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Abstract: This study presents multi-rate parameter and state estimation methods for the induction motor. Based on multi-rate
control theory and the extended Kalman filter (EKF) theory, a multi-rate EKF algorithm including input and output
algorithms is proposed for load torque estimation in the induction motor. The methods are implemented in real-time on
PC-cluster node which acts as the controller for an induction motor experimental set-up. Rotor time constant is a sensitive
variable in indirect field-oriented control method. A multi-rate model reference adaptive system (MRAS) is proposed to
estimate the rotor time constant in order to guarantee the high-performance control of induction motor. Experimental result
verified the effectiveness of the algorithms. Simulations compare the multi-rate EKF algorithm with the traditional single-rate
EKF algorithm performance to show improved performance of load torque estimator. The comparison between the traditional
MRAS and the multi-rate MRAS shows the superiority of the proposed method, with a satisfactory accuracy.
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1 Introduction

The induction motor is the most commonly used electric
machine in high-performance drive applications.
Field-oriented control (FOC) and direct torque control are
the main control methods, which require accurate estimation
of motor parameters to achieve their control objectives.
Although many well-known methods can be used to
accurately determine the parameter values under standstill,
these parameters may vary during motor operation. Among
these parameters, rotor time constant (defined as ratio of
rotor inductance to rotor resistance) is the most sensitive
variable [1]. Rotor inductance may change because of the
flux saturation and rotor resistance varies because of
temperature increase. In the FOC, the mismatch of rotor
time constant makes the subdivision of stator current into
the d- and q-axes incorrect which leads to incorrect rotor
field angle. Another key to controller design is the
knowledge of motor state. In an AC drive system, motor
load torque is an important time-varying external
disturbance [2]; the variation of load torque should be
considered in the design of the speed control system.
From the motor equations, the system characteristic is
decided by the motor output torque. Therefore the load
torque online estimation is essential for motor state
observation. Although accurate parameter estimation is the
basis of high-performance AC drive, noisy signals affect the
estimation convergence, estimation bias and estimated value
variance. The parameter mismatch and noisy values could
deteriorate the desired control performance [3]. In order to

READ
IET Electr. Power Appl., 2013, Vol. 7, Iss. 1, pp. 77–86
doi: 10.1049/iet-epa.2012.0116
avoid motor mal-operation, the estimated values of rotor
time constant and load torque should be smooth.
In the literature, there are many methods to estimate the

motor state and parameter [4–15] include: direct calculation
method, model reference adaptive system (MRAS),
extended Kalman filter (EKF) and observer-based methods.
The EKF algorithm was proposed to handle non-linear
problems, this method is based on a stochastic approach
and is useful in indirect FOC [12, 13] as shown in Fig. 1a.
The EKF method assumes that the measurements of inputs
and outputs signals are subjected to white Gaussian noise
and tries to estimate/predict the state variables x̂k to
minimise the noise effect. The MRAS system consists of
three parts: a reference model, an adjustable model and an
adaptive mechanism. The basic structure of MRAS is
shown in Fig. 1b. The quantity calculated from the
adjustable model x̂ is compared to the measured value x*
from the reference model; the error e between the states of
the two models is then used to drive the adaptive
mechanism to estimate the quantity’s value. EKF and
MRAS are the commonly used methods because of their
ability to effectively eliminate random noise, and relatively
simple implementation requirement. An EKF estimation
method that is effective over a wide velocity is presented in
[2], and Pea et al. [8] present an MRAS method which
estimates rotor position and speed from machine currents.
However, these methods are based on the motor
mathematical model, and utilise a single-rate
implementation, that is, the system’s sampler and hold work
with the same sampling periods. This paper present
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Fig. 1 Structure of model based parameter estimation and state identification system
a Structure of extended Kalman filter system

b Structure of model reference adaptive system
multi-rate EKF and MRAS method and implemented the
method in real-time on PC cluster node. EKF and MRAS
are choosen for their universality.
Digital control systems are hybrid systems, involving

both continuous-time and discrete-time signals. In
sampled-data control systems, it is usually assumed that
all the signals in the system are sampled simultaneously
with a single rate to simplify the analysis. With the
increase of the controlled object size and complexity, the
rate of change of different signals varies greatly; therefore
adopting a single sampling rate everywhere is unrealistic.
A system whose sampler and hold work with different
sampling periods is known as a multi-rate digital control
system [16]. Other reasons such as large differences
between the time constants of the various feedback loops
of the plant, and between the time needed to measure the
respective variables, also make multi-rate sampling
unavoidable. The multi-rate sample-data control system
has been the topic of interest for several years. The main
research directions of this technique are: intersample
behaviour [17, 18], pole assignment [19], lifting approach
and H2-optimal and H∞ design [20, 21]. The advantages
of multi-rate control include improved system
performance, less cost, improved controllability and
observability. Multi-rate control can also realise many
functions, which single-rate control cannot, such as
improved system gain margin, strong stabilisation,
simultaneous stabilisation, decentralised control and robust
control [22–24].
This paper proposes multi-rate real-time model-based

parameter estimation algorithms for induction motors. The
proposed multi-rate EKF method combines multi-rate
control and EKF to estimate motor load torque,
introducing both input and output algorithms. The method
achieves joint speed and load torque estimation, and is
implemented in real-time on PC-cluster node which acts
as the controller for an induction motor experimental
set-up. A multi-rate MRAS method is proposed to
estimate rotor time constant. The paper is organised as
follows: Section 2 presents multi-rate parameter estimation
methods; motor model, multi-rate EKF and multi-rate
MRAS algorithms are explained. Experimental results and
comparison between single-rate and multi-rate
implementations are provided in Section 3. Conclusions
appear in Section 4.
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2 Multi-rate parameter estimation methods

2.1 Induction machine model

The induction motor model can be described in dq frame
as fourth-order state equation [25]. Assuming that the
induction motor rotor speed and load torque to be the
unknown state variables. Combining induction motor
motion and torque equations, a sixth-order state
equation is constituted in the two-phase dq frame as
below

ẋ = Ax+ Bu+ w
y = Cx+ v

{
(1)

where the state vector is

x = isd isq lrd lrq vr Tl
[ ]T

(2)

with stator currents isd, isq; rotor fluxes λrd, λrq; rotor
speed ωr; and load torque Tl. The input vector stator
voltage u = [usd usq]

T and the output vector y = [isd
isq]

T. w(6 × 1) and v(2 × 1) are the process and
observation noises, which are both assumed to be zero
mean multivariate Gaussian noises with covariance Q
(6 × 6) and R(2 × 2), respectively.
The coefficient matrices in (1) are given as

A(6× 6)

=

−j 0
h

tr
hvr 0 0

0 −j −hvr

h

tr
0 0

Lm
tr

0 − 1

tr
−vr 0 0

0
Lm
tr

vr − 1

tr
0 0

− 3npLm
JLr

lrq
3npLm
JLr

lrd 0 0 0 − 1

J
0 0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)
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B(6× 2) =
1

sLs
0 0 0 0 0

0
1

sLs
0 0 0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦

T

(4)

C(2× 6) = 1 0 0 0 0 0
0 1 0 0 0 0

[ ]
(5)

where

j = Rs

sLs
+ 1− s

str
, h = Lm

LsLr − L2m
,

s = 1− L2m
LsLr

, tr =
Lr
Rr

where Rs, Rr, Ls, Lr and Lm are the stator resistance, rotor
resistance, stator inductance, rotor inductance and
magnetising inductance, respectively.
Assume ωr and Tl are kept constant during sampling period

T. Using the lifting technique, the following linear
time-invariant state-space description of the induction motor
in discrete-time can be formulated

x(k + 1) = A(k)x(k)+ B(k)u(k)+ w(k)
y(k) = Cx(k)+ v(k)

{
(6)

In the above equation, the coefficient matrices A(k)(6 × 6) and
B(k)(6 × 2) are given as (see (7))

B(k) =
T

sLs
0 0 0 0 0

0
T

sLs
0 0 0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦

T

(8)

2.2 Multi-rate sampled-data control system

Consider the multi-rate sampled-data control system shown in
Fig. 2, where Pc is the m-input p-output linear continuous
plant; Cd is the multi-rate digital controller; H is the
multi-rate zero-order hold; and S is the multi-rate sampler.
rc, y and e = rc − y are the reference input, the output and
the tracking error of the system, respectively.
Assume that the sampling periods for the input u and the

error e are, respectively, defined as: Tui = quiT, i = 1, 2,…,m;
Tei = qeiT, i = 1, 2,…,p, where all the qui’s and qei’s are
positive integers and T is the base-rate sampling period.
Thus, all sampling periods in the overall system are integer
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multiples of the base-rate period T, and all are synchronised
to the ‘frame period’ Tf = qT; q is the least common
multiple of qui and qei. The frame period and sampling
multiplicity are generalised definitions for all multi-rate
control and estimation systems.

2.3 Multi-rate EKF-based load torque estimation

In order to present an exhaustive view of multi-rate EKF
method, in this section two multi-rate algorithms are
proposed for load torque estimation: input multi-rate EKF
algorithm and output multi-rate EKF algorithm; the focus of
the estimation method is on the mechanical variables ωr and
Tl. However, for ease of understanding, we introduce the
single-rate EKF algorithm first.

2.3.1 Single-rate EKF algorithm: The EKF is the
extension of conventional Kalman filter which can handle
non-linear systems, that is, the state transition and
observation models can be non-linear functions of the state.
The algorithm classifies into three strategies according to
the relationship of sampling periods of input and output
vector. Single-rate EKF is the traditional EKF algorithm
where the sampling period of input equals the sampling
period of the output. The EKF algorithm mainly contains a
‘predict’ stage and an ‘update’ stage. Further details of the
single-rate EKF algorithm can be found in [26].

2.3.2 Input multi-rate EKF algorithm: The controlled
object is described by state (1), where the sampling period
of output vector y is To, the sampling period of input vector
x is Ti; Ti < To, assume To =NTi, N = 1, 2,…, that is, when
output signal is sampled one time, the input signal is
sampled N times. N is the sampling multiplicity.
Defining the input extended vector

ui(k)(2N × 1)

= u(k) u(k + 1) · · · u(k + N − 1)
[ ]T (9)

and its extended coefficient matrix

Bi(6× 2N ) = AN−1B AN−2B · · · B
[ ]

(10)

Fig. 2 Multi-rate sampled-data control system
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A(k) =

1− jT 0 T
h

tr
Thvr Thlrq 0

0 1− Tj −Thvr T
h

tr
Thlrd 0

T
Lm
tr

0 1− T
1

tr
−Tvr −Tlrq 0

0 T
Lm
tr

Tvr 1− T
1

tr
−Tlrd 0

−T
3npLm
JLr

lrq T
3npLm
JLr

lrd 0 0 1 −T

J
0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)
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Defining the extended process noise vector wi(6N × 1) and its
coefficient matrix Biw(6 × 6N ), as given below

wi(k) = w(k) w(k + 1) · · · w(k + N − 1)
[ ]T

(11)

Biw = AN−1Bw AN−2Bw · · · Bw

[ ]
(12)

where Bw(6 × 6) is the coefficient matrix of w. The discretised
state-space model is derived by successive iteration

x kTo + NTi
( ) = ANx kTo

( )+ Biui kTo
( )+ Biwwi kTo

( )
y kTo
( ) = Cx kTo

( )+ v kTo
( ){

(13)

Using the simplifying assumption: kTo + NTi = (k + 1)To∼k +
1, and substituting extended vectors ui(k), Bi, ωi(k) and Biω
into the EKF algorithm Fig. 3, the derived motor state
estimation recursive algorithm based on input multi-rate
EKF algorithm is as follows:
Predict equations:

† x̃(k + N ) = ANx(k)+ Biui(k)† Pi(k +N|k) =FNPi(k|k)(F
N)T +BiwQi(Biw)

T

where the function F(6 × 6) can be used to compute the
predicted state from the previous estimate: (see (14))
Update equations:

† Ki(k +N ) = Pi(k +N|k)CT[CPi(k + N|k)CT +Ri(k + N )]−1

† x̂(k + N k + N| ) = x̃(k + N k| )+ Ki(k + N )[y(k + N )
−Cx̃(k + N k| )]
† Pi(k +N|k + N ) = Pi(k +N|k)− Pi(k +N|k)Ki(k +N )C

Qi and Ri are the covariance matrices of process and
observation noise, respectively, with Qi = E wiw

T
i

( )
, and Ri

= E(vvT). Fig. 3 shows the flowchart of input multi-rate
EKF estimator.

2.3.3 Output multi-rate EKF algorithm: The controlled
object is the discretised state-space model whose sampling
period is To. In contrast to the input algorithm, in the output
multi-rate algorithm Ti > To, where Ti =NTo, N = 1, 2,…,
that is, when the input signal is sampled one time, the
output signal is sampled N times. In period To, the input uk
is kept constant. EAD
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Defining the output extended vector as

yo(k)(2N × 1)

= y(k − N + 1) y(k − N + 2) · · · y(k)
[ ]T (15)

and the input extended vector as

uo(k)(2N × 1)

= u(k − N + 1) u(k − N + 2) · · · u(k)
[ ]T (16)

the output equation is transformed as

y(k − N + 1) = Cx(k − N + 1)+ v(k − N + 1) (17)

Fig. 3 Flowchart of input multi-rate EKF estimator
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F(k) = ∂f [x(k), k]

∂x x(k)=x̂(k)

∣∣∣

=

1− jT 0
h

tr
T hT v̂r(k) hT l̂rq(k) 0

0 1− jT −hT v̂r(k)
h

tr
T −hT l̂rd(k) 0

Lm
tr

T 0 1− 1

tr
T −T v̂r(k) −T l̂rq(k) 0

0
Lm
tr

T T v̂r(k) 1− 1

tr
T T l̂rd(k) 0

−T
3npLm
JLr

l̂rq(k) T
3npLm
JLr

l̂rd(k) 0 0 1 − T

J
0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)
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Substituting (6) into (17), y(k–N + 1) is derived as

y(k − N + 1) = CA−N+1x(k)+ v(k − N + 1)

− CA−1Bu(k − N + 1)

− CA−2Bu(k − N + 2)

− · · · − CA−N+1Bu(k − 1)

− CA−1Bvv(k − N + 1)

− CA−2Bvv(k − N + 2)

− · · · − CA−N+1Bvv(k − 1)

(18)

Other output extended vectors y(k − N + 2),…,y(k) can also be
derived using the same method. Then the output extended
vector yo(k) is derived. The coefficient matrices are given as
follows

Co(2N × 6) = CA−N+1 CA−N+2 · · · CA−1 C
[ ]T

(19)

Do(2N × 2N ) =
−CA−1B · · · −CA−N+1B 0

..

. ..
. ..

. ..
.

0 · · · −CA−1B 0
0 · · · 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦
(20)

Process and observation noises are wo(k) and vo(k). Replacing
y by w and v in yo(k), thewo(k) and vo(k) are derived. Replacing
the B by Bw in Do, the process noise extended coefficient
matrix Ho(2N × 6N ) is derived, where Bw is the process
noise coefficient matrix

wo(k)(6N × 1)= w(k−N + 1) w(k−N + 2) · · · w(k)
[ ]T

(21)

vo(k)(2N × 1) = v(k − N + 1) v(k − N + 2) · · · v(k)
[ ]T

(22)

For an arbitrary N, the output equation is given as

yo(k) = Cox(k)+Douo(k)+Howo(k)+ vo(k) (23)

As shown in (23), multi-rate control brings some additional
matrices; these matrices require more compute capacity.
However, with the development of computer science, the
processor could handle these additional computation easily.
The output multi-rate EKF recursive algorithm is as

follows:
Predict equations:

† x̃(k + N ) = ANx(k)+ Biu(k)† Po(k +N|k) =FNPo(k|k)(F
N)T +BowQo(k)(Bow)

T

Update equations:

† Ko(k + N ) = Po(k + N k| )CT
o∗ CoPo(k+ N k| )CT

o +
[

Ro(k +HoQo(k) Ho

( )T]−1

† x̂(k + N k + N| ) = x̃(k + N k| )+ Ko(k + N ) yo(k + N )−[
Cox̃(k + N k| )− Douo(k + N )]
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† Po(k + N|k +N ) = Po(k +N|k) − Po(k + N|k)Ko(k +N )Co

where Qo and Ro are the covariance matrices of process and
observation noise, respectively, Qo = E wow

T
o

( )
and

Ro = E vov
T
o

( )
. Single-rate EKF is a special case of muti-rate

EKF algorithm, when sampling multiplicity N = 1.

2.4 Multi-rate MRAS-based rotor time constant
estimation

The magnetising current is calculated from the adjustable
model and compared to the value from the reference model,
to obtain the error which is used to drive the adaptive
mechanism to estimate the rotor time constant. Defining
magnetising current as

idmr =
ldr
Lm

, iqmr =
lqr
Lm

(24)

and derived from motor model (1)

dids
dt

= Lm
sLsLr

1

tr
ldr + vrlqr −

Lm
tr

ids

( )

− rs
sLs

ids +
1

sLs
vds

diqs
dt

= Lm
sLsLr

1

tr
ldr − vrlqr −

Lm
tr

ids

( )

− rs
sLs

iqs +
1

sLs
vqs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

substituting λr defined in motor model (1) into (25), the
following equations can be obtained

dids
dt

= Lm
sLsLr

− dldr
dt

( )
− rs

sLs
ids +

1

sLs
vds

diqs
dt

= Lm
sLsLr

− dlqr
dt

( )
− rs

sLs
iqs +

1

sLs
vqs

⎧⎪⎪⎨
⎪⎪⎩ (26)

The reference model uses the voltage model derived
from (24, 26)

d

dt

idmr

iqmr

[ ]
= Lr

L2m

vds
vqs

[ ]
−

rsids + sLs
dids
dt

( )

rsiqs + sLs
diqs
dt

( )
⎡
⎢⎢⎣

⎤
⎥⎥⎦

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (27)

The parallel adjustable model uses the current model

d

dt
îdmr

îqmr

[ ]
=

− 1

t̂r
−vr

vr − 1

t̂r

⎡
⎢⎢⎣

⎤
⎥⎥⎦ îdmr

îqmr

[ ]
+ 1

t̂r

ids
iqs

[ ]
(28)

The adaptive mechanism for rotor time constant t̂r can be
derived from Popov’s criterion for hyperstability [10] as
follows

1

t̂r
= KIw(1)+ KP

∫
w(1) dt (29)
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where φ(ε) is the input to adaptive mechanism

w(1) = idmr − îdmr

( )
ids − îdmr

( )+ iqmr − îqmr

( )
× iqs − îqmr

( )
(30)

To use multi-rate control, the MRAS model needs to be
discretised; here the trapezoidal rule is utilised for
discretisation. Using derived discretised MRAS equations
and motor equations as the control object, we combine
input multi-rate control with discretised MRAS estimation
method from (27) and (28). The sampling period of output
vector is To and the sampling period of input vector is Ti,
where To =NTi, N = 1, 2,…. Similar to input multi-rate EKF
algorithm, we define the input extended vector and
extended coefficient matrices as

ui(k)(2N × 1) = u(k) u(k + 1) · · · u(k + N − 1)
[ ]T

(31)

Bi(6× 2N ) = AN−1B AN−2B · · · B
[ ]

(32)

Using the extended vectors, the first equation in the
reference model (27) is transformed as

d

dx
idmr =

Lr
L2m

vds
( )− rsids + sLs

dids
dx

( )

= Lr
L2m

vds kTo
( )

vds kTo + Ti
( )

..

.

vds kTo + (N − 1)Ti
( )

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

− rs

ids kTo
( )

ids kTo + Ti
( )

..

.

ids kTo + (N − 1)Ti
( )

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣

+ sLs
d

dx

ids kTo
( )

ids kTo + Ti
( )

..

.

ids kTo + (N − 1)Ti
( )

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

(33)

Similarly, the other extended equations can be obtained.
As shown in Fig. 4, at time points KTo, KTo + Ti, KTo + 2Ti

and KTo + 3Ti, the input voltage and current are sampled; flux
and current will be iteratively estimated from discretised
MRAS equation and motor equation. At the beginning of
next time period (K + 1)To, the estimated imr is sent to
MRAS module to estimate rotor time constant.

3 Experimental results and comparison

To validate the proposed multi-rate estimation algorithms, an
experimental set-up shown in Fig. 5 was proposed. The
LabVolt® 0.25 HP squirrel cage induction motor was used
in this set-up whose parameters are given in Table 2 in the
appendix. This motor was coupled to a 0.25 HP
dynamometer for loading and measuring the speed and the
torque. The coupled LabVolt® motor provided the
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measurement interface to measure the machine voltages.
The analog signals are collected by the sensors and patch
panel and converted to ±10 V range. These signals are then
sampled by the A/D cards in the real-time simulator which
uses the RT-LAB environment [27]. The multi-rate
parameter estimation methods proposed in this paper are
implemented in real-time as dynamically linked s-function’s
in the MATLAB/Simulink environment. The algorithms are
compiled using real-time workshop and downloaded to the
real-time simulator for execution. The experimental and
estimated signals can be viewed in real-time on the
host-PC, which is connected to the real-time simulator
through gigabit ethernet.
The input multi-rate EKF algorithm is applied in the

open-loop experiment. Fig. 6 shows the experimental result;
the proposed algorithm gives satisfied estimated speed
which match the actual speed smooth even when the torque
changes. Fig. 7 shows the simulation of close-loop
field-oriented controlled induction motor with multi-rate
EKF estimator. The inputs of the estimator are voltages and
currents obtained from the induction motor; the outputs
contain the estimated load torque and speed. The sampling
period for controlling the speed and the current components
is 16e–5s. The single-rate EKF load torque estimate result
is shown in Fig. 8a with a system sampling period of Ts =
16e − 5s. The reference speed is set to 100 rad/s, which is
57% of the rated speed. The result shows that single-rate
EKF load torque observation effect is good, but stability is
not satisfied, as the noise will detune the performance of
system. The design of the input multi-rate EKF load torque
observation algorithm is based on the proposed recurrence
formula. In this algorithm, the output sampling period is
To = 16e − 5s, input sampling period is Ti = 4e − 5s, Ti = 2e
− 5s, the sampling multiplicity being N = 4, and N = 8,
respectively. The input sampling period is a fraction of the
output sampling period, however, the frame period is still
16e–5s, which equals the single-rate frame period. The
values of covariance matrix elements influence the filter
performance. Q and R are covariance matrices of process
and observation noise, respectively, which are chosen in
diagonal form to alleviate computational complexity. For
the proposed model: P = [50A2 50A2 0.01 (V·s)2 0.01 (V·s)2

20 (rad/s)2 5 (N·m)2]; Q = [50A2 50A2 0.01 (V·s)2 0.01
(V·s)2 20 (rad/s)2 5 (N·m)2]; R = [50A2 50A2]. Figs. 8b and
c show the input multi-rate EKF load torque estimation
results. Comparing with single-rate EKF result reveals that
the input multi-rate EKF improved the load torque estimate
effect significantly. Input multi-rate EKF reduced the
estimate error effectively, improved the observation
accuracy and reduced the system stability time.
With an increase in sampling multiplicity, the observation

improves. The reason is that with the increase of effective
input number, the control ability of the controller improves.
From the perspective of continuous-time, the single-rate
control system can only realise the feedback at the sampling
points; however, during other times in the sampling period
the system is open-loop. Depending on the control
objective, multi-rate control can realise feedback control at
other points in the sampling period, thus improving the
controller performance. The output multi-rate EKF load
torque observation algorithm was designed based on the
recurrence formula with input sampling period Ti = 16e −
5s, and output sampling periods To = 4e − 5s, To = 2e − 5s,
the sampling multiplicity being N = 4, and N = 8,
respectively. Figs. 8e and f are the output multi-rate EKF
load torque estimate simulation results. In comparison with
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single-rate EKF, the output multi-rate EKF increases the
observation accuracy to a certain extent, but the estimated
accuracy does not increase with the increase in the
sampling frequency. This is because in this application the
output of the simulation is stator current whose waveform is
a smooth sine wave; therefore even with multiple sampling
the stator current sine wave to realise the torque estimation
does not change appreciably. On the contrary, when the
input of the simulation is stator voltage whose waveform
contains high-frequency switching such as in a Pulse Width
Modulation (PWM) waveform, multiple sampling of the
stator voltage wave will obtain greater information on the
stator voltage; in this application, the input vectors of input
multi-rate method are calculated quantity, the extended
vector does not bring extra noise; the input vectors of output
multi-rate method are measured quantity, the extended
vector brings lots of observation noise, the process operation
actually amplified the noise influence; therefore use of input
multi-rate EKF to estimate the load torque will achieve a
good result in this application. Future work could focus on
the improvement of estimation performance, by adopting a
suitable noise filter, algorithm optimisation and more
accurate data collection. Table 1 compares the performance
of input multi-rate EKF, output multi-rate EKF and
single-rate EKF in terms of relative error of estimation and
variance. The proposed input multi-rate EKF method
achieves joint speed and torque estimation.
The experiment result compared single-rate EKF with input

multi-rate EKF. Using the actual execution time to present the
computational complexity, the following two observations are
made:

Fig. 4 Sampling and control instant (To = 4Ti, N = 4) D
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1. Comparing input multi-rate EKF (input sampling period:
4e–5s, output sampling period: 16e–5s and frame period:
16e–5s) with single-rate EKF (sampling period: 16e–5s),
the execution time of the former is 134s whereas that of the
latter is 130s, the multi-rate EKF increases the observation
performance while the computational complexity remained
almost the same.
2. Comparing input multi-rate EKF (input sampling period:
4e–5s, output sampling period: 16e–5s and frame period:

Fig. 6 Result of open-loop experiment

Fig. 7 Simulation of FOC of IM with multi-rate EKF estimator
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Fig. 8 Comparison of load torque estimation

a–c By single-rate EKF and input multi-rate EKF
d–f By single-rate EKF and output multi-rate EKF
g–i By single-rate EKF and input multi-rate EKF AD O

NLY
16e–5s) with single-rate EKF (sampling period: 4e–5s), the
execution time of both methods is 134s. the complexity and
the observation performance is almost the same; however,
the output sampling frequency of the former is much lower,
which means multi-rate EKF reduced the hardware
requirement. From this perspective, the multi-rate EKF
lowers the cost of system without lowering the system
performance.

Table 1 Performance comparison of input and output
multi-rate EKF with single-rate EKF

Algorithm Relative error Variance

single-rate EKF 0.2365 0.1045
input multi-rate EKF N = 4 0.0248 0.0068
input multi-rate EKF N = 8 0.0075 0.0006
output multi-rate EKF N = 4 0.2302 0.1395
output multi-rate EKF N = 8 0.0822 0.2094
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Figs. 8g–i show the comparison of the speed estimation
result. With the increase of sampling multiplicity N, the
estimation accuracy improves significantly not only because
of the increase of sampling multiplicity but also because of
the advantages of multi-rate algorithm. The precise speed

Table 2 System variables and parameters

Parameter Value

output power 175 W
moment of inertia 0.0022 kg m2

Rr, Rs 8 Ω, 12 Ω
Lr, Ls, Lm 48.3e–2H, 48.3e–2H, 45.4e–2H
number of pole pairs (np) 2
full load speed 1670 rpm
full load current 1.2 A
phase voltage 120 V
frequency 60 Hz
(1/τr) 16.56 (1/s)
IET Electr. Power Appl., 2013, Vol. 7, Iss. 1, pp. 77–86
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Fig. 10 Comparison of rotor time constant estimation by single-rate MRAS and input multi-rate MRAS
and load torque estimation guarantee the high performance of
the AC drive; however, with the increase of sampling
multiplicity N, the computation burden also increases.
Although the current processing power is enough for the
extra computation, in practice, choosing appropriate
sampling multiplicity to balance the control ability and
calculation burden is recommended.
Fig. 9 shows the simulation structure of the multi-rate

MRAS method. Reference inverse rotor time constant uses
a varying ramp function to emulate practical situations. The
PI controller gain KP, KI in (29) are set as KP = 0.01382 and
KI = 370. The gains were tuned according to experience and
experiment performance. The results of MRAS estimation
under constant speed operation are shown in Fig. 10. The
input multi-rate MRAS estimation simulation was designed
with output sampling period To = 16e − 5s and input
sampling period Ti = 4e − 5s. The frame period of input
multi-rate MRAS algorithm is 16e–5s as the single-rate’s
frame period. Figs. 10a and b show the single-rate MRAS
and input multi-rate MRAS estimation result, respectively.
A comparison shows that the proposed multi-rate MRAS
algorithm improved rotor time constant estimation accuracy.
Variance of the single-rate result is 0.0070, whereas the
variance of the multi-rate result is only 0.0018. The result
indicates that the multi-rate MRAS method improved
system stability efficiently.

4 Conclusion

This paper proposed multi-rate real-time model-based
methods for parameter and state estimation of induction
motor. A multi-rate EKF load torque estimation algorithm
is proposed; both input and output algorithms are
introduced. This method is applied to the motor FOC

Fig. 9 Simulation of IM with MRAS estimator
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system, the method is implemented in real-time on a PC
cluster node that acts as a controller to an induction motor
experimental set-up. Experimental results verified the
effectiveness of the algorithm. The comparison result shows
that the multi-rate control scheme efficiently improved the
accuracy of lord torque estimation. Estimated load torque
follows the reference load torque closely and with better
noise immunity compared with single-rate EKF. This novel
multi-rate method improves traditional EKF method and
brings many advantages to motor parameter estimation.
Rotor time constant is the most sensitive parameter in
indirect FOC. This paper proposed a novel method to
estimate the rotor time constant. The proposed method use
multi-rate control strategy to estimate flux; the obtained flux
is then imported into the MRAS scheme, where the
magnetising current is used as comparison quantity from
reference and adjustable model. The result verified that the
proposed multi-rate MRAS method is efficient and reliable.
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