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Abstract 

 

Pipelines have been used for several decades, and threats such as corrosion, fatigue crack and 

erosion increase the danger of leak or rupture. Faulty pipelines could lead to very expensive 

downtime and environmental damage. Therefore, it is essential to have effective ways to monitor, 

evaluate and assure the integrity of the pipeline, reduce the risk of leaks and rupture, and 

subsequently prevent hazards for the environment and population. In-line inspections (ILI) are 

performed periodically using smart pigging tools to detect pipeline defects such as corrosion and 

cracks. Significant advances are needed to accurately evaluate defects based on ILI data, predict 

defect growth and optimize integrity activities to prevent pipeline failures, and pipeline integrity 

management has drawn extensive and growing research interests.  

The aim of this thesis is to develop effective prognostics and risk-based management methods 

for performing inspection and maintenance activities for pipelines with crack or corrosion defects. 

This thesis starts with developing an efficient integrated methodology, and finally leads to more 

accurate predicted failure time distributions, better risk management, and consequently more 

effective pipeline integrity management system. This thesis provides a comprehensive review and 

fundamental knowledge on pipeline integrity management based on ILI data. Physics-based 

models and data-driven methods for predicting defect growth for pipelines with different 

categories of defects are discussed. Models and methods for risk-based integrity management are 

reviewed in this thesis.  

In the more advanced prognostics strategy, an integrated prognostics model for a pipeline with 

fatigue crack is proposed to make a better prediction. Rainflow counting method is employed in 

the proposed method for analyzing time-varying loading conditions of pipelines. We use a 
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Canadian pipeline operator’s field data to demonstrate the effectiveness of the proposed integrated 

approach. And the proposed method provides more accurate pipeline remaining useful life 

prediction compared to the traditional physics-based method. 

Studies are performed on improving risk-based maintenance strategies, which are currently 

widely adopted in pipeline industry. A simulation-based approach is developed for cost evaluation 

for pipelines with corrosion defects. The probability of failure (PoF) threshold is used as input 

random variable instead of fixed inspection interval. The uncertainties from multiple sources are 

considered here to make a better and more realistic prediction and that support decision making in 

industry. Examples are given to illustrate the proposed approach, and parametric studies are 

performed. The proposed method provides less cost rate results compared to the traditional fixed 

interval method. 

It is also important to determine the impact of ILI tool specifications on pipeline risks and 

costs, and thus recommend optimal integrity assessment and risk mitigation activities. By 

investigating the effect of ILI tool uncertainties on life-cycle costs and re-assessment results, 

suggestions for future improvement of ILI crack detection tools can be given. The effect of ILI tool 

uncertainties on re-assessment results for pipelines with crack defects is investigated. The 

long-term run scenario is also investigated considering crack initiation mechanism and probability 

of detection during each simulation run. Examples are used to illustrate the proposed approach, 

and sensitivity analysis is performed. 

The research in the thesis provides innovative methods for defect growth prediction and 

risk-based management in the pipeline industry. The developed approaches will contribute to 

preventing pipeline leak and rupture, unnecessary expensive downtime, and environmental 

threats.  
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Preface 

 

This thesis is an original work by Mingjiang Xie. The research topics have been published or 

submitted for publication under the supervision of Dr. Zhigang Tian. The journal papers and 

conference papers are with Mingjiang Xie as the lead author and Dr. Zhigang Tian as the 

corresponding author. Mingjiang Xie was responsible for literature review, methods generation, 

experimental studies, and results analysis. Dr. Zhigang Tian was involved with manuscript 

composition and concept formation.  
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pipelines”, manuscript completed and under the final review of the co-authors. The conference 
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1 Introduction 

1.1 Background 

Thanks to the advantages of safety, efficiency and low cost, pipelines are widely used in 

transporting large quantities of oil and gas products over long distances. According to the 

Canadian Energy Pipeline Association (CEPA), 94% of the refined petroleum products, and most 

of the Canadian oil and gas exports were transported by pipelines [5]. Pipelines are subject to 

different types of defects, such as fatigue cracking, corrosion, etc. [6], [7], [8]. Fatigue cracking 

refers to crack growth due to fatigue caused by pressure cycling during pipeline operations. And 

corrosion defects are the most common ones existence in pipelines. Without proper remediation 

actions, these defects can eventually result in pipeline failures including leaks or ruptures, which 

lead to public safety issues, i.e. a release of pipeline contents to the environment, and expensive 

downtime. There are many pipeline incidents every year around the world, and three of the North 

America pipelines incidents in 2016 resulted in over 2,000 metric tons of oil and gas leak and spill. 

Integrity is the top priority for pipeline operators to ensure reliable and safe operations of pipelines, 

to increase productivity, reduce cost, prevent damage to the environment, support future projects, 

etc. It is essential to find effective ways to monitor, evaluate and assure the integrity of the pipeline, 

and reduce the risk of leaks and rupture.  

For pipelines, we need to ensure safety, security of supply and compliance with relevant codes 

and legislation. Procedures and practices are implemented to protect, manage and maintain the 

integrity of pipeline systems. Due to the significant severity of pipeline failures, the core of 

pipeline integrity management is to keep pipelines in safe operating conditions. Pipeline integrity 
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tools are developed to improve business performance, manage risks as well as ensure compliance. 

Proper pipeline integrity management can reduce both the probability and consequences of failure 

and increase the pipeline companies’ benefits, by properly assessing and managing the defects. 

Pipeline integrity program monitors and predicts defects and thus adjusts when, where, how, and 

what actions need to be taken, such as inspection, maintenance and repair. A good pipeline 

integrity program should be able to manage risk successfully, prevent failure from occurring, 

control damage effectively, and reduce the overall cost.  

A pipeline integrity program generally consists of three major steps: 

(1) Defects detection and identification, to obtain defect information through inspection, 

monitoring, testing and analysis techniques. 

(2) Defect growth prediction, to predict defect growth based on damage prediction models and 

the collected data. 

(3) Risk-based management, to recommend optimal inspection, maintenance and repair 

policies and activities. 

Defect information is collected using detection and identification tools. Pipeline companies 

can gather defect information through walking along the pipelines by technical personnel, 

hydrostatic testing, in-line inspection (ILI), nondestructive evaluation (NDE), etc. ILI tools are 

currently the most widely used inspection technology for detecting and inspecting various types of 

pipeline defects. ILI runs are performed periodically using smart pigging tools to detect defects 

and evaluate pipeline health conditions. In this thesis, only ILI tools will be discussed and other 

detection techniques will not be covered. Defect growth prediction is to predict defect growth and 

when a pipeline failure will occur. There are different kinds of threats to pipeline integrity, such as 

metal loss, cracking, dents, third party damage, weld, etc. Study on different defect prediction 
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models is the foundation of effective integrity management. The last step, risk-based management, 

will determine proper inspection intervals, and maintenance and repair actions. The management 

models will also influence the first step and the second step by possibly changing the inspection 

actions and defect status. The aim of an integrity program is to achieve accurate defect prediction 

and balance the reliability and costs in an effective way.  

 

 

Figure 1.1 A sample screenshot of analyzing corrosion ILI raw data using software PIXUS [9] 

 

Figure 1.1 shows a sample screenshot of analyzing corrosion ILI raw data using software 

PIXUS [1]. The left blue arrow shows that channeling corrosion has newly developed. And the 

right arrow indicates a metal loss. Based on this ILI raw data, we could obtain an ILI report. This 
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ILI report should include a list of corresponding metal loss features. For each defect, it must 

contain the following items: a) defect location in distance and orientation; b) defect size in width, 

length and depth. ILI can report defect size in two different types, as shown in Table 1.1. ILI data 

reported in wall thickness bins in Table 1.1 (a). The defect depth bin is shown as the percentage of 

the pipe wall thickness (WT) Measurement tolerance is 0.5mm on either side of the bin range. And 

this type of ILI report does not provide discrete depths. The upper bound is normally used for other 

analysis. And Table 1.1(b) shows the flaw measured properties, we can directly use the defect 

information to do further analysis. 

 

Table 1.1 An ILI report example 

(a) Type 1 

Date ILI WT (mm) Length (mm) Depth bin (%WT) 

July 2002 7.5 60 12.5-25% 

July 2005 7.5 62 25-37.5% 

(b) Type 2 

Date ILI WT (mm) Length (mm) Peak depth (mm) 

July 2002 7.5 60 1.84 

July 2005 7.5 62 2.36 

 

Pipeline defect and reliability assessment is a key step to assess the current and future 

condition of the pipeline with defects. And based on integrity planning strategies, one can make 

decisions like when to perform the next inspection or when to optimally mitigate potential threats. 

Defect assessment and management for pipelines is a key part of pipeline integrity management, 
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and there has been extensive research into this field. A review of pipeline integrity management 

methods and models utilizing ILI tools was conducted in Ref. [1]. In-line inspection (ILI) tools are 

developing rapidly these days and are widely used to detect defects in pipelines. The inspection 

results contain information about types, locations and dimensions of anomalies and they serve as 

the basis for assessing pipeline system’s current condition.  

Some reported studies considered the design stage as a part of the pipeline integrity 

management process [10], [11]. It is true that pipeline integrity management is a life-cycle 

approach which involves the design phase, and better design practices typically lead to better 

pipeline integrity assurance. Study on behaviors of different threats in pipelines as well as 

inspection and maintenance activities can also give a good feedback to the pipeline design stage. 

Bai and Bai [12] introduced life-cycle cost modeling for the design stage of pipeline integrity 

management. In this thesis, though, we will not cover the pipeline integrity design stage, and will 

focus on detection, prediction and management methods and models during the operation stage. 

 

 

Figure 1.2 A flowchart for a pipeline integrity management program 
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A flowchart for a pipeline integrity program is shown in Figure 1.2. These main parts included 

in Figure 1.2 are all critical for preventing pipeline failures and unnecessary downtime. Due to the 

existence of relatively large measurement error in ILI detection tool, there is a need to make a more 

accurate defect growth prediction and more effective risk-based management with the 

consideration of ILI measurement error. With the use of a more accurate prognostics model, we 

could better assess the current and future condition of pipelines, thus prevent unexpected failure. 

Then, with the input of reliability assessment, risk-based management can be performed to 

determine the re-inspection and re-assessment interval. A more effective risk-based management 

method can result in a better decision on when to perform next ILI tool run. Consequently, we 

could avoid unnecessary digs and downtime while also ensuring safe operation of pipelines. 

 

1.2 Research motivations 

As mentioned in the previous section, it is essential to ensure the integrity of pipelines in pipeline 

industry. The consequences of accidents in pipelines could be catastrophic to the public and 

environment. Therefore, the failure probability of pipelines with different kinds of defects is an 

issue of high concern. These defects need to be managed well. Meanwhile, unnecessary digs could 

cause unnecessary shutdowns of pipelines, and lead to loss of oil and gas supply and high 

economic loss. Therefore, we need to try to reduce unnecessary expensive downtime while also 

ensuring the safety of pipeline operation.  

Among these threats to pipeline integrity, fatigue cracks and corrosion defects are two kinds 

of critical threats. For corrosion and crack defects, the nature of mechanisms are time-dependent. 

With the use of suitable damage propagation model, the probability of failure can be estimated for 
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pipelines with particular types of defects. Fatigue cracking is a key type of defect for liquid 

pipelines, and managing such fatigue cracks continues to be a top priority amongst pipeline 

integrity management. However, existing ILI tools have relatively large fatigue crack 

measurement uncertainties, and typically have a specification of about plus/minus 1 millimeter, 80% 

of the time [6], [13]. Furthermore, currently physics-based methods are mainly used for fatigue 

crack growth prediction, based on crack growth models governed by the Paris’ law [13], [14]. The 

uncertainty in crack sizing and the Paris’ law model is propagated to the predicted time of failure 

due to fatigue cracks, resulting in large uncertainty which requires a conservative management 

integrity management approach and risk mitigation strategies, such as repairs, pipe replacement, 

pressure reductions and hydro-testing. There is an urgent need to develop accurate fatigue crack 

growth prediction tools, and reduce the uncertainty and conservatism in pipeline integrity 

management. 

For pipeline fatigue crack grow prediction, existing pipeline defect prognosis methods are 

mainly classified into physics-based methods and data-driven methods [15]. A key disadvantage 

of the existing physics-based method is that typically the same fixed model parameters are used for 

all pipes. However, these material dependent model parameters should be different for different 

pipes, and slight differences in such model parameters can lead to large differences in fatigue crack 

growth predictions. Due to the measurement errors and cost of an ILI tool, data-driven methods do 

not work well if the number of ILI tool runs and the amount of data are not sufficient. In this way, 

there is an urgent need to develop a new method for pipeline defect grow prediction.  

Corrosion is the most common integrity threat to oil and gas pipelines. Risk analysis for metal 

loss corrosion defect is a vital part of pipeline integrity management. Risk is typically defined as 

the multiplication of probability and consequence, and it can be used as a reliability measure for 
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pipeline systems. A minimum total cost is expected to achieve while pipeline reliability needs to 

be larger than its predetermined target to avoid failure damage and unnecessary downtime. This is 

a tradeoff between reliability and cost. A more accurate cost evaluation policy and cost 

optimization are also needed. Inspection and maintenance actions are taken for pipeline reliability 

and safety assurance. As mentioned above, ILI is a typical inspection method for evaluating 

pipeline conditions and defect sizes using in-line inspection tools such as magnetic flux leakage 

tools and ultrasonic tools. Repair actions can be taken based on inspection results. Risk-based 

management policies and models of pipelines with corrosion or crack defects need to be built 

considering potential activities such as inspection and maintenance actions and uncertainties from 

many possible sources such as ILI measurement error. It is important to optimize inspection and 

maintenance activities to improve reliability, reduce risks and minimize the overall costs. 

Currently, for pipeline integrity management, the optimal inspection interval is fixed and 

constant during the whole pipe service time once it is determined. However, pipelines with 

different defect sizes at the current inspection point lead to different future defect growth and 

system failure probability, and it is more reasonable to apply different re-assessment intervals 

depending on pipeline health conditions. Besides, various uncertainty sources such as ILI 

measurement error need to be considered when making decisions on pipeline integrity 

management. Therefore, new approaches for cost evaluation and re-assessment interval 

determination are needed for pipelines subject to corrosion or crack defects. Better risk-based 

integrity management methods for pipelines with corrosion or crack defects need to be proposed.  

A pipeline integrity management program is greatly affected by integrity planning methods 

and ILI tool performance. In integrity management program planning, inspection and maintenance 

activities are in common practice, determined from risk and integrity assessment practices with the 
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objective to reduce risk and effectively exceed a reliability target for the safe operation of the 

pipeline. An effective integrity planning method can address the most significant risk and optimize 

operational and maintenance costs. To investigate the perception of large measurement errors in 

ILI crack detection tools, we need to express value in practical terms for a pipeline integrity 

program. In this way, it is important to establish a method that addresses reliability targets for the 

safe operation of pipelines while also addressing operational and maintenance costs. Investigations 

on the impact of ILI tool accuracy on integrity planning programs would provide a valuable aid in 

developing more advanced ILI tools and a better understanding of a pipeline integrity program. 

 

1.3 Research scope 

Overall, the objective of this thesis study is to develop effective prognostics methods and 

risk-based management models for pipelines with crack or corrosion defects. Based on the 

above-mentioned challenges, this Ph.D. thesis study aims to achieve the following specific 

research objectives:  

(a) To propose a comprehensive prognostics model for pipelines with fatigue cracks by 

integrating physics models and ILI data, providing a valuable aid in more accurate 

prediction.  

(b) To construct effective risk-based models and policies for performing inspection and 

maintenance activities for pipelines with corrosion or crack defects. 

(c) To analyze the impact of ILI tool accuracy on integrity planning programs of pipelines 

with fatigue cracks. 
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First of all, a comprehensive review on pipeline integrity management utilizing ILI data is 

given. Then, prognostics methods for pipelines with fatigue cracks or corrosion defects need to be 

improved to make a more accurate prediction. After reliability assessment, policies and models for 

risk-based integrity management can be given. Different uncertainty sources are considered for the 

prediction models. In this way, more realistic decisions on when to perform next ILI run can be 

given. And the perception of large measurement errors in ILI crack detection tools can then be 

analyzed by investigating the impact of ILI tool accuracy on integrity planning programs. Overall, 

it is expected that a more accurate prognostics model and risk-based management models will 

contribute to make better decisions regarding when to do the reinspection and re-assessment. And 

my thesis research will bring major economic, environmental and social benefits to the pipeline 

industry. 

Specifically, three research topics of the thesis are proposed in Figure 1.3. The first row of 

Figure 1.3 belongs to the area of remaining useful life (RUL) prediction for pipelines with fatigue 

cracks and corrosion defects. And the second row belongs to risk-based integrity management 

(RBIM) for pipelines of fatigue cracks and corrosion defects. 

 

 

Figure 1.3 Outline of research topics 
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In the first research topic, an integrated prognostics method is proposed for pipelines with 

fatigue cracks. Time-varying loading conditions of pipelines are analyzed by using 

rainflow-counting method. A simulation example is introduced to demonstrate the effectiveness of 

the proposed method considering the growth on both crack depth and length. And field data 

provided by a Canadian operator is employed to compare with the traditional physics-based 

method.  

In the second research topic, a simulation-based approach is proposed to determine the 

optimal inspection interval for pipelines with corrosion defects. This proposed approach is 

developed for a given re-assessment policy defined by the PoF threshold. The remaining useful life 

prediction for pipelines with corrosion defects is performed first considering uncertainties from 

multiple sources including pipe geometry, mechanical properties, growth rates, ILI measurement 

error, etc. In this way, a more realistic decision can then be made based on RUL prediction results. 

Multiple examples are given to illustrate the effectiveness of the proposed approach by comparing 

with fixed interval methods. Sensitivity analysis is performed for several important parameters 

including growth rates, initial depths, failure cost, ILI tool measurement error, etc.  

In the third research topic, a method is proposed to analyze the impact of in-line inspection on 

integrity planning of pipelines with fatigue cracks. A simulation-based cost evaluation approach is 

developed with a certain reliability target given. Then, we investigate the impact of ILI tool 

accuracy on the cost-effectiveness of an integrity planning program. We also investigate the 

impact of the use and selection of non-zero discounted cash rate and two different inspection cost 

assumptions. The long-term cost rates are also calculated for the investigations. The crack defects 
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initiation mechanism and the probability of detection are introduced for the simulation. And 

parametric analysis is performed at last.  

These methods are proposed to make contributions to the pipeline industry by preventing 

unexpected failures and unnecessary downtime, thus reducing the total life-cycle costs. 

 

1.4 Thesis organization 

The thesis is prepared following the guidelines from the Faculty of Graduate Studies and Research 

(FGSR) at the University of Alberta. The thesis, with six chapters, is organized as follows. 

Chapter 2 gives a comprehensive literature review and background knowledge on methods 

and models in the area of pipeline integrity management. This chapter also devotes to presenting 

fundamentals of ILI tools, pipeline defect growth prediction and risk-based management for 

pipelines with defects in the thesis. The materials have been published in a journal paper [1]. 

Chapter 3 proposes an integrated prognostics method for pipelines with crack defects. 

Rainflow counting method is employed for analyzing time-varying loading conditions of pipelines. 

Field data provided by a Canadian pipeline operator is used to validate the effectiveness of the 

proposed approach. The results of this chapter are published in a journal paper [2].  

Chapter 4 presents a simulation-based cost evaluation approach for a given re-assessment 

policy defined by PoF threshold for pipelines with corrosion defects, which particularly considers 

uncertainties from different sources to make a better and more realistic decision. The contributions 

of this chapter are documented in a published journal paper [3]. 

Chapter 5 investigates the effect of ILI tool uncertainties on re-assessment results for pipelines 

with crack defects. Different cases are discussed and compared with the consideration of discount 
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rate, inspection cost assumption, and pressure, etc. The results of this chapter are published in 12th 

International Pipeline Conference [4] and the manuscript is completed and under the final review 

of the co-authors for possible journal publication. 

Chapter 6 summarizes the contributions of this thesis. Several possible future works are also 

discussed.   
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2 Literature review and background knowledge 

2.1 Literature review 

Pipeline integrity management has drawn extensive and growing research interests, and a large 

number of studies have been published in conference proceedings and academic journals on 

methodologies, models and applications. This chapter reviews the research studies on pipeline 

integrity management based on ILI data, with an emphasis on models and methods developed for 

more effective defect detection, prediction and management. In this literature review, this section 

gives more comprehensive and detailed discussions on the methods and models used in the 

pipeline integrity management framework, and provides an overview on strategies for inspecting, 

predicting and managing all major pipeline threats. Pipeline integrity management framework and 

some related case studies were also presented in [16]–[20]. Legal issues and demands for pipeline 

integrity programs were discussed in [21]. Pipeline integrity management guidelines are 

developed by American Petroleum Institute (API) [22], which conducts studies on petroleum 

industry and provides standards for oil and natural gas industry. 

 

2.1.1 In-line inspection tools for defect detection 

Due to possible pipeline leakage, environmental damage and high costs of repair and replacement, 

accurate pipeline monitoring and inspection becomes essential these days. Finding and recording 

data about pipeline integrity is the first step in pipeline integrity management, and there are a 

variety of ways to gather information about defects. Varela et al. [23] briefly summarized major 

methodologies, which are not limited to ILI tools, that are utilized for monitoring and inspecting 
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external corrosion of pipelines and discussed the pros and cons of major inspection tools. For 

external corrosion as well as other types of threats, there are various inspection techniques to 

record data on the defects. Pipeline inspection techniques include potential survey techniques, ILI 

tools, hydrostatic tests, tools for inspecting non-piggable pipelines like pipeline crawlers, etc. 

These pipeline inspection techniques were briefly introduced in [24], [25]. ILI tools will be 

focused on in this thesis.  

A high-tech smart pigging device is utilized for in-line inspections, which is inserted in the 

pipeline and typically pushed through the pipe by the fluid flow from one compressor station to 

another. Such a smart electronic device is known as a smart pig in pipeline industry. This 

sophisticated electronic device is essentially a robotic computer that gathers all specific 

information related to the health condition of the pipeline. The ILI tools can classify the types of 

defect and their attributes including orientation of defects, size (length, width, depth) and specific 

location (Internal/External) of the defects [18]. In-line inspection tools can also evaluate pipeline 

integrity in geohazard areas by mapping techniques [26]. How to get high-quality reports from ILI 

data was introduced in [27]. 

Depending on the types of flaws they can detect, ILI tools can be classified as metal loss tools, 

crack tools, geometry detection tools, etc. Metal loss defects reported from an ILI inspection can 

be categorized into two main types: pressure based and depth based defects [18]. With depth based 

defects such as pitting, a pipeline is typically considered failed when the defect depth reaches 80% 

of the pipe wall thickness in industry, if there are no other specific rules such as NG18, even 

though sometimes the pipeline doesn’t show any failure behavior. For pressure based defects such 

as corrosion defects, failure is determined by the failure pressure, the model uncertainty and the 

safety factor [18]. 



16 

After gathering relevant data through ILI tools, data processing needs to be performed to 

minimize data errors and extract useful information. There are a variety of signal processing 

techniques and algorithms for different types of ILI tools. In the following subsections, signal 

processing technologies and models will also be reviewed for different ILI tools. 

 

2.1.1.1 In-line inspection technologies 

With the rapid improvement of signal processing technologies, the accuracies of defect profiling, 

sizing and mapping and ILI tool performance keep improving. And that leads to more 

cost-effective decisions on pipeline integrity management. A variety of ILI technologies are 

widely used in the pipeline field, such as Magnetic flux leakages (MFL), Ultrasonic (UT) tools, 

Electromagnetic acoustic transducers (EMAT), Eddy currents testing (ET), etc. Cartz [28] 

presented a review of sensor technologies, and Varela et al. [23] discussed ILI technologies that 

can detect external defects. In the following subsections, main ILI technologies will be reviewed 

and compared.  

 

2.1.1.1.1 Magnetic flux leakages (MFL) 

The most widely used tools for in-line inspection of pipeline are MFL tools. This technology can 

detect different types of defects, such as missing material and mechanical damage, and it is 

particularly widely used for metal loss inspection in a pipeline integrity management program. 

MFL inspection tools detect pipeline defects by sensing a local change in a saturating magnetic 

field, which is generated by huge magnets. The center of the MFL tools is the magnetizer. Gloria et 

al. [29] presented the development of the magnetic sensor. Ireland and Torres [30] provided a 
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finite element modeling of a circumferential magnetizer under both moving tool and static 

conditions. The results showed that the magnetic field profile is very complicated and researchers 

need to pay more attention to studying it in order to further develop MFL tools. Various levels of 

sensitivity can be chosen based on the testing needs, such as low resolution (standard), high 

resolution and extra high resolution [28]. The higher the resolution of the MFL tools, the higher the 

detection capability, which also leads to smaller sensor spacing and higher confidence level of 

accuracy. But in industry, some companies used standard tools a lot because they believe they are 

sufficient, faster and cheaper. Kopp and Willems [31] presented a dipole model study of sizing 

capabilities of MFL tools. As the resolution getting higher, the number of sensors in the system 

gets bigger. Although it is the most common test and it can meet different testing needs, it may 

cause the permanent magnetization of pipe after being used and the restriction of the product flow. 

Modern, high-resolution MFL inspection tools have the ability to provide very detailed 

signals. However, most of the MFL data can be easily influenced by various noise sources. To 

address this problem, many researchers proposed MFL sizing models and analyzed MFL sizing 

performance. Yeung et al. [32] discussed a technique to improve MFL ILI sizing performance and 

gave two case studies. Sometimes the sizing performance is more related to the shape of the 

defects and some sizing algorithms may give bigger sizing error due to the differences of the 

geometries. To address this problem, Miller and Clouston [33] proposed an MFL sizing model 

utilizing high-resolution NDE data to give better performance. Signal processing for MFL data is a 

key element in MFL inspection technique. The primary methods for MFL signal processing are 

wavelet transform, fast Fourier transform (FFT), Wigner distribution, etc. Mao et al. [34] gave a 

brief introduction to MFL signal processing, and they proposed to improve the defect recognition 

ability though integrating neural network, data fusion and expert system techniques. Saha et al. [35] 
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used wavelet transform to pre-process the raw radial MFL data. Kathirmani et al. [36] proposed a 

three-stage algorithm for the compression of MFL signals, that is practically feasible and fast. 

Mean Absolute Deviation, Principal Component Analysis (PCA) and Discrete Wavelet Transform 

(DWT) were utilized in stage I, II, III respectively. Adaptive algorithms were reported for the 

processing of MFL signals. Joshi et al. [37] and Afzal and Udpa [38] utilized adaptive wavelets to 

obtain and process MFL technique signals. Ji et al. [39] employed a fuzzy threshold filter 

algorithm with adaptive wavelets to process MFL data, and the errors of MFL signals were 

reduced compared with traditional wavelet transform. Carvalho et al. [40] utilized artificial neural 

networks (ANNs) to classify MFL signals into signals with defects and signals without defects, 

and classified the defect signals into external corrosion (EC), internal corrosion (IC), and lack of 

penetration (LP) with high reliability. Chen et al. [41] presented an empirical mode decomposition 

(EMD) based method for signal processing of MFL data. Mukherjee et al. [42] proposed a new 

algorithm of adaptive channel equalization for MFL signal to modify sensor imperfections, which 

could recover the signal successfully and minimize noises effectively.  

 

2.1.1.1.2 Ultrasonic (UT) tools  

Currently, ultrasonic is the most reliable in-line inspection technology compared with the other 

technologies. Ultrasonic inspection generates ultrasonic pulses of high frequency and short 

wavelength to detect defects or measure pipeline wall thickness. In general, ultrasonic tools give 

better results and defect accuracy than MFL. The types of flaws UT can detect include 

internal/external metal loss, cracking, wall thickness variations, etc. They are widely used for 

detecting stress corrosion cracking and many forms of corrosion. The corrosion penetration depth 

measurement detection capabilities of UT tools is around ±0.3 to ±0.6 mm [43], and for 
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longitudinal and circumferential resolution, it is around 3 mm and 8 mm, respectively. The 

confidence level is at around 95%, which is more reliable than MFL [44]. As UT crack detection 

tools require a liquid coupling medium to produce shear waves in the pipe wall, they can be only 

used for liquid transmission pipelines. As for gas pipelines, EMAT tools can be used instead of UT 

tools. Lei et al. [45] introduced the ultrasonic in-line inspection pig, which was used for corroded 

pipelines, and provided the introduction to design stage of the data acquisition system (DAS) as 

well as the off-line signal processing method. A latest generation of ultrasonic ILI tools was 

presented in [46], which had high inspection velocity and high resolution, and, as a result, 

production loss could be avoided and confidence level of inspection results could be improved. In 

addition, the reported tool generation could deal with higher temperature, higher pressure and 

bigger speed and wall thickness ranges. UT tools need to be further developed to give more 

integrity benefits. A brief overview and a case study on ultrasonic phased-array (USCD) 

technology for the Centennial pipeline stress corrosion cracking were given in [47].  A multilayer 

data-driven monitoring framework based on signal processing and machine learning techniques 

was introduced by Ying et al. [48]. Bo et al. [49] gave an introduction to an ultrasonic ILI system 

for pipelines. 

Compared with other tools, UT gives reliable defect depth sizing and good repeatability, and it 

can deal with very small pipeline wall thickness. Compared with MFL tools, UT tools are also 

sensitive to a larger variety of features. However, UT tools have the drawback that they require 

liquid coupling between the pipeline and the transducer (pig), which as a result affects its 

applications in gas pipelines. 

The ultrasonic signals collected by UT tools in pipelines are typically noisy. Effective 

de-noising techniques are needed to get accurate information regarding defects. The main signal 
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processing methods used for UT signals are wavelet transform [50], [51], ANNs [52], [53], fast 

Fourier transform (FFT), etc. Song and Que [50] developed a new technique based on wavelet 

transform for processing heavily noised ultrasonic signals for the purpose of band-pass filter to get 

better de-noising results. Martinez et al. [54] employed several digital processing techniques to 

improve the image quality. Ravanbod [55] employed fuzzy logic and neural networks to improve 

the algorithm for detecting corrosion defects using the ultrasonic testing technique. Ravanbod and 

Jalali [56] presented an acquisition system for ultrasonic images and proposed a fuzzy edge 

detection method. Compared with other methods, the proposed method performed better because it 

has a constant minimum edge contrast. Shakibi et al. [57] developed a signal processing scheme to 

increase the time resolution of an ultrasonic system. Cau et al. [58], [59] preprocessed UT signals 

with DWT, Blind Separation techniques or FFT to be used as input for neural networks models, to 

classify the information for defect detection. Chen et al. [60] fused the Morlet wavelet with the 

least mean squares (LMS) adaptive filter to process ultrasonic signals. Iyer et al. [61] also utilized 

both wavelet transform and neural networks to process ultrasonic signals. Saniie et al. [62] 

combined a neural network model with split-spectrum processing for ultrasonic target detection 

and characterization.  

 

2.1.1.1.3 Electromagnetic acoustic transducers (EMAT) 

Electromagnetic acoustic transducers (EMAT) are relatively new, and such a sensor consists of a 

coil at the internal surface of the pipe wall. EMAT generates ultrasound through Lorentz forces 

without requiring a coupling agent. EMAT is able to detect all kinds of cracks, weld characteristics 

and wall thickness variations. The mechanism of the EMAT inspection technique was described 

by Murayama et al. [63]. Salzburger et al. [64] gave a comparison between UT and EMAT and 
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provided a brief introduction to the development of the probe design. Tappert et al. [65] 

summarized the evolution of the EMAT techniques from 2002 to 2007. EMAT technology is 

continuously being developed in order to meet harsh environment and higher performance 

requirements. Kania et al. [66] described the development of EMAT framework and its 

corresponding validation for SCC crack inspection, and demonstrated that EMAT technology 

performed very well when identifying and sizing SCC cracks. Hilvert and Beuker [67] gave an 

introduction to high-resolution EMAT tools for analyzing cracking defects. Hirao and Ogi [68] 

presented SH-wave EMAT technique for inspecting corrosion defects in gas pipelines.  

Since EMAT does not require couplant, which is its biggest advantage, it is readily applicable 

to gas pipelines and the risk of overlooking defects is reduced. However, EMAT needs to be 

located less than 1mm from the test body, which is too close to applying high frequency. In 

addition, its detection ability and efficiency are not as good as UT.  

Signal processing methods and models reported in the literature for EMAT signals are similar 

to those for UT signals, since the signals are both ultrasound signals. Tucker et al. [69] performed 

wavelet analysis to classify the EMAT signals. Mazal et al. [70] compared anti-casual IIR and FIR 

filters, discrete wavelet transform (DWT) and wavelet packets methods for EMAT signal 

processing. Through numerical tests, they drew a conclusion that wavelet packet filtering 

technique performed best among these three de-noising methods. Lee et al. [71] utilized wavelet 

transform to extract meaningful information from EMAT signals. Kercel et al. [72] utilized 

wavelet packets and genetic algorithm to process EMAT signals. Bolshakov et al. [73] 

investigated signal processing methods include frequency filtering (FIR), Gaussian wavelet 

decomposition, synchronous detection and their combination for analyzing EMAT data.  
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2.1.1.1.4 Eddy current testing (ET) 

Eddy current testing is widely used in the automotive, aerospace and manufacturing industries. As 

an energized coil is brought close to the surface, the impedance of the coil is influenced by the 

nearness of the induced eddy current. When the eddy currents are affected by the defects, the 

impedance is also altered, and this change will be measured and used to detect defects. Eddy 

current testing can only be used on conductive materials. It can detect cracks, and assess wall 

thickness and laminar defects. It cannot detect external defects because of its limitation of signal 

through the wall. Detection of SCC using self-excited eddy currents was introduced in [74]. ET 

does not have any residual effects like MFL, and the test is non-contact. Besides, currents induced 

by MFL can be detected using ET sensors. However, at current pig speeds, the ILI applications 

have slow response limits and they are sensitive to coupling variations.  

 

2.1.1.1.5 Comparison of the four main ILI technologies 

The comparison of four main ILI technologies is as shown in Table 2.1. 

 

Table 2.1 Comparison of four main ILI technologies [75] 

Tool type Cracks 
Metal loss 

(corrosion, etc.) 

Metallurgical 

changes 

Geometry 

changes 

Others (weld 

characteristics, etc.) 

MFL N Y Y S S 

UT Y Y N N S 

EMAT Y N N N S 

ET Y N S N S 

 

Y: The tool can detect this type of flaw. 

N: The tool cannot detect this type of flaw. 

S: Some types of the tool can detect this type of flaw while others can’t. 
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From the observations in Table 2.1, we can find that MFL or UT tools are typically used to 

detect metal loss (external or internal corrosion) in pipelines. When detecting cracks (fatigue 

cracks and SCC), one uses UT tools or EMAT tools. Besides, a transverse MFL tool is also 

possible to be used in detecting cracks. 

 

2.1.1.2 In-line inspection performance and applications  

2.1.1.2.1 ILI performance 

Understanding the performance of ILI tools is essential for applying them properly. ILI 

performance is typically characterized by four measures: detection, identification, accuracy, and 

locating. Detection refers to the capability that a feature is detected by the ILI tool, and the 

probability of detection (POD) should be usually over 90% for ILI tools. The probability of 

detection can be defined as: 

POD
rep

rep unrep

n

n n
=

+
                                 (2-1) 

where 
repn  is the number of reported features, and 

unrepn  is the number of unreported features. By 

fitting the POD with different feature sizes, we could obtain POD curve for ILI tool. Different ILI 

detection tools have different POD curves. We can use a specific function, such as exponential 

function, to describe the POD curve. The probability of detection increases as the feature depth 

increases. The detection ability of ILI tools has a significant impact on deciding inspection 

intervals.  

Identification indicates the capability to successfully classify and report the type of defects 

after being detected, and the probability of identification (POI) increases when the size of the 
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defect increases. The incorrect identification and classification of defects will cause significant 

inaccuracy when predicting the growth of defects. The probability of identification can be defined 

as: 

POI corr

corr incorr

n

n n
=

+
                                (2-2) 

where 
corrn  is the number of correct identification features, incorrn  is the number of incorrect 

identification features. For common features such as corrosion, cracks, we should utilize suitable 

identification and classification method to ensure POI is beyond 90%.  

The sizing accuracy is the most significant measure to assess the performance of ILI tools, and 

it has a big impact on integrity management of pipelines. The performance of ILI tools can be 

specified as a tolerance with the corresponding confidence level. For example, the measurement 

error of the crack depth can be specified as ±0.5mm at 80% confidence. And it can be easily 

transferred and represented by the standard deviation of measurement error. And a more accurate 

ILI tool would produce a more realistic and less-conservative remaining useful life prediction. 

Hence, as the accuracy increases, the unnecessary excavations will be reduced, selection of the 

essential features will be improved and failure pressure will be well predicted. Last but not least, 

the capability of accurately locating a defect can also affect maintenance and repair activities a lot. 

The validation of ILI tool performance can be achieved through a hypothesis test following API 

1163. ILI tools and technologies are being developed to improve their performance, as a result, it 

will reduce unnecessary repair actions and/or increase inspection interval for better and more 

cost-effective pipeline integrity management activities. 

To assess and improve in-line inspection performance, algorithms regarding sizing, detection 

and classification are introduced in the literature. Hrncir et al. [47] gave a case study using a 
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proposed revised sizing algorithms, with which the confidence level of reported feature 

information was improved. Caleyo et al. [43] presented criteria for assessing the performance of 

ILI tools. There are three main types of uncertainties in ILI tools which affect performance: 

systematic error of the ILI tool, measurement noise and random error from the tool and the surface 

roughness [76]. The effects of combined error on ILI performance were studied in [77], [78]. How 

to deal with uncertainty effects was introduced in [79]. McCann et al. [80] presented a Bayesian 

method to estimate the ILI performance. Coleman and Miller [81] discussed normalization of data 

and analyzed tool tolerance and repeatability. Elucidation of the outcomes is a big challenge when 

comparing multiple ILI inspection datasets in multiple ILI tool runs [81]. Adianto et al. [82] 

presented the advantages for pipeline integrity program if the ILI tool performs better.   

 

2.1.1.2.2 ILI applications 

ILI data can be further used to assess and predict the conditions of pipelines, and subsequently plan 

integrity activities. Examples of analyzing and subsequently predicting pipeline defects (wall loss, 

cracks, and dents) utilizing ILI data were reported by Anderson and Revelle [83], Alexander [84], 

Lockey and Young [85] and Ferguson [86]. ILI tools are widely used in the integrity management 

of corroded pipelines. A comprehensive overview of in-line inspection methods for inspecting 

corrosion was given in [63]. Potential development directions were also discussed in [87]. 

Methods for assessing corrosion features, and the application of B31G and RSTRENG criteria for 

ILI data, were introduced in [88]. Lecchi [89] presented defect assessments of corroded pipelines 

with the use of ILI tools.  

Sizing cracks using ILI tools is also discussed in many papers. Bates et al. [90] presented two 

case studies on detecting and analyzing cracks through ILI tools. Slaughter et al. [91] described the 
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procedures to analyze the ultrasonic ILI data for cracking and discussed how to improve the crack 

sizing accuracy. Marr et al. [92] summarized the performance of latest EMAT technology for 

assessing SCC. Tappert et al. [65] introduced in-line inspection for all kinds of cracks utilizing 

EMAT based on their operational experience. Hrncir et al. [47] analyzed crack sizing performance 

of ultrasonic ILI tools. Murayama et al. [93] gave an introduction to the development of the 

applications of EMAT ILI. Marr et al. [94] described a method to increase the probability of 

detection and the probability of identification for cracks, and as a result reduce validation costs 

using EMAT ILI and multiple data sets. Limon-Tapia [95] described a framework for managing 

crack defects based on ILI tools. Nielsen et al. [96] compared the ILI measurements with field 

NDE measurements. 

Overall, ILI tools have evolved a lot over the past decades in the pipeline industry. Current ILI 

tools perform relatively reliable in detecting and identifying different types of anomalies. However, 

the sizing performance of ILI tools needs to be significantly improved to reduce risks and costs. In 

addition, details of shapes of the corrosion and crack defects need to be captured in the future, 

which can better assist defect growth prediction and integrity planning. ILI tools also need to be 

further developed to be suitable for various operating conditions. Signal processing methods need 

to be further developed within the pipeline industry to remove noise, improve sizing accuracy and 

provide better performance. 

 

2.1.2 Pipeline defect growth prediction 

To predict the remaining useful life of pipelines, methods are developed concerning the following 

three aspects. First, the number of defects. It can be given through ILI tool run, but the probability 

of detection cannot be 100%. Some methods can be used for updating the true number of defects, 
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such as Bayesian and Nonhomogeneous process. Second, the types of defects. The mechanism for 

different defects are different, and so it is important to correctly identify each defect. Third, the 

correlation among defects, a study of defect interaction should be provided for better prediction. 

Last but not least, the degradation models for different types of defects should be well studied. The 

determination of remaining useful life of pipeline is based on the degradation models and the sizes 

of defects, which are detected by ILI tools. And there are a lot of papers in the literature that 

proposed defect prognostics methods and models. 

There are mainly two types of methods for predicting pipeline defect growth, data-driven 

methods and model-based methods. Data-based methods mainly use ILI data or test data to study 

the defect propagation stage. Applications of ILI data for defect evaluation are discussed in the 

previous section, and analyzing defects through ILI data can also give key information for 

predicting the growth of defects. For data-driven methods, we will mainly discuss pipeline defect 

growth using ILI data, test data or sample inspection data. Schneider et al. [97] predicted the defect 

growth and remaining useful life of pipelines using sample inspection data. Examples on the 

application of ANNs models to predict the failure of oil pipelines were discussed by Senouci et al. 

[98] and Lu et al. [99]. Remaining useful life prediction for pipelines using support vector 

machines (SVM) was introduced by Lee et al. [100], and Isa and Rajkumar [101]. Model-based 

methods mainly apply physical models such as finite element models to perform defect prediction. 

For example, Liu et al. [102] analyzed the probability of damage of offshore pipelines by utilizing 

Bayesian networks. Based on the failure probability, pipeline remaining useful life could be 

predicted using physical models like pipeline degradation models.  

The pipeline defect assessment manual (PDAM) is a well-known industry project, which 

gives best available methods to assess pipeline defects like corrosion, dents, etc. Cosham and 
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Hopkins [103] provided an introduction to PDAM. Cortese et al. [104] proposed a calibration 

method for ductile damage estimation of pipelines. A variety of methods and models are available 

in the literature to predict how a defect grows and when a failure occurs. The methodologies and 

models used for defect growth prediction depend mainly on the types of defects. Prediction 

algorithms and models for defects like metal loss, cracking, mechanical damage, and others like 

third party damage are discussed respectively in the following subsections. 

 

2.1.2.1 Metal loss 

Metal loss is a major integrity threat to oil and gas pipelines. Serious metal loss can lead to pipeline 

rupture or collapse. Pipeline metal loss is mainly caused by corrosion and erosion. The prediction 

methods and models regarding pipelines with corrosion and erosion defects are discussed in this 

section. 

 

2.1.2.1.1 Corrosion 

Corrosion is a most common form of defects in pipelines and it can be easily affected by the 

surrounding environment. Pipeline corrosion is a natural process that happens when pipe materials 

interact with the working environment, such as soil and water. Corrosion can be divided into two 

categories, internal and external corrosion. Nine well-known critical environmental factors are soil 

resistivity, soil moisture, half-cell potential, pH, concentrations of CO3
2-, HCO3

-, Cl- and SO4
2-, 

and distance between the defect and the nearest cathodic protection station [76]. Alamilla et al. 

[105] developed a mathematical corrosion damage propagation model considering main 

environmental parameters that influence the propagation of corrosion defects. A large group of 
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pipeline corrosion data from 1922 to 1940 was analyzed in [106]. A corrosion growth model can 

be further generated by fitting the corrosion damage data. 

A pipeline failure caused by corrosion defect can occur when either the failure pressure is 

smaller than operating pressure, or the depth of defect reaches the critical threshold (normally 80% 

of wall thickness in industry). The failure stress of a corrosion defect can be expressed as a 

function of the size and shape of the defect and the geometry of the pipe, as well as the material 

properties such as yield strength and ultimate tensile strength. The effect of corrosion defect on 

burst pressure of pipelines is studied in many papers. Netto et al. [107] estimated the burst pressure 

of pipelines with corrosion defects. The comparison between model predictions with burst tests 

and long-term hydrostatic tests was presented in [108]. 

Methods for assessing pipelines with corrosion defects have been extensively studied, and 

popular code-based deterministic methods in the published literature include ASME B31G [109], 

modified B31G [110], RSTRENG [110], SHELL92 [111], SAFE [112], DNV-RP-F101 (LPC) 

[113], [114], CPS [115] , PCORRC [116]–[118]. Equations used in these methods are similar and 

are based on the NG-18 equation [119], except PCORRC. The differences are mainly in the defect 

shape factor and bulging factor in the NG-18 equation. These methods provide the prediction for 

corroded pipelines by determining the burst pressure using relevant equations. Defect information 

such as shape and size and pipeline physical properties such as thickness, diameter and ultimate 

strength are the main factors that affect the burst pressure. Given the failure criteria, the remaining 

useful life can be estimated by generating a physics-based model considering the pressure and the 

defect size versus time. Modified B31G is being verified to be more accurate than B31G, and 

currently it is the most popular code in the pipeline industry. Cosham et al. [120] presented and 

compared these various code-based methods used to assess corrosion defects. Caleyo et al. [121] 
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also gave a study and comparison among some of the above-mentioned methods. Some 

deterministic defect prediction models were presented in the literature. Engelhardt et al. [122] 

predicted the growth of corrosion damage in pipelines using several deterministic methods. Li et al. 

[123] studied correlated corrosion defects in pipelines using modified B31G.  

Monte Carlo method, first-order reliability method (FORM), and the first order Taylor series 

expansion of the limit state functions are the main methods that can be combined with 

deterministic methods for computing the probability of failure for a corrosion defect. In this way, 

corrosion propagation model is generated and remaining useful life is predicted. Details of these 

methods can be found in [124]. Larin et al. [125] and Zhang et al. [126] utilized Monte Carlo 

simulation and 3D FE models to investigate the reliability of pipeline with corrosion defects. 

Teixeira et al. [127] utilized FORM to assess the failure probability of corroded pipelines and this 

could be further used to predict the pipeline remaining useful life.  

Calculating the corrosion growth rates is an essential part of corroded pipeline integrity 

management. Corrosion growth models based on corrosion growth rates are also popular in 

industry. Corrosion rate can be estimated either through the physics-based corrosion models or 

using ILI data. It was reported in [18] that the latter one gave a better estimate for those pipelines 

where multiple ILI data sets are available. Race et al. [128] developed a corrosion prediction 

model for pipelines using ILI data to determine corrosion growth rates. However, there are 

typically big uncertainties when measuring corrosion growth rates. Spencer et al. [129] compared 

successive ILI inspections for reducing the bias, when the same ILI vendor is used or different ILI 

vendors are used. Bayesian method and Markov Chain Monte Carlo (MCMC) simulation have 

been applied to build corrosion growth models [130]–[132]. Through combining cluster technique 
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with a Bayesian approach, Wang et al. [76] proposed a methodology to estimate the real external 

corrosion depth based on ILI inspection and to represent the impact of soil property variation. 

Stochastic process models were also reported to assess corrosion defect of pipelines. Using 

random process corrosion rate, researchers can develop corrosion growth models that lead to a 

better fit to the data. Bazán and Beck [133] proposed a nonlinear random process corrosion 

propagation model for pipelines. Zhou [130], [134] assessed the reliability of corroding pipelines 

considering the stochastic process. Valor et al. [135] proposed a stochastic model for modeling 

pitting corrosion initiation and growth. Alamilla and Sosa [136] gave a stochastic modeling of 

corrosion propagation based on inspection data.  

Other models have also been reported for corrosion growth prediction. Weiguo et al. [137] 

proposed a method for pipeline corrosion prediction under cyclic loads. Medjo [138] employed 

FEM calculations and Complete Gurson Model to determine the corrosion defect development in 

pipelines. Das et al. [139] assessed turbulence models for predicting flow-induced corrosion 

defects. Wang et al. [140] used Bayesian inference to propose an integrated method which 

employed both Monte Carlo techniques and clustered inspection data in order to assess corroded 

pipelines. 

 

2.1.2.1.2 Erosion 

Sand particles are often produced along with oil and gas in the pipelines, and they can cause 

erosion defects when they impact pipeline walls because of change in oil or gas flow direction. The 

erosive failure of pipeline induced by sand particles is introduced in [141]. A detailed review of 

sand particle erosion modeling for pipelines was given by Parsi et al. [142], where erosion 
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prediction equations and models were discussed and presented, and further improvements 

regarding erosion prediction were given. 

Erosion prediction models can be categorized into computer fluid dynamics (CFD), 

experimental and mechanistic models. CFD models were widely used in predicting the erosion 

damage of pipelines. CFD can be utilized to predict erosion rate and study the impact of different 

parameters on the erosion rate. CFD tools are accessible, but they are simulation-based and may 

not be as realistic in some applications. Experimental or empirical methods can be developed by 

conducting lab tests. They can provide high quality data compared with other methods, but are 

generally expensive and relatively time-consuming. Mechanistic models such as 

phenomenological models are analytical ways to predict erosion defects. Although they are fast 

and inexpensive, the models may be over-simplified and limited in some circumstances. Due to 

these limitations, researchers proposed a number of erosion prediction models by combining these 

categories. Ukpai et al. [143] analyzed the impact of sand particle for predicting erosion damage 

using acoustic emission (AE) technique. Gnanavelu et al. [144] integrated CFD with experimental 

results to propose a method to predict pipeline erosion. Tang et al. [145] predicted the remaining 

useful life for a pipe with erosion under multiphase flow condition through CFD modeling 

techniques. Chen et al. [146] proposed a CFD-DEM coupling method to provide erosion 

prediction.  

 

2.1.2.2 Cracking 

Cracking is a critical time-dependent threat to pipelines. There are mainly two types of cracks, 

namely fatigue cracks and stress-corrosion cracking, which will be focused on in this section. 

Fatigue crack propagation is defined as the process of weakening pipe material due to pressure 
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variation. Stress corrosion cracking, SCC in short, is the growth of a form of environmental 

assisted cracks in corroded pipelines. We can divide the crack growth process into three stages. 

Stage I is the crack initiation stage where the crack growth rate is very small and can be influenced 

by the environment a lot. Stage II is the stable growth stage. And stage III is the unstable crack 

growth stage that is less influenced by the environment. Stage III is also called rupture to failure 

stage, which happens so quickly that it is hard to control. Researchers mainly focus on the first two 

stages, with an emphasis on stage II. The fatigue life of pipeline can be defined as: 

f i pN N N= +                                      (2-3) 

where Ni is the number of cycles to initiate a crack, and Np is the number of cycles to propagate 

to the failure state. We are interested in the remaining useful life, defined by the time between the 

point when the defect is detected by ILI tools in stage II and the failure time.  

The initiation stage of fatigue damage in pipes was studied and explained in details in [147]. 

Zheng et al. [148] assessed the crack initiation life if pre-deformation exists. Stage II is the stage 

that researchers mainly focused on. Fatigue assessment can be obtained based on the stress-life 

method (S-N), the local strain method (Ɛ-N), and Paris’ law [149]. The S-N method is an approach 

based on S-N curve, which can be obtained by fatigue tests. The S-N approach can be employed 

with algorithms such as Minor’s rule, which can be used to accumulate different stress components 

to further assess the remaining useful life. So the key factors for the S-N method are to determine 

or select S-N curves accurately, to apply a correction factor and to use a suitable algorithm to 

combine all the stress contributions. Methods utilized to predict the remaining life of the damaged 

pipelines based on S-N curves were presented by Pinheiro and Pasqualino [150] and Hong et al. 

[151]. However, there are some limitations associated with the fatigue S-N approach. It fails to 
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recognize the probabilistic nature of fatigue, and it does not consider the influence of the 

compressive residual stress resulting from high stress. The Ɛ-N method is another method for 

fatigue growth assessment, which utilizes ΔƐ-N curves, where N is a function of strain range ΔƐ, 

and ΔƐ means the total amplitude of strain variations. This method is also similar to S-N approach 

in some way.  

The most popular methods for crack growth models are based on the Paris’ law [152]: 
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where 
max min= -K K K , with Kmax being the maximum stress intensity factor (SIF), and Kmin being 

the minimum SIF. 
d

d

a

N
 is the fatigue crack growth rate, where a is the crack length and N is the 

number of fatigue cycles. C and m are two material dependent model parameters. These two 

coefficients can be obtained through either laboratory experiments or industry recommended 

practices. Reliability analysis for crack defects is more challenging than corrosion defects due to 

different parameters need to be addressed. There are three primary modes of fracture. Mode I is 

called opening mode, mode II is sliding mode and mode III is tearing mode. As a result, SIF should 

also reflect these three modes. Mode I SIF (KI) dominates the magnitude of crack propagation, and 

many papers only calculate KI to represent the total stress intensity while using Paris’ law. In the 

literature, the majority of physics-based models for predicting cracks in pipelines are based on the 

Paris’ law. To employ the Paris’ law, one needs to determine the SIF first. SIF can be determined 

through standard codes, numerical equations derived by researchers, experiment results and finite 

element software (ANSYS, ABAQUS, etc.). There are different equations to calculate the SIF for 

different crack types. The categories of crack shapes in pipelines are surface, embedded, and 
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through-thickness cracks. Shim and Wilkowski [153] applied FE simulation to calculate bulging 

factor for a pipeline with cracks in the external surface. The bulging factor could be further utilized 

to determine SIF and crack-driving force. Beside SIF, other measures such as crack tip opening 

displacement (CTOD) and crack tip opening angle (CTOA) can also be used to determine the 

fracture toughness of most materials including pipeline materials. Ben Amara et al. [154] gave a 

study on how to obtain CTOA in steel pipelines. 

The crack defect can be determined as a failure when SIF reaches critical SIF (micro criteria) 

or predicted failure pressure reaches the maximum operating pressure (macro criteria). In pipeline 

industry, the macro criteria is more popular than the micro criteria. Researchers have developed 

methods, standards, software tools to analyze the predicted failure pressure for pipelines with 

crack defects. After calculating the predicted failure pressure, the macro criteria is then be used. 

Popular standards for assessing crack defects include API 579 [155], BS 7910 [156] and NG 18 

[119], and many pipeline companies follow these standards to make decisions. Software tools such 

as CorLASTM [157] are also used to analyze these defects. Some other physics-based approaches 

are also introduced in the literature. These assessment methods require the inputs as follows: crack 

sizes (length and depth), material properties (Young’s modulus, yield and tensile strength), 

pipeline dimensions (outside diameter, thickness), and loading conditions. The calculation results 

will then be compared with a suitable safety factor and help to make corresponding decisions. 

Popelar et al. [158] developed a theoretical model to simulate and calculate the propagation speed 

of crack in pipelines. Pipeline crack prediction with strain rate dependent damage model (SRDD) 

through experiments and simulation were investigated by Oikonomidis et al. [159], [160], and Yu 

and Ru [161]. Iranpour and Taheri [162] [163] did research on the impact of compressive stress 

cycles and peak tensile overload cycles on the fatigue life of pipelines. Amaro et al. [164], [165] 
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proposed a hydrogen-assisted fatigue crack propagation model, which is used to predict crack 

growth using a function of ∆𝐾 and hydrogen pressure. Besides, Sekhar [166] summarized the 

effects as well as the identifications of the multiple cracks, and more studies were needed to 

consider multiple cracks in pipeline crack growth prediction. Polasik and Jaske [167] described a 

crack growth model based on the Paris’ law and fracture mechanics principles. Hadjoui et al. [168] 

studied the behavior of crack growth of double butt weld in two pipeline material, X60 and X70. 

Nonn and Kalwa [169] analyzed multiple published ductile damage mechanics models including 

Gurson-Tvergaard-Needelman (GTN), Fracture Locus Curve (FLC) and Cohesive Zone (CZ)) for 

ductile crack propagation in pipelines.  

Experimental testing of pipelines with crack defects was performed and reported by many 

groups. Kumar et al. [170] used acoustic emission (AE) method to study the behavior of crack 

propagation in low carbon steels which can be used as the pipeline material. Slifka et al. [171] gave 

tests on two pipeline steel to get fatigue crack growth rate. Jin et al. [172] performed a test on 

pipeline steel to assess the propagation of a semi-elliptical surface crack. Hosseini et al. [173] 

compared the experimental testing results they obtained with the industrially known methods, such 

as BS 7910 and NG 18. Pumpyanskyi et al. [174] performed full scale tests to look into crack 

propagation and arrest behavior of pipelines. Chen and Jiang [175] gave experimental 

investigations on crack growth analysis of pipeline material X60. Naniwadekar et al. [176] 

predicted flaw growth in various orientations based on frequency measurements.  

Physics-based models may not be applicable to all situations due to the complexity of the 

applications and availability of authentic models, and the challenge in determining model 

parameters. ILI tools are very expensive to run, and sometimes there are not sufficient data to 

effectively run data-driven methods. As a result, there are great room and challenges for improving 
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prognosis methods and models for cracks in pipelines. Hybrid methods are also being investigated, 

which integrate physics-based models with data-driven methods. An integrated prognosis method 

for industrial and mechanical structures was introduced by An et al. [177] using Bayesian 

inference. Xie et al. [2] proposed an integrated method to predict the remaining useful life of 

pipelines with fatigue cracks and validated it through field data and simulation examples. 

A corrosive environment can affect the growth of fatigue crack [149]. We can call this type of 

crack environmental cracking or SCC. A probabilistic damage model was proposed by Hu et al. 

[178] to assess local corrosion crack based on Monte Carlo simulation. Lu et al. [179] presented a 

high pH stress corrosion crack growth model and validated it through experiment. Imanian and 

Modarres [180] presented an entropy-based method and did experiments to assess the reliability 

for corrosion fatigue. Chookah et al. [181] proposed a physics-of-failure model for predicting the 

propagation of SCC. Jaske and Beavers [182] used the available data and employed J-integral 

fracture mechanism to predict pipeline remaining life subject to SCC.  

 

2.1.2.3 Mechanical damage 

Mechanical damage on pipelines also poses threats to pipeline integrity. Two main categories of 

mechanical damage are dents and gouges. Bai and Bai [183] gave an introduction to dented pipes 

including limit-state based criteria, fracture mechanism and reliability-based assessment. A 

mechanical damage integrity management framework was given in [17]. The burst pressure for 

pipelines with gouges and dents was studied by Lancaster and Palmer [184], Allouti et al. [185] 

and Ghaednia et al. [186]. Pressure strength of pipelines with dents and cracks were studied in 

[187]. Macdonald and Cosham [188] discussed the pipeline defect assessment manual (PDAM) 

and suggested practices for dents and gouges assessment as well as the limitations of these 
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assessment methods. Cosham and Hopkins [189] analyzed the dents effect in pipelines based on 

PDAM. 

Prognosis algorithms and models are proposed for mechanical damage in pipelines. Ivanov et 

al. [190] proposed an FE model using MFL signals to predict the growth of mechanical damage in 

pipelines. Bolton et al. [191] proposed a finite element model for predicting the life for dented 

pipeline and validated the model by experiment. Dama et al. [192] used a simple S-N approach to 

assess the structural condition of pipelines with sharp dents. Bolton et al. [193] developed a finite 

element model for dented pipes to estimate the remaining life. Azadeh and Taheri [194] performed 

an experimental investigation on dented pipes. Failure prediction of the pipeline with dents based 

on local strain criteria was studied by Allouti et al. [185] and Noronha et al. [195]. 

 

2.1.2.4 Other defects 

Other types of defects, such as weld, third party damage, etc., can cause the failure of pipelines. 

The main differences between corrosion, cracking and the other failure mechanisms (third-party 

damage, laminations and earth movements) are the nature of mechanism and failure rate tendency. 

The nature of mechanisms of corrosion and cracking are time-dependent while the others are 

generally random, or time-independent. The failure tendencies for corrosion and cracking increase 

with time, while those for the others remain constant. To better control third party damage, regular 

surveys of the line, good communications, and good protective measures are important. 

Goodfellow et al. [196] presented the updated distributions of third party damage with the use of 

historical data. Hsu et al. [197] provided an introduction to weld mechanism and introduced wear 

prediction models for metals. El-Hussein [198] compared the FE predictions for third party attacks 

with real field data. Oddy and McDill [199] employed 3D FE analysis of welding on pipelines to 
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perform predictions. Niu et al. [200] applied FE simulation to give a creep damage prediction of 

pipelines in the high temperature and high pressure environment. 

 

2.1.3 Risk-based management 

The common definition of risk is the multiplication of probability and consequence. Thus, to 

perform risk-based management, we need to analyze the causes of risks, estimate failure 

probabilities as well as perform consequence analysis. For pipeline integrity management, 

probabilities typically refer to probabilities of pipeline failure due to certain defect growth. The 

consequences are related to the costs incurred by activities like inspection and maintenance, loss of 

productivity, rehabilitation and investigation, damage to the environment and community, 

environmental cleaning up, etc.  

While conducting risk-based management for pipelines, some related areas need to be studied. 

First, threats and consequence need to be identified in order for calculating risk. Selecting a proper 

risk assessment model is critical to determine the structural integrity. Second, pipeline segments 

and existing threats must be prioritized. In this way, the riskiest pipeline segments and threats will 

be inspected and repaired prior to others. Third, select suitable mitigation and preventative 

activities for each threat. Last but not least, determine cost-effective and appropriate re-inspection 

and re-assessment interval. This re-assessment interval must ensure the safe operation of pipelines 

and the reliability of pipelines should be beyond the predetermined safety threshold. 
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2.1.3.1 Activities for RBM 

To evaluate the life cycle cost of pipeline risk-based management, potential activities need to be 

well discussed and studied. Activities for risk mitigation include visual inspection, potential 

surveys, cathodic-protection inspection, in-line inspection, operational pigging and other 

maintenance and repair activities. Emergency plans for failure and accidents also need to be 

considered. The principal objective of risk-based management activities is to efficiently and 

effectively utilize available resources to ensure the safety of public, surrounding environment 

protection and pipeline system reliability. The frequency of inspection and maintenance activities 

depends not only on the defect damage situation and the consequences of failure, but also on the 

pipeline operating conditions. Besides, risk acceptance criteria need to be determined before 

risk-based management process, based on industry regulations and codes, operators as well as risk 

analysis outcomes. Pipeline risk analysis for integrity management was introduced in [201]–[204]. 

The advantages and disadvantages of pipeline risk analysis were discussed by Bott and Sporns 

[205]. 

Inspection activities are well discussed in Section 2.2. The unit inspection cost of ILI tool 

increases as tool accuracy increases. With the consideration of time effect (discount rate), the 

re-assessment interval will make a big impact on inspection cost calculation. Besides, sizing 

uncertainty is non-negligible while conducting cost evaluation. After the inspection activities, 

types of defects and their significance to pipeline integrity should be studied. The findings from 

inspections and tests need to be basically aligned with what the prognostics model predicted. If not, 

the reasons for that need to be investigated. Besides, the causes of these defects need to be 

investigated for future preventive and mitigate actions. 
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As for repair activities, repair criterions and methods are well discussed in [22], [206]. For 

each kind of defect, certain repair criteria can be utilized to determine the corresponding repair 

actions. Repair methods for pipeline include pipe replacement, recoating, full-encirclement 

sleeves, composite wrap repairs, mechanical clamps, etc. Repair criteria can be determined based 

on the severity of ILI indications. There are four types of responses to pipeline in-line inspections: 

immediate, near term, scheduled and monitored. For each one, there are time and limit state 

requirements for repair actions, which can be found in [22]. The costs for repair activities depend 

on the type of repair methods and the number of defects needs to be repaired. The locations of 

defects and pipeline segments also affect the repair or replacement costs. Industry does not want 

pipelines to fail that causes damage to population and environment. Therefore, predictive and 

preventive maintenance activities are better choices than reactive maintenance activities. The most 

suitable maintenance activities should be arranged based on the probability of failure of pipelines. 

 

2.1.3.2 Methods for RBM 

Risk assessment methods can be divided into three types: quantitative methods, qualitative 

methods and semi-quantitative methods. Quantitative methods require lots of input data which 

may include some data that the pipeline operators do not have. If the input data is enough, the 

output will provide very detailed mitigation and inspection options and criterions. These methods 

are not efficient or cost-effective for upstream pipelines. Qualitative methods are simple decision 

matrix methods. These types of methods depend on experts and industry practices a lot. These 

methods are very effective for ranking pipeline risk. However, they are relatively more 

conservative and they do not provide optimized schedules and actions for mitigation and 

inspection activities. Semi-quantitative methods can also be called score index methods. These 
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methods are widely used in industry. The required input data are relatively less than quantitative 

methods and easy to acquire. Relative risk values and optimized solutions for mitigation problems 

will provide as the output of these methods. 

Analyzing the reliability and risks is the essential job in the preparation stage for risk-based 

management. Risk can be obtained by calculating the probability of failure and consequence of 

failure. Many papers discussed the inputs for the risk-based management. Chien and Chen [207] 

carried out the reliability assessment of pipelines to provide the integrity management strategies, 

and the reliability analysis method they used was first order second moment (FOSM) method. 

Kuznetsov et al. [208] implemented Bayesian method to count the number of defects in a pipeline 

segment, and it can be further utilized in determining the inspection and maintenance activities. 

Cunha [209] compared and analyzed the failure statistics for pipelines which can also be further 

utilized as the basis for risk-based management. McCallum et al. [210] developed a corrosion risk 

management tool using Markov analysis, which can assist corrosion integrity planning. Mihell and 

Rout [211] proposed an approach to analyze risk and reliability for pipelines. Tuft et al. [212] 

provided the comparison between reliability-based analysis method and quantitative risk 

assessment based on historical failure rates. 

There are two main objectives in risk-based management models. One objective is to 

minimize the whole life cycle cost with the constraints of certain reliability and risk level, and the 

other objective is to minimize the risk. Risk-based management following the first objective has 

three main steps. First, define and gather information on threats and defects in the pipelines. 

Second, calculate probability, consequence of failure and life cycle costs. Third, recommend 

inspection and maintenance activities by solving the optimization problem to minimize total costs 

while ensuring the system reliability is above a certain level. Various approaches and models were 
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reported with cost minimization as the main objective. Dawotola et al. [213] proposed a method 

where the failure rate changes with time following a nonhomogeneous Poisson process. The 

historical data were fitted to obtain the probability of failure, and maintenance strategies were 

optimized by minimizing operation and maintenance loss while meeting risk and reliability target. 

Bai et al. [214] proposed a tree risk-based inspection approach for subsea pipelines to minimize 

cost for different safety levels. Sinha and McKim [215] utilized Markovian prediction models to 

construct a cost-effectiveness based prioritization program to develop strategies for maintenance 

and repair. Life cycle cost optimization was performed using Genetic Algorithm (GA) for pipeline 

networks by Tee et al. [216]. In addition, inspection, maintenance and repair strategies for 

different types of defects in pipelines were also reported. Sahraoui et al. [217] provided a review of 

risk-based management methods that considered the uncertainties in the inspection results for 

pipelines with corrosion defects. Stephens et al. [218] studied reliability corrosion assessment to 

develop cost-effective maintenance and inspection planning strategies, and they adopted a random 

process model to generate new defects when calculating the probability of failure. Hong [219] 

developed inspection and maintenance schedules based on reliability constraint for corroded 

pipelines. Moreno et al. [220] extended the inspection interval using a statistically active corrosion 

(SAC) method. Xie and Tian [3] proposed a method to determine optimal re-inspection and 

re-assessment interval for pipelines with corrosion defects based on PoF threshold as a random 

variable. Gomes et al. [221] optimized the inspection planning and repair intervals for pipelines 

with external corrosion defects. Gomes and Beck [222] also optimized pipeline management 

subject to random cracks. The number of inspections and the critical crack size were considered as 

design variables in the models.  
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The second optimization objective used in many studies is risk minimization, mainly aiming 

to reduce the likelihood (probability of failure) and/or the consequence (severity). These kinds of 

methods follow three steps. First, define a risk and the acceptance criteria. Second, assess the risk 

and determine the risk level. Third, establish inspection, maintenance and assessment plans based 

on risk assessment results. Some papers in the literature proposed methods following the process 

above. Kamsu-Foguem [223] presented an introduction to risk-based inspection management, and 

suggested a methodology based on a colored risk matrix for providing risk acceptance criteria. 

Tien et al. [224] proposed a method to determine the optimal pigging inspections planning, with 

information like damage factor, inspection factor, condition factor, process factor, etc., collected 

and qualified to form the model built in this paper. Khan et al. [19] proposed a method for 

risk-based inspection and maintenance modeling using gamma distribution and Bayesian method 

to describe material degradation process. Kallen and van Noortwijk [225] proposed an adaptive 

Bayesian model for optimal integrity planning, which used gamma stochastic process to describe 

the degradation mechanism.  

Many studies on maintenance planning were reported for pipelines with a specific defect type, 

particularly corrosion defect. Singh and Markeset [226] proposed a method to estimate corrosion 

growth rate for pipelines based on fuzzy logic method. A decision support system (DSS) was 

utilized for assessing risk effects and developing pipeline integrity plans in [227] and [228]. 

Condition-based maintenance models developed for multi-component systems were introduced in 

[229], [230]. Seo et al. [231] discussed the development and application of the proposed risk-based 

inspection method for pipelines with corrosion defects. Fessler and Rapp [232] proposed a method 

for determining the re-assessment intervals for pipelines with SCC defects. Zarea et al. [233] gave 
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an introduction to risk management along with integrity management of mechanical damage in 

pipelines. 

 

2.2 Background knowledge 

2.2.1 Monte Carlo simulation 

Monte Carlo simulation is widely used for uncertainty propagation in reliability and risk 

assessment. And it can be used to simulate systems with multiple random variables. This technique 

can conduct risk analysis by sampling input random variables from probability distributions and 

substituting these values to the risk model. In this way, for each iteration, we obtain a possible 

result. After thousands or tens of thousands of recalculations, we can obtain the final outcome. 

 The general Monte Carlo simulation methods follow certain steps. First, we generate input 

random variables from probability distributions over the defined domain. Second, we perform a 

deterministic computation on these input random variables. At last, we aggregate the computation 

results and obtain the final output results. For example, for pipeline reliability assessment, we 

could treat physical properties, geometry parameters, defect growth rates, ILI measurement error 

as input random variables. For Monte Carlo simulation run, we can determine whether this defect 

is a failure or not. And with a certain number of Monte Carlo simulation runs, the reliability of 

pipeline can then be determined. 

 The accuracy of a Monte Carlo simulation has a positive correlation with the total trial 

numbers. Suppose N is the total trial numbers, the converge rate of Monte Carlo simulation is 

O(N-1/2). Due to the relatively small converge rate, we can find that Monte Carlo simulation 

method is relatively time-consuming. However, the converge rate is independent of the number of 
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random variables, so it can be used to deal with a complex system with a number of input random 

variables.  

 

2.2.2 Bayesian analysis 

Bayesian analysis can be used for uncertainty quantification. And it can update the distribution of 

a parameter of interest as more information is gathered. Hence, Bayesian analysis is widely used 

to update model parameters for physical models. Consider the prior distribution of the parameter 

  is 
prior ( )f  . We have gathered a set of data 

1 2{ , ,..., }nx x x=X , and the marginal density 

function of X  is ( )f X . With equation (2-5), we can obtain a posterior distribution post( | )f  X : 

prior
post

( | ) ( )
( | )

( )

l f
f

f

 
 =

X
X

X
                            (2-5) 

where ( | )l X  is the likelihood to obtain these observations given parameter  .  

 The core of Bayesian analysis is to estimate a posterior distribution of a parameter of interest. 

Compared to prior distribution, posterior distribution reflects the data information after the 

observations. And in this way, Bayesian analysis can be used to reduce the uncertainty in the 

parameter of the damage propagation model, which leads to more accurate remaining useful life 

prediction. With historical data collected, the model parameter is updated, thus a more accurate 

prognostics is achieved. Monte Carlo simulation technique can then be used to obtain the 

histogram of the posterior distribution. And we can obtain the mean value of the model parameter 

from fitting the histogram to a specific distribution. 
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2.2.3 Limit state function 

The limit state function (performance function) of a system can be written as: 

Z = g(X1, X2, … , Xn)                                (2-6) 

where the failure surface is defined as Z = g(X1, X2, … , Xn) = 0. Each X is basic load or resistance 

variable. A plot of limit state function is shown in Figure 2.1. Limit state functions are widely used 

in pipeline industry to determine whether this defect is a failure or not. For example, the limit state 

function for a pipeline with a single defect can be defined as predicted failure pressure minus 

maximum operating pressure. Maximum operating pressure can be treated as resistance and 

predicted failure pressure is the load. As degradation of this defect, the load will decrease over 

time. When it reaches the failure surface, this defect becomes a failure.  

 

 

Figure 2.1 Limit state function 
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2.2.4 Advanced first order second moment method (AFOSM) 

Advanced first order second moment method [234], [235] can be used to obtain the points on the 

failure surface. To use this method, first we transfer these random variables to their standardized 

forms.  

* *' ( ) /
i ii i x xx x  = −                               (2-7) 

The design point, 
*X can be found by the following constrained optimization problem: 

Minimize: 0

T  = X X , subjected to the constraint: ( ) 0g  =X             (2-8) 

 The reliability index is called Hasofer-Lind reliability index, and it can be calculated by using 

the following equations (2-9) to (2-11): 

* * *( )Tg g  = − X X                               (2-9) 
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 With HL , the design point can be calculated as: 

*
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where i  is the direction cosine along the axes *'ix , and it can be written as: 

*
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                            (2-13) 



49 

The following steps can be used to compute the optimal solution of 
*X . 

1. Define the appropriate limit state function ( )g X  

2. Give initial values of *

ix , i=1, ,2, … , n and obtain the reduced variates 

* *' ( ) /
i ii i x xx x  = − . And we can set the initial values to be the mean values of these 

random variables. 

3. Evaluate *( )g  X  and α  at 
*X  using equations (2-9) to (2-11). 

4. Update the new design point by using equation (2-12). 

5. Calculate *( )g X  by substituting the new 
*X , and solve for HL . 

6. Evaluate 
*X  by using the new obtained HL  and equation (2-12). 

7. Set a threshold for the acceptable error for HL . Check if HL  converges or not. If yes, stop. 

If not, repeat step 3 to 6. 

 

2.2.5 Burst pressure models 

2.2.5.1 Corrosion defects 

As introduced in the literature review, the following burst pressure models can be used to calculate 

the burst pressure for pipelines with corrosion defects. 

 

2.2.5.1.1 B31G [109] 

The burst pressure Pf can be calculated using equations (2-14) to (2-17). 
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where D is the outside diameter; t is the wall thickness; L(T) is the corrosion length at time T; d(T) 

is the corrosion depth at time T; YS is the yield strength. 

 

2.2.5.1.2 Modified B31G [110] 

Modified B31G is the most popular tool to calculate the burst pressure Pf , the equations are listed 

as follows:  
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2.2.5.1.3 Battelle 

The following equations are used as Battelle model to calculate Pf: 

2 ( )
(1 )f

UTSt d T
P M

D t
= −                               (2-21) 

( )
1 exp( 0.157 )

( ( )) / 2

L T
M

D t d T
= − −

−
                      (2-22) 

where UTS is the ultimate tensile strength, the meaning of other parameters can be found in section 

2.2.6.1.1. 

 

2.2.5.1.4 DNV-99 

The following equations are used as Battelle model to calculate Pf: 

( )
1

2
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                              (2-23) 
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2.2.5.2 Crack defects 

The following models and methodologies are the popular ones used in industry for predicting burst 

pressure for pipelines with crack defect.  
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2.2.5.2.1 NG-18 method [119] 

The Ln-secant (NG-18) failure criterion is also called Battelle model, which is the basis of many 

other methods. It gives the relationship between critical flaw size and hoop stress and many other 

parameters. This equation can be used to calculate the critical stress intensity factor (equation 

(2-25)) or burst pressure (equation (2-26)).  
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2.2.5.2.2 Failure assessment diagram (FAD) methods [155], [156] 

The FAD methods are widely used for assessing cracks in pipelines. There are three levels of FAD 

approaches. Level 1 FAD is the most conservative one, and it is used when the known material 

properties and load conditions are limited. Level 2 gives a better prediction and Level 3 provides 

the best estimate of burst pressure. In this study, API 579 Level III and BS 7910 Level III are used 

to predict burst pressures. The FAD approach is based on two failure criteria which are brittle 
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fracture (Kr) and plastic collapse (Lr). Figure 2.2 is an example of FAD, from this figure, all 

assessment points using API 579 and BS 7910 are under the assessment line, so they are 

considered to be safe. 

To obtain the assessment points, we can use Level 3 FAD through API 579 and BS 7910 

separately to get the Lr and Kr: 
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And we can use the Ramberg-Osgood equation to determine the reference strain: 
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= +                            (2-31) 

API 579-Cylinder Approach gives the reference stress as follows: 

ref S hM =                                 (2-32) 

where 𝜎ℎ is the hoop stress; Folios bulging factor 𝑀𝑆 is given by: 
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Figure 2.2 One example of FAD 

 

BS 7910-Cylinder Approach gives the reference stress as follows: 

1.2ref S hM =                                 (2-36) 

where 𝜎ℎ is the hoop stress; Folios bulging factor 𝑀𝑆 is given by: 
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2.2.5.2.3 CorLASTM model [157] 

CorLASTM is a popular software tool used in industry, it can assess a detailed crack depth profile 

rather than other methods. The CorLASTM model uses the effective area method to calculate the 

burst pressure.   
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3 An integrated prognostics approach for pipeline 

fatigue crack growth prediction utilizing in-line 

inspection data 

3.1 Introduction  

Fatigue cracking is a key type of defect for liquid pipelines, and managing such fatigue cracks 

continues to be a top priority amongst pipeline integrity management. However, existing ILI tools 

have relatively large fatigue crack measurement uncertainties, and typically have a specification of 

about plus/minus 1 millimeter, 80% of the time [6], [13]. Furthermore, currently physics-based 

methods are mainly used for fatigue crack growth prediction, based on crack growth models 

governed by the Paris’ law [13], [14]. The uncertainty in crack sizing and the Paris’ law model 

grows to the predicted time of failure due to fatigue cracks, resulting in uncertainty which requires 

a conservative management integrity management approach and risk mitigation strategies, such as 

repairs, pipe replacement, pressure reductions and hydro-testing. There is an urgent need to 

develop accurate fatigue crack growth prediction tools, and reduce the uncertainty and hence the 

conservatism in pipeline integrity management.  

 Existing pipeline defect prognosis methods are mainly classified into physics-based methods 

and data-driven methods[15]. The physics-based methods for pipelines mainly include stress-life 

method (S-N), local strain method (Ɛ-N), and Paris’ law based methods [149]. Among them, the 

physics-based method governed by the Paris’ law is currently the dominant method used for 
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pipeline fatigue crack growth prediction [6], [13], [14]. The Paris’ law is generally used for 

describing fatigue crack growth [13], [14], [236], [205]: 

d
( )

d

ma
C K

N
=                                     (3-1) 

where da/dN is the crack growth rate, a is crack size, N is the number of loading cycles, ∆K is 

the range of the Safety Intensity Factor (SIF), and C and m are material related uncertainty model 

parameters. C and m can be estimated via experiments, and are set as fixed constants in the 

physics-based method. Many studies have been published on using physical models, such as FE 

models, and crack growth models based on S-N curves or some forms of Paris’ law. Hong et al. 

[151] estimated the fatigue life by using the S-N curves of the ASTM standard specimens, curved 

plate specimens and wall-thinned curved plate specimens. Pinheiro and Pasqualino [150] proposed 

a pipeline fatigue analysis based on a finite element model and S-N curve with the validation of 

small-scale fatigue tests. Oikonomidis et al. [159], [160] predicted the crack growth through 

experiments and simulation based on a strain rate dependent damage model (SRDD). Crack arrest 

length and velocity can be predicted through the proposed model. A key disadvantage of the 

existing physics-based method is that typically the same fixed model parameters are used for all 

pipes (i.e. m=3). However, these material dependent model parameters should be different for 

different pipes, and slight differences in such model parameters can lead to large differences in 

fatigue crack growth predictions. As an example, a 10% change in parameter m may lead to a 

change of 100% in the predicted failure time.  

 Data-driven methods use the experimental data or monitoring data rather than physical models 

for prognosis. Varela et al. [23] discussed major methodologies used to produce condition 

monitoring data. Among these pipeline inspection techniques, ILI tools are the most reliable for 
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pipeline integrity management. A review of ILI tools for detecting and sizing cracks was 

conducted in reference [90]. Slaughter et al. [91] analyzed the ILI data for cracking and gave an 

introduction to how to improve the crack sizing accuracy. Systematic error of the ILI tool, 

measurement noise and random error from the tool, and the surface roughness are three main 

sources of ILI tool uncertainties [76]. Due to the measurement errors and cost of an ILI tool, data 

driven methods do not work well if the number of ILI tool runs and the amount of data are not 

sufficient. 

 In this section, an integrated approach for pipeline fatigue crack growth prediction with the 

presence of large crack sizing uncertainty is proposed, which integrates the physical models and 

the ILI data. With the proposed integrated approach, the FE model of cracked pipe is built and 

stress analysis is performed. ILI data is employed to update the uncertain material parameters for 

the individual pipe being considered so that a more accurate fatigue crack growth prediction can be 

achieved. The proposed integrated approach is compared with the existing physics-based method 

using examples based on simulated data. And real NDE and ILI data provided by a Canadian 

pipeline company is used for the validation of the proposed integrated approach.  

 Time-varying operating conditions are considered in the proposed integrated method. When 

oil and gas content is transported with pipelines, the internal pressure of the operating pipelines 

varies with time, which presents a challenge for applying integrated prognostics methodology. 

Zhao et al. [237] proposed an integrated prognostics method for a gear under time-varying 

conditions. The load changes history considered in [237] is the combination of several constant 

loading conditions, while in pipeline operations, the internal pressure changes continuously. In this 

study, we employ the rainflow counting method to deal with time-varying operating conditions. A 

key advantage of using the rainflow counting method within the proposed integrated method is to 
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directly link the environmental and human factors which affected the loading conditions to the 

degradation model. Also, it is proven by Roshanfar and Salimi [238] that rainflow counting 

method is more accurate compared with other cycles counting methods, such as range counting, 

level crossing counting, and peak counting methods. 

 Section 3.2 presents a pipe finite element model considering a single fatigue crack. The 

proposed integrated method for fatigue crack growth prediction of pipeline is discussed in Section 

3.3. Section 3.4 gives examples based on simulated data and Section 3.5 presents a case study to 

demonstrate the proposed method. Section 3.6 gives the conclusions. 

 

3.2 Pipe finite element modeling considering fatigue cracks  

In this section, the pipe finite element model considering a single fatigue crack is built, based on 

information and methods presented in [239]–[241]. The ANSYS software is used for pipe FE 

modeling, and a single semi-elliptical type of crack is considered. Stress analysis is performed, and 

SIF can be calculated.  

 

3.2.1 Pipe FE modeling 

Test data 157-1 presented in [242] on line pipes was used. The material is X70 grade pipe steel. 

Table 3.1 shows the line pipe’s physical properties. These parameters of pipeline geometry and 

mechanical properties shown in Table 3.1 are used as input parameters to build the pipeline finite 

element model. 
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Table 3.1 Physical properties of the line pipe 

Parameters Pipe 

API 5L Grade X70 

Yield Strength Min. (MPa) 483 

Tensile Strength Min. (MPa) 565 

Yield to Tensile Ratio Max. 0.93 

Elongation Min. 17 

Outside Diameter (mm) 914.4 

Wall Thickness (mm) 15.875 

Length (mm) 5000 

Internal Pressure (MPa) 10 

 

Software ANSYS Workbench is used to build the FE model. The crack shape is set to 

Semi-Elliptical, which is the most common type of fatigue cracks found in pipelines. The crack 

size and shape are defined by the major radius (crack length a=2r) and the minor radius (crack 

depth b), which are shown in Figure 3.1. ANSYS Workbench was used to build a pipeline model 

with a semi-elliptical crack, with the input of major radius and minor radius. 

 

Figure 3.1 Crack shape 
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The pipe parameters are entered using the fracture tool. The pipe is divided into two parts: one 

is the fracture affected zone which uses the tetrahedrons method, and the other is the rest of the 

pipe which uses the hex-dominant method. Figure 3.2 shows the built FE model, where the base 

mesh without cracks and the region involving the crack are modeled using the two different 

modeling methods.  

Stress intensity factor (SIF) is the key output of pipe finite element analysis. The crack length 

a increases from 4 to 30mm with a step size of 2mm, and the crack depth b is varied from 2mm to 

12mm with 1mm increments, and obtain the corresponding SIF values through stress analysis. To 

model the relationship between SIF values at the surface point (Ka), at the deepest point (Kb), along 

with the crack length and depth, a curve fitting tool with polynomial function in Matlab was used. 

The results are presented in Figure 3.3. The curve fitting results show that the two adjusted 

R-squares are both very close to 1, indicating good goodness of fit.  

 

 

Figure 3.2 Crack built in ANSYS workbench 
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Figure 3.3 The fitted SIF functions 

 

The internal pressure is varied from 0.69MPa to 2.76MPa in 0.69Mpa increments to find the 

SIF values at the surface point and those at the deepest point, which are displayed in Table 3.2. It 

can be concluded that the SIF is proportional to pressure. It can also be verified through the 

technique by Raju and Newman [243], which is widely applied to evaluate pipe stress considering 

fatigue cracks: 

2

a D a
K f P f

Q t Q
   =  =                        (3-2) 

where   is the range of the hoop stress, P  is the size of the pressure cycle, a is the 

instantaneous crack depth, and f and Q are constants that depend on pipe geometry and defect 
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length, respectively. Given that SIF is proportional to pressure, the SIF can be calculated at a 

certain pressure to obtain the SIF value at a different pressure by scaling the SIF value proportional 

to the pressure level [237].  

 

Table 3.2 Pressure influence on SIF 

P(MPa) a(mm) b(mm) Ka Kb 

0.69 15.2 2.54 653.36 1187.6 

1.38 15.2 2.54 1306.7 2375.2 

2.07 15.2 2.54 1960.1 3562.7 

2.76 15.2 2.54 2613.4 4750.3 

0.69 15.2 5.08 1193.6 2340.9 

1.38 15.2 5.08 2387.1 4681.9 

2.07 15.2 5.08 3580.7 7022.8 

2.76 15.2 5.08 4774.3 9363.8 

0.69 50.8 5.08 792.33 2219.7 

1.38 50.8 5.08 1584.7 4439.4 

2.07 50.8 5.08 2377 6659 

2.76 50.8 5.08 3169.3 8878.7 

 

3.2.2 Pipe FE model verification 

The pipe FE model is partially verified by comparing with the Raju and Newman method [243], 

outlined in “OPS TTO5 – Low Frequency ERW and Lap Welded Longitudinal Seam Evaluation” 
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[244]. The Raju and Newman method for calculating SIF for a semi-elliptical surface flaw is 

implemented in this project based on the following equations (3-3)-(3-8). 

2

a D a
K f P f

Q t Q
   =  =                          (3-3) 

1 4.595( )
a

Q
L

= +                                 (3-4) 

2 4

1 2 3( ) ( )
a a

f M M M
t t

= + +                           (3-5) 

1 1.13 0.18( )
a

M
L

= −                                (3-6) 

2

0.445
0.54

0.1

M
a

L

= −

+

                               (3-7) 

24

3

0.5
0.5 14 0.5 2( )

0.325

a
M

a L

L

 
= − + − 

 +

                    (3-8) 

∆P is the size of the pressure cycle, a is the depth of crack from the pipe surface, L is the length of 

the crack, D is outside diameter, and t is the pipe wall thickness.  

 The results by the Raju & Newman’s method are compared with those obtained using the FE 

model, when the flaw length is 150mm (5.9in.). Length 150mm (5.9in.) is used because it 

corresponds to the case study in Section 3.5.The two curves are shown in Figure 3.4. As can be 

observed, the values calculated using these two methods are pretty close for a large portion of the 

crack depth range. The FE method is also compared with two other methods for cracked pipe SIF 

calculations: API 579 and BS 7910, which are outlined in Section 3.4. 
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Figure 3.4 Comparison of SIF results between the Raju & Newman method and the FE method 

 

3.3 The proposed integrated method for fatigue crack growth 

prediction 

In the proposed integrated method for fatigue crack growth prediction, the pipe FE model 

calculates the SIF values for given crack sizes, which are utilized in the crack growth model 

governed by the Paris’ Law for propagating the fatigue. The distributions of the uncertain model 

parameters are updated through Bayesian approach using the current fatigue crack size [245]. The 

estimate is based on ILI or nondestructive evaluation (NDE) data to get the uncertain model 

parameters to approach the real values for the specific unit being monitored. With the updated 

uncertain model parameters, the crack growth model can be applied to predict future crack growth 

and subsequently the failure time distribution. As part of the proposed approach, the pipe FE 

models are described in Section 3.2, and can be used for SIF computation.  
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3.3.1 Crack growth model 

The fatigue propagation of a semi-elliptical surface crack considering two crack growth directions 

was analyzed. Newman and Raju [243] indicate that the aspect ratio change of surface cracks 

should be calculated by assuming that a semi-elliptical profile is always maintained, and that it is 

adequate to use two coupled Paris fatigue laws known as “two-point plus semi-ellipse” method: 

A

A A( )
mda

C K
dN

=                                  (3-9) 

B

B B( )
mdb

C K
dN

=                                 (3-10) 

where AK  and BK  are the ranges of the stress intensity factor at the surface points and the 

deepest point of the surface crack, and CA, CB, mA and mB are material constants. 

 The simulated crack growth paths using the evolution equations considering CA = CB, mA = mB 

is more in accordance to the actual fatigue tests results reported in [246]. A semi-elliptical crack 

can propagate to a new semi-elliptical one based on the “two-point plus semi-ellipse” method 

[247], [248].  

 

3.3.2 Bayesian inference for uncertain model parameter updating  

In this section, the degradation model adopts two basic coupled Paris’ law formulas as the crack 

growth model. On the right-hand side of the formula, a model uncertainty term   is added to 

make the propagation model more accurate. The modified Paris’ law can be represented by the 

following equations after considering the model uncertainty:  
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( )m

A

da
C K

dN
=                                (3-11) 

( )m

B

db
C K

dN
=                                (3-12) 

 In addition, we assume that the measurement error 
real meas real mease a a b b= − = −  has the 

following distribution: 

2~ (0, )e N                                   (3-13) 

 The measured crack length and crack depth measa  anf measb , respectively follow normal 

distributions centered at areal and breal as follows:  

2

meas real~ ( , )a N a                                (3-14) 

2

meas real~ ( , )b N b                                (3-15) 

 In physics-based methods, researchers use physical models for prognostics without 

considering the uncertainty of ILI data. In some papers, they only used the ILI data as a new 

starting point instead of updating model parameters of physics-based models. In this section, ILI 

data is used to update the uncertain material parameters using the Bayesian inference method. 

Because parameter m affects the degradation path and the predicted results more than parameter C 

based on the Paris’ law, only the distribution of m is updated, while maintaining other model 

parameters unchanged. Thus, the posterior distribution ( )post | ,f m a b  can be obtained through the 

Bayesian inference method: 
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( ) prior

post

prior

( , | ) ( )
| ,

( , | ) ( )

l a b m f m
f m a b

l a b m f m dm
=


                    (3-16) 

where 
prior ( )f m  represents the prior distribution of m; ( , | )l a b m  represents the probability of 

detecting measured crack sizes, including length a and depth b. 

 Paris’ law is employed to propagate the crack from the current ILI measured crack size to the 

ones at next inspection point with given value of m. Due to uncertainties in ILI tool and Paris’ law, 

there exists the possibility to detect a certain crack length and crack depth at the next inspection 

point. The possibility can be denoted by a likelihood function ( , | )l a b m . 

 

3.3.3 The integrated method considering crack depth only 

In most cases, the pipe fatigue crack does not propagate much along the crack length direction. If 

only growth along the crack depth direction is considered, the Paris’ law model can be simplified 

to [249]:  

( )mda
C K

dN
=                                 (3-17) 

 And the equation for Bayesian updating is:  

( ) prior

post

prior

( | ) ( )
|

( | ) ( )

l a m f m
f m a

l a m f m dm
=


                        (3-18) 
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3.4 Examples based on simulated data 

3.4.1 Simulation example with the same starting point 

In the example in this section, the proposed prognostics approach is verified based on simulated 

data. It is assumed that the standard deviation of ILI tool error equals to 0.15, C=5e-12, 

𝑚~(2.5,0.22), and 𝜀~N(1,0.22). We also set the initial crack length as 4mm and initial crack depth 

as 2mm.  

 Ten degradation paths are generated, as shown in Figure 3.5. The ten degradation paths are 

obtained based on the two Paris’ law formulas, one for crack length and the other for crack depth, 

based on the above-mentioned model parameters. The initial crack length and depth are the same 

for all the ten degradation paths. The generated paths are separated into two sets: a training set, 

which is to derive a prior distribution of uncertain material parameter m, and a test set. The 

prediction performance of the proposed approach can be evaluated based on the test set. 

 

 

Figure 3.5 Ten simulated degradation paths 



69 

 

We select path 1 to 5 as the training set and 6 to 10 as the test set. Table 3.3 shows the ten real 

m values, since these real values are known during the simulated degradation path generation 

process. For the five degradation paths in the training set, a procedure based on least-square 

optimization, which was reported in Ref. [9], are used to estimate the m value for each training 

degradation path. These trained m values are subsequently used to fit the prior distribution 

parameters. We select normal distribution to fit them and the prior distribution of m is:  

f(m)=N(2.5439,0.15572)                          (3-19) 

 Paths #6, #7, #8 are selected for testing the prediction accuracy of the proposed prognostics 

approach. During the updating process, the posterior distribution of m will serve as the prior 

distribution to update parameter m at the next inspection point. In path #6, a total of 2.4×104 cycles 

are taken to meet the failure criteria. All useful information in the updating process for path #6 is 

shown in Table 3.4. In path #7, the failure time is 3.1×104 cycles, and it is 2.8×104 cycles for path 

#8. The updating histories for mean and standard deviation values of parameter m in path #7 and 

path #8 are shown in Tables 3.5 and 3.6, respectively. The results show that for all these paths, 

their material parameter m is gradually updated from prior distribution to approach its own unique 

real value. Figure 3.6 shows the plots for updated distribution of parameter m for path #6. The plots 

for updated distribution of predicted failure time for path #6, #7, #8 are shown in Figures 3.7, 3.8, 

and 3.9, respectively. As can be seen from the results, the updated m values can approach the real 

m values through updating using the observed data. The failure time predictions also approach the 

real failure times. The uncertainty is reduced during the updating processes. 
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Table 3.3 The real values and trained values of m 

Path# Real m Trained m 

1 2.3888 2.3890 

2 2.5968 2.5968 

3 2.7886 2.7838 

4 2.4787 2.4792 

5 2.4667 2.4662 

6 2.8027 - 

7 2.7588 - 

8 2.7805 - 

9 2.5850 - 

10 2.5447 - 

 

Table 3.4 Validation results with path #6 (real m=2.8027) 

Loading cycles Crack 

length(mm) 

Crack 

depth(mm) 

Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.6× 104 5.4811 2.9010 2.7854 0.0358 

1.2× 104 7.6330 4.4793 2.7925 0.0148 

1.8× 104 11.9190 7.3864 2.8001 0.0069 

2.4× 104 22.6406 13.4753 2.8040 0.0036 
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Table 3.5 Validation results with path #7 (real m=2.7588) 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.7× 104 5.1763 2.8022 2.7239 0.0477 

1.4× 104 6.8845 4.0574 2.7428 0.0201 

2.1× 104 10.3283 6.0624 2.7617 0.0094 

2.8× 104 15.8216 9.5424 2.7546 0.0049 

 

Table 3.6 Validation results with path #8 (real m=2.7805) 

Loading cycles Crack 

length(mm) 

Crack 

depth(mm) 

Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.7× 104 5.3408 2.9543 2.7527 0.0382 

1.4× 104 7.5956 4.4904 2.7703 0.0152 

2.1× 104 11.8729 7.1897 2.7760 0.0072 

2.8× 104 21.7281 12.7277 2.7777 0.0035 

 

 
Figure 3.6 Distributions of parameter m for path #6 
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Figure 3.7 Distributions of predicted failure time for path #6 

 

 

Figure 3.8 Distributions of predicted failure time for path #7 
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Figure 3.9 Distributions of predicted failure time for path #8 

 

3.4.2 Sensitivity analysis 

In this section, we study the sensitivity of the results to the variation of the initial crack sizes and 

the ILI tool measurement error. We use the same m values, as those listed in Table 3.3 in Section 

3.4.1, to generate the ten degradation paths, and use path #6 as the test set. We change the initial 

crack length a0 and/or initial crack depth b0 while maintaining all the other parameters unchanged. 

In the comparison, three scenarios are considered, where initial crack length is much bigger than 

crack depth, much smaller than depth, or close to depth, respectively. Table 3.7 is then obtained 

with three different input sizes combinations. It should be noted that in each of the three initial 

crack size scenarios in Table 3.7, the initial crack sizes are the same for all the 10 paths in this 

sensitivity analysis. From the comparison results in Table 3.7, we can find that if we use the same 

inspection interval, the inspection times decrease from four times to two times or one time, as 
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crack lengths and/or depths increase. However, even with shorter inspection times, the mean 

values of m are all approaching the real value (2.8027), and this shows that the proposed approach 

works well under all these different initial conditions. 

 

Table 3.7 Sensitivity analysis for initial crack depths and lengths (real m=2.8027) 

(1) a0=8mm, b0=2mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 8 2 2.5439 0.1557 

0.6× 104 9.8382 4.3728 2.7611 0.0383 

1.2× 104 15.1176 8.2462 2.7980 0.0110 

(2) a0=4mm, b0=6mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 4 6 2.5439 0.1557 

0.6× 104 7.1640 6.9937 2.7707 0.0342 

1.2× 104 13.9725 10.0862 2.8054 0.0096 

(3) a0=8mm, b0=6mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 8 6 2.5439 0.1557 

0.6× 104 13.9012 8.9284 2.7960 0.0121 

 

Beside initial condition analysis, we also investigate the impact of measurement errors of the 

ILI tools on the results. We increase σILI from 0.15mm to 0.3mm and 0.5mm, respectively. The 

results are shown in Table 3.8. The inspection times don’t change as 𝜎ILI increases. For both cases 
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with larger measurement errors, the mean values of m are all approaching the real value (2.8027), 

which shows the effectiveness of the approach. As expected, the performance of the proposed 

approach becomes worse as the measurement error of ILI tool increases. This also implies that 

with the development of more accurate ILI tools, the lower measurement error will result in better 

performance for the proposed approach. 

 

Table 3.8 Sensitivity analysis for measurement errors of ILI tools (real m=2.8027) 

(1) 𝜎ILI=0.3mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.6× 104 5.0333 3.4444 2.7343 0.0756 

1.2× 104 8.1987 4.0964 2.7958 0.0218 

1.8× 104 11.8189 7.7472 2.7988 0.0098 

2.4× 104 22.3269 12.9847 2.7985 0.0045 

(2) 𝜎ILI=0.5mm 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 4 2 2.5439 0.1557 

0.6× 104 5.1455 3.5268 2.5728 0.0847 

1.2× 104 7.4150 4.2182 2.5919 0.0450 

1.8× 104 12.9044 8.0734 2.6383 0.0258 

2.4× 104 21.7774 12.4770 2.6829 0.0133 
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3.4.3 Simulation example with different starting points 

In the example in this section, we assume that the standard deviation of ILI tool error equals to 0.15, 

C=5e-12, 𝑚~(2.5,0.22), and 𝜀~N(0,0.22), which are the same as those in Section 3.4.1. The initial 

crack lengths and depths are uniformly random generated in the range of 4mm to 10mm, and 2mm 

to 6mm, respectively. In this way, we have different starting points, i.e. initial crack length and 

depth values, for the ten simulated degradation paths. The ten new degradation paths are generated, 

and shown in Figure 3.10. 

 

 

Figure 3.10 Ten simulated degradation paths with different starting points 

 

Following the same procedure as Section 3.4.1, the real values and trained values of m are 

obtained in Table 3.9, and then we can obtain the prior distribution of m as: 

f(m)=N(2.3814,0.13522)                          (3-20) 
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Paths #6, #7, #8 are then selected for testing the prediction accuracy of the proposed prognostics 

approach. In path #6, a total of 6×103 cycles are taken to meet the failure criteria. All useful 

information in the updating process for path #6 is shown in Table 3.10. The updating histories for 

mean and standard deviation values of parameter m in path #7 and path #8 are shown in Tables 

3.11 and 3.12, respectively. From the results in these tables, m is gradually updated from the prior 

distribution to approach its own unique real value. The plots for updated distribution of parameter 

m and predicted failure time for path #6 are shown in Figures 3.11 and 3.12.  

 As can be seen from the results, the updated m values can approach the real m values through 

updating using the observed data. The failure time predictions also approach the real failure times. 

The uncertainty is reduced during the updating processes. In this example, it shows that the 

proposed approach works well for the case with different starting points.  

 

Table 3.9 The real values and trained values of m 

Path# Real m Trained m 

1 2.5095 2.5096 

2 2.2656 2.2653 

3 2.2867 2.2864 

4 2.5470 2.5468 

5 2.2982 2.2979 

6 2.9076 - 

7 2.1310 - 

8 2.3654 - 

9 2.1309 - 

10 2.5185 - 
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Table 3.10 Validation results with path #6 (real m=2.9076) 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 5.6680 5.2929 2.3814 0.1352 

2× 103 8.1578 6.5013 2.7713 0.0161 

4× 103 11.5583 8.3144 2.8079 0.0083 

6× 103 18.3856 11.5141 2.8810 0.0011 

 

Table 3.11 Validation results with path #8 (real m=2.3654) 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 7.5834 5.9807 2.3814 0.1352 

5× 104 9.6401 7.2315 2.3464 0.0262 

1.0× 105 12.4980 8.3614 2.3579 0.0084 

1.5× 105 15.8673 10.3980 2.3593 0.0028 

 

Table 3.12 Validation results with path #10 (real m=2.5185) 

Loading cycles Crack length(mm) Crack depth(mm) Mean of m Std of m 

0 7.0101 5.5680 2.3814 0.1352 

2× 104 9.4881 6.5740 2.5352 0.0332 

4× 104 12.0497 8.2202 2.5151 0.0137 

6× 104 15.9555 10.0877 2.5162 0.0071 
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Figure 3.11 Distributions of parameter m for path #6 

 

 

Figure 3.12 Distributions of predicted failure time for path #6 
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3.5 Comparative study and validation using ILI/NDE field data 

In this section, a comparative study is performed between the proposed integrated method and the 

existing physics-based method using the ILI/NDE field data supplied by a Canadian pipeline 

operator. In addition, the performance of the proposed method under different ILI tool accuracy is 

also studied. A summary of the pipe properties and the flaw measured properties are given in the 

following Tables 3.13 and 3.14. These field data can then be used to validate the effectiveness of 

the proposed integrated method. And the limitations of the traditional physics based methods are 

given in this subsection. 

 

Table 3.13 Pipe properties 

Property Value 

Diameter 863.6mm (34in.)  

Nominal Wall Thickness 7.1mm (0.281in.)  

Grade X52 

Maximum operating pressure 4.5MPa (649psi) 

 

Table 3.14 Flaw measured properties 

Date of Size Growth Length  Peak Depth  

February 2002 150mm (5.9in.) 2.95mm (0.116in.) 

April 2007 150mm (5.9in.) 6.40mm (0.252in.) 
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3.5.1 Pressure data processing using rainflow counting  

The internal pressure keeps changing during the life cycle of pipelines. There are multiple reasons 

that can cause the change of pressure, such as the transportation of different products, the close and 

open of valves, etc. Pressure cycling drives pipe fatigue crack growth, and pressure data is used to 

calculate the SIF values. Figure 3.13 is a plot of the pressure data from February 6, 2003 to March 

31, 2007. It can be seen that the pipeline operations change in November 2005, and the pressure 

cycling also changes at that time. The rainflow-counting method is used to count the number of 

discrete pressure cycling ranges, which will subsequently be used in pipe stress analysis. Two 

output matrices, namely matrix 1 and matrix 2, are generated. Matrix 1 contains information for 

each individual cycle including cycle number, time information, and range of pressure. Matrix 2 

organizes the individual cycles into different range limits, with the range increment set to 5 psi 

(0.034MPa). The rainflow-counting result is shown in Figure 3.14. As can be seen, there are a 

large number of small cycles with small pressure ranges, and a small number of large cycles.  

 

 

Figure 3.13 Total pressure data from February 6, 2003 to March 31, 2007 
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Figure 3.14 Rainflow counting result 

 

3.5.2 Fatigue crack propagation based on the rainflow counting results 

As mentioned in the previous subsection, we can obtain two different output matrices from the 

rainflow-counting method, namely matrix 1 and matrix 2. The two matrices are based on the 

pressure data from February 6, 2002 to March 10, 2007. It is assumed that prior to February 6, 

2003, the pressure data is the same from 2003-2004 since the operation had been the same during 

the period. It is obvious that matrix 1 should give more accurate results than matrix 2, but can be 

more computationally intensive to use to calculate fatigue crack propagation. Figure 3.15 shows 

degradation paths generated using matrix 1 and the FE method. By using matrix 2, the pressure 

ranges can be ranked in an increasing or decreasing order. Depending on the order, the upper 

bound or the lower bound can be used to represent each range limit. The investigations show that 
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using matrix 2 by ordering the pressure ranges increasingly or decreasingly give very close 

degradation path results. It can also be found that matrix 1 and matrix 2 give relatively close crack 

depth values on both February 6, 2003 and Mar. 10, 2007. 

 

 

Figure 3.15 Degradation paths generated using matrix 1 

 

3.5.3 Critical crack depth determination 

Once the critical crack size is reached, the pipe is considered failed, and thus the failure time and 

the remaining useful life can be determined. The critical flaw size depends on the nominal stress, 

the material strength, and the fracture toughness. The relationship between these parameters for a 

longitudinally oriented defect in a pressurized cylinder is expressed by the NG-18 “ln-secant” 

equation [244]:  

24 2
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                       (3-21) 
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where  
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t
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Dt
= + − =                 (3-23) 

or 0.032 3.3, 50tM z z= +                       (3-24) 

The values used in the equations are further explained as follows: a is flaw depth; t is the pipe 

wall thickness, and t=7.1mm(0.281in.); E is the elastic modulus, and E=206GPa; Le  is an 

effective flaw length, equal to the total flaw length multiplied by π/4 for a semi-elliptical flaw 

shape common in fatigue. In our study, Le=150×
π

4
=117.8mm; σf is the flow stress typically taken 

as the yield strength plus 68MPa, or as the average of yield and ultimate tensile strengths. 

σf=σy+10=403+68=471MPa(68.42ksi ); σH is the nominal hoop stress due to internal pressure. 

σH=p×
D

2t
; CV  is the upper shelf CVN impact toughness. CV=4.9m∙kg (35.8ft∙lbs) ; Ac  is the 

cross-sectional area of the Charpy impact specimen. Ac=80mm2(0.124 in.
2
). 

 The field data is applied to these equations, and the resulting relationship is shown in Figure 

3.16. Given the crack length of 150mm (5.9in.), if the internal pressure is equal to the Maximum 

Operating Pressure (MOP) of 4.5MPa (649psi), the critical depth-to-thickness ratio will be 0.6688. 

Thus, the critical crack depth is 0.6688×7.1=4.8mm (0.188 in.). The discrepancies from the NDE 

depth in April, 2007 (6.4mm) is because this way to determine the critical depth is relatively 

conservative. 
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Figure 3.16 Relationship between failure stress and flaw size 

 

3.5.4 ILI-NDE depth distribution 

NDE fatigue crack depth is considered as accurate for the purposes of this case study. ILI-NDE 

depth data give the differences between the collected ILI depth values and the corresponding NDE 

depth values, and thus can represent the accuracy of the ILI tool in measuring fatigue crack depth. 

With all the 16 sample field depths provided by the industry partner, a normal distribution is used 

to fit the ILI-NDE depth data, with the estimated mean 0.6669 mm (0.026 in.), and standard 

deviation 0.4795 mm (0.0189 in.). This can be further used as the measurement error of ILI tool by 

considering NDE as a relatively accurate examination tool. 
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3.5.5 Limitations of the existing physics-based method 

The fatigue crack growth results by the existing physics-based method are briefly discussed in 

Section 3.5.2 and presented in Figure 3.15. With the physics-based method based on the Paris’ law, 

fixed model parameters are used: 𝑚=3 and C=3.0×10
-20

MPa√mm (8.6×10
-19

psi√in). The finite 

element method and Raju and Newman method are employed in stress intensity factor calculations. 

As can be seen in Figure 3.15, the crack depth in April 2007 is 3.37mm (0.1325 in.), which is far 

from the actual crack depth of 6.40mm (0.252 in.) which is measured using the NDE tool. The 

crack growth results show that the existing physics-based method does not perform well in this 

case study. However, physics-based methods are were much better aligned to observed growth 

using more common conservative industry approaches to calculate SIF such as BS 7910 and API 

579. 

 

3.5.6 The integrated method and its performance under different ILI tool 

accuracy 

With this dataset, 2 NDE measurements are available, and are used to find the real m value by 

trying different m values. It is found that an m value of 3.11 will give the crack depth of 0.252 inch 

in April 2007, meaning that 3.11 is the real m value for the pipe. The crack growth curves for 

m=3.11 and m=3 are shown in the following figure, Fig. 3.17. With the real m value, the real crack 

depth value can be obtained at any given point in time.  
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Figure 3.17 Real crack growth curve 

 

The prediction performance of the proposed integrated method is investigated under different 

ILI tool accuracy, measured by the ILI tool measurement uncertainty. In this thesis, we investigate 

the integrated method’s performance when the ILI tool measurement uncertainty standard 

deviation is equal to 0.25mm (0.01in.), 0.38mm (0.015in.), and 0.50mm (0.02in.), respectively.   

 Feb. 2002 is set as the starting point for crack growth, where the crack depth is 2.95mm 

(0.116in.). Jun. 2006 is used as the first inspection point because ILI data is available from that 

time. Nov. 2006 is used as the second inspection point. The crack depth will be predicted for Apr. 

2007, and compared with the NDE depth measurement of 6.40mm. As can be seen from the real 

crack growth curve shown in Figure 3.17, the real crack depth is 3.96mm in Jun. 2006 and 5.13mm 

in Nov. 2006. The first case that was investigated was when the ILI measurement uncertainty 

standard deviation is 0.25mm. To try to fully assess the prediction performance of the integrated 

method for the Jun. 2006 inspection point, five ILI data points were sampled from a normal 
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distribution with a mean of 3.96mm (real crack depth) and standard deviation of 0.25mm. For each 

of the sampled ILI data points, parameter m is updated using Bayesian inference, and the mean of 

the five updated m values is 3.129 for Jun. 2006, as shown in Tables 3.15 (a-c). The same approach 

is done for the Nov. 2006 inspection point, and the mean of the updated m value is 3.101. The 

mean predicted crack depth values for Apr. 2007 are also obtained and recorded in Table 3.15(a). 

As can be seen, the updated m value gets closer to the real m value of 3.11, and the predicted crack 

depth for Apr. 2007 gets closer to the real crack depth 6.40mm.   

Next we investigate the cases where the ILI tool measurement uncertainty standard deviation 

is equal to 0.38mm and 0.50mm. The same procedure as mentioned above is followed, and the 

results are recorded in Tables 3.15(b) and 3.15(c). From the results in Table 3.15, it can be seen 

that the best prediction performance is achieved when the measurement uncertainty is the smallest 

(0.25mm), and the prediction performance becomes worse when the measurement uncertainty is 

larger, as expected. It can also be observed that for all three ILI measurement uncertainty cases, the 

integrated method outperforms the existing physics-based method. Note that for the “ILI-NDE 

Depth sample” data, the ILI tool measurement uncertainty standard deviation is 0.48mm, which is 

between the case (σILI = 0.38) and the case (σILI = 0.50). It is expected that the ILI tool accuracy 

will keep improving in the future, which will result in more accurate predictions of crack depth 

using the integrated method. And with a more advanced ILI crack detection tool, the proposed 

integrated prognostics method can greatly improve the accuracy of the remaining useful life 

prediction for pipelines with fatigue cracks, and consequently that would lead to a more efficient 

pipeline integraty management program. 
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Table 3.15 Update results for different ILI tool measurement error 

(a) σILI=0.25mm 

Inspection year Feb. 2002 Jun. 2006 Nov. 2006 

Crack depth (mm) 2.95 3.96 5.13 

Mean of m 3 3.129 3.101 

Std of m 0.15 0.019 0.008 

Predicted crack depth for Apr. 2007 3.37 Reaching 6.40mm 

in Dec. 2006 

5.64 

(b) σILI=0.38mm 

Inspection year Feb. 2002 Jun. 2006 Nov. 2006 

Crack depth(mm) 2.95 3.96 5.13 

Mean of m 3 3.097 3.098 

Std of m 0.15 0.054 0.018 

Predicted crack depth for Apr. 2007 3.37 5.23 5.31 

(c)  σILI=0.50mm 

Inspection year Feb. 2002 Jun. 2006 Nov. 2006 

Crack depth(mm) 2.95 3.96 5.13 

Mean of m 3 3.029 3.074 

Std of m 0.15 0.106 0.042 

Predicted crack depth for Apr. 2007 3.37 3.58 4.27 
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3.6 Conclusions 

Managing fatigue cracks has been a top priority for liquid pipeline operators. Existing ILI tools for 

pipeline defect evaluation have fatigue crack measurement uncertainties. Furthermore, current 

physics-based methods are mainly used for fatigue crack growth prediction, where the same or 

similar fixed model parameters are used for all pipes. They result in uncertainty that requires a 

conservative approach for integrity management approach and management and risk mitigation 

strategies. In this chapter, an integrated approach is designed to predict pipeline fatigue crack 

growth with the presence of crack sizing uncertainty. The proposed approach is carried out by 

integrating the physical models, including the stress analysis models, the damage propagation 

model governed by the Paris’ law, and the ILI data. With the proposed integrated approach, the FE 

model of a pipe with fatigue crack is constructed. ILI data are applied to update the uncertain 

material parameters for the individual pipe being considered, so that a more accurate fatigue crack 

growth prediction can be achieved. The rainflow counting method is used to count the loading 

cycles for the proposed integrated method under time-varying operating conditions. Furthermore, 

we compare the proposed integrated approach with the existing physics-based method using 

examples based on simulated data. Field data provided by a Canadian pipeline operator is also 

used to validate the proposed integrated approach. At the end, the examples and case studies in this 

thesis demonstrate the limitations of the existing physics-based method, and the promise of the 

proposed integrated approach for achieving accurate fatigue crack growth prediction as ILI tool 

measurement uncertainty further improves. Enbridge recently announced a multi-year 

collaboration agreement with NDT Global, to build a new generation of improved crack ILI to 

further improve measurement uncertainty [32]. The developed methods can contribute to a more 
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efficient pipeline integrity management approach for managing crack threats by reducing 

unnecessary maintenance work and downtime.  
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4 Risk-based pipeline re-assessment optimization 

considering corrosion defects 

4.1 Introduction  

Pipelines are critical assets for gathering and transporting different crucial items such as oil, 

natural gas, and water, and they are critical for a city’s reliable, safe and secure operations. 

Research studies have been conducted on various topics to ensure pipeline reliability and safety, 

such as qualitative and quantitative risk assessment methods for urban natural gas pipeline 

network [250], risk-based maintenance of petroleum pipeline systems [213], and optimized 

maintenance scheduling for water pipeline networks [251]. Pipelines in the system are easily 

affected by surrounding environment, construction errors, natural disasters and human activities. 

Different kinds of defects, such as corrosion, crack, mechanical damage and third party damage, 

may result in reduced strength in pipeline segments, and present threat to the whole system. 

Hence, these defects need to be managed properly to avoid environmental hazards and costly 

downtime.  

For some threats to pipeline integrity, like corrosion, crack and dents, the nature of the 

growth mechanisms are time-dependent. With the use of suitable damage propagation model, the 

probability of failure can be estimated for pipelines with particular types of defects. Corrosion is 

a major integrity threat to oil and gas pipelines. Risk analysis for metal loss corrosion defect is a 

vital part of pipeline integrity management. Risk is typically defined as the multiplication of 

probability and consequence, and it can be used as a reliability measure for pipeline systems. 

Qualitative and quantitative risk assessment methods are two ways for pipeline integrity 
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management. Qualitative risk assessment methods are based on a risk analysis index system, 

which contains few essential data and leads to a rough estimation without giving a numerical 

value. However, a final descriptive ranking is given based on the index system and the results are 

easily presented and understood. Quantitative methods use physics models and numerical 

simulation to obtain quantitative assessment of risks. Han and Weng [250] compared proposed 

qualitative and quantitative risk assessment methods for the natural gas pipeline system. The 

results for two methods were close and they could both be used in practical applications. Zhang 

and Zhou [252] proposed a method to evaluate the reliability of corroding pipeline systems. 

ILI is a typical inspection method for evaluating pipeline conditions and defect sizes using 

ILI tools such as magnetic flux leakage tools and ultrasonic tools. It is important to optimize 

maintenance activities to improve reliability, reduce risks and minimize the overall costs. Li et al. 

[253] proposed a quantitative risk analysis model for leakage failure using Bayesian networks. 

Optimal inspection planning for pipelines with corrosion defects has drawn lots of research 

attention due to its key role and the significant cost of performing ILI inspections. Gomes [221], 

[222] optimized the inspection schedule for pipelines with corrosion and crack defects 

respectively. All the methods used in these papers considered the inspection interval as the 

design variable, and the optimal inspection interval is fixed and constant during the whole 

pipeline service time once it is determined. However, pipeline defect sizes are different at 

different inspection points, resulting in different future defect growth and system failure 

probability, and thus it is more reasonable to apply different re-assessment intervals depending 

on pipeline health conditions. 

In this chapter, we develop an approach to find the optimal re-assessment intervals for 

pipelines subject to multiple corrosion defects, where the probability of failure (PoF) threshold is 
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used as the decision variable for this optimization problem. Re-assessment is performed for the 

entire line when the predicted system PoF reaches the PoF threshold. The re-assessment interval 

is not constant, because it varies due to different predicted defect growth and failure probability 

during different stages of pipes in their life cycles, or combinations of pipes with different 

conditions. The framework of this study is shown in Figure 4.1. First, through using detection 

and inspection tools like ILI tools, defects for different pipeline segments can be detected. 

Damage prediction models are used for predicting the growth of these defects. The entire line 

with multiple corrosion defects can be treated as a series system with multiple components, 

because it will fail if any defect meets its limit states or failure criteria. The system failure 

probability can be evaluated based on the structure of pipeline system and each defect’s failure 

probability. When the failure probability for the entire line reaches the PoF threshold, different 

options of maintenance and rehabilitation activities may be implemented based on the 

corresponding criteria to ensure the safety of the whole pipeline system. Cost rate evaluation at 

the re-assessment point needs to be determined considering inspection cost, repair cost, potential 

failure cost, etc. Lastly, optimization is conducted for the pipeline system to find the optimal PoF 

threshold with respect to the lowest cost rate. The optimal re-assessment intervals will be 

determined by implementing the re-assessment policy defined by the optimal PoF.  

Monte Carlo simulation technique is utilized to analyze the re-assessment policy, and 

uncertainties need to be considered and quantified in the simulation process. Defect 

identification and classification are critical for pipeline system integrity management. ILI tools 

have been evolving rapidly and these tools are widely used for detecting and inspecting corrosion, 

erosion, cracks, etc. The accuracy of ILI tools affects inspection results a lot. The inspection 

results contain information about types, locations and dimensions of defects and they serve as the 
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basis for assessing a pipeline system’s current condition. Therefore, the measurement error of ILI 

tools is necessary to be considered in the pipeline system integrity management. In this study, 

uncertainties in pipe geometry and material properties are also considered as important 

uncertainty factors in addition to the tool measurement error.  

The remainder of the chapter is organized as follows. Section 4.2 describes the damage 

propagation models including the limit state functions for corrosion defects as well as uncertainty 

quantification. Section 4.3 introduces the proposed re-assessment and maintenance policies, and 

presents the proposed pipeline re-assessment optimization approach. Section 4.4 presents 

examples to implement the proposed approach, investigates the impact of relevant parameters on 

the results, and compares with fixed interval method. Conclusions are presented in Section 4.5.  

 

 

Figure 4.1 Framework for the pipeline system risk assessment 
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4.2 Damage prediction models 

4.2.1 Limit state functions for failure due to corrosion 

For pipelines with active corrosion defects, failure caused by the defects is determined by 

calculating the limit state functions (LSFs). There are two limit state functions representing the 

failure criteria for pipelines with corrosion defects. The corrosion defects are considered to be 

safe only when the two limit state functions are both positive.  

The first LSF is defined as the difference between the burst pressure Pf and the operating 

pressure Pop, and the general form of the LSF is： 

LSF1 (Pf ,T) = Pf (D, t, YS, UTS, 𝑑(T), L (T)) - Pop              (4-1) 

where D is the pipeline diameter; t is the pipeline wall thickness; YS and UTS are the pipeline 

material yield strength and ultimate tensile strength, respectively; L is the axial length of the 

defect; 𝑑 is the depth of the defect and T is the elapsed time. This limit state function is 

time-dependent, and the burst pressure Pf depends on the above-mentioned parameters. 

As for burst pressure calculation, in the literature, various burst pressure models, including 

B31G [88], [109], modified B31G [110], Battelle [116], DNV-99 [113, p. 101], Shell-92 [111], 

can be used to calculate Pf in Eq. (4-1). Equations for all these methods are similar and they are all 

based on the NG-18 equation [119]. Cosham et al. [120] presented and compared these burst 

pressure models in the literature used to assess corrosion defects. Caleyo et al. [121] compared 

these burst pressure models when conducting the reliability assessment of corroded pipelines. 

Among these burst pressure models, modified B31G is the most popular one and it is relatively 
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accurate. Hence, in this thesis, we use modified B31G model to calculate burst pressure, which is 

shown as follows: 
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In industry practice, often times 80% of the wall thickness is used as the threshold of the 

defect depth. It is a conservative maximum allowable value though, which means the leaks will 

not occur when the defect depth reaches 80% of the wall thickness, and there is no tolerance 

when considering a serious pipeline integrity issue. This leads to the second LSF, which is 

defined using the following equation:  

LSF2 (𝑑, T) = 0.8t – 𝑑(T).                         (4-4) 

As indicated before, a defect failure occurs if one of the LSFs is negative. Therefore, the 

probability of failure associated with an individual corrosion defect PFdefect is computed by:  

PFdefect = Pr (LSF1 ≤0 OR LSF2 ≤0)                     (4-5) 

The corrosion growth model needs to be determined to calculate the probability of failure for a 

single corrosion defect. The widely used corrosion degradation models for defect depth with 

respect to time are shown in the following equations [121], [254], [255].  

d(T)=d0+Vr(T-T0)                             (4-6) 
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L(T)=L0+Va(T-T0)                             (4-7) 

where 𝑑0 and 𝐿0 are initial defect depth and length, respectively; Vr and Va are radial and 

axial corrosion growth rate, respectively; 𝑇0 is the time of last inspection and T is the exposure 

time. Substituting Eq. (4-1)-(4-4), (4-6), (4-7) into Eq. (4-5), we can predict the failure 

probability of a single corrosion defect at any future time. Thus, reliability can be calculated 

based on pipe geometry, defect geometry, material properties, growth rates and time. 

There are many pipeline segments in a pipeline system, inspected by ILI tools. Therefore, it 

is very likely there are multiple corrosion defects in the pipeline. The entire pipeline is considered 

in this study, which is consistent with industry practice in ILI planning. Major pipelines are 

typically series systems over very long distance without complex network structure, and a pipeline 

system for which ILI assessments are planned for is typically a series system. It is also assumed 

that all these corrosion defects are independent, and they typically occur at different locations. The 

probability of failure for a pipeline segment with multiple corrosion defects PFpipe is calculated 

by: 

PFpipe=1- ∏ (1-PFdefect,i)
n
i=1                         (4-8) 

where PFpipe is failure probability of the pipeline, and n is the number of corrosion defects. 

 

4.2.2 Uncertainties quantification 

There are uncertainties both on load and resistance parameters, which the two limit state 

functions depend on due to tool performance and measurement errors. The relationship among 

risks, costs and tool performance need to be investigated. The information about pipe geometry 

and mechanical properties may have some uncertainties when measuring and testing them. 
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Material uncertainty and geometry uncertainty will affect the burst capacity model, and as a 

result, will cause uncertainties in determining the limit state of corroded pipelines. Uncertainties 

associated with the ILI tool can be represented by the measurement error. In general, the 

measurement error will be affected by the resolution of ILI tool. It will affect the predicted depth 

a lot if the measurement error is big. σILI  is used to denote standard deviation of the 

measurement error in this thesis.  

Besides, model uncertainty of corrosion growth model should also be investigated. In the 

corrosion growth model, the two major parameters, corrosion growth rates Vr and Va, depend on 

the surrounding environment and pipe materials. These random variables are assumed to follow 

normal distributions. The mean and standard deviation used for the basic variables in each 

analysis can be seen in Table 4.1. Some parameters of these variables were reported in [4].  

 

Table 4.1 Random variables [4] 

Random variables Mean Standard deviation 

Pipeline diameter (D) 914.4mm 18.288 

Pipeline thickness (t) 20.6mm 0.412 

Operating fluid pressure (Pop) 7.8MPa 1.56 

Material yield stress (YS) 358MPa 25.06 

Ultimate tensile strength (UTS) 455MPa 31.85 

Defect length (L0) 200mm 20 

Defect depth (D0) (10%-20%)t 0.5 

Radial corrosion growth rate (Vr) 0.3mm/year 0.03 

Axial corrosion growth rate (Va) 10mm/year 0.5 
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4.3 The proposed risk-based re-assessment optimization approach 

4.3.1 Re-assessment and maintenance policy 

The proposed risk-based pipeline re-assessment and maintenance policies are described in this 

section. The proposed risk-based re-assessment optimization approach is used to find the optimal 

PoF threshold. At the current pipeline assessment point, defect information is collected based on 

the pipeline assessment results. Corrosion defect growth can be predicted based on the current 

defect information and defect growth models. Considering uncertainties in defect measurement, 

defect growth, pipe properties, future defect failure probability, and thus pipeline system PoF, 

can be predicted. The re-assessment interval is the point when the predicted system PoF first 

exceeds the optimal PoF threshold. Inspection cost is incurred at the predicted re-assessment 

interval. 

In addition, at a pipeline assessment point, maintenance actions, including possible 

excavation and repair actions, may be taken based on the collected defect information. There are 

mainly two types of maintenance activities: predictive maintenance and corrective maintenance. 

Maintenance option selection is based on the risk estimation, which means we need to calculate 

the probability of failure of the whole system and quantify the total consequence of the failure 

hazards. If a failure occurs in pipelines at any time, the corrective maintenance or replacement 

needs to be performed immediately. In industry, pipeline failure is highly undesirable due to the 

potential damage to human life and environment and huge economic loss, and it is characterized 

by very high failure cost in this study. As to predictive maintenance activities, it is typically 

performed at an inspection point and there are two main repair activities, sleeving and recoating. 
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If a corrosion defect is successfully detected, we can utilize certain criterion to determine 

repair actions. Based on monitoring programs, the mitigation programs are initiated including 

pipeline excavations and different repair activities if a defect meets a certain criterion. A defect 

will be repaired immediately after inspection if any of the following limit state functions, 

described in equations (4-9) and (4-10), is smaller than zero [206]. Here, we call it as repair 

criteria 1. If a defect doesn’t meet the repair criteria 1, neither excavation nor repair activities 

need to be performed at the inspection point. 

LSF (𝑑) = 0.5t – d ≤ 0                           (4-9) 

LSF (Pf) = Pf – 1.39Pop ≤ 0                       (4-10) 

If a corrosion defect meets repair criteria 1, excavation needs to be performed at the inspection 

point and we need to check whether it meets repair criteria 2 or not. Repair criteria 2 is described 

by the following two equations, described in equations (4-11) and (4-12). If any of the following 

limit state functions is smaller than zero, the corrosion defect meets repair criteria 2, and this 

corrosion defect is repaired with a full encirclement sleeve. And if the corrosion defect doesn’t 

meet the repair criteria 2, the defect will be recoated. 

LSF (𝑑) = 0.75t – d ≤ 0                        (4-11) 

LSF (Pf) = Pf – 1.1Pop ≤ 0                       (4-12) 

The proposed policy, defined by the system PoF threshold, leads to varying pipeline re-assessment 

intervals. But generally speaking, with the increase of PoF threshold, the average re-assessment 

interval increases, because the system failure probability that can be tolerated becomes larger. 

Figure 4.2 is an example plot of failure probability of pipelines versus time. With the design 

variable PoF threshold given, we can find the re-assessment interval for next tool run. For example, 
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if PoF threshold is 1×10-6, the PoF of pipelines is smaller than the threshold until T=6 years. In this 

way, for different PoF thresholds, we can record the corresponding re-assessment intervals and 

calculate the average re-assessment intervals, which is shown in Table 4.2. We can find that the 

number of years to perform next tool run increases with the increase of PoF threshold. 

 

 

Figure 4.2 Example failure probability of pipelines versus time 

 

Table 4.2 Example average re-assessment interval 

Probability of Failure 

(PoF) threshold 

Average re-assessment 

interval (yrs.) 1×10-7 3 

1×10-6 6 

5×10-6 8 

1×10-5 12 

5×10-5 14 

1 ×10-4 15 

1 ×10-3 20 

1 ×10-2 25 
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4.3.2 Cost rate evaluation 

An optimal risk-based pipeline re-assessment policy is defined by the optimal PoF threshold 

corresponding to the lowest cost rate, e.g. cost per year. The optimization problem can be 

generally formulated as follows: 

min CR(PoF)   

s.t. PoF < PoF𝑎 

(4-13) 

where CR(PoF) is the total cost rate with a given PoF threshold; PoF𝑎  is the acceptable 

threshold. In the optimization model, only the PoF threshold is the decision variable. The 

re-assessment or inspection intervals can be subsequently determined by the PoF threshold, using 

the methods described in Section 4.3.1. That is, at a certain inspection point, the corrosion 

defects are evaluated and future pipeline system failure probability is predicted. The next 

re-assessment time is the time when the predicted failure probability reaches the PoF threshold. 

In industry, there is an acceptable failure probability for pipelines defined before risk assessment. 

According to [256], the acceptable failure probability is defined based on safety class. The value is 

typically between 10
-5

 and 10
-3

 for different safety class. 

In the risk-based pipeline re-assessment optimization, cost rate evaluation is a critical step. 

The problem is quite complex though, due to the consideration of multiple random variables, 

failure criteria, maintenance actions and corrosion defects. A simulation-based method is 

developed for cost rate evaluation given a certain PoF threshold value. The detailed procedure for 

cost evaluation and re-assessment interval optimization is given in the rest of the section. 
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4.3.2.1 Step 1: Simulation initiation 

In this stage, we consider the current inspection time at the beginning of the inspection cycle (with 

the predicted re-assessment time as the end of the inspection cycle). We can gather information on 

the size of each defect, namely depth d0,i and length L0,i, pipeline geometry (OD, t), pipeline 

mechanical strengths (YS, UTS), etc. We need to consider defect measurement uncertainty, growth 

rate uncertainty and all the other uncertainties in load and resistant parameters. Then we generate 

all the load and resistant parameters with the consideration of uncertainties. Suppose the number of 

detected corrosion defect is k. Generate k initial corrosion defects considering the ILI tool 

measurement error. An example for uncertainties quantification is shown in Table 4.1. Specify the 

cost values, including in-line inspection Cin, corrosion defect excavation cost Cev, recoating cost 

Crc, sleeving cost, Crs, failure cost, Cf and additional fixed cost Caf. 

 

4.3.2.2 Step 2: Failure probability calculation  

In each simulation iteration, grow each corrosion defect with uncertainty using Eqs. (6) and (7). 

With the use of corrosion growth model and limit state functions described in Section 4.2.1, PoF of 

the entire line at time T, i.e. PoF(T), can be calculated using first order reliability method (FORM) 

or Monte Carlo simulation method.  

 

4.3.2.3 Step 3: Cost evaluation in each iteration 

When PoF(T) reaches the PoF threshold, the re-assessment point is reached. Record the total time. 

Costs include inspection costs, repair costs, and failure costs. The net present value (PV) 

evaluation is performed for the re-assessment interval to account for the time value of money. 
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The net present value of total cost for pipeline with multiple corrosion defects when 

re-assessment interval is 𝑡∗ can be determined as follows: 

PVt*=PVinsp,t*+PVrepl,t*+PVfail,t*+PVmain,t*+PVfixed,t*            (4-14) 

where PVinsp,t*, PVrepl,t*, PVfail,t*, PVmain,t*, PVfixed,t*  are net present values of inspection cost, 

replacement cost, failure cost, maintenance cost and additional fixed cost for entire line at year 

𝑡∗. 

The inspection cost is given by: 

PVinsp,t*=
Cin

(1+r)
t*

=
li×Cinsp

(1+r)
t*

 (4-15) 

where Cin is the inspection cost; r is the discount rate; li is the distance of the ILI tool run; 

Cinsp is the unit inspection cost. In this study, the entire line is inspected when using ILI tools.  

The replacement cost is given by [251]: 

PVrepl,t*=
Crp

(1+r)
t*

×PFpipe=
CLi×li+(CMi+CSLi)+CTi×si

(1+r)
t*

×PFpipe (4-16) 

where Crp is the replacement cost; CLi is the length cost rate; CMi and CSLi are cost of 

machinery and skilled labor, respectively; CTi  is unit transportation cost; 𝑠𝑖  is the 

transportation distance for replacing pipes; PFpipe is the failure probability of pipeline. 

The failure cost considering risk to human and environmental is given by: 

PVfail,t*=
Cfa

(1+r)
t*

×PFpipe=
Cpo+Cen

(1+r)
t*

×PFpipe (4-17) 
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where Cfa  is the failure cost due to damage to population and environment; Cpo  and 

Cen represent the cost converted from the damage to population and environment, respectively. 

The consequences of potential hazards are hard to estimate. Human safety, environmental 

damage, and economic loss consequences need to be quantified for further analysis. Total risk is 

the summation of human safety, environmental and economic risks. After converting damage to 

population and environment to economic loss, we can calculate the cost due to failure, 

Cf=Cfa+Crp.  

The maintenance cost is given by: 

PVmain,t*=
∑ (C

main,j
×zt*,j)

k
j=1

(1+r)
t*

 (4-18) 

                          zt*,j= {
1, if meet repair criteria 1 
0, otherwise                      

 

Cmain,j is the repair cost; k is the number of corrosion defects. And Cmain,j can be calculated 

based on repair criteria 2, which is shown as follows: 

Cmain,j= {
Cev+Crs, if meet repair criteria 2 

Cev+Crc, otherwise                      
 (4-19) 

where Cev  is the excavation cost; Crs and Crc represent sleeving cost and recoating cost, 

respectively. 

 

4.3.2.4 Step 4: Cost rate calculation and optimization  

With the Monte Carlo simulation, in each iteration (say i), we can obtain the total net present value 

𝑃𝑉𝑖 and total time Ti. Suppose we run N simulation iterations. The cost rate with respect to a given 

PoF threshold can be calculated as:  
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We may also be interested in the average re-assessment interval corresponding to the optimal 

re-assessment policy by taking the average of each re-assessment time: 
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With different PoF thresholds, the total cost rate CR(PoF) are calculated. Based on the results, 

we can obtain the relationship between cost rate and PoF threshold, with the PoF threshold as the 

single variable. Due to the computation time required by the simulation procedure, we obtain CR 

values at a set of discrete PoF points, and use a spline to fit the CR(PoF) function. A simple 

optimization procedure can be performed subsequently to find the optimal PoF threshold. Once the 

optimal PoF threshold is found, the re-assessment intervals can be predicted at each assessment 

point using the proposed re-assessment policy, based on the inspection results, defect growth 

prediction and the optimal PoF threshold.  

 

4.4 Examples 

In this example, a pipeline with a length of 10km will be inspected by ILI tools. The proposed 

methodology is utilized for assessing the entire line and finding the optimal PoF threshold value 

and ILI re-assessment time. The mean and standard deviation of geometry parameters and 

mechanical properties of the line are shown in Table 4.1. Ten initial corrosion defects are 

considered in the line within the defect depth range of 10% to 20% of wall thickness, at the 

beginning of inspection cycle, and later other ranges are also investigated in further analyses. Such 
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assumptions are used in modeling the inspection cycles by considering various stages during the 

lives of pipe segments, and the fact that the pipeline might be a combination of pipes with different 

ages and lives. The ILI tool accuracy is assumed to be σILI =0.5mm. And the axial and radial 

growth rate is set to be 10mm/year and 0.3mm/year in the example. The uncertainties are 

considered in all these parameters and they are normally distributed with the mean and standard 

deviation provided in Table 4.1. These parameters in Table 4.1 are set to be the baseline and will 

be compared with other scenarios in Section 4.4.2. FORM method is implemented here to 

calculate the probabilities that these limit state functions, described in equations (4-5), (4-9), 

(4-10), (4-11) and (4-12), are smaller than 0, and then calculate the probabilities of sleeving, 

recoating, and failure associated with each corrosion defect. FORM is a reliability method that 

can provide accurate results but less time-consuming compared with the Monte Carlo simulation 

method. 

The summary of costs of inspection, excavation, repair, failure is shown in Table 4.3 [257]. 

Additional fixed costs such as costs for skilled labor and transportation fees are also considered 

here. The relative costs are utilized in this example. The cost data is simplified in this example. For 

instance, the failure cost is assumed to be 200 (corresponding to $4 million), which takes all the 

human, environmental, and economic loss factors into consideration. And the additional fixed cost 

will not change with the change of the re-assessment interval, same for the inspection cost. So in 

this example, the fixed cost is added to inspection cost to better compare with other cost items 

since they are both non-changing. We assume li is equal to the length of the entire line=10km 

and Cinsp=$4,000/km, and thus the inspection cost is $40,000. Cf is assumed to be $4,000,000 

as the baseline. Table 4.3 is utilized as the baseline to compare with other scenarios in the 

sensitivity analysis.  
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Table 4.3 Summary of costs [257] 

Cost item Absolute cost (CAD$) Relative cost 

In-line inspection Cin 40,000 2 

Corrosion defect excavation Cev 70,000 3.5 

Recoating Crc 20,000 1 

Sleeving Crs 35,000 1.75 

Failure cost Cf 4,000,000 200 

Fixed cost (labor, transportation, etc.) 10,000 0.5 

 

4.4.1 Results with the proposed approach 

In this study, the total cost rate is broken down into different cost rate components, including 

inspection, repair and failure cost rates, respectively. It should be pointed out that the additional 

fixed cost is included in the inspection cost, the excavation cost is included in the failure cost, and 

the replacement cost is included in the failure cost. The cost evaluation and optimization results are 

shown in Figure 4.3. The results for the comparison of different cost rate components in term of 

different discount rate r are shown in Figures 4.3a, 4.3b, 4.3c, respectively. The results indicate 

that the inspection cost rate decreases with the increase of the PoF threshold, while it is the 

opposite for both repair cost rate and failure cost rate. It is reasonable because the inspection cost is 

a fixed cost in this example, and the inspection cost rate will decrease as T and PoF increase. And 

with the increase of PoF threshold, the possibility of repair actions and failure damage is 

increasing, which results in the increase of relevant cost rate. Besides, from the observation of 

these three figures, the inspection cost rate has the highest contribution to the total cost rate when 



110 

the PoF threshold is smaller than around 5×10
-3

, followed by repair cost rate and failure cost rate. 

The failure cost rate is negligible compared with other components of the total cost rate. This is 

because when the PoF threshold is small, pipeline is unlikely to fail and the corresponding 

inspection interval is also small, which gives a relatively big inspection cost rate and low repair 

and failure cost rate. When the PoF threshold becomes bigger, repair cost rate becomes higher and 

eventually the highest one. The comparison result for total cost rate of r=0, 2%, 5% is shown in 

Figure 4.3d. The figures show that the shapes of total cost rate plots with different discount rate are 

similar and the cost rate increases with the decrease of the discount rate. The optimal solutions for 

the PoF threshold, and the corresponding average re-assessment intervals and cost rates are shown 

in Table 4.4. And the results suggest that the optimal solution for the PoF threshold and average 

re-assessment interval doesn’t change much with the discount rate. r is assumed to be 2% in all 

following studies. And the results for r=2% with the parameters described previously will set to be 

the baseline and utilized in the parametric analysis. All the horizontal axis in the following figures 

are in logarithmic scale. 

 

Table 4.4 Comparison of optimal solutions with different discount rate r 

r Optimal PoF threshold Cost rate Average re-assessment interval 

0 1.83×10
-4

 0.2272 13.8 

2% 1.63×10
-4

 0.1741 14.5 

5% 2.21×10
-4

 0.1073 14.8 

 



111 

 

(a) r=0 (b) r=2% 

 

(c) r=5% (d) Comparison of r=0, 2%, 5% 

Figure 4.3 Comparison of the expected cost rates associated with different cost items 

 

4.4.2 Sensitivity analysis 

There are four scenarios considered in sensitivity analysis, and the studied parameters are failure 

cost, initial defect depths, corrosion radial growth rate, and measurement error of ILI tools, 

respectively. For each scenario, three different values of that parameter are chosen. The values of 

total cost rate and its components as functions of PoF threshold are plotted for each scenario and 
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the results for the cost rate vs. PoF threshold are studied and compared. The plots for comparison 

results are depicted in Figures 4.4-4.7, and the optimal solutions are shown in Table 4.5. Note that 

the optimal PoF threshold and its corresponding re-assessment interval are further summarized and 

discussed in Section 4.2.5. 

 

Table 4.5 Comparison results of optimal solutions for each scenario 

Scenario # Parameter Value Optimal PoF threshold Cost rate 

Scenario 1: 

Failure cost 

100 1.46×10
-4

 0.1687 

200 1.63×10
-4

 0.1741 

2,000 1.29×10
-4

 0.1868 

Scenario 2: 

Initial defect 

depths 

(10%~20%)t 1.63×10
-4

 0.1741 

Initial defect (20%~30%)t 1.36×10
-4

 0.2850 

depth (10%~40%)t 0.85×10
-4

 0.4526 

Scenario 3:  0.2 mm/yr. 2.20×10
-4

  0.1188 

Corrosion radial 0.3 mm/yr. 1.63×10
-4

 0.1741 

growth rate 0.4 mm/yr. 1.30×10
-4

 0.2206 

Scenario 4: ILI 0.3 mm 1.40×10
-4

  0.1704 

tool measurement 0.5 mm 1.63×10
-4

 0.1741 

error 0.7 mm 1.61×10
-4

 0.1786 

 

4.4.2.1 Scenario 1: Failure cost 

Because it is difficult to convert the failure damage of population and environment into economic 

loss, the value for failure cost is difficult to determine. It depends on many factors such as the 
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density of population, the recovery time of environmental damage, etc. Different risk factors, like 

stringent and conservative, may result in a very big difference in the value of failure cost. Hence, it 

is necessary to investigate the influence of failure cost on the results.  

 

 

(a) Cf=100 (b) Cf=2000 

 

(c) Comparison results 

Figure 4.4 Cost rate vs. PoF threshold in term of Cf=100, 200, 2000 
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Three different values are selected for analyzing the impact of failure cost, with relative cost 

100, 200, 2000, respectively. The failure cost equal to 200 is the baseline and the result is shown in 

Figure 4.3b. The plots for the total cost rate along with different components as functions of PoF 

threshold for Cf=100 and Cf=2000 are shown in Figure 4.4a and Figure 4.4b, respectively. The 

failure cost rate increases as Cf increases. And for Cf=2000, the failure cost rate has the highest 

contribution to total cost rate when PoF threshold is bigger than around 10
-2

 while the repair cost 

rate is the highest components for the other two. Figure 4.4c suggests that the optimal PoF remains 

close. And the total cost rates are close when the PoF threshold is smaller, the one with Cf=2000 

differs notably from the rest when the PoF threshold becomes big. 

 

4.4.2.2 Scenario 2: Initial defect depth 

Three initial defect depths scenarios are chosen for comparison, 10%~20%, 20%~30%, 10%~40% 

of the wall thickness, respectively. And the values corresponding to (10%~20%)t, (20%~30%)t, 

(30%~40%)t are shown in Figure 4.3b, Figure 4.5a, Figure 4.5b, respectively. The shapes of 

curves for repair cost rate and total cost rate are different with the change of the initial defect 

depths. The PoF threshold at the intersection point of repair cost rate and inspection cost rate 

decreases as initial defect depths increase. Figure 4.5c suggests that initial defect depths have a 

large impact on the total cost rate. Higher initial defect depths lead to higher probability of repair 

actions and failure damage. Therefore, less time will be needed for higher defect depths to reach 

the certain threshold, and it results in higher repair cost rate, failure cost rate and total cost rate. 
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(a) d0=10%t~20%t (b) d0=10%t~40%t 

 

(c) Comparison results 

Figure 4.5 Cost rate vs. PoF threshold in term of d0=10%t~20%t, 20%t~30%t, 10%t~40%t 

 

4.4.2.3 Scenario 3: Corrosion radial growth rate 

Three cases are considered in this scenario, namely 0.2, 0.3, 0.4 mm/year, respectively. The results 

shown in Figure 4.6 illustrate the impact of corrosion radial growth rate on total cost rate and its 

components. The corrosion radial growth rate affects failure cost rate and repair cost rate a lot, and 

with the increase of growth rate, the repair, failure and total cost rates increase at a given 

re-assessment interval. The failure cost rate increases significantly as the growth rate increases 
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from 0.3 to 0.4mm/year. It is mainly due to the fact that a higher corrosion radial growth rate leads 

to larger corrosion depth, and therefore, shorter time to reach the PoF threshold, which leads to 

higher cost rate with the same PoF threshold. From Figure 4.6c, when the PoF threshold is small, 

the shapes of curves for the total cost rate are similar, and it can reach a higher total cost rate with 

a higher depth growth rate, as expected. The differences among three curves keep increasing as the 

PoF threshold increases. 

 

 
(a) Va=0.2mm/year (b) Va=0.4mm/year 

 
(c) Comparison results 

Figure 4.6 Cost rate vs. PoF threshold in term of Va=0.2, 0.3, 0.4mm/year 
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4.4.2.4 Scenario 4: ILI tool measurement error 

The impact of ILI tool measurement error on cost rate items is illustrated in Figure 4.7.  

 

 
(a) σILI= 0.3 (b) σILI= 0.7 

 

(c) Comparison results 

Figure 4.7 Cost rate vs PoF threshold in term of σILI = 0.3, 0.5, 0.7 

 

Three cases are considered in this scenario, namely σILI = 0.3, 0.5 and 0.7, respectively. The 

shapes of the curves for total cost rate and its different components are similar with the change of 
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ILI tool measurement error. Overall, from the trend of three curves in Figure 4.7c, the total cost 

rate increases as the measurement error of ILI tool increases. This is mainly because the real 

corrosion depth could be bigger if the standard deviation of the tool measurement error is bigger, 

which results in a higher total cost rate. The impact of ILI tool measurement error on the total cost 

rate and its components are relatively small, and the total cost rate corresponding to different ILI 

tool measurement error become very close when the PoF threshold is around the optimal solution. 

This is mainly because the measurement error of ILI tool in this example is relatively small 

compared to corrosion depth and wall thickness (20.6mm). 

 

4.4.2.5 Summary of the four scenarios 

The comparison results of optimal PoF threshold and corresponding cost rate for each scenario are 

summarized and compared in Table 4.5. The optimal PoF threshold is obtained by finding the 

lowest total cost rate. Note that in this study, we use the normal safety class and acceptable failure 

probability is 5×10
-4

, and in this way, our optimal PoF threshold should be smaller than this value. 

All the obtained optimal PoF thresholds meet the acceptance criteria in this example. Overall, the 

optimal PoF threshold for each case is obtained and the minimum and maximum ones are 

0.85×10
-4

 and 2.20×10
-4

, respectively. This means the optimal PoF threshold doesn’t change too 

much with the investigation on these scenarios. That may be because the overall geometry and 

mechanical properties of the line are same for each scenario. For example, if a different pipeline 

with different geometry and mechanical properties is used in this example, the optimal PoF 

thresholds may change to different values. Besides, the total cost rate increases with the increase of 

the parameters given in all scenarios. The initial defect depths affect the total cost rate the most, 
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followed by corrosion radial growth rate and the failure cost. It should also be pointed out that a 

large number of random variables are considered, as listed in Table 4.1, and the variations they 

introduced may also have impact on the analysis results in this section.  

 

4.4.3 Comparison between the proposed method and the existing fixed 

interval method 

4.4.3.1 Investigation on different cost values 

The main difference between the proposed method with the existing fixed interval method is in the 

design variables. The fixed interval method uses inspection time T as the design variable while in 

the proposed method, the PoF threshold is used as the design variable. To compare these two 

methods, we use the same input parameters as the ones used above to obtain the CR(T) curve for 

fixed interval method. Figure 4.8 shows the plot of total cost rate and optimal point for the baseline. 

Table 4.6 shows the comparison results of the proposed method and fixed interval method. For 

pipelines with the same geometry, the inspection cost and failure cost may be different due to 

different locations and the surrounding environment. Besides, the defect size in the entire line may 

also vary for different pipeline segments. Therefore, we did investigations on these three 

parameters and compared our proposed method with the traditional fixed interval method. Ten 

cases with different d0, Cin, Cf are used for comparison. From Table 4.6, we can find that for all 

scenarios, the optimal cost rates obtained by the proposed method are smaller than the ones 

obtained by fixed interval method. The improvement of the proposed method compared with the 

fixed interval method is in the range of 5.6% to 14.9% in these cases. And typically with a higher 

cost rate, the improvement is bigger. With the comparisons, we can conclude that the proposed 
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pipeline re-assessment optimization approach is more cost-effective compared to the traditional 

fixed interval methods.   

 

Table 4.6 Comparison results of the proposed method and fixed interval method 

Parameter Value 
Cost rate (Fixed  Cost rate  Improvement of  

interval method) (Proposed method) proposed method 

d0=(10%~20%)t 
0.1782 0.1687 5.6% 

Cin=2.5, Cf=100 

d0=(10%~20%)t 
0.1991 0.1868 6.6% 

Cin=2.5, Cf=2000 

d0=(10%~40%)t  
0.4942 0.4526 9.1% 

Cin=2.5, Cf=200 

d0=(30%~40%)t 
0.7264 0.6453 12.6% 

Cin=2.5, Cf=200 

d0=(10%~20%)t 
0.2712 0.2516 7.8% 

Cin=5, Cf=200 

d0=(10%~20%)t 
0.7486 0.6730 11.2% 

Cin=15, Cf=200 

d0=(10%~20%)t 
0.9609 0.9060 6.1% 

Cin=25, Cf=200 

d0=(30%~40%)t 
2.1364 1.9534 9.4% 

Cin=15, Cf=500 

d0=(30%~50%)t 
2.7115 2.4533 10.5% 

Cin=5, Cf=200 

d0=(30%~50%)t 
4.4564 3.8780 14.9% 

Cin=15, Cf=500 
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Figure 4.8 Cost rate vs. T for baseline using fixed interval method 

 

4.4.3.2 Investigation on different pipeline geometry 

To demonstrate if the proposed model is applicable to other pipelines, we change parameters for 

geometry and physical properties in Table 4.1, and the new sets of random variables including 

pipeline diameter, thickness and operating fluid pressure are shown in Table 4.7. For other 

parameters, we use the baseline parameters, d0=(10%~20%)t, Cin=2.5, Cf=200. And we assume the 

ILI tool measurement error to be 0.5mm. The plots for cost rates vs. PoF threshold in term of three 

different sets of pipeline geometry are shown in Figure 4.9. Table 4.8 shows the comparison 

results of the proposed method and fixed interval method for these three cases. From Table 4.8, we 

can find that for all these cases, the minimal cost rates obtained by the proposed method are 

smaller than the ones obtained by fixed interval method by 8.3% to 11.8%, which indicates that the 

proposed model is applicable to pipelines with different geometry and physical properties.  
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(a) Test 1 (b) Test 2 

 

(c) Test 3 

Figure 4.9 Cost rate vs PoF threshold in term of different pipeline test sets 

 

Table 4.7 Different pipeline geometry 

Test 
Pipeline diameter (D) Pipeline thickness (t) Operating fluid  

[mm] [mm] pressure (Pop) [MPa] 

1 660.4 (std.=13.208)  12.7 (std.=0.254) 5.6 (std.=1.12) 

2 508.0 (std.=10.160) 7.9 (std.=0.158) 4.3 (std.=0.86) 

3 406.4 (std.=8.128) 7.9 (std.=0.158) 3.9 (std.=0.78) 
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Table 4.8 Comparison results of the proposed method and fixed interval method 

Test  
Cost rate (Fixed  Cost rate  Improvement of  

interval method) (Proposed method) proposed method 

1 0.2766 0.2554 8.3% 

2 0.5223 0.4671 11.8% 

3 0.5134 0.4602 11.6% 

 

4.5 Conclusions 

This thesis proposes a method to find the optimal re-assessment policy for pipelines subject to 

multiple corrosion defects, where the system PoF threshold is used as the decision variable for 

this optimization problem. Uncertainties from various sources are considered in this study to 

make an accurate prediction, including uncertainties in pipeline geometry, mechanical properties, 

defect size, growth rates, and the ones associated with ILI tools. We develop a simulation-based 

cost evaluation method by using the PoF threshold as the input decision variable. First-order 

reliability method is used to calculate the PoF to improve efficiency. The optimal PoF threshold 

can be obtained corresponding to the minimum expected cost rate.  

An example is given for illustrating the proposed approach. Sensitivity analysis is performed 

for four scenarios. The following conclusions can be drawn based on observations and analysis. 

The optimal PoF threshold doesn’t vary too much with the change of failure cost, initial defect 

depths, radial corrosion growth rate and ILI tool measurement error. The initial defect depths have 

a remarkable impact on total cost rate, followed by depth growth rate and failure cost. The total 

cost rate increases with the increase of these parameters.  
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After obtaining optimal PoF threshold, we could determine the optimal re-assessment interval 

for a specific pipeline based on this pipeline’s current condition and defect information. 

Specifically, we could generate the degradation model for this pipeline and when the probability of 

failure reaches the optimal PoF threshold, we perform a next ILI tool run. Besides, we could also 

use the proposed integrated method in chapter 3 to update the model parameter m to make a more 

accurate prediction and set an optimal reassessment interval. 

This approach with the PoF threshold as decision variable can be used to cooperate with the 

acceptable risk level, and it will help to make decisions with the flexibility of adopting varying 

re-assessment intervals, rather than being limited to predetermined fixed inspection interval. The 

uncertainties from all sources are considered here to make a better and more realistic prediction 

and that support decision making in industry. 
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5 A method to analyze the impact of in-line inspection 

on integrity planning of pipelines with cracks 

5.1 Introduction  

ILI crack detection tools are performed periodically to evaluate the health condition of pipelines 

with cracks. It is necessary to consider the measurement error of ILI tools in pipeline system 

integrity management. Cost evaluation and risk analysis need to be investigated with the 

consideration of the large uncertainties in ILI tools. Due to the nature of statistical tolerance of 

inspection technology including ILI tools, it is also important to determine the impact of ILI tool 

inspection specifications on pipeline risks and costs, and thus recommend optimal integrity 

assessment and risk mitigation activities. By investigating the effect of ILI tool reported tolerance 

uncertainties on life-cycle costs and re-assessment results, suggestions for future improvement of 

ILI crack inspection tools can be given. The objective of this chapter is to outline a method used to 

analyze the impact of ILI tool specifications on pipeline risks, integrity program costs, and thus 

recommend optimal integrity assessment and risk mitigation activities. 

There are many papers in the literature on reliability assessment of pipelines with crack defects. 

The following models and methodologies are the popular ones used in industry for predicting burst 

pressure, namely NG-18 method [258]–[260], failure assessment diagram (FAD) Option 3 

methods in the standard BS 7910 [156], [261] and Level III of API 579 [155], as well as 

CorLASTM [157], [262], [263] model. These methods are compared with experiment results 

reported in [173]. From the comparison results in [173], we can see that the predicted collapse 

pressure based on CorLASTM model and Level 3 FAD for API 579 and Option 3 for BS 7910 are 
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more accurate, while NG-18 method is more conservative. And with the consideration of accuracy 

and computation efficiency, we select Level 3 FAD for API 579 for the failure pressure 

calculation. 

Risk-based management for pipelines have been investigated in the literature. Xie and Tian [3] 

used the PoF threshold as a decision variable to propose a method to determine optimal 

re-assessment and maintenance schedule for corroded pipelines. Zhang and Zhou [257] developed 

a stochastic degradation model to determine the optimal inspection time for pipelines with 

corrosion defects. However, very few studies discussed integrity planning methods for pipelines 

with crack defects [232]. Uncertainties associated with the reported results from ILI tool need to be 

considered and investigated within the reliability assessment of pipelines assumed to have crack 

defects and those are inspected by ILI. Reliability analysis methods for the pipelines with cracks 

have been reported in a few studies. The effect of different ILI tool measurement error on the 

reliability analysis results were ignored in these previously reported studies. 

In this chapter, reliability assessment for pipelines with single and multiple cracks was 

performed. The proposed method is based on the use of a Monte Carlo simulation framework, 

where initial crack defect size and measurement errors are considered as key random variables. 

Hence the impacts of ILI tool accuracy and initial crack size on when to perform a next ILI tool run 

was investigated. In addition, a cost evaluation for integrity considerations pipelines with cracks 

was performed. The investigation results are assessed in a subsequent definition of inspection cost 

rate (CRInsp) and total integrity cost rate (CRTotal) with respect to a range of ILI tool accuracies of 

reported results.  

A set of repair criteria and conditions were present for pipelines with crack defects. A 

sensitivity analysis was performed considering different inspection costs and relative crack 
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severity. The non-homogeneous Poisson process was adopted for the generation of new crack 

defects over time, which results in a varying number of total crack defects during Monte Carlo 

simulation. Along with the generation of the number of crack defects, other information including 

crack initiation time, crack length and depth is generated for each defect. The probability of 

detection was also considered as a function of crack size. Multiple examples are used to investigate 

the impact of ILI tool accuracy on expected cost rate. Different input parameters such as pressure, 

failure cost and inspection cost assumptions are considered in these examples. We investigate and 

compare the optimal inspection intervals and the corresponding total cost rates for different ILI 

tool accuracies. The proposed method can support integrity management program planning by 

linking risks with integrity plan costs associated with ILI accuracies.  

Section 5.2 presents a description for reliability assessment method for pipelines with crack 

defects. The parameters selection and the impact of ILI tool accuracy on reliability assessment 

results for pipelines with single and multiple crack defects are investigated in Section 5.3. 

Section 5.4 describes the repair criteria and cost evaluation process for crack defects. Section 5.5 

investigates the effect of ILI tool accuracy on total cost rate. Section 5.6 presents the steps to 

evaluate the long-term cost rate and investigates the ILI performance impact on long-term cost 

rate through several examples. Section 5.7 investigates the impact of different prediction 

accuracy on total cost rate rates. Section 5.8 gives the conclusions. 

 

5.2 Reliability assessment method description 

The proposed reliability assessment method was based on the use of a Monte Carlo simulation 

framework. The steps for implementing the method are described in this section. 
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5.2.1 Step 1: Simulation initiation 

The initial step was to determine the parameters used for assessing the failure probability of 

pipelines with a single crack or multiple cracks. In this stage, the current inspection time at the 

beginning of the inspection cycle was considered (with the predicted re-assessment time as the end 

of the inspection cycle). Defect information on the size of each defect, namely depth d0,i and length 

L0,i, pipeline geometry (D, t), pipeline mechanical strengths (YS, UTS), were compiled for use in 

the simulations. In the simulation and reliability calculations, the defect depth was considered as 

the primary random variable of study. Defect dimensions and depths were set within a framework 

of measurement uncertainties. For example, the number of detected crack defects is k. The 

standard deviation of ILI tool measurement error σILI is used to representing the ILI tool accuracy. 

Hence k initial crack defects were generated considering the ILI tool measurement error. The crack 

depths follow normal distribution N (d0, σILI). 

It was noted in the study within reviews of early results, that the methodology could also be 

adapted for corrosion assessment and other pipeline threats having change or growth mechanisms.  

 

5.2.2 Step 2: Set failure criteria  

To assess the reliability of pipelines with cracks, the determination of the failure criteria was set 

first. There were several failure criteria examples reported in literature, including ones considering 

the predicted stress intensity factor exceeding the critical stress intensity factor, and as another, the 

pipeline operating pressure reaching or exceeding the predicted failure pressure.  
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A reporting threshold was adopted from as reported in literature, for, current ILI tools at a 

detection level for cracks of length ≥ 25mm and with a depth ≥ 1mm. Noted crack models predict 

that a crack does not propagate along the crack length direction when the crack length is much 

longer than the depth. In this context, these above-mentioned failure criteria were then used to 

determine the critical crack depth with the crack length given. 

In this study, the critical crack depth was determined by calculating the following limit state 

function. With a given burst capacity model, critical crack depth dc can be derived from Eq. (5-1). 

LSF1 (Pf) = Pf (D, t, YS or UTS, d, L) - Pop=0               (5-1) 

where Pf is the burst pressure; Pop is the operating pressure; D is the pipeline diameter; t is the 

pipeline wall thickness; YS and UTS are the pipeline material yield strength and ultimate tensile 

strength, respectively; L is the axial length of the defect; d is the depth of the defect and T is the 

elapsed time.  

 

5.2.3 Step 3: Define crack propagation process 

Currently, the physics-based crack propagation methods were governed by the Paris’ law as used 

for pipeline fatigue crack growth prediction [6], [13], [14]. The Paris’ law as shown as Eq. (5-2), is 

generally used for describing fatigue crack growth [13], [14], [236], [205]: 

da/dN = C(ΔK)m                            (5-2) 

where da/dN is crack growth rate, a is crack depth, N is the number of loading cycles, ΔK is the 

range of Stress Intensity Factor (SIF). C and m are material-related uncertainty model parameters. 

Parameters C and m can be estimated via experiments.  
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API 579 was employed to calculate the SIF at the deepest point of the crack. However, with 

the use of the standard, computing efficiencies need to be considered due to significant amounts of 

computation required. A third-order polynomial equation was adopted to fit the original SIF curve 

with the parameters given. In this way, the computing efficiency was improved to reasonable 

timeframes. Figure 5.1 shows the comparison of API 579 and the fitted function. The SIF 

calculations were hence based on the fitted function used in order to improve computing 

efficiency. 

 

 

Figure 5.1 Comparison of SIF results between API 579 and fitted function 

 

Next, the following equation Eq. (5-3), was used to obtain the estimated crack depth after a 

certain number of cycles. Suppose the lifetime of the pipeline is 30 years. It then related ΔN to time 

and then determine the corresponding crack depth in a given year 1, 2,…, 30. 

anext_cycle = anext_cycle + C(ΔK)mΔN                      (5-3) 
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5.2.4 Step 4: Failure probability calculation 

A re-inspection with an ILI tool was noted to be typically performed when a previously calculated 

failure probability in time exceeds a preset threshold (such as within an operator’s program). For 

the study, a pipeline with a single crack is considered failed if the crack depth was larger than or 

equal to the predetermined critical crack depth dc.  

The failure probability of pipeline with a single crack can be determined by Eq. (5-4). The 

failure probability of pipeline with multiple independent crack defects can be calculated by 

considering it as a series system with k elements, which is shown in Eq. (5-5). 

PoFdefect = Prob (d > dc)                            (5-4) 

PoFpipe =1-(1- PoFdefect 1) (1- PoFdefect 2)… (1- PoFdefect k)           (5-5) 

The Monte Carlo simulation method was employed to introduce the ability to evaluate the 

sensitivity of failure probability of pipeline with a single crack defect and with multiple cracks.  

Within a Monte Carlo simulation, in each iteration (denoted as i), a set of crack depths was 

generated as described in Step 1, and then an evaluation of pipeline with cracks exceeding the 

failure criteria (or not) at any given time T. In other words, if we run N simulation iterations there 

will be at a time T, Nf number of features exceeding the failure criteria, hence the probability of 

failure (PoF) of a pipeline with cracks can be estimated: 

PoF(T)=Nf/N                                  (5-6) 

In this way, the relationship between PoF vs. time (T) was generated. The corresponding 

re-assessment time was then determined to be when PoF exceeded the PoF threshold. In the 
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following example, the PoF threshold is set to be 10-5, and the next ILI tool run will be performed 

when PoF(T) is equal to PoF threshold. 

 

5.3 Investigations on reliability assessment results  

5.3.1 Parameters selection and determination 

For the reliability assessment calculations for pipelines with cracks, the scenario was used as given 

in Table 5.1. 

 

Table 5.1 Pipe Geometry and Material Properties 

Parameters Values 

Diameter (NPS) 20 

Diameter 508 mm 

Nominal Wall Thickness (WT) 5.7 mm 

Modulus 207 GPa (30023 ksi) 

Yield Strength 433 MPa (63 ksi) 

Ultimate Strength 618 MPa (90 ksi) 

Maximum operating pressure 6.8 MPa (986 psi) 

 

With the consideration of prediction accuracy and computation efficiency, Level 3 FAD for 

API 579 was selected for the reliability assessment. In the example, the crack length is set to be 

40mm. So it was reasonable to only consider the growth of crack depth in the degradation process. 
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With the given parameters and the burst pressure was set to equal the maximum operating pressure, 

which related to a critical crack depth as equal to 75% of WT or =4.275mm in depth.  

In the following results, the model parameters in Paris’ law, m and C, are assumed to be 3 and 

8.6×10-19 psi in respectively. The PoF threshold value was set to be 10-5. And the number of total 

trials for Monte Carlo simulations was 107. 

 

5.3.2 Single crack defect 

In this section, the impacts of initial crack depth and ILI tool measurement error on the next 

inspection time are described.  

Using the Monte Carlo simulation method and the Paris’ law, the single defect failure 

probability was computed for same initial crack depth recording from last inspection and different 

ILI tool accuracies, as well as for cases with different crack depth and the same ILI tool accuracy. 

Figure 5.2 shows the comparison results for a single depth of d0=20%WT with varying σILI while 

Figure 5.3 shows the comparison results for a single σILI with varying d0=20%WT -50%WT as 

examples. We can find from these figures that if we decrease the standard deviation of ILI tool 

measurement error (increase the measurement accuracy) or initial crack depth, the curve moves to 

right and down side.  

The time to perform the next tool run, i.e. time to reach the threshold 10-5, is summarized in 

Table 5.2. From the comparison results, it was observed that the number of years to perform the 

next tool run increased with a more accurate ILI tool if the last reported crack depth was the same. 

And it decreased when the last reported crack depth increased with the same ILI tool accuracy. 
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Figure 5.2 Evolution with time of the probability of failure associated with a single defect for 

d0=20%t and different ILI tool accuracy using Monte Carlo Method 

 

 

Figure 5.3 Evolution with time of the probability of failure associated with a single defect for 

σILI=5%WT and different d0 from Monte Carlo simulations 
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Table 5.2 Comparison results for pipeline with a single crack 

Reported initial crack 

depth, d0 (% WT) 

ILI tool accuracy, σILI 

(%WT) 

Time to reach 10-5 

(yrs.) 

20% 

4% >30 

5% 18.6 

7% 9.8 

9% 4.0 

20% 

5% 

18.6 

30% 7.5 

40% 1 

50% 1 

 

5.3.3 Multiple crack defects 

The reliability assessment for a pipeline with multiple cracks is described in this section. Five 

independent fatigue cracks in the pipeline were considered with the mean values of initial crack 

depths d0,i of the 5 cracks randomly generated following a uniform distribution within the range 20% 

to 30% of the wall thickness. For pipelines with multiple defects, a series system was deemed more 

appropriate because each defect may cause the failure of the pipeline.  

Again, utilizing the Monte Carlo simulation method and Paris’ law, the pipeline failure 

probability was computed for different ILI tool accuracies. Figure 5.4 shows the comparison 

results for σILI =4%-9%WT. Horizontal axis indicates the time since last inspection, and the failure 

probability increases with time for each of the four cases. The reinspection time period, i.e. time to 



136 

reach the threshold 10-5, is summarized and compared in Table 5.3. From the comparison results, it 

was observed that the number of years until a reinspection increased with a more accurate ILI tool.  

 

 

Figure 5.4 Evolution with time of the probability of failure associated with 5 defects for d0 in the 

range [20%t, 30%t] and different ILI tool accuracy from Monte Carlo simulations 

 

Table 5.3 Comparison results for pipeline with 5 cracks 

Reported initial crack 

depth, d0 (%WT) 

ILI tool 

accuracy, σILI 

(%WT) 

Time to reach 

10-5 (yrs.) 

20%~30% 

4%  16.1 

5%  7.9 

7%  2.1 

9%  1 
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5.4 Integrity program cost evaluations 

In this section, integrity program cost scenarios for pipeline integrity programs with multiple 

cracks are described with respect to different crack populations, pipe conditions and ILI 

accuracies.  

 

5.4.1 Repair criteria 

For each crack defect, certain repair criteria can be utilized to determine the corresponding repair 

actions. Based on the detection results, potential excavations and different repair activities are 

considered to be performed if a defect met certain criteria. The repair criteria used for this study 

was based on API 1160 [22]. For example, a crack defect will be repaired immediately or in the 

near term (within 1 year) after inspection if it meets the repair criteria [22], [206].  

Two sets of repair criteria are defined. Repair criteria 1 was defined when at least one of the 

following two limit state functions was determined as less being than or equal to zero:  

LSF (d) = 0.5t – d ≤ 0                              (5-7) 

LSF (Pf) = Pf – 1.25Pop ≤ 0                          (5-8) 

Hence a crack defect will be repaired only when it meets repair criteria 1. However, a crack defect 

that met repair criteria 1, also was assessed for severity of the defect such to determine whether it 

meets repair criteria 2 or not.  

Repair criteria 2 is described by Eqs. (5-9) and (5-10):  

LSF (d) = 0.7t – d ≤ 0                             (5-9) 

LSF (Pf) = Pf – 1.1Pop ≤ 0                           (5-10) 
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If the crack defect condition meets repair criteria 2, which means at least one of the limit state 

functions is smaller than zero, the crack defect was also considered to need to be repaired 

immediately with a higher repair cost. And if the crack defect did not meet repair criteria 2, 

excavation and repair activities such as sleeving or recoating were considered to be done within 

one year but with a lower relative repair cost. 

 

5.4.2 Cost rate calculation 

When the probability of failure for a pipeline with cracks reaches the threshold (10-5), it was 

considered that the next ILI tool run will be performed to affirm the assumed condition of the 

defect. For the inspection time t*, the total cost rate is calculated for further comparison and 

analysis. To calculate the cost rate, the net present value was determined for each Monte Carlo 

simulation run and set of conditions. The net present value of total cost for pipeline with crack 

defects was determined as per Eq. (5-11) [3]: 

PVTotal,t*=PVInsp,t*+PVFail,t*+PVMain,t*+PVFixed,t*               (5-11) 

where PVInsp,t*, PVFail,t*, PVMain,t*, PVFixed,t* are net present values of inspection cost, failure cost, 

maintenance cost and additional fixed cost for entire line at year t*. 

The inspection cost is given by: 

*

in

Insp, t *(1 )t

C

r
PV =

+
                            (5-12) 

where Cin is the inspection cost; r is the discounted cash rate. In this study, ILI tools with different 

ILI tool accuracies were considered to calculate and compare the inspection and total cost rates.  

The subsequent failure cost is given by 
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*fail, t

fa
pipe*

PoF
(1 )t

C

r
PV = 

+
                        (5-13) 

where PoFpipe is the probability of failure for pipeline; Cfa is the failure cost which includes 

economic loss and other costs due to damage to population and environment. The maintenance 

cost is given by: 

*

1

Main, t

main

*

( PoR( ))

(1 )

k

j

t

C j

r
PV

=



=
+


                            (5-14) 

where Cmain is the repair cost; k is the number of crack defects; PoR(j) is the probability of repair 

for defect j. The probability of repair for each defect is calculated by using the corresponding 

repair criteria introduced above.  

 

5.5 Investigation on the total cost rate with different ILI 

measurement errors 

In this section, an example is provided to describe the impact of ILI tool accuracy on inspection 

and total cost rates. The geometry and material properties of pipeline are shown in Table 5.1. The 

summary of baseline costs relative to a given ILI inspection is shown in Table 5.4.  

For UT cracking inspection, the standard deviation was equal to 0.5mm (relative cost = 1) as 

the baseline level. Recoating and repair sleeve installation of the pipeline were two alternative 

options for repair actions, at relatively low relative costs to the inspection for the purposes of this 

study. The failure costs were divided into two types, immediate cleanup/repair and other damages.  
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Table 5.4 Summary of baseline costs for Total Cost Rate of an integrity program. 

Cost item Relative cost  

In-line inspection Cin 1 

Excavation Cev  0.14 

Recoating Crc 0.04 

Sleeving Crs 0.07 

Failure cost - immediate cleanup/repair Cf1 4 

Failure cost - other damages Cf2 60 

Fixed cost (labor, transportation, etc.) Cfi 0.05 

 

The inspection cost Cin increased when the accuracy of ILI tool improved. Based on the results 

in Figure 5.3 and Figure 5.4, the re-assessment time such that PoF reaches 10-5, increased as the ILI 

tool accuracy improved. The relationship between inspection cost and ILI tool accuracy are shown 

in Table 5.5 considering two assumption scenarios. 

Within inspection cost assumption case 1, the inspection cost was 15% higher for each 

improved increment of 0.1mm of the standard deviation of ILI tool (σILI). Within inspection case 

assumption 2, a larger differential cost (exponential cost increase) was assumed for more accurate 

ILI tool performance, as shown in Table 5.5. 

With each Monte Carlo simulation run, the total net present value PVTotal,i and total time Ti 

were calculated. The following two equations were then used to calculate the inspection cost rate 

(Eq. (5-15)) and total cost rate (Eq. (5-16)), respectively: 

Insp

in

1

1

(1 )

N

Tii

N

i
i

C

r

T

CR
=

=

+
=




 (5-15) 
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Total
1

1

i

N

i
N

i
i

T

PV

CR =

=

=



 (5-16) 

The corresponding re-assessment time (PoF reaches 10-5) is calculated by taking the average of 

each re-assessment time as per Eq. (5-17): 

1

N

i
i

T

N
T =

=


 

(5-17) 

Five crack defects were considered in the following examples. The feature population of the 

following cases is a normal distribution with the mean is 21%WT (1.2mm) and standard deviation 

is 1.7%WT (0.1mm). These five crack defects were randomly sampled using the above-mentioned 

normal distribution to generate in the pipeline. Two discount cash rates were considered as r=0 (no 

time-weighted value) and 0.14 (time-weighted value), respectively.  

The comparison results for relative inspection and total cost rates under Assumption 1 and 2 

are shown in Table 5.5 and 5.6, respectively. The first column shows ILI tool accuracy as a 

percentage of the wall thickness (WT). The second column shows inspection cost relative to the 

baseline inspection cost, at 9%WT. Table 5.5 shows costs with Assumption case 1, where 

inspection cost is subject to moderate change with respect to ILI tool accuracy. While with 

Assumption case 2, shown in Table 5.6, the inspection cost changes more dramatically with tool 

accuracy. The last two columns show the inspection cost rate and total cost rate, defined in 

equations (5-15) and (5-16), respectively. The lower the cost rates, the more attractive the 

condition can be considered to be. The minimum values for inspection and total cost rates are 

highlighted as bold in these tables.  
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Table 5.5 Comparison results for inspection and Total Cost Rates with different Discount Cash 

Rates per Cost Assumption Case 1 (15% per 0.1mm std. difference) 

(a) r=0 

ILI tool accuracy, 

σILI (% WT) 

Cost Assumption 

(as multiple) 

Time to reach 

10-5 (yrs.) 

Inspection cost 

rate, CRInsp  

Total cost 

rate, CRTotal  

4%  1.52 28.8 0.0530 0.0548 

5% 1.33 15.5 0.0867 0.0899 

7%  1.15 7.7 0.1511 0.1575 

9% 1 2.4 0.4268 0.4489 

11% 0.87 1.0 0.8700 0.9310 

12% 0.75 1.0 0.7500 0.8564 

(b) r=0.14 

ILI tool accuracy, 

σILI (%WT) 

Cost Assumption 

(as multiple) 

Time to reach 

10-5 (yrs.) 

Inspection cost 

rate, CRInsp  

Total cost 

rate, CRTotal  

4%  1.52 28.8 0.0012 0.0016 

5% 1.33 15.5 0.0114 0.0129 

7%  1.15 7.7 0.0551 0.0597 

9% 1 2.4 0.3116 0.3313 

11% 0.87 1.0 0.7632 0.8222 

12% 0.75 1.0 0.6579 0.7499 
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Table 5.6 Comparison results for Inspection and Total cost rates with different Discount Cash 

Rates per Cost Assumption Case 2 (exponential increase with std. difference) 

(a) r=0 

ILI tool accuracy, 

σILI  (%WT) 

Cost Assumption 

(as multiple) 

Time to reach 

10-5 (yrs.) 

Inspection cost 

rate, CRInsp  

Total cost rate, 

CRTotal  

4%  50 28.8 1.7434 1.7452 

5% 8 15.5 0.5215 0.5247 

7%  2.5 7.7 0.4344 0.4411 

9% 1 2.4 0.4268 0.4489 

11% 0.5 1.0 0.5000 0.5599 

12% 0.25 1.0 0.2500 0.3852 

(b) r=0.14 

ILI tool accuracy, 

σILI  (%WT) 

Cost Assumption 

(as multiple) 

Time to reach 

10-5 (yrs.) 

Inspection cost 

rate, CRInsp  

Total cost rate, 

CRTotal  

4%  50 28.8 0.0400 0.0404 

5% 8 15.5 0.0684 0.0699 

7%  2.5 7.7 0.1584 0.1781 

9% 1 2.4 0.3116 0.3313 

11% 0.5 1.0 0.4386 0.4976 

12% 0.25 1.0 0.2193 0.3113 

 

From the comparison results in Table 5.6, we can find that for both r=0 and 0.14, when ILI 

tool accuracy is σILI =4%WT (0.2mm), the lowest inspection and total cost rates were achieved (as 
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expected). For Assumption 2 with r=0 (Table 5.6), the time value of money is reflected directly 

within the exponential differences of the inspection cost in comparison to a non-zero discount cash 

rate. Also notably beyond the extreme inspection cost scenario (best accuracy), the cost rate is 

similar amongst remaining accuracies. However, for the r=0.14 discounted cash rate scenario as in 

Table 5.5, the inspection and total cost rates both decrease with an increase of ILI tool accuracy. In 

this example, the PoF acceptability threshold was set to be 10-5, which resulted in a relatively low 

maintenance and failure cost rate for each case.  

The comparison results are plotted in Figure 5.5 for inspection cost rate and total cost rate, 

where the horizontal axis is the tool accuracy in terms of WT percentage. From Figure 5.5, it was 

observed that with inspection cost assumption case 1, the trends for r=0 and r=0.14 were similar as 

well as for the practical business case of r=0.14 within assumption case 2. Notably in all of these 

cases, even with notably higher inspection cost rates, the lower Total cost rates were achieved with 

increased accuracy.  

 

 

Figure 5.5 Total cost rate comparison results for different ILI tool accuracies 
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In context for the non-reality case of r=0 in assumption case 2, it reflected that without a 

time-value to cost, and for inspection costs of similar magnitude to outright failure, a calculable 

threshold value of inspection accuracy can be determined as non-viable and that otherwise 

inspection accuracy differences did not show influence in resulting Total cost rates.  

The decrease in Total cost rate as shown in Figure 5.5 between 11% WT and 12% WT was 

observed to be due to the timescale effect relative to the cost multiples vs accuracy differences, the 

repair response criteria and the initial case condition as a relatively thin nominal wall thickness of 

5.7mm, such that there was not a time value “benefit” in detecting the immediate failure criteria 

conditions. For example, as can be observed in Table 5.5a and Table 5.5b, Time to reach 10-5 for 

both the 11% WT and 12% WT cases are 1.0 year.  

 

Table 5.7 Comparison results for inspection and Total Cost Rates with different Discount Cash 

Rates per Cost Assumption Case 1 (PoF threshold=10-4) 

ILI tool accuracy, 

σILI (%WT) 

Cost Assumption 

(as multiple) 

Time to reach 

10-4 (yrs.) 

Inspection cost 

rate, CRInsp  

Total cost 

rate, CRTotal  

4%  1.52 29.9 0.0010 0.0011 

5% 1.33 20.2 0.0051 0.0062 

7%  1.15 13.8 0.0137 0.0156 

9% 1 7.2 0.0541 0.0593 

11% 0.87 2.4 0.2646 0.2982 

12% 0.75 1.1 0.5908 0.7499 

 

Next a less conservative case was also considered, where the PoF threshold equals to 10-4, to 

further examine the total cost rate trend. The discount cost rate is set to be 0.14, and Assumption 
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1 is used. The comparison results are shown in Table 5.7. With the comparison between Table 

5.5b and Table 5.7, it can be found that as the PoF threshold increases from 10-5 to 10-4, the 

re-assessment time is getting bigger for all different ILI tool accuracies, and the corresponding 

inspection and total cost rates decrease for all cases. The Total cost rate shows a monotonically 

increasing trend, and the re-assessment time decreases as ILI tool accuracy decreases from 11% 

WT and 12% WT. 

 

5.6 Investigation on long-term cost rate 

In this section, we investigate the impact of ILI tool accuracy on long-term cost rate considering 

new anomaly initiation and continuous growth. In Section 5.5 presented earlier, it is assumed that 

the crack size distributions at the beginning of an inspection cycle are known, and such 

distributions are the same at the beginning of different inspection cycles, which is the case for 

stable operations. In this section, we introduce new defect generation, and a crack defect can grow 

continuously across multiple inspection cycles before maintenance actions are taken. The 

non-homogeneous Poisson process was introduced to generate the number of crack defects over 

the long-term interval instead of the fixed number used in Section 5.5. Besides, the probability of 

detection was also considered when evaluating the cost rates. Examples will be presented and 

results will be discussed.  

 

5.6.1 Long-term cost rate evaluation 

The procedure for the long-term cost rate evaluation is presented in this section.  
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5.6.1.1 Step 1: Crack defects generation 

Because each crack defect is independent of time, we adopt non-homogeneous Poisson process 

to generate the crack defects over the period from zero to a given year T. Let i be the label of a 

defect. In this step, we calculate the expected total number of crack defects, and generate the 

information (crack depth ci, crack length di, crack initiation time ti) associated with defect i. The 

expected number of crack defects over the time period from zero to T, Λ(T), can be calculated 

using the following equation: Λ(𝑇)= ∫ λ(τ)dτ
T

0
 [257]. λ(τ) is the instantaneous generation rate 

and it is calculated as: λ(τ)=λ0𝜏𝑏, where λ0 and b can be determined based on historical data. 

Due to the assumption we made that the generation of crack defects is independent of time, we 

assume b is equal to zero. And λ0 is assumed to be 2 for the following examples. After 

calculating the expected number of crack defects, we could use Poisson probability mass 

function to generate the total number of crack defects (nT) generated in the time interval. 

nT ~f(N(T)|Λ(T))=
Λ(T)N(T)e-Λ(T)

N(T)!
                    (5-18) 

With the generation of total number of crack defects (nT), for each defect i, crack length ci is 

randomly generated within the range [10, 50], crack depth di is randomly generated within the 

range [1, 1.1], and the initiation time ti is randomly generated within the range [0, 30] for the 

following examples. 

 

5.6.1.2 Step 2: Crack defect growth and decision making at the end of an inspection 

interval 

Let TI be the inspection interval, we grow each defect year by year until it fails or reaches TI in 

this step. If a crack defect meets failure criteria, we consider it as a failure. The failure cost is 
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calculated at that moment. For this failed pipeline joint, we replace it and re-generate crack 

defects using the generation mechanism described in Step 1. When the time reaches inspection 

interval TI, we first need to check if the ILI tool detects this defect or not. Here, the probability of 

detection of ILI tools is introduced and assumed to be a function of the crack depth, which is 

defined as follows [82]: 

PoD(d)=1-exp(-2.303d)                       (5-19) 

From the equation above, we can find that the detection ability of ILI crack detection tool 

increases as crack depth increases. For defect i, to check if it is detected or not, we generate a 

random number from a uniform distribution between zero and one, and compare it with PoD(d). 

If this random number is smaller, we consider it is successfully detected. The measurement error 

of ILI tool is then considered to determine the ILI reported crack depth and length for each 

detected defect. If the crack meets the repair criteria, we calculate the corresponding repair and 

excavation cost. We assume the repair is a perfect repair, and delete the ith defect. If it is not 

detected or does not meet repair criteria, this defect will continue to grow in the next cycle, and 

we move on to the next crack defect. 

 

5.6.1.3 Step 3: Cost rate calculation   

In an inspection cycle, we calculate the inspection, repair, failure, additional fixed and total 

cost rate. Then we consider calculating a long-term cost rate. In this step, we use long-term run 

rather than 30 years to calculate the cost rate. This is because considering crack defects 

generation mechanism and probability of detection will cause more uncertainties. The long-term 

methodology will deal with these uncertainties and produce more accurate results compared with 
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a traditional method. Let Tlife be the total long-term life, and the number of inspection interval 

can be calculated as Tlife/T. With a given inspection interval, we run the calculation procedure till 

T reaches Tlife. After calculating cost rate for each inspection interval, the expected cost rate can 

be obtained through taking the average of cost rates. In this way, total cost rates will finally 

converge to a certain value as Tlife increases. A more reliable and accurate result will be obtained 

with the use of long-term methodology compared with a small value of pipeline life (30 years). 

Figure 5.6 shows an example of the comparison of the expected cost rates associated with 

different long-term life. We can find that expected cost rates increase as Tlife increase from 0 to 

around 100 years, and they fluctuate a lot when Tlife between 100 and 700 years. When the total 

long-term life is bigger than 700 years, the expected cost rates become steady and approach a 

certain value (0.72). In the following examples, we set Tlife to be 1000 years for long-term cost 

rate calculation. 

 

 

Figure 5.6 Comparison of the expected cost rates associated with different long-term life 
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5.6.2 Examples 

We use the same geometry and material property of pipelines as those discussed in Section 5.5 for 

the following examples. Five cases with different input parameters including pressure, discount 

rate and failure cost were performed to investigate the impact of ILI tool accuracy on the results. 

The optimal inspection intervals and the corresponding total cost rates were then obtained and 

compared for different ILI tool accuracies. Sensitivity analysis for pressure and failure cost were 

performed in this section. 

The pipe geometry and material properties used for long-term examples are shown in Table 

5.1. The relative cost for different cost items we use are shown in Table 5.4. Two different 

failure costs are studied and compared here, and 4 and 60 represent minor and major failure costs 

respectively. Internal pressure affects the growth rates per year for crack defects. We select 

pressure 2MPa and 5MPa to perform the sensitivity analysis. The discount rate is assumed to be 

0. The list of cases we studied is shown in Table 5.8. For each case, six different standard 

deviations of measurement error of ILI tools are investigated here. The inspection cost 

assumption associated with different measurement error of ILI tools are described in Table 5.5 

(Cost Assumption Case 1) in Section 5.5. The discount rate was assumed to be 0 for cases 1 to 4. 

And it was assumed to be 0.14 for case 5. We also considered a 1000 years long-term life for this 

case. We limit the discounting (i.e. 14%) to one inspection cycle of pipe life during the simulation, 

no matter when the cycle starts. That is, only discount the cost to the beginning of the inspection 

interval of that particular pipe. This is because if we discount the cost to time 0, the future cycles 

are discounted too much, which does not seem reasonable. Through investigating these five cases 

with different failure cost, pressure, and inspection cost assumption, we can give parametric 

analysis and draw conclusions regarding the impact of ILI tool performance.  



151 

 

Table 5.8 List of cases 

Case Failure cost Cf Pressure Discount rate rd Inspection cost assumption 

1 4 2 0 1 

2 4 5 0 1 

3 60 5 0 1 

4 4 5 0 2 

5 4 5 0.14 1 

 

We follow the above-described evaluation approach and use Monte Carlo simulation method 

to obtain the expected inspection, repair, failure, fixed and total cost rates. The inspection 

interval varies from 1 to 30 with an increment of 1 year, and the long-term life is set to be 1000 

years. The plots for comparison of the expected cost rates associated with different cost items for 

cases 1 to 5 are shown in Figures 5.7, 5.9, 5.11, 5.13, 5.15, respectively. For each case, six values 

of standard deviation of measurement error of ILI tools (σILI) were considered, i.e. σILI=4%WT, 

5%WT, 7%WT, 9%WT, 11%WT, 12%WT, respectively. The expected total cost rates 

corresponding to different standard deviations of measurement error of ILI tools for cases 1 to 5 

are depicted in Figures 5.8, 5.10, 5.12, 5.14, 5.16, respectively. The comparison results for 

optimal solutions with different ILI tool accuracies for cases 1 to 5 are summarized in Tables 5.9 

to 5.13 respectively. Optimal inspection intervals and corresponding total cost rates are shown 

and compared in these tables.  

The curves show the trends in total cost rates and their component cost rates. We use spline 

interpolation functions as fitted functions and then find the minimum points as the optimal points, 
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which are labeled in the following figures. The optimal point can then give us the optimal 

inspection interval and its corresponding expected total cost rate. The results shown in Figure 5.7 

indicate that the inspection cost rate has the highest contribution to total cost rate when 

inspection interval is smaller than a specific value, for example, it is around 12 for Figure 5.7a. 

After that intersection point between inspection cost rate and failure cost rate, the failure cost rate 

contributes more than other components. Overall, the inspection and failure cost rates are two 

important cost components compared with others. The inspection cost rate is getting smaller 

while failure cost rate is getting bigger as inspection interval increases. The reason for inspection 

cost rate decrease is that the basic inspection tool run cost is a constant value and the 

denominator (interval) is getting bigger. As inspection interval increases, crack defects are more 

likely to fail, and therefore the failure cost rate is getting bigger, which is expected. Note that 

there are some small peaks and valleys in both failure cost rate curves and the total cost rate 

curves. This is mainly because that the annual failure probabilities fluctuate a bit when 

inspection interval is big. 

From the results shown in Table 5.9, as σILI decreases which means we increase the ILI tool 

accuracy, the optimal inspection interval is getting bigger and the corresponding total cost rate is 

getting smaller. The comparison results suggest that the most accurate ILI tool (σILI = 4%WT) 

gives the smallest expected total cost rate. Results shown in Figure 5.8 suggest that a bigger σILI 

gives a smaller total cost rate as long as inspection interval is smaller than the optimal inspection 

interval. And when inspection interval is bigger than the optimal one, a curve associated with a 

higher σILI becomes the higher one. 
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(a) σILI =4%WT (b) σILI =5%WT 

 
(c) σILI =7%WT (d) σILI =9%WT 

 
(e) σILI =11%WT (f) σILI =12%WT 

Figure 5.7 Comparison of the expected cost rates associated with different cost items (Case 1) 
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Figure 5.8 Comparison of the expected total cost rates associated with different standard 

deviation of measurement error of ILI tools (Case 1) 
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The values of total cost rates and their components for different tool accuracy for Case 2 are 

plotted in Figure 5.9. The characteristics of these curves are similar to those in Figure 5.7. 

However, these curves have steeper slopes. The comparisons of optimal solutions with different 

standard deviations for Case 2 are summarized in Table 5.10. We can draw similar conclusions 

as those based on Table 5.9: the higher σILI is, the shorter optimal inspection interval and bigger 

total cost rate are except for σILI=12%WT. Compared with Case 1, with the increase of pressure, 

the effects of σILI on optimal inspection interval and total cost rate decrease. The comparison 

results shown in Figure 5.10 suggest that these curves have similar shapes including small peaks 

and valleys. The curve corresponding to a higher σILI gives slight bigger values compared with a 

lower one. 

The results shown in Figure 5.11 illustrate the total cost rates and their components for 

different σILI with the input parameters from Case 3. With a much higher failure cost (60) 

compared with the previous cases, as expected, the failure cost rates increase faster and have the 

highest contribution to total cost rates. And other cost rates are negligible compared with failure 

cost rates for this case. The total cost rates in Figures 5.11c-5.11f are almost monotonically 

decreasing with some small peaks and valleys. Therefore, the optimal inspection intervals are 1 for 

these situations. 

The impact of σILI on total cost rates are illustrated in Table 5.9 and Figure 5.12. From the 

comparison results in Table 5.9, the optimal inspection interval decreases and remains the same 

after it reaches 1 as σILI increases. The total cost rate keeps increasing when σILI is increasing. So 

the total cost rate corresponding to σILI=4%WT has the smallest value. Figure 5.12 indicates that a 

higher σILI leads to a higher total cost rate. This is mainly because the failure probability 

corresponding to a higher σILI is bigger, which leads to a higher failure cost rate and total cost rate. 
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(a) σILI =4%WT (b) σILI =5%WT 

 
(c) σILI =7%WT (d) σILI =9%WT 

 
(e) σILI =11%WT (f) σILI =12%WT

Figure 5.9 Comparison of the expected cost rates associated with different cost items (Case 2) 
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Table 5.10 Comparison of optimal solutions with different standard deviations (Case 2) 

ILI tool accuracy, 

σILI (%WT) 

Optimal inspection 

interval 

Total cost rate 

4% 4.0453 0.5912 

5% 3.5954 0.6279 

7%  2.9412 0.6351 

9% 2.9266 0.7574 

11% 2.7768 0.7884 

12% 2.4094 0.7792 

 

 

Figure 5.10 Comparison of the expected total cost rates associated with different standard 

deviations of measurement error of ILI tools (Case 2) 
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(a) σILI =4%WT (b) σILI =5%WT 

 
(c) σILI =7%WT (d) σILI =9%WT 

 
(e) σILI =11%WT (f) σILI =12%WT 

Figure 5.11 Comparison of the expected cost rates associated with different cost items (Case 3) 
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Table 5.11 Comparison of optimal solutions with different standard deviations (Case 3) 

ILI tool accuracy, 

σILI  (%WT) 

Optimal inspection 

interval 

Total cost rate 

4% 2.0848 1.2136 

5% 1.1762 1.5732 

7%  1.0001 1.6382 

9% 1.0000 1.7387 

11% 1.0000 2.0584 

12% 1.0000 2.1666 

 

 

Figure 5.12 Comparison of the expected total cost rates associated with different standard 

deviations of measurement error of ILI tools (Case 3) 
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The values of cost rates as functions of inspection interval and σILI with the consideration of 

cost assumption 2 are depicted in Fig 5.13 (Case 4). The shapes of these curves are a bit different 

from Case 2. The inspection and failure cost rates are the dominant ones among all cost rates 

components. And other cost rates are negligible compared with inspection and failure cost rates so 

that the optimal points are around the intersection points of green and red curves. The 

corresponding comparison results are given in Fig 5.14. The curves are moving down as σILI 

increases when inspection interval is small. This can be explained that for small inspection interval, 

the inspection cost rate has the highest contribution and inspection cost decreases as σILI increases, 

resulting in a lower expected inspection cost rate and total cost rate. Table 5.12 suggests that the 

optimal inspection interval increases a lot as σILI decreases and the total cost rate decreases as σILI 

increases, which is completely different from other cases. And this indicates that the inspection 

costs assumption has a big impact on cost rates. This is mainly because inspection cost increases a 

lot as σILI decreases, resulting in a higher inspection cost rate and total cost rate. 

 

Table 5.12 Comparison of optimal solutions with different standard deviations (Case 4) 

ILI tool accuracy, 

σILI (%WT) 

Optimal inspection 

interval 

Total cost rate 

4% 23.8151 3.9779 

5% 7.2197 1.7368 

7%  4.2908 0.9926 

9% 2.9266 0.7574 

11% 2.4132 0.5410 

12% 1.3654 0.4481 
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(a) σILI =4%WT (b) σILI =5%WT 

 
(c) σILI =7%WT (d) σILI =9%WT 

 
(e) σILI =11%WT (f) σILI =12%WT 

Figure 5.13 Comparison of the expected cost rates associated with different cost items (Case 4) 
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Figure 5.14 Comparison of the expected total cost rates associated with different standard 

deviations of measurement error of ILI tools (Case 4) 

 

The shapes of curves for the last case are shown in Figure 5.15. Overall, the total cost rates 

decrease before the optimal points and fluctuate a bit after those points. The comparison results 
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(a) σILI =4%WT (b) σILI =5%WT 

 
(c) σILI =7%WT (d) σILI =9%WT 

 
(e) σILI =11%WT (f) σILI =12%WT 

Figure 5.15 Comparison of the expected cost rates associated with different cost items (Case 5) 
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Table 5.13 Comparison of optimal solutions with different standard deviations (Case 5) 

ILI tool accuracy, 

σILI  (%WT) 

Optimal inspection 

interval 

Total cost rate 

4% 20.9171 0.0021 

5% 20.7593 0.0022 

7%  20.5282 0.0025 

9% 18.9630 0.0031 

11% 18.0679 0.0094 

12% 17.9984 0.0424 

 

 

Figure 5.16 Comparison of the expected total cost rates associated with different standard 

deviations of measurement error of ILI tools (Case 5) 
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Figure 5.17 shows the effect of pressure and failure cost on the results with σILI =9%WT. The 

total cost rates increase as the pressure increase, and so does the failure cost. The optimal points 

move to the left as these parameters increase. This can be explained by that a higher pressure leads 

to a higher probability of failure with the same inspection interval. And a higher failure cost 

directly affects failure cost rate and total cost rate. Therefore, there is a positive correlation 

between the increase in these parameters and the increase in total cost rate. 

 

 

(a) Pressure (b) Failure cost 

Figure 5.17 Expected total cost rate vs the inspection interval in term of pressure and failure 

cost 
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inspection tool and prediction model, we would have no prediction error in this ideal case. 

Researchers and engineers try to improve the prediction accuracy, and that would lead to less 

failure and a potential more cost-effective integrity program.  

In chapter 3, the prediction accuracy for pipelines with crack defects is improved by using the 

proposed integrated method. It is also important that we investigate the impact of the prediction 

accuracy on the total cost rate. The prediction accuracy can be improved by improving the ILI tool 

accuracy and/or the model accuracy. In this chapter, the total cost rate decreases with the increase 

of ILI tool accuracy. As for the model accuracy, we use the standard deviation of model parameter 

m as prediction error to quantify the cost-saving benefits with improved prediction accuracy. This 

can be achieved because we have proved that a smaller standard deviation of m leads to a more 

accurate RUL prediction in chapter 3.  

 

Table 5.14 Comparison of optimal solutions with different standard deviations of parameter m 

Standard deviation 

of parameter m, σm  

Optimal inspection 

interval 

Total cost rate 

0.1 2.7585 0.8149 

0.05 3.2213 0.5222 

0.01 3.5582 0.4632 

0 3.6021 0.4472 

 

Four σm are used to represent the prediction accuracy and they are 0.1, 0.05, 0.01, and 0 

respectively. The results of the investigation on different σm are shown in Table 5.14 and Figure 

5.18. Table 5.14 suggests that the optimal inspection interval increases and the total cost rate 

decreases as σm decreases. And this indicates that a reduced prediction error leads to a less total 



167 

cost rate as expected. Figure 5.18 gives the comparison of cost rate items associated with σm. We 

can find that the failure cost and inspection cost rates contribute most to the total cost rate. The 

inspection cost rate curves are exactly the same for different σm. As for failure cost rate, it 

increases with a bigger σm, and finally leads to a bigger total cost rate.  

 

 

(a) σm = 0.1 (b) σm = 0.05 

 

(c) σm = 0.01 (d) σm = 0 

Figure 5.18 Comparison of the expected cost rates associated with different cost items (different 

σm) 
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Figure 5.19 shows the comparison of expected total cost rates associated with σm. Overall, a 

higher σm gives a higher total cost rate when the inspection interval remains the same. The curve 

for σm=0.01 is very close to the no prediction error case (σm=0). And a relatively small reduction 

of prediction error from σm=0.1 to 0.05 affects the total cost rate results a lot. 

 

 

Figure 5.19 Expected total cost rate vs the inspection interval in term of σm 
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impact of ILI tool accuracy on long-term cost rate. The crack defect generation mechanism was 

introduced instead of a fixed number of crack defects. The non-homogeneous Poisson process and 

the probability of detection were considered to evaluate the long-term total cost rate. Five cases 

with different input parameters including pressure, failure cost and inspection costs assumption 

were considered for long-term cost rates evaluation. The optimal inspection intervals and the 

corresponding total cost rates for different tool accuracies and different input parameters were then 

obtained and compared. 

The examples and case studies in this chapter investigated the impact of ILI tool accuracy and 

initial crack size including the consideration of when to perform a next tool run after an initial run. 

The impact of ILI tool accuracy on integrity program costs for pipelines with crack defects, was 

presented with different assumptions particularly on inspection cost rate factors. The comparison 

results of different ILI tool accuracies on long-term cost rates were investigated. Furthermore, the 

comparison results among different cases were also discussed. The following conclusions can be 

drawn based on the studies: 

(1) The time to perform the next tool run increased with a more accurate ILI tool for a pipeline 

with single or multiple crack defects. And it decreased with a higher initial crack depth for 

pipeline with a single crack defect. 

(2) Relatively small improvements in relative ILI accuracy (tolerance) can greatly improve the 

cost-effectiveness of an integrity program. 

(3) The assumption of the relationship between inspection cost and ILI tool accuracy affects 

the inspection and total cost rates, yet with lower total cost rates for higher accuracy ILI 

inspection are achieved, even at higher cost assumptions. 
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(4) The use and selection of a non-zero discounted cash rate was also prominent in the future 

cost evaluation results 

(5) Cost rates were influenced by the relative levels of ILI accuracy, actual absolute pipe wall 

thickness and timeline to reach repair condition criteria. 

(6) For Cases 1, 2, 3 and 5 discussed in Section 5.6, a higher σILI leads to a lower optimal 

inspection interval and a bigger total cost rate with a few exceptions. 

(7) For Case 4 discussed in Section 5.6, a higher σILI leads to a lower optimal inspection 

interval and a lower total cost rate. This means that the inspection cost assumption greatly 

affects the trends of results regarding different σILI.  

(8) The total cost rates increase as the pressure or failure cost increases if we keep other 

parameters unchanged. The optimal inspection intervals decrease as these parameters 

increase. 

(9) The total cost rates decrease as the prediction accuracy of a pipeline integrity program 

increases. 
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6 Conclusions and future work 

In recent years, remaining useful life prediction and risk analysis has attracted great attention to the 

management of public safety and financial risks in the pipeline industry. The purposes of this 

thesis are to develop more accurate RUL prognostics methods and to establish more effective 

RBIM models for pipelines that address reliability targets for the safe operation of pipelines while 

also addressing life-cycle costs in common financial terms. There is a great value to keep making 

huge efforts in the area of pipeline integrity management. In this chapter, we conclude the study in 

the thesis, and suggest several potential works in the future. 

 

6.1 Conclusions 

Integrity has been the top priority for the pipeline industry, and plays a critical role for the oil and 

gas industry as a whole. Significant advances are needed in pipeline integrity management to 

develop more effective methods, models and technologies to accurately monitor and predict 

pipeline conditions, extend the lifetimes of pipelines and prevent potential ruptures and the 

resulting consequences. In this thesis, three main steps of a pipeline integrity program have been 

discussed. Key ILI techniques along with their performance and applications have been reviewed. 

Data-driven methods and physics-based model for predicting pipeline defect growth have been 

discussed in details. Risk-based inspection and maintenance methods and models have also been 

presented. In-line inspection, defect prediction and risk-based planning, which are three main steps 

of pipeline integrity management, actually form a closed loop. Plan, schedule, execute, analyze 
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and improve are the elements of the loop of the activities need to be performed to manage pipeline 

integrity.  

The main objectives of pipeline integrity management are listed as follows: 

(a) Identify and assess defects and threats to safety in the design, construction and operation of 

pipelines. 

(b) Ensure the safety of the population, prevent failures that could cause damages to the 

surrounding environment. 

(c) Allocate available resources to pipeline integrity activities such as inspection and 

maintenance as efficient and effective as possible. 

(d) Reduce high costs, high risks and unnecessary shutdown while ensuring the system 

reliability reaches a suitable level and complying with regulatory codes. 

 In conclusion, this research work makes significant contributions to pipeline integrity 

management. This thesis aims to improve the prognostics accuracy and cost-effectiveness of a 

pipeline integrity program. The contributions for the proposed three topics of this thesis are 

summarized as follows.  

 

(1) An integrated prognostics approach for pipeline fatigue crack growth prediction 

utilizing ILI data 

Currently, there are large measurement uncertainties in the existing ILI crack detection tools. The 

fixed model parameters are used for the current physics-based prognostics methods for pipelines 

with fatigue cracks. They result in uncertainty that is managed through the use of conservative 

safety factors such as adding depth uncertainty to the measured depth in deciding integrity 

management and risk mitigation strategies. In this thesis, an integrated approach is proposed for 
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pipeline fatigue crack growth prediction utilizing ILI data including consideration of crack depth 

measurement uncertainty. This approach is done by integrating the physical models, including the 

stress analysis models, the crack growth model, and the ILI data. The finite element (FE) model of 

a cracked pipe is built to obtain SIF. ILI data is utilized to update the model parameter so that a 

more accurate pipeline RUL prediction can be achieved. Time-varying loading conditions are 

considered in the proposed integrated method by using rainflow counting method. The proposed 

integrated prognostics approach is compared with the existing physics-based method using 

examples based on simulated data. Field data provided by a Canadian pipeline operator is also 

employed for the validation of the proposed method. The examples and case studies in this topic 

demonstrate the limitations of the existing physics-based method, and the promise of the proposed 

method for achieving accurate fatigue crack growth prediction as continuous improvement of ILI 

technologies further reduce ILI measurement uncertainty. 

 

(2) Risk-based pipeline re-assessment optimization considering corrosion defects 

Inspections or assessments are performed periodically to assess the health conditions of pipelines. 

Existing methods for determining the optimal inspection interval mainly used constant fixed 

re-assessment interval as the decision variable during the whole service. However, pipelines with 

different defect sizes at the current inspection point lead to different future defect growth and 

failure probability, and it is more reasonable to apply different re-assessment intervals depending 

on pipeline health conditions. This thesis proposes a method to find the optimal re-assessment 

intervals for pipelines with corrosion defects. The PoF threshold is used as the decision variable 

for this optimization problem. An accurate and realistic prediction is achieved by considering 

uncertainties from various sources. A simulation-based cost evaluation approach is developed for 



174 

a given re-assessment policy defined by the PoF threshold. First-order reliability method is used 

to improve the calculation efficiency. Examples are given to demonstrate the proposed approach, 

and sensitivity studies are performed. The results show that the proposed method performs better 

than the fixed interval methods. 

 

(3) A method to analyze the impact of in-line inspection on integrity planning of pipelines 

with cracks 

An efficient and effective integrity planning method can address the most significant risk and 

optimize operational and maintenance costs. In this thesis, a method is presented for analyzing 

the impact of ILI tool accuracy on integrity planning for pipelines for fatigue cracks. Crack 

inspection and threat of fatigue cracking was used as the working case for the analysis although 

the approach could potentially be used for any pipeline threat type. The proposed method is 

based on a Monte Carlo simulation framework. And initial crack defect size and ILI 

measurement errors are used as input random variables for this method. 

The integrity (severity) assessment of the crack population scenarios used the CorLASTM 

burst pressure model and the Paris’ law crack growth model. The subsequent pipeline reliability 

assessments also considered single and multiple cracks scenarios. Using a reliability / probability 

of failure (PoF) approach, the impact of ILI tool accuracy and initial crack size on when to set 

reinspection and re-assessment intervals was investigated.  

Furthermore, integrity program cost scenarios for pipeline integrity programs with multiple 

cracks was also evaluated with respect to different (crack) populations, pipe conditions and ILI 

accuracies. A sensitivity analysis was performed considering different inspection costs, 

maintenance costs and relative crack severity for pipelines with financial metrics. Various 
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scenarios were discussed regarding maintenance and inspection planning and a “total cost rate” 

for different situations.  

The impact of ILI tool accuracy on long-term cost rate was also investigated considering new 

defect generation and continuous growth. The non-homogeneous Poisson process was employed 

to generate new crack defects, and probability of detection was also considered in cost evaluation. 

Examples were used to investigate the effect of ILI tool accuracy considering different input 

parameters such as pressure, failure cost and inspection costs assumption. The optimal inspection 

intervals and the corresponding total cost rates with respect to different ILI tool accuracies and 

different input parameters were obtained and compared. The proposed method can support 

integrity management program planning by linking risks with integrity plan costs associated with 

ILI accuracies, and optimal re-assessment intervals. 

 

6.2 Future work 

In-line inspection sensor technologies and pipeline integrity practices must continue to evolve, 

especially for crack detection tools. More reliable and effective signal processing and data analysis 

methods need to be developed for noise removal in ILI data and accurate defect evaluation. 

Prognostics approaches and models need to be further improved. Balancing the ILI tool run times 

with costs also need to be further investigated. Different pipeline integrity management 

frameworks need to be further developed regarding different types of defects. Effective validation 

methods and technologies also need to be established. Specifically, with standing on my current 

research stage, the following research directions need to be further investigated in pipeline 

integrity management. 
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(1) Pipeline system assessment  

Pipeline integrity management can also be performed on a large scale, i.e. pipeline system. In 

industry, corrosion and crack defects can occur in a pipeline system at the same time. The 

interaction of different types of defects will be considered in the pipeline system assessment. 

Existing qualitative and quantitative risk analysis methods for pipeline system will be studied. A 

method for risk and reliability assessment of the pipeline system will be proposed considering the 

condition monitoring data and structure of the pipeline system. Risk-cost optimization of pipeline 

system will be investigated.  

The aim of the topic is to develop a common scientific methodology for the assessment of 

reliability, costs and risks of the pipeline systems. First, we need to assess in terms of likelihood 

and consequence all reasonably expected hazards to public safety and environment. Then, we will 

identify the major failure mechanisms and study and assess different types of defects based on the 

first three topics. Finally, an optimized and cost-effective inspection plan will be established to 

ensure the integrity of pipeline system. In addition, sensitivity analysis will also be performed for 

different threats (such as corrosion, crack, third party damage, etc.) to the pipeline system. Group 

inspection and maintenance activities will be considered in the proposed pipeline system 

assessment framework since it has the potential to reduce the inspection and maintenance costs 

and service interruptions. In cost evaluation, we need to consider the dependency on the costs of 

dealing with multiple defects and multiple pipe segments, and plan to deal with this challenge 

based on condition-based models developed for multi-component systems. The performance of 

this proposed idea will be compared with the performance of the existing methods. The method 

proposed in this topic will be ready to be used in practical activities. 
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(2) RUL prediction and RBIM for pipelines with crack defects under big shocks 

In this thesis, RUL prediction and RBIM are performed for pipelines with crack defects under 

normal operational condition. Even with the consideration of varying internal pressure, the overall 

assumption is that the pipeline does not suffer big shocks from outside. The aim of this topic is to 

make RUL prediction and to present an assessment of risk for pipelines with crack defects posed 

by dropped objects. The research on the impact of big shocks on RUL prediction and RBIM for 

pipelines will be conducted in future work. 

 

(3) Risk-based management for pipelines with crack defects considering multiple 

uncertainty sources 

In Section 5, we only considered two important random variables, the population of initial crack 

depths and ILI tool measurement error. However, in reality, the model parameters for Paris’ law, 

the mechanical properties and geometry parameters for pipelines keep changing all the time. The 

uncertainties from these sources will be considered to make a better decision on when to 

reinspection and re-assessment. The life cycle cost results will be compared with Section 5. 

Sensitivity analysis will be performed on these important parameters. 
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