Results suggest that a continuously changing storativity profile in the transition

region may be approximated by one region with an averaged value of storativity for

most cases.

A mobility contrast yields a larger and better defined Cartesian pressure derivative
flattening than a storativity contrast of the same magnitude. Thus, large mobility

contrasts are more likely to yield a pseudosteady state flow period than large

storativity contrasts.

The smaller the ratio between the last and first discontinuity radii, the higher the
value of the maximum semilog pressure derivative. However, the effect of this

discontinuity radii ratio on the maximum value of the semilog pressure derivative is

mild.
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From the study of the two characterization methods, the following conclusions may be

drawn:

1. The Modified Yeh and Agarwal method and the Yeh and Agarwal method yield
satisfactory results when analyzing reservoirs with low mobility contrasts and

constant storativity.

2. For the case of reservoirs with high mobility contrasts and unit storativity ratio, the
modified Yeh and Agarwal method yields satisfactory results, while the Yeh and
Agarwal method is not defined for certain sections of the mobility profile with large
contrasts in mobility. Thus, the Yeh and Agarwal method is only valid to

characterize reservoirs with low mobility contrasts.

3. When there is a storativity variation along the reservoir, both methods, the mo2ified
Yeh and Agarwal, and the Yeh and Agarwal, fail to characterize the mobility of the
reservoir. This is because, for both approaches, the reservoir mobility is
considered to be the only variable affecting the semilog pressure derivative.
However, the semilog pressure derivative is influenced by both mobility and

storativity.
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Recommendations

Future studies should consider effective pressure derivative behaviour versus

effective dimensionless time in multi-region composite reservoirs.

The effect of storativity changes on the transient pressure derivative behaviour
should be considered when developing future methods for reservoir

characterization.

The transient pressure derivative behaviour of the multi-region composite reservoirs

with a constant pressure outer boundary and/or closed outer boundary should be

studied.
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multi-region composite reservoirs.
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APPENDIX A
Development of expressions for effective physical properties for

multi-region composite reservoirs.

This appendix contains the equations obtained for the effective mobility and the effective
storativity of multi-region composite reservoirs.

1. Effective mobility of a multi-region composite reservoir

One can obtain the effective mobility of a multi-region composite reservoir by starting from
the principles of pressure behaviour in a radial reservoir. The difference in pressure
between two points in a radial reservoir may be expressed by the steady-state radial flow
equation:

QBp-angn (r"‘ )

(Pir1-P) =
27thk g (A1)

The difference in pressure between the wellbore and the last region "n" of a multi-region
composite system is equal to the sum of all the pressure differentials between the regions of
the system. Thus,

(Pa-Pu)=(P1-Py) + (P2-P)) + ... + (Piu1- P) + ..+ (Pny - Pn2) + (Pn- Pn1) (A2)

Substituing Equation A.1 in Equation A.2 leads to:

QBuain (£) _ qBuiln (ﬁ)Aunxn (g)) QBuiiln ("”L  Bpln (m) aPudn (E2)

Iabka | 2mhk: | Zmhkz o Zmhker o 2mhke: 2nhka  (A.3)
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Note that:
=In

Ron=g0 (A.4)
I

Rpr=¢; (A5)

Substituing Equations A.4 and A.S in Equation A.3, and simplifying yields:

bin (Rer) = Bl Re) + B () .t Bitin (12) ot Botin (1) o Bn (GE2)

(A.6)

Re-arranging Equation A.6 yields the effective mobility for a multi-region composite
Teservoir:

in (Rm)

* © () i G (1) 1 (@) (), (5e(2) i (o) () (G (A.6)

Mobility ratio is defined as:
_®,
),

(A7)

Thus, the effective mobility ratio for 2 multi-region composite reservoir is defined as:
k
(u,) 1
k

Mg =

(A.8)



117

(—ﬁ_l—)—l,

form the radii involved in the ratios of the natural log function, we obtain:

Now multiplying both sides of Equation A.6 by and transforming to dimensionless

1 In (Rn,)

Md 4 (R Mpin (%)-&...M Liealn (—%‘-}..AMm_lln (:J;:;)-»Mmln (Ef:)

(A9)

The inverse of both sides of Equation A.9 yields the effective mobility ratio for a multi-
region composite reservoir.

2. Effective storativity of a multi-region composite reservoir

The effective storativity of a multi-region composite reservoir is defined as a volume-
averaged storativity. Thus,

(@) TR+ (Oc)AT(RERD+. +(9c)iethm(RE1-RD+..+(0c) hn(RER2 1)

(dc)dr = >
hnR; (A.10)

Simplifying Equation A.10, we have:

(@car = QEORT+ OCOARERD +..+ (@CisiREIRY) +..+HOCORERE1)
R: (A.10)

Equation A.10 defines the effective storativity for a multi-region composite system.
The storativity ratio is defined as:

(Oci (A.11)



118

Obviously, the effective storativity ratio is defined as:

Fe = (dco1
Seff —
(dcoer (A.12)

Dividing both sides of Equation A.10 by (¢cl)1R12 and using Equation A.11 yields:

(@c)aRE _ 4 - (Rz 1 1 Rm-Rz) N R?.n-lz?,z)+ 1 R’.,-R%;)
@ciR}? Fs;u Fso1\ R? Fsa\ R} (A.13)

Using dimensionless radii in Equation A.13 and substituting Equation A.12 into the
resulting equation yields:

_1_RA _ =1 1) *_(RDM'RD)',_ 1 Rn,,-Rn,z)+| R%..-Rﬁ,,)
Fsar Rn Fsi2 RQ Fsia1 Fsn1 Rm Fsa Rf)‘ (A.14)

An obvious re-arrangement of Equation A.14 yields the effective storativity ratio for a
multi-region composite reservoir.
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APPENDIX B

Development of the dimensionless form of Yeh and Agarwal’s (1989) equations.
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APPENDIX B

Dimensionless form c¢f instantaneocus mobility and radius of Investigation

The purpose of this appendix is to show how expressions for instantaneous mobility ratio

and dimensionless radius of investigation were obtained by transforming Yeh and

Agarwal’s (1989) equations.

1. Instantaneous mobility ratio

Yeh and Agarwal (1989) defined instantaneous mobility as:

A= 70.62 g8
= —
h Ap’ (B.1)
where,
, _dAp
AP = Gt (B.2)

Start from the following definition (field units) of dimensionless wellbore pressure for

multi-region composite reservoirs:

k:h Ap
141.2 qBy, (B.3)

PwD =
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A re-arrangement of Equation B.3 yields:

_ 1412 gBu; pup
kih B4

Differentiating both sides of Equation B.4 with respect to time, we have:

dAp _141.2 qBu: dpuwp
dt kih dt (B.5)

The left side of Equation B.S5 is expressed in terms of the semilog pressure derivative as:

dAp _1 dAp
dt tdint (B.6)

Equation B.5 in view of B.6 is:

dAp _141.2 gBuit dpup
dint kih dt 8.7

The definition of dimensionless time in a multi-region composite reservoir is:

_ 0.006328 kit
((TATH 23 (B.8)

tp



Re-arranging Equation B.8 yields:

_ (@i o

' =0.006328 k;
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(B.9)

Differentiating both sides of Equation B.9 with respect tc time and re-arranging results in:

dt = (Gcpird

= 0.006338 k; °'D

Equation B.7 in view of Equations B.9 and B.10 is:

(q)clu)lr@v tp
aap 1412 9B oohesse, dpuwb

dint kah OCH)TS,
0.006328 k;

dip

Simplifying and re-arranging Equation B.11 results in:

dAp _141.2 gy tpdpup
dint kih dtp

Note that :

(B.10)

(B.11)

(B.12)
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terPWD = dpwD
dtp dintp (B.13)

Equation B.12 in view of Equation B.13 is:

dAp _141.2 gBu1_ dpuwp
dint kih dintp (B.14)

Equation B.1 in view of Equations B.2 and B.14 is:

A 70.62 qB

h 141.2 qBu1  dpwp
kih dintp (B.15)

Simplifying and re-arranging Equation B.15 yields:

(),
dpwp

dintp (B.16)

X(=(15

Let's represent intantaneous mobility A, by:

A= (K
' “) (B.17)
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Re-arranging Equation B.16 in view of Equation B17 results in:

k
(u’)l =2 dpwbD

M=
RN dintp
)

(B.18)

The term M in Equation B.18 is referred to as instantaneous mobility ratio.

2. Dimensionless radius of investigation

Yeh and Agarwal (1989) defined radius of investigation as:

—_— 0.5
r; = 0.02436 [(L)-I—
H e, (B.19)

In Equation B.19 time "t " is in hours. If time is measured in days, the numerical constant

0.02436 should be changed to 0.1193. Thus:

r;=0.1193 [—(E)-t— 03

oc, (B.20)

Equation B.20 in view of Equation B.9 is:
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2 0.5
r;=0.1193 [(L) (dc:)ir& tp ]

K “0.006328 kioc, (B.21)

Simplifying and re-arranging Equation B.21 assuming ¢c¢ = (¢cp1, we have:

(B.22)

Using Equation B.22, dimensionless radius of investigation rjp is:
rp==1.5 o
DT V™M (B.23)

If the "conventional"” (see van Foollen (1965)) definition of radius of investigation would
have been used, the constant in Equation B.19 would have been 0.1590, instead of
0.1193, for time in days, and the constant 1.5 in Equation B.23 would have been changed

to 2. Thus, the "conventional” definition of dimensionless radius of investigation is:

ru)=2 .E—_D-

(B.24)
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APPENDIX C

Data used to analyze the transient pressure response for a multi-region composite reservoir.
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APPENDIX C
Multi-region composite reservoir in which the transition region properties

are a linear function of dimensionless radius.

This appendix lists some of the data sets used to analyze the transient pressure behaviour of
multi-region composite reservoirs. In these systems, the mobility and/or storativity within

the transition zcne changes linearly with respect to dimensionless radius.

Table Cl: Discontinuity radii data for a multi-region composite reservoir
visualized as a three-region composite reservoir
Discontinuity radii (Rp;) for
Rp3 = 100 Rpi1 = 500 Rpi = 1000 Rpi1 = 2000
1 (well) 1 (well) 1 (well) 1 (well)
100 500 1000 2000
1000 1400 1900 2900
Table C2: Physical properties data for a multi-region composite reservoir
visualized as a three-region composite reservoir
Mobility ratio (Mj;) and/or Storativity ratio (Fsi;) for
myr = 0.02 My = 0.10 m¢r = 0.50 m¢ = 1.00
1 1 1 1
10.5 46 226 451
1000 1000 1000 1000




Table C3: Discontinuity radii data for a multi-region composite reservoir
visualized as a four-region composite reservoir
Discontinuity radii (Rp;) for
Rpi = 100 Rpi1 = 500 Rpi1 = 1000 Rp1 = 2000
1 (well) 1 (well) 1 (well) 1 (well)
100 500 1000 2000
550 950 1450 2450
1000 1400 1900 2900
Table C4: Physical properties data for a multi-region composite reservoir

visualized as a four-region composite reservoir

Mobility ratio (Mj;) and/or Storativity ratio (Fg1j) for
me = 0.02 my, = 0.10 me = 0.50 my = 1.00
1 1 1 1
5.75 23.50 113.50 226
15.25 68.50 338.50 676
1000 1000 1000 1000
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Table C5: Discontinuity radii data for a multi-region composite reservoir
visualized as a six-region composite reservoir
Discontinuity radii (Rp;) for
Rp; = 100 Rpi = 500 Rpi1 = 1000 Rp1 = 2000

1 (well) 1 (well) 1 (well) 1 (well)
100 500 1000 2000
325 725 1225 2225
550 950 1450 2450
775 1175 1675 2675
1000 1400 1900 2900

Table C6: Physical properties data for a multi-region composite reservoir
visualized as a six-region composite reservoir
Mobility ratio (Mj;) and/or Storativity ratio (Fs1i) for
my, = 0.02 my, = 0.10 myr = 0.50 mer = 1.00

1 1 1 1
3.38 12.25 57.25 113.50
8.13 34.75 169.75 338.50
12.88 57.25 282.25 563.50
17.63 79.75 394.75 788.50
1000 1000 1000 1000




Table C7:

Discontinuity radii data for a multi-region composite reservoir

visualized as a eight-region composite reservoir

Discontinuity radii (Rp;) for

Rpi1 = 100 Rpi = 500 Rpi1 = 1000 Rpi1 = 2000
1 (well) 1 (well) 1 (well) 1 (well)
100 500 1000 2000
250 650 1150 2150
400 800 1300 2300
550 950 1450 2450
700 1100 1600 2600
850 1250 1750 2750
1000 1400 1900 2900
Table C8: Physical properties data for a multi-region composite reservoir
visualized as a eight-region composite reservoir
Mobility ratio (Mj;) and/or Storativity ratio (Fgj;) for
m¢ = 0.02 mer = 0.10 me = 0.50 me = 1.00
1 1 1 1
2.58 8.50 38.50 76
5.75 23.50 113.50 226
8.92 38.50 188.50 376
12.08 53.50 263.50 526
15.25 68.50 338.50 676
18.42 83.50 413.50 826
1000 1000 1000 i000




Table C9: Discontinuity radii data for a multi-region composite reservoir
visualized as a ten-region composite reservoir

Discontinuity radii (Rpj) for

Rp1 = 100 Rpi1 = 500 Rpi1 = 1000 Rpi1 = 2000
1 (well) 1 (well) 1 (well) 1 (well)
100 500 1000 2000
212.5 612.5 1112.5 2212.5
325 725 1225 2225
437.5 837.5 1337.5 2337.5
550 950 1450 2450
662.5 1062.5 1562.5 2562.5
775 1175 1675 2675
887.5 1287.5 1787.5 2787.5
1000 1400 1900 2900

Table C10: Physical properties data for a multi-region composite reservoir

visualized as a ten-region composite reservoir

Mobility ratio (My;) and/or Storativity ratio (Fsi;) for
mye = 0.02 mye = 0.10 meg = 0.50 m¢r = 1.00
1 1 1
2.19 6.63 29.13 57.25
4.56 17.88 85.38 169.75
6.94 29.13 141.63 282.25
9.31 40.38 197.88 394.75
11.68 51.63 254.13 507.25
14.06 62.88 310.38 619.75
16.44 74.13 366.63 732.25
18.81 85.38 422.88 844.75
1000 1000 1000 1000




132

Table Cli: Physical properties data for a multi-region composite reservoir
for a particular ten-region case (Figures 5.29 and 5.30).

Rpi Mii Fsi1i Fsii Fs1i Fsi1i
Type 1 Type 2 Type 3 Type 4
1 1 1 1 1 1
100 6.63 1 6.63 | 100 1000
212.5 17.88 I 17.88 1000 1000
325 29.13 1 29.13 1000 1000
437.5 40.38 1 40.38 1000 1000
550 51.63 1 51.63 1000 1000
662.5 62.88 1 62.88 1000 1000
775 74.13 1 74.13 1000 1000
887.5 85.38 1 85.38 1000 1000
1000 1000 1 1000 1000 1000
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APPENDIX D

Program to obtain the transient pressure response for a multi-region composite reservoir.
A reservoir characterization subroutine is also included.
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!

% %o % Fo To %o Fo Yo To Yo Yo Fo Yo Yo Yo Fo Yo To Fo Po Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo To Fo Fo Fo Fo Fo Fo Fo Fo Fo

%o

% .

% MAIN PROGRAM - MULTICOM.m

%

%

% Name: Luis Guillermo Acosta

Y% Date: January 4, 1994.

%

% The purpose of this program is to generate pressure transient response for a
% well in a multi-region composite reservoir. The program also includes a

%0 characterization subroutine (Yeh and Agarwal(1989) method and Feitosa et al.
Y% (1993a) method) which may be used, if desired, for reservoirs with low

% storativity contrasts.

% Wellbore storage and skin at the well are allowed. Skin at the front of each
Yo interphase between regions is accounted. Well produces at a constant rate.
% _

% The outer boundary may be infinite, closed or at a constant pressure.

%

%

SRCPSECRCECECE R R R b S S

%% % To Do %o Yo Yo To To Yo To To Yo Yo To Fo Yo Yo Yo Yo Yo To Yo Yo To Yo To Fo To Yo Yo To Yo Yo To To To To To To Yo Yo

% %o %o Yo Yo To To Fo Yo To o Yo To To Yo To Yo Yo Yo To Yo To Yo To o To To To Yo Yo To To To To Yo To To To Yo Yo Fo Fo T

%

VARIABLE IDENTIFICATION LIST

%

%% % Do Yo %o Yo e To Yo Yo To Do To To Vo To Yo Yo Yo Yo To Yo To Yo Fo To Yo Yo %o Fo o Fo To To Vo To To To Yo To Yo Yo

% A

% B

% C

% Cc

% CD

% dPwD
% dPwDcA
% Fs

% Io

% 11

% Ko

% K1

% M

% Mi

% Mins
% MM
% Mmya
% Mya
% N

% Nc

% Nr

% n

% OBcode
% PwD
% 1D

= Matrix of coefficients
= Known vector from the boundary conditions
= Constants used in the solution of the system

= Constant postmultiplying the results obtained from the system of egs.

= Wellbore storage dimensionless coefficient

= Semilog pressure derivative (with respect to (tD/fDn”2) )

= Cartesian pressure derivative (with respect to tDAn)

= Storativity ratio, defined as: Fs = (phi*ct)1/(phi*ct)i

= Modified Bessel function of the first kind, zero order

= Modified Bessel function of the first kind, first order

= Modified Bessel function of the second kind, zero order
= Modified Bessel function of the second kind, first order
= Mobility ratio, defined as: M = (k/u)i/(k/u)i+1

= Mobility ratio, defined as: Mi = (k/u)1/(k/u)i

= Instantaneous mobility ratio

= Parameter of the Stehfest algorithm

= Modified Yeh and Agarwal mobility ratio

= Yeh and Agarwal mobility ratio

= Iteration parameter of the Stehfest algorithm

= Number of time log cycles desired

= Number of regions of the reserveir

= Difussivity ratio, defined as: n = Mi/Fs

= Quter boundary code

= Dimensionless wellbore pressure

= Dimensionless radius
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% rDins = Dimensionless radius of investigation

% reD = Dimensionless reservoir outer radius

% S = Skin at the wellbore

% Sf = Skin at the discontinuities

% TD1 = First value of dimensionless time

% tDAn = Dimensionless time vector based on the area to the last discontinuity
% tD = Dimensionless time vector

% Zm = Argument of the Bessel functions

% z = Laplace space pararneter

% zbb = Argument of the exponential numbers that premultiply the coefficients

Yo% % Yo %o %o %o To Te To o %o To o Yo Yo To To To Yo Yo Yo Yo Yo To To To To Yo o Yo T To o Yo To To Yo To Yo To To To

% The Main program calls the subroutine with all the data, DATA.m.
DATA
% The Main program calls the Stehfest algorithm subroutine, STEHFEST.m.
% The Stehfest algorithm inverts the solution from Laplace space to real space.
STEHFEST

% The Main program will call, if desired, a reservoir characterization
% subroutine called CHARAC.m.

disp(' Do you want to use a characterization subroutine? )
disp(’ ")
disp(’ 1 YES D)
disp(' 0 NO ")
disp(’ ‘)

)

Characode = input (' Select the number and press enter for the option selected:
if Characode ==

% If the characterization method is desired, it will inquire what type of
% definition of radius of investigation is desired.

disp(' Do you want to use the conventional (see van Poollen (1965)) definition of radius )
disp(’ of investigation or you prefer to use Yeh and Agarwal (1989) definition? )
disp(’ )
disp(’ The radius of investigation codes are: )
disp(’ )
disp(’ 0 to use the conventional definition )
disp(’ 1 to use Yeh and Agarwal(1989) definition )
disp(' ")

")

rinvcode = input ('Select the number and press enter for the option selected:

end
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disp 11! THE PROGRAM IS NOW RUNNING - WAIT FOR RESULTS 1! ')

% The program obtains the pressure behaviour for each dimensionless time value.
for I=1:tDlast

% The Main program calls a subroutine which is actually part of the Stehfest
% algorithm, it is a numerical iterative subroutine, NUMAPROX.m.

NUMAPROX

% The NUMAPROX.m subroutine also calls a subroutine called LAPLACE.m, which
% contains the solution to the problem in Laplace space.

% The LAPLLACE.m subroutine also calls a subroutine called CONSTANTS.m, which

% contains a linear equation solver that yields the constants required to compute the

% solution to the problem. The CONSTANTS.m subroutine also calls a subroutine called
% BESSEL.m which computes the Modified Bessel functions of first and second kind that
% are required to solve the problem.

% Finally after going through all these subroutines the program obtains the

% pressure behaviour for a multi-region composite reservoir.

end
if Characode ==
CHARAC
end
disp(' This is the transient pressure behaviour for a multi-region composite reservoir ")
disp(’ in which the number of regions "Nr" is: ")
Nr
disp( The dimensionless wellbore storage coefficient "CD" is: ")
D
disp(’ The skin factor at the wellbore "S" is: ")
S
disp(' The dimensionless radii, physical characteristics ratios and skin at the )
disp( discontinuities are: ")
disp(' ‘)
disp(’ 0)
disp(’ D Mi Fs n Sf )
disp(’ 0)

[rD Mi Fs n Sf]
disp(’ 0
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disp(’ N
disp(’ 9

disp(’ ")
disp(’ tD tD/rDn”2 tDAnN PwD dPwD/dintD dPwD/dtDAn )

disp(’ D)
Ansl

disp( "
if Characode == 1

disp(’ . )
disp(’ tD dPwD/dintD rDins Mins Mya Mmya ")

disp(’ D)
Ans2 :

disp(’ 0

end
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Go % %o %o Yo %o Go Po %o To %o %o Yo Yo Fo Fo Fo % Fo Fo Fo Fo % Fo Fo Fo Fo Fo Fo Fo Fo Fo Yo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo

DATA SUBROUTINE - DATA.m

The purpose of this subroutine is to provide the data required to analyze the
transient pressure response of a well in a multi-region composite reservoir.
There are two ways of providing the required data:

a) from a previously edited file or b) from the keyboard.

ANIRAIIKIER
SRR R R S

o o Yo Yo To Yo To Fo Te Do To To Yo Yo To Yo Yo Yo Yo To T T Fo To Yo Fo Yo Fo Fo Fo Fo Fo To Yo Yo Fo Fo Yo o Yo Fo %o Yo

clear

disp(’ This program obtains the pressure behaviour for multi-region composite
disp( reservoirs. The program also includes, if desired, a reservoir characterization
disp(' subroutine which yields satisfactory results if the storativity contrasts within
disp(’ the reservoir are low or negligible.

disp(’

disp( Wellbore storage and skin at the well are allowed. Skin at the front of each
disp(’ interphase between regions is accounted. Well produces at a constant rate.
disp(’

disp(' The outer boundary may be infinite, closed or constant pressure.

disp(’

disp(’ The outer boundary selection codes are:

disp(’

disp(' 1 for infinite outer boundary

disp(’ 2 for closed outer boundary

disp(’ 3 for constant pressure outer boundary

disp(’

e @ @ ®w w ® ® w & e @ ® @ ® - -
e’ o e e N N S N o o N N N N N N Nt

OBcaude = input (" Select the number and press enter for the outer boundary code:

format short e

disp(' Do you want to use a data file previously edited or do you prefer to
disp(’ input the data from the keyboard?

disp(’

disp(' The data file selection codes are:

disp(’

disp(' 1 to use a previously edited data file

disp(’ 0 to input data from the keyboard

disp(’

Datcode = input (' Select the number and press enter for the option selected:

*« ® ® ® @ @ @ e
(WA A T A A" A A T d g

if Datcode~=0
DATAFILE
end

if Datcode==0
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Nr = input CEnter the number of regions required: "
TD1 = input (Enter first value of dimensionless time: )
Nc = input (Enter the number of cycles (recall log plots) required: )
CD  =input (Enter the dimensionless wellbore storage coefficient: )
S = input CEnter the value for skin factor at the wellbore: )
disp(’ )
disp(’ D)
disp(’ Now enter the data at each INTERPHASE ")
disp(’ )
rD(1,1)=1;
Mi(1,1)=1;
Fs(1,1)=1;
Sf(1,1)=0;
for1 = 1:(Nr-1)
INTERPHASE =1
rD(I+1,1)= input (Enter the value for dimensionless radius rD at this interphase: ');
Mi(I+1,1)= input ('Enter mobility ratio Mi at this interphase: DN
Fs(I+1,1)= input ('Enter storativity ratio Fs at this interphase: s
Sf(I+1,1)= input ('Enter front skin factor Sf at this interphase: Y
disp(’ D)
disp(’ D
end
disp(' The data you just entered is: D)
disp(' D)
disp( "
disp( D Mi Fs Sf ")
disp(’ "
(D Mi Fs Sf]
disp(’ )
disp(’ )
disp(' Do you want to correct this data ? )
disp(’ )
disp(’ 1 YES )
disp(’ 0 NO )
disp(’ ")
Corcode = input (' Select the number and press enter for the option selected: ")

if Corcode ==

clear Nr
clear D
clear Mi
clear Fs
clear Sf
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Nr =input (Enter the number of regions required: )
format short e
disp(’

disp(’ Now enter the data at each INTERPHASE
disp(’

- ® =

for I = 1:(Nr-1)
INTERPHASE =1
rD(I+1,1)= input (Enter the value for dimensionless racius rD at this interphase:’);
Mi(I+1,1)= input (Enter mobility ratio Mi at this interphase: BE
Fs(I+1,1)= input ('Enter storativity ratio Fs at this interphase: Y;
Sf(I+1,1)= input (Enter front skin factor Sf at this interphase: D)
disp(’ )
disp(’ ‘)

end

LI 4

disp(’ The data you just entered is:

disp(’

disp(’

disp( D Mi Fs Sf )

disp(’ )
[tD Mi Fs ST}

disp(’ )

end

if OBcode ~= 1
reD = input(’ Enter the value for dimensionless reservoir radius reD: ")
end

end

% The data subroutine defines the Stehfest algorithm parameters.

N
MM

8;
7,

% This program generates 13 data points per log cycle.
% The data subroutine generates the tD vector.

Im=0;



for I=1:Nc

tD(Im+1,1) = TDI;

tD(Im+2,1) = lS*TDl
tD(Im+3,1) = 2.0%TDI;
tD(Im+4,1) = 2.5*1'D1;
tD(Im+5,1) = 3.0*TD1;
tD(Im+6,1) = 3.5*TDI;
tD(Im+7,1) = 4.0¥TDI1;
tD(Im+8,1) = 4.5*TD1;
tD(Im+9,1) = 5.0*TD1;
tD(Im+10,1) = 6.0¥TD1;
tD(Im+11,1) = 7.0¥TD1;
tD(Im+12,1) = 8.0*TD1;
tD(Im+13,1) = 9.0*TD1;

end

tD({Im+1) =TDI;

% The data subroutine counts how many values of each variable are available.

% The purpose of counting the values is to use these numbers in logical cycles.

N1 = size(ri);
N2 = size(tD);
rDlast = N1(1,1);
tDlast = N2(1,1);

% The data subroutine defines different types of dimensionless times.

for I = 1:tDlast
tD2(1,1) = tD({,1)/(rD(rDiast,1)72);
tD3(1,1) =tD2(I,1)/pi;

end

% The data subroutine redefines mobility ratio according to the definition of
% the mathematical model.

M, D)=1;
forii =2:N1

M(ii, 1) = Mi(i, 1)/ Mi(ii-1,1);
end

% The data subroutine defines diffusivity ratio according to the definition of
% the mathematical model.
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n(l,1)=1;
forj = 2:N1

n(j,1) = Mi(j,1)/ Fs(j,1);
end
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B9 % %o %% % %o e o Yo Do Fo Fo Yo e Fe Te Fo Fo To Fo Fo o Fo Yo Fo Fo Fo To To Yo To Yo Fo Yo Yo To o Fo To Fo To

DATA FILE SUBROUTINE - DATAFILE.m

The purpose of this subroutine is to provide the data required to analyze the
transient pressure response of a well in a multi-region composite reservoir.
If desired, the main data subroutine will call this data file which contains all
the information required for a particular case.

SRR
SIS SR R R

%% % % Do %o Yo To Fo Yo Fo Yo o Yo %o Fo To To T To To Yo To o Fo Fo To Yo Yo Yo Te Yo Yo Yo To To To Yo Vo To Fo To Yo

format short e

Nr = 10;

D1 = 100;

Nc¢ = 8;

D = 0;

S = O

D = [1; 100; 212.5; 325; 437.5; 550; 662.5; 775; 887.5; 1000];

Mi =[1; 6.625; 17.875; 29.125; 40.375; 51.625; 62.875; 74.125; 85.375; 10007];
Fs = |1; 6.625; 17.875; 29.125; 40.375; 51.625; 62.875; 74.125; 85.375; 1000];
Sf =[0; 0; 0; O; O; 0; O; 0; O; O},

if OBcode ~= 1

raD = 5000;
end
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Y% %o %0 Yo Yo % Do To Yo To e Fo To To Fo To To To To Fo Yo Vo To Fo Yo Yo Fo o Fo Fo Fo Fo Fo o Fo Fo Fo Yo Fo Fo Fo Fo Fo
%

%

% %
% THE STEHFEST ALGORITHM SUBROUTINE - STEHFEST.m %
% %
The purpose of this subroutine is to invert the solution to the system from %
Laplace space to real space. This subroutine computes numerically the Laplace %

%
%
% transform inverse of F(z). %
% %
% %
% %% % o %o %o Yo Fo %o o Yo Yo Yo T To Fo Fe Fo Fo To Yo Fo Fo Fo Fo Fo To Fo Fo Fo T To Fo To To To Fo Fo Fo Fo Fo Fo %o
% If the array V(i) was computed before (N = MM),the program goes directly to the
% end of the subroutine to calculate F(z).
while N ~= MM

MM=N;

Dlogtw = 0.6931471805599;
Nh = N/2;

% The factorials from 1 to N are calcutated into array G.

G() =1;
cleari
fori=2:N

G@Gi) = Ga-1)*i;
end

% Terms with k only are calculated into array HH.

HH(1) = 2/G{Nh-1);
clear j

for j = 2:Nh

F =j
vr =j-Nh;

ifvr<O
HH() = (Fi*Nh)*G(2*j)/(G(Nh-j)*G()*G(j-1));
end

if vir ==
HH() = (Fi"Nh)*GQ2*)/(G()*G(-1));
end
end



% The terms (-1)(Nh+1) are calculated.
% First theterm fori= 1

% The rest of Sn's are calculated in the main routine.

% The array V(ii) is calculated.

clear i

forii = 1:N

% First set V(ii,1) = 0.

V(@i,1) =0;

% The limits for k are established.
% The lower limit is k1 = Integ((ii+1)/2)

% The command "floor" in Matlab is equivalent to the command

% "Integer” in Fortran.

k1 = floor((1i+1)/2);

% The upper limit is k2 = Min(ii,Nh)

k2 = min(ii,Nh);

clear kk

for kk = k1:k2;

end

vr3 =2%kk - ii;
vrd =ii-kk;

ifvi3~=0& vr4 ~=0
q V(ii,1) = V(ii,1) + HH(kk)/(G(vr4)*G(2*kk-ii));
en

ifvi3 ~=0 & vrd ==
V(ii,1) = V(ii,1) + HH(kk)/G(2*kk-ii);

end
ifvi3==0

g V(ii,1) = V(ii, 1) + HH(kk)/G(vrd);
en

% The V(ii) array is finally calculated by weighting according
%10 Sn.
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V(ii,1) = Sn*V(ii,1);

% The term changes its sign in each iteration.
Sn = Sn*(-1);

end
end
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%o % %o % %o To %o %o %o Fo % Fo Fo Fe Fo Fo To Fo Fo Fo To Fo Fo o Yo Fo Yo Fo Yo Yo Fo To Vo To To Fo To Yo Yo Yo o Yo

% %
% %
% NUMERICAL ITERATIVE SUBROUTINE - NUMAPROX.m %
% %
% This subroutine calculates the numerical apg:cx<imation of a function called F(z). %
% This approximation is actually a part of the Stehfest algorithm. %
% %
% %

%% %% %o % To T To To Fo %o Fo To To Yo Fo To Fo To Te To To To o Yo Yo To Fo Yo Yo Fo To To Fo Fo Fo To Yo Fo Yo To Yo

a = Dlogtw/tD(1,1);

Pwd = 0;
dPwd = 0O;
clear jj
forjj = 1:N
z = a¥jj;
% Laplace subroutine: it contains the solution to the problem
% in Laplace Space.
LAPLACE
Pwd =Pwd + V(p*Pwdl
dPwd =dPwd + V(j)*dPwdl;
end
PwD(,1) = Pwd*a;

dPwDc(1,1) =dPwd*a;
dPwD(1,1) = dPwDc(1,1)*tD(1,1);
dPwDcA(l,1) =dPwDc(1,1)*pi*(rD(rDlast,1))"2;

% The matrix Ans! contains all the main program transient pressure beha- >t resulis.

Ans1(1,1) =tD(,1);
Ansl(1,2) =1D2(,1);
Ansl(1,3) =tD3(1,1);
Ansl(1,4) = PwD(l,1);
Ansl(1,5) =dPwD(,1);
Ans1(1,6) = dPwDcA(,1);
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%o %o %o Fo %o %o Fo Fo Po Fo FoFo %o Fo %o To To To Fo Yo Fo Fo Fo Fo Fo Fo Fo Fo Fo Fo To Fo Fo To Fo Fo Fo Fo Fo Fo %o Fo Fo
%

%

% LAPLACE SPACE SUBROUTINE - LAPLACE.m

%

% The purpose of this subroutine is to provide the solution to the problem in
% Laplace space.

%

%

9o %0 % o Fo Yo Yo To Fo To Fo To Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Fo Fo Fo Fo Fo Yo Fo Fo Yo To To Yo Yo Yo Yo Fo Fo Fo Yo Fo

SRR R R R

% The program calls a subroutine called CONSTANTS.m, which, as its name indicates,
% provides the constants required to compute the solution to the problem in Laplace space.

CONSTANTS

Pwdl = C(1,1)*(Iol1-S*sqrt{z*n(1,1))*I11) + C(2.1)*(Kol+S*sqrt(z*n(1,1))*K11);
dPwdl = z*Pwdl;
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% %% % To %o Yo %o %o %o %o %o %o Yo To %o Fo To o Fo Yo To Fo To Fo Fo o Yo Yo To Vo To Fo Yo Yo Vo To Yo Yo Fo Fo To To

% %
% CONSTANTS SUBROUTINE - CONSTANTS.m %
% %
% The purpose of this subroutine is to provide the constants required for the %
% general solution of the problem. %
% %
% %o

%% %% %% % %% % %o % Yo %o Yo Yo Yo Yo Yo T To Fo Yo %o Do Do Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo To To Ve Yo Yo
% The subroutine defines a limit of the Bessel functions argument. This limit is

% called Plim.

Plim = 600;

f =0.5;

% The subroutine defines the argument of the Bessel functions called Zm.

Zm(1,1) = rD(1,1)*sqrt(z*n(1,1));

% The subroutine defines the argument of an exponential function that will premultiply
% the coefficients so that the matrix obtained is not singular. This argument is

% called zbb.

zbb1(1,1) = rD(1,1)*sqrt(z*n(1,1));

zbb2(1,1) = rD(2,1)*sqrt(z*n(1,1));
zbb(I,1) = rf*(zbb1(l,1)+2zbb2(1,1));

ifZm(,1) > Plim;
Zm(1,1) = Plim;

end
if zbb(I,1) > Plim
zbb(1,1) = Plim;
end
T The subroutine defines the numbers that will postmultiply the results obtained from
% solving the set of linear equations.

c(1,1) = exp(-zbb(l,1));
c(2,1) = exp(zbb(l,1));

% The subroutine CONSTANTS.m calls the subroutine BESSEL.m, which
% provides the Modified Bessel functions of the first and second kind required
% to compute the solution to the problem.

BESSEL
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% The subroutine defines the first two coeffi. - nts of the equations.

A(1,1) =(CD*z*(Io - S*sqrt(z*n(1,1))*11) - sqrt(z*n(1,1))*I1)*exp(-zbb(l,1)):
‘A(1,2) =(CD*z*(Ko + S*sqrt(z*n(1,1))*K1) + sqrt(z*n(1,1))*K1)*exp(zbb(1,1));:

Iol =Io;
111 =11;
Kol =Ko;
K11 =Kl1;
clearZ

fork = 1:(Nr-1)
Zm(1,1) =rD(k+1,1)*sqrt(n(k,1)*z);
zbbl(1,1) = rD(k,1)*sqrt(n(k,1)*z);
zbb2(1,1) = rD(k+1,1)*sqrt(n(k,1)*2);
zbb(1,1) =rf*(zbb1(l,1)+zbb2(1,1));

if Zm(,1) > Plim
Zm(1,1) = Plim;

if zbb(1,1) > Plim
zbb(1,1) = Plim;
end
BESSEL
% The subroutine defines another group of coefficients of the equations.

AQ2*k,(2%k-1)) = (Io + Sf(k+1,1)*rD(k+1,1)*sqrt(n(k,1)*z)*11)*exp(-zbb(l,1));
A(2%k,2¥%K) = (Ko - Sf(k+1,1)*rD(k+1,1)*sqrt(n(k,1)*z)*K1)*exp(zbb(l,1));
A(2%k+1,2*%k-1) = (M(k+1,1)*sqrt(n(k,1)*z)*I1)*exp(-zbb(l,1));

A(2*k+1,2¥k) = (-M(k+1,1)*sqrt(n(k,1)*z)*K1)*exp(zbb(l,1));

clear Z
end

for k = 1:(Nr-1)

Zm(1,1) =rD(k+1,1)*sqrt(n(k+1,1)*2z),
zbbl(1,1) = rD(k+1,1)*sqri(n(k+1,1)*z);

if k == (Nr-1)

zbb2(1,1) = zbb1(1,1);
else

zbb2(1,1) = rD(k+2,1)*sqrt(n(k+1,1)*z);
end



%o

zbb(1,1) =rf*(zbb1(l,1)+2bb2(1,1));

if Zm(1,1) > Plim
Zm(,1) = Plim;

end

if zbb(1,1) > Plim
zbb(i,1) = Plim;

end

if k ~= (Nr-1)
c(2*k+1,1) = exp(-zbb(l,1));
c(2¥k+2,1) = exp(zbb(l,1));;

end

if k == (Nr-1)
if OBcode ~= 1
c(2¥k+1,1) = exp(-zbb(1,1));
c(2*k+2,1) = exp(zbb(l,1));;
else
c(2*k+1,1) = exp(zbb(l,1));
end

end

BESSEL

The subroutine defines the final group of coefficients of the equations

if k ~= (Nr-1)

A(2*k,2*¥k+1) = -lo*exp(-zbb(l,1));
A(2*k+1,2%k+1) =

A(2*k,2*¥k+2) = -Ko*exp(zbb(l,1));

end
if k == (Nr-1)
if OBcode ==
A(2*k,2*k+1) = -Ko*exp(zbb(l,1));

AQ*k+1,2*k+1) = (sqrt(n(k+1,1)*z)*K1)*exp(zbb(l,1));

else

(-sqrt(n(k+1,1)*z)*I1)*exp(-zbb(l,1));
A(2*k+1,2%k+2) = (sqri(n(k+1,1)*2)*K1)*exp(zbb(l,1));
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A(2¥k,2*¥k+1) = -Io*exp(-zbb(l,1));

A(2*¥k+1,2%k+1) = (-sqrt(n(k+1,1)*z2)*11)*exp(-zbb(l,1));

AQR¥k,2*%k+2) = -Ko*exp(zbb(l,1));

AQ2%k+1,2*%k+2) = (sqrt(n(k+1,1)*2)*K1)*exp(zbb(l,1));

end

end

clear Z
end
% The subroutine considers the other (different from infinite outer boundary)
% types of outer boundary. This will be the last row of the coefficients matrix.
% In the case of infinite outer boundary, this row will not exist.

if OBcode =2 | OBcode == 3
Zm(1,1) = sqrt(n(Nr,1)*z)*reD;
if Zm(1,1) > Plim;

Zm(1,1) = Plim;
end

if zbb(1,1) > Plim
zbb(1,1) = Plim;

end

BESSEL

% Closed outer boundary case.

if OBcode == 2
A(2*Nr,(2*Nr-1)) = Il*exp(-zbb(l,1));
A(2*Nr,2*Nr) = K1*exp(zbb(l,1));
clearZ

end

% Constant pressure outer boundary case.

if OBcode == 3
A2*Nr,(2*Nr-1)) = lIo*exp(-zbb(1,1));
A(Z*Nr,2*Nr) = Ko*exp(zbb(l,1));
clearZ

end

end
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% The "known vector"” B is defined.
B(1,1) = 1/z;

if OBcode == 1
Bcount = (2*Nr)-1;

else
Bcount = 2*Nr;
end
for II = 2:Bcount
B(1,1)=0;
end
Yo The subroutine obtains the solution to the system of linear equations.
C = A\B;
% The subroutine postmultiplies the results obtained from the system of linear
% equations.

C = C.*c;
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Yo% %o Fo Fo Fo Fo Yo %o Fo Fo Fo Yo Fo To Fo Yo To Fo Fo To Fo Fo Fo Fo Fo Fo Fo Fo To Fo Fo Fo Fo Fo Fo Fo Fo %o Fo %o Fo Fo
%

%

% BESSEL FUNCTIONS SUBROUTINE - BESSEL.m

%

% The purpose of this subroutine is to provide the Modified Bessel functions

% required for the general solution of the problem.
%

%
%% %o Yo To %o To Vo Y Yo e Yo Yo Yo To Yo Yo Yo Fo Do To Yo Yo Yo To Fo Fo Fo Fo To To To Yo To Yo Fo Fo Fo Fo %o Fo %o Fo

SRR R R R

% This subroutine follows the development of Abramowitz and Stegun(1964),

% "Handbook of Mathematical Functions". This subroutine has proved to have

% the same accuracy as the built-in Modified Bessel functions of Matlab version 4.0a.
% However, it seems that using this subroutine saves computing time compared with
%o the built-in subroutine of Matlab version 4.0a.

format short e

Z = Zm(,1);

tm(I,1) = Zm(1,1)/3.75;
t = tm(L,1);

if Z>=-375 & Z<=3.75

ITo(1,1) = 1 + 3.5156229*%(1A2) + 3.0899424*(174) + 1.2067492*(1"6) + ...
0.2659732*(178) + 0.0360768*(1*10) + 0.0045813*(1*12);

elo(1,1) = exp(-Z)*1lo(1,1);

Io(1,1) =Ilo(1,1);

end

if Z>=375 & Z<Inf

IIo(1,1) = 0.39894228 + 0.01328592*(t1A(-1)) + 0.00225319*(tA(-2)) - ...
0.00157565*(1*(-3)) + 0.00916281*(1~(-4)) - 0.02057706* (1A (-3)) +...
0.02635537* (7 (-6)) - 0.01647633*{1"(-7)) + 0.00392377*("(-8));

elo(l,1) = Ilo(1,1)/(sqri(Z));

Io(1,1) =elo(,1)/exp(-Z);

end

if Z>=-375 & Z<=3.75

I11(1,1) = 0.5 + 0.87890594*(172) + 0.51498869*(1"4) + 0.15084934*(1"6) + ...
0.02658733*(178) + 0.00301532*(1*10) + 0.00032411*(1*12),

ell(1,1) =exp(-Z2)*1I1(1,1)*Z;

I110,1) =ell(,1)exp(-Z);

end
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if Z>=3.75 & Z<Inf

I11(1,1) = 0.39894228 - 0.03988024*(1"(-1)) - 0.00362018*(1*(-2)) + .
0.00163801*(1A(-3)) - 0.01031555*(17(-4)) + 0. 02282967*(t"(-5)) -
0 02895312*%(1A(-6)) + 0.01787654*(tA(-7)) - #M420059*(t7(-8));

el1(L1) = I11(1,1)/(sqri(Z));

Il(l,l) = ell(1,1)/exp(-Z);

end

ifZ>0 & Z<=2

KKo(,1) = -log(Z/2)*Io(1,1) - 0.57721566 + 0.42278420*(Z/2)"2 + .
0.23069756*(Z/2) 4 + 0.03488590*(Z/2)"6 + 0. 00262698*(2/2)"8 +.
0.00010750%(Z/2)*10 + 0.00000740*(Z/2)12;

eKo(l,1) = KKo(l,1)*exp(Z);
Ko(l,1) = KKo(1,1);

end

if Z>=2 & Z<Inf

KKo(l,1) = 1.25331414 - 0.07832358*(2/Z) + 0.02189568*(2/Z)"2 - ...
0.01062446*(2/Z)"3 + 0.00587872*(2/Z)"4 - 0.00251540*(2/Z)"5 + .
0.00053208*(2/Z2)76;

eKo(l,1) = KKo(I,1)/(sqrt(Z));
Ko(1,1) = eKo(l,1)/exp(Z);

end

if 2>0 & Z<=2

KKI1(,1) = Z*log(Z/2)*11(1,1) + 1 + 0.15443144*(Z/2)*2 - ...
0.67278579*(Z/2)*4 - 0.18156897*(Z/2)"6 - 0.01919402*(Z/2)"8 - ...
0.00110404*(Z/2)*10 - 0.00004686*(Z/2)*12;

eK1(l1,1) = KK1(,1)*exp(Z)/Z;
K1(1,1) = KKI(1,1)/Z;

end

if Z>=2 & Z<Inf

KK1(,1) = 1.25331414 + 0.23498619*(2/Z) - 0.03655620*(2/Z)"2 + ...
0.01504268*(2/Z)*3 - 0.00780353*(2/Z)*4 + 0.00325614*(2/Z)"S - ..
0.00068245*(2/2)"6;



eK1(1,1) = KK1(1,1)/sqrt(Z);
K1(,1) =eKI1(,1)exp(Z);

end

ifZ==
eKo(1,1) = Inf;
eKl1{,1) = Inf;
Ko(1,1) =Inf;
Ki1(1,1) =Inf;
end

Io =10(1,1);
Il =T1(L1);
Ko = Ko(l,1);
K1 =K1({,1);
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%% %% % % %o o To % Fo Do Yo To Yo Yo Yo Yo T Yo To To To Yo To Yo Fo To To T To To To Yo To Yo Te Yo Yo Te To Fo Fo Fo

% %
% %
% RESERVOIR CHARACTERIZATION SUBROUTINE - CHARAC.m %
% %
% The purpose of this subroutine to characterize the reservoir mobility ratio %
% according to two methods from the Petroleum Engineering literature. The %
% two methods are: Yeh and Agarwal(1989) and Feitosa et al.(1993a). %
% %
% %
%% %% %o %o %o T % Po %o To %o Yo Yo Do Yo Yo Yo Yo To To Yo T To o To Yo Yo To To Yo To Yo Vo To To To Yo Yo To To o %o

for I=1:tDlast
% Instantaneous mobility ratio is defined.

Mins(l,1) = 2*d: vD(I,1);

% Dimensionless radius of investigation is defined.

if rinvcode ~= 0
rDins(1,1) = 1.5*sqrt(1D(1,1)/Mins(1,1));
end

if rinvcode ==
rDins(1,1) = 2*sqri(tD(1,1)/Mins(1,1));
end

end

% For the first value of instantaneous mobility ratio and the first value of dimensionless

% radius of investigation, the subroutine uses"forward difference” to obtain a mobility

% ratio derivative required. For all the rest of values, excepting the last values of mobility
% ratio and dimensionless radius of investigation, the subroutine uses "central difference”
% to obtain mobility ratio derivatives. For the last value of instantaneous mobility ratio and
% the last value of dimensionless radius of investigation, the subroutine uses "backward
% difference” to obtain the mobility ratio derivative required.

for I = 1:tDlast

ifi==

DerMinv(1,1) = (((1/Mins(I1+1,1)) - (1/Mins(1,1)))/(rDins(1+1,1) - rDins(,1)));
De(;Mi(I.l) = ((Mins(I+1,1) - Mins(1,1))/ (fDins(I+1,1) - rDins(1,1)));

en

if I~=1 & I~=tDlast

DerMinv(1,1) = (((1/Mins(I1+1,1)) - (1/Mins(1-1,1)))/(rDins(I+1,1) - rDins(1-1,1}}};
DerMi(1,1) = (Mins(I+1,1) - Mins(I-1,1))/ (tDins(I+1,1) - rDins(I-1,1)));

end
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if I ==tDlast

DerMinv(],1) = (((1/Mins(1,1)) - (1/Mins(1-1,1)))/(rDins(1,1) - rDins(1-1,1)));
DerMi(1,1) = ((Mins(1,1) - Mins(I-1,1))/ (tDins(l, 1) - rDins(I-1,1)));

end

% Yeh and Agarwal's(1989) mobility ratio is defined.
Mya(l,1) = 1/(0.5*rDins(1,1)*DerMinv(l,1) + 1/(Mins(1,1)));

% Feitosa et al.'s(1993a) mobility ratio is defined.
Mmya(,1) = (0.5*rDins(1,1)*DerMi(i, 1) + Mins(1,1));

% All the results from this subroutine are arranged in a matrix called Ans2.

Ans2(1,1) = tD({,1);
Ans2(1,2) = dPwD(,1);
Ans2(1,3) = rDins(1,1);
Ans2(1,4) = Mins(1,1);
Ans2(1,5) = Mya(l,1);
Ans2(1,6) = Mmya(l,1);

end
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% %% %o Yo% Do Fo Fo Fo o Fo Fo To o Vo Fo T Yo Fo o Fo Fo Fo %o Yo Fo Fo Fo Yo To Yo To Fo Yo Fo Fo Fo Fo Fo Yo To Yo

% %
% %
%o RESULTS FILE SUBROUTINE - MULTITEST.m %
%o %
% The purpose of this subroutine is to create a file of results after running the %
% main program and obtaining the transient pressure response of a wellin a %
% multi-region composite reservoir. And if desired, this file will also include %
% results from the reservoir characterization subroutine for a particular case. %
%o %
% %

%% % % % %o Fo %o % Fo %o To To To %% %o T Yo Yo Yo To To Yo Fo o %o T Fo Yo To Yo To To To Yo Yo Yo Fo Yo Yo Vo To %o

diary MULTIRESULTS.m

disp (' MULTICOM PROGRAM - diary MULTIRESULTS.m
disp ( '

disp ( MULTI-REGION COMPOSITE RESERVOIR MODEL
disp

disp ('

MULTICOM

- e @ = e

diary off
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APPENDIX E

Overcoming the matrix singularity problem.
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APPENDIX E

Overcoming the matrix singularity problem

As briefly explained in Chapter 4, at early times (tp = 100), the matrix of coefficients A
becomes singular or very close to singular with respect to the working precision limit of the
computer. This is because, at these times, there are very small and very large coefficients.
The main factor that contributes to the magnitude of these coefficients is the modified
Bessel functions of first and second kind. The arguments of these modified Bessel
functions are the product of dimensionless radius and the square root of the product of the
Laplace parameter and the diffusivity ratio. At early times, the Laplace parameter has a
large magnitude which causes large arguments of the modified Bessel functions. These
lurge arguments cause certain modified Bessel functions to be very small and centain
modified Bessel functions to be very large, which causes the singularity problem.
However, these large arguments cannot be altered without altering the nature of the

problem. Thus, an alternative solution had to be looked for.

To overcome the problem, the modified Bessel functions are multiplied by a variable such
that it will reduce the large modified Bessel functions and it will increase the small modified
Bessel functions. The idea to select this variable came from the definition and the
behaviour of the exponentially scaled modifies Bessel functions. According to the
exponentially-scaled modified Bessel functions definition, the modified Bessel functions
that yield large values (Ip and I) for large arguments are multiplied by the negative
exponentiated form of its argument and the modified Bessel functions that yield small
values (Ko and K ) for large arguments are multiplied by the exponentiated form of its

argument.
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The exponentially-scaled modified Bessel functions yield reasonable (not so large, not so

small and not so far apart) values, irrespective of the argument magnitude.

The matrix of coefficients is structured in such a form that it has some columns composed
only of modified Bessel functions that generate large numbers for large arguments and it
has other columns composed only of modified Bessel functions that generate small
numbers for large arguments. Thus, the matrix becomes ideally suitable to apply
exponentially-scaled modified Bessel.functions. However, in each column, there are two
types of arguments for the modified Bessel functions, and we can only multiply each
column by one number. Thus, exponentially-scaled modified Bessel functions cannot be
directly employed in the system of coefficients, since these functions require a
multiplication of each modified Bessel function by the exponentiated form of its argument.
However, it was observed by trial and error that if each column is multiplied by the
exponentiated form of the arithmetic average of the two arguments in each column, the
singularity problem is overcome. Then, the solution vector components (the required

constants) are systematically multiplied by the same numbers that multiplied the matrix of

coefficients.
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APPENDIX F

Transient pressure response fc: & multi-region composite reservoir.
(Sample results for a particular run)
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MULTICOM PROGRAM - diary MULTIRESULTS.m
MULTI-REGION COMPOSITE RESERVOIR MODEL
This program obtains the pressure behaviour for multi-region composite reservoirs. The
program also includes, if desired, a reservoir characterization subroutine which yields

satisfactory results if the storativity contrasts within the reservoir are low or negligible.

Wellbore storage and skin at the well are allowed. Skin at the front of each interphase
between regions is accounted. Well produces at a constant rate.

The outer boundary may be infinite, closed or constant pressure.

The outer boundary selection codes are:

1 for infinite outer boundary
2 for closed outer boundary
3 for constant pressure outer boundary
Select the number and press enter for the outer boundary code: 1

OBcode = 1

Do you want to use a data file previously edited or do you prefer to input the data from the
keyboard?

The data file selection codes are:

1 - s o presiously edited data file
0 to .pi.ata from the keyboard
Select the number and press enter for the option selected: 1

Datcode= 1

Do you want to use a characterization subroutine?

1 YES
0 NO
Select the nusnber and press enter for the option selected: 1

Characode = 1

Do you want to use the conventional definition of radius of investigation or you prefer to
use Yeh and Agarwal (1989) definition?

The radius of investigation codes are:



0 to use the conventional definition
1 to use Yeh and Agarwal(1989) definition

Select the number and press enter for the option selected: 1

rinvcode = 1

1! THE PROGRAM IS NOW RUNNING - WAIT FOR RESULTS !!!

This is the pressure behaviour of a multi-region composite reservoir

in which the number of regions "Nr" is:

Nr = 10

The dimensionless wellbore storage coefficient "CD" is:

CD = 0

The skin factor at the wellbore "S" is:

S

The dimensionless radii, physical characteristics ratios and skin at the discontinuities are:

= 0
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D

Mi

Fs

n

W
o

1.0000e+00
1.0000e+02
2.1250e+02
3.2500e+02
4.3750e+02
5.5000e+02
6.6250e+02
7.7500e+02
8.8750e+02
1.0000e+03

1.0000e+00
6.6250e+00
1.7875e+01
2.9125e+01
4.0375e+01
5.1625e+01
6.2875e+01
7.4125e+01
8.5375e+01
1.0000e+03

1.0000e+00
6.6250e+00
1.7875e+01
2.9125e+01
4.0375e+01
5.1625e+01
6.2875e+01
7.4125e+01
8.5375e+01
1.0000e+03

1.0000¢+00
1.0000e+00
1.0000e+00
1.0000=+00
1.0000e+00
1.0000e+00
1.0000e+00
1.0000e+00
1.0000e+00
1.0000e+00

COO0QOOOO0O0O®
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D

tD/rDn/2

tDAN

PwD

dPwD/dintD dPwD/diDAn

1.0000e+02
1.5000e+02
2.0000e+02
2.5000e+02
3.0000e+02
3.5000:+02
4.0000e+02
4.5000e+02
5.0000e+02
6.0000e+02
7.0000e+02
8.0000e+02
9.0000¢ +02
1.0000e+03
1.5000e+03
2.0000e+03
2.5000e+03
3.00(:3e+03
3.5C00e+03
4.0000e+03
4.5000e+03
5.0000e+03
6.0000e+03
7.0000e+03
8.0000e+03
9.0000e+03
1.0000e+04
1.5000e+04
2.0000e+04
2.5000e+04
3.0000e+04
3.5000=+04
4.0000e+04
4.5000e+04
5.0000e+04
6.0000e+04
7.0000e+04
8.0000e+04
9.0000e+04
1.0000e+05
1.5000e+05
2.0000e+05
2.5000e+05
3.0000e+05
3.5000e+05
4.0000e+05
4.5000e+05
5.0000e+05
6.0000e+05
7.0000e+05

1.0000e-04
1.5000e-04
2.0000e-04
2.5000e-04
3.0000e-04
3.5000e-04
4.0000e-04
4.5000e-04
5.0000e-04
6.0000e-04
7.0000e-04
8.0000e-04
9.0000e-04
1.0000e-03
1.5000e-03
2.0000e-03
2.5000e-03
3.0000e-03
3.5000e-03
4.0000e-03
4.5000e-03
5.0000e-03
6.0000e-03
7.0000e-03
8.0000e-03
9.0000e-03
1.0000e-02
1.5000e-02
2.0000e-02
2.5000e-02
3.0000e-02
3.5000e-02
4.0000e-02
4.5000e-02
5.0000e-02
6.0000e-02
7.0000e-02
8.0000¢-02
9.0002-02
1.0000e-01
1.5000e-01
2.0000e-01
2.5000e-01
3.0000e-01
-.5000e-01
4.0000e-01
4.5000e-01
5.0000e-01
6.0000e-01
7.0000e-01

3.1831e-05
4.7746e-05
6.3662¢-05
7.9577e-05
9.5493e-05
1.1141e-04
1.2732e-04
1.4324e-04
1.5915e-04
1.9099¢-04
2.2282¢-04
2.5465¢-04
2.8648¢e-04
3.1831e-04
4.7746e-04
6.3662¢-04
7.9577e-04
9.5493e-04
1.1141e-03
1.2732e-03
1.4324¢-03
1.5915e-03
1.9059¢-03
2.2282¢-03
2.5465e-03
2.8648e-03
3.1831e-03
4.7746e-03
6.3662e-03
7.9577e-03
9.5493e-03
1.1141e-02
1.2732e-02
1.4324e-02
1.5915e-02
1.9099e-02
2.2282e-02
2.5465e-02
2.8648e-02
3.1831e-02
4.7746e-02
6.3662e-02
7.9577e-02
9.5493e-02
1.1141e-01
1.2732e-01
1.4324e-01
1.5915e-01
1.9099¢-01
2.2282e-01

2.7228e+00
2.9210e+00
3.0624e+00
3.1724e+00
3.2625e+00
3.3388e+00
3.4050e+00
3.4635e+00
3.5158e+00
3.6065e+00
3.6832e+00
3.7497e+00
3.8083e+00
3.8608e-+00
4.0628e+00
4.2092e+00
4.3291e+00
4.4347e+00
4.5321e+00
4.6242e+00
4.7125e+00
4.7980e+00
4.9628e+00
5.1209e+00
5.2739e+00
5.4224e+00
5.5671e+00
6.2466e+00
6.8735e+00
7.4643e+00
8.0282e+00
8.5706e+00
9.0955e+00
9.6053e+00
1.0102e+01
1.1063e+01
1.1987e+01
1.2880e+01
1.3747e+01
1.4590e+01
1.8533e+01
2.2141e+01
2.5523e+01
2.8747e+01
3.1857e+01
3.4885e+01
3.7851e+01
4.0771e+01
4.6508e+01
5.2147e+01

4.8682¢-01
4.9047e-01
4.9246¢-01
4.9374e-01
4.9463e-01
4.9530e-01
4.9583e-01
4.9625e-01
4.9659¢-01
4.9708e-01
4.9734e-01
4.9745¢-01
4.9752¢-01
4.9767¢-01
5.0346¢-01
5.2346e-01
5.5822e-01
6.0430e-01
6.5791e-01
7.1611e-01
7.7680e-01
8.3863e-01
9.6257e-01
1.0843e+00
1.2028e+00
1.3179e¢+00
1.4297e+00
1.9512e+00
2.4309e+00
2.8836e+00
3.3164e+00
3.7333e+00
4.1367e+00
4.5284e+00
4.9098e+00
5.6456e+00
6.3503e+00
7.0284e+00
7.6832e+00
8.3174e+00
1.1253e+01
1.3936e+01
1.6494e+01
1.8999e+01
2.1491e+01
2.3986e+01
2.6493e+01
2.9013e+01
3.4085e+01
3.9182e+01

1.5294e+04
1.0272e+04
7.7356e+03
6.2045e+03
5.1798e+03
4.4458e+03
3.8942e+03
3.4645¢+03
3.1202e+03
2.6027e+03
2.2321e+03
1.9535e+03
1.7367e¢+03
1.5635e+03
1.0544e+03
8.2224e+02
7.0148e+02
6.3282e+02
5.9054e+02
5.6243e+02
5.4231e+02
5.2693e+02
5.0400e+02
4.8664e+02
4.7233e+02
4.6002e+02
4.4914e+02
4.0867e+02
3.8185e+02
3.6237e+02
3.4730e¢+02
3.3510e+02
3.2489¢+02
3.1614e+02
3.0849¢+02
2.9560e+02
2.8500e+02
2.7600e+02
2.6819e+02
2.6130e+02
2.3568e+02
2.1891e+02
2.0727e+02
1.9896e+02
1.9290e+02
1.8839e+02
1.8496e+02
1.8229e+02
1.7847e+02
1.7585e+02
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D

tD/rDnA2

tDAN

PwD

dPwD/dIntD dPwD/dtDAn

8.0000e+05
9.0000e+05
1.0000e+06
1.5000e+06
2.0000e+06
2.5000e+06
3.0000e+06
3.5000e+06
4.0000e+06
4.5000e+06
5.0000e+06
6.0000e+06
7.0000e+06
8.0000e+06
9.0000e+06
1.0000e+07
1.5000e+07
2.0000e+07
2.5000e+07
3.0000e+07
3.5000e+07
4.0000e+07
4.5000e+07
5.0000e+07
6.0000e+07
7.0000e+07
8.0000e+07
9.0000e+07
1.0000e+08
1.5000e+08
2.0000e+08
2.5000e+08
3.0000e+08
3.5000e+08
4.0000e+08
4.5000e+08
5.0000e+08
6.0000e+08
7.0000e+08
8.0000e+08
9.0000e+08
1.0000e+09
1.5000e+09
2.0000e+09
2.5000e+09
3.0000e+09
3.5000e+09
4.0000e+09
4.5000e+09

8.0000e-01 2.5465e-01
9.0000e-01 2.8648e-01

1.0000e+00
1.5000e+00
2.0000e+00
2.5000e+00
3.0000e+00
3.5000e+00
4.0000e+00
4.5000e+00
5.0000e+00
6.0000e+00
7.0000e+00
8.0000e+00
9.0000e+00
1.0000e+01
1.5000e+01
2.0000e+01
2.5000e+01
3.0000e+01
3.5000e+01
4.0000e+01
4.5000e+01
5.0000e+01
6.0000e+01
7.0000e+01
8.0000e+01
9.0000e+01
1.0000e+02
1.5000e+02
2.0000e+02
2.5000e+02
3.0000e+02
3.5000e+02
4.0000e+02
4.5000e+02
5.0000e+02
6.0000e+02
7.0000e+02
8.0000e+02
9.0000e+02
1.0000e+03
1.5000e+03
2.0000e+03
2.5000e+03
3.0000e+03
3.5000e+03
4.0000e+03
4.5000e+03

3.1831e-01

4.7746e-01

6.3662e-01

7.9577e-01

9.5493e-01

1.1141e+00
1.2732e+00
1.4324e+00
1.5915e+00
1.9099e+00
2.2282e+00
2.5465e+00
2.8648e+00
3.1831e+00
4.7746e+00
6.3662e+00
7.9577e+00
9.5493e+00
1.1141e+01
1.2732e+01
1.4324e+01
1.5915e+01
1.9099e+01
2.2282e+01
2.5465e+01
2.8648e+01
3.1831e+01
4.7746e+01
6.3662e+01
7.9577e+01
9.5493e+01
1.1141e+02
1.2732e+02
1.4324e+02
1.5915e+02
1.9099e+02
2.2282e+02
2.5465e+02
2.8648e+02
3.1831e+02
4.7746e+02
6.3662e+02
7.9577e+02
9.5493e+02
1.1141e+03
1.2732e+03
1.4324e+03

5.7716e+01
6.3232e+01
6.8702e+01
9.5523e+01
1.2163e+02
1.4714e+02
1.7211e+02
1.9658e+02
2.2060e+02
2.4418e+02
2.6736e+02
3.1257e+02
3.5637e+02
3.9887e+02
4.4014e+02
4.8028e+02
6.6595e+02
8.3060e+02
9.7815e+02
1.1114e+03
1.2325e+03
1.3432e+03
1.4447e+03
1.5383e+03
1.7049e+03
1.8491e+03
1.9752e+03
2.0865e+03
2.1854e+03
2.5538e+03
2.7963e+03
2.9715e+03
3.1064e+03
3.2151e+03
3.3056e+03
3.3830e+03
3.4504e+03
3.5636e+03
3.6563e+03
3.7348e+03
3.8028e+03
3.8628e+03
4.0875e+03
4.2426e+03
4.3610e+03
4.4568e+03
4.5372e+03
4.6065e+03
4.6674e+03

4.4284e+01
4.9375e+01
5.4443e+01
7.9277e+01
1.0316e+02
1.2615e+02
1.4830e+02
1.6969¢+02
1.9038e+02
2.1041e+02
2.2982e+02
2.6691e+02
3.0188e+02
3.3492e+02
3.6617e+02
3.9578e+02
5.2276e+02
6.2170e+02
6.9944e+02
7.6074e+02
8.0904e+02
8.4696e+02
8.7650e+02
8.9926¢e+02
9.2917e+02
9.4404e+02
9.4875e+02
9.4659%¢e+02

-9.3981e+02

8.7804e+02
8.1268e+02
7.5922e+02
7.1778e+02
6.8593e+02
6.6128e+02
6.4195e+02
6.2660e+02
6.0409e+02
5.8868e+02
5.7761e+02
5.6931e+02
5.6287e+02
5.4435e+02
5.3510e+02
5.2930e+02
5.2522e+02
5.2217e+02
5.1978e+02
5.1786e+02

1.7390e+02
1.7235e+02
1.7104e+02
1.6604e+02
1.6205e+02
1.5852e+02
1.5530e+02
1.5232e+02
1.4953e+02
1.4690e+02
1.4440e+02
1.3976e+02
1.3549e+02
1.3152e+02
1.2782e+02
1.2434e+02
1.0949e+02
9.7656e+01
8.7895e+01
7.9664e+01
7.2619e+01
6.6520e+01
6.1192¢+01
5.6502e+01
4.8651e+01
4.2368e+01
3.7257e+01
3.3042e+01
2.9525e+01
1.8390e+01
1.2766e+01
9.5406e+00
7.5166e+00
6.1569e+00
5.1936e+00
4.4817e+00
3.9370e+00
3.1630e+00
2.6420e+00
2.2683e+00
1.9873e+00
1.7683e+00
1.1401e+00

8.4054e-01
6.6514e-01
5.5001e-01
4.6870e-01
4.0824e-01

3.6154e-01



D tD/rDn”2 tDAnN PwD dPwD/dIntD dPwD/dtDAn
5.0000e+09 5.0000e+03 1.5915e¢+03 4.7217e¢+03 5.1628e+02 3.2439¢-01
6.0000e+09 6.0000e+03 1.9099¢+03 4.8154e+03 5.1383e+02 2.6904¢-01
7.0000e+09 7.0000e+C3 2.2282e+03 4.8942e+03 5.1201e+02 2.2979e-01
8.0000e+09 8.0000e+03 2.5465e+03 4.9623e+03 5.1061e+02 2.0052¢-01
9.0000e+09 9.0000e+03 2.8648e+03 5.0223e+03 5.0950e+02 1.7785e-01
1.0000e+10 1.0000e+04 3.1831e+03 5.0758e+03 5.0860e+02 1.5978e-01
1.5000e+10 1.5000e+04 4.7746e+03 5.2812e+03 5.0582e+02 1.0594e-01
2.0000e+10 2.0000e+04 6.3662e+03 5.4264e+03 5.0439e¢+02 7.9230e-02
2.5000e+10 2.5000e+04 7.9577e¢+03 5.5388e+03 5.0353e+02 6.3275e-02
3.0000e+10 3.0000e+04 9.5493e+03 5.6306e+03 5.0294e+02 5.2668e-02
3.5000e+10 3.5000e+04 1.1141e+04 5.7081e+03 5.0252e+02 4.5107e-02
4.0000e+10 4.0000e+04 1.2732e+04 5.7751e+03 5.0221e+02 3.9444c-02
4.5000e+10 4.5000e+04 1.4324e+04 5.8343e+03 5.0197e+02 3.5044e-02
5.0000e+10 5.0000e+04 1.5915e¢+04 5.8872e+03 5.0177e+02 3.1527e-02
6.0000e+10 6.0000e+04 1.9099e¢+04 5.9786e+03 5.0148e+02 2.6257e-02
7.0000e+10 7.0000e+04 2.2282e+04 6.0559e+03 5.0127e+02 2.2497e-02
8.0000e+10 8.0000e+04 2.5465e+04 6.1229e+03 5.0111e+02 1.9679¢-02
9.0000e+10 9.0000e+04 2.8648e+04 6.1819e¢+03 5.0099e+02 1.7488e-02
1.0000e+11 1.0000e+05 3.1831e+04 6.2347e+03 5.0089e¢+02 1.5736e-02

th dPwD/dIntD rDins Mins Mya Mmya
1.0000e+02 4.8682e-01 1.5202e+01 9.7363e-01 9.9038e-01 9.9022e-01
1.5000e+02 4.9047¢-01 1.8549e¢+01 9.8094e-01 9.9827e-01 9.9791e-01
2.0000e+02 4.9246e-01 2.1375e+01 9.8493e-01 9.9826e-01 9.9807e-01
2.5000e+02 4.9374e-01 2.3867e+01 9.8748e-01 9.9850e-01 9.9837e-01
3.0000e+02 4.9463e-01 2.6121e+01 9.8926e-01 9.9879e-01 9.9870e-01
3.5000e+02 4.9530e-01 2.8195e+01 9.9060e-01 9.9910e-01 9.9903e-01
4.0000e+02 4.9583e-01 3.0126e+01 9.9166e-01 9.9936e-01 9.9930e-01
4.5000e+02 4.9625e-01 3.1940e+01 9.9250e-01 9.9949e-01 9.9944e-01
5.0000e+02 4.9659e-01 3.3656e+01 9.9319e-01 9.9888e-01 9.9885e-01
6.0000e+02 4.9708e-01 3.6850e+01 9.9415e-01 9.9865e-01 9.9863¢-01
7.0000e+02 4.9734e-01 3.9792e+01 9.9468e-01 9.9733e-01 9.9732¢-01
8.0000e+02 4.9745e-01 4.2535e+01 9.9491e-01 9.9638e-01 9.9637e-01
9.0000e+02 4.9752e-01 4.5112e+01 9.9505e-01 9.9695e-01 9.9694e-01
1.0000e+03 4.9767e-01 4.7545e+01 9.9533e-01 1.0176e+00 1.0174e+00
1.5000e+03 5.0346e-01 5.7895e+01 1.0069e+00 1.0946e+00 1.0898e+00
2.0000e+03 5.2346e-01 6.5562e+01 1.0469e+00 1.4062¢+00 1.3213e+00
2.5000e+03 5.5822¢-01 7.0981e+01 1.1164e+00 2.4925¢+00 1.7421e+00
3.0000e+03 6.0430e-01 7.4733e+01 1.2086e+00 3.0748e+01 2.3763e+00
3.5000e+03 6.5791e-01 7.7362e+01 1.3158e+00 -2.9326e+00 3.2216e+00
4.0000e+03 7.1611e-01 7.9272e+01 1.4322e+00 -1.4905e+00 4.2311e+00
4.5000e+03 7.7680e-01 8.0729e+01 1.5536e+00 -1.0825e+00 5.3189¢+00
5.0000e+03 8.3863e-01 8.1899e+01 1.6773e+00 -9.1510e-01 6.7288e+00
6.0000e+03 9.56257e¢-01 8.3741e+01 1.9251e+00 -8.4538e-01 8.1172e+00
7.0000e+03 1.0843e+00 8.5221e+01 2.1686e+00 -8.7756e-01 9.5813e+00
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tD

dPwD/dlmD

rDins

Mins

Mya

Mmya

8.0000e+03
9.0000e+03
1.0000e+04
1.5000e+04
2.0000e+04
2.5000e+04
3.0000e+04
3.5000e+04
4.0000e+04
4.5000e+04
5.0000e+04
6.0000e+04
7.0000e+04
8.0000e+04
9.0000e+04
1.0000e+05
1.5000e+05
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APPENDIX G

Figures for ransient pressure responses for multi-region composite reservoirs .
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Figure G.18 - Dimensionless wellbore pressure for Em = 100,

R =1000,m =002, and M, =1.
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Figure G.19 - Dimensionless wellbore pressure for R, =500,

an = 1400, m_= 0.02, and Mli = 1.
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Figure G.20 - Dimensionless wellbore pressure for R == 1000,
R, ,=1900,m =002, and M =1.
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[ Figure G.21 - Dimensionless semilog pressure derivative for R__= 1000,
R, ,=1900,m =0.02,and M .= 1.

le+04

le+02

1e+00 A~

dp, /dtpa

1le-02

L-Three to Ten-region

1e-04 s
1e-04 le-02 1e+00 1e+02

toa
Figure G.22 - Dimensionless Cartesian pressure derivative forjkDl = 1000
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Figure G.23 - Dimensionless wellbore pressure forT(m = 2000,

2 =2900,

m =002,andM_ =1,
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Figure G.24 - Dimensionless semilog pressure derivative for R, = 2000,
Rpny =2900, m =0.02,and M = 1.
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Figure G.25 - Dimensionless Cartesian pressure derivative for R, = 2000,

R, , =2900,m =0.02,and M = 1.
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Figure G.26 - Effect of first discontinuity radius on Dimensionless wellbore

pressure for a ten-region composite reservoir with M =1.
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Figure G.27 - Effect of first discontinuity radius on Dimensionless Cartesian
pressure derivative for a ten-region composiic reservoir with M, =1,
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Figure G.28 - Dimensionless wellbore pressure for RLD] = 100,

R, =1000,m_ =0.10,and M, = 1.
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Figure G.32 - Dimensionless wellbore pressure for ﬁm = 100,
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Tigure G.33 - Dimensionless semilog pressure derivative for R, = 100,
R = 1000, m_=1.00,and M . =1.

1e+04
N
1c+02 L
< 2
£ 3
= d
a le+00 -
e 5
v —
E
le-02 L l— Three to Ten-region
3
1e-04 i
le-04 1e-02 1e+00 1e+02 1e+04
tpAa
Figure G.34 - Dimensionless Cartesian pressure derivative for R, = 100,
R, ,=1000,m =100,and M =1.




189

1e+02 YTy rer— e

—
Ten-region composite

R,, =100

T T Ty
A2 J t 443

R = 1000

M. =1
3 1i J

[a]
2 1e+01 ~
(=9 ]
] — 1.00-0.50 i
i —0.10 mu» b
— 0.02
le+00 2 a2 sasanl a2 aasanal aoasasased a2 saaaad aaaasasel A a4y
1e-03 1e-01 le+01 1e+03

tp/ Rén-l

Figure G.35 - Effect of transition region's slope on dimensionless wellbore
pressure for a ten-region composite reservoir with M, =1.
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Figure G.36 - Effect of transition region's slope on dimensionless Cartesian
pressure derivative for a ten-region composite reservoir with M, =1.
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Figure G.37 - Dimensionless wellbore pressure for a reservoir in which
mobility ratio and storativity ratio are linear functions of
dimensionless radius.
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Figure G.38 - Dimensionless semilog pressure derivative for a reservoir
in which mobility ratio and storativity ratio are linear functions
of dimensioniess radius.
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Figure G.39 - Effect of storativity ratio profile on dimensionless wellbore
pressure for a ten-region composite reservoir.
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Figure G.40 - Mobility ratio versus conventional dimensionless radius of investigation for
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Figure G.41 - Mobility ratio versus conventional dimensionless radius ot' mvesuganon for
a five-region composite reservoir with F,=1and M

192



10° F———r———rrw ——
F — Actual moblhty rano 3
) - eee Inst. derivative mobility ratio

10° E+++ Yeh and Agarwal mobility ratio

E AAA Mod. Yeh and Agarwal mobility ratio

10 R, =100 *
F Ry, = 1000 4, ]
10° -m_ =010 é: e ———-) co

Mli

00 EM= R/ GR) g

EFsli S CIVACIR %'
10! FF_ =100
E ~ sliw + . . 3
FF,_=1000 » / Ten-region composite 3
o sln h
10° | -+ .
3 Swept = | él’ansi}ic)é'eUnswcpt 3
Fé region region region ]
NP NPET | — e A A 4 aaas A4 4 s agaa
10° 10! 10 10° 10*

I'iD

Figure G.42 - Mobility ratio versus dimensionless radius of investigation for
a thermal recovery reservoir with F,, =100 and F, = 1000.
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Figure G.43- Mobility ratio versus dimensionless radius of investigation for
a thermal recovery reservoir with F | _=F_ = 1000.
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