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ABSTRACT 

The field of statistical shape analysis is aimed at describing and compar­

ing the shapes of objects. Areas of application are often in fields related to 

medicine or biology, with shapes of interest that are often complex and non-

geometric. Shape analysis methods allow clinicians and researchers to analyze 

shape differences and shape changes within individuals, across groups, and 

over time. These can occur due to growth, varying treatment techniques, or 

natural differences between groups. 

This thesis will discuss some methods that have been developed in the 

field of landmark-based statistical shape analysis, and apply these methods to 

an example three-dimensional data set taken from the field of orthodontics. 

Landmark-based methods apply to shapes that have been represented as a 

set of landmarks, or points, of interest (as opposed to shapes that are rep­

resented by boundary information, or an entire pixelated/voxelated image). 

Shape analysis methods involve transforming these landmark configurations 

into some shape space (or approximation to it), in order to define distances 

between shapes, and perform statistical analyses. 

Because of some statistical issues that arise in the standard shape analysis 

setting, an alternative approach will also be applied. This approach, borrowed 

from computational topology, is called persistent homology. It will be applied 

to the existing shape analysis framework to detect clusters or subgroups of 

similarly-shaped objects. 
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Chapter 1 

Introduction 

Statistical shape analysis is a field developed primarily within the last 25 

years, with the objective of facilitating descriptions and comparisons of the 

shapes of objects. In this context, shape refers to any geometrical information 

about an object that is invariant to the similarity transformations of rotation, 

translation, and rescaling. It is often desirable to compare groups of shapes 

for statistically significant differences in their 'mean shape'. To do this, the 

distance between two shapes must be quantified somehow. Many common 

areas of application are in the fields of medicine and biology, with digital 

representations of the objects of interest obtained through medical imaging 

methods in 2- and 3-dimensions. Many of the tools developed for statistical 

shape analysis are intended to analyze the shape of objects that are represented 

as a set of landmarks, usually of biological or clinical significance. 

This thesis will discuss some of these mathematical and statistical tools for 

analyzing shapes. An orthodontic data set involving 3-dimensional craniofacial 

landmarks will be used throughout. This introductory chapter will outline 

the theory of some established methods in statistical shape analysis, which 

will be applied to the data set in Chapters 3 and 4. Chapter 2 will discuss 

the data set, and the reliability of landmark placement. With the example 

data set, as is often the case in real-world studies, it is not only of interest 

to compare treatment groups at one time-point, but longitudinally as well. 
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Because of some statistical issues that arise when comparing multiple groups in 

the standard setting, an alternative, more qualitative method will be discussed. 

This method, called persistent homology, is from computational topology, and 

as this thesis shows, can be applied to the existing shape analysis framework 

to detect similarly-shaped subgroups within the larger set of subjects. This 

will be presented in Chapter 5, and contrasted with the existing longitudinal 

methods discussed in Chapter 3. Conclusions and directions for future research 

will finish the text in Chapter 6. 

1.1 Statistical Shape Analysis 

The idea of using mathematical expressions to describe biological shape differ­

ences dates back to the landmark 1917 text On Growth and Form by D'Arcy 

Wentworth Thompson [43]. He discussed concepts such as growth-related 

shape change, shape differences corresponding to function, and the use of de­

formation grids to map one shape into another. 

The mathematics of shape theory began to be developed formally in the 

late 1970's and 1980's, with Fred Bookstein ([3], [4], [6]) and David Kendall 

([26], [27]). Although methods do exist for dealing with other types of data 

(see Section 1.3 below), this thesis will focus on analyzing shapes which are 

represented as a set of landmarks (as opposed to entire curves or surfaces, or 

pixelated/voxelated data). To this end, we will first review some concepts, 

following the exposition of Dryden and Mardia [15] on Procrustes methods, 

shape spaces, and tangent space approximations, as pertaining to landmark 

data. Their book Statistical Shape Analysis [15] can be referenced for further 

details. For some of the methods described below (specifically those of Dryden 

and Mardia), the mathematics for two-dimensional data use complex numbers 

to represent the two dimensions, and thus differ both in technique and notation 

from the three-dimensional methods. Because all of the data sets considered 

here will be three-dimensional, the descriptions of the methods for m = 2 will 

be omitted (if they are different than the m = 3 case), but can be found in 
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their text. 

1.1.1 Landmark Configurations and Superimposition 

An important concept in statistical shape analysis is that of homologous land­

marks. These are reference points placed on the image/object under analysis, 

which are usually biologically relevant and appropriate for the objective of the 

study. The landmarks must be correspondingly placed on all objects of inter­

est in a consistent way (discussed further in Chapter 2). The use of landmark 

data is particularly appropriate in fields (such as dentistry and orthodontics) 

where well-defined landmarks have already been identified. Examples in that 

field include the pogonion (the most forward-projecting point on the anterior 

surface of the chin), or the buccal cusp tip of the right pre-molar. 

Once each object has been represented as a configuration of landmarks, 

we would like to quantify the shape of each configuration. This will allow 

statements about the similarity/difference of shapes or groups of shapes. The 

groups of shapes under analysis could correspond to things like gender, treat­

ment group, or the same individuals measured at different time points. This 

analysis of groups of shapes is where the 'statistical' part of shape analysis 

comes in. When comparing individuals there is no randomness involved (ex­

cept for that due to measurement error). Whereas given multiple groups, each 

is taken to be a sample from some population which has a mean shape, with 

an unknown distribution of shapes about that mean. 

The registration of landmarks for each object is done in some given coor­

dinate system, so a set of k landmarks in m dimensions can be represented 

by a k x m configuration matrix. Since shape information is invariant to sim­

ilarity transformations, it is necessary that any measure of shape is as well, 

and thus independent to the original choice of coordinate system. A method 

called Procrustes superimposition will be performed to optimally rotate, trans­

late, and scale the configurations (to minimize the squared distances between 

corresponding landmarks) prior to shape comparison. 
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Definition 1.1. If Xi and X2 are k x m landmark configuration matrices, 

then X\ and X2 have the same shape if 

x2 = pxlv + ikl 

w h e r e 

j3 —> positive scaling constant 

T —> m x m special orthogonal rotation matrix, i.e)T E SO(m) 

7 -* rnxl translation vector 

Ife ""• A;-length vector of ones 

In the simplest case, matching one landmark configuration X\ as closely 

as possible to a second configuration X2, Procrustes superimposition consists 

only of finding the estimates (3, T, and 7 that minimize 

WXz-pXiT-l^f 

where \\X\\ = {trace(XTX)}1/2. This distance is the sum of the squared 

distances between each pair of homologous landmarks, and the minimizing 

quantities can be computed directly. The method of matching one configura­

tion onto another is called full ordinary Procrustes analysis (full OPA). Note 

that the minimum distance found matching X\ onto X2 does not necessarily 

equal that found matching X2 onto Xi. 

The general case becomes more complicated, with configuration matrices 

Xi,X2,... ,Xn corresponding to n > 2 subjects. Now translations, rotations 

and scalings must be performed in such a way that all the configurations are 

optimally superimposed. In other words, so that the sum of squared norms of 
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pairwise distances 

n m 

(1.1) (1/n) J2 E W(&X^ + ^ ) " ( / W i + ̂ ) H 2 

is minimized over all T; e SO(m), $ > 0, and 7J. This method is called full 

generalized Procrustes analysis (full GPA). 

If there were no additional restrictions imposed on this, the size of each 

configuration could be scaled to become arbitrarily small. To avoid this, a 

restriction on the centroid size of the mean configuration is imposed: 

Definition 1.2. Centroid size is defined as 

k m 

z=i j=i 

where X^ is the (i,j)th entry of X, Xj = (l/fc)Ei=i-^ij ^s the arithmetic 

mean of the jih dimension, and C is the k x k centring matrix, whose entries 

are ^ p along the diagonal, and — £ everywhere else. 

To insure that not all $ be close to zero, the centroid size of the mean con­

figuration is restricted to be 1. When working with landmarks in 2-dimensions, 

there exists an explicit solution which minimizes Eq. 1.1. When the dimen­

sion is m > 3 however, the minimization must be performed iteratively. The 

details for full OPA and full GPA will be presented in Section 1.1.4. 

1.1.2 Shape Spaces 

When removing similarity transformations to obtain a standardized represen­

tation of the shape of a configuration, translation and scaling are filtered out 

first. Translation is removed through pre-multiplication by a centring matrix, 

with common choices of either 

(1.2) C = Ik- \lkll 

S{X) = \\CX\\ = 
\ 
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as used in Definition 1.2, or the k x (k — 1) Helmert sub-matrix defined below. 

Definition 1.3. The k x (k — 1) Helmert sub-matrix H is given by 

H = 

=1 JL n 

- 1 - 1 2 

- 1 
_ y/k(k+l) 

(fc-1) 

0 

0 

0 

In other words, for /î - = — j ( i + 1) , the j th row of H contains hj j times, 

followed by —jhj, and then k — j — 1 zeros, for j — 1 , . . . , A; — 1. 

Write 

XH = HX e R(fc~1)m\{0}, or alternatively Xc = CX 

to represent configurations with location removed. Note the relationship 

HTH = C, and so HTXH = CX. 

Centroid size (see Definition 1.2) is chosen as the divisor for size-standardization. 

Since C is idempotent (i.e. CTC = C), also note that 

S(X) = \\CX\\ = y/tr(XTCX) = ^tr(XTHTHX) = \\XH\ 

Which leads us to the definition of pre-shape: 

Definition 1.4. A configuration matrix X has pre-shape given by 

7= XH HX 

11**11 \\HX\\ 

which is invariant under translation and scaling of X. 

6 



Definition 1.5. The pre-shape space (denoted 5^) is the space of all possible 

pre-shapes, and since \\Z\\ = 1, it is a unit hypersphere in R(fe~^m. 

The term 'pre-shape' indicates that the fully standardized shape of the 

configuration has yet to be reached, as rotation has not been removed. This 

final step is performed by identifying rotations of Z in the pre-shape space. 

Definition 1.6. The shape of a configuration matrix X can be represented 

by the set 

[X} = {ZT\TGSO(m)}. 

The set of all such shapes is called the shape space, and is denoted J2m-

In more topological language, for configuration X with pre-shape Z, rota­

tions of Z on the pre-shape sphere form an orbit that corresponds one-to-one 

with the shape represented by [X]. Identifying along such orbits gives the 

shape space 

J2km = Si/SO(m) 

i.e. Ylm *s ^n e quotient space of S^ under the action of SO(m). 

The shape of a configuration is actually then, an entire set: the equivalence 

class formed under the group action of similarity transformations. A simplified 

pre-shape sphere in shown in Figure 1.1.2. 

1.1.3 Procrustes Distances 

It is desirable to define a distance measure between shapes, and some pos­

sible choices of metric for the shape space are given below. For two k x m 

configuration matrices X\ and X2, with corresponding pre-shapes Z\ and Z2 

define: 

Full Procrustes distance: When minimized over rotations and scale, the 

closest Euclidean distance between Z\ and Z2 is the full Procrustes dis­

tance 

dF(X1,X2)= inf \\Z2-0ZiTW, 
TeSO(m),/3>0 

7 
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Figure 1.1: A simplified pre-shape sphere showing the orbits corresponding to 
two shapes. 

Partial Procrustes distance: The term 'partial' indicates that closest match­

ing is performed over translations and rotations, but not scale. This gives 

the partial Procrustes distance as 

dP{x1,x2)= inf n^-^rii , 
reso(m) 

Procrustes distance: Using the pre-shape hypersphere, the great circle dis­

tance between Z\ and Z2 minimized over rotations gives the Procrustes 

distance (defined trigonometrically) as 

p(X1,X2) = 2axcsm(dP(X1,X2)/2). 

Representations of the above distances are shown in Figure 1.1.3, both on the 

pre-shape sphere and in a cross-sectional view. 
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Figure 1.2: On the left is the simplified pre-shape sphere with two of the 
Procrustes distances added. On the right is a cross-sectional view illustrating 
the Procrustes distances. 

1.1.4 Procrustes Methods 

We now return to the methods of ordinary and generalized Procrustes analysis 

(full OPA and full GPA) discussed in Section 1.1.1. Throughout this section, 

we will assume without loss of generality that all configuration matrices have 

been centred through pre-multiplication by C (defined in Eq. 1.2). 

Full OPA is concerned with matching just one configuration, Xi, as closely 

as possible onto another configuration, X2, by finding the (7, J3, T) as de­

scribed in Definition 1.1 that minimize \\X2 — PX\T — lfc7T | |2. 

Definition 1.7. When the minimizing transformations are estimated and ap­

plied to Xi, we denote the transformed configuration with a ' P ' superscript, 

and call it the full Procrustes fit of X\ onto X2: 

x[^px1r + ik^
T. 

The parameters (7, (3, T) are fully computable: 

Theorem 1.1. The values of (7, /3, T) that minimize \\X2 — PXiT — lfc7T | |2 
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are 

(1.3)7 = 0 

f = UVT where ^ f * = 2%ZX = VAUT, U,V € SO{m) 

~ _ trace(X^X1f) 
^ ~ trace(X1

TX1) ' 

Proof. Assuming X\ and X2 centred, the quantity to be minimized is 

\\X2 - (3XlT - lfc7
T | |2 = \\X2\\

2 + ^ I I X J H 2 - 2/3trace(X2
TX1r) + k1

T
1 

so 7 is taken to be 0. Now use the singular value decomposition 

ZlZx = VKUT
) 

where U, V € SO(m) and A = diag(Ai,..., Am) with Aj > . . . > \m~\ > 

\Xm\ the square roots of the eigenvalues of Z^Z^Z^Z^^ to minimize 

||X2||2 + /?2 | |X1 | |2-2/5trace(X2
TX1r) = ||X2||2 + {?\\Xxf 

(1.4) - 2/?||X1||||X2||trace(Z2
TZ1r). 

Maximizing trace (ZjZ\Y) over T £ SO(m) gives 

(1.5) f = UVT 

(see Dryden and Mardia [15] p.61-62 for details of Eq. 1.5). Now differen­

tiating the right-hand side of Eq. 1.4 with respect to j3 gives 

2/3||Xi||2 - 2||X1||||X2||trace(ZjZ1f) 
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so the minimizing value of (5 is 

- 2trace(||X1l|HX2[|Z2
rZ1f) _ trace(X2

rX1f) 
2\\XX\\2 trace(X1

TX1) ' 

as desired. • 

In the general case there are n > 2 configurations that must be super­

imposed as closely as possible through similarity transformations. For this, 

generalized Procrustes analysis is used, and the full Procrustes fit will be writ­

ten using similar notation to the OPA case. 

Definition 1.8. For each of the configurations Xi, the parameters (Ti,/3j,7j) 

are those which minimize the sum in Eq. 1.1. Then the fitted configurations 

Xf = PiXifi + lk^, i = l,...,n, 

are called the full Procrustes fit of the Xj. 

The model used for the configurations is 

xi = pi{fji + Ei)ri + ik'tf, 

where the Ei are kxm independent random error matrices with zero mean, and 

fj, is the kxm mean configuration matrix. The similarity transformations are 

considered nuisance parameters, which must be estimated first before estimates 

for the true parameter of interest // can be obtained. As mentioned in Section 

1.1.1, full GPA cannot be calculated explicitly for m > 2 dimensions, and thus 

an iterative procedure must be used. The following algorithm, presented in 

Dryden and Mardia [15], is an adaptation for shape analysis from the full GPA 

algorithms of Gower [20] and Ten Berge [1]. 

GPA Algorithm for m > 2 

1. Translations. Centre each configuration using centring matrix C given 
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in Eq 1.2. Initially let 

Xf = Xi, i = l,2,...,n 

2. Rotations. For each i = 1 , . . . , n, let 

^yxf, 
n — 1 z—' ^ 

and the new X f be the rotation-only OPA superimposition of the old 

Xf onto X(j). Repeat this until the Procrustes sum of squares 

'Vn) E E IKA-̂ r, + ifc7f) - (^xJvj + ifc7J)l II I U;j\;L i - I - ± i . 'V. - I — [LJJJ\4L A -+- 1 1 . ' " 

from Eq. 1.1 cannot be reduced further. 

3. Scaling. The vectorize operator, vec(X), takes sua I x m matrix X 

and stacks the columns of X (in order) to obtain an £ra-vector. If 

the vec(Xf)'s have n x n correlation matrix $ with eigenvector 0 — 

(0 i , . . . , 0 n )T corresponding to the largest eigenvalue of $, then take 

A = 5Zfc=i ll^fc 
P | | 2 \ V2 

for i = 1,... ,n. 

4. Iteration. Repeat steps 2 and 3 until the Procrustes sum of squares 

from Eq. 1.1 can no longer be reduced. 

The estimate of mean shape [fi], is the shape with centroid size 1 whose 

sum of full Procrustes distances to all the Xi is a minimum. In other words: 

Definition 1.9. The full Procrustes estimate of mean shape (full Procrustes 
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mean) is given by [/}], where 

n n 

jx — arg inf y^d | (X; , / / ) = arg inf Y%in 2pP^,£0-
M:S(/i)=l ^—f /i:S(/i)=l z — / 

i = l 1=1 

Note that the shape of jx is the same shape as the mean of the full Procrustes 

fits 
1 n 

i = i 

This is because GPA is performed by minimizing the sum of the squared 

Euclidean distances, and the minimum of 

£ll*f-dl2 

is given by fx = X. 

For both ordinary and generalized Procrustes analysis, it is possible to 

perform a version that doesn't allow scaling transformations. This is desirable 

when size information about the objects of interest is relevant, but the objects 

are still of comparable scale. This type of Procrustes analysis is called partial 

OPA or partial GPA. The sum of squares to be minimized are exactly as those 

for full OPA and GPA, but with the /3's removed. The methods of estimation 

remain the same, with the same translation and rotation estimates in OPA, 

and Step 3 omitted from the GPA algorithm. 

If all the shapes of interest lie reasonably close together in the shape space 

(i.e. there is not a large amount of variability between the shapes), then the 

choice of whether to use the Procrustes distance dp, dp, or p may be unnec­

essary. In the vicinity of the pole (often chosen to be the mean shape), these 

three distances are very similar, and may be closely approximated through a 

tangent space projection. 
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1.1.5 Tangent Space Methods 

Tangent space approximations are useful, because linearization of the shape 

space potentially allows for the use of regular multivariate statistics. The 

method of tangent decomposition discussed here does require some scaling 

of the original configurations, since the pre-shapes Z,- are used. However, the 

coordinates are still termed partial Procrustes tangent coordinates because the 

pre-shapes are matched to the pole only through rotation (and not scaling). 

Doing this allows all the points representing the shapes of interest to remain 

on the unit hypersphere in R^-1-1™. 

The tangent space projection is taken to the pre-shape sphere, using fi as 

the pole. As with any tangent projection, the tangent vector representing a 

point in the shape space must be orthogonal to the pole, i.e.) Tangent vector 

V must satisfy 

(1.6) trace(VrT/x) = 0, trace(VT/zS) = 0. 

for any skew symmetric matrix S. 

A (k — 1) x m pre-shape Z is rotated to match up with pole fi using T 

from Eq. 1.3. The vectorize operator vec(X) defined in step 3 of the GPA 

algorithm, is used to obtain v, the tangent plane projection of ZT at /}, 

(1.7) v = (I(k-i)m - vec(/2)vec(/})T)vec(Zf). 

Note that since 

vTvec(fi) — trace(VT/t) = 0, vec(*y)Tvec(/2S') = trace(VTfiS) = 0 

Eq. 1.6 is satisfied. 

The tangent space to the pre-shape sphere at ft, (denoted T^S^) is of di­

mension (k — \)m — 1. From a neighbourhood U of ft, in the shape space to 

the pre-shape sphere there is a local section (call it <r), with a[p] = ft and 
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cr[Z] — ZT (i.e. it gives the point on the orbit of the pre-shape with minimum 

distance to fi). The image of U under a is a submanifold of S^ of dimension 

M = (k — l)m — 1 — m(-m~ >. Since it is assumed that the shapes are reason­

ably similar to each other (and to fi), then the projection of points in cr(U) to 

T^S!^ is, for practical purposes, in T^a(U). This is a subvector space of T^S^ 

of dimension M, so although the t/j's are written as (k — l)m-length vectors, 

they lie in a space of dimension M < (k — l)m. 

If scaling of the pre-shapes is desired for fitting to the pole, then full Pro­

crustes tangent coordinates 

(1.8) vF = (J(jfc_i)m - vec(/i)vec(/J)r)vec(/3Zf) 

can be obtained, using J3 from Eq. 1.3 as in full OPA. 

The tangent space setting allows statistical inferences to be made about 

the groups of shapes under study. See Dryden and Mardia [15] Chapter 7 for 

details of Goodall's F test (used under the assumption of isotropy), plus the 

one-sample analog to the two-sample Hotelling's T2 test discussed below. 

Two independent sample Hotelling's T2 test. 

For two independent random samples Xi,X2,..., Xni and Y~i, Y2,..., Yn2, 

from populations with mean shapes [fii] and [^2], test 

(1.9) H0 : [fJ-i] = [n2] versus Hi : \fii] ^ [/22] 

using the pooled full Procrustes mean shape ft as the pole. With partial Pro­

crustes tangent coordinates of v\,..., vni and w\,..., wn2 and a multivariate 

normal model in the tangent space, then for 

Vi ~ iV(6,S) , Wj ~ A^(6,S), i = l,...,m;j = l , . . . , n 2 , 

the usual test statistic for Hotelling's T2 test is the Mahalanobis distance 

D2 = (v-W)TSZ1(v-iv), 
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where Su is the pooled sample covariance matrix (with divisor ri\ + n2 — 2). 

However, because the tangent vectors lie in an M-dimensional subspace of 

^(fc-i)^ w h e r e M = (k~l)m-l- m{m-l) < (fc - l)m, the covariance matrix 

Su will not (in general) be of full rank, making inversion impossible. An 

adaptation which allows 'inversion' of symmetric square but singular matrices 

is the Moore-Penrose generalized inverse. 

Definition 1.10. The Moore-Penrose generalized inverse of a square symmet­

ric matrix A is 

J = l 

where 7j are the eigenvectors of A corresponding to the p nonzero eigenvalues 

Ai , . . . , Xp. 

Note that A~ satisfies the property that A~~AA~ = A. 

Using the Moore-Penrose generalized inverse, define the Mahalanobis dis­

tance to be 

D2 = (v-w)TS-{v-w). 

Under HQ, £i = £2, and using the test statistic 

nin2(ni +n2- M - 1) 2 

(ni +n2)(ni + n2 - 2) 

(which follows a F^+n2_M_1 null distribution), H0 is rejected for large 

values of F. If the assumption of equal covariance matrices, or the multivariate 

normal tangent space model are inappropriate, then a bootstrap procedure 

may be used. To test the same null hypothesis as in Eq. 1.9, a number B 

(often between 200 and 1000) is first chosen. Then the total group of n\ + n2 

subjects is randomly split into two groups of size n\ and n2 and the test statistic 

is evaluated for these newly created groups. This is repeated B times, and the 

ranking r of the observed test statistic Tobs compared to those of the B random 

permutations is used to give a p-value: 

r — 1 
V = 1 — ^ • 
y B + l 
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Under the assumption of independent isotropic covariances (i.e. variabil­

ity is independent and equal along each axis), a one-way analysis of variance 

(ANOVA) is possible, but the assumption of isotropy is often unrealistic. To 

test equality of means for several groups a multivariate ANOVA can be per­

formed, using the pooled full Procrustes mean as the pole for tangent space 

approximations. All usual multivariate analyses for Euclidean space are possi­

ble in the tangent space, but a problem arises when the number n of observa­

tions is small compared to the dimension of the tangent space. This can occur 

easily in real-world applications, as medical and biological studies often have 

a relatively small number of subjects, and M = (k — \)m — m[jn~ > — \ can 

become very large as k increases. 

One alternative is to apply dimensionality-reducing procedures such as 

Principal Components Analysis (PCA) or multidimensional scaling (MDS) in 

the tangent space. Another is the approach we suggest in Chapter 5, to use an 

approach from computational topology to identify subgroups in the tangent 

space. 

The methods discussed in Section 1.1 will be applied to our 3D orthodontic 

data set in Chapter 3. 

Next we will discuss the method of Euclidean Distance Matrix Analysis, 

which we will use both as a shape analysis technique, and a method of detecting 

influential landmarks. 

1.2 Euclidean Distance Matrix Analysis 

This form of shape analysis, usually abbreviated to EDMA, was first presented 

by Subhash Lele in 1991 [28], [29], and was developed with biological applica­

tions in mind. See the book An Invariant Approach to Statistical Analysis of 

Shapes by Lele and Richetsmeier [31] for a full exposition of EDMA and its 

applications. 
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1.2.1 Description of shape and form 

In the EDMA approach, instead of calculating estimates for the nuisance pa­

rameters of rotation and translation (as in Dry den and Mardia's approach), 

each landmark configuration is represented as the set of all pairwise inter-

landmark distances. This representation is invariant to these rigid motions. 

These inter-landmark distances are written in a form matrix. (Note: Through­

out, the term form will be used to refer to size-and-shape information, while 

the term shape refers to information that is invariant to scale) 

Definition 1.11. For k x m landmark coordinate matrix X, the k x k form 

matrix of X is 
0 dl2 ••• dlk 

doi 0 • • • d2k 
FM{X) = 

dki dk2 • • • 0 

where dij is the Euclidean distance between the ith and j th landmarks. Note 

that FM(X) is a square symmetric matrix. Because of the repetition involved 

in writing FM(X) as a matrix, it is often written as a vector consisting of the 

above-diagonal entries. 

FM(X) = [di2, • • •, dxk, d23, • • •, d2k, • • •, c?(fc-i)fe] 

This vector will be of length I = k(k — l ) /2. 

To compare two shapes, each is first represented as a form matrix. One 

measure of form difference suggested by Lele and Richtsmeier is that of a 

relative form difference matrix. 

Definition 1.12. For initial landmark configurations X and Y, with form 

matrices FM(X) and FM(Y), define the form difference matrix to be 

FDM(Y,X) = 
FMy{Xy 
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i.e. The (i,j)th entry of FDM(Y,X) is the ratio of the (i,j)th entries of 

FM(Y) and FM{X) respectively. 

As with regular form matrices, an FDM is often written as a vector using 

the upper-triangle entries. 

If the entry of the FDM corresponding to landmarks i and j is greater 

than 1, then that inter-landmark distance is larger in configuration Y than in 

configuration X (and smaller if the entry if less than 1). 

One measure of the 'size' of an object was presented in Section 1.1: centroid 

size. In EDMA literature, a common size measure is the geometric mean of 

all the distances in the form matrix. 

Definition 1.13. For configuration X with k x k form matrix FM(X), let 

the size of X be represented by 

S{X) = l[FMij(X) 
i/i 

where I is the length of the FM vector (i.e. the number of entries in the upper 

triangle of the form matrix). 

A scaled form of a configuration may now be represented as the form matrix 

divided by its size, and a shape difference matrix defined analogously to the 

FDM. 

Definition 1.14. For X, with FM(X), and S(X) as above, define the shape 

matrix of X to be 

SM(X) - \FMvW SM{X) - rwo~_ • 
If configuration Y has shape matrix SM(Y), then the size difference between 

X and Y is the quantity 

S(Y)/S(X) 

and the shape difference matrix is defined entry-wise as 

SDMij(Y,X) = SM^Y) - SMij{X). 
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1.2.2 Calculating mean form matrix 

In the statistical setting, where a group of objects is taken to be a random 

sample from some population, we are again interested in estimating the mean 

shape of the population. Because of the invariance of shape to similarity 

transformations, the mean shape cannot be estimated directly, so it's form 

matrix is estimated, and then one instance of that shape (perhaps centred at 

the origin) is chosen as an icon for graphical purposes. 

To estimate the population mean shape, begin by writing each landmark 

configuration Xi,... ,Xn as the vector FM(Xi) from Definition 1.11. The 

method of estimation varies depending on assumptions made about the vari­

ance about the mean shape. In general, the covariance matrix V can be written 

as 

V = Efc <g> ETO, 

the Kronecker product of the covariance matrix between landmarks (£*.) and 

the covariance matrix between the axes (£m) . 

Note: The Kronecker product of an m x n matrix A and a p x q matrix 

B, is the mp x nq matrix 

A®B = 

auB ••• aXnB 

am\B ... amnB 

Under the full model, E& and Em are symmetric matrices (not equal to 

the identity matrix) of size k x k and m x m respectively. This means the 

variability at different landmarks is correlated, as is the variability along the 

x, y, and z axes. Estimation of the mean form matrix is possible in this case, 

but can become very computationally intensive as k increases. It involves the 

solution to a rather complicated system of k(k + 2) + m — 2 equations. See 

Lele and Richtsmeier [31] p.117-120 for details. 

A slightly less realistic, but more tractable model is V = E& <g) Im, where 
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the axes are uncorrelated with equal variability. The algorithm for this case 

from Lele and Richtsmeier [31] is given below. 

The model V L 'fcrra (the isotropic model) is unrealistic in a 

biological setting, and will not be discussed further here. 

Algorithm to estimate mean form (when V = £& ® Im): 

1. For Xi,...,Xn, calculate the form matrices FM(Xi),..., FM(Xn). 

2. Calculate the squared Euclidean distance matrices Ei,..., En, where the 

(Z,m)th entry of E{ is e{m = [FMlm(Xi)}2. 

3. For each squared inter-landmark distance (between landmarks / and m, 

say), calculate 

1 n i n 

tim = - y~] eim,i, and s2(e;m) = - V V Q m.i °(?n eir. 

(The average and variance, over the n individuals, of the squared Eu­

clidean distances between landmarks I and m.) 

4. Calculate E\m = (e2
m—|s2(e;m))1/'2 for all pairs of landmarks I = 1 , . . . , k; m 

1 , . . . , k, and use 

FM{M) = 

0 ' £ 1 2 

0 

'£\k 

£\k y^l(fe- l 0 

as an initial estimate of the mean form matrix. This estimate can 

be improved by restricting it to be a form matrix for some actual m-

dimensional object: 
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5. Square the entries in FM(M) to obtain 

EM{M) 

0 £12 • • • iik 

£12 0 • • • : 

£lk il(k-l) ' " - 0 

Use EM(M) along with C = Ik - \lkll to calculate 

B(M) = --C[EM{M)]CT. 

6. Calculate the eigenvalues Xi > ... > \k and corresponding eigenvectors 

hu...,hk of B(M). 

7. For three-dimensional data, estimate the mean form matrix by 

M = [y/Xihi, VX2h2, V^h]-

This configuration can be used if the mean shape needs to be displayed 

graphically. 

8. Use the form matrix corresponding to M as the improved estimator for 

FM(M). 

Note: This estimate is accurate only up to rotation, translation and re­

flection, so it is possible that one or more axes may need to be multiplied by 

—1 to obtain an accurate graphical representation. 

1.2.3 Comparison between groups 

To compare two groups of configurations X\,. . ., Xni and Y\,..., Yn2, each 

configuration is represented as a form matrix, and the two mean form matri­

ces FM(X) and FM(Y) are estimated. An estimated mean form difference 
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matrix is then calculated by substituting the estimated mean form matrices 

into Definition 1.12. 

Definition 1.15. The estimated mean form difference matrix is given by 

FDM(Y,X) 
FMtj(X) 

The estimated mean shape matrices and mean shape difference matrix are 

defined similarly: 

SM(X) 
FMzj(X) 

S(X) 
, SDMij(Y,X) = SMij{Y)-SMij(X), 

where S(X) = [ ] l F M i j W ] • 

In terms of statistical analysis, it is desirable to obtain point estimates and 

confidence intervals to discern in which area(s) shape differences are localized. 

Observing the estimated FDM(Y, X), a point estimate for the linear distance 

between landmarks i and j does not give very much information. Without 

knowledge about what type of variability is expected, it cannot be determined 

whether the given distance is significantly different between group X and group 

Y. Although it is possible to obtain confidence intervals using a model-based 

Monte-Carlo approach (for instance, assuming a Gaussian perturbation model 

and generating samples based on estimated mean and covariance structure), 

such methods as sensitive to deviations from the model assumptions. If sample 

size is not unreasonably small, a bootstrap procedure that doesn't require 

assumptions about the underlying model is often more appropriate: 

Bootstrap procedure for FDM entry-wise confidence intervals 

The groups of interest are Xi,..., Xni and Yj , . . . , Yn2, with FDM(Y, X) 

written as a vector of length I = k(k — l ) /2. 

1. From the sample X\,... ,Xni obtain a simple random sample with re­

placement, of size n\. Call this sample X*1}... ,X*ni. Obtain a simple 

23 



random sample with replacement of size n2 from Yi , . . . , Yn2, and call it 

y * i , . . . , y * „ 2 . 

2. Calculate FDM(Y*, X*) from the samples obtained in step 1, and write 

as an /-vector. 

3. Repeat steps 1 and 2, B times, where B is often chosen between 200 and 

1000. 

All B of the FDM(Y, A")'s can be collected into an / x B matrix. To obtain a 

confidence interval for each inter-landmark distance, sort the row containing 

the B entries for that distance in ascending order. Removing the first a/2 and 

last a/2, the remaining maximum and minimum entries give a 100(1 — a)% 

confidence interval for that inter-landmark distance. If the confidence interval 

contains 1 then there is no significant difference in that linear distance between 

groups X and Y (at the level a). This sorting procedure to obtain confidence 

intervals is done separately for each row in the I x B matrix. 

In addition to determining the individual inter-landmark distances that 

appear to be bigger or smaller in one group over the other, a hypothesis test can 

be performed to determine whether the overall mean shapes are significantly 

different. The two methods that have been developed for the EDMA setting 

(and are presented in Lele and Richtsmeier [31]) are the EDMA-I and EDMA-

II hypothesis tests. 

EDMA-I hypothesis test The EDMA-I procedure is a one-way test for 

equality of mean form, and is performed using samples X±,... ,Xni, and 

•* 1) • • • ) *n2' 

1. Estimate the mean form matrices for samples X and Y, calculate FDM(Y, X), 

and sort its entries in descending order. 

2. Use as a test statistic T: the ratio of the maximum entry in the FDM 

to the minimum entry. If the mean forms of X and Y are very similar, 
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then all the entries in FDM(Y,X) will be very close to 1 (or some 

other constant if there is size but no shape difference), and thus the test 

statistic T will also be close to 1. The further T is from one, the more 

dissimilar the two mean forms. Using the samples X and Y, calculate 

= TnaxijFDMij{Y,X) 

°hs mnxij FDMijiY.X)' 

3. Choose one of the samples as a baseline (say sample Y). From this 

baseline sample, perform a simple random sample with replacement of 

size ni, and call it sample X*. Perform another simple random sample 

from the same baseline, this time of size n^. Call it sample Y*. Perform 

Steps 1, 2, and 3 using X* and Y* to obtain a new T value. 

4. Repeat Step 3 B times, with B between 200 and 1000. 

5. The values of T obtained in Steps 3 and 4 can be used to form a histogram 

of the null distribution of T. If T0&s lies beyond the upper or lower a / 2 

tails of the distribution, then the null hypothesis may be rejected at level 

a significance. 

E D M A - I I two-way hypothesis test For samples X and Y as above, the 

EDMA-II method uses scaling factors on the mean form matrices to perform 

a two-way test for equality of mean shape. 

1. Estimate the mean form matrices for samples X and Y, and calculate 

FDM(Y,X), as well as the sizes S{X) and S(Y) from Definition 1.13. 

2. Obtain the estimated shape difference matrix SDM(Y, X) from Defini­

tion 1.14, using the shape matrices SM(X) and SM(Y) (where a shape 

matrix is the FDM divided by size). 

3. Using estimates for the mean forms and variance-covariance matrices 

(see Lele and Richtsmeier [31] p i 16-120 for variance-covariance matrix 

estimation) generate two new samples under the Gaussian perturbation 

model. Calculate the Z statistic for these samples. 
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4. Repeat Step 3 B times (eg. B = 500) to obtain B Z-statistics Z\,..., Z50o-

Sort these in increasing order, remove the top and bottom a/2 values, 

and use the remaining maximum and minimum Z values as the bounds 

for a 100(1 — a)% confidence interval. If this interval does not contain 0, 

then the null hypothesis may be rejected, and the conclusion made that 

the samples have significantly different mean shape. 

Each test has its advantages and disadvantages. EDMA-I requires the 

choice one of the samples as a baseline, so it is a one-way test, asking whether 

the mean shape of group X is similar to a multiple of the mean shape of group 

Y. i.e.) Could sample X have arisen from the same distribution from which 

sample Y was obtained? Since it is not a symmetric test, it is useful to perform 

it twice, using the other sample as baseline on the second test. Additionally, 

EDMA-I assumes equal variance for the two populations, but does not make 

any assumptions about the underlying distributions. 

EDMA-II does not assume equal variances, and is a two-way test that 

doesn't require the choice of a baseline sample. It does however use a Monte-

Carlo method for generating samples to obtain confidence intervals, which 

assumes a Gaussian perturbation model and requires estimation of variance-

covariance matrices. It also requires a choice of size measure (usually the 

geometric mean from Definition 1.13) to use when standardizing for scale. 

Some of the EDMA-based shape analysis methods discussed in the section 

will be applied to our example data set in Chapter 3. 

1.2.4 Using ED MA to identify influential landmarks 

In the previous section a bootstrap procedure on the FDM was discussed, 

as a method of determining which inter-landmark distances were significantly 

different between two mean forms. Other methods involving the FDM are 

also available, which allow detection of the landmarks that reflect the greatest 

shape differences between the samples. Such landmarks are termed influential. 
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These methods were first presented by Lele and Richtsmeier in [30]. 

One method of detecting influential landmarks is to regard the vectorized 

estimated form difference matrix obtained from the original samples of k x m 

configurations Xi,... Xni, and Y\,..., Yn2. The entries of the estimated FDM 

vector may be sorted from largest to smallest, and checked to see if any indi­

vidual landmarks tend to have a lot of associated FDM entries that are far 

from 1. Similarly, if any region that is biologically/clinically/functionally rel­

evant tends to be involved with the extreme FDM entries, this could indicate 

that the given region contributes more to the shape difference. 

Another method is one that requires a bit more computation, but gives 

a more quantitative measure of how influential given landmarks are. This 

method is the landmark deletion approach. It uses the T statistic defined in 

the EDMA-I description, 

maXijFDMijjY^X) 

minijFDMij(Y,xy 

which is close to 1 when the estimated shapes are similar, and further from 

1 the more dissimilar they are. The landmark deletion method consists of 

calculating the test statistic for the full configurations, and then for i = 1 , . . . , k 

deleting the ith landmark and re-calculating the value of T (which will be 

denoted T(_j)). After obtaining T(_ i ) , . . . ,T(-k), compare each to the original 

T. The landmark deletions that create the largest reduction in the T value 

can be considered the most influential. In other words, if the estimated shapes 

appear to be much more similar (as measured by the T statistic) after the 

removal of landmark i, then the area around landmark i likely accounts for 

a large proportion of the shape difference. If there are areas, or clusters of 

landmarks, that are deemed by researchers to be of interest, then they can be 

deleted in a similar manner, and the T statistic re-calculated. The relative 

decrease in the T statistic indicates how influential the cluster of landmarks 

is. This method of detecting influential landmarks will be used in Chapter 4 

on the example data set. 
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1.3 Other methods in shape analysis 

A number of other methods in shape analysis have been developed, which are 

beyond the scope of this text. This section will give a partial list of these 

methods, and references for further reading. 

The method of thin-plate spline analysis is similar to the deformation grids 

proposed by Thompson in 1917 [43], and was developed mathematically by 

Bookstein [5], [6]. It involves fitting one shape (or mean shape), as repre­

sented by a landmark configuration, onto another through a combination of 

affine and non-affine transformations, while minimizing the bending energy 

required to perform the non-affine transformation. The deformation between 

configurations may be represented visually as a deformed grid. When the ob­

jects of interest are two-dimensional these grids are easily displayed, but for 

three dimensions the warped grid representation may not be as clearly view­

able. In addition to the Bookstein references above, thin-plate spline methods 

are discussed in [41], [7], and [15]. 

Another method used to compare two landmark-based shapes (or mean 

shapes) is finite element analysis. During this approach, which was developed 

from similar methods used in engineering applications, the landmarks are used 

to discretize the shape into a number of smaller components (usually triangles 

or quadrilaterals in two dimensions, and tetrahedra or cuboids in three dimen­

sions). The strain involved in transforming one configuration into another is 

used to describe the shape difference between the objects. For each discretized 

component (called a finite element) the forces acting at the 'nodes' (i.e. land­

marks) are used to infer the forces throughout the rest of the component. 

Finite element methods provide readily interpretable graphical output (with 

each element colour-coded according to its level of size/shape change), but do 

not allow the comparison of multiple forms simultaneously. Presentations of 

general finite element methods are available in [47] and [45], with discussions 

specific to shape analysis in [13] and [36]. 

For some types of shapes, landmark data is impractical. For example, an 
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organ of the body might not have any well-defined points or edges (and is 

instead more of an elongated blob). One method that is particularly useful 

for such cases is medial axis analysis. To undergo medial axis analysis a shape 

must be represented by its boundary. This boundary is then represented by 

a medial axis, which consists of points which are midway between two points 

on the boundary (i.e. a sphere centered at a point on the medial axis will 

be bitangent to the boundary at two points). If full re-constructability of 

the object from the medial representation is desired, then the radius of the 

bitangent sphere at each radial axis point is also retained. At points which 

are equidistant to more than two boundary points, the medial axis branches. 

For two-dimensional shapes the medial axis is a branching line, and for three 

dimensions is it a sheet. The method was first presented by Blum [2], and a 

book on the topic by Pizer and Siddiqi is scheduled for publication in fall 2008 

[39]. 

Other boundary-based methods are those that use Fourier descriptors to 

make successive approximations of the boundary, using digitized points along 

the boundary (which can be chosen as specific landmarks, but this is not 

required). Harmonic coefficients are calculated in a stepwise fashion, with the 

number of harmonics constrained (under the Nyquist frequency) to be half the 

number of available boundary points: the more boundary points, the closer 

the approximation. Initially presented in [46] and [44], see [32] for an example 

of applications. 

Another group of researchers has been using an approach based on de-

formable templates, which model objects under the action of some group (which 

in shape analysis might be translations/rotations/scaling). Diffeomorphisms 

are used to match objects, either through landmark matching using large de­

formation diffeomorphisms, surface matching using various methods (including 

currents), and matching of entire voxelated 3D images through geodesies on 

infinite-dimensional shape manifolds. See for example [35], [25] and [34] for 

further details, and also the book Pattern Theory: From Representation to 

Inference by Grenander and Miller [21]. 
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Finally, the use of persistent homology methods (that will be applied in 

Chapter 5 to the tangent space data) have been employed as shape descrip­

tors for objects represented as point cloud data. This method is described in 

[14], and [12]. Another method involving algebraic topological tools as shape 

descriptors is given in [10]. 
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Chapter 2 

Landmark reliability 

This chapter begins with a description of the data set which will be utilized 

throughout the remainder of the text. Following that is a discussion of the 

reliability of landmark placement, and its implications on further analysis, as 

well as methods to determine landmark reliability in the shape analysis setting. 

2.1 Description of data set 

Throughout the rest of this text a data set from the field of orthodontics will be 

used to illustrate various statistical shape analysis techniques. A study was un­

dertaken to determine the effects of a bone-anchored orthodontic treatment, as 

compared to a tooth-anchored treatment and a control group (no treatment). 

The study was performed at the University of Alberta's Orthodontic Clinic, 

by Manuel Lagravere (ML) and Paul Major (PM). A total of n = 62 subjects 

participated in the study, and were assigned randomly into one of the three 

treatment groups (B = bone-anchored, T — tooth-anchored, and C = control) 

with UB = 21, nc = 21, and % = 20. 

The subjects were followed throughout the course of treatment, with each 

subject measured at four time points: 

1. Prior to placement of orthodontic appliance (baseline). 

2. Midway through treatment. 
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3. At removal of appliance. 

4. Six months after removal. 

All four time points are of interest, but for purposes which require a be­

fore/after comparison, time points T l and T3 will be used. In total there are 

248 landmark configurations (4 for each of the 62 subjects). 

Three-dimensional imaging of the subjects was performed through a cone 

beam computed tomography (CBCT) scan. As discussed in the previous chap­

ter, the statistical shape analysis tools we will be using take landmark coor­

dinate data as their input, k — 44 landmarks were chosen to represent the 

craniofacial complex (the shape of interest). A description of the landmarks is 

available in Table A.l. The placement of the landmarks was performed by the 

same individual (ML) for all the subjects at all time points, and was done on 

the digitized CBCT images using a software program. It is important to de­

termine whether the placement of the landmarks can be done in a reliable way, 

because otherwise the results of any further analysis of the landmark config­

urations can be called into question. Determining the reliability of landmark 

placement is the subject of the remainder of this chapter. 

2.2 Intraclass Correlation Coefficients (ICCs) 

as a measure of reliability 

When the term 'reliability' is used here, it is in the statistical sense, so a mea­

surement system that produces nearly identical results when repeated under 

identical conditions is considered 'reliable' (i.e. there is little random error in 

the measurement). 

To quantify the notion of reliability, when the measurement of a single 

variable is of interest, the intraclass correlation coefficient (ICC) is often used. 

Depending on the statistical model used in the reliability study, different types 

of error can be taken into account, and different formulas to calculate the ICC 

are used correspondingly (as presented in Shrout and Fleiss [42], and further 
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in McGraw and Wong [33]). All variations at tempt to estimate the proportion 

of total variance that is due to ' true' variation in the objects/measurements 

of interest. This can generally be stated as 

. subject variance 
(2.1) YOO = subject variance + rater variance + error 

A reliability study was performed using just 24 of the landmark configura­

tions (12 chosen randomly from time point 1 and another 12 chosen randomly 

from time point 2). For this study, landmark placement was replicated on 

the same set of CBCT scans: three times with ML as rater (ML1, ML2, and 

ML3), and twice more by two other raters: PM and Jill Gordon (JG). The 

final study will only use ML as a rater, so his reliability is of primary impor­

tance, but inter-examiner reliability between ML, PM and JG is of interest 

for future studies, so was included here. Since the landmark placement was 

performed on the same images (and not on multiple CBCT scans of the same 

subject at the same time point), any changes in coordinates is due to variation 

in landmark placement, and not the image itself. The results do not need to 

be able to be extended to any population of raters, so the form of ICC that 

corresponds to a two-way mixed effects model can be used (fixed raters, but 

subjects chosen randomly from the subjects to be used in the final study): 

(2.2) ICC = B M S ~ E M S 

BMS + (j - \)EMS 

where BMS is the mean square between subjects, EMS is the residual mean 

square (which can both be obtained from a two-way mixed effects model 

ANOVA table), and j is the number of judges or raters. 

The simplest approach is to calculate the ICC for each of the x- y- and 

z-coordinates for each landmark. This gives a total o f f c x m = 4 4 x 3 = 132 

intraclass correlation coefficients. They are calculated once using ML's three 

replications (see Table A.2), and again using ML1, PM and JG (see Table 

A.3). Summary statistics and histograms of the ICCs are displayed in Figure 

2.2. 
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Intra-examiner 
Inter-examiner 

ICC summary statistics 
Min. 

0.9623 
0.7656 

1st Qu. 
0.9953 
0.9875 

Median 
0.9970 
0.9929 

Mean 
0.9948 
0.9844 

3rd Qu. 
0.9982 
0.9961 

Max. 
0.9998 
0.9995 

Intra-examiner ICCs Inter-examiner ICCs 

0.85 0.90 

ICC 

Figure 2.1: Summary statistics and histograms for the 132 ICCs obtained 
using ML's three replications (intra-examiner), and the 132 using MG1, JG 
and PM's measurements (inter-examiner). 
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ICC 

Intra-examiner 
X 

0.9994871 
y 

0.9997058 
z 

0.9988117 

Inter-examiner 
X 

0.9977847 
y 

0.999132 
z 

0.997402 

Table 2.1: ICCs using all subjects and all landmarks. Given separately for x-, 
y-, and z-dimensions. 

In general, landmark placement by the single rater appears to be quite a 

bit more reliable then landmark placement across multiple raters. The intra-

examiner ICC is very high for all the axes of all the landmarks, with only 4 

coordinates having an ICC below 0.975. For the inter-examiner ICCs, there 

appears to be one coordinate (the of the 4th landmark) whose reliability 

is much lower than the others (only 0.766). Upon inspection, there is one 

configuration which has the placement of this coordinate off by 2cm from 

one rater to the others. Other configurations also have discrepancies in this 

coordinate up to 0.7 or 0.8 cm between raters. Since changes of only 0.3 or 0.4 

cm can be of clinical significance, this landmark may not be reliable enough 

for use in future studies with multiple raters. Even when using only one rater, 

this coordinate also had one of the lowest levels of reliability (ICC=0.966). 

Ideally, the reliability of landmark placement for an entire configuration 

could be measured in a more concise way, instead of by k x m separate ICC 

values. One option is to calculate ICCs for each dimension using all landmarks 

of all the subjects (one ICC for each of the x-, y- and z-dimensions). The prob­

lem with this is that the formula for ICC is for univariate data, so it will take 

each coordinate as one 'subject'. Because the variability between landmarks is 

much greater than the variability in placement of a single landmark, this will 

cause the 'subject' variance of Eq. 2.1 to become very large compared to the 

rater variability. This results in very high ICC values, even if the reliability of 

individual landmark placement is not good (in terms of clinical significance). 

The intra- and inter-examiner ICCs using this method are given in Table 2.2 

Even calculating ICCs for the entire configuration of just one subject at a 

time, the large variability between landmarks (compared to small variability 
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in landmark placement) give very high ICCs. 

An alternative attempt to take the entire configuration into account when 

calculating reliability is the use of Principal Components Analysis (PCA) as a 

dimensionality-reducing tool. For a data set with a large number of variables, 

PCA determines the linear combination of those variables that accounts for 

the most variability in the data; this linear combination is the first principal 

component. The second principal component is the linear combination of the 

variables the explains the greatest proportion of the variance, subject to being 

orthogonal to the first principal component. The third must be orthogonal 

to the first two, and so on. For details on PCA, refer to any textbook on 

multivariate statistics, such as Johnson and Wichern [24]. 

To apply PCA here, the coordinates for each landmark are taken as sepa­

rate 'variables', giving 44x3=132 in total, with 24 observations on each. The 

first principal component is obtained for each of the rating occasions. Reliabil­

ity analysis can now be performed using the PC coefficients as measurements. 

This method displays the same problem as above: very large ICC values are 

found, because the values of the principal components (PCs) are due mostly to 

variability between different landmarks, so small changes in landmark place­

ment do not effect the PCs greatly. 

Any method that will be able to detect clinically significant differences in 

landmark placement (i.e. any differences of more than 0.3cm), cannot use 

all the landmarks on their original scales (which have differences of 10s of 

cm). The first method presented, that of calculating separate ICCs for each 

dimension of each landmark, seems to be a good one. 

2.3 Dry skull data 

To assess the reliability of landmark placement on CBCT images as a way of 

representing a real-world 3D form, a study involving a set of dry skulls was 

performed. This data set is also used to illustrate some issues that may arise 

when calculating reliability based on transformed data. The study used CBCT 
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images of 10 dry skulls, and 8 foramina (holes) were chosen as the landmarks 

to represent each. The foramina chosen are described in Table A.4. Foramina 

were used as landmarks, because they may be filled with gutta-percha (a type 

of latex used in orthodontics) and re-scanned for use as a 'gold standard' of 

actual landmark locations. 

The 10 skulls were scanned once without gutta-percha, and once with. 

Landmark placement was performed on the non-gutta-percha images three 

times by ML (call the measurements ML1, ML2 and ML3), and once each by 

JG and Carlos Flores-Mir (CF). The raw measurements were compared for 

intra- and inter-rater reliability (displayed in Table 2.2), and also compared 

with the landmark placement as determined by the gold standard. 

It appears that both intra-examiner and inter-examiner reliability is lowest 

for landmarks 7 and 8, and highest for landmark 1. Interestingly, the landmark 

6 x-coordinate is one of the highest for intra-rater reliability, but near the 

lowest for inter-rater. Upon inspection, the inter-rater measurements for this 

coordinate are generally very close, except for in one case, when one rater was 

0.35cm away from the other two. When compared to the gold standard, each 

of the examiners had an average measurement error between 0.5-0.8 for each 

landmark dimension (see Table A.5). 

A transformed version of the dry skull configurations was also available. 

Each configuration was centred and scaled so that a specified point lay at the 

origin, with the triangle made by that point and two other specified points 

constrained to lie in the x-y-plane, and a fourth point in the y-z plane. When 

comparing ratings to the gold standard, using the transformed data improves 

the match. All figures are shown using the eight original landmarks, plus the 

four used for the transformation. Figure 2.3 shows the mean shape on the first 

rating occasion (ML1) and the mean shape using the gold standard (in each of 

the three planes) using the raw data. The same in shown in Figure 2.4 using 

the transformed data. It can be seen in Figure 2.3 that the image registration 

seems to be a bit shifted between the original scans, and those with the gutta­

percha filled foramina. This translation between the original and gold standard 
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...^ . , _ . . _ . j , ... . „ j . . ML1 and gold standard for subject 2, transformed data in x-y 
ML1 and gold standard for subject 2, raw data in x-y view . M J ' * v iew 

-I 1 1 1 r^ ^ i 1 1 1 r 

16 18 20 22 24 - 8 -6 - 4 - 2 0 2 

Figure 2.2: Plots comparing the ML1 data to the gold standard for subject 2 
using the raw data (left) and transformed data (right). 

images is easily seen when looking at individual configurations. Figure 2.2 

shows the x-y plane of subject 2 using the raw data for ML1 and the gold 

standard, as compared to the transformed data. This resulted in the apparent 

large measurement errors between raters and the gold standard when using the 

raw data. After transformation, the average measurement error between the 

examiners and the gold standard is less than 0.2cm (and usually below 0.1cm) 

for each landmark dimension. Since it is known that ICCs are not invariant 

to changes in scale, they are obtained again for the transformed skull data 

(shown in Table 2.3). 

When using the transformed data, the reliability of landmark coordinates 

is related to the axis for both intra- and inter-rater situations. In both cases 

coordinates on the z-axis are most reliable, and coordinates on the x-axis 

are least reliable. This is because in the transformed data there is much 

more variability between the subjects in the z-direction than in the x- and 

y-directions. In particular, there is one subject whose transformed landmarks 

lie considerably further in the z-direction than the other subjects. See Figure 

2.6: when viewed from the x-y plane it appears that the transformed data has 

just been translated sideways and rotated a bit, but viewing in the x-z plane 

it can be seen that the transformed data are much more scattered in the z-
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direction from subject to subject. The increased inter-subject variability makes 

the inter-rater variability smaller in comparison to it. The type of centering 

and scaling transformation performed on the data should not effect the shape 

analysis techniques of the following chapters (because shape information is 

invariant to translations and rotations), but it does effect ICCs, which are 

dependent on scale. Thus, when measuring reliability using ICCs, the scale 

and location of the data must be kept in mind. 

One final way to check reliability is by calculating ICCs on the Procrustes 

superimposed landmarks. Procrustes superimposition is performed using all 

twelve landmarks (holding none fixed). The ICCs are shown in Table 2.3, and 

give lower reliability scores than the raw or transformed data on the eight origi­

nal landmarks. This is likely due to a decrease in the between-subject variance 

after superimposition. See Figure 2.7 for an x-y plane view of the landmarks 

before and after superimposition. Clearly each landmark displays much more 

variability between subjects before superimposition. The four 'fixed' land­

marks show very high ICCs even after Procrustes superimposition. This lends 

support to the assumption that these landmarks can be placed very reliably. 

Plots comparing the mean shape of ML1 to the gold standard after Procrustes 

superimposition are given in Figure 2.5. Comparing ML1 to the gold standard 

for the Procrustes superimposed data gives similar measurement error as the 

transformed data (around 0.1cm). 

Each of the above settings for calculating ICCs have somewhat different 

results. It is important to be aware that ICCs are a measure of variability 

between ratings as compared to variability between subjects, and thus are sen­

sitive to any transformation or superimposition methods that are meant to 

standardize the data. 
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Mean shapes for ML1 and Mean shapes for ML1 and Mean shapes for ML1 and 
gold standard using raw data, in x-y plane gold standard using raw data, In x-z plane gotd standard using raw data, in z-y plane 

16 18 20 22 24 16 18 20 22 24 -IS -14 -13 -12 -11 -10 

Figure 2.3: Plots comparing the mean shape from the first rating occasion 
(ML1) to the gold standard, using the raw data. Views from the x-y (left), 
x-z (middle), and z-y (right) planes. 

Mean shapes for ML1 and Mean shapes for ML1 and Mean shapes for ML1 and 
gold standard using transformed data, in x-y plane gold standard using transformed data. In x-z plane gold standard using transformed data. In z-y pk 

Figure 2.4: Plots comparing the mean shape from the first rating occasion 
(ML1) to the gold standard, using the transformed data. Views from the x-y 
(left), x-z (middle), and z-y (right) planes. 

Mean shape* for ML1 and Mean shapes for ML1 and Mean shapes for ML1 and 
gold standard using Procrustes data, in x -y plane gold standard using Procrustes data, in x-z plane 9 ' * ' standard using Procrustes data, in y -z plane 

- 2 0 2 4 - 4 - 2 0 2 4 - 4 - 2 0 2 4 

Figure 2.5: Plots comparing the mean shape from the first rating occasion 
(ML1) to the gold standard, using the Procrustes superimposed data. Views 
from the x-y (left), x-z (middle), and z-y (right) planes. 
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Landmark 1 
Landmark 2 
Landmark 3 
Landmark 4 
Landmark 5 
Landmark 6 
Landmark 7 
Landmark 8 

Intra-rater ICCs 
X 

0.994279 
0.9489195 
0.9808405 
0.9481057 
0.994378 
0.996312 

0.9477915 
0.8016406 

y 
0.9956914 
0.983702 

0.9960356 
0.9847869 
0.9870798 
0.9793826 
0.964017 
0.9381783 

z 
0.9866068 
0.969373 

0.9920794 
0.97811 

0.9937567 
0.9928712 
0.9967333 
0.9682448 

Inter-rater ICCs 
X 

0.9872621 
0.9820265 
0.9875333 
0.9475444 
0.9962427 
0.9460225 
0.8223573 
0.8292102 

y 
0.99537 

0.9861788 
0.9972863 
0.9670927 
0.9610836 
0.9376382 
0.9818152 
0.9259185 

z 
0.9218591 
0.9211727 
0.983666 
0.9586 

0.9830809 
0.9839927 
0.930864 

0.9781929 

Table 2.2: Intra- and inter-rater ICCs for dry skull data. 

Landmark 1 
Landmark 2 
Landmark 3 
Landmark 4 
Landmark 5 
Landmark 6 
Landmark 7 
Landmark 8 

Intra-rater ICCs 
X 

0.9979582 
0.9982846 
0.9979015 
0.9951827 
0.995674 

0.9956116 
0.9945224 
0.9638145 

y 
0.9995924 
0.9991333 
0.999471 
0.999564 
0.9991747 
0.9994616 
0.9939348 
0.9980178 

z 
0.9998549 
0.9998512 
0.9998887 
0.9999102 
0.9999245 
0.999911 
0.9999465 
0.9997983 

Inter-rater ICCs 
X 

0.9984994 
0.9977046 
0.9979797 
0.9949894 
0.9907488 
0.975422 
0.987474 
0.9690613 

y 
0.9991692 
0.9996258 
0.9997597 
0.9986471 
0.9977368 
0.9976196 
0.9951045 
0.9975283 

z 
0.9991564 
0.9997027 
0.999806 

0.9998337 
0.9997404 
0.9997778 
0.999073 

0.9998528 

Table 2.3: Intra- and inter-rater ICCs for transformed dry skull data. 

Ref point 1 
Ref point 2 
Ref point 3 
Ref point 4 
Landmark 1 
Landmark 2 
Landmark 3 
Landmark 4 
Landmark 5 
Landmark 6 
Landmark 7 
Landmark 8 

Intra-rater 
X 

0.999577 
0.9999472 
0.9999554 
0.9999363 
0.959817 

0.9590607 
0.8334562 
0.9458252 
0.9119282 
0.9675828 
0.9089707 
0.822423 

y 
0.9976445 
0.9993834 
0.9989747 
0.9996158 
0.965082 

0.9698615 
0.9743218 
0.9825304 
0.9936243 
0.993492 
0.9642265 
0.9779338 

z 
0.999795 
0.9981969 
0.9999423 
0.9996869 
0.9757493 
0.9918958 
0.994149 

0.9965098 
0.9983384 
0.9986115 
0.999177 
0.9973971 

Inter-rater 
X 

0.9989848 
0.9998255 
0.999881 
0.9998024 
0.9220805 
0.940262 

0.8593874 
0.8996419 
0.8972266 
0.7065889 
0.8233037 
0.849618 

y 
0.9971586 
0.9994047 
0.998757 

0.9995686 
0.9511255 
0.9554938 
0.950443 
0.96949 

0.9774856 
0.971002 

0.9804521 
0.9732542 

z 
0.9997074 
0.9987236 
0.9997373 
0.9996187 
0.8354375 
0.9769037 
0.990105 

0.9924263 
0.9963439 
0.9968336 
0.9909334 
0.997695 

Table 2.4: Intra- and inter-rater ICCs for Procrustes superimposed data. 
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Raw and transformed dry skull landmarks in 
the x -y plane 
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Figure 2.6: Plot of the raw (open circles) and transformed (filled circles) land­
marks on the first rating occasion (ML1), viewed from the x-y (left) and x-z 
(right) planes. A similar relationship is seen on other ratings as well. 

Skull landmarks 
before Procrustes superimposition 

o 

o o 

° • V 
ft <&„ 

o 
o o 

o oa T K ) 
O O 9 

°4sT 

O 
o 
0 

o o 

0 " * 

° °a> » * 

O "$ ° ° 

n 

Skull landmarks after Procrustes superimposition 

Figure 2.7: Plots of the x-y plane for landmarks before (left) and after (right) 
Procrustes superimposition. 
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Chapter 3 

Application of Shape Analysis 

Techniques 

Now that reliability of landmark placement has been determined, the shape 

analysis techniques presented in Chapter 1 will be applied to the data set. 

Initially, the methods will be applied to compare the three treatment groups 

at baseline, to check for any pre-treatment differences between the groups. 

Next, each treatment group will be examined over the course of treatment for 
r 

changes in shape, and the groups will be compared with each other at each 

time point. 

Since the data set consists of three different treatment groups (B, C, and 

T), at four different time points (1, 2, 3, and 4, as described in Section 2.1), 

these combinations will be denoted Bl, B2, B3, B4, CI, C2, C3, C4, Tl , T2, 

T3, and T4. Each landmark configuration is represented a s a f c x m = 4 4 x 3 

configuration matrix. For each group-time point combination the configuration 

matrices are combined to form an array. For example, the array Bl is a 

kxmxriB array consisting of the n# landmark configurations of the subjects in 

group B at time 1. The arrays B2, .. . , T4 are defined similarly. Measurements 

for the control group were not obtained at time point 2 (since it was assumed no 

change would occur in the control group), so the configurations for C2 are taken 

to be identical to those at CI, for computational purposes. Also, landmarks 
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11 and 12 represent the mesial surface of the left and right incisors (the middle 

of the top front two teeth), so in patients with no gap these landmarks are 

identical. From both a shape analysis and clinical perspective it is of interest 

whether these two landmarks coincide or not, but during EDMA computations 

this can prove problematic. During EDMA-based portions of this thesis these 

landmarks will be omitted, and the remaining k = 42 will be used. When 

using other shape analysis methods, the entire 44-landmark configuration will 

be used. 

All of the implementations in this Chapter are performed using the statis­

tical computing package, R. An R-package called shapes, containing routines 

for many of the methods described in Section 1.1 has been written by Ian L 

Dryden, and was employed here for many of the computations. The R code 

used in this thesis for EDMA was written by Jennifer Gamble. See Appendix 

B for some code and functions written for this thesis. 

3.1 Comparing groups at baseline 

This section deals with the groups Bl, CI, and Tl . Since the measurements for 

these groups were taken prior to treatment onset, there should be no significant 

differences in shape between the groups. This assumption will be verified using 

the shape analysis methods from Chapter 1. 

3.1.1 Dryden and Mardia methods 

Using all 62 of the subjects at baseline, standardization is performed using 

the generalized Procrustes analysis (GPA) algorithm described on p. 11, and 

an overall mean shape fi is calculated. See Figure 3.1 for the landmarks before 

and after superimposition. Since none of the subjects in the study exhibit 

large deformations, of the face or skull, all the configurations have a reasonably 

similar shape, and tangent space approximations to the shape space may be 

used (with ft as the pole). The method used is the one without scaling of the 
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Figure 3.1: x-y view of the landmarks for all 62 subjects at baseline, before 
GPA was applied (left) and after superimposition (right). 

pre-shapes (i.e. Eq. 1.7 instead of Eq. 1.8). After tangent space projection, 

each configuration is represented as a (/c — l)m = 129-length vector in the 

tangent space, which is an M = (k — \)m — m ^ ~ ' — 1 = 125-dimensional 

s u b s p a c e o f M ^ - ^ - M 1 2 9 . 

The Euclidean distances from each tangent coordinate to the mean shape 

(i.e. the lengths of the tangent vectors) can be used as a method of detect­

ing outlying shapes. It can be very time consuming to perform data cleaning 

methods (plotting for outliers, checking descriptive statistics, etc) on the raw 

landmark configuration data. If a landmark placement or recording error oc­

curs that significantly changes the shape of the configuration, then it will be 

much further from the mean shape than the other, properly recorded, con­

figurations will be. In fact, for the data set used here, plotting the lengths 

of the vectors and individually examining any extreme outliers allowed the 

detection of a configuration with mislabeled landmarks. For that particular 

subject, during landmark placement the landmarks 39, 40, 41, and 42 had 

accidentally been labeled as 41, 42, 39, 40. This changed the overall shape of 

the configuration rather drastically, and it was seen as an outlier in the plot. 
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With landmark labeling error Without landmark labeling error 

0 10 20 30 40 50 60 0 10 20 30 40 50 

Subject Subject 

Figure 3.2: Lengths of tangent space vectors. In the left plot, the outlier 
corresponds to a configuration with mislabeled landmarks. The right plot 
shows the lengths after the mislabeling was corrected. 

See Figure 3.2 for the lengths of the tangent space vectors before and after this 

mislabeling was corrected. Note that the moderate outlier seen at Subject 27 

is due to ' true' shape differences between that configuration and the mean. 

After superimposition through GPA, the mean shape was calculated for 

each of the three groups. They are displayed from two angles in Figure 3.3. 

The mean shapes appear to be rather similar, with many of the corresponding 

landmarks lying almost directly on top of one another. Hotelling's T 2 can be 

used for pairwise statistical comparisons between the groups. 

Using the Hotelling's T2 method described in Chapter 1, on p. 15, the three 

groups are compared two at a time. During the description of Hotelling's T 2 

test in Section 1.1.5, it was discussed that in general, the covariance matrix 

obtained from tangent space coordinates will not be of full rank. Given the 

singular covariance matrix, it is difficult to test for multivariate normality of 

the tangent space vectors, but with multivariate normality assumed, the p-

values are given using the F distribution described on p.1.1.5. For landmark 

data in two-dimensions, a non-parametric method is available in Dryden's R-

code Shapes package. The results are displayed in Table 3.1. All of the results 
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Baseline mean shapes shown in x-y-plane Baseline mean shapes shown in z-y-plane 
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Figure 3.3: Views in the x-y and z-y planes of the three mean shapes at 
baseline. 

Compare groups: 
F-statistic 

p-value 

Bl and CI 
0.025262 
0.999998 

Bl and T l 
0.029801 
0.999999 

CI and Tl 
0.028554 
0.999999 

Table 3.1: F-statistics and p-values for Hotelling's T2 test performed pairwise 
on the groups at baseline. 

are definitely non-significant. The F-statistics are quite close to zero, and there 

is no evidence to reject the null hypothesis that the groups have equal mean 

shapes. 

Again due to the singular covariance matrix, regular analysis of variance 

cannot be performed on the raw tangent space coordinates. Instead, a MANOVA 

will be performed using the first few principal components (PCs) of the tangent 

space data (using only Bl, CI and Tl) . The proportion of variance explained 

by the first few PCs is shown in Table 3.2. There are a few methods to decide 

the most appropriate number of principal components to use: 

- A scree plot shows the proportion of total variance explained by each prin­

cipal component. The scree plot for the first 20 PCs is shown in Figure 

3.1.1. There will often be an 'elbow' in the plot, which delineates principal 
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Scree plot of the first 20 principal components (comparing 
treatment groups at time point 1) 

5 10 15 20 

Principal component 

Figure 3.4: A scree plot showing the proportion of total variance explained by 
each of the first 20 principal components 

components that account for a large proportion of variance from those that 

account for a relatively small amount. In the plot in Figure 3.1.1, there is 

no clear 'elbow', but the scree plot method would indicate the use of 1, 2, 5, 

or possibly 9 principal components. 

- Another method of determining an appropriate number of principal compo­

nents, is to use the number that cumulatively explain a certain percentage 

of total variance. For example, for this data set 50% of the total variance is 

explained by the first 6 PCs, 80% by the first 17 PCs, and 90% by the first 

26 PCs. 

- The method which will be used here chooses PCs that each explain at least 

a certain percentage of total variance. For example, PCs that each explain 

at least 10%, at least 5%, or at least 2% could be chosen. We will perform 

both an ANOVA using only the first PC, as well as a MANOVA on those 

PCs each accounting for 5% or more of the total variance. 

Only the first five principal components each contribute at least 5% of 
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Std dev 
Prop. ofVar. 
Cum. Prop. 

PCI 
0.03470724 

0.20769 
0.20769 

PC2 
0.02465053 

0.10477 
0.31246 

PC3 
0.02027949 

0.07091 
0.38337 

PC4 
0.01871909 

0.06042 
0.44379 

PC5 
0.01738854 

0.05213 
0.49592 

Table 3.2: Standard deviation, proportion of variance, and cumulative variance 
of the first five principal components for the tangent space data at baseline. 

Compare groups: 
T-statistic 

95% CI lower bound 
95% CI upper bound 
95% CI lower bound 
95% CI upper bound 

Bl and CI 
1.207398 

1.161677(B) 
1.698952(B) 
1.164969(C) 
1.625738(C) 

Bl and Tl 
1.300502 

1.173055(B) 
1.520919(B) 
1.143766(T) 
1.541813(T) 

CI and Tl 
1.441240 

1.161748(C) 
1.562171(C) 
1.165060(T) 
1.591948(T) 

Table 3.3: EDMA T statistics to compare the shape of baseline groups. See the 
table below for corresponding bootstrapped distributions. For 95% confidence 
intervals, the group used as baseline is in brackets. 

the total variation. Using a univariate ANOVA on the first PC to compare 

the groups at baseline gives an F-statistic of 0.1542 (p-value 0.8574), and 

running MANOVA on the first five PCs gives an F-statistic of 0.9724 (p-

value 0.4715). In both cases, no significant differences are found between the 

treatment groups at baseline. The ANOVA/MANOVA tables are presented in 

Appendix A, Tables A.6 and A.7. 

3.1.2 EDMA methods 

Next, EDMA is applied to confirm the conclusions reached in the previous 

section. EDMA-I, which is described on page 24, is used to avoid the assump­

tion of a Gaussian perturbation model that is required for EDMA-II. Because 

EDMA-I is not a symmetric test, it will be performed twice for each pairwise 

group comparison, switching the group used as baseline between tests. 

The observed T-statistics, along with the bootstrapped distributions are 

given in Table 3.3, and Figure 3.5. 

None of the observed T statistics lie in the extreme tails of the bootstrapped 

49 



Bootstrapped T distribution, group B as baseline 

1.2 1.4 1.6 1.8 

Bootstrapped T distribution, group C as baseline 

1.2 1.4 1.6 1.8 2.0 

Bootstrapped T distribution, group B as baseline 

r 
1.2 1.4 

Bootstrapped T distribution, group C as baseline 

1.2 1.4 1.6 1.8 2.0 

Bootstrapped T distribution, group C as baseline 

1 
1 

1.1 1.2 1.3 1.4 

T 

Li" 
1 

1.5 

1 

1.6 

Bootstrapped T distribution, group T as baseline 

1.2 1.4 1.6 1.8 

Figure 3.5: Bootstrapped T distributions using B = 200, comparing groups B 
and C (top two), B and T (middle two), and C and T (bottom two). Observed 
T statistic shown as bold vertical line. 
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distributions. This means that there is no evidence that the mean shapes differ 

significantly between any of the three groups at baseline. This agrees with the 

conclusions reached using Dryden and Mardia methods in the previous section. 

3.2 Shape change within groups over time 

Now that is has been determined that the three treatment groups did not differ 

significantly in mean shape before treatment began, shape analysis methods 

will be employed to analyze whether shape change occurs over time within 

each of the groups. The same subjects are followed throughout the course of 

treatment, so the measurements of one treatment group across multiple time 

points are not independent. For example, even though the groups Bl, CI, 

and T l are independent, the groups Bl, B2, B3 and B4 are all correlated. 

Because of this, it is not possible to use Hotelling's T2, or (M)ANOVA to 

analyze treatment effects of one group across time, since these methods assume 

independence. It is possible however, to compare the treatment effects of 

the three groups simultaneously by using a repeated measures ANOVA or 

MANOVA on the first few principal components, which is discussed in section 

3.4. 

EDMA does not require any assumptions about the distributions or inde­

pendence the groups, so it can be applied to pairwise combinations of each 

group across time. The 15 possible pairwise combinations are: B2-B1, B3-B1, 

B4-B1, B3-B2, B4-B2, B4-B3, C3-C1, C4-C1, C4-C3, T2-T1, T3-T1, T4-T1, 

T3-T2, T4-T2, and T4-T3. Recall that measurements for the control group 

were not obtained at time point 2 (since it was assumed no change would occur 

in the control group). 

For each of the fifteen pairwise comparisons the T statistic T ^ is calculated 

using the estimated mean form difference matrix, and a bootstrap method is 

performed (using the earlier of the two time points as baseline) to obtain 

95% confidence intervals for the test statistics. No significant differences are 

found between the mean shapes across time for groups B and C. For group 
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B2 and Bl 
B3 and Bl 
B4 and Bl 
B3 and B2 
B4 and B2 
B4 and B3 
C3 and CI 
C4 and CI 
C4 and C3 
T2 and Tl 
T3 and Tl 
T4 and Tl 
T3 and T2 
T4 and T2 
T4 and T3 

T statistic 

1.476944 
1.457055 
1.449564 
1.427163 
1.48592 
1.220171 
1.315932 
1.370451 
1.175318 

1.663264 
1.624671 
1.702729 
1.423590 

1.591574 
1.304795 

95% CI lower bound 

1.153566 
1.150253 
1.139684 
1.174960 
1.188853 
1.156412 
1.179160 
1.163255 
1.145213 
1.165690 
1.144609 
1.175452 
1.165959 
1.153570 
1.160540 

95% CI Upper Bound 

1.538700 
1.584906 
1.586500 
2.442772 

2.773085 
1.676185 
1.675546 
1.603597 
1.625717 
1.548398 
1.592262 
1.543769 
1.503989 
1.571423 
1.725676 

Table 3.4: T statistic and 95% confidence intervals for all within-group pairwise 
combinations across time. The earlier time point was always chosen as baseline 
(for confidence intervals and for test statistics). 

T however, all three of the time points after treatment began are found to 

have mean shapes that are significantly different than the mean shape before 

treatment. Also, significant differences were found in mean shape between 

time points 2 and 4 for group T. Test statistics and 95% confidence intervals 

are displayed Table 3.4. 

When significant differences are detected, further tests and analyses must 

be performed to determine where on the object the differences are localized. 

One method to try and pinpoint the areas of shape difference is to analyze 

the bootstrapped entry-wise confidence intervals of the FDM as described on 

p.23. First examined was T4 vs T l , since that T statistic was the largest. 

Out of the I = k(k — l ) / 2 = 861 entries in the FDM, the bootstrap procedure 

gives 210 that have 95% confidence intervals which lie completely above 1 (i.e. 

in which the inter-landmark distance is larger at T4 than it was at baseline). 

The landmarks involved in the most of those inter-landmark distances are 

landmarks 13, 14, 36, 26, 37, and 28 (in that order). These landmarks are 
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the Zm (left and right), MB 16 Apex, upper first molar right, B 14 Apex, and 

upper first premolar right. Only six inter-landmark distances had 95% CIs 

that lay entirely below 1 (which could be expected due to chance). 

The results obtained from the bootstrapped FDM for the three other sig­

nificant T statistics were: 

T2 vs Tl : No inter-landmark distances had confidence intervals which 

fell completely below 1. There were 183 completely above 1, and of those, 

the most frequently occurring landmarks were 26, 14, 25, 20, 28 and 13. 

T3 vs. Tl: Only one confidence interval completely below 1: 19 (Ekm 

left) to 33 (MB 26 Apex). Of the 213 completely above 1, the landmarks 

involved the most often were the same six as in T4 vs. Tl (13, 14, 36, 

26, 37, and 27). 

T4 vs. T2: Between T2 and T4 there are 25 inter-landmark distances 

with confidence intervals completely below 1 (i.e. the distances are 

smaller at T4 than at T2). Out of these, landmark 25 (Ekm right) 

is by far the most frequent. Only three inter-landmark distances have 

CIs completely above 1. This may indicate some regression after removal 

of the appliance. 

3.3 Shape differences between groups at times 

2, 3, and 4 

For each of the three remaining time points, the treatment groups are com­

pared for significant shape differences. For each, an ANOVA is performed 

using the first principal component. Boxplots confirming the assumptions of 

normality and equal variance are shown in Figure A. None of the time points 

are found to have statistically significant differences between the groups, with 

p-values of 0.8525, 0.9392, and 0.9874 for time points 2, 3, and 4 respectively. 

A MANOVA is performed on those PCs whose proportion of total variance is 
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greater than 5%, this is the first 5 PCs are chosen for time point 2, and the 

first 4 are chosen for time points 3 and 4. These tests do not find statistically 

significant differences either (with p-values 0.0948, 0.2839, and 0.2311, respec­

tively). The results from the ANOVA and MANOVA are displayed in Tables 

A.8 to A.13. 

It must be noted that the choice of the number of principal components 

used can have effects on conclusions about statistical significance. For all three 

of the time points, it is possible to choose a number of principal components 

which give a MANOVA with a p-value below 0.05. For example, at time point 2 

if the first n PCs are used for a MANOVA, with n = 8 , . . . , 18, then a significant 

p-value is obtained (but if n > 18 the p-value will be vary between being above 

0.05 and below 0.05, depending how many PCs are chosen). Similar conflicting 

results are seen for time points 3 and 4. Depending on how many principal 

components are chosen, results may be significant or not. This illustrates 

that care must be taken when choosing the number of PCs for analysis, and 

since results may be dependent on the number of PCs chosen (which is a 

somewhat subjective process), they must be taken 'with a grain of salt'. It 

is not appropriate for a researcher to choose the 'right' number of PCs based 

on which number gives statistically significant results. They should be chosen 

using a method such as a scree plot, or percent of total variation (as outlined 

in Section 3.1). 

The groups were also analyzed for shape differences at each time point 

using EDMA. For each time point the three comparisons B-C, T-C and B-T 

were made. For the B-C and T-C comparisons, the control group was used 

as baseline when the bootstrap was performed (to obtain a distribution of the 

T statistic), but for the B-T comparison the bootstrap was performed twice, 

since there was no clear choice of baseline group. All of the T statistics lie 

within the bootstrapped 95% confidence intervals, so for all of the time points 

no significant differences in shape are detected between any of the treatment 

groups. The results are displayed in Table 3.3. Note that when group B2 is 

used as a baseline, the confidence interval is much wider than all the others. 
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B2 and C2 
B2 and T2 
T2 and B2 
T2 and C2 
B3 and C3 
B3 and T3 
T3 and B3 
T3 and C3 
B4 and C4 
B4 and T4 
T4 and B4 
T4 and C4 

T statistic 
1.418469 
1.327263 
1.327263 
1.498158 
1.338226 
1.350373 
1.350373 
1.391712 
1.28259 

1.386536 
1.386536 
1.325425 

95% CI lower bound 
1.155357 
1.166714 
1.182718 
1.167308 
1.169954 
1.173385 
1.161546 
1.174486 
1.176160 
1.151081 
1.146254 
1.164059 

95% CI upper bound 
1.617382 
1.524947 
3.115804 
1.664624 
1.596026 
1.605891 
1.663597 
1.672330 
1.609461 
1.574167 
1.639620 
1.582465 

Table 3.5: T statistics and 95% confidence intervals comparing treatment 
groups within each of time points 2,3, and 4 

This could indicate that group B2 displays more variability between subjects 

than the other groups (possibly due to just one or two subjects whose shape 

is quite different from the others). This large variability in group B2 is also 

displayed in Table 3.4. Such large variability would make it more difficult to 

detect small differences in shape. 

Next, repeated measures MANOVA will be performed on the first few 

principal components derived from the tangent space coordinates, to determine 

if the groups change over time in significantly different ways. 

3.4 Longitudinal shape analysis using repeated 

measures MANOVA 

For this section the tangent space coordinates are taken for the tangent space 

with the pooled mean shape (over all subjects at all time points) as its pole. 

For the principal components calculated using these tangent space coordinates, 

the first four each account for at least 5% of the total variance, so they are 

used in the repeated measures MANOVA. 
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When the overall multivariate test is considered, treatment group is not 

found to be significant as a between-subjects variable. When considering 

within-subject variables, time is found to be very significant (p ~ 0.000), and 

time*group interaction is also significant (p < 0.01). This means that when 

considering the group as a whole (all 62 subjects), the scores for the first four 

principal components do changes across time, and that additionally, the way 

they change is not the same for all three groups. Further univariate tests must 

be performed to see which of the four principal components are changing. 

Univariate tests show that the time variable is significant for the 1st, 3rd 

and 4th PCs (with p-values below 0.01), and that the time*group interaction 

is significant only for the 3rd and 4th PCs (p-values around 0.001), but not the 

1st and 2nd (p-values around 0.25). Profile plots of the estimated marginal 

means were obtained for each principal component to display the differences 

between the groups through time, they are displayed in Figure 3.4. 

The advantage of using principal components is in dimensionality-reduction, 

particularly in cases such as this where regular multivariate statistics are un­

able to be performed on the raw data. The disadvantage of using principal 

components lies in ease of interpretation. Sometimes the first one or two PCs 

are easily seen to correspond to certain characteristics (eg. size, or some promi­

nent feature), but it is often difficult to identify what higher PCs 'represent'. 

3.5 How to proceed 

EDMA found statistically significant differences in shape through the course 

of treatment T, and repeated measures MANOVA on the first four principal 

components found significant time effects, and a time*group interaction. When 

analyzed individually however, no treatment changes were seen in group B. 

Now that shape differences has been established, it is of interest where the 

shape differences are localized. One method to determine this is the landmark 

deletion method, originally discussed in Section 1.2.4. This, along with the 

results from the bootstrapped FDMs, can help to detect influential landmarks 
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Figure 3.6: Profile plots for the first four principal components, comparing 
treatment groups across time. The control group is shown as a solid line, 
group B as a dotted line, and group T as a dashed line. 
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(i.e. those landmarks that lie in areas of maximal shape difference). There 

is also another advantage to determining influential landmarks: if the shape 

analysis techniques are performed again using only the most influential land­

marks, they are more likely to detect shape differences (since the variability 

due to shape change will represent a higher proportion of the total variance). 

Detection of influential landmarks is the subject of the next chapter. Influ­

ential landmarks will represent areas of shape difference. If any landmarks are 

found to be particularly useful in detecting shape differences, then the shape 

analysis methods from this chapter will be re-run, using only the influential 

landmarks in the configuration. 
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Chapter 4 

Finding Influential Landmarks 

In the previous chapter, it was determined that some significant differences in 

shape exist between the treatment groups across time, but it is not yet known 

where these differences are localized. A bootstrap procedure performed on 

the FDM matrices comparing time points for treatment T found an expansion 

occurring (specifically involving landmarks 13, 14, 20, 25, 26, and 28) during 

the course of treatment, but also a slight contraction from time point 2 to time 

point 4. 

In this chapter, the EDMA-based method of detecting influential land­

marks (presented in Section 1.2.4) will be used to determine which landmarks 

are 'best' at distinguishing shape differences between the groups and within 

groups over time. All of the EDMA-based procedures employed in this text 

were implemented in the statistical computing language R, using code written 

by Jennifer Gamble (see Appendix B). 

4.1 Mean forms within groups across time 

The combinations Bl, B2, B3, B4, CI, C2, C3, C4, Tl , T2, T3, and T4 

correspond to the treatment group and time point combinations, as indicated 

in the previous chapter. There are fifteen possible pairwise combinations to 

compare mean shapes within groups across time. For each of these comparisons 
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B2 and Bl 
B3 and Bl 
B4 and Bl 
B3 and B2 
B4 and B2 
B4 and B3 
C3 and CI 
C4 and Cl 
C4 and C3 
T2 and Tl 
T3 and Tl 
T4 and Tl 
T3 and T2 
T4 and T2 
T4 and T3 

Influential landmarks 
32, 31, 37, 38, 6 

32,31 
36, 35, 12, 8 

38, 36, 25, 13, 41, 22, 17, 21 
36, 25, 12, 8, 13, 17 

37,38 
25, 36, 14 

25, 36 
8, 37, 36, 31 
32, 31, 43, 8 

32, 31, 33, 19 
8, 32, 25, 36 

19, 33 
12, 8, 25, 36 

8, 12, 43 

Table 4.1: Influential landmarks as detected by the landmark deletion ap­
proach. Those shown all lowered the T statistic by at least 0.01, and those in 
bold lowered it by more than 0.1. 

the T statistic T0bs is calculated using the estimated mean form difference 

matrix. To determine the relative influence of each landmark, the T statistic 

is re-calculated with the ith landmark deleted to obtain T(_j) for i = 1 , . . . , k. 

The difference between T0f,s and T^-i) is used to rank the k landmarks in order 

of influence. The raw T(_j) values are available in Tables A. 14 to A. 16. The 

landmarks whose deletion lowers the T statistic by more than 0.1 will be called 

the most influential landmarks. Those whose deletion lowers the T statistic 

by between 0.01 and 0.1 will be called somewhat influential. Table 4.1 shows 

the influential landmarks detected using the landmark deletion approach (in 

decreasing order across each row, with the most influential landmarks in bold). 

The landmarks which appear in bold at least once are landmarks 8, 19, 25, 

31, 32, 33 and 36. These landmarks are point A, Ekm left and right, incisal 

apex left and right, MB 26 Apex and MB 16 Apex. 

The within-group shape analysis methods from the previous chapter can 

be applied again, using only this set of the seven most influential landmarks. 
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B2 and Bl 
B3 and Bl 
B4 and Bl 
B3 and B2 
B4 and B2 
B4 and B3 
C3 and Cl 
C4 and Cl 
C4 and C3 
T2 and Tl 
T3 and T l 
T4 and Tl 
T3 and T2 
T4 and T2 
T4 and T3 

T statistic 

1.764662 
1.508304 
1.548551 
1.979456 
2.200955 
1.15577 
1.408732 

1.562709 
1.109301 

1.582332 
1.59896 

1.736847 
1.368207 
1.367964 
1.223203 

95% CI lower bound 

1.066847 
1.061916 
1.059277 
1.076727 
1.089080 
1.071173 
1.080931 
1.071991 
1.094057 
1.077858 
1.099342 
1.083779 
1.092544 
1.078441 
1.104472 

95% CI Upper Bound 

1.546767 
1.493557 
1.556786 
3.514947 
3.109217 
1.620381 
1.422927 
1.373707 
1.752811 
1.525125 
1.529163 
1.511455 
1.535286 
1.510802 
1.616627 

Table 4.2: T statistic and 95% confidence intervals for all within-group pairwise 
combinations across time, using only the seven most influential landmarks. 
Test statistics falling outside the confidence interval are displayed in bold. 

Test statistics and 95% confidence intervals comparing treatment groups across 

time are displayed in Table 4.1. Significant differences are again seen in group 

T between baseline and each of the three subsequent time points (although 

not between time points 2 and 4). Additionally significant differences are 

seen in group B between baseline and time point 2. Somewhat concerningly, 

significant differences are seen in the control group between the first and last 

time points. Possibly further analysis could reveal an outlier at one of these 

time points to account for such differences. 

4.2 Mean forms across treatment groups for 

given time points 

A similar procedure to determine influential landmarks was then performed 

when comparing treatments within given time points. The observed and land-
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B2 and C2 
B2 and T2 
T2 and C2 
B3 and C3 
B3 and T3 
T3 and C3 
B4 and C4 
B4 and T4 
T4 and C4 

Influential landmarks 
31, 32 

26, 27, 29, 30 
32, 31 
32, 31 

29, 28, 33, 19 
33, 19, 28, 29 
31, 29, 30, 32 
29, 33, 19, 30 
19, 33, 34, 35 

Table 4.3: T statistics and 95% confidence intervals comparing treatment 
groups within each of time points 2, 3, and 4 

Time point 1 
Time point 2 
Time point 3 
Time point 4 

Pillai 
0.15387 
0.3124 

0.28507 
0.21757 

approx F 
0.76400 
1.6969 
1.52377 
1.11890 

num Df 
12 
12 
12 
12 

denDf 
110 
110 
110 
110 

Pr(>F) 
0.6858 
0.07692 
0.1262 
0.3523 

Table 4.4: MAN OVA table using first six principal components (obtained from 
the tangent space coordinates using only the five most influential landmarks), 
comparing treatment groups within each of the four time points. 

mark deleted T statistics are given in Tables A.17 to A.19. The most influential 

(in bold) and somewhat influential landmarks are given in Table 4.2. The land­

marks whose deletion result in the T statistic decreasing by more than 0.1 are 

landmarks 19, 29, 31, 32, and 33. These landmarks are the Ekm left, upper 

canine right, incisal apex left and right, and MB 26 apex. 

Using these five most influential landmarks the between-group shape analy­

sis methods from Chapter 3 were performed once again. The first six principal 

components (obtained from the tangent space coordinates) each account for 

at least 5% of the total variance, and are used in MANOVA tests for differ­

ences between treatment groups within time points. The results are displayed 

in Table 4.4. Even using the most influential landmarks, there are still no 

statistically significant differences in shape found. 

62 



4.3 Repea ted Measures MANOVA 

Using only the seven landmarks from Section 4.1 (which include four of the 

five landmarks from the previous section), a repeated measures MANOVA 

was performed using the first five principal components from the tangent space 

data. For the multivariate tests, the between-subjects variable of group (i.e. B, 

C or T) was not found to be significant. The within-subjects variable time was 

found to be very significant (p-value ~ 0), but the interaction group Hime failed 

to reach significance (p-value between 0.05 and 0.1). Further examination of 

the univariate tests found time to be significant for all but the first PC (and 

group Hime significant for none of the PCs). 

When using these landmarks in the above two sections, statistically sig­

nificant differences were found across time, but not between groups (for given 

time points), so it is not surprising that no significant group Hime interaction 

was found. 

4.4 Conclusions 

The results obtained when using only the most influential landmarks do not 

seem to be more significant than those obtained using the full landmark con­

figurations. The main differences was that significance was found between 

groups Bl and B2 when using the most influential landmarks. 

Overall, it appears that treatment effects are most readily seen in group T. 

A trend of expansion throughout the course of treatment was seen, but with 

some slight contraction possible between time points 2 and 4. This movement 

was most apparent around the areas of landmarks A, the Ekm's, the incisal 

apexes, MB 16 and 26, and the right first molar and pre-molar. 

The fact that treatment effects were not generally seen in group B could 

be due to the fact that there was more natural variability in that group, which 

could have obscured the significance of small shape changes. 
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Chapter 5 

Persistent Homology 

In the previous chapters, the statistical shape analysis methods of Dryden and 

Mardia [15] were discussed and applied to an example data set. The imple­

mentation of these methods begins with n objects of interest, each represented 

a s a f c x m landmark configuration matrix. Each configuration is transformed 

into a single point in some high-dimensional shape space and, if appropriate, 

a tangent space approximation is taken. Statistical techniques to compare 

groups may be employed directly in the tangent space. The points (which each 

correspond to a landmark configuration of interest) are taken to be samples 

from some multivariate distribution(s). Because of the unknown covariance 

structure of such distributions, inferences about the difference between mean 

shapes of multiple groups can be difficult. 

The setting is then this: a number of points are available in a high-

dimensional space. The relationship between the points of interest, partic­

ularly whether any subgroups are formed, of points corresponding to 'similar' 

shapes. 

Persistent homology is a technique from computational algebraic topology 

which is used as a method of topological feature-detection when considering 

data with an unknown amount of 'noise'. This chapter will first discuss the 

background and theory of persistent homology, and then apply it to the set of 

tangent space points discussed previously. 
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5.1 Background and Theory 

5.1.1 History 

The ideas behind persistent homology were independently pursued by three 

separate groups. Frosini, Ferri, and colleagues framed their work in terms 

of size theory [18], [9], Robins defined persistence using an inverse systems 

approach, and studied fractal sets using alpha shapes [40], and Edelsbrunner, 

Letscher, and Zomorodian independently defined persistent homology, along 

with the first fast algorithms for implementation [17]. Details of persistent 

homology methods are presented fully in the book Topology for Computing by 

Afra Zomorodian [49], with generalized versions developed by Carlsson and 

Zomorodian discussed in [11] and [48]. Recent surveys of persistent homology 

are available in [16] and [19] 

The preliminary theory and description of persistent homology given here 

follow the definitions and exposition as presented in Zomorodian's book [49]. 

Some background on topological spaces, nitrations, and homology will be re­

quired before proceeding. 

5.1.2 Topological spaces 

A space can vaguely be thought of as a set of points with some type of ad­

ditional structure or properties. A topology is one such structure, which can 

be intuitively thought of as information about which points are 'close' to each 

other (i.e. information about the connectivity of the space). Formally, a topol­

ogy must satisfy certain properties. 

Definition 5.1. Let X be a space, and 2X be the set of all subsets of X. Then 

the set T C 2X is a topology on X if 

a) ]£S1,S2eT then S1f\S2<Z T. 

b) If {Sj\j eJ}QT, then ( J i e J S; G T. 

c) 0,X eT. 
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The pair (X, T) is then called a topological space. 

From this point on, the term 'space' will be taken to mean topological 

space. The most familiar example to most readers of a topological space 

would be a metric space. 

Definition 5.2. A space X with distance function or metric d satisfying 

a) d(x, y) > 0 for all x, y G X. 

b) d(x, y) = 0 implies x = y. 

c) d(x, y) = d(y, x) for all x, y £ X. 

d) d(x, y) + d(y, z) > d(x, z) for all x, y, z 6 X. 

is called a metric space. 

A metric space has an induced (metric) topology from d: using the open 

balls B(x,r) = {y <E X\d(x,y) < r} with x & X, and r > 0, the metric 

topology on X consists of the set of all unions of open balls. All the spaces 

analyzed here will be metric spaces. 

The topology of a space refers to its connectivity (and more), but not nec­

essarily its specific geometric representation. Spaces are studied and compared 

through the use of invariants. Invariants are some fixed (i.e. intrinsic) prop­

erties of a space that don't change after some specific type of transformation 

has been applied. In the previous chapters on shape analysis, we studied shape 

properties which are invariant under similarity transformations. In topology, 

properties are studied that are invariant under homeomorphisms (functions 

that are 1 — 1, onto, and continuous with continuous inverse). Invariant prop­

erties are not the only ones of interest, however. Although a topological space 

does exist as an independent entity, it is usually regarded as a subset of some 

larger space. Properties involving the way that the topological space is sitting 

in (i.e. embedded in) the larger space are called extrinsic. 

Some examples will illustrate the concepts of the previous paragraph: 
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• A way to compare the connectivity of two spaces is to cut them both, and 

examine the new connectivity. For example, if a string is cut, then two 

strings are obtained, if a loop is cut, then one string is obtained. This 

means that the original string and the loop had different connectivities. 

• Intrinsically, a loop is the same as a loop with a knot in it (in that both 

consist of a single, unbroken 'rope'), but in three-dimensional space if it 

is impossible remove the knottedness through twists and turns (without 

cutting it), then the extrinsic properties of the two (in three-dimensional 

space) are different. 

• Topological properties often studied include: tunnels, knots, number of 

components, and voids. 

Spaces of interest could include: a three dimensional object in Euclidean 

space, a manifold (see Section 5.1.4) in some non-Euclidean space, or (in our 

applications) a subset of the shape space Ylm (or a tangent space approxima­

tion to it) as described in Chapter 1. Full introductions to the field of topology 

can be found in Hocking and Young [23] or Munkres [38]. 

The geometry of a space (based on its particular embedding), and its topol­

ogy are, of course, linked. Real world examples often involve sampled data, 

and small geometric modifications can change the topology of the space of 

interest. These small geometric modifications may be due simply to 'noise', 

such as measurement error in the sampling method, or they may be due to 

true properties of the space of interest. To learn to differentiate between noise 

and true properties, the concept of a filtration must first be discussed. 

5.1.3 Filtrations 

A filtration may visualized using an analogy from Zomorodian [49]. Imagine 

a flood on a plain: the plain consists of hills and valleys of varying heights. 

Initially, before the flood, the entire plain may be viewed as one connected 

component (you can walk anywhere without going through water). As the 
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water level begins to rise, the valleys start to fill up. When viewed from 

above, the level of the water can be shown as contour lines at the water's 

edge. At any given stage of the flood, the plain consists of whichever areas 

are still above water. At certain stages, hilltops will become disconnected 

from each other (when it is no longer possible to walk between them), and 

this will change the topology of the plain. The tallest hilltops will be those 

which remain above-water the longest, and eventually the entire plain will be 

submerged. The filtration is viewed as the entire history of the plain, at all 

stages of the flood. 

Any space changing over time through a one-parameter function may be 

regarded as a filtration. In the above example, the function was the height 

of the water, with respect to the features on the plain. The plain may have 

some small hills and valleys (ant hills, say), which appear during the filtration, 

and change the topology of the plain, but are not considered ' true' topological 

features. During the flood, at one point the ant hill will be surrounded by 

water (a separate component), but will soon be covered. If a particular water-

level during the flood is chosen as a representation of the plain, then it may 

be difficult to differentiate noise from true properties. Instead, if the entire 

filtration is considered, then properties that last a long time throughout the 

flood can be considered true properties, while those that appear and disappear 

quickly are considered noise. Persistence is a measure of topological attributes, 

which ranks them by their lifetime in a filtration. The assumption here is that 

lifetime is related to importance. 

It is this method through which the geometry and topology of a space are 

considered simultaneously. For a given space of interest, a filtration is chosen 

based on its geometry. Topological features of the space are then measured 

throughout the filtration, and the persistent features are considered to be 

true features of the space, while others are considered noise (possibly due 

to sampling error, etc). Note that the conclusions about which features are 

topologically significant is not invariant to the choice of filtration. Returning 

to the flooding plain example: imagine the same plain, but tilted so that one 

68 



end was higher than the other. In this case the filtration would fill up valleys 

at the lower end of the plain first (perhaps even covering large hills at the 

lower end before reaching valleys at the top end). Conclusions drawn about 

persistent features (i.e. big hills) using this filtration would likely be different 

than those using the original (un-tilted) filtration. 

5.1.4 Simplicial Complexes 

A manifold may be intuitively thought of as a topological space that locally 

looks like Rn. Its global structure may be far more complicated, however. 

See any topology textbook (such as [38]) for a full mathematical definition. 

Common examples of manifolds include the sphere or torus embedded in three-

space, or a non-orientable surface such as a Mobius strip. 

For computational purposes, surfaces need to be represented in a finite way, 

so are often sampled and represented by triangulations. A triangulation is a 

simplicial complex, which allows representation of a (continuous) surface in a 

finite (and thus computable) way. We begin with some necessary definitions. 

Definition 5.3 (combinations). For a set of points S = {po,Pi, • • • ,Pk} 

in Md. A linear combination is x = ^2i=0^iPi, for some Aj 6 K, an affine 

combination is a linear combination with X^=o \ — 1- A convex combination is 

an affine combination with Aj > 0, for all i. The set of all convex combinations 

is the convex hull. 

Definition 5.4 (independence). If no point in S is a linear (affine) combi­

nation of the other points in S, then S is called linearly (affinely) independent. 

Definition 5.5 (£;-simplex). A k-simplex is the convex hull of k + 1 affinely 

independent points S — {VQ, VI, . . . , Vk}. The points in S are called the vertices 

of the simplex. 

A A;-simplex, a, is a fe-dimensional subspace of Rd. Write dimcr = k. 

69 



Definition 5.6 (face, coface). For /c-simplex a with vertices S = {v0, vi,..., Vk}, 

let r be defined by T C S. Then r is called a /ace of a and r has cr as a coface. 

Write a > T and r < a. Note that cr < a and cr > cr. 

Definition 5.7 (simplicial complex) . A finite set of simplices K, that satisfy 

the properties 

(a) a e K,r < a =>• r G K; 

(b) a, a ' G K => a f]a' < a,a' or af)a' = ® 

is called a simplicial complex. 

Define the dimension of K as dim if = max{dimcr|<7 G K}, and call the 

zero-simplicies of K vertices or nodes. Defining the empty set 0 as the (-1)-

simplex, then a A;-simplex has (jt-J) faces of dimension /, and 

faces in total. 

Example 5 .1 . Note requirement (a) in the above definition. If a simplex is 

in K, then all of its faces must be in K also. For example, if a simplicial 

complex contains a 2-simplex (i.e. a triangle), then each of the three 'sides' of 

the triangle, and its three vertices must also be simplices in the complex. 

Simplices may quickly become very large objects, so are not well suited for 

use in hand-computations, but the ease with which they may be defined and 

stored makes them ideal for use in computer algorithms. 

The above definition of a simplicial complex was a geometric one, but a 

non-geometric abstract definition is also possible. 

Definition 5.8 (abstract simplicial complex) . For a set K, with <S C 2K, 

if: 

(a) For all v G K, {v} G S. We call the sets {v} the vertices of K. 

70 



(b) I f r C f f G S, then r e S. 

then K is called an abstract simplicial complex, and the subsets of K contained 

in S are called (abstract) simplices. 

If | cr\ = k + 1, call <r a k-simplex of dimension k. For r C cr, r is a /ace of 

a and cr is a coface of r . 

Definition 5.9 (vertex scheme). For simplicial complex K with vertices V, 

let /C be the collection of all subsets {t>0, ^1, • • •, f̂c} of V such that the vertices 

v0, vi,..., Vk, span a simplex of K. The collection K. is called the vertex scheme 

ofK. 

Example 5.2. Using the simplicial complex from Example 5.1 above (call the 

nodes of the triangle a, b and c), the corresponding vertex scheme is: 

K, - {{abc}, {ab}, {ac}, {be}, {a}, {b}, {c}}. 

The collection K. is an abstract simplicial complex. It allows us to compare 

simplicial complexes easily, using isomorphisms. 

Definition 5.10 (isomorphism). For abstract simplicial complexes Ki,K2 

with vertex sets Vi,V2, an isomorphism between Kx, K2 is a bijection (j> : V\ —> 

V2, such that the sets in K\ and K2 are the same under the renaming of the 

vertices by 4> a n d its inverse. 

Theorem 5.1. Every abstract complex S is isomorphic to the vertex scheme 

of some simplicial complex K. Two simplicial complexes are isomorphic iff 

their vertex schemes are isomorphic as abstract simplicial complexes. 

The proof is in Elements of Algebraic Topology by J. R Munkres (1984). 

Definition 5.11 (geometric realization). For a simplicial complex K, if 

S is an abstract simplicial complex isomorphic to the vertex scheme of K, 

then call K a geometric realization of S. It is uniquely determined up to an 

isomorphism, linear on the simplices. 
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Note the distinction between an abstract complex and its representation as 

a simplicial complex. An abstract complex is a purely combinatorial object, 

which is easily stored and manipulated in a computer system. We can map 

the vertices of such a complex into some space where the complex is realized. 

These two constructions correspond to our distinction between topological and 

geometrical components. 

While a simplex is the power set of its vertices, a simplicial complex is a 

combination of a number of simplices (and so is only a subset of the power set 

of its vertices). This subset is specified by the requirements in Definition 5.8. 

We will use simplicial complexes to represent manifolds. 

Definition 5.12 (underlying space). The underlying space \K\ of a simpli­

cial complex K is \K\ = \JaeK o. 

Definition 5.13 (triangulation). A triangulation of a topological space X 

is a simplicial complex K such that \K\ is homeomorphic to X. 

Example 5.3. The boundary of a tetrahedron (3-simplex) is homeomorphic 

to a sphere. 

Note: The term 'triangulation' here can mean complexes of any dimension. 

Often in computer graphics, a triangulation refers to the 2-dimensional case 

only, then tetrahedralizations are 3-dimensional, etc. Another term often used 

is a mesh which might also include other elements (such as quadrangles or 

cubes) than just simplices. The spaces explored here using persistent homology 

will be simplicial complexes. They will be built incrementally (through a 

filtration) in such a way that all the subsets generated are also complexes. 

Orientability may be defined for simplicial complexes. 

Definition 5.14 (orientation). For a simplicial complex K, an orientation 

of a ft-simplex a 6 K, a — {VQ,V\,... ,Vk},Vi 6 K, is an equivalence class of 

orderings of the vertices of a, where 

(V0, « ! , . . . , * ; * ) ~ ( V T C O ) . ^ ! ) , - - - , ^ * ) ) 
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are equivalent orderings if uT(o), t>T(i),..., i>T(/e) can be obtained through an even 

number of transpositions of VQ, VI, ..., v^. We denote an oriented simplex, a 

simplex with an equivalence class of orderings, by [a]. If a = r , but a and r 

have different orientations, then write [a] = — [r]. 

The concept of orientability may be extended from simplices to triangulated 

(i-manifolds. 

Definition 5.15 (orientability). Two fc-simplices sharing a (k — l)-face a 

are consistently oriented if they induce different orientations on a. A trian-

gulable d-manifold is orientable if all d-simplices can be oriented consistently. 

Otherwise, the d-manifold is nonorientable. 

Definition 5.16 (subcomplex) . A simplicial complex L C K is called a 

subcomplex of K. 

Definition 5.17 (nitration). A filtration of a complex K is a nested sequence 

of subcomplexes, $ = K° C K1 Q K2 C • • • C Km = K. We call a complex 

K with a filtration a filtered complex. 

This filtration of simplicial complexes will allow ranking of topological fea­

tures by their persistence in the filtration. Before moving on to a more rigorous 

definition of persistence, a choice of topological classification (i.e. which topo­

logical features are deemed of interest) must be made. 

5.1.5 Homology 

There are a number of methods available to determine topological invariants. 

For a given choice, the set of all topological spaces will be partitioned into 

classes that display the same invariant properties. Two common methods of 

classifying topological spaces are by topological type or homotopy type (see an 

algebraic topology text such as [22] or [37]), but the method most appropriate 

for the purposes used here is simplicial homology. 

In general, homology groups describe how cells of dimension n attach to 

cells of dimension n — 1. Simplicial homology specifically is a weaker form of 
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homology which is defined only for simplicial complexes, and is combinatorial 

in nature. Simplicial homology is still however, invariant to the underlying 

space of a simplicial complex. 

The definitions of homology groups require a background in abstract alge­

bra (specifically group theory), which will not be given here. See Dummit and 

Foote for full exposition, or Chapter 3 of Zomorodian [49] for a more compact 

summary of the tools necessary. 

A basic concept in algebraic topology is that of the fundamental group. A 

full definition is beyond the scope of this text, but intuitively it is a description 

of how many ways a loop (a path beginning and ending at the same base point) 

can be made in the space. Loops that can be continuously deformed into each 

other are considered 'the same', and the torus is given as a canonical example: 

one loop can be made around the 'hole', and another around the 'ring'. See [22] 

for a full mathematical definition of the fundamental group. The fundamental 

group is concerned with families of maps on a surface, where these maps are 

paths and loops, and this construction motivates the definition of simplicial 

homology groups. 

To define homology groups, we need simplicial analogs of paths and loops. 

We do this using the chain group of oriented simplices. 

Definition 5.18 (chain group). For simplicial complex K, the free Abelian 

group on the oriented fc-simplices is called the kth chain group of K, and is 

denoted (Ck(K), +). An element J2„nq[aq\ £ Ck{K) is called a k-chain, where 

nq GZ,ff ,6 K. 

To look at the connectivity between two immediate dimensions, we define 

a structure-relating map between chain groups. 

Definition 5.19 (boundary homomorphism). Let K be a simplicial com­

plex and a € K,a = [vo,vi,...,Vk\- The boundary homomorphism dk : 

Ck{K)-> C^K) is 

dkv = ^2(-iy[v0, vi,...,vit..., vk] 
i 
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where i>i indicates that Vi was deleted from the sequence. 

For a given orientation of a simplex, any ordering of its vertices produces 

the same dk, i.e. dk is well-defined. 

Example 5.4 (boundaries). 

• d\ [a, b] = b — a 

• d2[a, b, c] = [b, c) - [a, c] + [a, b) = [b, c] + [c, a] + [a, b] 

• d3[a, b, c, d] = [b, c, d] — [a, c, d] + [a, 6, d] — [a, b, c] 

If we take the boundary of the boundary of a triangle, we get 

d^a, b, c] = [c] - [6] - [c] + [a] + [6] - [a] = 0 

This is intuitively correct: the boundary of a triangle is a cycle, and a cycle 

does not have a boundary. In fact, this intuition generalizes to all dimensions. 

Theorem 5.2. dk-idk — 0, for all k. 

The proof amounts to writing out dk-idk using Definition 5.19, then can­

celing terms. 

The boundary homomorphism allows the n-dimensional complex K to be 

understood using the chain complex 

n /~1 dn sy dn-l &2 x-» d\ ^ do n 

U > U n > O n _ i > • • • > U i > O o > U , 

where the O's on the right and left correspond to the facts that do — 0, and 

Cn+\ = 0 (since there are no (n + l)-simplices in K). The images and kernels 

of these maps are subgroups of Ck, and are given specific names. 

Definition 5.20. kerKdk := Z^ is called the kth cycle group, and is a free 

Abelian normal subgroup of Ck- Elements of Z^ are called k-cycles. 

im<9fc+i := Bk is called the kth boundary group, and is both a free Abelian 

normal subgroups of Ck, and a normal subgroup of ker dk- Elements of Bk that 
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are chains are called k-boundaries. These boundaries are also called bounding 

cycles, while cycles that are non in Bk are called non-bounding cycles. 

Non-bounding cycles can be thought of as 'empty', since they don't bound 

a higher dimensional cycle. Simplicial homology groups may now be defined. 

Definition 5.21 (homology group). The kth homology group is defined as 

Hk = Zk/Bk = kerdfc/imdfc+i. 

Call z\ and z2 homologous if z\ = z2 + Bk, zi, z2 E Zk, and denote this as 

Homology groups describe spaces through their Betti numbers and torsion 

subgroups, although the applications here only consider /?0 so do not involve 

torsion. 

Definition 5.22. For a simplicial complex K, its kth Betti number pk is the 

rank of the free part of Hk, and is denoted (3(Hk). Note that 

Pk = ranki^fc = rankZ^ — ranki^. 

For a torsion-free complex K, Betti numbers have an intuitive meaning: 

Po gives the number of components of the complex, f3\ is the rank of the basis 

for tunnels of K (i.e. for the underlying space of K, this is the number of cuts 

possible without dividing the space into separate components), and fa gives 

the number of voids. 

Example 5.5. For the well-known spaces of a sphere, a torus, and a Klein 

bottle, all have /30 = 1, since they consist of one connected component. Both 

the Klein bottle and the torus have pi = 2, and /?2 = 1, whereas the sphere 

has Pi = 0 and P2 = 1 (since it has no tunnels but one void). 

The first few Betti numbers will be the primary topological invariants con­

sidered when analyzing a filtration of a space. As the filtration progresses, 
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the number of connected components, tunnels and voids will change, with the 

long-lasting features representing true properties of the space. 

5.1.6 Persistent Homology 

Applying homology to filtrations, cycle groups, boundary groups and homol­

ogy groups (and thus Betti numbers) are calculated for each complex in the 

filtration. 

Definit ion 5.23. For space X with filtration Kl = {K°, K\,..., Km} (where 

0 = Ko C . . . C Km = K is a nested sequence of subcomplexes, as defined in 

Definition 5.17), denote the cycle, boundary and homology groups using the 

superscript /. In other words, Zl
k = Zk(K

l) and B\ = Bk{Kl) are the fcth cycle 

and boundary groups of Kl, and Hl
k = Hk(K

l) is the kth homology group of 

Kl. Similarly denote the fcth Betti number of Kl as j3l
k. 

Features of interest are nonbounding cycles with long lives during the fil­

tration. These can be defined more rigorously for given persistence-length p, 

as the cycles that are nonbounding at a given point, and also nonbounding for 

the next p complexes. 

Definition 5.24 (persistent homology) . The p-persistent kth homology 

group of filtration Kl is defined as 

Hl* = Zl
k/(BFT\Zl). 

The rank of Hk
p gives the p-persistent kth Betti number f3k

p. 

Definition 5.25 (persistence). A non-bounding A;-cycle z has homology class 

[z] € H\. z is created at time i by the arrival of simplex cr, and z' G [z] is 

turned into a boundary (i.e. destroyed) at time j > i by the arrival of simplex 

r . So z' G Bk, and its destruction merges [z] with an older class of cycles, 

and decreases the rank of the homology group. The persistence of z (and of 

[z]) is j — i — 1. Call a a positive simplex, and the creator of [z\. Call r a 
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negative simplex, and the destroyer of [z\. A cycle with no destroyer is given 

persistence of oo. 

A number of methods are available to visualize the persistent features of 

a given filtered complex. The most common, which will be used here, is in 

the form of a barcode. For a homology class [z] which is created at time i and 

destroyed at time j , a horizontal line will be drawn beginning at time % and 

ending at time j . For a given Hk, multiple homology classes may exist, with 

each represented as a horizontal line, staggered vertically for visualization. 

The number of intervals at any given point during the filtration, is the rank 

of Hk (i.e. fa) at that time point. 

In the next section we apply the idea of persistent homology to the tangent 

space representation of configurations from the orthodontic data set. 

5.2 Persistent homology applied to tangent space 

data 

When using statistical shape analysis methods on the orthodontic data set, 

we last left the shapes as single points in a tangent space approximation to 

the shape space. Using traditional statistical analyses, we were unable to 

distinguish any significant differences in the mean shapes of the groups (either 

between treatments or across time). Here, persistent homology methods will 

be applied to the points to determine if they fall into any distinct subgroups. 

This will be done by examining the persistence of the Oth Betti number during 

a filtration. Distinct subgroups will appear as persistent lines on the barcode. 

The filtration chosen here is a Cech filtration: 

Definition 5.26 (Cech filtration). Let V — {va,V\,... ,vn-\} be a set of 

vertices in W1. For % = 1, . . . ,n, let 6j be a ball with radius t centered at 

Vi. When bif]bj ^ 0 the 1-simplex {viVj} joins the complex. Similarly, for 

2 < k < n when b^ f]... f] bik ^ 0 the /c-simplex {v^ ... vik} joins the complex. 

At time t = 0, the Cech complex of V consists of only the k 0-dimensional 
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simplices (and thus has k separate components). As t increases, the first 

simplex to join the complex is the 1-simplex connecting the two closest vertices 

(decreasing the number of components by one). This continues until all vertices 

are connected, and there is just one connected component. 

If there are k distinct subgroups formed by the vertices, then the number 

of components will drop from n to k rather quickly, stay at k for some time, 

and then drop relatively quickly to 1. 

To apply these methods to the example data set, the tangent space ap­

proximation is taken using the grand mean (over all groups at all time points) 

as the pole. Then persistent homology methods may be applied to subsets 

of interest (corresponding to the same treatment group over time, or multiple 

treatment groups at a single time point) to determine if distinct groups of ver­

tices are seen. If they are, then those vertices correspond to shapes that are 

more similar. Also, the relationship between the points (using all treatment 

groups) may be compared across time points. 

A software package called PLEX has been developed in Gunnar Carls-

son's applied topology research group at Stanford. It is written in MatLab by 

Patrick Perry and Vin de Silva, and incorporates a persistent homology C++ 

library written by Lutz Kettner and Afra Zomorodian. It was used to perform 

the persistent homology calculations, and obtain barcodes. Determining which 

persistent components correspond to which initial nodes was performed using 

code written in R by Jennifer Gamble 

5.2.1 Results 

The Cech nitrations are performed separately for each time point, and com­

pared to see if the structure of the components changes through the course of 

treatment. It is found that for all four time points the persistent components 

do not correspond to the treatment groups. This indicates that there is over­

lap between the groups in the tangent space. Using multidimensional scaling 

to graph the points, it is seen that variability within the groups is much larger 
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than variability between the groups (which was also concluded in Chapter 3). 

The persistent components correspond to single outlying shapes. The barcode 

obtained at time point 3 is shown in Figure 5.1 below, along with a plot of the 

Euclidean distance from each point to the mean shape, and the points graphed 

using the first two dimensions using multidimensional scaling. 

Performing persistent homology on group T across all four time points, 

some persistent components were seen. Upon inspection, these are clusters of 

four points (corresponding to a single subject across the four measurements) 

for subjects that are slight outliers (i.e. have rather different shape from the 

other subjects). So persistent homology did not distinguish between the time 

points, but between the subjects instead. This is due to the large inter-subject 

variability as compared to the variability between groups. The barcode, along 

with a 2d representation of the data through multidimensional scaling are 

given in Figure 5.2. 

The results using persistent homology are consistent with some of those 

from previous chapters. Hotelling's T2, ANOVA on the first PC, and MANOVA 

on the first few PCs did not detect any shape differences between the groups. 

Using persistent homology, there is no visible clustering of the points in the 

tangent space. 

See the next chapter for directions for future research. 
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Figure 5.1: At the top is the barcode corresponding to the Oth Betti number 
at time point 3. It ends with one persistent component, as expected. The two 
persistent components which seem a bit longer than the others correspond to 
two single shapes which are slight outliers (and not distinct subgroups). These 
outliers are highlighted in a plot of the Euclidean distances from each shape 
to the mean shape (middle). At the bottom is a multidimensional scaling 
representation of the points in the tangent space, with the group means shown 
as filled-in points. 
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Figure 5.2: Barcode corresponding to the Oth Betti number using group T. 
Persisting components correspond to clusters of four points, belong to the 
same subject at multiple time points. On the right is a MDS representation 
of the points in the tangents space (within groups means filled in). 
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Chapter 6 

Directions for Future Research 

Regardless of the method, or shape descriptor used, an overarching goal of 

statistical shape analysis is to compare shapes directly in some shape space, 

where their relation in the shape space may be used to determine the specific 

way in which the shape of the (real world) objects differ. In the case of the 

shape space for landmark coordinate data, there is still much to learn. When 

all the shapes under consideration are quite similar, tangent space approxima­

tions may be appropriate, but this situation is not always the case. 

One possible direction is to use a method of geodesic-estimation, such as 

ISOMAP instead of a tangent space approximation. Distances can be es­

timated using ISOMAP, and those values used to build a filtration on the 

points (to perform persistent homology methods). This should approximate 

distances in the shape space more closely than a tangent space projection, 

especially for shapes with larger deformations. 

Another way to check for curving or non-linearity in the shape space is 

to use the persistent homology methods to compute higher Betti numbers for 

the sample data. It is not expected that there would be any tunnels or voids 

within the sample data, so if any were seen it would likely be an artifact of 

the tangent space projection. This would imply that the shape space curves 

back on itself in some way, resulting in nonzero higher Betti numbers in the 

tangent space. 
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There are methods developped by Carlsson, Zomorodian, Collins and Guibas 

[12], [14] for using the barcodes (obtained via persistent homology on 3D point 

cloud data) as shape descriptors. This involves the use of a metric on the bar­

code space to determine distances between shapes. Perhaps a metric such as 

this could be used to compare groups of objects in the tangent space (i.e. a 

way to measure the distance between the treatment group clusters). Methods 

applying a statistical approach to persistent homology, as in [8] could also be 

used in the shape analysis setting. 

Statistical shape analysis is without question a field with much breadth and 

depth. The next step I would like to take is to apply statistical methodologies 

(eg. density estimation) in conjunction with persistent homology methods 

to study the shape space (as represented by points derived from a sample of 

landmark configurations). 
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Appendix A 

Additional table and figures 

This appendix contains extra tables and figures, referenced throughout the 

main body of the text. 
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Landmark 1 
Landmark 2 
Landmark 3 
Landmark 4 
Landmark 5 
Landmark 6 
Landmark 7 
Landmark 8 
Landmark 9 
Landmark 10 
Landmark 11 
Landmark 12 
Landmark 13 
Landmark 14 
Landmark 15 
Landmark 16 
Landmark 17 
Landmark 18 
Landmark 19 
Landmark 20 
Landmark 21 
Landmark 22 
Landmark 23 
Landmark 24 
Landmark 25 
Landmark 26 
Landmark 27 
Landmark 28 
Landmark 29 
Landmark 30 
Landmark 31 
Landmark 32 
Landmark 33 
Landmark 34 
Landmark 35 
Landmark 36 
Landmark 37 
Landmark 38 
Landmark 39 
Landmark 40 
Landmark 41 
Landmark 42 
Landmark 43 
Landmark 44 

Description 
Foramen Spinosum Left 

Foramen Spinosum Right 
ELSA 

Auditory External Meatus Left 
Auditory External Meatus Right 

Dorsum Foramen Magnum 
N 
A 
B 

Prosthion 
Mesial Incisor Surface Left 

Mesial Incisor Surface Right 
Zm Left 

Zm Right 
Piriform Left 

Piriform Right 
Orbit Left 

Orbit Right 
Ekm Left 

Upper First Molar Left 
Lower First Molar Left 

Upper First PreMolar Left 
Upper Canine Left 
Lower Canine Left 

Ekm Right 
Upper First Molar Right 
Lower First Molar Right 

Upper First Premolar Right 
Upper Canine Right 
Lower Canine Right 

Incisal Apex Left 
Incisal Apex Right 

MB 26 Apex 
B 24 Apex 

23 Apex 
MB 16 Apex 
B 14 Apex 

13 Apex 
MB 36 Apex 

33 Apex 
MB 46 Apex 

43 Apex 
ANS 
PNS 

Dental=l Skeletal=2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 

Table A.l: Description of Landmarks 
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Landmark 1 
Landmark 2 
Landmark 3 
Landmark 4 
Landmark 5 
Landmark 6 
Landmark 7 
Landmark 8 
Landmark 9 
Landmark 10 
Landmark 11 
Landmark 12 
Landmark 13 
Landmark 14 
Landmark 15 
Landmark 16 
Landmark 17 
Landmark 18 
Landmark 19 
Landmark 20 
Landmark 21 
Landmark 22 
Landmark 23 
Landmark 24 
Landmark 25 
Landmark 26 
Landmark 27 
Landmark 28 
Landmark 29 
Landmark 30 
Landmark 31 
Landmark 32 
Landmark 33 
Landmark 34 
Landmark 35 
Landmark 36 
Landmark 37 
Landmark 38 
Landmark 39 
Landmark 40 
Landmark 41 
Landmark 42 
Landmark 43 
Landmark 44 

X 

0.9958084 
0.9958753 
0.9961253 
0.965559 
0.9819458 
0.99657 

0.997517 
0.9928113 
0.9941482 
0.9989228 
0.9967599 
0.9972109 
0.9628446 
0.9690635 
0.9992411 
0.997794 
0.9890891 
0.9890126 
0.9959578 
0.9993784 
0.9971026 
0.996957 
0.9973607 
0.998302 
0.9945508 
0.998807 
0.9971665 
0.9975601 
0.9972975 
0.9965226 
0.9965413 
0.9927915 
0.9955616 
0.997223 
0.995864 
0.9961252 
0.9955913 
0.9955737 
0.9969127 
0.9962693 
0.9981456 
0.9958057 
0.9975644 
0.9959843 

y 
0.9972786 
0.9987695 
0.9983444 
0.9968548 
0.9948078 
0.9948347 
0.999795 
0.9986231 
0.999415 
0.9987176 
0.9988233 
0.9988184 
0.9911847 
0.989862 
0.998466 

0.9979222 
0.9973361 
0.9981342 
0.996977 
0.9974448 
0.9991477 
0.9971722 
0.9993017 
0.9989519 
0.9930129 
0.998055 
0.9981702 
0.9972354 
0.9984664 
0.9984577 
0.9982377 
0.9983424 
0.9984745 
0.9987528 
0.9985045 
0.998128 
0.9982972 
0.9984442 
0.9970679 
0.9987481 
0.9977977 
0.998944 
0.9954345 
0.9953744 

z 
0.9948324 
0.9980485 
0.996648 
0.9970302 
0.9971991 
0.9623226 
0.9967474 
0.9829405 
0.990828 
0.9991659 
0.9975326 
0.9975326 
0.9949996 
0.9961805 
0.9769627 
0.9775703 
0.998431 
0.9991872 
0.9841908 
0.9979402 
0.998717 

0.9965208 
0.997304 
0.996325 
0.976458 
0.9984061 
0.9980182 
0.9974624 
0.996562 
0.9955306 
0.9957652 
0.9960272 
0.9890536 
0.9895584 
0.9941512 
0.993571 
0.9911 

0.9954153 
0.9874707 
0.9900583 
0.9943247 
0.9931568 
0.9953342 
0.9956113 

Table A.2: ICCs for intra-rater reliability on each landmark 
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Landmark 1 
Landmark 2 
Landmark 3 
Landmark 4 
Landmark 5 
Landmark 6 
Landmark 7 
Landmark 8 
Landmark 9 
Landmark 10 
Landmark 11 
Landmark 12 
Landmark 13 
Landmark 14 
Landmark 15 
Landmark 16 
Landmark 17 
Landmark 18 
Landmark 19 
Landmark 20 
Landmark 21 
Landmark 22 
Landmark 23 
Landmark 24 
Landmark 25 
Landmark 26 
Landmark 27 
Landmark 28 
Landmark 29 
Landmark 30 
Landmark 31 
Landmark 32 
Landmark 33 
Landmark 34 
Landmark 35 
Landmark 36 
Landmark 37 
Landmark 38 
Landmark 39 
Landmark 40 
Landmark 41 
Landmark 42 
Landmark 43 
Landmark 44 

X 

0.9913705 
0.9709572 
0.984535 
0.7656332 
0.8739365 
0.9959398 
0.9968808 
0.9881966 
0.9888079 
0.9976383 
0.994562 
0.994562 
0.9611155 
0.9216593 
0.9886363 
0.9885143 
0.8830715 
0.8686925 
0.97994 

0.9917479 
0.9940272 
0.9928393 
0.9929314 
0.9881252 
0.988708 
0.9929599 
0.9962314 
0.9874819 
0.9955638 
0.9976362 
0.996072 
0.9951945 
0.9958129 
0.9934761 
0.9932356 
0.9911672 
0.9898706 
0.9953716 
0.9917923 
0.9935137 
0.9966715 
0.9953077 
0.9955007 
0.9917739 

y 
0.992978 
0.9880345 
0.9940028 
0.9805451 
0.9837442 
0.9848262 
0.999529 
0.9961152 
0.9988344 
0.9973835 
0.9952576 
0.9952576 
0.9911701 
0.9875174 
0.9662529 
0.9840966 
0.9911683 
0.9863763 
0.9893867 
0.9941226 
0.998107 
0.990876 
0.998113 
0.9951093 
0.9875736 
0.9973233 
0.997107 
0.9961817 
0.9984212 
0.9986385 
0.9973316 
0.9962598 
0.9978357 
0.9987754 
0.9971635 
0.9960603 
0.998135 
0.997049 
0.987671 
0.9974785 
0.9936912 
0.9979976 
0.9793602 
0.9845914 

z 
0.991311 

0.9917325 
0.9924118 
0.9882663 
0.990004 
0.935523 

0.9849608 
0.9723194 
0.983679 
0.994522 
0.9910677 
0.9910677 
0.9930684 
0.9957658 
0.914469 

0.9034827 
0.9975495 
0.9986416 
0.9683173 
0.996503 

0.9964064 
0.997138 
0.9923879 
0.9962004 
0.963521 

0.9960153 
0.9961063 
0.9954411 
0.9932852 
0.9945674 
0.9942249 
0.9927709 
0.9851345 
0.9866418 
0.9953396 
0.9875182 
0.9894108 
0.9959521 
0.965574 
0.984006 

0.9705181 
0.9876961 
0.980045 

0.9916456 

Table A.3: ICCs for inter-rater reliability on each landmark 
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Landmark 1 
Landmark 2 
Landmark 3 
Landmark 4 
Landmark 5 
Landmark 6 
Landmark 7 
Landmark 8 

Description 
Foramen Spinosum Left 

Foramen Spinosum Right 
Ovale Left 

Ovale Right 
Hypoglossal Canal Left 

Hypoglossal Canal Right 
Rotundum Left 

Rotundum Right 

Table A.4: Skull foramina chosen as landmarks. 
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group 
Residuals 

Df 
2 

59 

Sum Sq 
0.000382 
0.073098 

Mean Sq 
0.000191 
0.001239 

F value 
0.1542 

Pr(>F) 
0.8574 

Table A.6: ANOVA table using first principal component of tangent space 
coordinates to compare treatment groups at baseline. 

group 
Residuals 

Df 
2 
59 

Pillai 
0.15977 

approx F 
0.97238 

num Df 
10 

denDf 
112 

Pr(>F) 
0.4715 

Table A.7: MANOVA table using first five principal components of tangent 
space coordinates to compare treatment groups at baseline. 

group 
Residuals 

Df 
2 

59 

Sum Sq 
0.000389 
0.071778 

Mean Sq 
0.000195 
0.001217 

F value 
0.16 

Pr(>F) 
0.8525 

Table A.8: ANOVA table using first principal component of tangent space 
coordinates to compare treatment groups at time point 2. 

group 
Residuals 

Df 
2 

59 

Sum Sq 
0.000138 
0.064834 

Mean Sq 
0.000069 
0.001099 

F value 
0.0628 

Pr(>F) 
0.9392 

Table A.9: ANOVA table using first principal component of tangent space 
coordinates to compare treatment groups at time point 3. 

group 
Residuals 

Df 
2 

59 

Sum Sq 
0.000025 
0.058737 

Mean Sq 
0.000013 
0.000996 

F value 
0.0127 

Pr(>F) 
0.9874 

Table A. 10: ANOVA table using first principal component of tangent space 
coordinates to compare treatment groups at time point 4. 

group 
Residuals 

Df 
2 

59 

Pillai 
0.26046 

approx F 
1.67698 

num Df 
10 

denDf 
112 

Pr(>F) 
0.09476 

Table A.11: MANOVA table using first five principal components of tangent 
space coordinates to compare treatment groups at time point 2. 
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Figure A.l: Boxplots showing the distribution and variability of the three 
groups at each of the three time points. 

group 
Residuals 

Df 
2 

59 

Pillai 
0.15978 

approx F 
1.23732 

num Df 
8 

den Df 
114 

Pr(>F) 
0.2839 

Table A. 12: MANOVA table using first four principal components of tangent 
space coordinates to compare treatment groups at time point 3. 

group 
Residuals 

Df 
2 

59 

Pillai 
0.17186 

approx F 
1.33965 

num Df 
8 

denDf 
114 

Pr(>F) 
0.2311 

Table A. 13: MANOVA table using first four principal components of tangent 
space coordinates to compare treatment groups at time point 4. 
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•*• obs 

r(-D 
T(_2) 
T(-3) 

T(-4) 
T(-5) 
r(-6) 

T(_7) 
T(-8) 
T(-9) 

T(-W) 
T(-13) 
T(-14) 
T(-15) 

2"(_16) 

7(_17) 
T(-18) 
T(-19) 
T("20) 

T(-21) 
T(-22) 
T(-23) 
T(_24) 
T(-25) 
r(-26) 

T(-27) 
T(-28) 
T(-29) 
r(-30) 
T(-31) 
T(-32) 
T(-33) 

T(-34) 
r(-35) 
T(-36) 
T("37) 
T(-38) 
T(-39) 

T(-40) 
T(-41) 
r(-42) 
T(-43) 
T(-44) 

B2-B1 
1.476944 
1.479494 
1.477136 
1.477073 
1.48073 
1.480553 
1.467710 
1.481793 
1.477859 
1.475201 
1.477063 
1.471721 
1.484383 
1.479616 
1.478691 
1.473608 
1.474166 
1.476222 
1.477479 
1.477729 
1.475482 
1.472756 
1.478306 
1.480431 
1.479428 
1.477729 
1.477732 
1.475983 
1.476026 
1.435683 
1.301087 
1.475988 
1.474366 
1.470529 
1.478780 
1.438448 
1.440403 
1.479876 
1.478730 
1.472248 
1.474264 
1.479135 
1.476716 

B3-B1 
1.457055 
1.457838 
1.45819 
1.457263 
1.459855 
1.462784 
1.460130 
1.457129 
1.456695 
1.456951 
1.456845 
1.455018 
1.456582 
1.456807 
1.457241 
1.457093 
1.453966 
1.456459 
1.456375 
1.455422 
1.456695 
1.457259 
1.456536 
1.449101 
1.457587 
1.456641 
1.457037 
1.456723 
1.456300 
1.358342 
1.358001 
1.456726 
1.457422 
1.457282 
1.449431 
1.457827 
1.457135 
1.455324 
1.456822 
1.456465 
1.456877 
1.456902 
1.45716 

B4-B1 
1.449564 
1.449507 
1.450908 
1.45 

1.450046 
1.451952 
1.449537 
1.443982 
1.414693 
1.450891 
1.414255 
1.449821 
1.451374 
1.449125 
1.449525 
1.447355 
1.446218 
1.450032 
1.449349 
1.449532 
1.449158 
1.449216 
1.448997 
1.313817 
1.450542 
1.450739 
1.448520 
1.448714 
1.449674 
1.449892 
1.449651 
1.448718 
1.449756 
1.449673 
1.312455 
1.449876 
1.449516 
1.449867 
1.450018 
1.450141 
1.451346 
1.45034 
1.449870 

B3-B2 
1.427163 
1.43364 
1.430724 
1.42599 
1.428549 
1.425720 
1.420134 
1.432562 
1.427472 
1.426955 
1.427013 
1.406351 
1.585125 
1.429456 
1.422805 
1.416925 
1.428148 
1.418525 
1.417064 
1.416939 
1.416748 
1.417324 
1.421701 
1.392832 
1.444829 
1.421581 
1.418713 
1.419525 
1.421833 
1.432292 
1.425429 
1.421701 
1.422499 
1.425245 
1.379062 
1.418734 
1.374293 
1.420540 
1.425908 
1.412969 
1.422805 
1.427964 
1.426227 

B4-B2 
1.48592 
1.491514 
1.48851 
1.486586 
1.484973 
1.481296 
1.487661 
1.481108 
1.466632 
1.487138 
1.465439 
1.470604 
1.629979 
1.486196 
1.478672 
1.475335 
1.486639 
1.479985 
1.477102 
1.477433 
1.476794 
1.477399 
1.481564 
1.326442 
1.501122 
1.483226 
1.477427 
1.478243 
1.482289 
1.488514 
1.482826 
1.481113 
1.482268 
1.484287 
1.324626 
1.477702 
1.477643 
1.480419 
1.485241 
1.475930 
1.485591 
1.486376 
1.486244 

B4-B3 
1.220171 
1.220134 
1.220607 
1.220403 
1.220269 
1.221113 
1.219390 
1.223396 
1.211824 
1.21901 
1.212000 
1.220565 
1.220679 
1.220276 
1.219938 
1.221848 
1.220334 
1.220262 
1.220146 
1.220118 
1.219954 
1.219833 
1.2197 
1.220379 
1.220783 
1.219697 
1.219957 
1.219952 
1.219593 
1.220094 
1.220167 
1.220024 
1.219937 
1.220344 
1.220428 
1.208213 
1.208244 
1.220378 
1.219513 
1.218718 
1.219301 
1.219949 
1.220187 

Table A. 14: Observed and landmark-deleted T-statistics when comparing 
treatment B groups across time. 
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J- obs 

T(-D 
T(-2) 
T(-3) 
T(-4) 
T(-S) 
T("6) 
T(-7) 

T(-&) 
T(-9) 
T(-io) 
T(-13) 
T("14) 
T(-\5) 

?(-16) 
T(-17) 
T(-18) 

T(-19) 
7^20) 

T(-21) 
T(-22) 
T(-23) 
T(-24) 
T(-25) 
T(-26) 

r(_27) 
T(-28) 
T(-29) 
T(-30) 
T("31) 
T(-32) 
r(-33) 
T("34) 
T(-35) 
T(-36) 
T(-37) 
T(-38) 
T(-39) 
T("40) 
T(-41) 
T(-42) 
T(-43) 
T(-44) 

C3-C1 
1.315932 
1.319288 
1.316406 
1.316104 
1.319307 
1.321336 
1.316147 
1.315184 
1.315901 
1.315668 
1.316028 
1.315730 
1.293815 
1.316061 
1.315527 
1.316996 
1.316037 
1.316453 
1.314307 
1.313841 
1.315196 
1.314228 
1.315487 
1.197812 
1.316064 
1.31159 
1.317077 
1.317398 
1.314208 
1.315902 
1.315996 
1.316472 
1.316243 
1.316020 
1.217474 
1.316818 
1.315452 
1.314778 
1.315244 
1.314875 
1.314750 
1.315810 
1.315877 

C4-C1 
1.370451 
1.371343 
1.369777 
1.370586 
1.372827 
1.370006 
1.371104 
1,372627 
1.370303 
1.368744 
1.37064 
1.366281 
1.372774 
1.370384 
1.370701 
1.370270 
1.368887 
1.369545 
1.369779 
1.369345 
1.370445 
1.370278 
1.370232 
1.209733 
1.374116 
1.368954 
1.372292 
1.371780 
1.367036 
1.370367 
1.370389 
1.370078 
1.370219 
1.370576 
1.210009 
1.370029 
1.369119 
1.369086 
1.370396 
1.372008 
1.368458 
1.370354 
1.370197 

C4-C3 
1.175318 
1.176466 
1.173421 
1.175563 
1.176538 
1.173402 
1.171375 
1.172536 
1.146902 
1.176025 
1.175534 
1.174443 
1.175661 
1.176048 
1.174566 
1.174734 
1.175334 
1.175467 
1.17531 
1.174626 
1.175303 
1.175575 
1.175938 
1.176598 
1.176408 
1.175602 
1.175209 
1.174939 
1.175078 
1.159399 
1.175397 
1.175194 
1.175238 
1.175299 
1.148749 
1.148303 
1.17585 
1.174630 
1.174700 
1.176034 
1.175452 
1.176154 
1.175613 

Table A. 15: Observed and landmark-deleted T-statistics when comparing 
treatment C groups across time. 
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-t-obs 
T(-D 
T(-2) 
T(-3) 
T(-4) 
T(-5) 
T("6) 
T(_7) 

T(-%) 
T(-9) 
T(-W) 
T(-13) 
T(-14) 

^(-15) 
T(-16) 
T(~17) 
T("18) 
T("19) 
T(-20) 
T(-21) 
r(-22) 

T(-23) 
T(-24) 
T(-25) 
r("26) 
T(-27) 
r(-28) 
T(-29) 
T("30) 
T(-31) 
T(-32) 
T(-33) 
T("34) 

^(-35) 
T(-36) 
T(-37) 
T(-38) 
T(-39) 
T(-40) 
T("41) 
T(-42) 
T(-43) 
T(_44) 

T2-T1 
1.663264 
1.663564 
1.663012 
1.663258 
1.662931 
1.664150 
1.661742 
1.668905 
1.650123 
1.663151 
1.663188 
1.661376 
1.663097 
1.665319 
1.664173 
1.663846 
1.662092 
1.663261 
1.662948 
1.661902 
1.663315 
1.663337 
1.663843 
1.662725 
1.663215 
1.662427 
1.663372 
1.663007 
1.66372 
1.503865 
1.285437 
1.662959 
1.66327 
1.663146 
1.662910 
1.663231 
1.663751 
1.661956 
1.664467 
1.661683 
1.664271 
1.644251 
1.662956 

T3-T1 
1.624671 
1.624195 
1.623673 
1.624696 
1.624536 
1.621448 
1.627725 
1.630091 
1.623937 
1.623993 
1.624417 
1.623585 
1.624629 
1.62576 
1.624680 
1.631803 
1.623453 
1.513680 
1.624173 
1.626045 
1.624523 
1.623997 
1.624350 
1.624619 
1.625312 
1.623111 
1.625234 
1.625887 
1.624441 
1.508641 
1.479377 
1.513523 
1.623522 
1.624458 
1.625312 
1.625180 
1.624979 
1.625607 
1.624501 
1.622299 
1.622897 
1.623714 
1.624665 

T4-T1 
1.702729 
1.703715 
1.704582 
1.703256 
1.702147 
1.704732 
1.697096 
1.701936 
1.580424 
1.703906 
1.703597 
1.704096 
1.704747 
1.700130 
1.700290 
1.701433 
1.700110 
1.703215 
1.703345 
1.702299 
1.702328 
1.702519 
1.702651 
1.590201 
1.702671 
1.701853 
1.702938 
1.704320 
1.703968 
1.703817 
1.580487 
1.704218 
1.704259 
1.703555 
1.593148 
1.702135 
1.702119 
1.702349 
1.704638 
1.699575 
1.703151 
1.702411 
1.702059 

T3-T2 
1.423590 
1.423314 
1.422830 
1.423406 
1.421203 
1.420521 
1.423236 
1.423388 
1.423320 
1.423964 
1.423437 
1.416443 
1.423406 
1.424400 
1.423495 
1.425049 
1.421666 
1.378578 
1.421176 
1.423690 
1.425500 
1.423890 
1.423910 
1.423206 
1.424976 
1.424779 
1.42431 
1.425162 
1.423862 
1.423501 
1.423633 
1.378657 
1.423817 
1.422085 
1.423898 
1.423580 
1.423565 
1.426281 
1.423499 
1.426083 
1.424429 
1.423263 
1.423668 

T4-T2 
1.591574 
1.59277 
1.593378 
1.592030 
1.588234 
1.588869 
1.592664 
1.58827 
1.507507 
1.592032 
1.507485 
1.591945 
1.592182 
1.591015 
1.590952 
1.589149 
1.590211 
1.591342 
1.592672 
1.592045 
1.591736 
1.592008 
1.591371 
1.523007 
1.591740 
1.5915 
1.592292 
1.592826 
1.592689 
1.591706 
1.591538 
1.593073 
1.59289 
1.592747 
1.523069 
1.591278 
1.590859 
1.593238 
1.592077 
1.58841 
1.590632 
1.592178 
1.591724 

T4-T3 
1.304795 
1.304539 
1.304717 
1.304451 
1.305092 
1.3049 
1.306080 
1.305385 
1.209286 
1.305426 
1.247401 
1.305008 
1.304793 
1.302675 
1.300663 
1.304183 
1.303259 
1.304853 
1.304364 
1.304741 
1.304781 
1.304725 
1.305706 
1.304862 
1.304425 
1.304185 
1.304692 
1.304649 
1.305072 
1.305084 
1.305201 
1.304879 
1.304853 
1.305037 
1.304885 
1.30493 
1.305529 
1.304681 
1.308928 
1.304130 
1.306598 
1.268919 
1.304615 

Table A. 16: Observed and landmark-deleted T-statistics when comparing 
treatment T groups across time. 
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1-obs 
T(-D 
T(-2) 
T(-3) 

T(-4) 
T(-5) 
T(-6) 
T(-7) 
T("8) 
T(-9) 
T(-l,0) 
r(-13) 
T(-14) 
T("15) 
T(-16) 
T(-17) 
T(-18) 

^(-19) 
T(-20) 
T("21) 
T(-22) 
T(-23) 
T(-24) 
T(-25) 
T(-26) 
T(-27) 
T("28) 
T(-29) 
T(-30) 
T(-31) 
T(-32) 
T("33) 
T(-34) 
T(-35) 

T(-36) 
T(-37) 

^(-38) 

^(-39) 

T(-40) 
T(-41) 
T(-42) 
r(-43) 
T(-44) 

B2 and C2 
1.418469 
1.421057 
1.418844 
1.417677 
1.422747 
1.422644 
1.423133 
1.419444 
1.418682 
1.418538 
1.418672 
1.416068 
1.421096 
1.417625 
1.417305 
1.415780 
1.416742 
1.419626 
1.419637 
1.418910 
1.417624 
1.415624 
1.418972 
1.418721 
1.419371 
1.41907 
1.417783 
1.418173 
1.418011 
1.354236 
1.355613 
1.419151 
1.416951 
1.412659 
1.417374 
1.418255 
1.418183 
1.420221 
1.419162 
1.419648 
1.418068 
1.419148 
1.418333 

B2 and T2 
1.327263 
1.327151 
1.327312 
1.327010 
1.327007 
1.328607 
1.326624 
1.327639 
1.327265 
1.326426 
1.327150 
1.327374 
1.327941 
1.32671 
1.328517 
1.326895 
1.329412 
1.327266 
1.32714 
1.327126 
1.327059 
1.327464 
1.326671 
1.327530 
1.305505 
1.306661 
1.327646 
1.307336 
1.308014 
1.327260 
1.327220 
1.327259 
1.327265 
1.327211 
1.325165 
1.327402 
1.328463 
1.325932 
1.324437 
1.327006 
1.329836 
1.326427 
1.327272 

T2 and B2 
1.327263 
1.327151 
1.327312 
1.327010 
1.327007 
1.328607 
1.326624 
1.327639 
1.327265 
1.326426 
1.327150 
1.327374 
1.327941 
1.32671 
1.328517 
1.326895 
1.329412 
1.327266 
1.32714 
1.327126 
1.327059 
1.327464 
1.326671 
1.327530 
1.305505 
1.306661 
1.327646 
1.307336 
1.308014 
1.327260 
1.327220 
1.327259 
1.327265 
1.327211 
1.325165 
1.327402 
1.328463 
1.325932 
1.324437 
1.327006 
1.329836 
1.326427 
1.327272 

T2 and C2 
1.498158 
1.499806 
1.499438 
1.499799 
1.498643 
1.498470 
1.498739 
1.499264 
1.498187 
1.497293 
1.498234 
1.497706 
1.498172 
1.497900 
1.499008 
1.499071 
1.497295 
1.497649 
1.498525 
1.497898 
1.498421 
1.498401 
1.497536 
1.498144 
1.492794 
1.491854 
1.498118 
1.498392 
1.497593 
1.267227 
1.241104 
1.497974 
1.498368 
1.497841 
1.498329 
1.498109 
1.497493 
1.498942 
1.496321 
1.496325 
1.497532 
1.498129 
1.498320 

Table A. 17: Observed and landmark-deleted T-statistics when comparing 
treatment groups at time point 2. 
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J- obs 

T(-i) 
T(-2) 
T(-3) 
T(-i) 
T(-5) 
T(-6) 
T(~7) 
T(-8) 
r(-9) 
T(-io) 
T(-13) 
T(-14) 
T(-15) 
T(-16) 
T(-17) 
T(-18) 
T("19) 
T(-20) 
T(-21) 
T(-22) 
T(-23) 
T(-24) 
r(-25) 
T(-26) 

^(-27) 

^(-28) 

r(_29) 
T("30) 
T(-31) 
T(-32) 
T(-33) 

^(-34) 
T(-35) 
T(-36) 
T(-37) 
T(-38) 
T(-39) 

^(-40) 

T(-41) 
T(-42) 

^(-43) 

r(_44) 

B3 and C3 
1.338226 
1.338087 
1.337862 
1.338310 
1.336446 
1.336689 
1.338947 
1.334334 
1.338181 
1.339640 
1.338269 
1.339417 
1.338149 
1.337021 
1.337365 
1.336787 
1.339414 
1.339082 
1.337468 
1.338963 
1.337731 
1.331477 
1.331095 
1.338652 
1.338014 
1.337134 
1.338380 
1.338273 
1.338017 
1.252268 
1.252216 
1.339414 
1.338355 
1.338518 
1.338601 
1.338404 
1.338891 
1.338932 
1.339043 
1.338001 
1.339981 
1.338363 
1.338247 

B3 and T3 
1.350373 
1.350966 
1.347457 
1.350098 
1.348091 
1.348452 
1.347358 
1.35251 
1.350308 
1.350143 
1.350953 
1.347382 
1.351179 
1.352424 
1.351498 
1.352484 
1.349653 
1.324355 
1.349311 
1.350058 
1.350968 
1.350243 
1.351015 
1.351709 
1.351267 
1.351600 
1.294328 
1.290893 
1.352188 
1.350340 
1.350324 
1.317239 
1.349510 
1.348796 
1.349604 
1.350125 
1.349989 
1.349182 
1.349819 
1.351576 
1.352398 
1.350436 
1.350318 

T3 and B3 
1.350373 
1.350966 
1.347457 
1.350098 
1.348091 
1.348452 
1.347358 
1.35251 
1.350308 
1.350143 
1.350953 
1.347382 
1.351179 
1.352424 
1.351498 
1.352484 
1.349653 
1.324355 
1.349311 
1.350058 
1.350968 
1.350243 
1.351015 
1.351709 
1.351267 
1.351600 
1.294328 
1.290893 
1.352188 
1.350340 
1.350324 
1.317239 
1.349510 
1.348796 
1.349604 
1.350125 
1.349989 
1.349182 
1.349819 
1.351576 
1.352398 
1.350436 
1.350318 

T3 and C3 
1.391712 
1.392407 
1.389937 
1.390922 
1.390925 
1.387216 
1.393691 
1.398260 
1.390907 
1.392129 
1.391658 
1.385907 
1.392044 
1.392321 
1.392897 
1.392247 
1.388599 
1.284218 
1.389970 
1.392731 
1.391874 
1.39001 
1.394574 
1.393346 
1.3938 
1.391522 
1.337417 
1.337913 
1.392387 
1.391181 
1.391486 
1.284176 
1.392010 
1.390698 
1.39187 
1.391801 
1.391973 
1.390087 
1.392184 
1.394007 
1.392872 
1.390653 
1.392049 

Table A. 18: Observed and landmark-deleted T-statistics when comparing 
treatment groups at time point 3. 
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-L obs 
T(-D 
T(-2) 

T(-3) 
T(-A) 

T(-5) 
T(-6) 
T(-7) 
T(-8) 
T(-9) 

T(-W) 
T(-13) 
T(~U) 
T(-15) 

^(-16) 

r(-17) 
T(-18) 
T(-19) 
r(-20) 

T(-21) 
T(-22) 

T(-23) 
T(-24) 
T(-2B) 
T(-26) 

T(-27) 
T(-28) 

T(-29) 

T(-30) 

r(-31) 
T(-32) 
T(-33) 
r(-34) 
T(-35) 
T(-36) 
r(-37) 

T(-38) 

T("39) 
T(-40) 

r(-41) 
T("42) 
T(-43) 
T(-44) 

B4 and C4 
1.28259 
1.282335 
1.283536 
1.282630 
1.282295 
1.280178 
1.282216 
1.280218 
1.282559 
1.2834 
1.282714 
1.283089 
1.281083 
1.282984 
1.282504 
1.284343 
1.282805 
1.283258 
1.282540 
1.281770 
1.282325 
1.282208 
1.281740 
1.283681 
1.282146 
1.282520 
1.282249 
1.224404 
1.225343 
1.212968 
1.265043 
1.282996 
1.282758 
1.282794 
1.283854 
1.283069 
1.283306 
1.281178 
1.281672 
1.283040 
1.283419 
1.282515 
1.282585 

B4 and T4 
1.386536 
1.386541 
1.386924 
1.386237 
1.384563 
1.389934 
1.385433 
1.386949 
1.386481 
1.386258 
1.38679 
1.383810 
1.386676 
1.385175 
1.385765 
1.387393 
1.384329 
1.368605 
1.387235 
1.383384 
1.387927 
1.387008 
1.387105 
1.386059 
1.386645 
1.388119 
1.38718 
1.277849 
1.368638 
1.386357 
1.386428 
1.334834 
1.385937 
1.385637 
1.387260 
1.387593 
1.388413 
1.382309 
1.385683 
1.388559 
1.388738 
1.386335 
1.386461 

T4 and B4 
1.386536 
1.386541 
1.386924 
1.386237 
1.384563 
1.389934 
1.385433 
1.386949 
1.386481 
1.386258 
1.38679 
1.383810 
1.386676 
1.385175 
1.385765 
1.387393 
1.384329 
1.368605 
1.387235 
1.383384 
1.387927 
1.387008 
1.387105 
1.386059 
1.386645 
1.388119 
1.38718 
1.277849 
1.368638 
1.386357 
1.386428 
1.334834 
1.385937 
1.385637 
1.387260 
1.387593 
1.388413 
1.382309 
1.385683 
1.388559 
1.388738 
1.386335 
1.386461 

T4 and C4 
1.325425 
1.325604 
1.326779 
1.325167 
1.325302 
1.332315 
1.324421 
1.316782 
1.325588 
1.327344 
1.325184 
1.323132 
1.326800 
1.325310 
1.325360 
1.326368 
1.323699 
1.288411 
1.326808 
1.321427 
1.324969 
1.322663 
1.326045 
1.325078 
1.325326 
1.325851 
1.325572 
1.326530 
1.325322 
1.325508 
1.325691 
1.289277 
1.309414 
1.309810 
1.326211 
1.326356 
1.326226 
1.323243 
1.328346 
1.325760 
1.327054 
1.325152 
1.325426 

Table A. 19: Observed and landmark-deleted T-statistics when comparing 
treatment groups at time point 4. 
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Appendix B 

Computer code 

The code below was written in R by Jennifer Gamble to implement EDMA 

methods as described in [31]. 

Required packages: 

• uti ls 

• f i e ld s (to use rdist() function) 

• corpcor (to allow use of smtools like sm2vec) 

• abind (to allow binding of arrays) 

For all functions (unless otherwise stated), X and Y are k x m x n, arrays of 

raw landmark coordinate data. 

List of functions: 

bootFDM(X,Y,b) # re turns unsorted lxb matrix 

for bootstrapped FDM (p.23-24) 

bootT(X,Y,b) # bootstrap for T in EDMA-I t e s t , 

r e t u r n s b (number r e p s ) , b o o t s t r a p p e d FDM 

(raw and so r t ed ) , bootstrapped T s t a t s , and 

ninety and ninety-f ive percent CIs for T 
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btsort(boot) # takes bootFDM output and returns 

sorted lxb matrix, b, and ninety and ninety-

five percent confidence intervals for each 

FDM entry (i.e. row) 

F(A) # returns vectorized form matrix l=k(k-l)/2 of 

landmark configuration A 

FDM(X,Y) # returns exact form difference matrix 

for two kxm configurations X and Y 

FDMhat(X,Y) # returns estimated form difference 

matrix 

FMhat(X) # returns estimated mean form matrix 

index(A) # returns 1x2 matrix where row i gives the 

two landmarks corresponding to F(A) entry i 

Mhat(X) # returns mean form estimate from step 7 

of algorithm to estimate mean form matrix (p.22) 

T(FDM) # returns Lele and Richtsmeier's test statistic 

for given form difference matrix 

Tdelete(X,Y) # returns k-length vector whose ith 

entry is the T statistic recalculated with 

the ith landmark removed 

Code for functions: 

bootFDM <- function(X, Y, b) { 
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k = dim(X)[1] 

1 = k*(k - l ) /2 

nl = dim(X)[3] 

n2 = dim(Y)[3] 

F l a i l = matrix(nrow=l, ncol=nl) 

f o r d in l : n l ) { 

F l a l l E . i ] = F (X[ , , i ] ) 

} 

F2all = matrix(nrow=l, ncol=n2) 

f o r d in l:n2) { 

F2a l l [ , i 3 = F (Y[ , , i ] ) 

} 

boot = matrix(nrow=l, ncol=b) 

boo t [ , l ] = FMhat(Flail)/FMhat(F2all) 

fo r ( j in 2:b) { 

Flboot = matrix(nrow=l, ncol=nl) 

rdml = sampled :nl, nl, replace=TRUE) 

ford in l:nl) { 

Flboot [,i] = Flail[,rdml[i]] 

} 

FM1 = FMhat(Flboot) 

F2boot = matrix(nrow=l, ncol=n2) 

rdm2 = sampled :n2, n2, replace=TRUE) 

ford in l:n2) { 

F2boot[ , i ] = F2al l [ , rdm2[i]] 

} 

FM2 = FMhat(F2boot) 

boot[,j] = FM1/FM2 

} 

boot 
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bootT <- function(X, Y, b) i 

k = dim(X)[1] 

1 = k*(k- l ) /2 

nl = dim(X)[3] 

n2 = dim(Y)[3] 

F l a i l = matrix(nrow=l, ncol=nl) 

f o r ( i in l : n l ) { 

F l a l l [ , i ] = F (X[ , , i ] ) 

} 

F2all = matrix(nrow=l, ncol=n2) 

f o r d in l:n2) { 

F 2 a l l [ , i ] = F (Y[ , , i ] ) 

} 

boot = matrix(nrow=l, ncol=b) 

T = vector(length=b) 

fo r ( j in l :b) { 

rdml = sampled:n2, n l , replace=TRUE) 

Aall = matrix(nrow=l, ncol=nl) 

f o r d in l : n l ) { 

A a l l [ , i ] = F2a l l [ , rdml[ i ] ] 

} 

rdm2 = sampled:n2, n2, replace=TRUE) 

Ball = matrix(nrow=l, ncol=n2) 

f o r d in l:n2) { 

B a l l [ , i ] = F2al l [ , rdm2[i]] 

} 

formdiff = FMhat(Ball)/FMhat(Aall) 

boo t [ , j ] = formdiff 

T[j] = T(formdiff) 

} 
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low95 = floor((b*0.025)+l) 

high95 = floor(b*0.975) 

low90 = floor((b*0.05)+l) 

high90 = floor(b*0.95) 

Tsort = sort(T) 

ninetyfive = c(Tsort[low95], Tsort[high95]) 

ninety = c(Tsort[low90], Tsort[high90]) 

return(list(b=b, boot=boot, T=T, ninetyfive=ninetyfive, 

ninety=ninety, Tsort=Tsort)) 

} 

btsort <- function(boot) { 

b = dim(boot)[2] 

bootsort = matrix(nrow=l, ncol=b) 

ford in 1:1) { 

bootsort[i,3 = sort(boot[i,]) 

} 

low95 = floor((b*0.025)+l) 

high.95 = floor(b*0.975) 

low90 = floor((b*0.05)+l) 

high90 = floor(b*0.95) 

ninetyfive = cbind(bootsort[,low95], bootsort [,high95], 

index) 

ninety = cbind(bootsort[,low90], bootsort[,high90], 

index) 

return(list(bootsort=bootsort, b=b, 

ninetyf ive=ninetyfive, ninety=ninety)) 

} 

F <- function(A) sm2vec(rdist(A,A), diag=FALSE) 
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FDM <- funct ion(X,Y) F(X)/F(Y) 

FDMhat <- func t ion(X, Y) { 

k = dim(X) [1] 

1 = k * ( k - l ) / 2 

n l = dim(X)[3] 

n2 = dim(Y)[3] 

F.X = mat r ix (nrow=l , nco l=n l ) 

f o r ( i i n l : n l ) { 

F . X [ , i ] = F ( X [ , , i ] ) 

} 

F.Y = matrix(nrow=l, ncol=n2) 

for(i in l:n2) { 

F.Y[,i] = F(Y[,,i]) 

} 

FDM.XY = FMhat(F.X)/FMhat(F.Y) 

FDM.XY 

} 

FMhat <- function(Fall) F(Mhat(Fall)) 

index <- function(A) sm.index(rdist(X(l),X(1)), diag=FALSE) 

Mhat <- function(Fall) { 

k = dim(X)[l] 

1 = k*(k-l)/2 

nl = dim(X)[3] 

Fall = matrix(nrow=l, ncol=nl) 

ford in l:nl) { 

Fall[,i] = F(X[,,i]) 

} 
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Eall = Fall"2 

Ebar = rowMeans(Eall) 

var.E = vector(length=l) 

f o r d in 1:1) var .E[ i ] = v a r ( E a l l [ i J ) 

EpsHat = ((Ebar~2)-1.5*var.E)~.5 

EM = vec2sm(EpsHat, diag=FALSE) 

k = dim(EM)[1] 

f o r d in l :k) EM[i,i]=0 

f o r d in l :k) { 

fo r ( j in l :k) { 

if(is.nan(EM)[i,j]==TRUE) EM[i,j]=0 

} 

} 

H = d i ag (k ) - ( l / k ) 

B = (-.5)*H7.*%EM7.*7.t(H) 

eval = eigen(B)$values 

evec = eigen(B)$vectors 

Mhat = cb ind(sq r t ( eva l [ l ] )*evec[ , l ] , sqr t (eval [2] )*evec [,2] , 

sqr t (eva l [3] )*evec[ ,3] ) 

Mhat 

} 

T <- function(FDM) max(FDM)/min(FDM) 

Tdelete <- function(X, Y) { 

Tdelete = vector(mode="numeric", length=dim(X)[1]) 

f o r d in l :dim(X)[l]) { 

Xi = X [ - i , , ] 

Yi = Y [ - i , J 

FDMi = FDMhat(Xi,Yi) 

Ti = T(FDMi) 
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TdeleteEi] = Ti 

} 

Tdelete 

} 
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