Py e ey e mmern -

Acquisitions and

I * I National Library Bibliothéque nationale
of Canada du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services oibliographiques

365 wellington Street
Ottawa, Ontano
K1A OiN4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.Ss.C. 1970, c. C-30, and
subsequent amendments.

Canad%i'

305, rue Wellington
Qttawa (Onlario)

Your fe  Voire réldrence

Our hla  Moire réideence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec ['université
qui a confére le grade.

La qualit¢ d'impression de
certaines pages peut laisser a -
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



UNIVERSITY OF ALBERTA

A Computational Approach

to Ccnceptual Design of Mechanical Systems

by

Masoud Shariat-Panahi

A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of

the requirements for the degree of Doctor of Philosophy.

Department of Machanical Engineering

Edmonton, Alberta
Fall 1995



National Lib:
I*l ofa('.ltanada had

Bibliothéque nationale

du Canada
Acquisitions and Direction des acquisitions et
Biblicgraphic Services Branch  des services bibliographiques
395 Wallington Street 395, rue Wellington
Ottawa, Onlario Ottawa (Ontario)
K1 ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHCR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-06285-6

Canadi

Your fle  Vours raf hoence

Ouwt filg  Notre rélérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
QU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.




UNIVERSITY OF ALBERTA

RELEASE FORM
Name of Author; Masoud Shariat-Panahi
Title of Thesis: A Computational Approach to Conceptual Design

of Mechanical Systems
Degree: Doctor of Philosophy
Year this degree granted.: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright in
the thesis, and except as hereinbefore provided neither the thesis nor any substantial portion
thereof may be printed or otherwise reproduced in any material form whatever without the

author's prior written permisston.

/

M. J/Aoftﬁrw’&k
Masoud Shariat-Panahi
4-9 Mechanical Engineering
University of Alberta
Edmonton, Alberta
Canada
T6G 2G8

et 30 1905




UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled A COMPUTATIONAL APPROACH
TO CONCEPTUAL DESIGN OF MECHANICAL SYSTEMS submitted by MASOUD

SHARIAT-PANAHI in partial fulfilment of the requirements for the degree of DOCTOR

OF PHILOSOPHY-

=,

Dr. R.'W. Toogood (Supervisor)

Dt

Dr. O. R. Fauvel (External Examiner)

i
Dr. D. R. Budney P
el e
oL Q&,ﬁ&é&u

Dr. A W. Lipsett




To my parents,

who taught me how to learn



ABSTRACT

The process of Mechanical Design roughly consists of three distinct, yet interactive
phases: Functional Design, Conceptual Design and Parametric Design. In Functional
Design, a perceived need is systematically broken down and formally presented as a set of
standard mechanical functions. In Conceptual Design, an artifact (mechanical system) which
can perform those functions is visualized in the form of an arrangement of "generic" physical
elements, Finally, in Parameiric Design, the {optimal) values of the design parameters of
these generic elemenis are determined, and a detailed description of the artifact is generated.

The fact that the eagineering community's perception of the nature of the first two
phases is still in its infancy has impeded serious attempts at automating Mechanical Design
as an integrated process. The problem is commonly blamed on the lack of realistic models
of Functional- and Concepitual Design that both explain the mechanisms of their work and
can be implemented in computer code.

This research is devoted to the development and computer implementation of a
cemprehensive model of Mechanical Conceptual Design. The model builds on the assertion
that optimal designs may be obtained through a step-wise transformation of an initial
functional description of a device to a structurai description provided that

a) at each step, values of the behavior-defining parameters of the device are calculated
so that the functional behavior of each component and its contribution to the
satisfaction of the initial requirements can be fully determined, and

b) throughout the design process, all feasible design alternatives are nurtured and
preserved for a final choice-stage. This is to avoid the possible loss of the optimum
design due to a best-first search strategy during the design process.

The computer implementation of the model has led to the development of a
conceptual design system which finds a number (2 1) of feasible arrangements of existing
mechanical elements for a given set of initial functional requirements. The special architecture
of the system allows for the contribution of the various objectives of the artifact's lifecycle to
the design process, according to the notion of concurrent design. A computational approach
to constraint analysis, using Genetic Algorithms, has been implemented which reduces the

need for user intervention and eliminates biases stemming from user-dependency.
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CHAPTER 1
INTRODUCTION AND OVERVIEW

1.1 THE NATURE OF DESIGN

The research reported here is concerned with Design Methodology, rather than design
itself. While the latter deals with the question of "what to design” to satisfy certain
requirements, the former is primarily concerned with the question of "how to design", that is,
how to model/teach/aid/automate the process of finding answers to the question "what to
design". In other words, the objective of research in design methodology is not a product,
but rather the knowledge of how to design products.

Whereas design itself dates back perhaps to the early days of man on earth, design
methodology as the scientific study of the design processes is relatively new. In a mature
field, the research community will share a common view of the appropriate research
methodologies, the unsolved problems in the field and the criteria for appraising a proposed
methodology. In the emerging field of design research, especially mechanical design, no such
consensus exists. This lack of consensus both causes some chaos and makes the design field
exciting, as it promises that new, revolutionary paradigms will emerge.

A scientific study of the design process may seem to be the logical way out of this
dilemma. However, it has been argued (Cross, Naughton and Walker 1987, Simon 1969) that
“scientific study of the design process” is a contradiction in terms, for "science” is the
systematic study of natural entities whereas "theories of design" study artificial entities, i.e.
those constructed by man. Nonetheless, design activity has been investigated both as a
natural process and as an artificial process. The motive behind the former has been to
improve descriptive- as well as prescriptive models of human design processes, and the goal
of the latter has been to develop mathematical and computational tools for aiding/automating
design (Kannapan and Marshek 1992),

Whether we consider research in design methodology a "science” or "exploring a
technological activity” (Jacques and Powell 1980), it is believed that it is still in a pre-theory
stage. Research approaches needed for generating design theories are much less well-
understood than the classical scientific methods for evaluating theories.

1.2 MODELS OF THE DESIGN PROCESS
Attempts to shed some light on the enigmatic nature of design and to postulate
paradigms for it can be roughly categorized in three groups: those trying to understand and



explain the way design is currently being carried out (by humans), those prescribing how it
should ideally be carried out, and those building on potentials of the computer technology.
These three groups of attempts have led to the development of what we respectively call
descriptive, prescriptive and computer-based models of design.

1.2.1 DESCRIPTIVE MODELS

"Descriptive" models of design are based on the belief that by "watching" eminent
designers "design" and then scrutinizing and systematizing their thinking route, one can gain
insight into the complex process of design and can formulate a paradigm which will enable
others to design equally successfully. With this in mind, many researchers from various fields
have studied the question of "how humans design”, that is, what processes, strategies and
problem-solving methods they use to generate a design. They have conducted protocol
studies on both novice and expert designers solving trivial as well as complex problems
(Adelson and Soloway 1984, Uliman and Dietterich 1986, Uliman, Stauffer and Dietterich
1987; Waldron et al. 1987, Wallace and Hale 1987, Schon 1988; Marples 1961} to determine
how they approach the problems in each case and thus to learn what causes excellence in
design.

Cognitive models of design are the best examples of descriptive models. They have
been generated and nurtured by a school of thought that believes "design systems must be
based on human design processes" (Gero and Coyne 1985). These models are intended to
foster computer programs that "simulate or emulate the skills that humans use as they solve
problems” (Laird, Newell and Rosenbloom 1989). Aiming at this, a number of attempts have
been made to exploit the results of protocol studies along with artificial intelligence
techniques to develop intelligent CAD systems that undertake some aspects of design the way
humans do (Adelson 1989b; Laird, Newell and Rosenbloom 1989, Maher 1987, Newsome
and Spillers 1989).

1.2.2 PRESCRIPTIVE MODELS

Another group of researchers postulate that design should follow a certain logical
pattern, regardless of whether or not this pattern is currently exercised by experienced
designers. The various "patterns" proposed by this group are normally referred to as
"prescriptive" models of design. Prescriptive models can be divided into two categories:
those that prescribe how the design process ought to proceed and those that prescribe the
characteristics that the design artifact ought to have. One major class of prescriptive models
of the design process was initiated in 1950's in Germany by Hansen and his colleagues
(Bischoff and Hansen 1953; Bock 1955, Hansen 1956). This family of models is now known




as systematic desigm models. A large body of research has since been published on systematic
design (Hansen 1965, Hansen 1974; Koller 1976; Rodenacker 1984; Roth 1982) in German,
of which only two books have been translated to English (Hubka 1980; Pahi and Beitz 1991).
The essence of these models, according to Rodenacker (Rodenacker and Claussen 1974) is
the following steps (from Pahl and Beitz 1991).
- Clarify the task (requirements of the problem),
- Establish the function structure (the logical relationships satisfying the requirements)
using functions derived from three main functions: separate, connect and channel,
- Choose the physical process (the physical relationships to satisfy the requirements},
- Determine the embodiment (the constructional relationships to satisfy the
requirements),
- Check the logical, physical and constructional relationships by appropriate
calculations,
- Eliminate disturbing factors and errors,
- Finalize the overall design,
- Review the chosen design,
We will explain some of these steps later on in this report.

A standard description of what the design process should be recurs in much of the
engineering-educaticn literature, especially in design textbooks. A review of the more
popular mechanical-design textbooks, including those by Shigley (1986), Deutschman (1975),
Pahl and Beitz (1991), Edwards and McKee (1991), Asimow {1962) and Jones (1972) shows
that, despite minor differences, the following steps characterize a common trend in prescribed
models of design.

- Recognition of need

- Specification of requirements

- Generation of design ideas (concept level)

- Choice of the best idea

- Detail (embodiment) design

- Evaluation of the design

The pioneers of prescriptive models of the designed artifact (as opposed to the design
process) are Suh and Taguchi. Suh's Axiomatic Design (Suh 1990) asserts that the best
design is one that (a) maintains the independence of its functional requirements (FRs) and (b)
has the minimum information content (i.e. the information necessary to meet the functional
requirements). Consider, for example, the problem of designing a refrigerator door (from
Suh's book). There are two functional requirements for such a device: to access the contents
of the fridge and to provide an insulated enclosure to minimize the energy loss. In an ordinary



fridge-door (horizontally opened), these two FRs are coupled: each time the door is opened,
the cold air escapes the fridge. The design is therefore inferior as it does not allow the two
FRs be satisfied independently. On the contrary, a vertically opened door (like the one used
in chest freezers) would allow access to the contents of the fridge with virtually no energy
loss, since the cold air tends to stay down and not to escape through the opening on the top.
The latter, therefore, is considered superior to the former design.

The second axiom implies that the less information needed for manufacturing,
maintaining and using a product, the better its design is. According to this axiom, a design
that (fulfils the first axiom and) has fewer components, uses more standard components rather
than special ones, performs only the required functions, and has less geometric irregularitics
(such as asymmetries and exceptional tolerances) is a superior design.

Taguchi (Taguchi 1978; Taguchi 1987, Taguchi and Wu 1980), on the other hand,
proposes only one criterion for measuring the goodness of a design: robustness. A “robust”
design is one that minimizes the guality loss over the life of the product, where "quality loss"
is defined as the deviation from the desired performance of the product. Whereas the axioms
of Suh assume that a good design is one that meets a set of well-designed functional,
structural and economical goals, Taguchi is concerned with the sensitivity of a design to
unpredictable factors that may arise in manufacturing and use. He defines "noise factors” as
the undesirable, uncontrollable and costly factors that cause a product to deviate from its
functional target values. He then uses statistical techniques, especially design of experiments,
for parametric design and tolerance specification.

1.2.3 COMPUTER-BASED MODELS

The third major group of design models are conputer-based models. Unlike the other
two groups, namely the descriptive and the prescriptive models, computer-based models do
not try to offer an ideal plan for design, nor do they denounce or avoid the plans suggested
by other design models. Here the objective is solely to present a method by which a computer
may accomplish a design task. The development of computer-based models of design has
been fuelled by the developments in computer science and technology. The fact that
computers outperform humans in certain areas such as massive calculations and large-scale
data processing has inspired researchers to exploit these capabilities to develop computer
systems for designing or assisting in design. These computer systems, which were initially
generated on an application-by-application basis, later led to the development of a number of
design models.

A computer-based design model may in part be derived from observation of how
humans perform the task, but this connection is not necessary, as the former may in turn




suggest prescriptions for human processes (Finger and Dixon 1989). As a matter of fact.
computer-based models should not be considered "altemnatives" to descriptive and prescriptive
models, but rather "computer adaptations'" of them with modifications to improve their
performance and to adjust them to the existing computer technology. To illuminate this
statement and to explain how we believe computer-based models can cultivate their
prescriptive counterparts, we mention two observations made by researchers who performed
comprehensive studies of human design behaviors.

Juster (1985) cites several authors (Hykin and Lansing 1975, Tebay, Atherton and
Wearne 1984) who studied the performance of many designers and found that the design
process they follow is different from that suggested by prescriptive models. He attributes this
variance both to the designers who are not systematic enough and to the proposed models
that are unrealistic in their assumptions about the order lines of the process. This problem
will never arise in the case of computer-based models, firstly because a computer is always
"systematic enough" to follow a model given to it and to not "defy" it, and secondly because
computer-based models are usually "extracted" from programs that have already proven
working, and this leaves no room for them being "unrealistic”.

The other observation made by various researchers concerns creativity and originality
in design. From his study of a number of design projects, Marples (1961) concludes that
"designers reuse familiar solutions and will not explore alternatives or innovative ideas unless
their design fails badly and cannot be salvaged”. Also Ullman et al. {Ullman and Dietterich
1986; Ullman, Stauffer and Dietterich 1987) observe that designers pursue a single design
concept and tend to patch and repair that single concept until they arrive at a feasible design,
if at all, rather than generating new alternatives. This avoid-new-ideas-as-much-as-possible
strategy does not conform to the implications of prescriptive models at all, as the spirit of
those models is to generate multiple ideas and evaluate them in order to spot the best one.
Again this problem can be largely avoided by incorporating multiple-design-generation
strategies into the computer-based models.

To close this discussion, we quote Dixon (1988) who concludes that cognitive studies
of the design process alone are unable to provide theoretical foundations for design, as "they
involve far too many ill-defined variables to support a theory", and that "prescriptive models
are premature until they can be based on a validated theory". He further believes that
"computer-based studies, if used appropriately to discover and explain the knowledge and
strategies needed for design, could lead to the desired theoretical foundations for the design

'We use the term “adaptation” or "free adaptation” and not “implementation” to distinguish between those
computer systems that iy to transform the exact contents of a model into a computer program and those that
devise independent computer systems inspired by the ideas embedded in that model,



process”.
In the rest of this work we shall be reporting on the development and implementation
of a special computer-based model of the mechanical design process. Therefore, we will need

to state more clearly what we mean by a "computer-based model" and whether belonging to
the area of "mechanical design" has any implications on its development.

13  WHATIS A COMPUTER-BASED MODEL?

In a 1985 article titled "Who Said Robots Should Work Like People” (Seering 1985),
Seering attacks the then-popular idea of constructing robots that look and work like humans.
He argues that the idea of making "an army of robots with humanoid features that would
work in American factories day and night, undercutting the advantages of cheap labor abroad
... was fatally flawed because it assumed that humans are optimally designed to perform
manufacturing tasks and therefore deserve to be emulated”. He then points out some of the
human weaknesses in manufacturing compared to the machines and asserts that "robots
modeled after humans share all these inherent weaknesses". He concludes that in order to
take full advantage of the robot technology, we need to make robots that work like machines
not like people, and on things they are good at, rather than things people are good at.

The same argument is true of computers and design methodologies. 1t is indisputable
that humans are "the best" when it comes to creative design, but they are not nearly as
efficient as computers when it comes to the tedious, repetitive calculations involved in routine
design. Many computing sciences- as well as engineering design researchers have tried to
generate tools that would enable computers to emulate the human process of design. But
these attempts will soon prove to be misdirected, and hence fruitless, for computers would
function most efficiently when they design as computers, not as humans,

For one thing, optimal design(s)* can generally be achieved only through generation
and evaluation of multiple feasible alternatives, rather than by sticking to a single idea and
patching and repairing it; because no matter how effective these "repairs" are, they will not
mutate a design into a different one. As discussed earlier, humans often overlook this
actuality and consequently lose some good design alternatives, and so will computers if they
are programmed to follow humans' footsteps. Computers, on the other hand, have the ability
to repeat a specified design procedure over and over at very little or no extra cost, and thus
to generate multiple design alternatives (provided, of course, that the computer code contains
an element of random-selection to avoid repetetive results). It will be then easy to introduce

2The term "optimal design” here refers to “the best (perhaps out of several acceptable) plans for sutisfying o sel
of requirements” and not to a design whose values of parameters have been optimally “luned” using numerical
optimization techniques,



an element of evaluation/optimization to the procedure or let the user pick the optimal design
based on some specified criteria.

Now that we have somewhat specified what a computer-based methodology is not
(should not be), let us explain what it is. 4 computer-based model of a design process is a
Sformalization of the process that can be embodied in a computer progrant capable of
performing the corresponding design tasks. We distinguish between computer processes that
design (i.e. make design decisions) and those that assist in designing by analyzing a design or
providing graphical and computational assistance. In this work we are concerned with the
former, that is, the computer systems that perform a complete or partial design process and
the models these systems are based on.

As mentioned earlier, being "computer-based" does not imply that a model is
thoroughly isolated from descriptive and prescriptive models. The model may partially
coincide with either or both of those, but this relation is not necessary. For example, a
computer-based model may prescribe that after the multiple solution alternatives are
produced, Suh's axioms (Section 1.2) be employed to determine the goodness of each design.
The main distinction between the two genres of models is hence that a computer-based model
builds its strategies on the known capacities of the computers and therefore can be
implemented in the form of a computer system. Let us emphasize here that our definition of
a so-called “intelligent" or “automated" system is limited to what we discussed in this section.
We strongly believe that truly intelligent systems that can emulate the creativity and
intellectual activities of humans are beyond the reach of the existing technology.

In order to discuss the computer-based models in the area of mechanical design (the
subject of this work), we first need to outline the mechanical design process and the stages
involved in its implementation. This is because computer-based models of mechanical design
commonly pertain to specific stages of the process and a "universal model" to represent the
entire design process does not yet exist.

1.4 THE THREE STAGES OF MECHANICAL DESIGN

Several researchers have studied the classification of the design tasks and have
proposed tavonomies of mechanical design problems in particular (Aylmer and Johnson 1987
Chandrasekaran 1988; Dixon et al. 1388; Matsuta and Uno 1980, Sambura and Gero 1982,
Yoshikawa 1982). A survey of these classifications and the ones suggested by the descriptive
and prescriptive models of design shows that the core of the process is believed to comprise
three distinct, yet interactive stages: functional design, conceptual design and parametric
design.  Each stage is distinguished by the states of knowledge about the entity to be
designed, before and after the stage is performed. This, of course, does not encompass such
pre- and post-design stages as "specification of the need" and "manufacturing®, as they fall
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into other categories of production activities. The three stages just mentioned represent, in
sufficient detail, the essence of the mechanical desigr ~rocess, although some researchers

have proposed more (or less) detailed classifications. "I nese stages are further discussed in
the following sub-sections.

1.4.1 FUNCTIONAL DESIGN

Mechanical design, in the most general sense, begins with the realization of a "need"
or a set of requirements. Functional Design is then the transformation from these abstract
requirements to the functional description of a mechanical system that will satisfy those
requirements. This formal description will be generated through systematically breaking up
the abstract requirements and expressing them hierarchically in terms of detailed functional
building blocks that are closer to elementary physical functions. The resulting functional
description must be precise, yet solution neutral, and must follow a standard format so that
it can be communicated between various designers/computer systems. Without loss of
generality, we shall assume that the functional descriptions of mechanical systems are
presented in the form of Function Block Diagrams, described in Section 1.9,

1.42 CONCEPTUAL DESIGN

Conceptual Design is often defined as the transformation from a functional description
of an artifact to a structural description of it, where the former is {in our case) in the form of
a function block diagram (Section 1.9) and the latter in the form of a configuration of
component-types. The term "component-type" refers to generic mechanical elements (such
as "bevel gear", "thrust roller bearing" and "helical tensile spring”) whose values of
design/performance parameters are yet to be specified.

With this definition of conceptual design, it might seem trivial 1o carry out: just take
the functional description of a device and replace each functional component of it with its
physical equivalent. In practice, however, this will not work (at least not feasibly). While
structure and functioning of a machine are intimately related, they do not uniguely determine
each other.

Generally, in mechanical design, a single function can be performed by various
structural configurations ard a single component can contribute to more than one elemental
function. In addition to their primary, intended functions, mechanical elements exhibit some
secondary, incidental behavior which might or might not be desired in a particular design.
This unintended behavior has then to be compensated for/exploited in order to result in an
acceptable degree of design integration and compactness. A direct, one-to-one
transformation of the initial functional requirements to physical components normally will not




result in good mechanical designs. This issue will be further discussed later in this chapter,

The final product of Conceptual Design is a (number of} configuration(s) of component-
types which will satisfy all the specified requirements. This information is then passed to the
next phase, the Parametric Design.

1.43 PARAMETRIC DESIGN

Parametric Design is the transformation from a generic structural description of an
artifact to specific instance(s) of its structure. In this phase, attributes of the component-types
selected through Conceptual Design are quantitatively specified and values of the
corresponding design parameters are determined. These values can be numeric or non-
numeric (e.g. a material type or a catalog number). Optimization techniques may be
employed here to find those parameter values that best meet a specified criterion. The output
from Parametric Design, as
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other components. If a design checks successtully. it will be accepted as a feasible solution
to the design problem. Otherwise, the machine must be completely or partially redesigned
to meet the original/ augmented requirements.

The strategy outlined in the last paragraph above is a rough description of the Design-
Evaluate-Redesign meta-model (Figure 1-1) shadowing over virtually all design models
presented earlier. There is nearly a consensus that once a design is initially gencrated
according to any paradigm, it needs to be evaluated and, if necessary, redesigned until it meets
all the requirements of the problem. Once this is achieved, the description of the finalized
design(s) can be passed on to the next stage, namely the manufacturing stage.

Occasionally, the manufacturing agents find a design hard or infeasible to
manufacture. Then the design, along with the manufacturing engineer's comments, is returned
to the designer for further modifications. The cycle goes on until both parties are satisfied
with the design. Furthermore, the same problem may arise when the product reaches the
maintenance stage. Then yet another set of modifications needs 10 be done to the design of
the product. This dilemma is typical of the standard one-task-at-a-time production strategy
which prescribes each stage of the process (e.g. design, manufacturing and maintenance) to
be considered separately with no interactions between them.

In order to avoid this costly procedure, an alternative approach, known as Design for
X, has heen proposed where X represents any of the life-cycle objectives of a product such
as manmifacturing, maintenance and reliability. In practice, however, most of the work done
on this strategy has focused on Design for Manufacturing. In essence, the strategy requires
that the manufacturing information be incorporated into the design process and
“manufacturing requirements" be treated as part of "design requirements”. In this way a

feasible design, if found, would be one that satisfies not only the functional (design)
requirements but also the manufacturing requirements, and therefore would not receive any
"surprises" in the manufacturing stage.

The ultimate form of the design for X strategy is the notion of Concurrent Design
whereby concerns of a// lifecycle objectives are considered during the design of a product.
A more detailed discussion of concurrent design will be presented in Chapter 3.

It has been suggested (Fauvel 1992; Fauvel, Gu and Norrie 1993; Yin 1993) that in
order to build a sound framework for concurrent design, one should identify and take into
account the three information domains that are the "currency of design". These three domains
are the environment domain, the finiction domain and the embodiment domain. We shall refer
to the implications of this suggestion in the following chapters.
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1.5 ATAXONOMY OF COMPUTER-BASED MODELS OF DESIGN

After this brief introduction to the various stages of design, we can now categorize
the computer-based models of the mechanical design process developed/proposed so far.
Nearly every design model reported in the literature is specific to one of the design stages just
introduced, and the few paradigms postulated for the entire design process are rather sketchy
and have yet to show potential for implementation. There are models of functional design,
conceptual design and parametric design. Some researchers (for example see Finger and
Dixon 1989) have counted a fourth group of models called configuration design models.
These are the models that propose a plan for configuring a set of pre-determined components
to satisfy certain requirements. We, however, do not make such a distinction and rather
consider "configuration design" part of the conceptual design stage, as we shall discuss later
on,

Without a doubt, parametric design is the most mature design stage of all in terms of
the number of models developed for it. Functional design is the least explored area and
conceptual design lies somewhere in between. In fact, nearly all of what we teach in
engineering design courses is "analysis" or "parametric design". Normally the part where we
talk about how to transform a need to a working system amounts to a small percentage of the
contents of a design course. For the rest we teach how to quantitatively evaluate the
performance of a device of given specifications (analysis) or how to determine the values of
design parameters of a component to result in certain values of its performance parameters
(parametric design).

Among the models of mechanical parametric design are Dixon's Dominic (Dixon et
al. 1987; Howe et al. 1986) and Dominic I (Orelup, Dixon and Simmons 1988), Brown and
Chandrasekaran's DSPL (Brown and Chandrasekaran 1986) , Shah, Ramachandran and
Steinberg's DPMED (Ramachandran, Shah and Langrana 1988; Shah, Ramachandran and
Langrana 1987, Steinberg 1987), Nicklaus' Engenious (Nicklaus, Tong and Russo 1987),
Kannapan and Marshek's Design Diagrams (Kannapan and Marshek 1991) and Agogino's
Symbolic Computations (Agogino and Almgren 1987a;b). Although these models differ
significantly in complexity and versatility, they all share a quest for the values of a
component/subsystem’s design parameters for a given set of specifications,

Models of mechanical conceptual design are the subject of the next chapter and will
be elaborated therein. As for mechanical functional design there have been, to our
knowledge, very few attempts at developing 2 computerized system that can translate a highly
abstract function (need) to an arrangement of standard, specific sub-functions. This is not
unexpected, for here we are dealing with the most "intelligent" part of an activity (design)
which itself'is considered a highly intelligent activity of mind. As a matter of fact, functional
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design marks the border between routine design and invention as it tries to answer the
question "what steps must be taken to satisfy a certain need”. 1f the need has been satisfied
in the past, it is conceivable to "implant" this experience in computer's memory and to make
it adjust the solution for a given set of requirements. However, in case of an unprecedented
need it would take a certain level of creativity to come up with a solution, which computers
currently lack.

With this distinction in mind, we now proclaim that except for the overly abstract
work of Dyer, Flowers and Hodges (1984; 1985), no other attempts at modelling the
invention activity has been accomplished. As for the routine furctional design, works of
Hundal (Hundal 1988; Hundal and Byrne 1989; 1990), Kota and Lee (1990) and members
of the German school of Systematic Design such as Roth (1982), Rodenacker (1984) and

Pahl and Beitz (1991), though still at a preliminary stage, are about the only sources available
to date.

1.6 COMPLICATIONS OF MODEL_ING THE

MECHANICAL CONCEPTUAL DESIGN

In the rest of this work, we shall focus on the development and implementation of a
model of mechanical conceptual design. While conceptual design has been relatively
successfully modelled and automated in such areas as electrical and software engineering, it
has not been so fortunate in mechanical engineering. This is mainly because mechanical
designs have a number of special characteristics normally not found in other engineering
areas. They are often composed of tightly coupled, multifunctional components® where not
only the interactions between various components, but also the relations between the form
and the functions of individual components contribute to the overall behavior of the design.
A change in the form (shape, dimensions, material, etc.} of a mechanical component will most
likely affect its function(s).

It is therefore essential that both the interactions and the form-function relations of
various components of a device be examined during the conceptual design phase, and not be
completely left for a later "parametric design” phase. Design systems that fail to take this
necessity into account will likely result in poor or even infeasible designs. No such
complexity applies to other, more explored areas of engineering design.

Another important aspect of a mechanical system is that its overall function is
determined not only by its embodiment (configuration of physical elements), but also by the
interaction between this embodiment and the environment surrounding it.

*Throughout this report, we shall be using the terms "component” and “efenrent” interchangably
g P g P )




Moreover, according to the notion of concurrent design, the final product of
mechanical design must simultaneously meet a variety of requirements including cost, quality,
manufacturing and maintenance requirements. This means that a multitude of constraints
from various sources, rather than just the functional requirements, have to be satisfied at
every stage of the design process, including conceptual design. Again, this type of obligation
is specific to mechanical design in general and mechanical conceptual design in particular. In
coping with this problem, human designers usually rely on their experience and try to solve
the problem on an ad-hoc basis.

These characteristics of mechanical devices have impeded the successful modelling
and computer implementation of mechanical conceptual design in its general form. Earlier
in this chapter we mentioned that an alluring, yet simplistic approach to performing
conceptual design of mechanical systems is to apply a one-to-one mapping between the spaces
of the required functions and physical elements. (For brevity, we shall refer to this approach
as the direct substitution approach henceforth.) While this strategy may (and does) work for
some areas of engineering design, it generally fails in mechanical design.

Design systems based on the direct substitution approach essentially fail to comply
with the requirements pointed out in the last two paragraphs. Also they are flawed because
they assume that each component performs only one function and therefore a different
component must be provided for each functional requirement. This is definitely not true of
many of the commonly used mechanical components that perform multiple functions.
Systems based on this assumption will normally result in inferior or even infeasible designs.

As an example, suppose that we want to design a simple drill. Also suppose that the
drill has already been functionally designed and we have learned that the overall function of
the drill can be broken up into the following sub-functions.

{convert energy (electrical to mechanical rotational), adjust rotational speed, adjust

angle of axis of rotation, grip the drill bit, wransfer torque to the bit}

In a direct substitution approach, each of the above functions would be replaced with one
physical component. A typical substitution sequence of this type could be as follows (shown
here as a set of ordered pairs with the first members representing "fusicrions” and the second
members representing the corresponding "physical components™).

{(convert encrgy — electrical motor), (adjust rotational speed - spur-gear set),
(adjust angle of axis of rotation — bevel-gear set), (grip the drill bit = chuck),
(transfer torque to the bit = coupling)}

Although this arrangement of components does perform the desired function, the component

redundancies in its structure make it unjustifiable. For instance, a set of bevel gears not only
could change the rotational speed of a shaft but also, because of its geometry, could provide
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for the desired right angle between the two gear shafis. One therefore could have replaced
the two functional requirements "adjust speed"” and "adjust angle" with a single component
(bevel-gear set). Also, if the chuck was mounted directly on the output shaft of the bevel-
gear set, it would be able to both grip the drill bit and transfer the torgue to it, and we would
not need a separate coupling to accomplish that. Moreover, the direct substitution approach
would not care about the fact that the use of a spur-gear set will cause an unwanted offset
between the input and output shafts (due to the centre distance of the gear set). This is
because the approach would not take into account the implications of the gear-set's geometry
on its functional behavior.

With these observations in mind, we restate our definition of mechanical conceptual
design (Section 1.4.2) as the process of visualizing an integrated configuration of
mechanical component-types which will satisfy a set of initial requirements as determined
in the Functional Design phase. We include the term “integrated” to emphasize the
significance of the two main characteristics of mechanical components, namely
multifunctionality and form-function interdependency, and to highlight their implications on
the design process. According to this definition, to qualify, any conceptual design
methodology must provide proper tools and techniques to systematically take these

characteristics into account. We shall further discuss the implications of this stipulation in
Chapter 3.

1.7  CLASSIFICATION OF MECHANICAL DESIGN PROBLEMS

While different mechanical design problems share the same solution steps outlined in
Section 1.4 above, the degree of creativity involved in their solution can differ greatly from
one problem to another. It takes the very same steps to "invent" a device to meet a new
demand as to solve a routine design problem. In both cases the requirements should be first
transformed into a functional structure, then a combination of elements should be visualized
accordingly and finally these elements should be parametrically designed. The difference,
however, is that in the former case the functional structure has to be improvised and possibly
new components need to be devised whereas in the latter, the functional structure has been
already developed and successfully mapped onto an arrangement of existing components for
some set of specifications.

Brown and Chandrasekaran (1986) propose a classification of design problems based
on the availability of knowledge sources and problem-solving strategies for each problem.
They assert that any design activity falls into one of the following categories:

- Class 1 design which leads to major inventions and for which neither the knowledge
sources nor the problem-solving strategies are known in advance.
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- Class 2 design which does not result in totally unprecedented artifacts, yet is not as
routine as respecifying an existing device either. It normally arises in the course of
routine design when a new requirement is introduced to the problem which calls for
some decision making. For this class of problems, the knowledge-sources can be
identified in advance, but the problem-solving steps are not exactly fixed apriori.

- Class 3 design which is basically "routine design". Here the purpose is to choose from
a set of well-understood design alternatives. Typical problems of this class are
“respecification" problems. For instance, redesigning a car for a different speed range
involves the choice of a different engine , transmission, brakes, etc., whereas the
overall design of the car remains unchanged and no new components are added.
Until recently, all computer-based models of design were devoted to the third class

of problems, i.e. routine design. With the advent of new computer technology, efforts to
cross the border to class 2 and rarely to class 1 have commenced. From our definition of the
mechanical design stages (Section 1.4) it must be clear by now that according to the
classification above, conceptual design problems fall into the class 2 problems, as there are
no fixed plans to transform the functional description of a device into its structural
description. However, since Brown's classification builds on fairly relaxed definitions and
there is no way to accurately determine which class a design problem belongs to, we will not
discuss it any further.

1.8 SCOPE OF THE DISSERTATION

We state our objective in this work as to develop and implement a conputer-based
model of the mechanical c-nceptual design. Unlike some other areas of engineering design,
the automation of the mechanical design (machine design) process is still in its infancy. As
mentioned earlier, only one stage of the process, namely the parametric stage, has been well
explored and somewhat automated. The other stages of the process, and hence the ovarall
process, are still far from being standardized and automated.

This shortage is usually attributed to the lack of a robust model of the mechanical
design process which can be implemented in the form of working computer codes, or a
compulter-based model as per the definitions given in Section 1.2. Due to the problems
partially mentioned in the previous sections, the development of a computer-based model
extensive enough to represent the entire process of mechanical design has proven to be
beyond the realm of existing computer technology. For this reason, researchers have come
to believe that mechanical design automation is a ladder to be climbed one step at a time.

With parametric design automation reaching its maturity, we decided to focus on the
next step, the conceptual design. Our goal has been to develop practical strategies and
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techniques to make the automation of this stage possible, and thus to pave the way for
tackling the problem of automating the process in its entirety. The following definitions,
assumptions and declarations will further clarify and specify the objective just stated.

- We define mechanical conceptual design as the process of visualizing an integrated
configuration of mechanical componem-types’ which will collectively satisfy a set
of initial requirements. These requirements include a description of the function(s)
the device is to perform, plus any other qualitative/quantitative
information/constraints applicable to the device. While the functional requirements
are assumed to be given at the outset of the process, additional information and
constraints may be provided at virtually anytime during the process.

- Asis evident from the definition above, neither the model of mechanical conceptual
design nor the computer implementation of it (as presented in this work) are intended
as stand-alone entities. In the chain of mechanical design activities, conceptual design
is the link between functional design and parametric design. The input to conceptual
design is the finictional description of the device produced by the "functional design"
stage and the output from it is the generic structural description of the device to be
passed on to the "parametric design stage"”.

- Without the loss of generality, the fimctional description of a device is assumed to be
in the form of a Function Block Diagram composed of standard basic functions, as
discussed in Section 1.9.

- The domain of application of the presented model (called Design by Exploration or
DbE for short) comprises those devices that can be described as configurations of
existing, known mechanical elements.

- The model and the computer system based on it are case-independent, that is, they
are not restricted to designing only certain devices (as is the case with, for instance,
expert systems). The DbE model can conceptually design any mechanical system that
meets the conditions outlined in the rest of this section.

- The mode! does not require that specific information be initially available. It considers
virtually any set of initial specifications and tries to resolve cases of over- and under-
specification and find the solution(s) to the problem.

- In the present work we advocate the notion of design automation. Strategies
involved in the implementation of the proposed model are designed to minimize or,
wherever possible, eliminate the need for user intervention. The user, however, will

“In the rest of this chapter we shall refer to this configuration as the "device™ meaning the mechanical system
to be designed.
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be able to intervene and make design decisions if required. The model's
computational approach to design decision making will lead to less-biased solutions
as a result of reduced user-dependency.

- The model allows for the generation of multiple feasible design solutions to a given
set of requirements rather than a single "best solution". This strategy will help dispel
prejudice on part of the designer which sometimes precludes unconventional but
superior designs. Nonetheless, the model allows for the optional use of an evaluation
mechanism to choose the optimal solution out of multiple alternatives.

- The model supports the concept of concurrent design. It accommodates the idea of
multiple knowledge-sources each representing one of the product's lifecycle objectives
and each being able to evaluate/criticize the design at virtually any point during the
design process.

- Tt is assumed that the implications of the embodiment-environment interaction can be
represented either as a set of constraints included in the problem's overall constraint
set, or in the form of a knowledge-source capable of evaluating the design at any
point.

Each of the statements above will be further discussed in the following chapters.

1.9 REPRESENTATION ISSUES

Formal representation of the function and the physical structure of a device is a
fundamental component of any attempt at desizn systematization. Without a formal, uniform
and standard representation, an artifact cannot be properly communicated between designers
and manufacturers, or even designers themselves. In this section we introduce a method for
representing devices functionally, The reason for our inclusion of the topic in this
introductory chapter is that the functional representation of devices and the corresponding
terminology will recur in the rest of this work and a minimum familiarity with the definitions
presented here is essential to understanding the contents of the following chapters. The
method to represent the physical structure of devices is discussed in Appendix B.

As mentioned earlier, in this work we assume that the initial requirements of a design
problem are mainly presented in the form of a Function Block Diagram (FBD). In other
words, the functional description of a device to be designed is represented by a FBD, which
is the final product of the functional design stage. This assumption, however, is merely a
matter of convenience and has no significance when it comes to the performance of the
model. Any other representation method with the same qualifications as FBDs will do equally
well. These qualifications include the use of a standard vocabulary of mechanical elemental
functions and the specification of interrelations between these functions (both discussed
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below). Since we shall be frequently referring 10 FBDs and their characteristics throughout
this report, here we present a description of the method.

The representation method
described here is based on a modified
version of (IDEF;) (U.S. Air Force
1981), an information representation Control Data
methodology developed by the U.S. Air
Force in 1981. While IDEF, was ’
intended to model a variety of systems  Input Data . Output Data
"including any combination of hardware, = —0——> Function - >
software and people,” the FBD
methodology is primarily intended to
represent a physical system functionally.
A Function Block Diagram is a Figure 1-2: A single function block
structured graphical representation of
the function(s) of a system. It comprises a set of boxes (nodes) interconnected by a set of
arrows (arcs). Boxes represent the functions carried out by the system and arrows represent
the flow of data (objects and information) that interrelate those functions.

The position at which an arrow enters or leaves a box conveys the specific role of the
interface (Figure 1-2). The arrows entering the left side of a box represent the input data
needed to perform the function and/or acted upon by the function. The arrows leaving the
right side of a box represent the output data generated by the function. Finally, the arrows
entering the top of a box
represent the control data
(conditions or circumstances) '
that govern the function. _1j
There can be any number of —> Functio@—-‘:
input/output/control arrows | |
connected to a box. -3 Function A Fé{gn_ctlo:r[)l

Briefly then, the ' =
arrows connected to the lefR B
and right sides of a function ‘::‘j"d | Fuoetion Ci—
box refer to what is done by '
the function, whereas the ones
connected to the top of the
box hint at why or when the

-

Function Ef—m———-~ - -

Figure 1-3: Interconncetions in a functional disgram
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function is triggered. Unlike the original IDEF, model, FBDs do not include mechanism
arrows, and the bottom side of the function blocks remain unused. This is because at this
stage (beginning of the design process) the structure of the device is not known. As a matter
of fact, determining the mechanism(s) to carry out the required function(s) is the very goal
of conceptual design.

Arrows may branch, indicating that the same data is needed by more than one
function, or they may join, implying that the same class of data may be generated by more
than one function (Figure 1-3). For example, an output arrow representing mechanical
energy as the output from the function box "generate mechanical energy” (say, by an I. C.
engine in a car) can divide into two branches to feed the two function boxes "displace air"
(e.g. in a radiator fan) and "convert mechanical energy to electrical energy” (e.g. in a
dynamo). Also, the two arrows representing mechanical energy from, say, an electric motor
and an 1. C. engine can join to represent the input to a double-input gearbox.

In complex designs where multiple groups of functions (rather than individual
functions) are to be carried out, the overall FBD is usually formed by the junction of several
sub-diagrams connected by "and" joints. One such junction is shown in Figure 1-3. Different
sub-diagrams in a FBD represent different batches of functions where the performance of one
batch does not affect the performance of others directly, and batches can be carried out in
parallel. For example, in a tea-bag making machine one sub-process is to deliver the tea to
the measuring device, measure it, and pour it in pre-made bags; whereas a parallel sub-process
is to feed the special paper, measure it, cut it, make the bag and deliver it to the filling station.
Thesa two sub-processes will be shown by two separate, parallel sub-diagrams joined by an
"and" joint up to the point where the bags are filled with tea. From there on, the filled bags
will be the subjects of a single process.

Associated with each function block (but normally not shown in the diagram) are a
number of specifiers. Specifiers are basically a pre-defined subset of the performance
parameters of a function. The values of the specifiers are needed for the relationship between
the input- and the output data of a function block to be specified quantitatively. For example,
the function "Force Amplification" has "force" both as its input and output data, and has one
specifier Force Amplification Factor (FAF). A "FAF" value of 5 for instance would mean
that the output force has a magnitude five times bigger than that of the input force.

As another example, consider the function "Rotational-Speed Change” with its input
quantity "IRS" (Input Rotational Speed) and output quantity "ORS" (Output Rotational
Speed) and the two specifiers "RSR" (Rotational Speed Ratio) and "TP" (Transmitted
Power). Again, the set of values (RSR=3.0 and TP=10 kw) would indicate that 10 xw of
mechanical power is transmitted to an output shaft rotating three times faster than the input
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shaft.

Besides their specifiers, Function Block Diagrams may also have associated with them
a number of constraints (equality and/or inequality) representing the additional requirements
that could not be contained in the diagrams or expressed in terms of the function-specifiers.
These constraints mainly comprise relations that either restrain the values of the specifiers
(rather than giving their values) or describe some desired structural characteristic of the
designed device. An instance of the former is the relation (2.0 £ RSR < 4.0) in the example
of the last paragraph, indicating that any "Rotational Speed Ratio" between 2.0 and 4.0
inclusive is acceptable in the example transmission. As for the latter (a relation describing a
desired structural charactenstic of the designed device), consider the relation (Weight,,, <
15 kg) which restrains the total weight of the required transmission device to 15 kg. Briefly
then, the quantitative information associated with a FBD is composed of two types of
relations; those that directly give the values of some of the specifiers and those that otherwise
restrain the values of the specifiers and/or other design/performance parameters of the
problem. ‘

Complex mechanical systems may be represented as hierarchies of function block
diagrams rather than a single diagram. In this case, each function block in a higher level
diagram will be represented by a separate, more detailed FBD further down the hierarchy.
This way, each lower level FBD will reveal a certain degree of details about its parent FBD
(Figure 1-4). '

In an integrated design environment, the description of objects {mechanical
systems/subsystems) must be communicable among various phases of the design process as
well as various designers. This implies that final (lowest level) FBDs must be composed of
a common vocabulary of function blocks. One such vocabulary, called the Standard
Elemental Functions is included in Appendix A and is discussed in the following subsection.
In the rest of this report, the term Function Block Diagram will specifically refer to the most
detailed version of a FBD in terms of these standard elemental functions.
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Figure 1-4: A typical FBD hierarchy

1.9.1 STANDARD ELEMENTAL FUNCTIONS

In functional design, the final presentation of the initial requirements must follow a

common, formal vocabulary. An ideal vocabulary of mechanical functions has to be
- comprehensive enough to be able to describe all mechanical functions,
- case and user independent, and
- agreed upon by the engineering design community.

When decomposing a task, human designers show an experience-driven tendency to
employ task-specific subfunctions. In other words, they generally stop further decomposition
of a function which, they know from experience, can be performed by an existing
component/subsystem. While this is definitely advantageous in traditional manual design, it
is evidently in contrast with the intent of automated design which, among other goals, seeks
to generate novel design ideas through impartial decomposition of desired tasks.
Furthermore, the outcome of the traditional approach to task decomposition will totally
depend upon the designer's personal experience and {possibly incomplete) knowledge of
existing components and cannot be generally understood and processed by other
designers/design phases.
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Several researchers have attempted to establish a criterion for the classification of
mechanical functions. A common trend has been to set up a functional hierarchy by
introducing a number of "basic" functions and applying them to each of the three main
quantities (material, energy and signal). Each branch in the hierarchy would be further split
according to the physical form of the handled entity, input/output of the function, etc
(Rodenacker 1984; Hundal 1990; Koller 1985). The number of "basic" functions varies from
3 (Rodenacker 1984) to 24 Koller (1976). In this thesis we follow a classification of our own
which is based on introducing eight basic functions, refining these functions hierarchically, and
applying them to various quantities. This classification is partially presented in Appendix A.
Again, note that this is only a suggested set of functions intended to help us demonstrate the
performance of the DbE model.

In Functional Design little attention, if at all, is paid to the solution (final design), for
the objective here is just to provide a standard definition of the problem. Neither the
individual block functions nor their arrangement in a function block diagram are meant to hint
at particular components/subsystems, but rather to display the order in which various
functions are to be carried out and their inter-relations. Later in this report we will discuss the
importance of the notion of solution-neutrality in functional design and how it paves the way
for possible novel design solutions.

1.92 EXAMPLE

Let us consider the FBD of a simple electric drill (Figure 1-5). For demonstration
purposes let us assume that the output axis of the drill must be perpendicular to that of the
driving motor. At the top level, the desired function is represented by a single function block
(drill). It can be seen that at a control signal, the input to the block (electrical energy) is
converted to a special type of mechanical energy (rotation of a drill bit at certain speed and
torque). A closer look at this abstract function block reveals the details of the desired
function (lowest level).

As the lower part of Figure 1-5 shows, now six standard elemental functions are used
to describe the required drilling function. (Note that the names of the SEFs have been slightly
changed from those in Appendix A so that they would graphically fit in designated boxes.)
As pointed out earlier, here the arrows entering and leaving the boxes demonstrate the
interrelations among the SEFs, The output signal from a "switch” function tells the "energy
conversion" (e.g. by an electric motor) when to take place. The diagram also shows that the
drill bit must be "gripped" (say by a chuck) before the torque is transfered to it. These two
instances show the typical role of control data in the functional description of a device.

We shall return to the above example in the following sections.
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Function Block Diagrams are the main output from the Functional Design phase.
They are then reported to, and make the input to the next phase, the Conceptual Design.
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Figure 1-5; FBD of a simple drill

1.10 SUMMARY

In this introductory chapter we presented different views about the nature of design
in general and mechanical design in particular. It was pointed out that the latter can be
roughly divided into three distinct stages "functional design", "conceptual design” and
"parametric design". We also cited some of the attempts at learning how humans design and
whether artificial design systems could (or should) emulate that process. A review of the
three major classes of proposed paradigms for design (namely the descriptive, the prescriptive
and the computer-based models) was presented and it was argued that these paradigms are
not "mutually exclusive".

Having pronounced the objective of the current research as fo develop and implement
a computer-based model of mechanical conceptual design, we then discussed some
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complications of the stated task and a number of parameters that have impeded significant
developments in the field. Also, to further specify the scope of the research, we discussed the
major assumptions we will be making throughout the work and highlighted some of the more
important features of the developed model. Finally, we expanded one of our assumptions
regarding the initial problem representation and presented an overview of Function Block
Diagrams and their vocabulary, the Standard Elementa! Functions.

The body of this report is organized in the following form.

~ Chapter 2 presents a critical review of the related work, i.e. of the other attempts at
modelling and automating the process of mechanical conceptual design to date.

- Chapter 3 provides an overview of a computer-based model of mechanical conceptual
design called Design by Exploration.

- Chapter 4 discusses the implementation of Design by Exploration. This chapter is a
bridge between the abstract overview of the model presented in Chapter 3 and the
detailed description of its problem-solving tools and techniques presented in Chapter
5. It also describes the overall architecture of the Conceptual Designer, the computer
implementation of the DbE model.

- Chapter 5 elaborates the problem-solving methods involved in the implementation of
DbE. Computational as well as reasoning procedures are presented in detail and
illustrated through example design problems, and

- Chapter 6 presents a comprehensive case study to demonstrate the performance of the
Conceptual Designer, plus a comparison between the results produced by DbE and
those produced by two groups of human designers (student projects).

- Chapter 7 contains a summary of the thesis and its contributions plus some concluding
remarks.
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CHAPTER 2
RELATED WORK

In this chapter we shall briefly review some of the more mature works on computer-
aided conceptual design of mechanical systems reported in the literature. This will serve two
main purposes: to acquaint the reader with the major developments in this area of research
and to help us introduce some of the concepts that will form the basis of our discussions in
the following chapters. Our account of the related research will cover only those works that,
at least partially, fit into our definition of conceptual design in Chapter 1. This means that
we shall not discuss some of the less related works that, though prominent, are concerned
with other aspects of mechanical design', although some reviewers have not made this
distinction and have referred to all these works with such general terms as "design
automation” or "artificial design processes".

There will be, of necessity, limitations to our presentation of various works. Our
emphasis will be on those aspects that best characterize the contribution of each work and
that will highlight ours in the rest of this report. Among these aspects are completeness,
domain-independence, automation (user-independence) and practicality, as will be discussed
as required.

The earliest works on conceptual design and its systematization were done by
Europeans, especially Germans. They started out by developing sets of icons to
systematically represent mechanical functions. In doing so, they developed classifications of
mechanical functions in the form of function hierarchies (Pahl and Beitz 1991; Koller 1973;
Krumhauer 1974; Rodenacker 1976; Roth, Frank and Simonek 1972) and defined a symbol
for each function (Koller 1976). The purpose of these works was initially to facilitate the
presentation of design ideas and to help the designers "speak the same language" in design.
Later, it was suggested that using a library of standard mechanisms (components), one could
substitute known physical elements for functional icons to get a rough preliminary description
of the device (Crossley 1980). A few examples of the "function icons" and their suggested
physical equivalents are shown in Figure 2-1 (from Crossley 1980). This strategy, generally
referred to as "function-to-form-mapping" in the literature, is the essence of several

'This includes the valuable works of Dixon et al. {c.g. Howe et al. 1986; Orelup, Dixon and Simmons 1988),
Brown (¢.g. Brown and Chandrasckaran 1986) and Shah et al, {¢.g. Shah, Ramachandran and Langrana 1987,
Ramachandran, Shah and Langrana 1988) on Parametric Design, Erdman (e.g. Thompson, Riley and Erdman
1985; Rosen, Erdman and Riley 1987) on Linkage Design, Maher (c.g. 1985; 1987) on Configuration Design
and Agogino (e.g. Cagan and Agogino 1988) on Innovative Design.
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conceptual design systems postulated over the last decade, and will be discussed in some
detail later in this report.

Symbol of Function _ Possible Devices

Convert or transduce .~ -

Figure 2-1: Typical "function symbols” and their equivalents
(after Crossley 1980)

Aiming at "generating designs from a specification of their abstract behavior", Ulrich
and Seering (1988a; 1988b; 1989) propose a methodology called schematic synthesis for
generating physical descriptions of a class of mechanical systems from their abstract functional
descriptions. According to the classification presented in Chapter 1, their methodology spans
over conceptual design as well as a special form of functional design in which the function
blocks can be determined by manipulating simple governing effort-flow relations.

26



The domain in which they have applied their methodology is that of Single-Input,
Single-Output Dynamic Systems (SISODS). This consists of the devices that can be
described as networks of lumped-parameter idealized elements, and whose behavior can be
specified by a relationship between a single input quantity and a single output quantity.
Examples of devices in this domain include pressure gauges, speedometers, pneumatic
cylinders and accelerometers. A very important characteristic of this design problem is that
one need not deal with the geometry or material properties of its devices.

A conceptual design problem in this domain is then defined as follows.

"Given the input and output quantities of a mechanical system and a desired relation between
the two, find the schematic description (configuration of component-icons) of a system that
provides that desired relationship."

Trans, Mechanical | Rot. Machanicy! Fluld Electirical Effort-Fiow Relation
[hertaner
CI:; ——=— ofma £ lE
a
MASS ROT.INERTIA, | F.INERTANCE INDUCTOR :
Crpacitance -
MWW (om0 | =C | Al | e
. SPRING ROT.SPRING | F.CAPACITANCE|  capacTTOR &
Resisunce
= T | e | W] e
DAMPER ROT.DAMPER | F.RESISTANCE RESISTOR
Source vy A v Efforts and Flows
Ky Ko W] specified by these
LN A TO sources
Effort Quandty Foree Torque Prestuc Voluge ——
Flow Quantity Velkocity Angulay Velocity | Volume Flewrae Curment —_—

Figure 2-2: The building blocks of a "schematic description”
(after Ulrich and Seering 1989)

The solution strategy proposed by Ulrich and Seering is composed of two steps: 1) generate
a schematic description (equivalent of a Function Block Diagram) of the system, and
2) transform this schematic description to a structural (physical) description, Since in the
current work we are concerned about the latter (i.e. the coaceptual design step) we shall
not further discuss the former (i.e. the functional design step).
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The elements used to represent the — |
schematic descriptions in the specified domain EE ) ﬂi&
are shown in Figure 2-2 and some of the

. PUMP/TURBINE  PISTON and CYLINDER
component-icons used to represent the '
physical description of systems are shown in
Figure 2-3. Having generated the functional
description of a system, the proposed strategy
initially generates a rough physical description
of the system through a direct, one-to-one MOTOR/GENERATOR
substitution of physical-component icons for RACK AND PINION
functional icons. It then looks for Figure 2-3: Some of the component-icons used
opportunities to simplify this design by using in "schematic synthesis”
what are called "physical features" of the design. (after Ulrich and Seering 1989)

" The procedure just introduced can be formally presented as follows.

- Given a potential function:.! design, i.e. a tentative configuration of functional icons
connecting the input and ourput quantities, find and substitute one physical icon for
each functional icon.

- Using the effort-flow relations of the individual components, derive the equation
relating the input and output quantities.

- Compare this equation to the desired one, that is, see if the derived equation represents
the desired relationship between the input and output quantities. If so, the design is
accepted and the design process ends. Otherwise

- Using the domain-specific knowledge, find out what functional elements are missing
from the picture, and add their physical equivalents to the design.

- Repeat the above step until the design exhibits the desired functional behavior, or is
found unmodifiable.

Figure 2-4(a) presents the example problem of a "current meter" design (Ulrich and
Seering 1989) in which the input quantity is electric current and the output quantity is
velocity. The desired relationship between the two quantities is "integration”, that is, the
integral of the output quantity (e.g. the displacement of a pointer) is to be proportional to the
input quantity (current).

One immediate solution found according to the proposed strategy is shown in Figure
2-4(b). Two component-icons (an electric motor and a rack and pinion) are mounted in place
of the dashed box in Figure 2-4(a). The design is considered tentative until it proves to satisfy
the requirements.

=
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Figure 2-4: The current-meter (a) and one immediate solution (b)
{after Ulrich and Seering 1989)

The first requirement is readily satisfied: the candidate design does transform current
to velocity. However, the second requirement is not satisfied, as it is the velocity itself that
is proportional to the current and not its integral.

To fix this problem, a mass M and a spring are added to the system, rendering the
input-output relationship one of the integral type. Two instances of the final design are
shown in Figure 2-5.

—

Figure 2-5: Two schematic solutions for the current-meter problem
(after Ulrich and Seering 1989)

Although successful in its task of synthesizing the physical description of a device
from its functional description, the methodology has drawbacks both in its domain of
application and as a general conceptual-design methodology. Among these are the following.

- The methodology is incomplete in the sense that it does not provide the means for
excluding redundancies in designs and hence leaves the door open for an infinite number
of design alternatives, all "acceptable" by the standards of schematic synthesis. In other
words, the methodology approves any design that performs the desired functions, even
though it may contain redundant components that do not affect the nominal behavior
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of the design. This way, an infinite number of designs can be generated by adding to
a minimal design any of the "neutral" components or pairs of components (such as
motor-generator couples).

The methodology does not take into account the secondary functions inevitably inherent
in the physical existence of the components. The components are assumed ideal, single-
functioned entities with no geometric/physical significance and have no effect on the
performance of the design but what they are selected for. In reality, however, the
secondary functions and the physical characteristics of mechanical components often do
affect the overall performance of a design and ignoring these effects will result in
inferior designs, as we shall further discuss in the following chapters.

- The domain of application of the proposed methodology is limited to a very small class
of mechanical systems and the techniques utilized to implement the methodology
(including a mapping of the mechanical system onto the electrical domain) cannot be
extended to other, broader domains.

- It is assumed that the only requirement of the problem is the desired relationship
between the input and output quantities. No other constraints are taken into account
and the problem is presumed static, i.e. none of the characteristics of the problem would
change in the course of design. This, however, hardly represents the real-world
problems, especially in the case of complex systems, where both the infcimation and the
requirements of the problem are subject to changes during the process.

- The methodology follows a general design-evaluate-refine scenario whereby no
evaluation of the system is done until the design(s) is (are) cemplete. If partial designs
were evaluated intermittently for feasibility during the design process, the infeasible
ones cculd be detected and rejected early in the process, hence saving a noticeable
amount of processing time and avoiding possible combinatorial explosions.

Perhaps the closest work to the research presented in this report is that of Hoover and
Rinderle (1989). They propose a synthesis strategy for generating structural descriptions of
mechanical devices initially described by their abstract functional behavior. The strength of
their work is partially due to their realization of the following facts.

- Unifunctional mechanical components rarely, if at all, exist. Physical components
exhibit unintended behavior in addition to their well-known, intended functions. "Form"
of a component also may affect its function and must be considered simultaneously.

- Direct, one-to-one substitution of physical components for their functional counterparts
will often result in inferior designs. The designer must utilize the secondary functions
of the mechanical elements as well as their main functions.

The proposed strategy requires that the device to be designed be first represented by
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its specification graph. A specification graph is basically a bond-graph representation of the
functional requirements of the problem. Standard function- and geometry-primitives are used
to compose specification graphs. As an example, the specification graph of a spur-gear set
is shown in Figure 2-6. In this example two primitives ("reducer” and "geometric") are used
to describe the problem,

Geometric
Reducer
ratio: 2501 Theta: =0
) ) Psi;
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s ©enw Y: -125
Z

Figure 2-6: The "specifications graph” of a spur-gear drive
(after Hoover and Rinderle 1989)

Once the specification graph is generated, a series of function-preserving
transformations is applied to the graph which eventually transforms it to a functional
description of the device. A "transformation" in this context means a re-organization of the
specification graph so that the resulting graph is functionally equivalent to the original one.
The purpose of a transformation is to produce a version of a graph in which each building
block corresponds to an actual mechanical component. To define a _function-preserving
transformation, Hoover and Rinderle differentiate between the "function" and the "behavior"
of a device. In their terminology "function" refers to the intended activities of a device
whereas "behavior" refers to its overall activities (intended and unintended). A function-
preserving transformation is hence defined as one that preserves the functionality or design
intent of the original specifications. A re-organized version of the graph in Figure 2-6 is
shown in Figure 2-7 after being altered by such a transformation.
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Figure 2-7: The transformed specification graph of a spur-gear drive
(rfter Hoover and Rinderle 1989)
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The synthesis strategy of Hoover and Rinderle (Figure 2-8) can be summarized as the
following steps (from Hoover and Rinderle 1989),

1) Develop a specification graph that
represents the functionality of the
device to be designed.

2) Utilizing general engineering
principles or domain-specific
knowledge, apply any relevant
general transformations to the
specifications graph.

3) Of all the matching components
(those with a form-behavior graph
that matches part of the device's
specification graph), find the one
with the highest degree of
functional integration as measured
by the number of primitives
matched in the specification graph.

4) If necessary, perform a validity
transformation, i.e. re-organize the
specification graph so that the
elements of the resulting graph
map onto the valid ranges of some
existing components.
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Figure 2-8: Functioning of the synthesis strategy
(after Hoover and Rinderle 1989)

5) Instantiate the best component (found in previous step), that is, solve its design
equations to get a parametrically-complete description of the component.
6) Apply an instantiation transformation to the specification graph to reflect the functional
and physical characteristics of the selected component.
7) Repeat the above process until a complete design configuration is generated.
Hoover and Rinderle report that steps 3 through 7 of this methodology have been
successfully applied to the domain of single-speed mechanical power transmissions and that
a program has been developed to partially implement these steps. The following observations

are true of the above synthesis strategy.

- The strategy has been implemented and tested in a very limited domain, namely that of
the spur-gear design, and no attempts have been reported towards its generalization.
It requires that the validity- and instantiation transformations be separately dcfined for
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each type of component. The same is true about the other procedures involved in the
synthesis process. Devising techniques that are general enough to apply to a broad class
of mechanical systems poses serious challenges to a methodology of this kind.

Also, the strategy partially relies on decisions made by the designer/user, especially in
steps 1 and 2 above. This is in contrast with the notion of design automation
presumably intended in the development of the strategy. Special problem-solving and
programming techniques are required to reduce the dependence of the methodology on
the user’s decision-making abilities.

The methodology aims at generating one (presumably the best) design solution to a
problem. It uses a best-first search strategy whereby in each stage of the design process
it determines and selects the best component available. As the authors admit, however,
this strategy does not necessarily lead to the desired outcome. This is because in a
search tree, the path representing the globally optimal solution does not aiways
comprise an elite set of internal points. It is quite possible that by rejecting a sub-
optimal internal node one will lose the winning path. This issue will be further discussed
in the next chapter.

The authors point out that the overall functionality of a device cannot be represented
by just an unorganised set of (form and function) primitives and that their configuration
and interrelations have to be taken into account as well. Yet the reported strategy fails
to make provisions for checking these in a design. According to the strategy, a
component will be selected if and only if its schematic description matches any part of
the initial specifications, regardless of whether or not the precedence order of the
components and their interrelationship are fulfilled. This issue will be further discussed
in the following chapters.

The strategy uses a separate set of case-specific primitives to develop the schematic
descriptions. This means that each system/component is presented in a vocabulary of
its own. Communications among various parts of a design as well as between various
designs rests upon the existence of a universal vocabulary of standard functions.
Without a common language, it will not be possible to process a design in its entirety
and to assess its performance.

The design problem is considered "static" by the proposed strategy, that is, it is assumed
that the specifications and requirements of the problem remain the same throughout the
process. This is not true of real-world problems where each component of a system,
once selected and instantiated (parametrically designed), may pose new constraints on
the entire system, especially its adjacent components. Hence the least a design system
should do is to provide means for intermittently checking the candidate design(s) in the
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light of the emerging system-level constraints.
In the following chapters we shall discuss a number of methods to fix the above problems.

The concept of "dynamic” design problems, as opposed to static ones just mentioned,
has been well explored by Serrano and Gossard (1987, 1988). They assert that much of the
engineering design process involves the recognition, formulation and satisfaction of
constraints and that constraints are continually being added, deleted and modified throughout
the development of a device. Based on this belief, they have developed a conceptual design
system, called the concept modeller, that allows the user to "conceptually experiment with
various design alternatives” although it does not performa any design synthesis activity of its
own. In other words, using the concept modeller, a designer can interactively construct
conceptual models of his’her design ideas and analyze them to learn about their feasibility.

Two main metaphors form the basis of the concept modeller: the building block
metaphor and the dependency-sphere metaphor, The former provides the user with the tools
to construct a conceptual model of their design by assembling standard building blocks (icons
rep'resenting mechanical elements) whereas the latter gives them necessary tools (basically
constraint-management techniques) to study the performance and feasibility of the generated
designs.

The system architecture of the concept modeller is shown in Figure 2-9. The concepr
base consists of a library of component-icons. Associated with each icon are the component
properties describing its physical nature (form, size, material, etc.) and its behavior (physical
laws, etc.). The default values of component properties can be overwritten by the user. The
working memory is the work bench on which the icons are manipulated and design concepts
are constructed. It displays the status of the design and the values of the design parameters
at each time. The user can interactively make changes and additions to this memory. The
constraint manager acts as the inference engine for the concept modeller. It has four basic
jobs: constraint evaluation, minimization of computations, consistency maintenance and

qualitative reasoning.
[ User I(ntetisce ii
Goncept
Base l

Figure 2-9: The system architecture of the "concept modeller”
(after Serrano and Gossard 1988)
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Once an icon (component) is picked by the user and posted on the working memory,
the constraint manager comes into play and does the following.

- Evaluate the goveming constraints of the selected component for given values to reveal
the order in which the constraints should be solved and the parameter which can be
calculated by each constraint.

- Identify and isolate those constraints relevant to a requested computation through
tracing dependencies among parameters.

- Spot the conflicts and inconsistencies among the constraints and bring them along with
their sources to the attention of the user. The user then resolves the conflicts by
changing the values of some parameters or their assignments to constraints.

- Determine the sensitivity information among the const.aints, that is, which "strings”
should be pulled (which input parameters should be changed) to result in a desired
change in certain output variables.

In order to do all this, the concept modeller builds and uses a graphical network to
represent the constraints and their relations. A constraint network is basically a directed
graph in which the nodes represent design parameters and the arcs represent the constraint
relationships. Let us illustrate this by an example problem of a welded cantilever beam
(Figure 2-10(a)). The problem constraints and corresponding constraint network are
presented in Figures 2-10(b) and 2-10(c) respectively. An evaluation of the constraint set
results in the assignment graph presented in Figure 2-10(d). It gives the primary and
secondary assignments of parameters to constraints, recommending which parameter be
calculated from which constraint. This in turn allows the constraint network of Figure 2.
10(c) to be converted to the tree-like structure of Figure 2-10(e).

Now that the converted constraint network is in the form of a simple tree, one can
simply move up the tree from the leaf-nodes and calculate the unknowns. In this case the path
would be as follows.

- Substitute the values of h, b and d in f1 (Figure 2-10(b)) and calculate I.

- Substitute the same value of d in f3 and calculate c.

- Substitute the values of F and | in f4 and calculate M.

- Substitute the calculated values of M, ¢ and I in f2 and calculate o.

The tree also shows which input parameters should be touched to result in a change in a
desired output parameter.

The methodology of Serrano and Gossard offers valuable insights into the complex
process of engineering design especially from a constraint-management perspective. It takes
into consideration the dynamic nature of the process and, with this in mind, provides the
designer with the necessary tools to construct, manipulate and evaluate conceptual models
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Figure 2-10: A welded cantilever beam example and its solution steps
(afler Serrano and Gossard 1988)

of mechanical systems. However, the methodology cannot be, and is not intended to be, used
as a stand-alone conceptual design system because a computer system based on this
methodology relies heavily on the interventions by the user. Also,

- the system bypasses the elements of "configuration" and "interactions"” in design, It
treats complex devices simply as "bags of components" where the configuration and
precedence order of the components do not have any significance at all. It also ignores
the interactions between various components of a design and assumes that the physical
and functional presence of a component have no effect on the behavior of the others.

- the constraint-management techniques embedded in the methodology only consider the
equality constraints and ignore the inequality constraints inevitably present in any real
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engineering problem. As we shall discuss in the following chapters, many of the
requirements of engineering design problems, hnth at system level and component level,
are expressed as inequality constraints.

- the methodology involves a deterministic approach to constraint management. It
idealistically requires that the equation set of a component be "exactly conswrained”
before it attempts a solution, meaning that there must always be exactly enough initial
information to render an "n algebraic equations in n unknowns" case. This, however,
does not conform with the reality of engineering practice where the designer has to put
up with whatever initial information is available and where this often means an over- or
underconstrained constraint set. Also, once the required information is provided, the
system will find the same, single solution to the problem every time it is activated. Later
in this report we shall introduce techniques that will enable the system to generate a
broader variety of design alternatives both qualitatively and quantitatively.

Rao et al (Rao, Wang and Cha 1992} propose a different model for conceptual design
of mechanical products. The Design-Analysis-Evaluation-Redesign (DAER) model
emphasizes the last three stages (i.e. the analysis-evaluation-redesign cycle) while relaxing on
the first one, Unlike those models that invest the most on "generating" a design based on the
requirements, the DAER model requires that a preliminary design be given to it so that it can
iteratively analyze it, evaluate it and, if not satisfactory, redesign it. According to the model,
this preliminary design can be produced randomly, inspired by existing designs or generated
by a human designer so that it meets all or part of the initial requirements.

Based on the DAER model, Rao et al have developed a design environment called
Integrated Distributed Intelligent Design Environment (IDIDE) which can be used to develop
special-purpose conceptual-design expert systems. The general problem-solving strategy of
the IDIDE is presented in Figure 2-11 and is summarized below (from Rao, Wang and Cha
1992).

1) Define the problem for design tasks by "transforming the application environments and
design purposes to functions", where the functions are taken from an "expertise function
memory".

2) Transform the functional description developed in the previous step to a structural
description using building blocks from a structure memory. If the existing building
blocks are not sufficient, new ones have to be devised.

3) Develop the detailed description(s) of the design generated in the previous step using
specific design knowledge stored in a "models memory" in the form of object-oriented
frames (parametric design).

4) Analyze the product(s) of step 3 using numerical methods (e.g. statistical analysis,
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optimization, etc.) from a "methods memory". Only the feasible designs are kept and
the infeasible ones (not satisfying all requirements) are rejected.

5) Using techniques from fuzzy mathematics and system engineering, evaluate the feasible
design(s) of step 4 and find the optimal one.

Design objective
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Figure 2-11; General IDIDE problem-solving strategy
(after Rao, Wang and Cha 1992)

The proposed methodology provides necessary tools for developing expert systems
capable of designing individual mechanical systems and is especially good at reasoning and
decision-making aspects of design. However, the details of the five implementation steps just
outlined, especially the first two, have not been reported. It is not clear how the functional
design (step 1) and conceptual design (step 2) are practically carried out and which
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computational techniques have been exploited. The complexity of these two steps has thus
far unpeded the full automation of mechanical design and the immaturity of existing
computational and reasoning techniques has forced researchers to focus on limited portions
of the process or limited classes of mechanical systems. A complete evaluation of the
methodology therefore is not possible at this time.

Also, according to our definition of conceptual design in Chapter 1, "generating an
abstract description of a device in terms of component-icons”, which here is partially left to
the user, is the whole purpose of conceptual design. The rest of the process (analysis,
evaluation and redesign) is what some researchers refer to as design refinement and is
generally not considered part of the conceptual design process.

A function logic approach to conceptual design has been proposed by Sturges (1990;
1992). It uses a set of linguistic and hierarchic rules to develop and analyze function-block-
diagram representations of mechanical devices. In the work of Sturges, a FBD has three
types of information associated with it: function blocks (compact verb-noun descriptors of
what the design does), allocations (constraints, performance requirements, specifications and
resources) and physical components.

WHY HOW
B — e e i .
Lower :
..... Ordar t—
Funclion 1 :
: | Seconcary |7 . w2 |
. . | Function 1 .. :
mew o1 | M 1 ----d LOF3 :
Ouder | 1 |B2E SF2 Jeeeool : :
Funcien | * Function - M
: ; LOF 4 :
: | sf3 |..... :
..... LOFn —'®
Scope Line )
Scope Lire
Objective ——— —— Actlons . Comp

Figure 2-12: General structure of a Function Logic Diagram
(after Sturges 1992)

The general structure of a FBD, in this case called a Function Logic Diagram, is
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shown in Figure 2-12. Higher order (i.e. more abstract) function(s), representing the design
objective, are placed at the left end of the diagram. As one moves right-bound in the diagram,
these abstract functions get decomposed to lower-level (i.e. more specific) functions and
finally, at the right end of the diagram, are replaced by component-icons. This way, a
completed diagram would embody the conceptual design process, that is, the transformation
of an abstract functional description of a device to its structural description.
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Figure 2-13: The function logic diagram of a mousetrap
(after Sturges 1992)

The function logic diagram of a mousetrap is partially shown in Figure 2-13 as an
example. The rightmost function blocks (leaf-nodes) will ultimately be replaced by physical
components. According to Sturges' paper (Sturges 1992), this replacement is carried out "by
the designer before the detail design begins". It is not clear whether or not this implies direct
intervention by the user, and in either case how the implications of multifunctionality and
form-function relations in mechanical elements are handled. If the function of the proposed
function-logic methodology goes just as far as function decomposition, then it will more
properly fit the definition of "functional design" rather than "conceptual design".

Further evaluation of the function-logic model is not possible at this time since a
problem-solving strategy and corresponding computational techniques have not been
reported.

A number of other conceptual design systems have also been proposed/developed.
Most of these systems are either custom-made to fit the requirements of certain
industries/products or still at an early stage of development. In either case here we do not
categorize them as general conceptual-design systems and will not discuss them in detail.
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This is because many of the challenges mentioned in this chapter and elaborated in the
following chapters do not arise unless one attempts to generalize the design technique to
encompass a vast range of mechanical systems and gets to implement these techniques. It
must be clearly stated what "design paradigm" a proposed design system is based on, which
knowledge-sources are presumed available and what strategies are used to exploit these,
usually diverse, knowledge-sources to get to the solution state. Otherwise, a comprehensive
and realistic evaluation of these systems will normally not be possible. In the following
paragraphs we shall nonetheless mention a number of these systems.

Motivated by a Ford Motor Company project to partially automate the preliminary
design of its cars, Colton et al. (1990), Colton and Ouellette (1993) and Ouellette (1992) have
developed a Vehicle Related Object Oriented Model (VROOM) for the conceptual design of
automobiles. The model adopts a direct functions-to-components-mapping strategy whereby
specific functions of a car are mapped onto auto parts in order to generate a structural
description of an automobile. Two commercially available packages, the parametric design
system ICAD (ICAD User's Manual) and the blackboard environment GBB (GBB: User's
Guide), have been used to implement the proposed design system.
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Figure 2-14: A typical function-form mapping of an automobile, based on the VROOM model
(after Colton et al. 1990)
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The vehicle is first decomposed into function and form hierarchies. Each of the three
main functions (namely "transport”, "protect” and "please") and three forms (namely “power
generation”, "chassis" and "body™) of a car are decomposed into three-level hierarchies. For
example, the function "transport” is decomposed into, among others, control motion (2nd
level) and "steer vehicle" or "accelerate vehicle" (3rd level). These 3rd-level functions are
then somehow mapped onto the same-level forms (components/subsystems). A typical
mapping of this form is illustrated in Figure 2-14. Again, the mechanism of this mapping and
the way the secondary functions of mechanical components are taken into consideration, if
at all, have not been discussed.

Zhang and Rice (Zhang and Rice 1992) assert that "the essential feature of a
mechanical system is that there is motion involved” and that any mechanical system can be
conceptually represented in terms of seven "functional blocks": working block, driving block,
transmission block, control block, support block, tribological block and auxiliary block.
Based on these assertions, they propose a methodology for developing expert systems capable
of conceptual design of "standard” devices. A "standard" device is defined as one that is "well
specified by codes, standards or corporate procedures".
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Figure 2-15: Classification of mechanical design problems-according to Zhang and Rice
{after Zhang and Rice 1989)

In their methodology, knowledge of different devices and their functions is stored in
the form of "information chunks” with their names known as "tokens". Each chunk contains
information on function, properties and detailed design data (e.g. dimensions, materials,
manufacturing and maintenance requirements) of a device. Another group of tokens are the
"configuration" tokens representing pre-defined abstractions of topological configurations.
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During the design process, the initial "need" is matched against the "functional slot” of
configuration tokens to select proper configurations. Then, guided by this configuration,
design primitives (functional and consequently physical) are selected. If more than one design
alternative is found, the "advantages and disadvantages" of these are deduced and compared,
and the best is selecied.
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Figure 2-16: Pre-defined configuration of an overhead-crane
{(afler Zhang and Rice 1989)

The proposed methodology has been implemented in the context of Overhead-Crane
design. According to Zhang and Rice's classification of mechanical engineering design
problems (Figure 2-15), the problem of crane design is of the "assembly design” type.
Furthermore, they acknowledge that the configuration of the device is known in advance
(Figure 2-16) and that the job of the design system is to answer such questions as “is an
auxiliary hoist needed?", "how many wheels are to be used for trolley drive?" and "what type
of driving device (AC or DC motor) should be used?" This deviates from our definition of
conceptual design in Chapter 1 where we included in the job description of a conceptual
design system the ability to decide the components of a device and their configuration based
on a functional description of the device.

The crane expert system uses Object-Oriented Programming techniques to model the
crane component-types and component-instances as "classes" and "instances" and thus
maintains its flexibility to deal with a variety of crane types and specifications. However,
because the components are treated as individual elements, the system fails to consider the
interactions among various components of the crane. For example, the effect of choosing 6
wheels instead of 4 on the natural frequency of the crane, or their weight on the design of
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axles are not taken into account.

Based on the theory of "Relational Database" (Codd 1970), Lai (1987a; 1987b) and
Lai and Wilson (1987) have developed an automated system for conceptual analysis of
mechanical products. The rational behind the development of the system is that "most new
mechanical designs in industry are based on ideas from previous designs", and that with a
"functional rationalization" of an existing design, it is possible to improve the quality of it and
to generate new, better designs. The proposed design methodology comprises the following
steps.

- Decompose a primary design into modules and components,

- Describe the architecture of modules, the assembly relations between components and
modules in terms of functions,

- Identify the redundant functions, overlapped functions and mis-assigned functions,

- Improve the design by eliminating redundancy, rearranging remained functions, and
by introducing new ideas.

Lai's design methodology succeeds somewhat in taking into consideration the
significance of functional redundancies and interactions in design, but then again it fails to go
past the functional reasoning barrier and take into account the implications of the design's
physical existence. Hence physical aspects of mechanical devices such as geometry, material
and dynamical characteristics do not play a role in the evaluation of a design. Also, as
mentioned earlier, the function of the proposed methodology falls in the "design refinement”
category rather than conceptual design.

With this we conclude our review of the related work. Some of the works reported
here will be revisited later for comparison purposes, and many of the concepts introduced in
the course of our discussions will be elaborated in the following chapters.
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CHAPTER 3

A COMPUTER-BASED MODEL OF
MECHANICAL CONCEPTUAL DESIGN

3.1 THE BASICIDEA
As argued earlier, Mechanical Conceptual Design cannot be adequately represented
by a direct, one-to-one mapping of the set of desired functions onto a set of known physical
elements. This is because
I) a single element may contribute to more than one desired function and more than one
element may be required to achieve any single function, and

I1) the overall functional behavior of a design cannot be determined unless its form-function
relations at both system and component-level as well as the interactions among its
components are taken into consideration.

Since constraints are an integral part of any representation of the form and function
of mechanical devices, the two statements above imply that some degrce of constraint
analysis must be performed during conceptual design rather than being entirely left for a later
parametric design phase. Without such an analysis, values of the design/performance
parameters cannot be determined and therefore the knowledge about the various functions
a component can perform will be limited, at the most, to a qualitative level. This, plus the fact
that interactions among components of a system are tightly related to their
structural/mechanical characteristics such as geometry, weight, natural frequency and carried
load, will preclude an understanding of the overall functioning of the system and will likely
result in poor or even infeasible designs.

Suppose, for example, that in a transmission system, power is to be transmitted from
an input shaft to & parallel output shaft, and that a conceptual designer has decided to do this
using a worm-gear set. From a generic description of the subsystem "worm-gear" we know
that it can "transmit power", "change rotational speed" and "change axis of rotation". This
would probably be as much information as we can get if we chose not to examine the
"dossier” of the subsystem including its constraint set. Then we would not know the types
(axial/radial) and magnitudes of forces applied to the shafts and hence would not be able to
decide the bearing types (radial/radial-thrust bearings, ball/cylindrical-/spherical-/tapered
roller, etc.) to support the shafts. Also, we would not be aware of the incidental function
"locking" of the worm-gear and that we could possibly exploit this to spare a brake in systems
such as elevators and automatic doors.
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To solve the problem just described, two general strategies have been proposed. The
first strategy (Ulrich and Seering 1988; 1989) prescribes a functional debugging following
a direct substitution of physical elements for functional elements. The procedure is to
systematically look for opportunities to simplify the raw design by using additional functions
of the physical elements. In other words, the designer examines the raw design and finds and
removes those redundant elements whose functions are covered by other elements as their
secondary functions. This strategy has been sucessfully applied to the schematic synthesis of
single-input single-output dynamic systems, as explained in Chapter 2,

The second strategy, mostly advocated (though not explicitly stated) by the fans of
systematic design (see Crossley 1980 for example) suggests that the direct function-to-
physical element mapping be followed by an evaluation stage and in case of an infeasible/poor
design, the transformation be repeated with alternate mappings until a satisfactory design is
achieved.

We assert that the most efficient strategy for solving the problem of design functional
redundancy/discrepancy, as introduced above, is to prevent it from happening in the first
place by incorporating an "instantiation" stage in conceptual design.

The notion of instantiation in conceptual design has been, directly or indirectly,
mentioned in some of the recent works on design automation. Hoover and Rinderle (1989)
define it as "creating a complete (at least parametrically complete) description of the designed
component" by "using the form-behavior relations for a class of components". In a
generalization of the idea, we define instantiation in the context of conceptual design as
processing the available knowledge about a component/subsystem to learn about its
Junctional behavior as well as those physical aspects that affect its relations with other
COmponents.

The "knowledge" mentioned in the last paragraph typically comprises the component-
specific facts/rules/data from pre-packed knowledge cells plus the initial information/
requirements of the problem. Included in instantiation is the examination of the problem's
constraint set to determine the values of the component's design/performance parameters.
This whole idea will be further elaborated in this and the following chapters.

Based on the above discussions we present a computer-based model of mechanical
conceptual design, called Design by Exploration, with an emphasis on design automation.
Earlier in this work we argued that design automation is best achieved through the
implementation of computer-based, rather than cognitive, models of design. Design by
Exploration is one such model. It fundamentally relies on the use of problem-solving
techniques specifically designed to be carried out on computers, although it occasionally
prescribes methods that are as well used by human designers.
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In order to complete the foregoing discussion, we introduce yet another classification
of the design models proposed by Kannapan and Marshek (1992). They divide design models
into two groups: those that regard design as a natural process and those that regard it as an
artificial one. The former implies that "design methodology is based on creativity and
heuristic knowledge and hence in the realm of natural human behavior", whereas the latter
imply that the methodology is "formal and mathematical and hence in the realm of symbolic
data representation/manipulation”. '

According to our definition of various design paradigms (Chapter 1) and considering
the above classification, a computer-based model would represent an artificial process and
should therefore embody one of the seven approaches mentioned by Kannapan and Marshek,
namely "System Science", "Problem Solving/Planning", "Transformational”, "Databas2",
"Algorithmic", "Axiomatic" and "Machine Learning".

Although Design by Exploration does not exactly fit into the definition of any of the
above, it can be best categorized as a fransformational approach. A transformational
approach is formally defined (Kannapan and Marshek 1992) as "a sequence of correctness-
preserving transformations of the initial design requirements to a final design description
sufficient for implementation/manufacturing”. In other words, the initial functional
description of an artifact is successively refined/reconfigured (without altering the overall
behavior of the artifact) until a representation is obtained which corresponds closely to a
collection of existing physical elements. This collection will then represent the desired design
generically, and is to be parametrically designed before it can be manufactured.

The following section is devoted to a detailed presentation of the proposed model and
to explain the ways in which it differs from conventional fransformational paradigm.

3.2  DESIGN BY EXPLORATION (DbE)

DbE builds on the assertion that feasible/optimal designs may be obtained through a
stepwise transformation of a functional description of a device to a structural description
provided that
a) at each step, the knowledge pool' of the problem is examined and the behavior-defining

parameters are determined (instantiation) so that the overall functional behavior of each
component/subsystem, its interactions with other components and its contribution to the
satisfaction of initial functional requirements can be explored, and

"The notion of knowledge pool will be further discussed in the rest of this chapter.
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b)

throughout the design process,
all feasible (with respect to
various lifecycle requirements)
partial design alternatives are
nurtured and preserved for a
final choice-stage where the
user can pick the optimum
alternative(s) according to their
own evaluation criteria. This is
to avoid the possible loss of the
optimum design due to a best-
first search strategy, as the best
internal node in a search tree
does not necessarily lead to the
vest overall solution.

The Design by Exploration

model is schematically shown in
Figure 3-1. The underlying
methodology can be outlined as
follows.

D

2)

3)
4)
5)
6)
7)

Get the functional description
of the artifact,

Map an unmapped function to
as many existing physical
elements/  subsystems as
possible,

functional description
{requirements)

Ca

map a function
to physical element{a}

explore element's potentials

update requirementa/search tree

evaluate/prune search tree

structural description
{(design alternatives)

Figure 3-1: The Design by Exploration modcel

Explore the knowledge pool of each element to reveal its complete functional behavior,

Update the functional requirements,

Update the search tree by adding/ augmenting leaf-node partial designs,
Verify partial designs and prune the search tree by removing the invalid designs,
For each design alternative, if all initial functional requirements are met then quit,

otherwise go to step 2.

We shall now explain these steps in more detail and illustrate them using a simple example.
The example will be to conceptually design a machine that "rotates a cutting tool at certain
speed and with certain power" (a drill). Let us add to this the requirement that the primary
driving shaft (e.g. that of the electric motor) should be, for ergonomic reasons, perpendicular
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to the output shaft (convenience of use)’. For the sake of brevity, we shall only consider the
main elemental functions and skip the computations.

3.2.t THE INITIAL REQUIREMENTS

The problem is presented to the conceptual designer presumably in the form of a
Function Block Diagram (Scetion 1.9) which is composed of Standard Elemental Functions.
This presumption plays an important role in the implementation of the DbE model because,
as we shall explain later on, it provides us with a common vocabulary (SEFs) in which both
the functional requirements and the functions of physical elements can be expressed and hence
the communication between the two sets would be possible.

We also remember from Chapter 1 that associated with any Function Block Diagram
are the given specifiers plus the additional requirements/information not contained in the
diagram. The latter is mostly expressed as a set of constraints in terms of the
design/performance parameters of the problem. From now on, we shall refer to these
constraints as the External Constraints to distinguish them from the Internal Constraints and
System Constraints that are introduced internally, i.e. are either generated during the design
process or implied by the system's knowledge-sources, as we shall explain later on.

As an example, let us consider the simplified requirements FBD of our example drill
(Figure 3-2). As expected, the diagram is composed of standard elemental functions (Section
1.9.1). Interms of these basic functions the desired device should
- generate rotational motion,

- adjust the speed (and torque),
- redirect the axis of rotation in the desired direction (90°), and
- transfer the torque to the cutting tool (drill bit).

adjust rotational spead
{ratio 113)

supply mechanical enargy (rotaticnall tranafes torqua (coaxialj
3.2 kw / 1500 cpm! > )

change axis of rotation
[90 degrees)

Figure 3-2: The requirements FBD of a drill

Note that the example is presented here for illustration purposes only, and neither the problem itself nor the
solution to it are necessarily real and accurate. A more realistic example will be presented later in this work.
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Note that we have not included all the numerical specifiers of the elemental functions since
at this stage we intend to skip the computations as we work through the example. Handling
of numerical specifiers will be treated in detail in Chapter 5.

The formal definition of the problem is about all the information the user is expected
to provide to the system. The model envisions no other user interventions (e.g. decision
making) during the course of design. However, as we shall see in the next chapter, the user

will have the option of augmenting/modifying the constraint set of the problem during the
design process, hence guiding the search in new directions,

3.2.2 FUNCTION-TO-PHYSICAL ELEMENT MAPPING

Standard Elemental Functions are, by definition, the smallest, non-decomposable
building blocks of mechanical functions whereby both the functional requirements and the
functions of the known mechanical elements are described. Therefore, if an element can
perform a SEF (i.e. the SEF is included in the description of the element) then the element
will definitely be detected and picked through a mapping from the functions set to the
elements set.

The mapping is intended to reveal all the matching elements, that is, all the elements that
potentially perform the desired SEF. This does not mean that all these elements will qualify
as components of the design alternatives. Some of them will ultimately be rejected because
of their unwanted secondary functions and/or because they are "quantitatively undesirable".
This, however, will not happen until all these candidate elements are further "explored" and
their entire functional behaviors are understood, as at the current stage no constraint
processing takes place, even though the constraints concern the elemental function under

consideration, So, for the time being, all the matching elements will be equally considered as
candidates.

. supply mechanical energy {rotation}
a} elec. motor: {convert elec. energy to mech. ehergy)

b) elec. gear-motor: supply mechanical energy {rotation)

adjust zotational spead
{convart elec, anergy to mech. energy)

»

. supply machanical energy {rotation)
¢} i. c. engine: [convert chen, enargy to mech. energy)

Figure 3-3: Three matching clements for the 1st elemental function
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In the drill example, we start out with the first SEF (generating rotational motion) and
search our database of element-cells. Figure 3-3 shows part of the findings of the search.
These include an electric motor, an electric gear-motor and an internal combustion engine.
As the figure shows, each of these matching elements/subsystems is also represented by a
FBD. This is typical of all the elements in the elements database. This compatibility between
the representations of finctional requirements and that of the behavior of the elements is what
makes the mapping process possible.

Having found all the matching elements, a search tree is now established with these
elements as the first set of internal nodes. The leaf (terminal) nodes of this tree, when
completed, will represent the final (complete) design alternatives whereas the internal nodes
will represent the partial designs. As we shall discuss later on, a breadth-first strategy is
employed to expand the tree through a series of augmentations/prunings.

3.23 EXPLORING THE ELEMENTS' POTENTIALS

The matching elements of the previous stage were chosen merely based on their
prospect of performing one of the desired elemental functions. It is not yet known what other
desired/ undesired functions they perform, whether they qualify for the job quantitatively and
whether they violate any of the problem’s constraints. To acquire this information, at this
stage a knowledge pool is set up for each of the candidates (matching elements). The pool
contains the following three general types of knowledge.

1- The element-specific knowledge from the pre-packed "element knowledge-cell". This
includes the list of SEFs the element potentially performs, its internal constraints
(design equations/charts/ graphs, catalogs), and any prominent behavioral
characteristics not represented by these.

2- That part of the user-provided initial specifications (or more correctly the initial
knowledge) that concems the element at hand. This includes the external constraints
(those imposed on the whole system as part of the initial requirements) and system
constraints (those imposed by other components of the system, expressing the
consistency requirements).

3- Other life-cycle (e.g. manufacture, cost, reliability) considerations introduced by
special purpose expert modules and/or the user during the design process.

To clarify these knowledge types, let us consider a simple example. Suppose that a
transmission system is to be designed in which a chain drive is proposed to reduce the
rotational speed. The element-specific knowledge will then comprise the set of design
equations of the element (internal constraints) and, in this case, another constraint
representing the fact that a speed ratio of more than 6:1 is normally not recommended in chain
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drives (behavioral characteristic).

As another requirement, suppose that the whole transmission system is to fit in a
limited space. This dictates that the centre distance of the two sprockets not exceed a certain
length (external constraint). Also suppose that a pair of ball-bearings is to support each
sprocket shaft and the bearings require that the diameter of the shaft, and consequently the
hub diameter of the sprocket, lie within a certain interval (system constraint).

As for the "other life-cycle considerations”, we further suppose that our financial concerns
make cast iron the optimum choice of material for the sprockets. This in turn will restrain the
allowable stress and will impose yet another constraint to be satisfied by the design. The fact
that new constraints may be introduced by various knowledge sources during the design
process reflects one of the most important aspects of real-world design problems.
Regrettably, this "dynamic" nature of mechanical design has been overlooked by many of the
design models proposed to date (see Chapter 2). These models typically assume that the
entire set of problem requirements and the underlying constraints, given at the outset of the
design process, will remain the same throughout the process. One implication of this
assumption is the significant relaxation of the computational/reasoning requirements, as we
would now be dealing with a static, rather than dynamic problem. We shall further discuss
this important issue in subsequent sections.

Having set up the knowledge pool of the candidate element with its three knowledge
types just explained, now the pool is to be processed to yield the information required for
understanding the entire behavior of the element. "Processing" of the pool involves, for the
most part, evaluating/solving the problem's constraint set to find the feasible values of the
element's behavior-defining parameters. The outcome will be in one of the following forms.

- A number (21) of feasible sets of parameter values. Here the term feasible means
that the set(s) of calculated values satisfy the entire constraint set of the problem,
including the initial specifications of some parameter values. Each set will then
represent an element-instance.

- Anumber (21) of sets of parameter values that satisfy all but a few of the problem's
constraints, where the unsatisfied constraints represent a subset of the initial
parameter specifications. In other words, the design system figures (we shall explain
how) that no element-instances (and hence no solutions to the problem) can be found
unless some of the given values for design/performance parameters are changed.
Having applied those modifications, the constraint set is then solved for the rest of the
parameters. As we shall discuss later on, this little "breath" of intelligence will enable

the design system to make suggestions to the user, who will ultimately decide whether
to accept or to reject the suggested solution(s).
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- A message indicating that no solution for the given problem could be found, not even
by sacrificing a number of initial specifications,
In the rest of this chapter we shall refer to the three forms above as first, second- and third-
Jorm outcome respectively.

Back to the drill example, let us now apply the above to our three candidate elements,
namely the electric motor, the electric gear-motor and the internal combustion engine (Figure
3-3). For the electric motor, the knowledge pool simply contains the initial specifications
(power and speed) plus the contents of the "elec. motor knowledge cell" from a preloaded
knowledge base. In this particular case, the latter contains a "catalog" whereby a (number of)
motor{s) can be found for each power/speed entry (say, 3.2 kw and 1500 rpm). Each of these
motors will be referred to as an electric-motor instance. The catalog will also provide some
information about the other physical/functional characteristics of the motor, such as its
dimensions, weight, heat generation and efficiency. However, in this simplified example we
shall ignore that information as it does not contribute to the satisfaction of the requirements.

Note that the element-cell in this case does not report any other elemental function
for the element. Also note that the outcome of the knowledge-processing is of the first form,
that is, a number of feasible instances of the candidate element are found that satisfy all the
given requirements.

Going on to the next candidate, the electric gear-motor, we get a knowledge pool
similar to that of the electric motor. This time, however, a processing of the pool reveals a
second SEF of the element, namely "adjust rotational speed" (Figure 3-3). Now suppose that
the catalog tells us 3.2 kw gear-motors are only available in 2500, 1800, 1200 and 900 rpm,
i. e. the gear mechanisms mounted on the motor shafts are only available with ratios of 5:3,
6.5, 4:5 and 3:5 respectively. As we see, none of these speedsi/ratios is what we are looking
for (1500 rpm * 1:5 =300 rpm) (Figure 3-2). We therefore pick the closest choice (900 rpm
or 3:5 ratio). This is a typical example of the second-form outcome (of the knowledge-pool
processing), as all but one of the initial specifications have been sustained. In the next
subsection we shall see how this situation is handled by the design system.

The third and the last candidate element at this stage is the I. C. engine. Again we
suppose that a catalog search would give us what we want, i.e. an engine with 3.2 kw of
power and the speed of 1500 rpm (another first form outcome).

One should note that at this stage we did not encounter a third-form knowledge-
processing outcome where the design system concludes that a solution cannot be found for
the problem at hand.
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aupply mechanical easrgy irotation)

a) elec. motor inatance: lcoovert alac. woergy to mach. enargy) —
13.3 kv / 1300 rpat

supply machanical saetgy (rotatios)
b) elec. gear-motor instance: {convaxt elec. anergy to mach, syl sdjust rotational speed

13.2 xv / 1300 rpm) {ratic 111

supply sachanical esergy (rotstlon)
¢] 1. c. engine lnatance: {convert chem, energy to mech, emergy) |—»
3.2 ke / 1300 rpa)

Figure 3-4: Instances of the three candidate elements

Figure 3-4 shows the results of the exploration stage for the three candidate elements
selected for their promise of performing the first required elemental function, i.e. "supply

mechanical energy". The next step would be then to evaluate the contribution of these
elements to the requirements of the problem.

3.2.4 UPDATING THE FUNCTIONAL REQUIREMENTS
At this point the candidate elements have been "explored" and some/all of them have
been successfully instantiated (i.e. their entire functional and physical characteristics have been
disclosed). This information tells us
- to which required elemental function(s) does each element-instance contribute, and
- whether these contributions are quantitatively adequate.
In other words, based on the outcome of our exploration we can tell a) which SEFs are
present both in the initial requirements and the functional behavior of the element instances,
and b) if the element instances can perform the desired SEFs to the desired specifications.
In the drill example, for instance, we realized that both the electric motor and the I.
C. engine can perform the first desired function (supply mechanical energy) to the desired
specifications (3.2 kw at 1500 rpm), whereas the selected electric gear-motor performs one
function (supply energy) wholly (i.e. to the ¢ .sired specifications) and a second function
(adjust speed) partially (to a ratio of 3:5 instead of 1:5). The situation implies that we would
need other component(s) to complete the coverage of the partially-covered second elemental
function (in this case perhaps another gear-set as we shall find out). In any case, i.e. whether
elemental functions are completely or partially covered by selected elements, we need to find
the answer to the question "what is left to be done to satisfy all the requirements?". The
answer would naturally be one of the following.
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- Nothing; the current arrangement(s) of physical elements meets all the requirements
already, or

- Find new elements to satisfy the remaining, intact functional requirements, or

- Find new elements to satisfy the remaining, intact and/or partially satisfied functional
requirements.

It is the purpose of this stage to find the answer to the question above, and to update the

formal representation of the initial requirements accordingly. The latter is necessary because

in taking any further actions, the design system depends on this representation.

Since both the initial requirements and the functional behavior of the selected element
instances are expressed as Function Block Diagrams, the task at this stage could be carried
out by comparing the two FBDs for each element instance. In doing so, the following steps
are made for each element instance.

- Lists of elemental functions from both sides (the element and the requirements) are
compared to spot the common SEFs,

- Specifiers (chapter 1) of the common SEFs from both sides are compared to see if they
match,

- Those common SEFs whose entire set of specifiers match are marked "done",

- If a complete match does not exist for some of the common SEFs, their specifiers are
adjusted to reflect the remaining demand, that is, the new specifications for the partially-
covered SEFs are determined,

- Any accidental SEFs of selected elements, not already appearing in the requirements, are
marked "extra" and added to the FBD representation of the requirements.

When the above is done for all the selected element instances, the modified FBD

representation(s) of the requirements will be treated the same way as the original one in the

subsequent iterations.

As for the "extra" functions, i.e. the ones inherently performed by the selected
elements but not part of the initial requirements, there are two possibilities. Either the
function is "harmless” to the design and does not impose any unwanted characteristics to the
design or it does. An example of the former is to use a conical roller bearing to support a
shaft with only radial loads, where the bearing's other function "support axial load" is extra,
but harmless to the design. On the contrary, if a bevel gear set is used to carry out the
function "adjust rotational speed", it will also perform the extra function "change axis of
rotation" which might not be generally desired. In either case we may face one of the
following situations in the course of design.

- The extra function(s) are negated by other, upcoming elements (e.g. the unwanted right
angle caused by the bevel gear set is "corrected" by another gear set of the same type).
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Here no action needs to be taken to remove these functions.

- The extra function(s) are harmless and are not cancelled out by other functions. Again
no actions are necessary in this regard.

- The extra function(s) do cause some unwanted effects and are not cancelled. In this case
the partial design will be spotted and rejected either by the design system (for its
constraint violation, as we shall see in the next subsection) or ultimateiy by the user at the
end of the design process.
We also note that when it comes to adjusting the function specifiers to reflect the
contribution of an element instance, we might face one of the two types of specifiers: the
adjustable and the unadjustable. The adjustable specifiers are those that accept contributions

from a number (22) of elements and whose "shortage" can be compensated for by adding

other elements which
perform the same
function and use the
same specifiers. For
instance, if a spring
stiffness of "k" s
required in a design and
it so happens that a
selected spring can only

provide a stiffness of k,

adjust rotational speed
[ratic 1:5)

changa axis of rotation
{90 degrees)

] tranafer torquae (coaxial}

Figure 3-5: Updated requirements for elec. motor and 1. C. engine

(k>k,) due to some design constraints, a second spring of stiffness k, can be added in parallel
with the first one so that the overall stiffness would be equal to k (from the relation k =k, +
k,). We would therefore call the spring stiffness "adjustable”. On the other hand, if a gear
set was selected to transmit certain power at certain rotational speed and one or both gears
could not be designed for that speed (due to some design constraints such as dynamic

loading), we would not
be able to compensate
for the speed by, say,
adding another gear set.
Hence for this particular
caseweclassify the
rotational speed of the
gear as unadjustable.
Let us now go
back to the drill example

adjust rotational apeed
(ratio 1:3)

change axia of rotation
(90 degraees)

>

transfer torque (coaxlal)

Figure 3-6: Updated requirements for clec. gear-motor
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and "update" its requirements. Comparing Figures 3-2 and 3-4, we realize that to update the
FBD of the requirements (Figure 3-2) for the electric motor and the internal combustion
engine only the first function block (supply mechanical energy) should be marked "done" and
the rest of the diagram remains intact (Figure 3-5; note that for simplicity, we have only
shown the updated diagram and removed the "done” blocks).

In case of the electric gear-motor, the first function block is marked "done" and the
specifier of the second block is modified (new ratio "1/3" = required ratio "1/5" + attained
ratio "3/5") (Figure 3-6).

3.2.5 SETTING UP/UPDATING THE SEARCH TREE

As mentioned earlier, the Design-by-Exploration model seeks to generate multiple
design alternatives rather than a single optimal design. It uses a breadth-first strategy to build
a search tree in which the internal nodes represent partial designs and the leaf nodes represent
complete, feasible alternatives. To better picture this, let us for a moment forget where we
left the drill example and jump ahead a few iterations to the hypothetical situation illustrated
in Figure 3-7. The figure shows part of the drill's final search tree in which the nodes have
been numbered for reference. A path from node 1 to each of the leaf nodes (9, 10, 11, 12 and
13) denotes a complete design. For example, path (1-2-6-11) represents the arrangement of
the motor, a pair of spur gears (to partially reduce the speed), a pair of bevel gears (to further
reduce the speed and provide the required right angle) and a chuck. A total of five conceptual
design alternatives are shown in this figure.

wsheotrio motar

3 | spur pearset2 4 | worm gest sst

gl bavel gear set | 0‘ bovel geat ast I TWuInnlut l Blh-lml pear aat ] DI chutk

Wl chuck ]HI_ ehuck i 12 | chusk _|13r chuck J

Figure 3-7: Partial search trec of the drill example

This "multiple, feasible-" (rather than single optimal-) design generation is one of the
main features of the DbE model. For a search-based design system to be able to find the
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optimal design(s) for given requirements we assert that

- the system must consider all possible alternatives and leave the system-level optimization
for the final stage where these alternatives have been generated’, and

- generation of all alternatives can only be guaranteed if at each level of the search tree, all
feasible instances of all competent elements are considered. For example, in Figure 3-7
we have shown two instances of the spur gear set (nodes 2 and 3) with, say, the same
catios but different number of teeth and different face widths and/or different materials.

The main reason for not considering only ore (optimal) instance of one component
at each level of the search tree is that an optimal partial solution will not necessarily lead to
the overall optimal solution. Tt is quite possible that the globally optimal solution (say path
1-3-7-12 in Figure 3-7) is lost by discarding a sub-optimal internal node (say node 3) in the
search tree. It is also possible that an optimal partial design would turn out to be infeasible
because it would violate some of the constraints posed by subsequent nodes in the tree.

Suppose, for example, that the gear set of node 2 in Figure 3-7 is minimal in size and
weight. There will naturally be a constraint on the maximum inside diameters of the two gear
hubs due to strength requirements. Further suppose that the torque requirements of the bevel
gear (node 10), to be mounted on the same shaft as the spur gear of node 2, dictate a
minimum shaft diameter which exceeds the maximum allowable hub diameter of the spur gear,
The two component instances are obviously incompatible and the (1-2-5-10) alternative will
be discarded. As a result, we might end up with a globally sub-optimal design (1-2-6-11; if
compatibility requirements are met) or none containing spur gears at all otherwise.

For the reason just discussed, we prefer to save all the element instances successfully
generated at the previous stage. Once generated, each new instance is added to the search
tree (as a leaf node) at the end of its parent branch.

Back to where
we left the drill example,
we now have ome ..o :
instance of each of the L;T, | 1.C. ongins \
three candidate
elements. Using these
instances, we now set up
the search tree of the drill (figure 3-8). Note that we do not yet call the instances feasible,
as we do not yet know whether they will satisfy all of the problems's constraints.

Figure 3-8: Search tree of the drill; first level

3Note that this assertion does not prectude the use of the expert knowledge of the domain to eliminate some
infeasible parts of the search space at early stages, as this too must be preceeded by generation and
consideration of the alternatives.
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3.2.6 VERIFYING PARTIAL DESIGNS

In our discussion of the exploration/instantiation stage of the design process earlier
in this chapter, we mentioned that the knowledge pool of a candidate element would contain
all the constraints to be satisfied. This would obviously mean all the constraints given at the
time of exploration. There are, however, some constraints that cannot be
considered/evaluated at that time. These can be mainly divided into two groups: those
constraints which are introduced to the system after the exploration stage has begun, and
those which are already known to the system but whose evaluation rests on the results of the
exploration.

Suppose, for instance, that after we have explor. 1 the candidate elements of the drill
example, we are informed that the device will be used indoors as well as outdoors. This
(qualitative) constraint fits into the definition of the first group. Also suppose that we have
been told (from the beginning) that the drill's dimensions must not ¢xceed certain values. This
constraint falls into the second category as the dimensions of the motor/engine could not be
looked up in respective catalogs until specific instance(s) of them have been selected; and
hence the constraint could not be considered in the instantiation stage.

Another major class of constraints that pertains to the second category above is that
of the FBD constraints. We remember, from the description of "function block diagrams" in
chapter 1, that the arrangement of the blocks in a diagram generally represents their
interrelations. Qutputs of certain blocks may be inputs/control parameters to others and this
"causality" requires that the sequence of function blocks be generally upheld. Nonetheless,
in the course of selecting/exploring feasible elements we did not, and we could not readily,
make provisions to take this into consideration.

To cope with this new problem (i.e. some constraints not being considered in the
previous stage), the DbE model requires that the design system be equipped with a dynamic
evaluation mechanism to let it continuously check all partial designs against the evolving set
of constraints and discard the infeasible ones. This is crucial not only to guarantec the
feasibility of the nodes of the search tree, but also to avoid a combinatorial explosion of
partial designs. All partial designs are verified against the most updated version of the
constraint set of the problem and the search tree gets pruned through the removal of the
nodes not completely complying with the constraint set.

Back to the drill example, we now update the problem's constraint set by adding to
it the two new constraints (indoor use and size limit). We then verify each of the partial
designs (each having one element so far) against the updated constraint set. Let us suppose
that we have looked up the dimensions of all three designs and that they all meet the size
constraint. As for the indoor-use constraint, the electric motor and the electric gear-motor
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both satisfy  the PR
constraint whereas the et ” .
::S(;d::il::o&t: (;1::“;12 elec, mc-ul-o;" elec, _g-o‘l;-molor
of a new functional
requirement), The
search tree then loses
one of its branches and keeps the other two (Figure 3-9).

As for the FBD constraints, a comparison between the FBDs of the two "surviving"
partial designs (Figures 3-5 and 3-6) and that of the initial requirements (Figure 3-2) indicates

that both designs comply with the precedence requirements of the latter.
As a counter-

Figure 3-9: Updated scarch trec of the dnll; {irst level

supply mechanical enargy (rotational)

example, imagine that (3.2 kw / 1500 rpm) —>) tranater torque (cosxial)
the system's database

contained a mechanical Figure 3-10; FBD of & hypothetical element

element with the FBD

shown in Figure 3-10. The selection mechanism of the system would pick it up and it would
survive through all constraint checks. However, we note that according to the requirements
diagram (Figure 3-2) the input to the "transfer torque" function block must be the output from
the "adjust rotational speed” and "change axis of rotation" functions and not from the "supply
mechanical energy" function. In other words, we do not wish to transfer a high-speed, low-
torque rotation to a drill bit along the wrong axis, but we rather wish to adjust the
speed/torque and the axis of rotation before transferring it to the bit. The FBD-constraints
check at this stage are meant to spot and remove deceptive partial designs of this kind.

3.2.7 ITERATING THE PROCESS

At the end of each iteration we get a pruned search tree with a custom-made
requirements function-block-diagram associated with each leaf node. Each diagram tells us
how successful the corresponding node (and the design alternative it represents) has been in
satisfying the requirements of the problem. If the diagram of a node shows that no
requirements are left unsatisfied, the corresponding node is marked "feasible design" and
preserved for the final presentation of the results. Otherwise (i.e. the requirements FBD of
a node reflects some uncovered functions) we loop back to the second stage, i.e. to the
mapping stage, and repeat the process as if we were given a new problem.

Having elaborated various stages of the design process according to the DbE model,
We now continue with the drill example briefly and show highlights of the search process for
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each partial design established so far.

STAGE 2:

STAGE 3:

STAGE 4.

b}

Starting with the electric motor and its requirements diagram (Figure 3-5), the
system searches its elements database and finds six elements promising tc
carry out the first functional requirement (adjust rotational speed), viz.

- Spur gear set

- Bevel gear set

- Helical gear set

- Wormn gear set

- Chain drive

- Beltdrive

Similarly, for the electric gear-motor the system decides that the same six
elements will work, except that this time around they will be required to
perform some of the elemental functions with different specifier values
(because in this design alternative, the function "adjust rotational speed” has
been partially covered already).

Exploring the knowledge-pools of the six candidate elements for both partial
designs reveals that they all are capable of carrying out the first function to the
respective desired extents (desired values of function specifiers, namely 1:5
for the electric-motor alternative and 1:3 for the electric-gear-motor
alternative). Moreover, three of the above, namely the bevel gear set, the
worm gear set and the belt drive, can also change the axis of rotation by 90°
as desired. Note that the last element, the belt drive, may or may not be
configured to change the axis of rotation and hence it will be considered as
two different elements in the rest of this section.

The updated requirements diagrams for each of the 12 newly-augmented
partial designs are shown in Figure 3-11. Figure 3-11a represents the designs
not including a bevel- or worm gear set or an angled belt drive (to make a
right angle) and Figure 3-11b represents the ones that do include one of these
elements.

change anis of rotation (%0 degreea) trzansfer torque {coaxial)

tranafear torque (coaxial)

Figure 3-11: Updated requirements diagrams of partial designs
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STAGE 5:

STAGE 6:

STAGE 7:

The updated search tree of the problem is shown in Figure 3-12. Note that
for the "electric motor" alternative (left branch), the system has found two
instances of one element (spur gear set) and for the “electric gear-motor"
alternative (right branch), it has similarly found two instances of another
element (bevel gear set). Also note that the system treats a dual-function
element (the belt drive) as two separate elements (one that changes the axis
of rotation and one that does not). As for the requirements diagrams,
alternatives (1-3), (1-7), (1-8), (1-9), (2-12), (2-13), (2-13), (2-15), (2-16)
and (2-17) in Figure 3-12 have the requirements FBD of Figure 3-11b
associated with them whereas the rest of the altemmatives have the diagram
shown in Figure 3-11a for their requirements diagram.

Exploring the knowledge pools of the 16 partial designs presented in Figure
3-12 reveals that those designs containing a belt drive or a chain drive violate
the size-constraints of a hand-held drill (because of their relatively large centre
distances). Hence nodes 8, 9, 10, 16, 17 and 18 are removed from the tree.
The new search tree is shown in Figure 3-13.

As the requirements diagrams of Figure 3-11 show, there are still unsatisfied
elemental functions, so the system loops back to stage 2 again.
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Let us, for brevity, skip the next two iterations and consider the final search tree of
the drill (Figure 3-14) which shows 25 feasible design alternatives for this over-simplified
problem. The results indicate that the system has found multiple instances of some elements
(e.g. the worm-gear set, nodes 12 and 13, the bevel gear set, nodes 19 and 20 and the chuck,
nodes 23 and 24). They also indicate that some alternatives have been rejected by the
system’s constraint-evaluation mechanism (e.g. the one comprising electric motor-spur gear
set 2-worm gear set-chuck 1).

Each of the 25 final designs satisfies the initial functional requirements as well as the
systern’s consistency constraints and any other constraints introduced during the course of
design. These design alternatives can now be assessed for weight, cost, number of
components or any other preferences of the user, and the optimal one(s) can thus be
determined. For example, if we choose "number of components” as the optimality criteria,
designs represented by paths (1-3-22), (1-6-32), (1-6-33), (2-9-38), (2-10-39;, (2-12-45) and
(2-12-46) will be of highest qualifications, whereas if "cost” is the major concern, designs
(1-3-22), (1-6-32) and (1-6-33) will probably dominate the other alternatives (as an electric
motor is usually less expensive than an electric gear-motor).

As we pointed out earlier, the design-by-exploration model prescribes the generation
of all feasible solutions to the problem®. The task is practically impossible to achieve for a
human designer in case of highly- or even moderately complex problems due to the size of
the search space. We believe that the proposed approach to computer-based conceptual
design will foster new design ideas by giving the user the chance to consider all his/her
options, including the ones normally overlooked due to the human-designers’ inevitable,
experience-based biases.

*Note that here we are discussing the model at a theoretical level. In practice, however, it will normally
take an enormous amount of computer time and memory to keep track of a/f solution alternatives where
many of them are distinguished only by minor differences in details. This means that in the trade-off
between the efficient utilization of computer resources and the universality of the model we will have to be
selective in our generation and choice of design variants, In Chapter 5 we shall present techniques to avoid
this type of combinatorial explosion and to keep the search-tree at a managable size.
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33 CONVERGENCE AND COMPLETENESS CONSIDERATIONS
A question arises here as whether the iterative process presented in this chapter would
get trapped in an infinite loop. The question stems from the assumption that the design
system may never be able to completely “cover” all initial requirements, and never "get
caught" by the constraint-evaluation mechanism either because it does not actually "violate"
any constraints. This hypothetical situation would make the system loop back and forth in
an attempt to find competent elements to carry out its uncovered functions.
We argue that this will never happen, because
- both the "requiremens set " and the "mechanical elements set
- for each partial design, each uncovered elemental function will be considered only once,
- for each uncovered elemental function in the requirements set, the elements set is
scanned only once; meaning that if all the elements in the knowledge-base of the system
arc considered once but none would carry out the desired function, the system will
abandon the partial design under consideration and quit.
Based on this argument one of two things will happen in a finite number of iterations: either
the system will come up with a number of feasible solutions to the problem (with or without
relaxing some of the initial specifications), or it will quit and report that no such solution
could be found under the given circumstances. If solution(s) are found afier partially
relaxing the initially given specifications, the system will report the new values of the
adjusted variables as well.
Another, more essential question here is whether the Design by Exploration model
guarantees to find all feasible solutions to the problem. The answer to this question, from
a theoretical point of view, is yes. To elaborate this, consider the following definitions.

"5 are finite sets,

- E={e,eqy., e} set of all existing physical elements,

= S={5) 8 e Sy set of all subsets of E (all possible combinations of e),
- R={r,r 1l set of functional requirements of the problem,

- C={cncyn, cq] set of the problem constraints,

- D=1{d,,d,....d} set of designs (problem solutions) and

- D={d,. d...... 4y} set of feasible designs.

Note that within the context of DbE model, a "design" is defined as a "collection of existing
elements which meets certain requirements” and a "feasible design" is defined as a
“collection of existing elements which meets certain requirements and satisfies certain
constraints”. Based on the definitions above, the following predicate-logic statements are

5 M H M L H "
One should keep in mind that throughout this work, by "mechanical elements set” we mean those elements
contained in the system's knowledge-base.
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true.

a) Vd, [d < E Asatisfies(d,,R)] —d, €D

b) V4, [d, € DAsatisfies(d;.C)] - d, € R

¢) DeDcS

d) Vd [d €Dl —d cE

These statements express that each feasible design is a particular subset of the clements’ set
E, satisfying both R and C sets.

Various stages of the proposed model basically implement the statements above. We
start out by considering S, the set of all possible element combinations, and apply R, the set
of functional requirements, to spot and remove the subset of incompetent combinations of
elements (stages 2 and 3). This will give us "D", the set of all (feasible/infeasible) designs.
Then we apply the feasibility requirements "C" to this set to find the feasible subset of "D",
represented by D (stage 6). So each feasible design can be considered a particular subset of
the elements set E.

It should be clear by now that the selection mechanism of DbE will "sweep” all
subsets of the elements’ set E if there is no "screening” action involved. This is because at
each level of the search tree the system considers all instances of all possible choices, which
is, in effect, the same as an exhaustive search in covering the entire solution space. The
screening action of the requirements/constraints is only to refute the incompetent/infeasible
points after they have been considered, and not to make the system overlook part(s) of the
solution space. Therefore the system will not, and cannot, miss a point in the solution space
that matches our definition of a feasible design.

The discussion just presented examines the "completeness” question from a
theoretical point of view only. There are, of necessity, practical limitations to the computer
implementation of such a broad model. The next chapter is devoted to the claboration of the
problem and presentation of an implementation strategy to overcome these limitations.

34 SUMMARY

The Design by Exploration (DbE) mode! of mechanical conceptual design was
described and its various stages were illustrated in the context of a simple design problem.
The main characteristics of the model can be listed as follows.

- DbE conceptually designs those devices that can be described as “arrangements of
existing physical elements”,

- The model generates multiple feasible, rather than single optimal, design solutions.

- The model only generates the functional spine of the desired device, that is, a design
generated according to DbE only satisfies the given functional requirements and not the
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"supplementary requirements”. This means that the model only transforms the given
functional description of a device to a structural description and will not take the
initiative to "improvise" other, sometimes obvious, supporting components {e.g. shaft
and bearings for a gear drive).

DbE is primarily intended as a paradigm for conceptual-design antomation where user-
dependency is kept at a minimum level. However, the model ullows user/expert-modules
interventions in the form of intruducing new constraints (as we shall further discuss in
the next chapter) at virtually any time during the design process.
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CHAPTER 4
IMPLEMENTATION OF "DESIGN BY EXPLORATION"

The implementation of a model as broad as DbE involves the solution of many
prerequisite problems. There are barriers to overcome and special-purpose means and
methods to devise. The challenge we are facing mainly stems from two sources: the dynamic
nature of the design process and the automation requirements embedded in the DbE model.

Design, in general, and conceptual design, in particular, are dynamic processes.
Information as well as Requirements continue to flow into, and evolve within, the design
system throughout the process. This is of course when one considers the real world problems
rather than their over-simplified simulations, where both the “information” and the
"requirements" of the problems remain unchanged throughout the process to resuit in reduced
complexity.

To comply with the requirements of a dynamic design process, a design system must
be able to:

- Collect, organize and interpret any given information as to what it means to the design,

- Accept any constraints introduced to it, regardless of where or when in the process it is
being introduced,

- Adapt to the new situation, that is, make arrangements to verify its previous design
decisions against the updated set of requirements and consider the set as the basis for its
further decisions.

Moreover, the notion of design automation implies that the above tasks ought to be
carried out, and all design decisions ought to be made, by the computer and with minimum
or no need for user intervention.

With this introduction in mind, we start our discussion of the DbE’s implementation
issues by introducing our "problem-representation” plan. Meanwhile, we shall explain part
of the terminology we shall be using in this chapter. The rest of the chapter will be devoted
to outlining the architecture of an automated computer system (referred to as the conceptual
designer henceforth) which embodies the Design by Exploration model. This will help us
portray the environment in which various segments of our problem-solving strategy
contribute to the design process.

We shall describe various components of the conceptual designer, the naturc of their
functions and the sequence of their actions to implement the steps prescribed by the DbE
model. Our presentation, however, will not encompass an elaboration of the
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computational/reasoning techniques and procedures involved in the implementation. A
detailed discussion of these will be presented in the next chapter.

4,1 PROBLEM REPRESENTATION

Before we can answer the question "how to solve a problem?" we need to answer
another one: "how to formally represent a problem?"

It must be clear by now that the DbE model, and other mechanical conceptual-design
models reported to date for that matter, are search-based. Despite their different solution
strategies, they all start from an initial level of knowledge about a device (requirements and
specifications) and seek a final level of knowledge (physical description of the device).

The tendency to use a search-based solution strategy in the context of mechanical
conceptual design is quite natural. We recall the definition of a mechanical device as a
collection of physical components that collectively carries out a set of desired functions.
Hence each partial/complete design can be considered a special subset of the "physical
components’set". Now suppose that each possible combination of (any number of) physical
components could be represented by a spatial point (let us call the finite space thus generated
the solution space). The solution space would then include the sought-after “special
component-subsets” (or "designs” as we just defined). Therefore the design process can be
best described as a search for feasible point(s) in the solution space, i.e. the ones that satisfy
certain requirements'.

The solution space just defined is sometimes calied the state space, as each point in
it represents not only a combination of physical elements but also a state of knowledge about
the design. In the context of conceptual design, each "state of knowledge" tells us which
requirements have been already satisfied, what is left to be done, and in short "how close to
the desired state” we are.

The state-space representation seems natural for the conceptual design problem
because the set of partial designs can be well organized in the form of a search tree. This is
greatly to our advantage t use it enables us to use some of the well-established Al
techniques, as we shall further discuss in the next section.

electrical energy - > ~—» mechanical translational motion

Figure 4-1: A simple problem representation

The notion of sofution space and the description of design as a search in the solution space will be further
clarified in the rest of this chapter as well as in Chapter 5.
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To further illuminate the definitions just presented, let us consider a simple example.
Suppose that we have been asked to design a device to transform electrical energy
(electricity) to mechanical energy (translational motion), say, in a forging press (Figure 4-1).
The initial state of knowledge consists of a requirement (transform electric encrgy to
mechanical translational motion) and the final state of knowledge will be the structural
description of the device to carry out the task. For simplicity, let us alternatively state the
problem as “to find a number of physical elements to convert the input quantity (electric
energy) to the output quantity (translational motion)", that is, to reveal the contents of the
"black box" in Figure 4-1.

The solution space, or state space, in this case consists of all partial and complete
solutions to the problem. For instance, all physical componen:s whose input quantity is

electric power as well as those whose output quantity is translational motion represent points
in the solution space.

42  SEARCH/REASONING STRATEGY

In the previous section we defined "problem solving" as secking a path from an initial
state 1o a goal state in the solution space of the problem. In the example of Figure 4-1, for

:-‘ light bulb . i light
oo
- elec. motor|| “» mechanical energy (rotation)
electricity -
: heater - heat
.- - == ®scillator -+ mechanical energy {vibration}

Figure 4-2: Forward search; first step
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instance, a "path” can be visualized as an arrangement of components through which the
input quantity is transformed to the output quantity. To find such a "path” one needs to build
a search tree in the solution space in order to find the branch(es) connecting the initial state
(node) to the final state. A search- or reasoning model specifies the way one organizes the

reasoning steps and domain knowledge to search the solution space.

Several search models have been proposed, each of which suits a certain class of

problems. In forward search one begins with the initial state at the root of the search tree
and expands the tree until a (number of) leaf node(s) is (are) generated that match the desired
final state. A node "qualifies” as a tree node if its input matches the output from one of the
nodes in the previous level of the hierarchy. In a rule-based forward reasoning model (where
if-then rules govern the search), this means that the next rule to by . unsidered is one whose

"if" part matches the "then" part of a previous rule.

Co light P T 1
= light bulb |- -~ ~-—--->= photocell .. ™~ electricity
e 5
o pump - -~ pressure
: - rotation [ 3
- Z= ele¢. motor ——————:-—,-1 gear drive ... rotation
electricity . e ‘,/’_ \4\
i- . rack & pinioen =. | translation .
L. ‘\_____,//
,-.-._.—_j 5
=~ thermometer; . > signal
: ' heat |
=« heater e e
=. thermocouple . ...>. electricity

i vibration -~ T 7T T 7
oscillator - --eeoo .. s oscilloscope ——==  cignal

Figure 4-3: Forward search; partially complete tree
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In our example we start building the tree by finding all the clements with electricity
as their input quantity (Figure 4-2). We then look for all the elements whose input quantities
are the output quantities of the previous (first level) elements, and so forth. The process
continues until the output(s) of some node(s) is (are) the desired quantity (e.g. output number
4 in Figure -3).

In backward search, one begins with the goal (desired) state at the root of the search
tree and builds the tree towards the initial state. Here a node "qualifies” as a tree node if its
output matches the input to one of the nodes in the previous level of the hierarchy. Similarly,
in a rule-based backward reasoning model this means that the next rule to be considered is
one whose "then" part matches the "if" part of a previous rule.

pressure - ﬁ>1 hydraulic cylinder .
beoe e = o
rotation >4 slider-crank l o
S, P .
-» translation
- . |
rotation - >‘ rack and pinion s
rotation ———=o winch E——

Figure 4-4: Backward search; first step

In the example of Figure 4-1, this time we start building the tree by finding all the
elements with "translational motion" as their output quantity (Figure 4-4). We then look for
all the elements whose output quantilies are the input quantities of the previous (first level)
elements, and so forth. The process continues until the input(s) of some node(s) is (are) the
desired quantity "electricity” (e.g. inputs number 4 and 6 in Figure 4-5).
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‘ : pressure
1rot_ation ,-[ pump | maie hydraulic cylinder -
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—_— e, TOLAtiON o }
= - shder crank }———:—
3chemical energy :»{ 1.C. engine

4 N rotation -
elecr.riciw) >+ elec. motor }———}I rack and pmion —— e
. : o

~+ translation

[ ..____.‘

chamlcal energy -———:- 1.C. engine T>-|
ror.ar.zon o

i———-- —= winch pnn e
. | L
Gle:r.rlcity —)J elec motor >

Figure 4-5: Backward search; partially complete tree

In opportunistic search a unique search direction is not maintained. One might move
forward or backward at the most "opportune" time. It might be necessary at times to
backtrack and rebuild/switch tree-branches in order to get "closer” to the goal state.

Briefly then, the central issue of problem-solving models is the question: what pieces
of knowledge should be applied, when and how? In answer to this question a problem-
solving model “"provides a conceptual framework for organizing knowledge and a strategy
for applying that knowledge." (Engelmore, Morgan and Nii 1988)

None of the models just introduced qualifies as a sole problem-solving strategy for
the DbE conceptual-design model. Our discussion of the DbE model in the previous chapter
implies that:

- because of the complex structure of the solution space and also because of the continual
change of problem knowledge (specifications and constraints), a monotonic search is
likely to fail to find a feasible path to the goal state;

- the problem-solving model must be able to handle multiple sources of knowledge,
including the user, the design engine® and the expert modules.

To explain what we mean by the latter, let us visualize the design space as a
multidimensional space in which each dimension represents a different lifecycle objective

*The concept of a Design Engine will be elaborated in the next chapter.
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such as function, fabrication, serviceability, reliability and cost. A feasible point in this
space, i.e. a design solution, must simultaneously meet the requirements of all these
objectives.

The notion of Concurrent Design has been developed to help achieve this goal. It
prescribes the concurrent, rather than sequential, consideration of various requirements of
multiple lifecycle objectives. The task, although somewhat difficult to accomplish, is the
most logical and efficient way to handle different, sometimes even conflicting, requirements.
It shortens the design process by unveiling the inconsistencies and hence rejecting the
infeasible alternatives at an early stage. It also heips avoid the loss-of-the-overall-optimal-
design syndrome which commonly occurs in systems based on a best-first selection strategy
as explained in chapter 2. In concurrent design this is avoided by endorsing at each stage
only those alternatives that satisfy requirements from all applicable sources simultaneously,
regardless of whether or not they are local optima.

Although in this work we have been and we will be primarily concerned with
JSunction and form of mechanical systems among other design considerations, the problem-
solving model we are about to introduce will nevertheless support concurrent design. It will
lay the foundations of an automated system flexible enough to host various objectives of a
device’s lifecycle.

In the previous chapter we mentioned that the DbE model allows for multiple sources
of knowledge to contribute to the design process. We referred to some of these sources as
expert modules. Expert modules represent various lifecycle objectives in design. As we
shall see later on, each E. M. (e.g. the manufacture E. M., the reliability E. M. or the cost E.
M.} will be sble to "watch" a design as it evolves through the design process and may
"criticize" the design by verifying it against the requirements of the objective it represents.
For example, the "cost” expert module will be able to check the total cost of each partial
design alternative against its feasibility criterion and reject the infeasible ones virtually
anytime during the design process. The most common way for the expert modules to
contribute to a design is through a) verification of the partial designs and b) imposing new
constraints on the problem.

The above discussion was meant to answer the question "why do we consider none
of the three search strategies outlined at the beginning of this section adequate for the
implementation of DbE model?" As we just explained, the model relies on the simultaneous
exploitation of multiple knowledge sources in an improvised order. Also from our
discussion of the DbE model in chapter 3 it can be inferred that the model advocales a special

form of an opportunistic search. These conditions are best suited to the blackboard model
of problem solving.
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4-3  THE BLACKBOARD MODEL OF PROBLEM SOLVING

As we just explained, the problem of mechanical conceptual design, in its general
form, is a complex, multidisciplinary problem requiring the cooperation of experts in various
aspects of the product’s lifecycle. The blackboard model of problem solving provides just
the right environment for that.

The idea behind the model is that of a group of experts who use a blackboard as a
communication medium during a brain-storm. Being a special case of opportunistic problem
solving, the model allows various expert modules to contribute to the evolution of the design
whenever their expertise is required. We shall tatk about the experts involved in the
development of the conceptual designer shortly.

To better portray the notion of a blackboard system, let us draw an analogy between
the operation of one such system and that of a group of human problem-solvers. Imagine a
group of people trying to solve a complicated jigsaw puzzle made out of a city map. The
puzzle may have several pieces of the same size and shape, so other characteristics of the
pieces than "shape" and "size" must be considered as well.

The group starts out by arbitrarily putting a piece on a puzzle board which can be
seen/accessed by all participants at all times. They then start suggesting pieces that seem to
fitin. In the meantime the whole group, supposedly composed of experts, is watching the
evolution of the solution, The "shape/size" expert continually checks the partial solution and
spots those pieces that do not fit in shape-wise and/or size-wise. Even if a piece does fit in
physically, there are still chances that it has been misplaced as it could represent the wrong
neighborhood. When this happens, the "neighborhood" expert steps forward and voids the
incorrect move and removes the piece from the board. Going yet farther, the "street" expert
continually keeps an eye on the partially complete map to make sure the pieces are placed
correctly. The process continues until the puzzle is complete, which means all the experts
certify its completeness and correctness.

Having considered the simplified analogy above, we can now point out the main
characteristics of the blackboard model of problem solving. But first we need to define some
terms we shall be using in our discussion.

- Problem knowledge is a general term representing all the information we are given about
the problem. It includes given specifications and domain-specific knowledge as well as
all the requirements and constraints of the problem. In general, the problem knowledge
can be qualitative or quantitative, numerical or non-numerical. Dimensions of a shaft,
required output torque of a gearbox, design equations of a belt drive, recommended
material for a tension spring and reliability requirements of a machine tool can all be
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pieces of "problem knowledge".

By a knowledge source we generally mean the person/software-module that
provides/processes part of the problem knowledge. It could be a computer user, a
domain expert, a database, a structured collection of if-then rules or a software module
containing design equations of a component, among other things. Nonetheless, in the
context of the blackboard model the term knowledge-source (KS) refers to a subset of
the above, namely an expert software-module, as we shall see shortly.

The term panel (in this case a blackboard panel) figuratively refers to a specific portion

of a software unit (database, program, etc.). The unit could be partitioned into multiple
panels that communicate/interact within the main unit.

Using the above terminology, we shall now outline the main characteristics of the blackboard
mode! (Terry 1988; Kitzmiller and Jagannathan 1989; Erman et al. 1980; Nii 1986).

1)

2)

3)

The model is a highly structured special case of opportunistic problem-solving. The
analogy presented earlier clearly illustrates what we mean by "opportunistic”. In that

example, there was no g priori plan as to which piece would be posted on the board next
and which expert would react to this move.
The model consists of —

. i ! i A
two basic components lat level /\ -l ,{knowledgo source 1
(Figure 4-6). the } / ‘ ’ '

; ¢ .
knowledge  sources | / ',f A . ‘
and the blackboard. S\ f N\ im - knowledge source 2
ve A » . » :

The problem  xe level ./;\.. ot ;.‘./“ L
knowledge 18 , //‘-‘ . f’ L :
partmoned Intc a dth level et s Jl knowledge source n
number of -separate, blackboard
independent software
modules called Figure 4-6: The blackboard model of problem-solving

"knowledge sources”

or "expert modules”, c.g. functions module, geometry module and cost module. Each of
these modules is appointed to carry out a particular task and will use its expertise to
contribute to the problem-solving process when required. A knowledge source can
comprise a set of if-then rules or a computation procedure, among other things.

In addition to the knowledge sources, there is a single global database, called blackboard,
which continually provides an up-to-the-moment representation of the design and the
latest state of the problem solving. Its purpose is to hold computational and solution-
state information needed by and produced by the knowledge sources.
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4)

3)

6)

7)

The blackboard is shared by and accessible to all the knowledge sources. They make
<hanges to the contents of the blackboard and these changes lead incrementally to a
(number of) solution(s). Communication and interaction among the knowledge sources
take place solely through the blackboard.

The contents of the blackboard mainly consist of objects from the problem’s solution
space (described in section 4-1). These include partial/final designs and the information
associated with them. The objects are hierarchically organized into levels of analysis.
This organization perfectly matches that of DbE’s search tree (section 4-2). Information
about the objects on one level serves as input to one or more expert modules. These
modules will process the information and generate new information to be placed on the
same or the following levels. For example, in a typical implementation of DbE,
information about one partial design in the search tree could be used by some "evaluation
expert” to verify the validity of the design. The result ("accepted" or “rejected”) would
then be posted on the same level of the tree.

The blackboard can have multiple panels, that is, the solution space can be partitioned
into multiple hierarchies. For example, in the context of mechanical design partial
designs may be hierarchically organized according to their geometry (geometry panel)
as well as their function (function panel). Also it is possible that some of the knowledge
sources have access only to certain panels. For instance, a "tolerance” knowledge source
may only access the geometry panel as it had nothing to do with a device's function.
The decision as to

when each C e e
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Figure 4-7: A simple blackboard system for the example
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monitors the changes on the blackboard and decides whether the conditions for the
activation of a certain knowledge source have been fulfilled. For example, the "cost”
knowledge-source (expert) will not evaluate the costs of various design alternatives
appearing on the blackboard unless the control module confirms that the individual costs
of their components :..ve been calculated/looked up.

Before we go ahead and describe the blackboard-based architecture of our conceptual
designer, let us briefly re-examine the above characteristics in the context of our simple
example of Figure 4-1. For this purpose we consider a simple blackboard system with a
single-panel blackboard, a control module and three knowledge sources (expert modules):
the design expert, the evaluation expert and the optimization expert (Figure 4-7),

rToT T light i 1
- —-2x light bulb ‘- oo ~> photocell .+ electricity
2
e pump : .- pressure
electricity . Co _rotation
— Ta——>= elec. motor - >
3
>« gear drive |—--—- rotation
e — i g .
. .=« thermometer. . signal
‘ heat
— =2 heater . o
. ‘ 5
-. thermocouple—.-----. electricity

Figure 4-8: Hypothetical solution state for the example

Figure 4-8 shows the contents of the blackboard at a hypothetical solution statc. Al
this point the control module (sometimes called the scheduler) decides that the design expert
should be activated to generate the next level of the search tree, as the final goal (transform
electricity to translation) has not been achieved yet. As a result of this activation, new partial
designs 1, 2 and 3 are produced (Figure 4-9), through matching the output of node 1 (Figure
4-8) to the inputs of all elements contained in the system’s library (forward search). Again
the control module browses through the information on the updated blackboard and decides
that more tree-nodes need to be generated because the current level of the search trec is not
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Figure 4-9: The solution state after first activation of the design expent

complete yet. The design knowledge-source is activated again and partial designs 4 to 10 are
generated (Figure 4-10). Note that the number of times the design expert has to be activated
could not be determined ahead of time. In this example it depended on the number of nodes
in the previous level of the hierarchy as well as the number of matchings found for cuch
node. This is an ex::nple of dynamic decision-making discussed earlier (item 7 above).
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Figure 4-10: The solution state after completion of the fourth Jeve!
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Now that the outputs of two of the leaf-nodes (nodes 4 and 6 in Figure 4-10) match
the desired goal (translation), the control module decides that the evaluation expert should
be activated to verify the two designs against, say, consistency and efficiency criteria. The
evaluation expert then accesses the global database (blackboard) and examines the partial
designs one at a time.

Let us suppose, for the sake of brevity, that both suggested alternatives (namely the
electric motor-pump-hydraulic cylinder and the electric motor-gear drive-rack and pinion
configurations) satisfy the consistency requirements. This means that the pump can operate
at the speed of the motor and that the pressure generated by the pump is within the acceptable
range for the hydraulic cylinder. It also means that both the gear drive and the rack and
pinion can operate at the speed of the electric motor.

The efficiency of the system represented by the path leading to node 4 (Figure 4-10)
can be calculated by multiplying the efficiencies of the electric motor, the pump and the
hydraulic cylinder. The resulting efficiency will be expectedly low due to the low efficiency
of the pump. Comparing this efficiency to that of the other design (electric motor, gear drive
and rack and pinion), the evaluation expert will choose the latter (the path leading to node
6 in Figure 4-10). Again note that the number of times the evaluation knowledge-source
would be activated was not determined a priori.

electricity . elec. motor . . rotation - » rack & pinion . + translation

Figure 4-11: The optimal design generated by the optimization expert

At this stage the control module activates the optimization expert, as the conditions
for that (finding one or more feasible designs) have been fulfilled. The optimization
knowledge-source examines the respective path (the one leading to node 6 in Figure 4-10)
in a backward search and finds two nodes with the same input (rotation) along it, namely the
gear-drive node and the rack-and-pinion node. It then removes the redundant node (the
gear-drive) and thus increases the efficiency while reducing the cost. Note that the
optimization KS would not do this if the rack and pinion could not operate at the speed of
the motor and the gear drive was needed to reduce the speed first. The final outcome is then
presented as the optimal design (Figure 4-11) and the process is terminated.

The above example, though not a real design problem, illustrated some of the basic
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characteristics of the blackboard model. High level of modularity (i.e. the problem
knowledge being organized in separate, independent modules), opportunistic scarch strategy.
dynamic decision making and concuitency are among these characteristics.

44  CONCEPTUAL DESIGNER: THE SYSTEM ARCHITECTURE

Our discussion of the blackboard mode in the last section was aimed at justifying our
choice of the model for the implementation of the Design by Exploration in the form of a
computer system called the Conceptual Designer. It will be further shown in this section that
the main requirements of this implementation will be well satisfied by the choice of a
blackboard-based system architecture.
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Figure 4-12: System architecture of the Conceprual Designer

Hlustrated in Figure 4-12 is the framework of the conceprual designer. In addition
to the two main components "blackboard" and "knowledge sources", the system includes a
user interface which enables the user to communicate with the system, It basically plays an
interpreter that translates the information/requirements provided by the user to the language
of the system, that is, to a format understandable by the knowledge-processing units. The
interface also presents the final results and/or any other messages of the system in a format
which can be appreciated by the user.
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The control module (scheduler) of the system is called the design manager. Its main
job, as explained earlier, is to coordinate the activation of various knowledge sources. The
control flow between the design manager and the knowledge sources, as well as the data
flow among various components of the system is shown in Figure 4-12.

The system has a two-panel blackboard, meaning that the solution space is partitioned
into two hierarchies. As we shall explain shortly, the two hierarchies basically represent two
"wiews" of the same search tree. Due 1o the nature of their contents, the two blackboard
panels are acted on by two different sets of knowledge sources.

In the rest of this chapler we shall first elaborate the components of the system and
their functions in the context of the DbE model and then emulate a typical problem-solving
cycle to demonstrate the functioning of the system.

4.4.1 THE BLACKBOARD

Each of the two panels of the system’s blackboard contains a different representation
of the problem’s search tree. We remember from our earlier discussions that the nodes of the
search tree are partial/complete design alternatives. On the structural representation panel
each node of the search tree presents a structural description of a partial design. The
structural description (representation) of a design provides information about the object’s
constituent elements as well as the configuration and interconnections of these elements.

According to our structural representation method (Appendix B), the formal physical
description of a device is composed of two parts: graphical representation and symbolic
representation. The former is used to communicate the generated designs with the user
whereas the latter is primarily meant for the internal use of the system. The two types of
representations are illustrated in Figure 4-13 which shows the simplified contents of a typical
structural representation panel. To avoid unnecessary complexity at this demonstration
stage, in the figure we have replaced the formal graphical representations of the objects with
simple component-icons accompanied by the related numerical information.

Shown in Figure 4-13 is the structural representation panel pertaining to a
hypothetical stage in the solution of the simple-drill design example of Section 3.2. We
recall from there that at some stage, the computer system found three candidate components
to partially satisfy the requirements of the problem, i.e. rotating a drill-bit at a certain speed
and torque. These components were an "electric motor”, an "electric gear-motor" and an
"internal combustion engine”. Simplified physical descriptions of these components are
presented in the figure.

Most of the information associated with the structural representation of a design is
the kind of information needed for evaluating the inregriry and consistency of that design.

84



(s7xe-31jEYS ‘1 feutbus -~gaod .uczm {s1xe-3;84s '] ti0j0m-383b "2379) {stxe-3jBYs ‘] !i070W *2973) .
: -4y * - . T
_ ;
uw gz :°ceTp 3Jeys | uw Qg :CBIP 3JBUS , ww 9z :'BIP IJRYS
co | " | - .

L H 1 [ W tar !

\.» TN m i .

/

85
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This basically consists of the specifications of the "ports” of the design (Appendix B),
whereby a component/subsystem connects to others. In the example above, shaft-diameters
are specified for cach of the three alternatives, as this information is essential to the choice
of other components to be mounted or: these shafts. In short, the ability of the design system
to check the consistency of a design rests upon the information contained in its structural
representation.

In addition to the information just pointed out, there are other types of information
that can be included in the structural representation panel "on request”. The nature of these
other types of information highly depends on the expert-modules using them. For example
if the system includes a "cost" expert-module, then the cost of each component must be
included in the structural representation of the design. Or if a "serviceability" knowledge-
source is involved, then the maintenance characteristics of the design must be provided as
part of its structural representation.

The second panel of the blackboard, the functional representation panel, basically
contains the same search tree as the structural representation panel, except that this time each
node presents a functional description of the respective design. The functional description
of a design is composed of two parts:

- the Function Block Diagram (Chapter 1) of the design, including the values of its design/
performance parameters, and

- a second FBD representing the unsatisfied portion of the problem’s requirements, plus
the applicable information (specifications/constraints).

Figure 4-14 illustrates the contents of the blackboard’s functional representation panel
for the drill example introduced earlier. The pane! has been shown at the same solution stage
as the one illustrated in Figure 4-13. For brevity, the symbolic representation of the functions
has been partially omitted.

The functional representation panel of the blackboard does not normally contain
information regarding the srructure of the designs it represents. Similarly, the structural
representation panel normally contains no information regarding the function of the designs
it represents. Ignoring some occasional, minor overlaps, one could say that the two panels
are mutually exclusive with respect to the information they provide.

Other than containing different types of information, the two blackboard panels are
also different in that they are accessible by two distinct sets of knowledge sources, as
illustrated in Figure 4-12. Further explanation of this requires a brief introduction.

Looking at the performance of the conceptual designer from a "product” point of
view (i.e. focusing on the designed artifact itself rather than the design process), one can
divide the activities of the system into two distinct, yet interactive groups: generating
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Figure 4-14: Typical contents of the Functional-Representation Panel
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activities and criticizing activities.

We remember from our discussions in chapter 1 that the DbE model initially
prescribes the generation of a candidate design based on the knowledge then available. This
is what we mean by a "design activity". The model then calls for the verification of this
candidate design based on the emerging information about the problem. This is what we
mean by "criticizing activity”. The verified design would be presented as the feasible
solution to the problem.

“Criticism" is used here as a more general term for "verification". This is because
according to the notion of concurrent desin, each expert module not only checks the
feasibility of a design but may suggest modifications to improve the quality of the design
according to its own standards.

With this introduction behind us, we can now get back to the system’s blackboard and
discuss the rationule behind separating its two panels. Generally speaking, the functional
representation panel is the sub-blackboard for the gemerating activities, whereas the
structural representation panel is the sub-blackboard for the criticizing activities. In other
words, the functional representation panel contains the information produced by, and used
by the knowledge-sources invoived in generating the initial candidate designs. This becomes
more clear when we remember that "functions" are the dominant players in early stages of
our scenario for conceptual design, namely "component selection” and "exploration”.

By the same token the structural representation panel contains the information
produced by, and used by the knowledge-sources involved in evaluating and criticizing
candidate designs. This assertion is based on the chservation that most of the "critic"
modules require structural, rather than functional, specifications of the designs, e.g.
dimensions, weight, cost and maintenance requirements. Nevertheless, the conceptual
designer’s architecture has the flexibility to let the critic modules access the functional
representation panel on request.

We shall say more about the two panels in the following subsection where we discuss
the knowledge-sources.

In addition to the two panels discussed above, the blackboard includes a “transiator”
layer which maps the contents of one panel onto the other. As prescribed by the DbE model,
design decisions involved in the generating activities will be initially posted on the
functional representation panel. The translator layer then immediately “extracts" the
structural specifications of the posted design and posts them on the structural representation
panel. Similarly, any decisions (e.g. rejection of a partial design by the cost-expert) or new
requirements (e.g. a constraint limiting the total weight of the design by the weight-expert)
posted on the structural representation panel will be immediately reflected on the functional
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representation panel. This is mainly done by removing the rejected design from the search
tree or by adding the new constraints to the constraint sets of all partial designs on the

functional representation panel.

The use of a "translator” layer will guarantee the synchronous update of the two
blackboard panels and that all the knowledge-sources will be accessing the same solution

state at all times.

4.4.2 THE ~nNOWLEDGE SOURCES (KS’s)

A knowledge source (expert module) is a specialized software module which uses its
domain "expertise” to modify the information contents of the blackboard. In the context of

the  conceptual  designer, this
modification is intended to improve the
qualifications of the partial designs
incrementally, and thus bring the system
closer to finding the final solution(s).

A knowledge source, as far as this
work is concerned, is either a procedure
or a set of rules or a combination of both.
A procedure is a sequence of
computational/reasoning steps taking
place in a preset order. Figure 4-15
shows the flow-diagram of a procedure to
find the critical points of a function of
the form Y = F(x).

A rule-base on the other hand, is
a set of if-then rules which, upon
activation, seeks to match the situation
on hand with the condition (if) part of
some rule(s) it contains. If successful, it
then posts the result (then) part of the
rule(s) on the blackboard. Figure 4-16
presents part of a rule-base (in predicate
logic) which acts as a “size" expert
module, Its job is to make sure that the
maximum dimension of each candidate
design does not exceed a certain value,

i start \,

get the function Y = F(x)

v

find F’ (x) = dy/dx

solve F'(x) = 0 for x

substitute the value of x
in ¥ = F{x) and solve for Y/

N

./

report values of (x,Y)

Figurc 4-15: A simple procedure
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say 75 cm. Displayed in the figure is the part that deals with the dimensions in x-direction.

Objects are characterized by their length, width and height. To maintain the generality of the

rules, these dimensions are referred to as x-dimension, y-dimension and z-dimension

depending on the orientation of the component.

As shown in figure 4-12, the knowledge sources of the conceptual designer are

divided into two groups. The first group, namely that of generating knowledge-sources,

consists of four modules: the nomination module, the exploration module, the evaluation

module and the verification module, These modules are in charge of generating a number

(2 1) of feasible candidate solutions, where a “feasible candidate solution” is defined as one

that meets al] the specifications/requirements either initially given by the user or suggested
by the system in the course of design generation, as explained in chapter 2.

Definitions:
new_component: Component to be added to an existing partial design
parent_component:  Last cornponent in the partial design, to which the

Rules:
Rule 1:

Ruile 2:

Rule 3:

Rule 4:

Rule 5:

if

if

if

if

new_component is to be connected
Actual x-dimension of new_component
Actual x-dimension of parent_component

Angle between x-axis and the direction of actual x-dimension of

new_component

Angle between x-axis and the direction of actual x-dimension of

parent_component

Maximum current dimension of the design in x direction

Maximum new dimension of the design in x direction

in_series_with (new_component, parent_component) then

!)"N =D + D¢ % cos(Pyc )

in_parallel_with (new_component, paren!_component) and

D:NC X co8(Pnc ) > D'pe X cos(Byc) then
— T

P n=D%- Dfpc x coS(PBpc) + D'ye % cos(Brc )

in_parallel_with (new_component, parent_component) and

Dyc % cos(Bue ) € Dpe % cos(Bpc) then
DIN - lo

Dy >75cm then
disqualified (new_component)

D' s 75cm then

qualified (new_component)

Figure 4-16: Partial rule-base of a "size" expert module
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The functions of the four generating modules can be outlined as follows,

- The nomination module is in charge of finding (within its components-database) all the
components that partially/completely satisfy the functional requirements of the problem,
that is, all those components that perform at least one of the desired elemental functions
contained in the initial FBD of the problem (section 3.2.2).

- The exploration module forms and examines the knowledge-pool (section 3.2.3) of cach
of the components nominated by the nomination module. If possible, it solves the
constraint-set of each nominated component and finds a number (2 1) of feasible
instances of it. The information generated by this module is essential to the
understanding of the components’ functional behavior and hence to the functioning of
other knowledge-sources.

- The evaluation module determines and presents the contribution of each explored
component to the fulfilment of the overall requirements (section 3.2.4). This includes
updating the functional representation of the partial design to which the new component
is added. It also includes updating the representation of problem’s requirements to reflect
the "remaining" part of them.

- The verification module verifies the validity of the newly-augmented (through addition
of new components) partial designs. It does that with respect to the overall constraints
as well as the FBD requirements (section 3.2.6)

We referred to a design generated by the above-mentioned group of knowledge-
sources as "candidate” to emphasize the point that such a design is not considered "final”
unless it survives the criticism of the second group of modules, namely the "critic” modules.

Generating knowledge-sources have access only o the functional representation
panel of the blackboard. The order in which they are activated to examine the contents of
the panel is determined by design manager, the control module of the conceptual designer.

{ i‘ _database '
-« --> \.Procedure ( manager « database <
: C . '

Figure 4-17: Typical organization of a procedure knowledge-source

Each of the four generating knowledge-sources is basically a procedure. The typical
organization of a procedure knowledge-source is illustrated in Figure 4-17. As the figure
shows, a procedure may have, associated with it, a database and a databasc-manager. The
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procedures employed by the conceprual designer will be elaborated in the next chapter.

The second group of the knowledge-sources, namely the critic knowledge-sources,
can only access the structural representation panel. The order in which these modules are
activated to examine the contents of the panel is also determined by the design manager.

Due to the nature of their functions, the critic modules are normally rule-bases. Each
critic module represents one of the product’s lifecycle objectives and uses its domain
knowledge to verify/comment on the partial/complete designs produced by the generating
modules. The typical organization of a rule-base knowledge-source is illustrated in Figure
4-18.

e S
~inference ., ' -

< > engine < , rule-base <
. \\ —/’

Figure 4-18: Typical organization of a rule-base knowledge-source

In general, the number and the contents of the critic knowledge-sources vary from
application to application. While one user (individual/company/industry) may be interested
in producing a cheaper, smailer and lighter product, others may wish to focus on the
reliability aspects of the product. Moreover, the "knowledge" and the "mechanism" to carry
out the same type of evaluation/criticism may vary from one user to another. For this reason,
in this work we will not discuss the contents of the critic modules any further, although we
do present a framework designed 1o accommodate and implement them.

4,43 THE CONTROL MODULE

As we pointed out earlier, the order in which each knowledge-source is activated is
determined dynamically by a control module. In conceptual designer, this control module
is called the desigzn manager. Design manager continually keeps an eye on the contents of
the two blackboard panels. Once the conditions for the activation of a knowledge-source are
met, the design manager gives it a signal to start working on the contents of the respective
blackboard par<l.

Design manager is basically a rule-base where the if-part of each rule represents the
activation conditions of a knowledge-source. In fact, the if-part of each rule contained in
design manager is the concatenation of the if-parts of a knowledge-source’s activations
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conditions presented as if-then rules. Figure 4-19 shows that part of the design manager
which is responsible for the activation of the evaluation module.

Dcfinitions

1.

N;: Number of nodes in each level (N;: number of nodes in current level}
n;: Node counter at each level (ni= 1, 2, ......, Ni)
C.: Constraint set of the new component added to (n)th node
X, Set of parameters appearing in C,,
(N_flag),: A flag indicating the completeness of the nomination stage at level i;
{N_flag), = 0 : not all the leaf-nodes at level i have been developed;
(N_flag), = 1 : all the leaf-nodes at level i have been developed
(E_flag);: A flag indicating the completeness of the exploration stage at level i;
(E_flag), = 0 : not all the leaf-nodes at ith level have been explored;
(E_flag), = 1 : all the leaf-nodes at ith level have been explored
Rule 1: if (N_flag),, =1 and
(E_flag), =1 and
¥ x € x,,— known (x) wheren, =1, 2, ....... N,

Search-tree level counter (i = 1: root level; i = I: current level)

then activate {evaluation_module)

Figure 4-19: Part of the design manager’'s rule-base

The if-part of the single rule illustrated in Figure 4-19 represents the three conditions

for the activation of the evaluation module. According to the DbE model, at an arbitrary
level (I) of the search tree these conditions are:

a)

b)

All the nodes at the previous (I-1) level have been developed, that is, we have
augmented every partial design leading to a node at the previous level one step further
(breadth-first search) to result in a new set of partial designs (level 1). This is
represented in the rule by the expression ((N_flag),, = 1).

All the new components introduced at level 1 (i.e. those added to the nodes at level 1-1
to result in the nodes at level I) have been explored (chapter 3), that is, their entire
functional behavior as well as design/performance parameters have been determined
((E_flag), = 1).

For each partial design, values of all the parameters appearing in the corresponding
constraints are determined. "This is to make sure that the evaluation module can verify
the satisfaction of the constraints. Suppose that we have N, nodes (partial designs) at
the Ith level numbered from 1 to N, (n; = 1 to N}), and the constraint set of the newly-
added component in each of these N, designs is represented by the set £ . Also
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suppose that the set of all variables appearing in C,; is represented by x,,. Then the
third condition can be writien as the following statement.
V x € x,,— known (x)

Conditions for the activation of each knowledge-source are determined by ite
user/domain expert once at the outset of the process according to their
needs/implementations techniques. This mostly applies to the critic knowledge-sources, as
the generating knowledge-sources and the conditions of their activation are basically the
same for all task-specific versions of conceptual designer. In any case, once set, activation
conditions of various knowledge-sources will not be affected by the activities of the system.

444 THE USER INTERFACE
As pointed out earlier, the user interface has two basic jobs: to transiate the
information provided by the user to a format which would be understandable by various
components of the system, and to present the final outcome of the design process to the user
in @ meaningful fashion.
Figure 4-20 shows

P
[
n
the general structure of the - e oy °
- Q
conceptual-designer’s user il P
L3
interface. It consists of an > - E
Q
interpreter and a s i
o Y
demonstrator. The i )
n —
J S - 3 ” b
fnterpreter is the part in \ B 3
[} H (1}
charge of expressing the <| demonstrator wqo o o 2
w o . N " "
given information s Lo
(embedded in problem’s b
. . 3 2
function block diagram, as user interface -
blackboard

described in chapter 1) in
the standard format of the
system. Presumably, the
information provided by the user falls into the following three categories.
- Equality constraints of the form h, (x;} = h, (x;); where ¥ is the set of all variables
appearing in the equality constraints,

Figure 4-20: User interface: components and communications

- Inequality constraints of the form g,(x,) < g,(x;) € g(x,); where x, is the set of all
variables appearing in the inequality constraints,

- Qualitative information presented in predicate logic. In Prolog, the language of choice
in this work, these are presented as facts, giving information about either a single
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object or the relation between a number of objects. For example, the predicate
"environment (humid)" represents the fact that the device under consideration is to be
used in a humid envirenment (hence precautions against corrosion have to be taken
regarding the choice of materials). Also, the predicates "precedes (function 1, function
2)" and "triggers (function 1, function 4)" (Figure 4-21) respectively represent the facts
that in the function-block-diagram presentation of the problem, function 2 must be
performed immediately after function 1, and that function 1 is a prerequisite for
function 4.

.‘,J function 2

N

function 1 -~ o ; function 4 - .

s function 3 .

Figure 4-21: Sample FBD of initial requirements

Without the loss of generality, we further assume that the cquality and incquality
constraints are composed of algebraic, trigonometric and exponential functions in x; or ¥,.

The user interface is basically a Prolog program which "reads" the information typed
in by the user and rewrites them in the proper formats as described below.

a.  Equality constraints

The user-interface rewrites all equality constraints, if not already, in the form h(x,)
= 0. As illustrated in Figure 4-22, it first spots the location of the equal sign and then
sequentially takes each term on the RHS to the other side while changing its sign, The
important point here is to realize which signs should be changed and which ones should be
kept. To facilitate this, the user is asked to use parentheses to help the system distinguish

between terms and subterms. Signs of the terms will then be changed by the system but
those of the subterms will not.

b.  Inequality constraints

All inequality constraints are 10 be rewritten in the form g(x,) < 0. To do so, the
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user interface takes the following steps.

- Break up any bracketed constraint of the form g,(x;) < g2(x;) £ gx(X2)
(or g,(x;) 2 Z,(Xy) 2 £4(X,)) into two separate constraints of the forms g,(x;) < gx(X,)
and gy(x,) € Bi(X;) (or g,(X;) 2 go(X;) and gy(x,) 2 g4(X,), respectively).

- Rewrites each of the above as g(x,) < 0 using an algorithm similar to the one applied
to equality constraints (Figure 4-22) except that for the (2) case, at the end of the

process the signs of all LHS terms are changed to convert the (2) constraints into (<)
ones.

c.  Qualitative information

These are not altered by the user interface as the system uses the same format
(predicate logic) to present its qualitative information.

The second component of the user interface, the demonstrator, is in charge of
presenting the final product(s) of the design process and/or any terminal messages to the user.
We use the term "terminal” to emphasize the point that, according to the DbE model, the user
is generally not required to get involved in design activities and that he/she is provided with
the outcome (success/failure) only at the end of the process.

Final designs are presented to the user graphically. Each component/subsystem is
represented by its icon (retrieved from an icon-library) and carries a number which refers to
the corresponding item in a specifications list associated with the diagram (Figure 4-23).

The specifications list provides the general specifications of all the components of
a device. These are basically the type of information needed for rough cost estimations and
do not necessarily include the detailed information required for manufacturing purposes.
Catalog number of a bearing, power/speed of an electric motor and material/number of
coils/mean diameter/wire diameter of a coil spring are examples of these specifications.
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Figure 4-22: How the user interface reformats equality constraints




specifications list

component no.: 1
name: electric motor
power: 3.2 kw

speed: 1500 rpm

. Lo L “;i "_"—_____}
component no.: 2
name: pinion
module: 5 mm _3‘
no. of teeth: 25 —_—
face width: 32 mm
material: cast iron ASTM A 48-50 B - _j2

component no.: 3
name: gear

|
module: 5 mm

no. of teeth: 50

face width: 32 mm

material: cast iron ASTM A 48-50 B

Figure 4-23: Sample graphical presentation of a design

4.5  CONCEPTUAL DESIGNER: THE ACTION CYCLE

Having described the architecture of the concepiual designer and looked at its
components in some detail, we shall now provide an overview of the system in action, i.e.
explain the order in which various components of the system take action and the way in
which they interact and communicate with each other. In doing so, we shall re-visit the
familiar "drill design” example from chapter 3 and follow the same design steps as before,
only this time around we shall also explain who is doing what, i.e. which component of the
system is carrying out which design step. To help this cause, wherever required we shall
refer to the respective section/figure where we have presented the description or the results
of a design step.

Our presentation of the functioning of the system in this section, however, does not
include the description of the procedures whereby each knowledge-source carries out its
duties. These will be elaborated in the next chapter.

The process begins with the user giving a description of the problem (Figure 3-2).
In Prolog, this description is composed of a set of predicates stating the order and
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interrelations of function blocks (Standard Elemental Functions), plus the corresponding

qualitative/quantitative information (section 4.4.4). From there the system proceeds as
follows.

1)

2)

3)

4)

3)

6)

7)

8)

The user interface (the interpreter part) reformats the given information and posts them
on the functional representation panel of the blackboard and sets both "N_flag" and
"E_flag" (see definition in Figure 4-19) to zero.

The design manager starts the "design generation” stage (section 4.4.1) by activating the
nomination knowledge-source (section 4.4.2). The module searches its components-
database and finds all promising components (section 3.2.2). A list of the names of these
components (Figure 3-3) is reported to the functional representation panel where a search
tree is set up with the component- names as its leaf nodes.

Once all eligible components have been found (i.c. no more components could be found
to perform at least the first required elemental-function), the design manager sets the flag
"N_flag" to | and activates the evaluation KS (knowledge-source).

The evaluation KS attempts to update the functional representation of the leaf-nodes (one
is shown in Figure 4-14). As pointed out earlier, such a representation comprises an
"accomplished" part and a "remaining"” part for each node. Since no functional activities
were previously posted at the nodes, the KS puts the initial requirements (Figure 3-2)
for the "remaining" parts of all the nodes and leaves their "accomplished" parts blank.

Once the evaluation KS is finished with all the nodes, the design manager signals to the
exploration knowledge-source (Figure 4-12) to access the components-list on the
functional representation panel and start working on it.

For each node, the KS reads the name of the component and its "remaining” requircments
(in the form of a set of predicates pius related information). It then forms a knowledge-
pool (section 3.2.3) for the component. In addition to the requirements brought in from
the blackboard, the knowledge-pool contains component-specific knowledge (design
equations, internal constraints, data) from the components-database (same as the one
accessed by the nomination database, see item 2 above).

The exploration KS finds a number (2 1) of feasible instances of the component (Figure
3-4) or, if none can be found, issues a component rejection message. Each feasible
instance is posted on the functional representation panel as a new node in the search trec

(Figure 3-8). In case of a rejection message, the message is as well posted on the panel
for a later consideration.

Each time a component from the component-list on the functional representation panel
is "explored” by the exploration module and the outcome is reported back to the panel,
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9)

10)

11)

12)

13)

the design manager checks to see if any components are still unexplored. If so, the
exploration KS is re-activated to explore them. Otherwise (i.e. if no unexplored
components are found) it sets the flag "E_flag" (Figure 4-19) to | and activates the
evaluation KS again.
The evaluation module updates the functional representation of each node (section 3.2.4).
It does that by comparing the initial requirements with the functional behavior of the
component-instance as just reported by the exploration module. The "updated"
representation of each node will then reflect the new "accomplished” and "remaining"
parts (Figures 3-5 and 3-6) of the initial requirements. Those nodes whose corresponding
components have been rejected by the exploration module are removed from the tree.
Next the design manager invokes the verification knowledge-source (Figure 4-12)
to check the validity of each leaf-node against the FBD requirements as well as any
constraints possibly generated during the exploration stage. Again, those nodes that
violate either of the two requirements are removed from the search tree. The verified
nodes now represent the "feasible, candidate partial-solutions" introduced in section
44.2,
Once all the leaf-nodes of the search tree have been updated and checked, the design
manager calls upon the translator layer of the blackboard (Figure 4-12) to post the
"structural equivalent” of the current search tree (Figures 3-9 and 3-13) on the
structural representation panel (Figure 4-13). Both "N_flag" and "E_flag" are then
set back to zero.
The contents of the structural representation panel now present a physical description
of all "candidate" partial designs (section 4.4.2) found by the system to this point.
These candidates are now to face the possible criticism of the “critic” knowledge-
sources. Based on its "activation conditions", each critic KS may or may not be
activated at this stage. For example, if the activation condition of a "cost" KS is that
the designs be completed so that the KS can evaluate their total cost, then this
knowledge-source will not be activated at a middle stage when only "partial designs"
exist. Those critic modules that are activated, examine all the leaf-nodes of the
search tree as posted on the structural representation panel, and endorse, reject or
modify them. This stage was not applied to the drill example of chapter 3.
The "surviving" leaf-nodes of the search tree on the structural representation panel
now represent the feasible partial/complete solutions. Complete designs are now
presented to the user by the user-interface (section 4.4.4), Unless the user finds them
sufficient and decides to terminate the process, the design manager re-activates the
translator layer to inform the functional representation panel of any possible changes
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in the search tree (by the critic modules).
14)  The system proceeds by repeating steps 2 to 13 above for the partial designs on the
blackboard. The cycle is repeated until one of the following cases is faced.

- At some stage, all the leaf-nodes of the search tree represent complete designs and
the tree cannot be further developed.

- The remaining leaf-nodes (i.e. the ones not reported to the user and removed from the
blackboard) violate the convergence conditions of the system (section 3.3), checked
by the design manager. This means that the remaining partial designs are trapped in
"loops"” and the system will not converge to a solution for them., There may also be
other termination conditions such as exceeding a certain processing time or number
of components.

- Although neither of the above cases is true, the user decides to terminate the process
as he/she finds the suggested complete designs satisfactory.

Figure 3-14 displays a case where all the leaf-nodes of the search tree for the drill
example represent complete, feasible designs (prior to the application of critic modules).

46 SUMMARY

The term system-architecture refers to the organization of a computer system
designed to perform a specific task. In this chapter we described the architecture of
conceptual designer, a computer system to perform the conceptual design of mechanical
systems as prescribed by the Design-by-Exploration model. Since conceptual designer has
been developed according to the blackboard model of problem-solving, we also outlined the
general characteristics of the model and its basic components as well as a special
implementation of it used in conceptual designer.

A simple design problem was employed to demonstrate the course of action of the
conceptual designer. We explained how each component of the system participates in the
complex design-process and how it interacts and communicates with its fellow components.

Our decision to adopt a blackboard framework for our system was based on the
following observations.

a) An implementation of the DbE model requires the use of multiple, diverse arcas of
expertise. Application of various lifecycle objectives relies on the use of an spectrum of
problem-solving methods that span from exact/approximate computational methods to
Al-based reasoning techniques. A blackboard architecture provides just the proper tools
for accommodating such a wide variety of knowledge-types (Ensor and Gabbe 1988).

b) Though tempting at the first look, we did not find the Object Oriented paradigm an
efficient choice for our implementation purposes. According to the paradigm, each
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design alternative would be considered an "object" or a collection of information
represented by a set of variables plus a set of functions to operate on those variables and
consequently on the object itself. Each object would be an instance of a "class" or a
template for a group of objects with common characteristics. Objects "evolve" through
passing messages to each other that would activate their internal functions and change
their information contents.

If applied to the DbE model, the paradigm will not result in an efficient system for the
following two reasons, among others. Firstly, the DbE model heavily relies on the
generation and examination of multiple, diverse design alternatives which hardly fall into
the same category or "class”, meaning that not only "objects”, but also "classes” will be
continually added/removed at run-time at an unaffordable rate. Secondly, it is not
practically possible to accumulate immensely diverse design-information/design-
functions of various mechanical components in each object or even each class, so that
the objects can "inherit" them, as prescribed by the paradigm.

c) A very attractive characteristic of the blackboard paradigm, commonly referred to as
concurrency, allows different parts of a problem to be processed in parallel. This is
highly desirable in the context of conceptual designer, as the independent knowledge-
sources of the system can simultaneously work on different design alternatives to speed
up the process . It was this characteristic that fuelled the research on the implementation
of the model on parallel processors (Jones, Millington and Ross 1988).

d) A number of successful applications of the blackboard paradigm to engineering design
have been reported in literature. A review of these works shows that the paradigm is
capable of properly addressing many of our concerns in this research. Among the
reported works is the work of Finger et al. on concurrent design (Finger et al. 1992) and
that of Kitzmiller and Jagannathan on automated design of air-cylinders (Kitzmiller and
jagannathan 1989).

The next chapter will contain our discussion of the procedures and techniques
employed by the conceptual designer. That will conclude our presentation of the system and
our approach to the automation of mechanical conceptual design process. It will also shed
more light on the dark details of the rather complex architecture of conceptual designer.
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CHAPTER 5
PROBLEM-SOLVING TECHNIQUES

In the heart of the conceptual designer lie the generating knowledge-sources
introduced in chapter 4. These modules collectively play the role of the system’s engine
which propels it in its quest for final solution(s). Most of the system’s information-
processing (computations/reasoning) activities are represented by procedures and are carried
out by the generating KSs. These activities vary in complexity and scope, and range from
managing databases to solving complex constraint sets.

In this chapter we shall take a closer look at the procedures involved in the
implementation of the DbE model. Each procedure will be described in a separate section
under the knowledge-source it occupies (Chapter 4). Depending on the nature of each
procedure and the complexity/novelty of the techniques it employs, we shall elaborate the
basic steps of the procedure and illustrate them, wherever necessary, using simple examples.
Also, in cases where more novel methods have been used, we shall provide a brief overview
of the methods for the non-expert reader.

5.1  THE NOMINATION KNOWLEDGE-SOURCE

As explained in the last chapter, this module is in charge of finding and "nominating"
all those components in a preloaded components-database which at least partially satisfy the
functional requirements of the problem.. Upon receiving a query from design manager, the
module looks for all those items in its database whose functional definitions contain the
queried elemental function. Such an item is called a candidate, and a list of all candidates
is posted on the blackboard for further references by other knowledge-sources, as explained
in Chapter 4.

The organization and data-flow of the nomination KS is shown in Figure 5-1. The
module comprises a components library, an index to this library and a library manager.

The components-library is basically a collection of files each representing a
component-cell. A component-cell is a small knowledge-base which contains design-specific
knowledge (data, equations, constraints) about that particular component. The contents of
a typical component-cell are shown in Figure 5-2 (from Gieck and Gieck 1990; shigley
1986). These basically consist of the following,
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Figure 5-1: The nemination knowledge-source

- The name of the component,

- Its Function Block Diagram (chapter 1) giving a functional description of the
component,

- A list of the Standard Elemental Functions (chapter 1) it potentially performs,

- A list of the component’s design/performance parameters, their status and their share
functions (if applicable). The notions of "status" and "share-function" of a parameter
will be explained and used in the next section.

- Domains (ranges of values) of the design variables. These are the variables in which
initial requirements of the problem are expressed. Normally, a subset of the design
variables is specified and the rest are to be calculated thiough solving the design
equations. As will be explained in the next section, these parameter-domains are
needed by the system in its attempt to solve the constraint set of the problem. Note that
of these domains, some are continuous while others are discrete.

- The equality and inequality constraint sets. These include the component's design
equations as well as any other applicable constraints. It is mostly through these
constraints that any distinctive information about the component is expressed. For

example, the inequality constraint "16 , ML 2 FW 2 9, ML" in Figure 5-2 indicates
that the gear face-width is normally recommended to Jie between 9 times and 16 times
the gear's module.
- The initial incidence matrix. The matrix indicates the presence/absence of various
variables in equality constraints.
Each component-cell is stored as a separate file of the form "component_name.obj",
e.g. "spur_gear_drive.obj" and "helical_compression_spring.obj". Turbo Prolog has a special
utility that handles the entire collection of ".obj" files as a unit. It also allows the following
operations to be carried out on the components library.
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- Add "objects" to, or remove them from an existing library,
- Replace "objects" from a library,

- Extract "objects” from a library as requested,

- Sort and list the contents of a library.

In order 10 speed up the search for candidate components in the components-library,
the nomination knowledge-source is equipped with an index to the contents of the library.
The index is in turn a database in which each record corresponds to a component-cell (.obj
file). The general format of such a record is as follows.

component (Component Name, Corresponding .obj File Address, [List of Functions])
For example, the record pertaining to the spur gear drive would look like this:

component  (spur_gear_drive, spr_gear.obj, [transmit_power{rot),
transmit_torque(rot), adjust_rot_speed])

Each time the knowledge-source is triggered to provide information on a function,
it accesses the index and sequentially checks the records for a match between their "List of
Functions" part and the given function. If a match is found, the KS records the
corresponding component-name and .obj file address. Once the library is completely
searched, the nomination KS reports to the blackboard a list of the candidate components and
the corresponding file-names. This information will be exploited by the exploration
knowledge-source, as we shall see later. The operation of the nomination module is
presented via its flow diagram in Figure 5-3.
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Component Name: Spur Gear Drive

Function Block Diagram:

|>!l transmit mechanical power (TP, IS} =
i - e memme s s e eii e mmii i . i avm—— = mam . ———
|
i ; e e it e —— ——— 1 H
- adjust rotational speed (SR) (I »
| . :
i |
!—b- impose linear misalignment (CD} i—b
List of Functions: (Transmit_Mechanical_Power, Adjust_Rotational_Speed,

Impose_Linear_Misalignment)

Design/Performance Parameters:

Parameler Symbol Status Share Function
Speed Ratio SR adj SR, = SR, x S8R,
Input Speed IS non-adj

Output Speed os non-adj

Transmitted Power TP non-adj

Center Distance CD adj CD,=[CD, ¢ +CD. *- 2 x CD, x CD, x ¢os (CD,, CDy)]**
Face Width Fw non-adj

Number of Pinion Teeth NPT non-adj

Number of Gear Teeth NGT non-adj

Module ML non-adj

Applied Torque AT non-adj

Transmitted Load TL non-adj

Maximum Bending Stress MBS non-adj

Allowable Stress AlS non-adj

Lewis Form Factor Y non-adj

Velocity Factor K, non-adj

Figure 5-2: Contents of a typical component cell
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Parameter Domains:

SR:
CD:
FW:
NPT:
NGT:
ML:
AlS:

[0.05 10 20.001,

[14 to 1200 mm],

[10 to 80 mm],

[15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 30, 34, 38, 40],

[17, 18, 20, 24, 30, 36,45, 51, 60, 75, 90, 100, 114, 140, 160, 180, 200, 240, 280],
[1.0,15,20,25,3.0,4.0,5.0,6.0, 7.0, 8.0, 9.0, 10.0, 12.0, 16.0, 20.0, 25 mm],

[20.0, 50.0, 55.0, 57.5, 72.5, 125.0 MPa)

Equality Constraints:

eqnl
eqn2
eqn3
egnd
eqgnd
eqné

egn7

eqn8

AT=-]2

IS
CD = ML x NPT x L5R
TL - TP x 60

ML x NPT x IS x Tt
0S =151/ SR
SR-NGT

NPT
MBS = 7L

K x FWxMLxY

K = 360
Y ML x NPT x IS x 1w + 360

Y=-18x 108 x NPT* + 46 x 10°% x NPT3

- 4.5 x10™ x NPT? + 0.02 x NPT + 0.05

Figure 5-2 (Continued)
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Inequality Consiraints:

Incg.1 82SR>0

Ineq.2 16 ML2FW29.ML
Incq. 3 AIS 2 MBS

Initial Incidence Matrix:

equation [egnl, (TL, 0), (AT, 1), (MBS, 0), (FW, 0}, (CD, 0), (OS, 0), (SR, 0), (IS,
1), (TP, 1), (Y, 0), (K|, 0), (ML, 0), (NGT, 0), (NPT, 1)

cquation [eqn2, (TL, 0), (AT, 0), (MBS, 0), (FW, 0), (CD, 1), (0S, 0), (SR, 1), (IS,
0). (TP, 0), (Y, 0), (K,, 0), (ML, 1), (NGT, 0), (NPT, 1)

equation [eqn3, (TL, 1), (AT, 0), (MBS, 0), (FW, 0), (CD, 0), (OS, 0}, (SR, 0), (IS,
1, (TP, 1), (Y, 0), (K,, 0), (ML, 1), (NGT, 0), (NPT, 1)

equation [eqnd, (TL, 0), (AT, 0), (MBS, 0), (FW, 0), (CD, 0), (OS, 1), (SR, 1}, (IS,
1, (TP, 0), (Y, 0), (K., 0), (ML, 0), (NGT, 0), (NPT, 0)

equation [egn5, (TL, 0), (AT, 0), (MBS, 0), (FW, 0), (CD, 0), (OS, 0), (SR, 1}, (IS,
1, (TP, 1), (Y, 0), (K, 0), (ML, 0), (NGT, 1), (NPT, 1)

cquation feqné, (TL, 1), (AT, 0), (MBS, 1), (FW, 1), (CD, 0), (0S, 0), (SR, 0), (IS,
0), (TP, 0), (Y, 1), (K,, 1), (ML, 0), (NGT, 0), (NPT, 0)

cquation [egn7, (TL, 0), (AT, 0), (MBS, 0), (FW, 0), (CD, 0), (OS, 0), (SR, 0), (IS,
1), (TP, 0), (Y, 0), (K,, 1), (ML, 1), (NGT, 0), (NPT, 1)

cquation fegn8, (TL, 0), (AT, 0), (MBS, 0), (FW, 0), (CD, 0}, (OS, 0), (SR, 0), (IS,
0), (TP, 0), (Y, 1), (K., 0), (ML, 0), (NGT, 0), (NPT, 1)

Figure 5-2 {concluded)
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52  THE EXPLORATION KNOWLEDGE-SOQURCE
Once the list of "candidate components", i.e. those potentially capable of performing
a specific, desired function, has been posted on the blackboard by the nomination K8, the

get the name of
i a desired function

>

search the function index

Y

"N i record the component-name
‘ and corresponding file-name

.
' L

(

<if/:;:/;mpty°

N
report the list of candidates report failure

to the blackboard

Figure 5-3: The operation of the namination KS
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exploration KS is triggered by the design manager. The latter in turn "explores” the

knowledge-pool (Chapter 3) of each listed component in order to reveal its complete

functional behavior and to determine its contribution to the fulfilment of the initial
requirements. The results are then reported back to the blackboard (Figure 5-4).

)
. U —_——
' component .
 mpecifications i o Query ><:-..__________...> :
i

i |
' |
comp. instance
fblackboa:d L( S

axploration knowledge-source

Figure 5-4: The exploration knowledge-source

Earlier in this work we argued that in a typical design problem the following three

types of knowledge are generally present in the knowledge-pool of a component (Chapter 3).

The element-specific knowledge contained in the respective "component-cell” (section

5.1). This includes a list of the functions the component is capable of performing, its

form-function relations, and any other information on the functional behavior of the

component.

The initial information provided by the user. This basically comprises the values of a

subset of component’s design variables plus a set of (external) constraints representing

part of the design requirements.

Other life-cycle (e.g. manufacture, cost, reliability) considerations introduced by critic

expert modules (Chapter 4} and/or the user in the form of a number of constraints.
Figure 5-5 shows the sequence of actions taken by the exploration module. Given

the knowledge-pool of the component, the module will encounter the challenge of
performing the following tasks for any given component, with minimum or no need for user-

in

1))

2)

tervention (as implied by the concept of design automation).
To evaluate the knowledge-poo! from an information-consistency/redundancy point of
view to determine if the problem can actually be solved with the available knowledge,
To apply a "universal” solution strategy to the problem, regardless of the nature of the
constraint set, and
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3) To manage to find multiple feasible solutions to the problem, if they exist.
Of the three tasks mentioned above, some have been individually studicd, completely
or partially, by other researchers and reported in the literature. Nevertheless, o our

initial info.+requirements

r:
! form the knowledge-pool, [P G T e
extract the censtraint set } L\component cell
| Lpompunents library
\\
check the constraint set fail
for consistency/redundancy I
pass
| Y
! solve the constraint set - repert failure

\j

multiple feasible solutions
Figure 5-5: Operation of the exploration KS

knowledge they have never been addressed collectively in the context of an automated design
system. As we proceed with the rest of this work, we shall refer to other researchers’
contributions to the techniques we are about to present.

5.2.1 PROBLEM FORMULATION
The problem we are dealing with in the exploration stage is generally refered to as
constraint management. A set of constraints, representing the design-governing relations,
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requirements and given specifications is “"extracted” from the knowledge-pool of the
candidate-component. The goal is now to find solution(s) to this set, if they exist. Without
loss of generality, in this chapter we assume that all extracted constraints are presented in
terms of the component’s design/performance parameters.

The constraint set, in its general form, is represented by m+k constraints in 7+
variables as follows.
H = {h,} is the set of m equality constraints of the form h(x,)=0 i=1,2,..,m

and
G =g) isthe set of k inequality constraints of the torm  g(X;) < 0 i=1,2,...,k
where X, = (X[, X2y cooves Xgp) @0d Xy = (Xg, X320 -onnny X} are the sets of variables appearing

in H and G respectively, and x = x, U %, represents the set of design variables of the
problem. Note that usually, though not necessarily, X, andx, have some members in common

and x, N, # @, that is, the total number of distinct variables (or Ixi) is less than n+l. We

further represent the collective constraint set of the problemas C=Hu G.

In practice, however, the collective constraint set C is formed by the junction of two
other constraint sets. One is the set of constraints included in the initial, user-provided
information and the other is the set of constraints contained in the component cell. Each of
these two sets generally has both equality and inequality constraints in it.

As mentioned earlier, the initial information includea what we called the external
constraints, plus the values of a subset of x introduced above. We also called the constraints
contained in the component cell the internal constraints. Once the exploration module is
activated, the first thing it does is to combine the internal and external constraints to form C.
A feasible instance of the component is then represented by a set of values for x which
satisfies C.

As allowed by the DbE model, the overall constraint set C and the initial
specifications, or the knowledge-pool in short, may change at virtually any stage of the
design process. New constraints may be introduced by the "critic" knowledge-sources and
given specifications may be changed/augmented due to the conditions of fellow components.
Each time something in the knowledge-pool is altered, the design manager re-activates the
module to seek the feasible solution(s) through solving the new C for the new specifications.

Briefly then, the constraint management problem at hand is that of consecuuvely
studying, and possibly solving, a (changing) constraint set C in a set of variables x, with
values of a (different) subset of x being given at each time. The set needs to be examined
before each solution is attempted, because it may or may not be solvable due to problems
such as inconsistency and redundancy.
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The concept of treating the entire process of component design (in our case the
exploration process) as a constraint management problem is fairly new, though the general
constraint management problem has a rather long history and has been addressed by many
researchers. However, the majority of the works reported in the literature on constraint
management are limited in scope and do not generally meet the complex requirements of
design automation as laid out in this work. A number of constraint-based systems have
nonetheless been reported in the literature that address some aspects of automated constraint
management rather closely. Here we shall take a brief look at some of the related work.

A mathematical presentation of the constraint theory can be found in (Friedman and
Leondes 1969a; 1969b; 1969¢). Steward (1981), Himmelblau (1966) and Soylemez (1973)
were among the first to consider the automation of constraint management in a consisten!
equality constraint set. Self-consistency and absence of inequality constraints are two of the
main assumptions in their works. These assumptions, however, are not generally correct of
the conceptual designer. First because inequality constraints are often present in the problem
and second because we have no knowledge about the consistency of the constraint set a
priori.

Based on the belief that mechanical designers should be optimal designers rather than
just feasible designers', a number of researchers have regarded the constraint management
problem in the context of mechanical design as a single-/multi-objective optimization
problem (Johnson 1971 and 1980; Wilde 1978; Siddall 1982; Arora 1989; Papalambros
1987; Papalambros and Wilde 1988; Reklaitis 1983; Haug and Arora 1979; Jain and
Agogino 1990). Several computer- and knowledge-based systems have been developed with
the purpose of automating the process of optimal design (Chieng and Hoetzel 1987; Mistree,
Hughes and Phuoc 1981; Parkinson, Balling and Free 1984; Balachandran and Gero 1987,
Mehta and Korde 1988; Arora and Baenziger 1986; Li and Papalambros 1985).

Agogino and her group (Jain and Agogino 1990; Michelena and Agogino 1988) have
further studied the role of qualitative analysis in reducing the complexity of the design
problems before applying optimization techniques to them. Inspired by the ideas of Wilde
(Wilde 1975; Wilde 1986; Papalambros and Wilde 1988) and following the works of
Papalambros (Papalambros and Wilde 1979; Papalambros and Li 1983) and Azarm and
Papalambros (1984) they have developed a set of computer programs (SYMON and its
extension SYMFUNE) (Choy and Agogino 1986; Agogino and Almgren 1987a; 1987b) that
use monotonicity analysis to verify the problem formulation and possibly "shrink" its search

*Remember that the DbE model prescribes the generation of multiple feasible designs rather than a single,
optimal one (Chapter 3).
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space. They have also developed a design methodology (called 1st PRINCE) (Cagan and

Agogino 1987) which augments the results of these programs with first principle information

to achieve some degree of innovation in optimal design.

Since we believe monotonicity analysis (MA) has been somewhat overrated by some
researchers, Jet us take a quick look at what the method does and what its limitations are.

MA is based on the application of the Karush-Kuhn-Tucker optimality conditions
(Karush 1939; Kuhn and Tucker 1950; Kuhn 1976) and is presented in the context of
constrained optimization problems. Such a problem is typically represented by an objective
function F{x) subject to a number of constraints of the general form "f{x) < 0" where x = [,
X3, -eees Xo) 18 the set of variables of the problem. Other presentations of the censtraints can
simply be transformed to the above form.

Monotonicity analysis is a tool for utilizing the "monotonic properties” of the
objective function and the constraints to reason about their behavior. It attempts to reduce
the dimensionality of the optimization problem and to detect flaws in the problem
formulation before it is numerically solved. Before we outline the "rules" of MA, the
following terms have to be defined.

- The monotonicity of a differentiable function f{x} with respect to variable x, is the
algebraic sign of o/ ox,. The function is said to be strictly monotonically increasing
(decreasing) w.r.t. x, if and only if &/ &, > (<) 0, for all x.

- A variable x, is said to be bounded from above (below) by a constraint cfx) < 0 if it
achieves its maximum (minimum) value at strict equality, i.e. 2! c(x) = 0.

- A constraint is active (inactive) at x, if c(x;) = 0 (< 0).

MA has three fundamental rules (theorems) for defining well-constrained
optimization problems,

Rule one: If the objective function is monotonic with respect to a variable, then there
exists at least one active constraint which bounds the variable in the direction
opposite to the objective.

Rule two: If a variable is not contained in the objective function, then it must be either
bounded from both above and below by active constraints or not actively
bounded at all, that is, all constraints monotonic with respect to that variable
must be inactive,

Rule three:  The number of nonredundant active constraints cannot exceed the total
number of variables. In other words the dimensionality of an active
constraint set, or the number of its degrees of freedom, cannot be negative.

Let us apply these rules to a simple example to demonstrate the kind of insight that
can be gained through MA. The example and part of its discussion are taken from.
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Maximize f=3x;+ 2x,

subject to g,=5x,+4x,-23.7 <0
82=-'tl +2.t:'4 SO
g;=-x-1<0

hy=x;-2x,-2=0
All the three design variables (x1, x2 and x3) are assumed to be positive integers.

Discussion:

- First we may apply rule 3 above to x, as it does not appear in the objective function.
According to the rule, x, should be either bounded from both above and below by
active constraints or not bounded by nonredundant active constraints at all. Since h,
is always active (= 0 at optimum), we may re-write it as (h, = x; - 25 - 2 < 0} and
consider g, as active ( g, =0 at optimum). This would bound x3 from both above and
below. However, it will give x, a value of (-1) which is not acceptable. Therefore g,
cannot be active and may be modified as (g; = - x; - / < 0). By the same token h; will
be redundant (will not play a role in finding x, and x,).

- We now apply rule 1 to x,. Since the objective function is monotenically increasing
w.r.L. X,, then there must be an active constraint to bound it in the opposite direction,
i.e. from above. "g," happens to do just that, so we consider it active (= 0). This,
however, will violate the condition of the variables being integers, and is rejected.
Again, g, is re-written as (g, = 5x; + 4x, - 23.7 < 0).

At this stage, this is all monotonicity analysis could tell us: that the problem should
be restated as follows.
Maximize f=3x + 2x,
subject to 8,=5x,+4x,-237<0
8=-X; +2x,-450

In effect, the above analysis has reduced the dimensionality of the problem by one degree of

freedom and the total number of constraints by two.

Now suppose that g, was originally given as (g, = 5x, + 4x; - 23.0 < 0). Taking the
same steps as before and applying the first rule to g,, now we would be able to consider it
active (g; = 5x; + 4x, - 23.0 = 0), as it would no longer violate the "integer" condition. The
latter would yield: x, = - 0.8x,+ 4.6 and we would be able to re-write the objective function
as (f=-04x,+ 13.8yand g, as (g, = 2.8x, - 8.6 < 0) or (x, < 3.07). This in tumn will result
in (x, = 2, xI = 3 and f = 13) which is the solution. We can see that this time around, the
whole problem has been solved just by reasoning about the constraints.

Despite its capability to detect many of the ill-formulated optimization problems and
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facilitate their solution, monotonicity analysis cannot be considered the ultimate, universal

constraint-management tool, especially in the context of design automation the way we have
introduced. Here are some of the reasons why.

The rules of MA are necessary, but not sufficient, conditions for a well-constrained
optimization problem. Consider the following simple example (Agogino and Almgren
1987b).

Minimize  fix, x,) =x,/x,

Subjectto  g,(x, x,)=x,/(x,)*-1 <0

for positive x; and x,

The problem satisfies all three MA conditions for being well-constrained. There are
no variables in the constraint that do not appear in the objective function (rule 2) and,
as we shall see shortly, the number of active constraints (one) does not exceed the
number of variables (two). As for the first rule, the objective function is monotonically
increasing w.r.t. x, and decreasing w.r.t. x;. Hence rule 1 calls for g to be active in
order to bound x, from below and,x from above. This yields (x, / (x ) =D,
Substituting the latter in f will result in the reduced problem (Minimize f = 1/x, subject
to x; > @) which does not have a finite solution. The problem is not well-constrained,
though the rules of MA say it is.
In general, there is no guarantee as to whether all the constraints in the constraint-set
of a component are continuous and differentiable as required by MA. Also, a
combination of continuous and discrete variables are often present in the variable-set
of the component.
The centre of focus in monotonicity analysis and its predecessors is to route the search
in an optimizing direction and seek the optimal solution through skipping not only the
infeasible solutions but also the sub-optimal feasible ones. As we discussed earlier
(chapter 3), this is in contrast with the requirements of DbE because a sub-optimal
component instance may yet lead to an optimal system design. For the reasons
previously discussed (chapter 3) we do not consider the constraint-management
problem at hand an optimization problem. We would rather seek to find all feasible
instances of a candidate component than a single, optimal one.
Though relatively successful in handling complex problems with numerous constraints,
MA does not show the same prospect in case of the DbE scenario, where numerous
problems of low- to medium complexity are to be rapidly, and sometimes repeatedly,
evaluated. The cumulative computations and reasoning operations of MA will

noticeably slow down the design process and yet will not provide enough help to justify
its use.
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The argument just presented does by no means deny the necessity of a design problem
being properly constrained. On the contrary, we believe that such an analysis is required to
avoid fruitless computations on poorly-formulated problems that are likely not to have a
finite solution. Our approach to handling the constraint-management problem will be
presented in the following section®.

Qualitative analysis of constraints with the purpose of gaining insight into the
constraint management (and not necessarily design optimization) has also been addressed by
Kannapan and Marshek (1991), Rinderle (Rinderle and Suh 1982; Rinderle and Watton
1987), Ishii and Barken (1987a; 1987b) and Agrawal et al. (Agrawal et al. i993) among
others. The scope of these works ranges from simply suggesting the order in which design
equations should be solved (while almost ignoring the inequality constraints) to providing
tools for assessing the "goodness" of a design according to the axioms of good design (Suh
1990).

Favoring feasible design rather than optimal design, Sridhar et al. (Sridhar, Agrawal
and Kinzel 1991) propose a stepwise transformation of inequality constraints uf the problem
to equality ones through introducing slack variables. Considering the equality constraints
and using tiie occurence matrix of the problem, they check the inequality constraints one by
one and transform only those whose activation will help reduce the dimensionality of the
problem. This is as opposed to the classical optimization approach wherein all inequality
constraints are transformed to equations. The Minimum Design Deviation Algorithm they
propose requires the user to occasionally free some of the bound variables.

Serrano and Gosssard (1987; 1988) and Serrano {1984; 1990) have investigated the
problem: of constraint management in the context of mechanical conceptual and concurrent
design. Their constraint-based system MATHPAK (Serranc 1984), and its extension the
"Concept Modeller" (Serrano and Gossard 1987) use a graph theoretical approach to the
evaluation of constraint sets and the detection of conflicts/redundancies in those sets.

Given the constraint set of a component, they use the equality constraints along with
a number of activated inequality constraints (Section 5.2.1) to generate a design point in the
solution space, which is basically the equivalent of a candidate design. The rest of the
inequality constraints are then checked for violations. If violations are detected, one or more
of the following actions are taken accordingly.

- Values of one or more variables are changed so that the whole constraint set is

*Classical techniques (o verify the problem formulation are relatively well established (see references in the
text, especially Papalambros and Wilde 1988). For the sake of brevity, in this chapter we restrict our discussion

of the system evaluation to those areas in which we are presenting more novel techniques, and assume that the
problem is properly bounded otherwise.
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satisfied,

Some/all of the activated inequality constraints are replaced so that the solution of
substituting active constraints plus the equality constraints result in parameter values
that no longer violate the constraint set,

If neither of the above works, the problem is ill-formulated. Therefore, the problem
formulation (some/all of the constraints) is changed.

In all of these cases the proposed system prompts the user to intervene and provide the
necessary values / perform the necessary modifications. For the very same reason, this
strategy too, fails to meet all requirements of automated design.

With this brief background in mind, we now present our approach to handling the

constraint management problem within the context of the DbE model of conceptual design.
But first we make the following observations.

5.2.2

The constraint set of a typical candidate component comprises both equality and
inequality constraints in the component’s design/performance parameters.

The constraint set is initially consistent. Both the contents of the component-cells and
the initial requirements presented by the user are carefully set up and are initially
conflict-free. Inconsistencies may occur later in the process when new constraints are
introduced.

In its original form (prior to the activation of any of the inequalities) the problem could
be overconstrained, underconstrained or exactly constrained, depending on the initial
specifications. This can only be determined through examining the set of equality
constraints.

If overconstrained (i.e. the number of equality constraints exceeding that of the
unknown variables by k), the problem cannot be solved unless k equations are proved
to be dependent on others (and hence redundant).

If underconstrained (i.e. the number of unknown variables exceeding that of the
equality constraints by r), the problem will not have a unique solution and is said to
have r degrees of freedom. Also, nonlinear problems can have non-unique solutions.
In case of an underconstrained problem with r degrees of freedom, specifying the
values of r unknown variables may render the set exactly constrained.

A feasible solution to the problem is represented by a set of parameter values which
satisfies the collective constraint set, i.e. both the equality and the inequality
constraints.

PROBLEM EVALUATION
The problem-solving strategy of the exploration module is based on a Genetic Search
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(to be elaborated in Section 5.2.5) of the solution space to spot the feasible points
representing feasible solutions. The space to be searched is r-dimensional , where r is the
problem’s degrees of freedom defined as the number of variables less the number of
independent equality (active) constraints.

Recognition of independent equality constraints requires an examination of the
equality constraint set. Hence as the first step the exploration module scans C, the collective
constraint set of the problem, and forms the two disjoint subsets of equality and inequality
constraints (H and G respectively). An examination of H will now determine the outpur
variables of the equality subset. This in turn will serve in specifying the solution subspace
to be searched. An output variable is the choice of dependent variable in an equality
constraint for which the constraint is to be solved, with other variables being determined by
other relations, or guessed.

We take H to represent the set of m equality constraints in n variables (x,,, X;a.
X,.)- Depending on the nature of the constraints and the initial specifications H could be
underconstrained, exactly constrained (constraint bound) or overconstrained. In practice,
however, the underconstrained case dominates and, especially in the context of DbE, we
often get more unknown variables than equality constraints.

This situation may be considered favorable by some in the sense that it gives the
designer more room {more degrees of freedom) to maneuver. It could also provide for more
alternative solutions as an initially-unbound variable would theoretically take a multitude of
values from across its range, instead of one prescribed value, and it is likely that more than
one of these values qualify and thus result in multiple solutions. As we shall discuss shortly,
DbE takes full advantage of this phenomenron in its quest for multiple design alternatives.

Having distinguished the equality subset, we now employ the notion of maximal
matching to evaluate the subset. By matching we mean assigning one output variable to each
constraint. A matching M is represented by a set of ordered pairs, of which the first member
is an unknown variable and the second is an independent equality constraint. In formal
representation M = {(x,, h) : x, € x,, h € H}, where x, is the sel of n variables appearing in
H. M represents a one-to-one mapping of the variable set onto the equality set, that is, no
two pairs in M may have their first and/or second member in common.

Maximal matching refers to the largest possible M. The maximal matching is said
to be complete if Ix,| = IHI and no element remains unmatched in either x or H. It is
important to note that equal number of elements in x, and H does not necessarily indicate a
complete maximal matching as there might still be some unmatched constraints or variables.

If a number of constraints end up unmatched then the system is overconstrained (m-n
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more constraints than unknowns) unless the extra constraints are redundant, that is, they are
consistent with the rest of the set and are satisfied by the values of the unknown variables
determined by the rest of the equations. Except in this circumstance, a unique solution
cannot generally be found for an overconstrained system.

In case of an overconstrained set the exploration module considers the possibility of
completing the maximal matching by "freeing" some of the initially specified variables and
calculating and suggesting new values for them. We shall further discuss the case later on
in this section.

On the other hand, if a number of variables end up unmatched then the system is
underconstrained (n-m more unknowns than constraints). At first glance it might seem that
in this case the specification of values of any n-m unknown variables will complete the
matching and render the system exactly constrained (a case we need for solving the equation
set). This is, however, not generally true because these n-m values might render the set
overconstrained due to the presence of redundant constraints as frequently happens in real
world problems.

Consider, for example, the following set of three equations in four unknowns
represented by its incidence matrix. (The incidence matrix [a,] of a set of p equations in g
variables is a p x g matrix in which a;= [ if variable j appears in equation i, and g, = 0
otherwise.)

(x) (x2) (x3) (=4

(egn. 1) I | 0 0
(eqn. 2) 1 1 0 0
(eqn. 3) 1 1 1 1

The system is underconstrained (;m = 3 and »# = 4) with one degree of freedom and we need
to specify the value of one variable to make it exactly constrained. If we specify the third or
fourth variable, then the set will be exactly constrained and a complete maximal matching
can be found. (For example if we specify x3, then x1 can be assigned to eqn.1, X2 to eqn. 2
and x4 to egn. 3), On the other hand, if we specify the first or second variable, we shall end
up with an overconstrained set (say we specify x2, then we shall have equations 1 and 2 in
x1 and equation 3 in x1, x3 and x4),

Therefore in the case of an underconstrained system we need to know not only the
number of unmatched variables but also their combination. Having recognized the
unmatched variables, the overall degrees of freedom of the problem can be determined by
simply adding the number of unmatched variables to the number of variables that appear in
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the inequality set G and not the equality set H. In formal representation

DOF = (Ix,| - {HI) + (Ix,} - Ix, N x,0). {5-1)
[Note that the RHS of equation (5-1) can simply be rewritten as (Ix] - IHI), i.c. the toral
number of variables less the number of equality (active) constraints.]

Steward (1981) proposes an algorithm for finding the maximal matching in an
equation set. A modified and enhanced version of his algorithm (Figure 5-6) is employed
by the exploration module (EM) tc carry out the analysis just discussed. We shall discuss
these enhancements shortly. EM starts out with the initial incidence matrix of the equality
set (excluding the equations representing the initial specifications) and marks the specified
variables with "S" (Specified) for future references. It then tries to sequentially match each
unassigned variable with an unassigned equation in which the variable appears.

If all the equations are successfully assigned, EM marks those variables that are
neither specified nor assigned with "U", indicating an Unmatched variable. Removing the
columns associated with the "U" variables results in a square incidence matrix representing
a maximal matching and an exactly constrained equality subset.

Steward’s algorithm basically stops here and does not consider further processing of
the incidence matrix in the case where the successful assignment of all equations is not
possible. In an extention to the original algorithm, EM then re-examines the set to sce if
manipulating the initial specifications can fix the set and find a maximal matching.

To re-examine the set, EM unmarks the "S" variables one at a time and treats them
as free (unbound) unknowns. For each "S" variable unmarked, its matching equation (row)
is removed from the matrix and the assignment procedure just described is re-performed.
This goes on until either a maximal matching is reached or no "S" variables are left. The
success of this tactic would mean that the initial specifications had made a subset of
equations overconstrained and that we have managed to render the subset exactly constrained
by freeing some of its bound (specified) variables and letting them be calculated along with
other unknowns.

If, after freeing all the bound variables, the procedure still fails, we may infer that the
overconstrained subset cannot be fixed and a solution for the equality set can not be generally
found. In this case the exploration module reports failure, meaning that no instance of the
candidate component could be found to meet the initial requirements.

At the end of the assignment algorithm, EM scans the inequatlity set G to find those
elements of x, that are neither part of x, nor initially specified. It then adds these variables
to its list of unmatched variables from H to form what we shall call the set of free variables.
The product of the assignment algorithm is a list of unmatched variables plus the output
assignments in H (represented by the modified incidence matrix).
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Let us illustrate the operations presented so far in this section by applying them to a
classical gear design problem’. Although for this purpose we would only need to know the
equality constraints of the exarnple problem, we shall present the complete problem here so
that we could pursue our solution steps in the following sections and complete the solution.
We have chosen the standard spur-gear design problem to make it easier for the reader to
compare the performance of the algorithms presented here with that of the other systems
which have been applied to similar problems (including those reported in Jain and Agogino
1990; Langrana, Mitchell and Ramachandran 1986; Gabriele and Serrano 1991; Zarefar,
Lawley and Etesami 1986; Ramachandran, Langrana and Steinberg 1990).

We wish to design a spur-gear drive that transmits 10 kw of power at an {input) speed
of 500 rpm while reducing the speed by a factor of 4 (output speed = 125rpm). The drive is
part of a transmission system in which the centre distance of the input and output shafts is
to lie between 0.2m and 0.4m.

Here is a list of the variables (x) used in the presentation of the problem.

SR : Speed Ratio (Input to Qutput)
TAY : Input Speed(rpm)

oS : Output Speed(rpm)

TP : Transmitted Power{w)

NPT : Number of Pinion Teeth
NCGT : Number of Gear Teeth

ML ‘ Module(m)*

Fw : Face Width(m)

cD : Centre Distance(m)

AT : Applied Torque(N-m)

TL : Transmitted Load(N)

MBS : Maximum Bending Stress(Pa)
AlS : Allowable Stress(Pa)

K, : Lewis Form Factor

Y : Velocity Factor

In the classical gear design problem commonly discussed in design textbooks, only the algebraic relations
representing primary functions are considered . The differential equations representing the secondary
functions such as internal vibrations are not 1aken into account.

4 . . N

Note that the term module has been used in two different meanings in this text: a program module is an
independent piece of code with a specific function: whereas gear-module is defined as the ratio of the pitch
diameter and the number of teeth in an involute gear.
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Figure 5-7 presents the problem’s internal constraints (design equations plus
inequality constraints) from the respective component set (Figure 5-2).
The requirements of the problem can be summarized as follows (Figure 5-8). Note

that we have intentionally included an incorrect specification (OS = 200 rpm, instead of 500

/4 =125 rpm) to help better verify the performance of the algorithm.

(1)

(2)

(3)

4)

(3)

(6)

(7

(8)

(9)
(10)

(11

AT = 2
IS
CD = ML x NPT x 1SR
_ TP x 60
ML x NPT x IS x =
OS = IS | SR
g . NGT
NPT
MBS TL

Tk x FWx ML X ¥

360

k=
" ML x NPT x IS x © + 360

Y=-18x10"%x NPT* + 4.6 x 10°® x NPT?

- 4.5 x 10" x NPT? + 0.02 x NPT + 0.05

AlS 2 MBS
8025R>0

16 x ML > FW > 9 x ML

Figure 5-7: Internal constraints of the spur-gear drive
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The overall constraint set (C) of the problem, extracted from its knowledge-pool, is made up
of the constraint relations in Figures 5-7 and 5-8.

() TP=10,000w,

(2) IS =500 rpm,

(3) SR=4.0,

4) 0S =200 rpm

(5) 04m2CD20.2m

Figure 5-8: Initial requirements of the gear design problem

To illustrate the performance of the assignment algorithm, we need to distinguish the
equality subset (H). In this case H comprises constraints (1) to (8) in Figure 5-7 plus
constraints (1) to (4) in Figure 5-8. The incidence-matrix representation of the equality
subset is shown in Figure 5-8. Note that according to the algorithm, the initial-specification
relations (constraints (1) to (4) in Figure 5-8) are not to be included in the matrix. Equation
numbers refer to those in Figure 5-7,

In the incidence matrix of Figure 5-9, bound variables (columns) have been marked
with "S" for specified. In this case these represent the equality constraints of Figure 5-8.

Also in the matrix we have replaced the "1"s with "x"s and "0"s with "."s for convenience
and clarity.

S S S S
TL AT MBS FW CD OS SR IS T Y K, ML NGT NPT

eq.l . X . . . . . X X

eq.2 X X x X
eq.d x X X X X
eq.d X X X

eq.5 X X X
eqb6 x X X X X X

eq.7 X X X X
eq.8 X X

Figure 5-9: Initial incidence matrix of the spur-gear design equations

As the matrix shows, the set comprises 8 equations in 14 variables of which 4
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have been initially specified. That leaves us with 8 equations and10 unknowns. It looks like
by specifying two more variables we would be able to render the set constraint-bound and
possibly solve it. Let us now apply the assignment algorithm (Figure 5-6) and see if this
prediction is true and if so, which two variables should be specified. The algorithm works
as follows.

Starting with the first row, variable "AT" is found both unassigned and unspecified,
s0 it is assigned to equation 1, meaning that the equation is to be solved for "AT". Moving
on to the second row, "CD" is found to have the same qualifications and hence is assigned
to equation 2. Similarly, "TL" is assigned to equation 3. In row 4, all three variables are
specified, meaning that there is no unknown variable left to be calculated from equation 4.

There is no need to proceed further to realize that a maximal matching cannot be
found under current circumstances. This is because the number of variables of the problem
is greater than that of the equations, so the "largest possible" matching (section 5.2.2) would
have a dimension equal to the number of equations, in this case 8. Now since we are losing
one equation and hence one assignment, we will not be able to have a matching of size 8 (a
maximal matching) and possibly a solution.

To overcome the impass, the exploration module “frees” the first specified (S)
variable "OS". The situation is now re-examined. This time, variable "OS" is assigned to
equation 4 with no changes in previous assignments. Continuing with equation 5 we find
variable "NGT" unassigned and unspecified. "NGT" is therefore assigned to equation 5.
Similarly, "MBS" is assigned to equation 6, "k," to equation 7 and "Y" to equation 8.

As for the remaining variables, "FW" does not appear in an unassigned row and if we
assigned it (instead of "MBS") to equation 6, we would have the same problem with "MBS"
and would not be able to re-assign it to another equation. Hence "FW" is labelled "U" for
"Unmatched". Also, variables "ML" and "NGT" only appear in already-assigned equations
and if we assigned them to equations they appear in, two other variables would lose their
assignments and the situation would not improve. Therefore these two variables are labled
"U" as well.

Let us now take a closer look at what happened in row 4 of the matrix. There we had
the equation (OS = IS/ SR) with all the three variables specified (in this particular case with
inconsistent values, as 200 rpm # 500 rpm / 4). This would obviously deny the constraint
set a maximal matching as there would be no assignments for this equation, meaning that the
equation would not be used to calculate the value of any unknowns.

As we explained earlier, the situation proclaims that the initial specifications had
made a subset of equations overconstrained. In this case the overconstrained subset is
equation 4 (one equation, zero unknown) or more correctly, the following set of four
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equations in three unknowns.

(1) 0§ =1IS/SR

(2) IS = 500 rpm,

(3) SR =4.0,

(4) OS = 200 rpm
Using the assignment algorithm, we have managed to rer.der the subset exactly constrained
by freeing one of its bound (specified) variables (OS) and letting it be calculated along with
other unknowns. This is like ignoring equation (4) above to render first the remaining subset
and then the original set itself exactly constrained.

One should note that in the assignment algorithm we are primarily concerned with
the constraint set being well-constrained rather than with the values of the variables. For
instance in the example above, we would not care if the initial specifications were or were
not consistent.

The product of the assignment algorithm is shown in Figure 5-10. It is basically the
same incidence matrix in which now a pair of parentheses indicates the assignment of a
variable to an equation and "U" labels tag the unmatched (free) variables.

u S S ] U U

TL AT MBS FW CD O©OS SR IS TP Y K, ML NGT NPT
eq.] . (x) . . . . . X X
eq.2 . . . . (%) . X . . . . X . X
eq.d (x) . . . . . . X b3 . . x . %
eq.4 . . . . . (x) X X
eq.5 . . . . . . X . . . . . {x} X
cqb X . (x) X . ' . . . X X X
eq? . . . . . . . X . . (x) X . X
eq.8 . . . . . . . . . (x) . . . X

Figure 5-10: Incidence matrix; assignments and free variables

The matching (M) is therefore defined as follows.

M= {(AT,eq.1),(CD, €q.2), (TL, eq.3), (OS, eq.4), (NGT, eq.5), (MBS, eq.6), (K,, eq.7),
(Y, eq.8)}

This gives us one possible set of free variables: "FW", "ML" and "NPT". To these we add
a fourth variable "AlS" (Allowable Stress) which appears only in the inequality set and is not
already specified. The problem therefore has four degrees of freedom [equation (5-1) for Ix;)
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= 14, HI = 11 (8 design equations plus three initial specifications), x,! = 6 and Ix; N X, = 5].
By removing the "U" and "S" columns from the matrix of Figure 5-10 we get a square
incidence matrix which represents the exactly-constrained version of the equality set (Figure
5-11).

Note that the reduced matrix of Figure 5-11 is not necessarily unique. The proposed
algorithm could have come up with a different arrangement if it had started with a different
row (i.e. if the rows in the original incidence matrix had been re-arranged).

TL AT MBS CD OS5 Y K, NGT
eq.l . (x) .
eq.2 . . . (x)
eq.3 (x)
eq.4 . . . . (x) .
eq.5 . . . . . . . (x)
eq.6 X . (x) . . X X
eq.7 . . . . . . (x)
eq8 . . . . . (x)

Figure 5-11: The reduced (square) incidence matrix of the spur gear drive

To summarize, in this section we learned how the exploration module examines the

equality subset and determines:

a)  whether the equality constraints (can be made to) form an exactly-constrained system
and hence can potentially be solved,

b) which variables can the equations be solved for and which equation will calculate
which variable,

c)  which variables are "extra", i.e. are not assigned to- and calculated by the equations.
These "free” variables must be somehow guessed before the equality subset could be
solved for the assigned variables.

5.2.3 GENERAL SOLUTION STRATEGY
Remember that our original constraint management problem was stated as follows.
"Examine the constraint set for well-boundedness and, if possible, find the values
of the variables so that they satisfy the collective constraint set, i.e. both equality
and inequality constraints."

In the previous section we explained how to get the first part done, i.e. to find/render
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the problem well-bounded. As for the second part, we just learned that in practice we only
need to specify the values of the other unknowns. The rest is simply a matter of checking

the inequality constraints for satisfaction. Hence the second part of the problem can be
restated as follows. '

"Find values of the free variables that, along with values of the other unknowns
obtained from the solution of the equation set, satisfy the inequality constraints."
We refer to those values of the free variables that meet the above requirement as
feasible values. For example, in the gear design problem we need to find the feasible values
of variables "FW", "ML", "NPT" and "AlS". That is, we are after such values of these
variables that when substituted in equations 1 to 8 of Figure 5-7 and appended to the
variables thus calculated, they collectively satisfy the inequality constraints of the problem
(Figure 5-12).
Like the equality constraint subset, the inequality subset (G) is extracted from the
component’s knowledge-pool by the exploration module and is presented in Figure 5-12 in

the standard form gj(x,) < 0. Note that each bracketed constraint has been presented as two
one-sided constraints.

CD-04c<0

02 -CD <0

SR -80<0 (SR>0)
FW - 16 ML < 0
O9ML - FW < 0
MBS - AlS < 0

Figure 5-12: The inequality constraint subset {G)

A trivial approach to finding the feasible values of the free variables in a problem
would be to use slack variables to incorporate the inequality constraints into the equality
subset, and then find those values of the free variables that lead to the (consisient) solution
of the augmented equation set. In the gear design example, the augmented equation set will
be as shown in Figure 5-13. Equations 9 to 11 represent the initial specifications and

equations 12 tv 17 represent the inequality constraints of Figure 5-12 turned into equations
using positive slack variables (5V, ).
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The other option is to leave the inequality constraints as they are and find those
values of the free variables that, together with the values of other unknowns obtained from
the solution of the equation set, satisfy the inequality constraints.

In both cases, the solution of the problem involves searching the r-dimensional space
of the free variables where r is the number of these variables. However, the difference is that
the first approach requires the solution of a larger equation set with more unknowns
compared to the second approach.

For instance, in the gear design example the slack-variable approach requires the
solution of 17 equations in 17 variables (excluding the free variables and considering the new
unknowns SV)) whereas in the second approach these numbers are cut down to 11 equations
and 11 unknowns.

The solution strategy used by the exploration module is based on a special version
of the second approach. Our re-formulation of the problem and the search technique that EM
uses in its quest for multiple solutions justify the choice of this approach, as we shall explain
in the rest of this section.

5.24 RE-FORMULATING THE PROBLEM

In order to facilitate the monitoring of the inequality set, the exploration module first
combines all the inequality constraints (G) (Figure 5-12} into a single penalty function of the
following form.

k
PF = ¥ [max (0, g (x,)I’ (5-2)
i=

where k is the number of inequality constraints in G;
X, is the set of variables appearing in G, and
g + . ‘esents the normalized form of g. The normalization is meant to make
the penalty function equally sensitive to the variations of its constituent
terms. This will be illustrated later on for the gear design example.

Now the problem can be restated one more time as to find the values of the free
variables so that they satisfy the equality set (H) and minimize (zero) the above penalty
function which is always non-negative. In this new formulation, the problem may be
considered a pseudo-optimization problem. We define a pseudo-optimization problem as
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(1

(2)

3

4)

()

(6)

)

(8

9
(10)
(11
(12)
(13)
(14)
(15)
(16)
(17)

ar = IP
IS
CD = ML x NPT x 125R
. TP x 60
ML x NPT xISxT
OS =15/ SR
SR = NGT
NPT
MBS = L
k, x FW x ML x Y
L - 360
V' ML x NPT x IS x mt + 360
Y = - 1.8 x 107 x NPT* + 46 x 10°¢ x NPT?
- 4,5 x 107* x NPT? + 0.02 x NPT + 0.05
TP = 10,000
IS = 500
SR =40
CD - 04 + 8VI =0

02m - CD +5V2 = 0
SR - 80 +5V3 =0
FW - 16 ML + §V4 = 0
OML -FW +8V5 =0

MBS - AlS +§V6 =0

Figure 5-13: Augmented equation set of the spur-gear drive

131



in which:
- the minimum of the objective (penalty) function is already known (in this case zero),
- present in the problem are both equality constraints (the equation set) and inequality
constraints (ranges of the free variables) that curb a set of variables not necessarily
appearing in the objective function.

Before we present our approach to solving the above problem in its new formulation,
we should point out that in practice, the penalty function just introduced is rarely, if at all,
a well-behaved function in its general form. Nonlinearities in the problem and such
characteristics of the penalty function as multimodality and presence of both continuous and
discrete variables as well as the need for multiple simultaneous solutions defy the realm of
most classical optimization techniques. Also, the proportions of the solution space in real
world problems (e.g. 10" points for a problem with as few as 5 free variables and 100 values
per variable) make the use of enumerative search methods impractical.

5.2.5 THE SOLUTION SCHEME :

Based on the arguments just presented, the exploration module uses a novel search
technique called Genetic Algorithms (GAs) to solve the pseudo-optimization problem just
stated. This decision is motivated by the following characteristics of GAs:

- In their search for the optimum of an objective function, GAs only use the value of the
function itself and do not rely on other function-related information such as
differentiability, monotonicity and continuity. Hence, no matter how complex and ill-
behaviored the function may be, the method will handle it properly.

- GAs can work with various types of variables (e.g. numerical/non-numerical and
continuous/discrete) at the same time. This makes them applicable to a broader range
of real-world design problems normally containing a mix of variable-types including
such non-numerical variables as the choice of a material or the catalog designation of
a standard component.

- GAs simultaneously work on a group of points in the search space instead of a single
point. That is, at each time they would be processing a multitude of potential sclutions,
and in the end they would typically result in muitiple solutions. The implicit
parallelism also means that, for very large search spaces, GAs are much more efficient
than enumerative schemes.

Since our discussion of EM’s search scheme heavily relies on GA terminology, for
the less-familiar reader we present here a brief overview of the method. The implementation
of the method will be then illustrated in the context of the gear design example of previous
section.
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5.2.5.1 GENETIC ALGORITHMS®

Among the stochastic direct search methods is the Genetic Algorithm, based on the
principles of natural selection and survival of the fittest. The terminology used by GAs is
quite similar to that used in natural genetics and even a close analogy is maintained between
the elements of the two. We shall define this terminology as we go on.

The basic structure processed by GAs is the string (chromosome). A string is a
concatenation of a number of codes (often binary codes) of given length. The string bits (0
or 1 in a binary string) are the equivalents of natural genes. Each individual code represents
a design variable (similar to a characteristic in natural genetics such as "eye color") and each
specific instance of the code represents, directly or indirectly, a specific value of that variable
(equivalent of, say "blue eye"). There are as many codes in a string as the number of design
variables, hence a string basically represents a possible design (solution).

Suppose, for example, that we want to determine the dimensions of a box in inches
with maximum volume subject to the constraint that the total area of the box is constant. The
problem has three variables L, W and H and an objective function (V =L x W x H) to be
maximized subject to (L x W + L x H+ W x H = 432 in®). Further suppose that each of the
three variables can take any integer value between 1 and 31 inches inclusive.

Now if we wanted to use a binary code to codify different values of each variable, we
would need a five-digit binary code to do that (2°- 1 = 31). This way the code "00001"
would represent (in this case directly) the first value in the variable’s domain (i.e. | inch),
"00010" to the second (i.e. 2 inches) and "11111" to the 31st value (i.e. 31 inches). Then the
string "10010 01010 11001" would represent a candidate design (solution) specified by the
18th (10010) value of the first variable, the 10th (01010) value of the second variable, and
the 25th (11001) value of the third variable, or a box of 18" x 10" x 25".

GAs start out by generating an initial population of strings through random selection
of string-bit values. The number of strings (chromosomes) in the population is called the
population size. The population size is initially specified by the user, or is determined by the
computer according to heuristic rules (discussed later) and is usually kept constant
throughout the search. In the example above, in order to randomly generate one string we
would need to flip a coin (run a random binary generator) 15 times (number of bits in the
string) and with a population size of, say 5, we would need to do that 75 times (5 x 15)°. An

®Although the basic steps of GAs have been preity much standardized, there are often more than one way to
implement them. Unless otherwise stated, in this work we have tried to stay with the interpretations and
recommendations of David Goldberg (1989), which appear to be the most coherent and complete of all,

“This population size is chosen only for demonstration purposes. Later in this section we shall discuss how
to choose the optimum population size for a certain chromosome length.
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instance of the population thus generated is shown in Figure 5-147. The population
represents generation zero of the chromosomes.

String No. String (Chromosome) Real Dimensions Fitness
I 01010 11100 00100 10" x 28" x 4" 1120
2 00011 10010 10010 3" 18" x 18" 972
3 01000 01000 10111 8" x 8"x23" 1472
4 00100 01100 11000 4" x 12" x 24" 1152
5 0011000111 11110 6" x 7" x 30" 1260

Figure 5-14: Typical generation zerc for the box-design example

The second column in the above table contains the randomly generated 15-bit strings
each representing a set of variables (dimensions) for the box. The real (decoded) values of
the variables are presented in the third column. In this particular case, the decimal equivalent
of each 5-bit binary code directly represents the real value of the corresponding variable. For
example, the decimal equivalent of the binary code "10010" is 18 which happens to be the
same as the actual 18th value in the variable's domain (18").

This may not always be the case; decimalized codes may refer to different numerical
or even non-numerical values. For example, if the variable's domain comprised even integers
between 2 and 62 inclusive, then the the same binary code "10010" would represent a value
of 36" instead of 18", as this time the 18th value in the variable's domain would be 36. By
the same token, the same code may refer to a color "purple" as the 18th color in the variable's
domain.

The fourth column in the above table contains the fitnesses of various strings (or
various candidate designs). The fitness of a string (a candidate design) is evaluated using the
objective function. Since GAs seek to maximize the fitness of their candidate solutions, in
a maximization problem this fitness could be simply expressed as the value of the objective
function calculated for the specific parameter values each string represents, i.e. the fitness
function could be the same as the objective function. This is the case with the box design
example where the fitness of each candidate box is expressed simply as its volume.

However, in a minimization problem the fitness obviously decreases with the increase
of the objective function. One way to compensate for this is to define the fitness function

"Note that we have rejected those values that violate the "arca” constraint. The number of "coin flips"
mentioned here therefore does not include the ones resulting in invalid values. Although this is not the only
(or the most efficient) approach to constraint satisfaction in GAs, it is adequate for our brief overview of the
method, We shall further discuss the issue later in this chapter.
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as follows.

Fitness Function = K - Objective Function
where K is a constant, large enough to exclude negative fitnesses. A value commonly used
for K is the sum of the minimum and maximum values of the objective function in each
generation.

Having analysed and evaluated the strings in generation zero, the next generation
(generation one) is now created from the fittest members (strings) of generation zero. To do
this, each string is given a weighting proportional to its fitness in a selection process whereby
parents of the members of the next generation are selected. The process is called fitness
proportionate reproduction and determines the number of copies of each string in the current
generation to go to a mating pool, where the selected strings get a chance to participate in
producing the strings of the next generation.

Let us see how fitness-proportionate reproduction works. The easiest way to do this
is to simulate the process with the operation of a weighted roulette wheel, Each string in the
population has a wheel slot, sized in proportion to its fitness. If the we let f' represent the
raw fitness® (Figure 5-14, column 4) of the ith string in the population and JJ" represent the
sum of the raw fitnesses of all strings in the same population, then the relative fitness (and
hence the probability of selection) of the ith string would be f’/Jf'. Figure 5-15 shows
relative fitnesses of the population of Figure 5-15 in percentage form.

String No. | String (Chromosome) | Raw Fitness | Relative Fitness
1 01010 11100 00100 1120 18.7%
2 00011 10010 10010 972 16.3%
3 01000 01000 10111 1472 24,6%
4 0010001100 11000 1152 19.3%
5 0011000111 11110 1260 21.1%
Total 5976 100.0%
Average 1195.2

Figure 5-15: Raw and relative fitnesses of the population of Figure 5-14

®The term raw Jitness here indicates in this brief "tutorial” we are not using a scaling technique to improve
the reproduction probabilities of the fitter strings and depress those of the weaker ones, as is a common

practice in GAs applications, Nevertheless, EM's solution scheme does employ such a technique and we
shall discuss it later on in this work.,
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The corresponding roulette wheel is shown in Figure 5-16.
To reproduce, we simply
"spin” the roulette wheel as
many times as the
population size, in this case
5 times. Each spin will
reveal a "winning" number
{in this case between | and
5), which specifies the
string whose copy will
make it to the next stage,
i.e. the mating pool. 1t is
evident that the larger the
wheel-slot of a string (i.e.
the fitter the string), the
higher its probability of
having copies in the mating
pool and thus participating
in the creation of the next
generation.

Let us suppose that
in a typical sequence of spins of the wheel in Figure 5-16, strings 1, 4 and 5 are each selected
once, string 3 is selected twice and string 2 is not selected at all. The resulting mating pool
is shown in Figure 5-17.

Figure 5-16: Weighted rouleite wheel for generation zero

String No. String No.
(Mating Pool) (Generation Zero) Selected String Real Dimensions Fitness
1 I 0101011100 00100 10" x 28" x 4" 1120
2 3 0100001000 10111 8" x 8" x 23" 1472
3 3 0100001000 10111 8" x 8" x 23" 1472
4 4 0010001100 11000 4" x 12" x 24" 1152
5 5 0011000111 11110 6" x 7" x 30" 1260

Figure 5-17: Mating pool for generation zero

The sequence of actions on a typical population is graphically shown in Figure 5-18.
The strings in the mating pool mare at random, that is, pairs of strings are randomly selected,
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mixcd and possibly altered by generic operators to produce strings of the succeeding
generation,

atring (1,1 atring (tentative,l) string f[i+1,1}
- string (1,2) fitness proportionste  srring (tentative,) genetic Catring (ie1,2)
. PO R — . - .
.......... selection operators e
~ atring (i,m) . . string (tentative,n) Loatring (i+1.n)
generatlon (i) mating pool gehscratioh (141}

Figure 5-18: Evolution of populations in successive generations

The two commonly applied genetic operators are crossover and mutation. Crossover
is the most important operator of a genetic-based technique. A simple one-point crossover
scheme works as follows. Once a pair of strings is selected at random from the mating pool,
an integer position k (called the crossover site) along the string is selected at random between
1 and /-1 where ! is the length of the string in bits. Two new strings ar¢ now created by
swapping all bits between position k+/ and ! inclusively. The "mating" process is repeated
with other string pairs until the desired number of "child" strings are generated. In constant-
population-size GAs, this number is the same as the original population size, in our example
5°.

For instance, suppose that in the mating pool of the box design problem (Figure 5-
17), strings 4 and 1 are randomly selected for mating. Each of the two strings has a length
of 15 bits, so a crossover site must be picked berween 1 and 4. Let us suppose that bit 11
is randomly chosen and the strings are partially swapped from this point (Figure 5-19).

string 4 00100 01100 111000 00100 ©1100 10100
===)
string | 01010 11100 (10100 01010 11100 01000

Figure 5-19: Crossing over of strings 1 and 4 in Figure 5-17

Crossover results in a randomized, yet structured information exchange. Each "child”

*Since child-strings are generated in pairs, the process would not be able to generate an odd number of
offspring. Therefore in the case of an odd population size one may generate one more (less) string and then
eliminate {add) a single string to the population. One way to do this is to remove the least-fit chromosome

from the population (add a duplicate of the most-fit chromosome to the population). In this introduction to
GAs we shall not discuss this any further,
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string combines the characteristics of its "parent” strings. Considering the fact that in every
search procedure there is a tradeoff between creating new knowledge and exploiting the
already existing knowledge, one can regard crossover as the means for exploiting the existing
knowledge in GAs. By combining chromosomes to form string patterns that may not have
previously appeard in the population, crossover also provides a mechanism for exploring new
regions of the search space.

New knowledge can be introduced to the system by applying a second genetic
operator called mutation. Mutation basically involves the random alteration of a bit (O to 1
or 1 to 0) in a randomly chosen string. The operator is normally applied to post-crossover
strings in the mating pool. Again, a mutation site is randomly selected along the string
(between bits 1 and ! inclusive) and the respective bit is switched. Mutation introduces a
type of occasional random walk in the search space and prevents the system from being
trapped in local optima. Mutation also allows for the formation of string patterns that may
not have been present in the initial, randomly generated finite sized population.

Let us see how mutation affects our crossed-over strings of Figure 5-19. Suppose that
arandom integer generator gives us 4 as the site of mutation. In the first string on the right
hand side of Figure 5-19, the 4th bit (from left) is a 0. Changing this to 1 will alter the string
as shown in Figure 5-20.

(mutation site)
!

00100 01100 10100 -* 0011001100 10100

Figure 5-20: Mutation of a gene

The results of genetic operations "crossover” and "mutation” on the two "parent”
strings are summarized in Figure 5-21. Both parent- and child strings are shown along with
their fitnesses. Note that one of the child strings happens to be invalid and is rejected
according to the area-constraint. Nonetheless, the other one exibits a higher fitness than both
its parents. This phenomenon is typical of GAs, as their power lies in improving the average
fitness of successive generations.

Continuing with our box design example, in Figure 5-22 we show a typical
generation 1 of strings, created through application of fitness-proportionate reproduction,
crossover and mutation to the population of generation zero. The process has been repeated
until a required number (5) of new strings have been generaied. A comparison between the
fitnesses of the two consecutive generations (Figures 5-15 and 5-22) shows that the average
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fitness of the generation has increased from 1192.2 to 1382.4.

Parent Strings Fitness | Child Strings Real Values  Fitness
| oo mmamcmammcanae
0010001100 11000 1152 | 0011001100 10100 6" x 12" x 20" 1440
01010 11100 00100 1120 1 010101110001000 10" x 28" x 8" invalid

Figure 5-21: Results of a reproduction iteration

Proceeding to succeeding generations, the average fitness of the population will
further improve and the global optimum solution (12" x 12" x 12") will be found (in this
simple problem) in a few generations. One should note that our assertion about the growing
average fitness of the consecutive generations does not imply an all-fit cast of strings in all
generations. Many weak individuals may, and usually do, appear in one generation or
another, but according to the principle of "survival of the fittest" they soon are replaced by
stronger individuals and "die out". In GAs this "fate" materializes in the form of fitness-
proportionate reproduction whereby the weaker chromosomes get little chance to be selected
to have any offspring in the following generation.

The evolutionary process is terminated when convergence is detected or when another
termination criterion (such as processing of a certain number of generations) is met (Figure
5-23). Convergence in the context of GAs is measured by the uniformity of the fitnesses of
the strings in a population. A common termination criterion is that 95% of these strings
share the same fitness, or the average fitness of the population falls within 95% of the
maximum fitness in the same population (Dejong 1975).

String No. | String (Chromosome) | Real Values [ Fitness
1 0011001100 10100 6" x 12" x 20" | 1440
2 1111000111 00110 30" x 7"x6" | 1260
3 00100 1110001010 4" x 28" x 10" | 1120
4 01000 1011101111 8" x23" x 8" | 1472
5 01001 01010 10010 9"x 10" x 18" | 1620
Total 6912
Average 1382.4

Figure 5-22: Generation ] (reproduced from generation zero, Figure 5-15)
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Having introduced the basic idea of GAs, it is now time to take a closer look at some
of the elements that give the trivial-looking method its power and robustness. We shall also
explain briefly how the values of such GA parameters as string length, population size,
crossover rate and mutation probability are determined.

The string length specifies the maximum number of discrete values a string can
represent (the string capacity). When binary strings are used, this number is 2'- 7 where {
is the Jength of the string in bits'®. It must be clear by now that standard (as opposed to
special purpose) GAs work only with discrete values of variables. Domains of continuous
variables therefore need to be discretized before applying GAs to them. The finer the
discretization of the domain, the longer the string required to represent it.

In cases where the formula (2'- I = number of discrete values of the variable) does
not yield an integer value for /, the next nearest integer value is given to / and the rest of the
variable's domain is filled with repetitions of existing values. The same thing happens when
various variables of a problem have different number of values in their domains and a unique
string length is to be used to represent them all, for convenience purposes. In this case the
string length is calculated based on the most crowded variable domain and the domains of
the other variables are arbitrarily filled with other values in those domains'’.

Suppose, for example that a variable has 10 discrete values in its domain, say (1, 2,
. 10]. We know that a string of length 3 can only represent 7 (= 2 - 1) values and a string
of length 4 can represent 15 (= 2* - 1) values. We will therefore pick the latter and fill the
domain randomly, say, as follows,

[1,1,2,3,3,4,5,6,7,8,9,9,9, 10, 10}
Also suppose that in a problem the domains of the three variables are as follows.
{20, 21, 22, 23, 24, 25, 26, 27, 28] (9 values)
(1,2 3,435 6 7, 8, 910,11, 12,13, 14, 15] (15 values)
{30, 31, 32, 33, 34, 35, 36] (7 values)
Although the 7 values of the third variable can well be represented by a 3-bit string, in order
to use a uniform string length, we would use strings of length 4 (required by the second

1°Some researchers (including Goldberg 1989) prefer to use the full mapping capacity of a binary string
(2' rather than 2' - 1), meaning that they include in their mapping the all-zero binary string (equivalent of
decimal zero) too. We, however, have chosen 1o map only the non-zero codes (after Jenkins 1991) for
programning convenience.

11 . . . . R . . .
From a probabilistic point of view, this arbitrary duplication of a subset of the discrete values in a
variable’s domain will not affect the results of the stochastic search, for all the values in the domain of the

variable are given the same "duplication probability”. Further elaboration of the issue is beyond the scope
of this report,
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variable) to represent all three variables as follows.

[20, 20, 21, 21, 22, 22, 23, 24, 25, 26, 26, 27, 27, 28, 28] (15 values)
[1, 2, 3, 4,5 6,7 8 910,11,12,13,14, 15] (15 values)
[30, 30, 31, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35, 36, 36] (15 values)

Population size, or the number of strings in each generation, directly affects the
ability of GAs to find the global optimum and their rate of convergence. A too small
population will converge too quickly and often to suboptimal solutions. This is termed
Genetic Drift and is, in the biological world, analogous to in-breeding within small, closed
populations of organisms. The larger the population, the more points in the solution space
being examined at each iteration and hence the higher the chance of hitting the global
optimum in fewer iterations, However, a too large population results in long waiting times
for any significant improvement and fewer chance of good strings to mate due to crowded
populations.

Empirical studies have pointed toward the existence of an optimal population size for
each string length. Goldberg (1985) suggests the following relation for the calculation of
optimal population size as a function of string length (for binary-coded GAs with string
lengths of up to 60).

pop:ize,, = 1.65 x 2 %%

where [ is the string length. Based on this relation, he recommends the following population
sizes for some of the more common string lengths,

String Length | Population Size String Length | Population Size
............. l- - ; -
4 I 4 18 I 22
5 I 4 19 [ 26
6 I 5 20 i 29
7 I 5 21 I 34
8 I 6 22 | 38
9 I 7 24 ! 51
10 I 8 25 I 58
11 I 9 26 I 67
12 I 10 28 I 77
14 I 13 30 | 38
15 I 15 35 I 101
16 I 17 40 I 116



Crossover and mutation play crucial roles in a GA seach, especially when they are
applied at the same time. When only mutation is applied, the search resembles a random
search. On the other hand, when only crossover is applied, the system may quickly spot a
suboptimal solution (local optima) that exists within the initial population, thus resulting in
a premature convergence. The tradeoff between the two operators allows GAs to
successfully converge in most cases to the global optimum.

Operation of the two operators is controlled by their prescribed rates or probabilities
(expressed as a percentage). These probabilities are cither specified by the user or
determined by the system according to some given criteria. In a programming sense, they
tell the system at each point how many strings must be crossed over and how many must be
mutated. Suppose for example that in our box design problem (population size = 5) we have
a crossover probability of 80%. This means that 4 (= 0.8 x 5) of the strings have to be
crossed over and a fifth one will directly go to the next generation.

Also, a mutation probability of 1% in the same problem means that on average, onc
bit will be switched somewhere in the population every other generation. This is because it
will take a gene a minimum of 7 strings (more than one population size) before its
probability of mutation becomes 2 1 (15 bits/string x 7 strings x 0.01 = 1.05 2 1.0).

Various researchers have recommended a value of 0.6 to 1.0 for the crossover
probability and a value of less than 0.05 for the mutation probability (Grefenstette 1986).
Due to the importance of these genetic parameters in a GA search and their direct influence
on its rate of convergence, we would inevitably need to find optimal values of the parameters
for our search purposes. In Design by Exploration this optimization is somewhat possible
as we are dealing with a specific class of problems, namely instantiation of mechanical
components, which maintains the same formulation for all the problems in the class.

5.2.5.2 TUNING THE GENETIC PARAMETERS FOR DbE
a. Crossover Rate

Three different example problems were chosen as a tesibed for determining the
optimal values of genetic parameters. The problems were to design a spur gear drive, a
helical compression spring and a rotating shaft. All three problems were formulated as
explained earlier in this section. The formulations of the problems are presented in
Appendix E.

To solve the problems, a genetic algorithm was applied to them separately. Each
problem was tried with three different sets of initial specifications and for each set the
program was run 50 times (a total of 150 runs per problem). The test was repeated for values
of Crossover Rate (CR) between 0.6 and 1.0 inclusive with a stepsize of 0.! and for values
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of Mutation Probability (MP) between 0.005 and 0.05 in various stepsizes (0.005, 0.01, 0.02,
0.03, 0.04, 0.05). In each case the population size was selected as per Goldberg’s
recommendations (Goldberg 1985) presented in the previous section.
For each value of CR, two indices were calculated and recorded:
- The number of successful convergences (i.e. to a zero penalty function) out of 150 runs
(per MP value), averaged over the range of MP values, and

- The average number of generations to converge in cases of successful convergence.
In order to be comparable, the results from different trials were normalized and transformed
into a Measure of Merit defined as

(gl 1 (NP
My = Nc x ! T (5-3)
2 N¢ 2 N; P!
j=1 , Pl' i=l
N¢

where:

M,, = average measure of merit of the i" problem
N¢ = average number of successful convergences out of 150 runs
P' = population size of the i" problem

N} = average number of generations to converge in the j™ problem

This measure of merit basically represents the rate of successful convergence per
processed design, as the first denominator in Equation 5-3 is simply the "average number of
generations to converge” times the "number of designs to be processed in each generation".
M,, is plotied against CR values for the three problems in Figure 5-24. The average values
of CRs for the three problems are also shown. As the plotted values show, the crossover rate
of 1.0 can be considered the optimal value for the tested problems. We shall therefore use
this value in our implementation of GAs.

b. Mutation Probability

Genetic algorithms are always at risk of premature convergence to suboptimal points
in the solution space. The element of mutation is incorporated in GAs to prevent this from
happening or at least to lower the risk of it. A too low mutation probability would normally
mean a quicker convergence, but possibly to a suboptimal point. This is because with a low
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MP, the system would not be forced to explore other areas of the solution space than the one
itis currently in. A too high MP, on the other hand, would mean a higher chance to converge
to global optimum but at the cost of having to process too many generalions to improve the
fitnesses and to discard the emerging, suboptimal points,

Furthermore we should note that a constant MP, no matter how carefully it might
have been selected, would normally not maintain the same level of "optimality” and
"desirability" during the entire course of a GA search. An MP value which may work
perfectly for the first few generations of a search, may well turn into a nuisance in final
generations. This is because at the beginn.ng of a search we need more mutations to happen
so that the system can explore larger areas of the solution space and locate the more
promising regions, whereas at final steps we need the generations to be left undisturbed and
perturbation-free so that they can smoothly approach the optimum. In other words, it would
be ideal if the mutation probability could change inversely with the change of generations’
average fitnesses.

The above argument inspires the notion of a fitness-dependent mutation probability,
that is, the MP decreasing with the increase of the generation’s average fitness and vice-versa.
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To keep things simple, in this work we assume a fitness-dependent mutation probability with
an inverse linear relation between the value of MP and the average fitness of the generation.
This relation is expressed as equation 5-4 and illustrated in Figure 5-25.

1
MP' = MPY x

1
where;
MP' =

MP®

n

The results of the
tests reported in
subsection (a) above
indicated that an
initial MP value of
0.02 would give the
highest average
range of
convergence for the
problems
considered.
Therefore equation
5-4 was modified as
follows (Equation 5-
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5).

To complete our .
discussion of the GA parameters fa
used in our applications, we . f i
should mention another point or ~ MP' = 0.02 x =
two. First, that a stochastic

remainder selection scheme f 0
without replacement was found to

result in the highest performance

of the GA and was used in the development of the exploration module. A selection scheme
tells us how "fitnesses" of individual strings in a generation are translated into the number
of copies they are going to have in the mating pool. Unlike the standard weighted roulette
wheel scheme explained earlier, here each string of the previous generation gets as many
copies in the mating pool as the integer part of its "relative fitness" for sure, where the
relative fitness of a string in a population is defined as (string fitness / average fitness of the
population). Then, to fill the mating pool, the fractional part of the string’s relative fitness
is used to make a "biased coin" which is then tossed to determine whether another copy of
this string will go to the mating pool. The coin-tossing process will continue until the pool
is full.

Second, that to improve the convergence properties of the GAs employed in this
work, a linear scaling of the raw fitnesses of the strings was used. Both of these decisions
are in agreement with the recommendations of Goldberg (1989). A detailed description of
the terms presented in this and the previous paragraphs can be found in the same reference,

5.2.5.3 CONVERGENCE ISSUES

The stochastic nature of GAs make theoretical assertions about their convergence
properties very difficult’. Theoretically, there are no "sufficient conditions” for the
convergence of GAs, neither is there a way to exactly predict when a GA with a given sct of
control parameters will, if at all, converge. However, there are proven theorems that explain
the behavior of GAs and predict some aspects of it. A complete discussion of these thecorems
is beyond the scope of this report. Nonetheless for the benefit of the non-expert reader, he-e
we outline the so-called fundamental theorem of genetic algorithms (Holland 1975).

The theorem, also called the schemata theorem, explains how GAs work and where

270 our knowledge, no formal theoretical assertions have been made, to date, about these properties,
Nonetheless, a number of sufficient, and not necessary, conditions for the convergence of GAs have been
reported in (Bethke 1975).
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their power comes from. To understand the theorem we need first to define a few terms.

- A schema (plural schemata) is a string-template expressed in the alphabet {0, 1, *} (in
a binary coding), where a (*) represents a "wildcard" matching eitheraOora 1. For
instance, the schema (10***) represents all the strings beginning with 10 with a length
of five. Similarly, the schema (11*10) represents the two strings (11110) and {11010).

- The order of schema H, denoted by "O(H)", is the number of its specified (non *) bits.
The order of schema (10***), for example, is two and that of (11*10) is four.

- The defining length of schema H, denoted by &(H), is the distance between its
outermost specified bits. The defining length of the schema (10***) is one (= last
specified bit, 2, minus first specified bit, 1) and that of (11*10) is four.

Using the above definitions, the fundamental theorem of GAs can now be expressed as
follows.

‘ -ﬂiﬁ{) [l b(II) i
nH, i+1) > n@d, i x[1-CR'x =25 - OF) x MP']  (5)

[} -
Lo,
where

n(H, i+l) = number of strings matching schema H in generation (i 4;1)

f;‘,(H) = aqverage fimess of strings matching schema H in generation (i}
fa'v = average fitness of generation (i}

CR' = rate (probability)of crossoverin generation (i)

I = length of schema (H)

MP' = probability of mutation in generation (i)

Asserting that the fitness of a string depends on the goodness of the schemata it

contains, the theorem explains the secret of GAs' success as follows, Stronger schemata (the
ones with above-average fitnesses) receive exponentially increasing instances in successive
populations. This means that fitter individuals have more chance to have offspring in
succeeding generations.
Also, the theorem states that a particular (good) schema will have a better chance of survival
if it has a low order and short defining length, as the former means less chance of losing one's
good genes to mutation and the latter means less chance of being disrupted by crossover.
The derivation of the ahove theorem can be found in (Goldberg 1989).
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This is pretty much as far as we can go on the theoretical front. Despite the lack of
a solid theoretical proof for the convergence of GAs, results of empirical studies including
an abundance of successful applications (including our own) have established GAs as robust
general purpose search techniques (see Beasley, Bull and Martin 1993 for a list of related
literature.) Moreover, we have conducted our own investigation into how to promote the
robustness and the convergence properties of the GAs used in this work by funing their
control parameters.

One of the results of this investigation was that no matter how precisely the GA
parameters were selected, the possibility of the system converging to suboptimal solutions
could not be completely eliminated. For example, in the tests described earlier in this
section, an average 11% of the runs converged to suboptimal points.

To improve the rate of optimum-convergence (i.e. to the optimal solution), we
devised a stimulating mechanism for the ill-converged cases whereby we “reboot" the search
through "agitating” the final population and scattering its strings across the solution space.
This basically is a shortcut to re-starting the search with new initial populations in the hope
that the next convergence will be to the right point(s). To do this, we assign a sufficiently
high value to the mutation probability of the dead-locked population and continue the course
of reproduction. If the MP value is selected correctly, the next population will typically
comprise points from all across the solution space and the search could be started afresh'”,

Our experience with the three test problems showed that a value of 4 to 6 times the
original initial MP value (0.02) would give satisfactory results. Not to mention that higher
values of MP would be preferable, but the choice of higher values would not be justifiable
considering the time required to perform the mutation operations. A value of 0.1 (5 x 0.02)
was therefore selected as the "reboot” value of mutation probability. The stimulating
mechanism is graphically presented in Figure 5-26. The diagram of Figure 5-26 is a
generalization of the one in Figure 5-25 to accommodate cases of suboptimal-convergence
as well.

A question arises here as how the "user-independent" conceptual designer will decide
whether or not the system has converged to the optimal solution, as this would require the

1*We have chosen this stimulating mechanism over simply starting the search over to take advantage of the
fact that in the reported experiment, the runs very often converged to points in a close neighborhood of the
global optima. Considering that the stimulation does not usually affect all the chromosomes in the dead-
locked population, the next population will most likely contain some of the points neighboring the global
optimum. This in turn guarantees that the target region (the region encompassing the global optimum) will
be explored. It also saves the GA a number of generations to generate a point in the target region (if at all),

as a random new population (as prescribed by the start-over scenario) will not necessarily contain a point in
that region.
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Figure 5-26: Rebooting mechanism for a dead-locked search

system to know the optimal solution apriori. The answer is that as we explained in our
formulation of the "exploration” problem, in all cases we do know the optimum soiution
(zero for the value of the penalty function) already. As a matter of fact, this is one of the
reasons for us calling the problem a pseudo-optimization one. Hence all the system has to
dois to check whether the search has actually converged to zero or not.

The next question is "what if the stimulation doesn't work?", i.e. what if after
rebooting the search, the system still converges to a suboptimal solution? An obvious
answer would be to repeat the stimulation until we get the correct solution. This, however,
might cause the system to get trapped in an endless loop as there might not exist a solution
at all, in which case the system would reboot over and over without any improvement.

To avoid this, we define a stimulation-termination criterion and make the system quit
and report failure once the termination condition is met. To develop the criterion we argue
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that a typical GA search has, at the worst, a 50% chance of a suboptimal convergence™. This
probability will reduce to 25% (or a 75% chance of an optimal convergence) after two runs
(the initial run and one rebooted run). The probability of optimal convergence can be
calculated in succeeding trials using the following formula.

i 1.
P =1 -(= .
(2) (5-7)

where (P’ .} is the probability of convergence to the optimal solution in ith trial.
Equation 5-7 is graphically illustrated in Figure 5-27. Considering a 99% probability
of optimal convergence (P*.,,.. > 0.99) "safe" enough, equation 5-5 gives us a value of 7 for
the number of trials, that is, it will take 7 trials for the probability to exceed 99%. Using this
criterion, we limit the number of search-reboots to 6 (= seven minus the initial run).

131n practice, the probability of such ill-convergence is never this high. As mentioned earlier, our own
experience with sample design problems resulted in an average 11% suboptimal convergences. Also, to our
knowledge no one has reported this to occur at a rate as high as 50%.
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Briefly then, the GA search of the exploration module works as follows (Figure 5-
28).
I- Start with an initial mutation probability of 0.02 and a generation-dependent MP,
2- Proceed until convergence is achieved (the case of non-convergence has already ben
discussed),
3- Check the solution (corresponding to the maximum fitness in the last generation) with
the expected one (in this case zero), if they match then stop otherwise

4- Mutate the strings of the current generation with a probability of 0.1 (reboot the
search),



5- Set the MP of the new generation back to 0.02 and go to step 2 above,

6- Repeat theprocess up 1o 6 times, if the search still fails then quit and report failure.
Application of this rebooting mechanism to our test problems resulted in the reduction of
their average suboptimal convergences from 11% (of all convergences) to 2%.

To wrap up our discussion of GAs, we should point out a few observations here.

1- GAs show their power and dominance over other general-purpose search techniques
in problems with large solution spaces. For small to medium size problems there arc
often other, more efficient techniques.

2- Regardless of the size of the problem, there might be specialized techniques for
particular problems that out-perform GAs in both speed and accuracy (Figure 5-29).
The main ground for GAs is then those difficult areas in which no specialized
techniques exist. To this we should add those cases where the characteristics of the
problem are not exactly known apriori and a robust, universal solver is needed (c.g. in
conceptual designer),

3-  Standard GAs work with discrete variables only. This being the case, the only way to
avoid "missing" some solutions due to their being located "between” discrete values
is to refine the discretization mesh accordingly. The finer the mesh, the longer the
chromosome lengths and family sizes, and hence usually the more accurate the GA
search, though this comes at the cost of more computations.
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Figure 5-29: Efficiency of GAs compared to other search technigues
(after Goldberg 1989)
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4-  GAs work on a population of possible solutions at the same time. This, plus the
application of mutation, helps the technique find multiple feasible solutions (if they
exist) across the solution space.

5-  GAs are stochastic methods. Unlike deterministic methods which, given the same
initial values, will find the same solution, GAs may converge to a different (or at least
partially different) set of solutions under the same conditions.

5.2.5.4 PARTITIONING THE EQUALITY SUBSET

Having completed the presentation of genetic algorithms, we shall now resume our
discussion of the problem-solving strategy of the exploration module. The sirategy, so far,
tells us to

- examine the constraint set of the problem for consistency and solvability,

- reformulate it as a pseudo-optimization problem,

- find its degrees of freedom and specify the "free variables”,

- search the space of these free variables using a GA in order to find feasible values of
these variables. "Feasible" values are the ones that when substituted in the equality
constraints and solved for other (assigned) variables, collectively minimize (zero) the
penalty function constructed from inequality constraints.

- once the problem is solved, report the solution(s) back to the functional representation
panel of the blackboard.

As the above steps indicate, each iteration of the process involves the solution of the
component’s equality constraint-subset to find the values of the assigned variables. Very
often, the equality constraints have a sparse incidence matrix, that is, there are many
equations and each equation contains only a few variables. This is natural of mechanical
designs, as each of their equations is usually intended to describe a single physical/functional
aspect of them, among many. Computation time required to solve such an equation set can
be significantly reduced, especially in case of large sets, by breaking the set into smaller,
irreducible subsets of equations to be solved simultaneously. Because of this, we add one
more step (called partitioning) to the previous steps of the exploration process with the
intention to speed it up as much as possible.

Remember the reduced, square incidence matrix of section 5.2.2 representing an all-
assigned set of m equations in m unknowns (one is shown in Figure 5-11 for the gear design
example). Let us call this matrix SIM (for Square Incidence Matrix) for brevity. At this
stage we plan to partition the SIM into a block-triangular matrix which will tell us the most
efficient order of solving subsets of the equation set. A block-triangular matrix is one with
square sub-matrices on its main diagonal and zeros above the diagonal otherwise. The sub-
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matrices on the diagonal will represent irreducible subsets of equations to be solved
simultaneously.

The partitioning proceeds as follows (Figure 5-30).

1- Consider the SIM of the equation set. Generate a blank matrix of the same size and
call it NEWSIM.

2- Starting with 7 = I and going up in steps of 1 (I < order of SIM), look for I equations
in J unknowns (J < I).

3- Once such equations are found, remove them and the corresponding variables from
SIM and enter them in NEWSIM in the order they are found.

4- Permute columns so that the assigned variable of each equation is located on the main
diagonal.

5- Once completed, NEWSIM will represent the desired block-triangular version of the
SIM.

Browsing through the flow diagram of Figure 5-30, it might seem that the algorithm
could result in an overconstrained subset of equations, i.e. one with more equations than
unknowns. This, however, will not happen; firstly because such an equation subset would
presumably not make it through the "assignment” process (Figure 5-6) and into partitioning
stage, and secondly because partitioning starts with / =1 and proceeds upwards, meaning that
any subset of p equations in p unknowns would get probed before proceeding to one with
p+1 equations in p unknowns.

Let us illustrate this by “"partitioning" a hypothetical set of 10 equations in 10
unknowns represented by its incidence matrix in Figure 5-31. Like before, assignments
(output variables) are specified by parentheses. As the matrix shows, on the average fewer
than 3 variables (out of 10) appear in each equation, implying a highly sparse matrix.

First we generate a 10 by 10 blank (null) matrix (NEWSIM). Then we start the actual
partitioning by looking for single equations in one unknown. Two such equations are found
(equations 1 and 10). Equation 1 is now entered in the first row of NEWSIM and column
9 of SIM is entered as column 1 of NEWSIM so that x9 (output variable of equation 1) is
now located on the main diagonal. Row 1 and column 9 are then removed from SIM.
Similarly. equation 10 is entered in the second row of NEWSIM and its assigned variable,
x10, is 1noved to column 2 and again the respective row and column are removed from SIM.
The result is shown in Figure 5-32.

Looking at the reduced SIM (LHS of Figure 5-32), we now find another single
equation (eq. 7) in one unknown (x1). Taking equation 7 to NEWSIM, bringing its output
variable (x1) to the third column and removing row 7 and column 1 from SIM we will be left
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with a 7 by 7 SIM. Since there are no more single equations with one unknown in this new
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Figure 5-30: Partitioning a sparse matrix
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eq. 10 0 0 0 0 0 0 0 ()

Figure 5-31: Incidence matrix (SIM} of an equation set

SIM, we now start looking for possible sets of two equations in two unknowns,

Equations 4, 6 and 9 each has 2 unknowns, but no two of them have the same
variables as unknowns, that is, we cannot find a subset of two equations with the same two
unknowns. Therefore we proceed to three and try to find 3 equations in 3 unknowns.
Equations 3, 6 and 8 make such a set, with x3, x4 and x5 as their unknowns. These three
equations are 1aken to rows 4, 5 and 6 of NEWSIM respectively and their assigned variables
(x3, x4 and x5) are moved to colum~= 4, 5 and 6 of NEWSIM respectively. The three
equations and their assigned variable. are then removed from SIM (Figure 5-33).

The remaining SIM is a 4 by 4 matrix in which no single equation with one unknown
exists. Three equations each with two unknowns can now be recognized (equations 2, 4 and
9), but only two of them (eq. 2 and eq. 9) are in the same two unknowns (x7 and x8).
moving these two equations to NEWSIM we will be left with another two equations (eq. 4
and eq. 5), now in two unknowns (x2 and x6). Removing these to NEWSIM will completc
the partitioning.

The resulting block-triangular incidence matrix is shown in Figure 5-34. One could
see that other than the square blocks on the diagonal (distinguished by double lines), the
upper triangle is basically zero. The matrix now tells us that the most efficient order to solve
the set of equations represented by the matrix is as follows.

- Solve equation 1 for x9 and substitute the value of X9 in equations 4 and 7,
- Solve equation 10 for x10 and substitute the value of x10 in equations 6 and 7,
- Equation 7 has now only one unknown left (x1}; solve it for its unknown and substitute
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the value of x1 in equation 6,
- Solve equations 3, 6 and 8 for x3, x4 and x5 and substitute their values in any other
equations they appear in,
- Solve equations 2 and 9 for x7 and x8 and substitute the value of x7 in equation 5, and
- Solve equations 4 and 5 for x2 and x6.
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Figure 5-32: First two steps in transforming SIM to NEWSIM

The triangularization has reduced the maximum size of the equation set(s) to be
solved from 10 to 3, meaning a noticeable reduction in the amount of calculation required.

3.2.5.5 THE SOLUTION SCHEME AT A GLANCE
Because ¢f the many diverse techniques and discussions presented in this section,
here we feel we need 1c summarize the solution scheme employed by the exploration module
for the benefit of the reader. The scheme can be presented in the following 7 steps (Figure
5-35).
1- Having received the requirements and specifications of the problem, form the
knowledge pool of the component (section 5.2.1).
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Figure 5-33: Incidence matrices after four transactions

2- Extract the overall constraint set (C) of the problem and separate the equality (H) and
inequality (G) subsets (section 5.2.2).

3- To make sure the problem is well constrained and hence potentially solvable, examine
the equality subset: find its maximal matching and determine the free variables whose
specification would render the set exactly constrained. If not possible to do so, report
failure and quit (section 5.2.2).

4- To facilitate the frequent solution of the equality set, "partition" the set and determine
the order in which smaller, irreducible subsets of equations can be solved (section
5.2.5.4).

5- Reformulate the problem as a pseudo-optimization one: form a penalty function (from
the inequality constraints) subject to equality constraints, to be zeroed by tuning the
free variables (Section 5.2.4).

6- Discretize the domains of free variables if not already, and conduct a genetic search in
their hyper-space to find set(s) of feasible values that would satisfy the equality set and
zero the penalty function. Each of these sets would represent a feasible instance of the
component at hand (section 5.2.1).
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7- Report specifications of the feasible instances back to the blackboard. If none has been
found, repont failure and quit.
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Figure 5-34: The block-triangularized incidence matrix NEWSIM

As promised earlier, we shall now resume our examination of the gear-design
example which we left off in Section 5.2.2. By then we had gone as far as determining the
problem's free variables and making sure the problem is (potentially) solvable. The free
variables were determined to be the face width of the gear (FW), the gear module (ML), the
number of pinion teeth (NPT) and the allowable stress of the gear material (AlS).

As prescribed by item 4 above, the next step is to partition the square incidence
matrix of the equality set (Figure 5-11). The outcome is the block-triangular incidence
matrix shown in Figure 5-36. Note that in this particular case the resulting matrix is simply
lower-triangular, meaning that once values of the free variables are specified and substituted
in the equation set, the equations may be solved one by one. As a matter of fact, this
particular arrangement tells us that as long as equations 3, 7 and 8 are solved before equation

6, equations can be solved in any arbitrary order and the ordered incidence matrix is not
unique.
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Figure 5-36: The ordered (block triangular) incidence matrix of the spur gear drive

Proceeding to item 5 above and trying to reformulate the problem, we now consider

the inequalily constraints of the problem (Figure 5-12 and repeated here as Figure 5-37 for
convenience).

CD - 04m < 0
02m - CD < 0
SR -80<0 (SR>0)
FW - 16 ML < 0
OML - FW <0
MBS - AlS < 0

Figure 5-37: Gear drive’s inequality constraint subset (G)

Using equation 5-2, we transform these constraints into the following penalty function
{equation 5-8).
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As one can see, the terms of the function are simply the normalized LHS's of the
inequality constraints in Figure 5-37. As a rule of thumb for normalization, each term has
been divided by the average of its two bracketing terms in the original constraint (if
originally a bracketed constraint) or the smaller side of the inequality (if originally an open
inequality). For instance, the terms "CD - 0.4" and "0.2 - CD" have been divided by 0.3,
which is the average of the bracketing terms in the original constraint “0.2 m < CD < 0.4.m",
thatis (0.2 +0.4)/2=0.3. Also, the term MBS - AIS" has been divided by "MBS" as it
is the smaller side of the original inequality "MBS < AIS".

Alsg, since GAs inherently seek to maximize an objective (fitness) function and we
are jnterested in minimizing a penalty function, we define an objective function of the form
OF =K - PF where, as explained earlier, K is calculated separately for each generation as the
sum of maximum and minimum objective function values in that generation.

The next step would be now to search the space of the problem’s free variables.
Ranges of values of the four free variables (FW, ML, NPT and AlS) are taken from the
respective component cell in components library. Of these variables, the last three are
discrete variables'®, The fourth one, FW, is a continuous variable which we discretize based
on the information from a local supplier of gear materials.

Binary codes (substrings) of length 4 are found adequate and are used to represent a
maximum of 15 (=2°-1) different discrete values. Therefore, each potential design will be
represented by a string of length 16 (= 4 x 4). Figure 5-38 shows the discretized ranges of
the four variables. Variables with fewer than 15 discrete values will be given multiples of
the same values to have the same number (15) of values and thus to avoid different string
lengths. As an example, string (0001 0001 0001 0001) will represent a gear drive with a 1.5

*This includes those parameters that, although inherently continuous, are normally presented in preferred,
discrete values in the literature (e.g. metric gear module). In this example we have adopted the values
suggested in(Gieck and Gieck 1990) and (Shigley 1986).
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mm module, 15 teeth on its pinion and 12 mm face width made of Cast Iron (ASTM A 48-50

B)".

Having specified the solution space (containing 15 x 15 x 6 x 15 = 20250 points) and
the penaity function, now the stage is set for a simple Genetic Algorithm to seek the feasible

points. For demonstration purposes, a population size of 12 was selected (instead of a
recommended popsize of 17) which in this case performed quite well. As explained earlier,
the ratio of population's average fitness to maximum fitness was used to define the

termination criterion. The computer code to carry out the search was sel to terminate once
this ratio exceeded 0.99 (instead of the recommended 0.95, again for demonstrating the
convergence accuracy). Other GA parameters were selected as explained earlier in this

chapter.

ML(mm) 1.5, 20, 25, 30, 40, 50 60 7.0 80 90
10.0, 120, 16.0, 20.0 25.0

NPT 15, 16, 17, 18, 19, 20 21 22 24 26
28, 30, 34, 38, 40,

AIS(MPa)"" | 20.0, 20.0, 20.0, 500 50.0 500 550 5350 575 575
725 725 725, 1250 125.0

FW(mm) 12.0, 140, 16.0, 18.0, 20.0, 25 30 35 40 45
50.0, 55.0, 60.0, 70.0, 80.0

Figure 5-38: Discretized ranges of free variables

**Note that we have chosen not to map the all-zero binary codes. That is the reason why the code "0001"
refers 1o the first vaioe in the domain of a variable. In the computer implementation of the GA, if any of the

random operations result in an all-zero code, that operation is repeated until a non-zero code is generated.

YIn this example, each AIS value uniquely represents a gear material viz {from Gieck and Gieck 1990):

Material
Cast Iron (ASTM A 48-50 B)
Carbon Steel {ASTM A572 Gr. 65)
Carbon Steel (ASTM A536 129-90-02)
Carbon Steel (SAE 1064)
Alloy Steel (SAE 4140)
Case Hardened Alloy Stee! (SAE 3240)

AlS(MPa)
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Each iteration of the program consisted of finding a "fitter" sct of values for the free
variables, substituting these values in the equation set, solving it for its output variables
(unknowns) and evaluating the penalty/fitness function using values of the entire variable set
X.

In a typical run of the GA, ten solution alternatives were simultaneously found (Figure
5-39), all of which satisfied the initial requirements and the overall constraint set (C) of the
problem. As far as the exploration module is concerned, these alternatives are equally
acceptable and are all reported to the blackboard of the conceptual designer for further
processing.

The evolution of generations of parameter values for this typical run is partially
demonstrated in Appendix C. Looking at these results, one can see how fast the "fitter”
strings (potential solutions) take over the populations in consecutive gencrations. Onc
should also note the occasional perturbations in this trend, where weaker strings are
generated due to the action of GA operators.

ML(mm)| NPT | NGT | FW(mm) | AIS(MPa)] MBS(MPa)| CD(m)
alternative | 6.0 17 68 80.0 72.5 40.11 0.26
alternative 2 | 6.0 19 76 70.0 72.5 40.26 0.29
alternative 3 | 4.0 34 136 35.0 125.0 87.21 0.34
alternative4 | 6.0 19 76 55.0 125.0 51.23 0.29
alternative 5 6.0 18 72 70.0 72.5 42.87 0.27
alternative 6 | 6.0 21 84 7.0 125.0 36.01 0.32
alternative 7 | 5.0 18 2 35.0 72.5 74.34 0.23
alternative 8 | 6.0 15 60 70.0 72.5 53.44 0.23
alternative 9 | 6.0 19 76 55.0 72.5 51.23 0.29
alternative 10{ 6.0 15 60 55.0 72.5 68.0i 0.23

Figure 5-39: Feasibie solution alternatives

These inferior specimens, however, soon die out and the gencral trend of improving average
fitness continues.

As for the efficiency of the search method, in this particular run the system has started
from a totally random set of points and has converged (average fitness of the population
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within 1% of its maximum fitness) after only 204 (= 17 x 12) points have been examined out
of over 20000 points in the solution space. Overall, the program was run 50 times for the
same initial specifications. Without using a "rebooting” mechanism, 44 runs converged to
the solution. Adding the rebooting mechanism resulted in a 100% success (50 optimal
convergences out of 50 runs) for the example problem, all in under 27 iterations
(generations).

5.3 THE EVALUATION KNOWLEDGE-SOURCE

Remember from Chapter 4 that, at any point during the design process, the common
representation database (or the blackboard) of the systemn exhibits the status quo of the partial
designs. The functional representation panel of the blackboard does this by presenting each
partial design by its Function Block Diagram. Among the information embedded in the FBD
of a design are the Standard Elemental Functions (Chapter 1) that particular design performs,
plus the "specifiers" of these SEFs. We defined function specifiers as the performance- (as
opposed to design-) parameters that define a function quantitatively, i.e. give us the values
by which the function can be "measured”. For instance, the elemental function "Change
Rotational Speed" has th> specifiers "Input or Qutput Speed"”, "Speed Ratio" and
“Transmitted Power".

We also remember that once a candidate component is "explored"” by the exploration
module (section 5.2), specifications of the resulting component-instances are reported back
to the blackboard where they are used to update the corresponding partial design and hence
the search tree. This is where the evaluation KS comes into play. Upon activation by the
scheduler (design manager), the evaluation KS gets the functional descriptions of both the
partial des.ign and the explored component’s instance(s). Then, for each feasible instance,
it sets up a new leaf node in the search tree, representing one updated partial design. The
operation of the evaluation knowledge-source is demonstrated graphically in Figure 5-40.

. design manager

partial design T T R
|+ component instance(s) >/ ) . e e
s y p ' centtibuticn - 7o
evaluator - -l T
< updated partial design
blackboard . ) o N _/‘ U

evalusticn knowledpe-szyree

Figure 5-40: The evaluarion knowledge-source
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In order to update each partial design (represented by a node in the search tree) into
a number (> [) of new, augmented designs, the KS proceeds as follows (FigureS-41).

’

tatart

[g.l FBD of partial deaign }.

e e N
consider sne componant
instance. qat its FaD

' blackboard
S ¥ ‘
compare FBDa, spot
common functicn blocks ‘T

|
,consider one common FB

e N . Vv
| consider one of its spacifiecs | componsnt cell

shate
function

|
i
K

(cncuuu specifier'a new valus

N - It
.g”’ all apecifiers .
“s~.. considered? -

N ’/ N
atl common e
. \runctlonl considetred? /,'

T~ . T
all compoment e add additional function blocks
. Llnstances eonn;dn:cdt’/,w‘“* ! to FBD of partial design
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Y

update search Lree - : R :nk stop

Figure 5-41: The operation of evaluation knowledge-source
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I- Reads the list of ¢lemental functions and their specifiers pertaining to both the partial

2-

design and the component instance just reported in by the exploration module.
Compares the "functions” parts of the two lists, spots their common functions and
forms the two disjoint subsets "common functions” and "functions in component’s list
and not in partial design’s”. If we let F, denote the set of functions in partial design’s
list and F, to denote those in component-instance’s list, then the two subsets we are
after would be defined as

Fep = Fpp (1Fg
Feo={f:f€Fq.f€Fc]

where F, denotes the subset of all common functions, F,, denotes the subset of the
functions appearing in component-instance's list and not the partial design’s, and f
denotes a single function in the latter.

For each common function, considers the specifiers one by one and checks their
“status". (Remember from our discussion of the contents of component-cells in section
5.1 that each specifier parameter is either adjustable or non-adjustable (Figure 5-2).
An adjustable specifier is one that does change due to the contribution of other, similar
functions and a non-adjustable specifier is one which does not. For example, the Speed
Ratio of a gear drive is adjustable as the addition of a second gear drive will result in
a new, overall Speed Ratio equal to the product of the first and second ratios, whereas
the Rotational Speed of a gear is nor adjustable by the same token.)

For each adjustable specifier of a function, reads the respective Share Function (Figure
5-2) from the component cell. Using this function, calculates the adjusted value of the
specifier. If the adjusted value equals the initial, desired value (meaning that the
function has been carried out to the desired extent}, the corresponding function block
is removed from the requirements FBD'®. Othcrwise, the new (remaining) value of the
specifier is calculated and substituted for the  :ial value in a copy of the requirements’
FBD. The procedure is repeated for all adjustable specifiers of the elemental function,
and corrections are made to the same copy of the requirements FBD accordingly. In

*In the presentation that follows, we shall frequently use to the terms requirements’ Function block Diagram
(FBD) and partial design’s FBD. From chapter 3 we remember that the former is a graphical representation
of the remaining (unsatisfied) requirements of the problem and the latter is a graphical representation of the
functiona! behavior of a (partial) design at the current stage of problem solving. A third item, namely the
partial design itself, is also used to complete the description of a node in the search tree. The term pariial
design here refers to the (graphical) structural description of the actual partial design at this stage,
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the end, this updated copy of the requirements’ FBD would represent the new
(remaining) set of design requirements.

5- In the meantime, adds the same common function block to a copy of the partial design’s
FBD. This copy, when completed, will "functionally" represent one upgraded partial
design.

6- After considering all common functions in steps 4 and 5 above, adds to the newly
upgraded FBD of the partial design, all the functions in F,, that is, all the additional,
unintended functions the component performs besides the one(s) for which it was
originally picked. While being added to the FBD of the partial design, the additional
functions are marked "extra" to indicate that they were not part of the initial
requirements of the problem.

7- Updates the search tree by adding to the current node, all the newly generated nodes
each representing an upgraded (partial) design. (Naturally there will be as many of
them as the number of feasible component-instances reported in by the exploration
module.)

Having completed the steps above, the leaf-nodes of the updated search tree now

display tentatively the current solution state. Each leaf-node, representing an upgraded
partial design, now tells us what portions of the initial requirements that design "covers” and
which portions are still left to be done, or in brief, how close to a complete design we are.
We emphasize the tentativeness of these nodes at this stage because they have to be
"verified" before being accepted as actual partial designs. In the next section we shall
discuss the verification process and explain how the undesired alternatives are detected to
be removed from the search tree.
Let us now illustrate the procedure just outlined in the context of the familiar "drill" example
from chapter 3. This time around, we change the figures slightly in order to be able to use
the results of our other example, the gear design problem, of this chapter. The problem is
shown by its requirements FBD in Figure 5-42: we wish to use a source of mechanical energy
(10 kw at1600 rpm) to build a drill whose tip runs at 200 rpm and whose output axis is
perpendicular to its input’s. These requirements are presented in Figure 5-42 by a set of
function blocks each containing an elemental function and its function specifiers.

Now consider the problem at an intermediate solution state in which the first function
block has been taken care of, that is, the system has found a number of components to carry
out the first elemental function. Of these components, we consider one here. Figure 5-43(a)
shows the updated requirements FBD of the problem at this stage. One of the components
found by the system for the first function block is shown in Figure 5-43(b) by its FBD. The
component is an electric motor whose selection has set up a new node in the search tree
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Figure 5-42: Drill design problem, presented by its requirements FBD

(Figure 5-43(c)).

Suppose that in the next iteration, the system picks spur gear drive as a candidate

component and that present in the problem is a space constraint which requires the spec.:
ratio of a single gear drive not to exceed a value of 4. Also suppose that the products of

exploration of this
candidate
component are the
10 gear-drive
instances presented
in Figure 5-39, all
satisfying the speed
ratio  constraint.
This being the case,
the evaluation
knowledge-source
now takes over and
updates the solution
statc as follows
(procedure
described for one
component instance
only, say the first
alternative in
Figure 5-39; the
step numbers do

" adjust rotational speed
D {spaed ratioc B:1) -

» - ‘trannfer torque {coaxial}

)_ change axia of rotatien
(90 degrees)

{a): Updated {(remaining} regquirements'Function Block Diagram

supply machanical energy (rotatlonal} >
{10 ko, 1600 rpm)

{b): FED of the electric motor

eleciric motor
{10 kw, 1600 rpm)

{c): Search tree at this solution state

Figure 5-43; Drill design problem: an intermediate solution state

not necessarily match with those presented earlier in this section).
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step 1.

step 2.

step 3.

step 4.

step 5.

step 6.

step 7.

Get the current

requirements’ FBD, Figure | adjust rotational speed
- {speed ratio 4:1}

5-43(a), and the FBD of the

component instance (Figure

548, — -
Compare the two FBDs and

spot the common function ' JI impose 1inear offoer e
blocks. The only common

block between the two is Figure 5-44: FBD of the gear-drive instance

that of "adjust rotational

speed”.

Determine the adjustable specifiers of the common function and calculate their new

values. Of the three function specifiers (Transmitted Power, Speed Ratio and
Input/Output Speed) of the above elemental function, only one (Speed Ratio) is
adjustable (Figure 5-2). The required value of this specifier is 8 whereas the gear-
drive instance at hand can only provide a ratio of 4. Therefore the elemental function
is not completely carried out and the new required value of this specifier must be
calculated. Using the corresponding share-function from respective component-cell
(Figure 5-2) the new value for the Speed Ratio is calculated as

SRy = SR,/ SR¢
where

SR = New Speed Ratio

SR, =Initial Speed Ratio

SR = Component’s Speed Ratio
or SRy=8/4=2
Make a copy of the requirements’ FBD, Figure 5-43(a), and change its specifier "SR"
from & to 2 so that the modified graph now reflects the remaining (unsatisfied)
requirements. The resulting diagram is shown in Figure 5-45(a).
Add to the partial design’s FBD, Figure 5-43(b), the common function block
(rotational speed change) from the FBD of the component instance (Figure 5-44),
Add the extra functions the component instance performs, to the upgraded FBD of
the partial design generated in step 5 above and label it "extra”. In this case we find
only one such extra function and that is "linear offset" which refers to the unintended
existence of the centre distance of the mating gears. The upgraded partial design’s
FBD is shown in Figure 5-45(b).
Update the search tree by adding a leaf-node representing the just-upgraded partial
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design (Figure 5-45(c)).

The above procedure is repeated for all 10 instances of the gear drive in Figure 5-39.
As a result, 10 new leaf nodes, representing 10 upgraded, yet tentative, partial designs are
added to the search tree. The final product of this iteration of the system will be determined
at the end of the next stage, namely the verification of the tentative designs.

" adjust rotational speed
) {speed ratio 2:1) T
B |
|

.)J transfer torgue (coaxial)
! T e

. )‘ change axis of rotation L
\ {90 degrees) |

(a): Updated (remaining) requirements' Function Block Diagram

)_1 adjust rotaticnal speed
|

(speed ratio 4:1) T ‘
[ L e
| supply mechanical energy (rotational) . A
! {10 kw, 1600 rpm) | » : >
t . . [ [ h
F impose linear offset e ’
(0.26 m) 'EXTRA

(b): Updated FBD of the partial design

electric motor
- (10 kw, 1600 rpm)

T T
- -

- =

spur-gear drive

INPT=]17, NGT=6B, SR=4.0}

[FW=0.0B m, CD=0,26 m, ML=6.0 mm)

{c): Updated earch tree

Figure 5-45: Drill design problem: one iteration later

One final point in this discussion is the fate of the “extra" functions resulting from
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the unintended activities of the selected components. Two possibilities exist. The extra
functions may be negated by the secondary functions of other components in the system, or
they may not. For example, the selection of a second bevel-gear set may correct the
unwanted offset between the two shafts imposed by a first set. In either case, the conceprual
designer will not attempt to remove or alter the extra functions if they are not corrected
internally. It would rather just label them and keep them in its final report to the user. It is
up to him/her then to decide whether the extra functions are harmless to the intended
functioning of a design or whether they would render it unacceptable.

5.4  THE VERIFICATION KNOWLEDGE-SOURCE

This is the finishing step in the four-step prescription of Design by Exploration. It
completes one iteration of the DbE’s search scheme for finding multiple feasible solutions
to the given problem. The verification KS basically checks the validity of the tentative
design alternatives generated and added to the search tree by the other three generating
knowledge-sources (namely the nomination KS, the exploration KS and the evaluation KS)
against the "precedence” requirements embedded in the initial presentation of the problem.

The verification step is essential to the acceptability of an otherwise satisfactory
design because the precedence order of the functions itself is an inseparable part of any
functional representation of a design. A design cannot be represented functionally by a
bunch of functions related to each other erratically. In chapter one we explained how the
configuration of function blocks in a function block diagram implies special relationships
(such as control, feedback and input/output) between the corresponding functions.

Verification, as used in this work, is also a means for preventing 4 combinatorial
explosion of the search tree. It works as a "pruning" tool which disqualifies and removes
those design alternatives that do not comply with the precedence order requirements. In
order to describe the operation of the knowledge-source, we first need to point out a few
more details of our "design representation method" which we did not discuss in chapter 1
where the method was initially introduced. We felt that these details would make more scnse
if we postponed their discussion to this stage where their usage is explained.

The precedence order of the function blocks in an FBD is expressed by a sct of
predicate logic statements using three basic predicates "follows”, “next_to" and
"simultaneous”. The formats and the application of these predicates is explained below.

- [Follows (FB,, FB,)] indicates that the function block "FB," comes somewhere after
the function block "FB," in tue diagram. The predicate implies that the occurrence of
its first-argument function "FB," somehow depends on the occurrence of its second-
argument function "FB,". This could be because the former uses the output of the
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latter as its input (e.g. a pneumatic cylinder uses the compressed air from a
compressor), or simply because it is more efficient to do so (e.g. positioning speed
reductions in a transmission system as close Lo the output point as possible would save
us thick shafts to carry higher torques).

- [Next_to (FB,, FB,;)] means that the function block "FB," comes immediately after the
function block "FB," in the diagram, i.e. no other functions may take place between the
two functions. For example, in an internal combustion engine the fuel injection or the
spark has to occur exactly at the end of the compression stroke and cannot be
postponed till after some other functions of the engine have taken place.

- {Simultaneous (FB,, FB,)] means the two function blocks FB,and FB, must occur at
the same time. For example, in a lathe the rotation of the workpiece and the axial and
latteral motions of the cutting tool have to occur at the same time.

Those functions that are not related by one of the above statements may take place at any
order relative to each other. For instance, in the drill example presented earlier, we really do
not care if the functions "adjust rotational speed” and “"change axis of rotation” occur at the
same time or if one precedes the other.

To further clarify these definitions, let us consider the hypothetical FBD of Figure 5-
46 with the following (given) precedence order.

input 2;

Ll

l

«Function Al - | ——————
input 1 ; —_— ' .
. I—'Funcnon A3 | » Function A4
——ﬁFunction A2 | "

[ VoL
l?un;tion AS L——~—
Figure 5-46: A hypothetical FBD

Simultaneous (Al, A2)
Follows (A3, Al)
Follows (A3, A2)
Follows (A4, A3)
Nexi_to (A5, Ad)

L N

The first statement indicates that functions Al and A2 must be carried out simultaneously.
The next two statements explain that function A3 must occur after both functions Al and A2
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are accomplished. Similarly, statement 4 indicates that function A4 occurs after A3. Finally,
the last statement tells us that function AS takes place immediately after function A4,

Now suppose that in some stage of the design process, the conceprual designer comes
up with the two design ideas shown in Figure 5-47. As the figure shows, both alternatives
include sought-after function blocks appearing in Figure 5-46 and let us suppose that they
have both passed the evaluation stage. However, they are both rejected in the verification
stage for the following reasons.

The first design carries out function AS before function A2. This violates the
precedence requirements in two ways. First, functions Al and A2 are not carricd owt
simultaneously (violation of statement 1). Second, it can be inferred from statements 3
[Follows (A3, A2)), 4 [Follows (A4, A3)] and 5 [Next_to (AS, A4)] that function AS has to
occur after function A2, i.e. [Follows (A5, A2)]). The first design is therefore disqualified as
it violates the precedence requirements, Also the second design is dismissed on the grounds
that it interrupts the adjacency of functions A4 and AS by some function A6.

The operation of the verification KS is presented graphically in Figure 5-48 and is
outlined here. For brevity, we shall refer to a function block in the requirements' FBD of a
problem as FB1 and to one in the FBD of a (partial) design as FB2.

input 2’
Vo e e
input 1 - o o ST L . .
- - =Function Al - ~--~Function A3 Function Ad * . o
' ’ - Function AS l[ - ~Function A2
{nput 2
'
P
——Function Al ]"
t 1 - oot 4 Y. . » .
—inpue 1 ! -‘Fur.\_ct.%?n. ” : - Function Al ——— Function Ab

s-oFumetlon A2 7Ll - Function AS -

Figure 5-47: Two candidate solutions

- Given the FBD of a generated and evaluated (partial) design, list the function blocks
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common between this and the requirements FBD of the problem (FB2s and FBIs

respectively).

- Spot and isolate ail the precedence predicates iwvolving "non-extra” FB2s in the
requirements FBD, then

* Check the Next_to predicates. If an FB2 appears as the first argument of one such
predicate, check to see if the second argument is another FB2 occurring immediately
before the first one. If not, refute the design and quit.

* Check the Simultaneous predicates. If an FB2 appears as one of the two arguments
in one such predicate, check to see if the other argument is another FB2 occurring
simultaneously. If not, refute the design and quit.

* Check the Follows predicates. If an FB2 appears as the first argument of one such
predicate, check to see if the predicate is, directly or indirectly, true with respect to
the FBD of the design If not, refute the design and quit.

* If the above check OK, endorse the (partial) design and quit.

Note that we do not check for the Next_to or the Follows predicates that have FB2s as their
second arguments, as this could wrongfully refute some alternatives in case of partial
designs. Such predicate statements, even if not true at one point, might wind up true in
succeeding stages of the design process as new components are added to the partial designs.
For example, if we had a statement Follows (function 2, function 1) and a partial design with
a function 1 bul no function 2 to follow it, it would be wrong to refute it at this stage (before
the completion of the design}, because chances are that a new component with a function 2
is added to the partial design at a later stage and satisfies the statement.

This wraps up our discussion of the verification knowledge-source as well as the
presentation of strategies and procedures involved in the implementation of the Design by
Exploration method.

5.5 SUMMARY AND CONCLUDING REMARKS

In this rather long chapter we elaborated the problem-solving strategies and
techniques to implement the ideas presented in chapter 4, According to the DbE model, the
conceptual design of a mechanical system is an iterative process involving a sequence of
“gencrate and refine" steps. The model prescribes that, in order to increase the efficiency of
the process, generation and refinement phases occur simultaneously and the latter not be
postponed till the end of the generation phase. In accordance with this requirement, we
aseerted that each iteration of the process should involve four basic "generating" steps
(nomination, exploration, evaluation and verification) and a possible "criticizing" step. Each
of these steps would be carried out by one or more blackboard "knowledge-sources". This
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chapter was devoted to describing the contents and the operation of the four generating
knowledge-sources. We explained that

t

The nomination KS systematically searches a library of component-cells, in the form
of individual ".obj" files, to find and "nominate” all those components that perform at
least one of the required elemental functions of the problem. It uses an index to the
function-defining predicate statements of the components to truck down those
component-cells containing desired functions. The components thus found are called
"candidate components”.

The exploration KS forms and examines the knowledge-pool of each candidate
component to see if it is readily solvable for finite solutions or otherwise if it can be
rendered solvable by a reconfiguration of the given information. In either case, it then
reformulates the problem and applies to it a case-independem solution technique
(genet‘c search) to find a set of feasible, but not necessarily optimal, solutions. Each
solution will then represent an instance of the candidate component, satisfying all the
requirements of the problem. The solutions thus found are called tentative solutions
(designs) as they are still to be verified against some configurational requirements, As
mentioned earlier, the purpose of this step is to fully understand the functional behavior
of a promising component so that we can determine its contribution to the satisfaction
of the problem’s requirements.

The evaluation KS examines the status of the problem after successful exploration of
each component and updates the problem's representation so that the new
representation would reflect the following.

* How does the new component contribute to the fulfilment of the problem?’s
requirements, i.e. what is the functional behavior of the augmented (partial) design?
What else (if at all) should this augmented design do to be considered complete,
that is, what functions are still "uncovered" by the design and need to be carried out
by the addition of other components.The knowledge-source does this by comparing
the function block diagrams of the partial design and the problem requirements,
and modifying the latter accordingly. The (partial} designs at this stage arc
considered tentative and are subject to one more check before they can be accepted
to the actual family of design alternatives,

The verification KS checks the tentative designs of the previous stages for their
"configurations”. This is because the feasibility of a (successfully explored)
component does not automatically guarantee the approval of the design it is a part of.
The KS compares the precedence order of the individual functions in each tentative
design with that of the problem requirements and approves only those designs whose
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functional configuration matches that of the requirements.

These knowledge-sources (or expert modules), when regarded in the context of the
conceptual designer’s system architecture presented in Chapter 4, provide the means for the
automated concentual design of a class of mechanical systems. These are the systems that
can be considered "cenfigurations of existing components”, and that have been "functionally
designed" already (see the definition in Chapter 1).

Wherever required, we justified our choice of methods while comparing them with
others, and tried to provide a brief overview of the more novel methods for the benefit of
non-expert readers. We also illustrated the operation of the presented techniques through a
number of examples; and reported the results of a series of others designed to nelp us
improve the efficiency and performance of those techniques.

In developing various knowledge-sources we have emphasized those aspects that
concern design automation. This has always been a challenging task as the design process
relies on so many decision making steps. In trying to automate these steps we have been
forced to make some assumptions to reduce the otherwise unmanageable complexity of the
problem. These include the assumption of all requirements/constraints of the problem being
in terms of the design/performance parameters and the assumption that there always exists
a discretization mesh to approximate the domains of continuous variables satisfactorily and
accurately enough.

One of the other assumptions we have made is that the constraint set of the
mechanical components we are dealing with, or their equality constraints to be more
accurate, comprises algebraic and/or transcendental functions, and differential equations are
not involved. This limitation stems from the fact that there does not exist a "universal”
solver capable of solving all types of equations and therefore we have to be selective as what
class of equations we allow in the problem. To solve our equality constraint sets we
currently use "TK Solver Plus" (1988), a mathematical package which uses a modified
Newton-Raphson method to solve equation sets, among other functions.

Borland’s Turbo PROLOG 2.0 was chosen, for the most part, as the language of
implementation of the knowledge-sources because of its modular programming and
deductive capabilities. The genetic search of the exploration module was coded in
Microsoft’s Quick BASIC 4.5 for its string processing abilities.

All the procedures in knowledge-sources (except for some minor parts of the
exploration module) have been individually developed in code. The coding of the
blackboard, however, is not complete at this time and therefore its functions (including
communications between various KSs and the presentation of the design) are being carried
out manually.
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Also, our library of components which at this stage contains a limited number of
component cells needs to be expanded to allow for the composition of more complex
systems. The contents of the component cells are taken from (Gieck and Gieck 1990;
Shigley and Mischke 1986; Juvinali and Marshek 1991).

In the next chapter we shall present a complete application of the conceptual designer in the
context of a comprehensive design example.
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CHAPTER 6
APPLICATION EXAMPLE

In this chapter we shall illustrate the performance of the Design by Exploration
model and its implementation, the Conceptual Designer, in the context of a class 2 design
problem (Chapter 1). The performance of individual steps of the multi-step model have been
already demonstrated through brief examples in respective chapters. Nonetheless, we felt
that a complete design example would help the reader grasp the rationales of the model and
would enable us to articulate the functioning of the Conceptual Designer as an integrated
system. Occasionally in this chapter we shall underline some of the less-obvious vigors of
the mode] as well as the limitations of design system.

Due to the large volume of computations involved in the solution of a problem of
this size, we shall not be presenting all the detailed computations for all the steps involved.
We will rather present sample computations while making sure the results of every
computation/decision-making step is presented in sufficient detail.

Before proceeding to the presentation of the exainple, here we briefly review the
basic steps involved in the implementation of the DbE 1nodel one more time. This is
necessary because we shall frequently refer to these steps in our discussion of the example
problem.

6.1 DESIGN BY EXPLORATION REVISITED

Here is an outline of the action cycle of the conceptual designer. The terminology
used in the outline is the one presented in chapter 4. In the rest of this chapter, we shall be
referring to the following step numbers.

1) Given the definition of the problem in terms of the Standard Elemental Functions,
a formal representation of this is posted on the blackboard. This is where an up-to-
the-moment report on the functional and structural status of the (partial) designs will
be kept throughout the design process. At each point, the report will include the
accomplished portion of the requirements as well as the remaining portion. As
elaborated earlier, the blackboard comprises a functional representation panel and a
structural representation panel.

2) The design generation stage begins by searching the system's components-database
and finding a!l the promising components, i.¢. those that potentially perform at least
one of the required Elemental Functions (starting with the first one). These
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3)

4)

5)

6)

components are reporied back te the blackboard (structural representation panel)
where they form the first level of a tree, of which cach branch will vltimately
represent a solution alternative (this is called the search tree).

For each selected component, a knowledge-pool is formed which contains
information from the respective "component cell” (in the system’s components-
database) and the initial problem representation. This information is basically

composed of the component’s design equations, constraints and data as well as the
initial specifications and constraints’.

The functional behavior of each selected component is "explored" to reveal all the
functions (intended and unintended) it potentially performs plus the related
quantitative information. This is done through examining the component’
knowledge pool and solving the corresponding constraint set for the given
specifications (for details see Chapter 5). The result will be a number (21) of
feasible instances of the component with the behavior-defining parameters of each
instance determined.

The functional search tree is updated?, that is, for each component-instance just
explored, a new node is generated by adding the functions of the explored component
to the existing functions of the parent node. The resulting set of functions at each
node is then compared with the initial requirements of the problem and the new
"accomplished" and "remaining” portions of those requirements are determined and
specified on the functional-representation panel of the blackboard.

Each leaf-node in the updated functional search tree is verified against the initial
requirements of the problem. Those nodes that do not comply with the requirements
(e.g. violate some of the constraints or do not have the same precedence order among
their functions) are discarded. This is called "pruning" the functional serach tree.

Each of the remaining nodes of the tree would now represent a candidate (partial)
solution,

'In case of "look-up" components, i.e. the ones that are selected from a catalog, the knowledge-pool will contain

specifications tables and/or graphs instead of design equations; and the "exploration” stage (next step) is
replaced with a "look-up and validate" procedure whereby an instance of the component is selected which will

satisfy applicable constraints (if any).

’Note that here we are dealing with two search trees in parallel. One is the structural search tree which is
displayed on the structural representation panel of the blackboard, and the other is the functionul search tree
which is displayed on the functional representation panel. Each tree is the projection of the other tree in its own
panel, meaning that each node of one tree corresponds to a node in the other on a one-to-one basis. For brevity,
from now on we shall call the former the search tree and the latter the functional search tree.
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7) Each candidate’ (partial) design (represented by a branch of the search tree) is
examined by any other “expert agent” (or knowledge-source as referred to in the
previous cherters) possibly present in the system (such as cost, manufacture or
maintenance experts). A candidate design examined by the expert-agent(s) will be
endorsed, rejected or modified. The results will be then reported back to the
blackboard.

8) The (structural) search tree is updated by mapping the latest level of the functional
search tree onto the structural representation panel. In other words, each feasible
component-instance (found in step 4 above and passed the validity checks of steps
6 and 7) is added to its parent node in the search tree to form a new leaf-node. The
path (or the branch) leading to a leaf-node will then represent a candidate alternative
{partial) design in rerms of its physical components.

9) The "surviving" leaf-nodes of the search tree now represent the feasible
partial/complete solutions. Complete designs are now presented to the user and,
unless he/she decides to terminate the process, the system proceeds by repeating steps
2 to 8 above for the partial designs in the search tree. The cycle is repeated until all
branches of the search tree represent complete designs or until the system/user
decides that no further improvement is possible/needed.

Having outlined the conceprual design process as prescribed by the DbE model, we will now

proceed with the presentation of the example problem.

6.2 AN ELEVATOR FOR THE DISABLED

The problem is to design the drive system of an elevator for the disabled. The
elevator is to be installed in an existing house and is to carry one person in a wheelchair
accompanied by a second person. It will travel a maximum of 16 feet (from basement to
second floor) at a speed of 0.67 ft/sec (16 feet in 24 seconds).

This problem was chosen because it was also assigned to several groups of senior
undergraduate students at the mechanical engineering department of the university of Alberta
as heir final design project. Therefore, a comparison can be made between the results of
DbE and those of human designers, albeit designers with minimal experience. In what
follows, the performance and results of DbE will be explored and then the ideas generated
by the students will be briefly presented and comparisons between the two will be made.

Since the purpose of this example is only to illustrate the functioning of the design

The word candidate here refers to the fact that any partial design generated to this point may be subject to
other validity checks by various critic knowledge-sources as discussed in the previous chapters. Only after
passing these possible ckecks will a candidate design be considered a (partial) design.
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system, wherever possible we have allowed some simplifications in the actual design
problem to avoid unnecessary complications.

6.2.1  INITIAL SPECIFICATIONS, ASSUMPTIONS AND CONS RAINTS

The total weight of the passengers is given to be 200 kgf. The empty weight of the
elevator box is also 200 kgf. The total weight of the system is the sum of these two values
or 400 kgf. According to (Kogan 1985), an overload coefficient of 1.3 should be considered
in calculations. This brings the total weight of the system to 520 kgf or 1150 Ibf
approximately”.

The elevator travels between the basement and the second floor. It does this at a
rate of one floor per 12 seconds. Assuming a uniform speed (no slow downs), this means

a speed of 0.67 fi/sec or 40 ft/min. The required power to lift the elevator can be calculated
as follows.

load (Ib) * velocity (ft/min)

required power (hp) =
1 P P 33000 =* drive system efficiency

(6-1)

For the information given above and an average efficiency of 67.5% for various types of
elevators (Strakosch 1983) we get’:

1150 Ib * 40 fr/min

required power =
33000 * 0.675

= 2 hp

6.3 INITIAL REPRESENTATION OF THE PROBLEM
The Function Block Diagram representation of the initial requirements is shown in
Figure 6-1. The diagram uses Standard Elemental Functions (Chapter 1) to represent the set
of actions to be taken and the order in which they are to be carried out. The function blocks
have been numbered for later references. According to the diagram, in the most general case
the following should be carried out.
- On passenger’s signal (e.g. push of a button), a source of mechanical energy (with
a minimum power of 2.0 hp) starts delivering (generating) motion (lincar or

*In order to be consistent with the catalogs, handbooks and standards available to us, we have decided 1o
use the imperial system of units throughout this chapter.

*Note that for the purpose of uniformity we have overlooked the effect of a counrerweight used in some
types of elevators to reduce the required power.
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rotational});

- If required, the speed is adjusted to suit the next function. In this case an input
speed (V,, determined by function 1) would have to be changed to an output speed
(V,, determined by function 3). Having mapped function I, the design system
would map function 3 and check the resulting component(s) for a possible input-
speed constraint. If one exists that is violated by the speed available at the end of
function 1 it would back up one step and map function 2.

- If not already, the motion is converted to a linear one which will be then transferred
to the elevator box. This would either have the desired speed of 0.67 ft/sec or some
other speed which can later be adjusted to the desired value.

- If required, the linear speed is adjusted to the desired value (0.67 ft/sec);

- To provide for the desired stops, the position of the elevator box is sensed. As
soon as the box is at a requested stop point, the source of motion is turned off and
the system is no more powered,

- To provide for accurate stops, a brake is applied to the system to stop the possible,
inertia-related motion of the box;

- As a safety measure against the free drop of the elevator box, the acceleration of
the box is continually measured. If it exceeds a prescribed value (e.g. that of
gravity), the source of energy is immediately disconnected and the box is "grabbed"”
and held stationary.

The order in which these functions are to be performed is as follows.

- Function 2, if required, is to immediately follow function 1;

- Similarly, function 3 is to occur right after function 2;

- Function 4 may be performed anywhere after function 3;

- Functions 6 and 7 are to be carried out simultaneously;

- Functions 9 and 10 are to be carried out simultaneously.

In this representation of the problem note that:

- The three branches of the diagram are joined by an "and" joint, meaning that they
are to be performed in parallel (Chapter 1);

- The diagram represents the problem in its most general case with minimum
favoritism towards a particular solution. For instance, "speed adjustment" has not
been specifically placed before or after "motion linearization” to favor a geared- or
a gear-less drive system respectively.

- The function blocks are "component-neutral” in the sense that they do not
specifically refer to particular components/subsystems. For example, the function
"adjust speed” could be equaily mapped to more than a dozen mechanisms
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including gear sets and belt-/chain drives.

- As it is commonly true of the real-world problems, the problem is hizhly
underspecified in ter:ns of the number of design variables initially specified. Many
more variables need to be specified before the problem can be solved by traditional
design methods (chapter 1). As discussed earlier, special computational techniques
are needed here to replace the "experience” and the "intuition” that computers lack.

6.4 FORMAL REPRESENTATION OF THE PROBLEM (STEP 1)

Figure 6-2 shows the functional representation panel of the conceptual designer’s
blackboard. The panel, shown in Turbo Prolog’s dialog window, contains the predicate
representation of the problem’s functional requirements (Figure 6-1) plus the applicable
(external and global) constraints and a number of system flags (see Chapter 4 for definitions).
Note that in this case the only constraint included in the problem is that the elevator will be

Files Edit Run Compile Options Setup

Precedence Order:

next_to (function(2), function(1)}
next_to (function(3), function(2))
follows (function(4), function(3))
simultaneous {function(6), function(7))
simultaneous {function(9), function(10))

Analysis Order:
[function(1}, function(3), <function{2)>, <function{(3)>, <function{4)>, _]

External Constraints: none

Global Constraints:
environment {indoors, house, _)

End Panel

F2-.Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-2: Formal representation of the initial requirements
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Files Edit Run Compile Options Setup

* FUNCTIONAL REPRESENTATION PANEL *
{Machine: Elevator, Initial requirements]

Flags:
N_flag=0
E_flag=0

Functions:

function(1, supply_mechanical_energy(moticn) (2 hp, <rpm1>, <V1>))
function(2, adjust_speed (2 hp, <rpm1, rpm2s>, <V1, V25))
function(3, convert_rot_motion_to_lin_motion (2 hp, rpm2, V1))
function(4, adjust_lin_speed (2 hp, V1, 0.67 ft/sec))

And

function(b, sense_position (iinear, fixed))

function(6, switch_off)

function{7, stop_motion (2 hp, <rpm1>, <0.67 fi/sec>))

And

function(8, measure_acceleration (linear, fixed))

function(8, switch_off)

function(10, grab {1150 Ib, 32.2 ft/sec))

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-2 (continued)

used in an existing honse. Later on we shall see how an environment knowledge-source will
check the candidate designs for the satisfaction of this constraint.

In the representation, a pair of brackets (<>) indicates the "optional” nature of a
function or its specifiers. It can specify multiple options {in the case of function specifiers)
or denote the possibility of an elemental function not being implemented (as indicated by the
“analysis order" section of the problem representation). This will be further articulated in
the following sections.

6.5 GENERATING CANDIDATE DESIGNS
6.5.1 NOMINATING CANDIDATE COMPONENTS (STEP 2)

Starting with function block 1 (supply mechanical energy), the Conceptual Designer
scans its components-database in order to find all those components that perform (at feast)
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the specified function.  An index to the database (Appendix D) in which each entry
corresponds to an individual component-cell allows the system to spot desired components
by matching the specified function against the "functions" part of each record. In this case,
the system finds four candidate component-types® with the specified function in their
"resume”. These components are "electric motors”, "electric pear-motors”, "electric brake-
motors" and "internal combustion engines".

Note that although the first three components are members of the same family
(electric motors), they differ in the functions they perform; and since conceptual design
primarily revolves around "functions”, the Conceptual Designer considers those components
separately. The implications of this decision will be articulated as we go on.

The results of the search are posted on the blackboard (Figure 6-3). As outlined in
step 2, each of the four components becomes a leaf-node in a search-tree. Then according
to the definition of a (candidate) design alternative (Chapter 4, also step 7 above), we have
four candidate alternatives, each comprising a single component/subsystem thus far. In
Figure 6-3 these alternatives are numbered from 1 to 4. Conceptual Designer uses a local
numbering system, meaning that each time the search tree is updated, the alternatives at the
lowest tree-level are re-numbered.

In the records shown, an (S) indicates that the alternatives are Structural (as
opposed to Functional) and the subscript (ten) refers to the fact that these tree-nodes are
tentative in the sense that actual nodes correspond to component-instances rather than
component-types, as we shall discuss later.

6.5.2 EXPLORING CANDIDATE COMPONENTS

In this particular problem, all four components initially selected are "look-up”
components, that is, their "exploration” involves fetching the specifications of the feasible
component instances from specifications-tables stored in corresponding component-cells.
Since in this chapter we intend to demonstrate the more innovative aspects of the DbE
model, and since look-up procedures do not particularly serve this purpose, we wili skip
details of steps 3 and 4 in this iteration and will only present the results of these steps. The
exploration stage will be demonstrated in detail in the next iteration of the design process.

Figure 6-4 shows the outcome from steps 3 and 4 above. Conceptual Designer has
been able to find 3 instances of electric motors (Leeson Catalog), 1 instance of brake motors

®As explained earlier, the term component-type refers to a generic component / family of components whose
specifications have not been determined yet. Once these specifications are determined, the term component
insiance is used instead. For brevity, however, we shall occasionally use the term component to refer to either
case (only when the context prevents confusion).
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Files Edit Run Compile Options Setup

* STRUCTURAL REPRESENTATION PANEL *

[Elevator, function {supply_mechanical_energy) (2 hp, motion)]
Alternative 1 (S-ten): [electric_motor ()]

Alternative 2 (S-ten): [electric_brake_motor ()]

Alternative 3 (S-ten): [electric_gear_motor ( )]

Alternative 4 {(S-ten}: {internal_combustion_engine ()]

End Panel

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-3: Nominated components to perform the first elemental function

(Leeson Catalog), 9 instances of gear-motors (FMC Catalog) and | instance of i. c. engines’
that match the stated requirements, i.e. can generate mechanical energy at a ratc of 2 hp in
the form of motion (in this case rotational) as stated by the first elemental function.

The exploration of the nominated components has revealed the additional functions
each component potentially performs besides the requested one. Gear motors, for example,
not only supply rotational motion but also adjust their initial output speed with various ratios.
Each record in Figure 6-4 includes the catalog number of a selected component instance as
well as the names and the specifiers of the functions it performs.

In these records an "F" indicates that the corresponding component is a node in the
Functional search tree. Also, the index "can" refers to the fact that at this stage the

"Since a small-engines catalog was not available at the time, the specifications of a two-cylinder engine were
manually added to the database for demonstration purposes.
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Alternative 1 (F-can):
Alternative 2 (F-can):
Alternative 3 (F-can):

Alternative 4 {(F-can):

Alternative 5 (F-can):

Alternative 6 (F-can):

Alternative 7 (F-can):

Alternative 8 (F-can):

Alternative 9 (F-can):

Alternative 10 (F-can):

Alternative 11 (F-can):

Alternative 12 (F-can):

Alternative 13 (F-can):

Alternative 14 (F-can)

[electric_motor (110362, SP),
"supply_mechanical_energy(rot. mot.)" (2 hp, 3450 rpm)]
[electric_motor (120045, SP),
“"sup»'y_mechanical_energy(rot. mot.)" (2 hp, 1740 rpm)]
[electric_motor (120055, TP),
“supply_mechanical_energy(rot. mot.)" (2 hp, 1740 rpm)]
[electric_brake_motor (12052822, SP),

"supply_ mechanical_energy(rot. mot.)" (2 hp, 1740 rpm),
"stop_rotational_motion"(2 hp, 1740 rpm)]
[electric_gear_motor (2ADBL2450, SP),
"supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
"adjust_rotational_speed"(2 hp, 1750 rpm, 280 rpm)]
[electric_gear_motor (2ADBL2663, SP),
"supply_mechanical_energy(rot. mot.}" (2 hp, 1750 rpm),
"adjust_rotational_speed"(2 hp, 1750 rpm, 188 rpm)]
[electric_gear_motor (2ZADB21010, SP),
"supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
"adjust_rotational _speed"(2 hp, 1750 rpm, 125 rpm)]
[electric_gear_motor (2BDBL21500, SP),
"supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
“idjust_rotational_speed"(2 hp, 1750 rpm, 84 rpm)]
{electric_gear_motor (2CDB22800, SP),
“"supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
"adjust_rotational_speed"(2 hp, 1750 rpm, 45 rpm))
[electric_gear_motor (2CTB24200, SP),
"supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
"adjust_rotational_speed"(2 hp, 1750 rpm, 30 rpm)]
[electric_gear_motor (2DTB27640, SP),
"supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
"adjust_rotational_speed"(2 hp, 1750 rpm, 16 rpm)]
[electric_gear_motor (2ETB214000, SP),
"supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
"adjust_rotational_speed"(2 hp, 1750 rpm, 9 rpm))
[electric_gear_motor (2ETB216800, SP),
"supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
“adjust_rotational_speed"(2 hp, 1750 rpm, 7.5 rpm)]
[internal_combustion_engine (2 cyl),
"supply_mechanical_energy(rot. mot.)" (2 hp, 1500 rpm),
"convert_chem_energy_to_mech_energy"]

Figure 6-4: Feasible instances of the candidate components - first level

191



components are only "candidates”. Other abbreviations include "SP" standing for "Single
Phase" and "TP" standing for "Three Phase" motors.

6.5.3  UPDATING THE FUNCTIONAL SEARCH TREE (STEP 5)

Each of the component instances presented in Figure 6-4 is now mounted as a leaf-
node in the functional search tree. This means that at this point we have a tree with 14
branches (alternatives). The actual number of alternatives, however, will be determined at
the end of the verification stage (Step 6).

Next the system compares the "dossier" of each candidate node with the initial
requirements of the problem (Figure 6-2) t-, determine the contribution of each component.
The comparison proceeds according to the procedure presented in Section 5-3. According
to the procedure, at the end of the updating operation two blocks of information will be

Files Edit Run Compile Options Setup

* FUNCTIONAL REPRESENTATION PANEL *

[Elevator, N_flag = 1, E_flag = 1] [search_tree, candidate_nodes})

Alternative 1 (F-can):

Components: [electric_motor (110362, SP))
Functions, accomplished:  ["supply_mechanical_energy(rot. mot.)* (2 hp, 3450 rpm})
Functions, remaining: ["adjust_rotational_speed" (2 hp, 3450 rpm, rpm2),

“convert_rot_motion_to_lin_motion" (2hp,<rpm2>,<V1>),
“adjust_speed" (2 hp, V1, 0.67 ft/sec},

And

"sense_position” (linear, fixed),

“switch_off", "stop_motion (2 hp, <3450 rpm>,
<0.67ft/sec>),

And

"measure_acceleration” (linear, fixed, 32.2 fi/sec?),

“switch_off*, "grab® (1150 Ib, 32.2 ft/sec?)]

Alternative 2 (F-can):

Componenis: [electric_motor (120045, SP))
Functions, accomplished:  {“supply_mechanical_energy(rot. mot.)* (2 hp, 1740 rpm})
F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-5: First level of the functional search tree - updated nodes
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Alternative 6 (F-can):

Components: {electric_gear_motor (2ADBL2663, SP)]

Functions, accomplished:  [*supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
"adjust_rotational_speed"(2 hp, 1750 rpm, 188 rpm)]

Functions, remaining: ["convert_rot_motion_to_lin_motion" (2 hp, 188 rpm, V1),
*adjust_speed"” (2 hp, V1, 0.67 ft/sec),
And
"sense_position" (linear, fixed),
*switch_off", "stop_motion (2 kp, <1750 rpm>,
<0.67ft/sec>},
And
“measure_acceleration" (linear, fixed, 32.2 fi/sec?),
“switch_off*, "grab” (1150 Ib, 32.2 ft/sec?)]

Alternative 7 (F-can):
Components: [electric_gear_motor (2ADB21010, SP)]
Functions, accomplished:  ["supply_mechanical_energy(rot. mot.)" (2 hp, 1750 rpm),
"adjust_rotational_speed*(2 hp, 1750 rpm, 125 rpm))
Functions, remaining: ["convert_rot_motion_to_lin_motion" (2 hp, 125 rpm, V1),
*adjust_speed" (2 hp, V1, 0.67 ft/sec),

F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-5 (continued)

associated with each node in the search tree. The first block will contain information on
what the partial design represented by the node can accomplish, and the second block will
tell the system what portion of the initial requirements is still "uncovered".

The results of the updating operation are presented in Figure 6-5 on the system’s
functional representation panel. To avoid unnecessary listings, only two out of several
screens have been illustrated (showing alternatives 1 and 6 completely and alternatives 2 and
7 partially). The description of each alternative comprises a list of its constituent
components, an "accomplished functions" section and a "remaining functions” section. Note
that :

- The system has bound as many free function specifiers as possible with the
available information to this point. For example, in Alternative 6, the free variable

"rpm1"” (representing the rotational speed of the primary source of motion) has been

bound to 1750 rpm, or the original speed of the gear-motor (2ADBL2663);
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- Wherever necessary, the system has modified the specifiers of its elemental
functions according to its choices of components. In the first line of the
“accomplished functions" part of Alternative 6, for example, it has removed the
specifier "V1" referring to the speed of the linear motion that could have becn
supplied by the primary source of motion. Similarly, it has removed the specificr
pair <V1, V2> referring to a linear-speed adjustment in case a linear motion had
been provided. Both decisions have been based on the fact that the selected
component (electric motor) generates rotational motion rather than linear motion;

- To this point, none of the candidate components has exhibited an "extra” (i.e.
unintended - see Section 5-3 for definition) function. All the functions offered by
the selected components are among those initially requested in the problem,

6.54  VERIFYING THE CANDIDATE ALTERNATIVES (STEP 6)

Each of the candidate alternatives is now verified against the initial
requirements(Figure 6-2). The verification serves two main purposes: to make sure that each
alternative satisfies the external constraints explicitly expressed as part of the initial
requirements, and to check the precedence order of its functions against that of the initial
requirements.

In this particular problem, no applicable external constraint was included in the
requirements®. As for the precedence order of the elemental functions, it could be readily
determined that all candidates are in compliance with the desired order. Single-function
alternatives (numbers 1 to 3 and number 14) are automatically approved. Alternative 4 is
approved because in the initial requirements (Figure 6-2) no precedence order was specified
between functions 1 (supply_mechanical_energy) and 7 (stop_motion), meaning that they
can take place in any relative order including the one offered by the brake motor.
Alternatives 5 to 13 are found acceptable because their precedence order is the same as
initially requested (adjust_speed follows supply_mechanical_energy).

At this point the surviving alternatives (in this case all of them) are stored in a
TURBO PROLOG internal database reserved for the functional representation panel of the
blackboard.

if there were no other constraints (to urge the system to further examine the results),
this would terminate one iteration of the design process and would allow all 14 alternatives

8As mentioned in earlier chapters, an external constraint is one which is expressed in terms of the problem’s
design / performance parameters so that they can be processed by the computational methods discussed in

Chapter 5. Qualitative constraints (such as the one presented in this example) will be handled by the critic
knowledge-sources, as will be discussed shortly.
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to proceed to the next iteration. However, the “environment” constraint is there to make sure
that each approved design would meet the conditions implied by the user’s choice of an
"existing house" as the environment wherein the product will be used. As we shall see
shontly, this will reject such unjustifiable ideas as using a 3-phase motor in an existing house
which presumably is not equipped with a 3-phase power source, or using an i. c. engine in
the house where its noise and emissions can cause serious problems for the residents’.

6.6 CRITICIZING THE PARTIAL DESIGNS (STEP 7)
As discussed in Chapter 4, Conceptual Designer’s problem-solving paradigm allows
various expert agents (knowledge sources) to monitor the evolution of the partial design(s)

Files Edit Run Compile Options Setup

/* ENVIR_KS.PRO, Environment Knowledge-Source */

clauses

environment(indoors, public, Component):-
no_toxic{Companent),
no_noisy(Component).

envircnmeni(indoors, house, Component):-
no_toxic(Component),
no_noisy(Component),
compatible(Component, house),
fits{Component, house).

environment(indoors, hazardous, Component):-
no_spark(Component),
no_toxic(Component).

environment{outdoors, Component):-
insulation{(Companent).

no_toxic(Component):-
not{emission{Component)),
not(radio_active(Component)),
not{h_f_wave(Component)).

Fl-Help F2-Save F3-Load FS5-Zoom F6-Next F7-Xcopy F8-Xedit F9-Compile F10-Menu

Figure 6-6: The environment knowledge source

%The conditions stated here, as well as the contents of the environment knowledge-source presented in the next
section, have been postulated for demonstration purposes only, and may or may not be complete or strong
enough reasons for rejecting the alternatives in reality.
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no_noisy(Component):-
less_than(Component, noise_level, 45 dB).
compatible(Component, house}:-
power_check{Component, house),
fuel_check(Component, house),
temp_check{Component, house).
fits{Component, house):-
size_check(Component, house),
weight_check(Component, house}.
no_spark(Component):-
insulate(Component, NEMA_I_D).
insulation(Component):-
insulate{Component, NEMA_F).

power_check{Component, house):-
uses{Component, power),
power_source(power, SP).

not(emissicn(Component)):-

not{Component, i_c_engine),
not{Component, coal_burner}.

F1-Help F2-Save F3-Load F5-Zoom F6-Next F7-Xcopy F8-Xedit F9-Compile Fi0-Menu

Figure 6-6 (continued)

and to evaluate / modify them according to the agents’ expertise. For demonstration
purposes, in this problem we have considered one such agent, namely the environment
knowledge source.

Once the verification stage is over, the system looks for signals to invoke
knowledge-sources. In this case, it comes across the global constraint environment, which
has been appointed as the activation signal for the corresponding KS.

The contents of the environment KS are partially shown in Figure 6-6. Written as
a set of Prolog’s "clauses"'®, it checks the design alternatives component by component
against 2 number of predefined conditions dictated by various working environments.

1®The clauses here have been simplified from their standard Turbo Prolog format for the benefit of those less
familiar with the language.
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Depending on the environment stated in the problem, the KS fires the proper conditions.
Satisfaction of respective conditions by all components in a (partial) design will result in the
approval of the design. In this case the KS will give the system the go-ahead to proceed to
other knowledge sources (if their activation criteria are met) or to go on to the next stage.

As explained earlier, knowledge sources are mainly composed of sets of if-then
statements. The environment KS (Figure 6-6), for example, contains four basic statements
each pertaining to a different working environment including public indoor places (e.g.
subway stations), private indoor places (e.g. houses), indoor places where hazardous
materials are present (e.g. paint shops) and outdoors.

In Prolog, an if-then statement follows the following general format.

Result ("then" statement) :-
Condition ("if" statement) 1,
Condition ("if" statement) 2,

..............

Condition ("if" statement) n.

Meaning that for the "result" to be true, conditions 1 to » must be all true. For example, the
constraint "environment (indoors, house, Component)”, in which the variable "Component”
will sequentially be bound to different components of a design, will be satisfied if all four
of its conditions "no_toxic(Component))" and "no_noisy(Component))" are satisfied. Later
in the program, each of the two conditions is in turn expressed as a "result” statement with
its own conditions to be satisfied. This chain of refinements goes on until all sub-conditions
of the original condition are covered.

Arguments of the if-then statements can be the attributes of the components or
simply the names of some components. In Figure 6-6, for example, one of the sub-
conditions, namely the "not(emission(Component))" sub-condition, boils down to naming
those components in the components-library that actually emit toxic fumes (e.g. i. c.
engines).

In the current example, two of the selected components failed to meet the
implications of the environment constraint. One was the three-phase electromotor
(alternative 3 in Figure 6-4) which violated the condition "power_check" in Figure 6-6, and
the other was the i. ¢. engine (alternative 14) which did not satisfy the condition
"not(emission)". The remaining alternatives were approved because they conformed to the
norms of the knowledge source on their pronounced attributes.

As prescribed by step 7, the failed alternatives are removed from the search tree and
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the remaining are re-numbered.

6.7 UPDATING THE (STRUCTURAL) SEARCH TREE (STEP 38)

The 12 surviving alternatives are mapped onto the structural representation pancl
(Figure 6-7) where they make the first level of a tree representing the feasible partial designs
(physical- rather than functional descriptions).

Since none of the above alternatives is yet covering all the functional requirements
stated in the problem, there are no complete designs to report to the user, and hence the
system heads for the next iteration (step 9).

Before we start the next iteration at step 2, there are a number of points one should
note about what we have covered so far in this chapter.

a. As it is the case with any other computer system, Conceptual Designer
heavily relies in its functioning on the information it receives from the user,
either as part of the problem statement or in the form of domain knowledge
contained in its knowledge sources and databases. The system is NOT
intrinsicly aware of the facts which a human designer would take for granted.
For example, it will not automatically reject the idea of using a nuclear
reactor as the source of energy for a household appliance if the reactor is
included in its components-database and if its use for such purposes is not
explicitly banned by one of the knowledge sources, The more detailed
information the system is provided with, the more accurate its results will be.

The need for transferring a "sea of information" to the computer should not be
considered a drawback for an automated design system, for this is a one-time
investment that, in the light of the computers’ fast processing and massive data
handling capabilities, will pay off very quickly.

This is especially true with complex problems. The "elevator” example presented
here is a small problem which could be solved, perhaps more efficiently, by a
human designer and hence does not demonstrate the system’s full potentials. One
also has to take into account the versatility of the system to independently handle
problems from various areas of expertise and its ability to generate multiple
solutions simultaneously.

b. As an example for the above argument, we note that so far the system has not
come up with any "system constraints" defined in Chapter 3. The reason is
that in order to keep the example as simple and brief as possible, we did not
include the structural details of the components in their respective
knowledge-cells. If, for instance, we had included information such as the

198



output-shaft diameter of each electromotor and its keyway dimensions in the
corresponding .OBI file, Conceptual Designer would have introduced such
constraints as "hub_in_dia > mot_shaft_dia" and would have made its
satisfaction a condition for the approval of the adjacent components.

c. Critic knowledge sources may or may not be present in the system. In this
chapter we included a simple KS to demonstrate how the common
engineering knowledge and/or the expertise of domain experts can be
encapsulated and used to help guide the design process. The system would
nonetheless have proceeded and resuled in multiple solutions even in the
absence of the KS. However, it would have been up to the user then to screen
the final solutions and to keep the valid ones.

d. Conceptual Designer would consider all approved instances of a component-
type and would treat each one as an independent alternative. As discussed in
earlier chapters, this will give the user more choices and will guarantee that
the system will not lose the overall optimum design(s) due to a best-first
strategy.

In Figure 6-7 the letter "S" indicates that the tree nodes represent Structural designs rather
than functional ones, and the dash within the brackets tells the system that the corresponding
design is not complete yet.

6.8 ITERATING THE DESIGN PROCESS (STEP 9}

Having 12 partial design alternatives on the structural representation panel of its
blackboard and a functional dossier for each alternative on its functional representation
panel, the system now recursively examines each alternative. This means that it repeats the
same steps as taken so far, only this time the initial requirements of the problem are replaced
with those listed in each alternative’s dossier under "remaining functions". In other words,
the original problem is replaced with 12 sub-problems, each having its own requirements.

Except for the exploration step which we promised we would discuss in detail, we
will not elaborate the other steps again for the subproblems, and will rather present the
results only. The exploration step will be elaborated for alternative 1 (Figure 6-7) whose
corresponding functional node was illustrated in Figure 6-5''. Unless stated otherwise, the
design relations and data used in the rest of this chapter are taken from references (Gieck and
Gieck 1990; Baumeister 1978; Juvinall and Marshek 1983; PARKER Catalog).

""Note that the alternatives have been te-numbered since Figure 6-5. For example, alternative 5 in Figure 6-7,
which will be examined shortly for the exploration step, was number 6 in Figure 6-5.
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Files Edit Run Compile Options Setup
* STRUCTURAL REPRESENTATION PANEL *
[Elevator, Partial Design Alternatives})
Alternative 1(S): [electric_motor (110362), -]
Alternative 2(S): [electric_motor (120045), -]
Alternative 3(S): [electric_brake_motor (12052822), -
Alternative 4(S): [electric_gear_motor (2ADBL2450), -]
Aiternative 5(S). [electric_gear_motor (2ADBL2663), -]
Alternative 6(S): [electric_gear_motor (2ADB21010), -]
Alternative 7(S): [electric_gear_motor (2BDBL21500}, -]
Alternative 8(S): [electric_gear_motor (2CDB22800), -]
Alternative 9(S): [electric_gear_motor (2CTB24200), -}
Alternative 10(S): [electric_gear_motor {2DTB27640), +]
Alternative 11(S): [electric_gear_motor (2ETB214000), -]
Alternative 12(S): [electric_gear_motor (2FQB238200), -]
End Panel
F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-7: Feasible partial desipn alternatives at the first level of the search tree

LEVEL 1, ALTERNATIVE 1 (Figure 6-7)

The next elemental function to consider is "corvert_rot_motion_to_lin_motion" or
as we shall briefly call it "linearize_motion" (the reason for this choice was explained earlier
in this chapter). Browsing through the database index (Appendix D) Conceptual Designer
finds 6 components/ subsystems capable of performing the specified function, viz.

- A cable-hoist (wire-rope being wound around a cylindrical drum),

- A chain-hoist (chain being wound around a cylindrical drum),

- A hydraulic drive (pump and hydraulic cylinder),

- A pneumatic drive (compressor and pneumatic cylinder),

- A rack and pinion drive,

- A power-screw drive

The slider-crank mechanism is not selected, despite its capability to convert rotational motion
to linear motion, because it generates reciprocal linear motion which is not wanted.

Starting with the cable-hoist, the system opens the corresponding component-cel]
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{cabl_hst.obj) (Figure 6-8). In order to form the "knowledge pooi” of the component, it then
adds the initial specifications of the sub-problem to the cell. These specifications include the
output speed of the electromotor (3450 rpm) which is assigned to variable "CHDRPM" (the
rotational speed of the hoist's drum) and the desired linear speed of 0.67 ft/sec (40.2 ft/min)
which is assigned to the speed of the cable (variable "CHRS").

The system then activates the exploration KS to solve the given constraint set. In
this case, the actual run of the program expectedly resulted in a failure message, implying
that the direct connection of a cable hoist to a 3450 rpm electromotor was not a practical idea
In terms of the constraints, the failure stemmed from the violation of an inequality constraint
in the component's knowledge pool (Figure 6-8).

/* "cabl_hst.obj", Turbo Prolog 2.0 */

/* Definition of Terms

CHDD: drum diameter (inches)

CHDRPM: drum rotational speed (rpm)

CHDRP: drum radial pressure (psi)

CHDW: drum width (inches)

CHRD: rope diameter (inches)

CHRS: rope speed (ft/min)

CHRT: rope tention {1b)

CHRAS: allowable tensile stress of rope (psi) */

/* Equality Constraints */

CHDRPM = 3450
CHRS = 40.2

/* Inequality Constraints */

CHDD s 40 x CHRD
CHRS < 1000

Figure 6-8: Knowledge-pool of the cable-hoist (partially shown)

The problem arose when the system chose a 0.5" diameter wire rope and calculated
the outside diameter of a drum to be connected to the electromotor shaft and to wind the rope
at a speed of 40.2 ft/min. The calculation yielded a diameter of 0.04" for the drum which

obviously violated the constraint "40 x CHRD < CHDD" which requires that the drum
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diameter be at least 40 times the diameter of the rope (Oberg and Jones 1971).

As aresult this failure, Conceptual Designer issues a system constraint 1o declare
the acceptable range of the one function specifier that has caused the failure, namely the
input speed to the cable-hoist. We just argued that the speed should provide for a drum
diameter of (40 x 0.5" =20") or more. This translates to a drum speed of 7.7 rpm or less
(CHDRPM < 7.7).

As prescribed by the "analysis order” included in the initial presentation of the
problem, the system then goes back and considers elemental function 2,
(adjust_rotational_speed) while binding the function’s first specifier (transmitted power) to
2 hp and its second specifier (input speed) to 3450 rpm and constraining its third specifier
(output speed) to 7.7 rpm.

Scanning the database index again, the system finds 6 options for adjusting the
rotational speed of the electromotor, viz.

- A spur-gear drive

- A helical-gear drive
- A bevel-gear drive
- A worm-gear drive
- A belt drive

- A chain drive

The next step would be to explore each of these alternatives'®. Starting with the
spur-gear drive, the exploration module opens the corresponding component-celi
(spr_gear.obj) and adds the initial specifications to it. The resulting constraint set is shown
in Figure 6-9. The exploration module is then activated to solve the constraint set. As in the
case of the cable hoist, in the actual run, Conceptual Designer issued a failure message for
the obvious reason that reducing the input speed of 3450 rpm to a desired speed of 7.7 rpm
or less requires a gear ratio of 448:1 or more, and this is far beyond the maximum
recommended gear ratio of 8:1 for a spur-gear set (sce inequality constraints in Figure 6-9).

This failure, however, should not result in totally ignoring the component, for one
could always break up the required overall gear ratio and carry it out in a number of steps.
For this reason, certain component-cells are equipped with a refinement procedure that

"*To avoid confusion, one must carfully keep track of the alternatives being generated. For each of the 6
options presented here, the system is likely to find multiple feasible instances. Each of these instances will then

be considered in conjunction with each of the 6 "motion linearizers” presented earlier in this section, and the
process will continue in this way.
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/* "spr_gear.obj", Turbo Prolog 2.0 */

f* Definition of Terms

SGSR: Speed Ratio

SGIS: Input Speed

SGOS: Output Speed

SGTP: Transmitted Power
SGCD: Center Distance

SGFD: Face Width

SGNPT: Number of Pinion Teeth
SGNGT: Number of Gear Teeth
SGML: Module

SGAT: Applied Torque

SGTL: Transmitted Load
SGMBS: Maximum Bending Stres
SGALS: Allowable Stress

SGY: Lewis Form Factor
SGKV: Velocity Factor */

-------------------------------------------------

/* Equality Constraints */

SGAT = SGTP / SGIS

SGCD = SGML * SGNPT * (1 + SGSR) /2

SGTL = SGTP * 60/ SGML / SGNPT / SGIS / PAI

SGOS = SGIS / SGSR

SGSR = SGNGT / SGNPT

SGMBS = SGTL / SGKV / SGFW / SGML / SGY

SGKV =360/ (SGML * SGNPT * SGIS * PAI + 360)

SGY =-0.000000018 * (*(SGNPT, 4)) + 0.0000046 * (\(SGNPT, 3))
- 0.00045 * (M(SGNPT, 2)) + 0.02 * SGNPT + 0.05

SGIS = 3450

SGTP = 147

/* Inequality Constraints */
SGMBS < SGALS

SGSR < 8.0

9 * SGML < SGFW
SGFW < 16 * SGML
SGOS < 7.7

Figure 6-9: The constraint set of the spur-gear drive
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would allow them to get around this impass'’. According to the procedure, the violated
constraint would be rendered active (i.e. the < sign would be replaced with the equal sign)
and the conflicting constraint(s) would be removed. The resulting, consistent constraint set
would then be solved to give the specifications of the component instance which will carry
out the desired function partially. In other words, Conceptual Designer would find a
component instance with function specifiers as close to the desired values as permitted by
the constraints.

The initial requirements of the problem would then be modified to reflect the
"remaining” portion of the elemental function in question. This would consist of replacing
the original values of the specifiers with their new values as well as including a modified
version of the then-conflicting constraint to the component-cell.

In the case of the spur gear drive, the procedure would set the gear ratio to 8 (the
maximum allowed by the constraints) instead of the desired value of 448, and would remove
the constraint "SGOS < 7.7" from the constraint set. This refined constraint set would now
be solved by the exploration module to give a (number of) gear set(s) with a gear ratio of 8:1.
Execution of the program resulted in the 4 alternatives presented in Figure 6-10.

SGSR SGNGT SGNPT SGML SGOS
8.0 112 14 30 431 rpm
8.0 120 15 2.5 431 rpm
8.0 96 12 3.0 431 rpm
8.0 136 17 2.0 431 rpm

Figure 6-10: Multiple solutions to the spur-gear sub-problem

Meanwhile, the system modifies the description of the "remaining" functions for
this node on the functional representation panel of the blackboard. This is done by changing
the values of the specifier "input speed” of function 2 (Figure 6-2) from 3450 rpm to 431
rpm. Alternatively stated, the system is now asked to find other component(s) to finish the
partially-performed task of reducing the initial speed of 3450 rpm to a final speed of 7.7 rpm

13As a rule of thumb. the procedure applies to those components whose function specifiers are "adjustable”.
Definition of an adjustable specifier was given in Chapter 5.
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or less.

Another search is conducted with the above purpose and the system finds the same
six candidates it found before for accomplishing the speed-adjustment task. These
candidates are the spur-, helical-, bevel- and worm-gear drives plus the belt drive and the
chain drive. For each of these candidates the system goes through the very same steps as it
did for the spur-gear drive and faces the same problem (the required reduction ratio of 56:1
or more is beyond the speed-reducing ability of a single component).

As in case of the spur-gear drive, the system then sets each component’s reduction
ratio to its maximum and finds its feasible instances. Figure 6-11 briefly presents the results
of this round of instantiations. The reduction ratio shown in the figure for each component
is the maximum recommended value for that component (Oberg and Jones 1971; Quayle
1985; Shigley and Mischke 1989).

Component Reduction Ratio No. of Instances Found Output Speed
spur_gear_drive 8:1 5 54 rpm
helical_gear_drive  12:1 3 36 rpm
bevel_gear_drive 10:1 3 43 rpm
worm_gear_drive  40:1 1 11 rpm
beli_drive 10:1 7 43 rpm
chain_drive 6:1 4 72 rpm

Figure 6-11: Alternative ways to further reduce the speed of the electromotor’s shaft

Normally, the next step would be to modify the requirements of the problem and
perform another round of instantiations on the same six components listed in Figure 6-11.
The goal would then be to find component instances that would yet further reduce the output
speeds presented in the figure to 7.7 rpm or less.

At this point one may notice the rate at which the search tree (Figure 6-12) is
growing. Thus far we have considered only the first alternative (out of 12 presented in
Figure 6-7) for performing function 1. Then for this single alternative the system has offered
six ways to carry out the first "instalment"” of the second function and, only for one of these
six, yet another six ways to carry out the second instalment. Considering that even the
second function is not yet fully carried out, one could realize the combinatorial explosion in
progress.

In previous chapters we discussed a "pruning" mechanism to avoid this situation.
In the present exampie we have adopted a two-tiered pruning criterion with two sets of
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activation conditions. The first tier would be applied to all alternatives in the same level of
the search tree. It would remove from the tree any design alternative in which a single
function requires more than two'! components/subsystems to be carried out, unless there is
no other choice. In other words, Conceptual Designer is told to count the number of
"installments” to which a single elemental function has to be divided before it could be
carried out completely. Should the function not be completed after two consequtive
corresponding partial design would be discarded.

This "sub-criterion” is always active regardless of the number of alternatives in a
tree level. It is meant to rid the system from less-efficient design ideas which tend to achieve
the desired tasks the longer, usually more expensive way.

The second tier of the adopted pruning criterion would be activated once the
number of design alternatives in a single level of the search tree exceeded 20. Once
activated, it would look for alternatives with similar structures, i.e. the ones that comprise
the same components-types (and not necessarily component-instances). If there were more
than one such alternative, the system would keep the first one and discard the rest. This
would also apply to the alternatives with some functions mapped to more than one
component if at least one of these components is shared by a number of alternatives,

For example, if the system comes up with the two solutions
- [electromotor, 3500 rpm)] [helical gear set, ratio 12:1] [.....]

- [electromotor, 1750 rpm] [helical gear set, ratio 6:1] [.....]

and there are more than 20 alternatives in the last level of the search tree, then it would keep
the first alternative and discard the second, as the two solutions consist of the same
component-types, though different component-instances. Also, if the solutions differ only
in some of the component-types resulting from mapping of a single function, such as

- [electromotor, 3500 rpm] [helical gear set, ratio 6:1] [spur gear set, ratio 2:1] [.....]
- [electromotor, 1750 rpm] [helical gear set, ratio 3:1] [bevel gear set, ratio 2:1] [.....]
then the system would again discard the second alternative, as the two solutions share one
of the component-types (namely the helical gear set) in the mapping of the function "adjust
speed”.

The rationale behind this pruning sub-criterion is that one implementation
(instance) is enough 1o represent a design idea. Alternatively stated, whenever a pruning is
necessary, the system should keep those alternatives that represent different design ideas,
rather than various instances of the same (or almost the same) idea. Although in general this

" This number could be changed by the user, if the problem requires and CPU resources were available,

207



pruning scheme (and any scheme for that matter) is in contrast with our principle of "saving
all alternatives to insure the best solution”, in this particular example we accept the risk of
losing that best solution because we are only concerned about design ideas and not design
instances, and because we are not given sufficient information to evaluate various designs
quantitatively and thus to choose the best one.

Returning to the example we notice that according to Figure 6-11, no component-
instance has so far been found capable of bringing the speed down to 7.7 rpm, a requirement
dictated by the cable hoist. Therefore, in accordance with the first tiere of the above
criterion, all partial designs found so far (i.e. the ones with speed adjusters) are discredited
and discarded.

Having expanded the first node of the second level of the search tree of Figure 6-12
(i.e. the spur-gear drive), the system now backtracks and considers the next node (the helicai-
gear drive) for expansion. As before, the given specifications are added to the respective
component-cell (hel_gear.obj) to form the knowledge pool of the component. Again, these
specifications include "in. speed = 3450 rpm” and "transmitted power = 2 hp"plus the
constraint "out. speed < 7.7 rpm".

The same scenario is repeated: Conceptual Designer spots a violated constraint
("gear ratio < 12" contradicted by the required ratio of 448:1), the refinement procedure is
activated, the ratio is set to 12:1 and the inconsistent constraint "output speed = 3450 rpm"
is removed from the constraint set, the new constraint set is solved and in this case 2 feasible
instances are found. The instantiation process is then repeated to find the "mating"
component(s) (to complete the unfinished task of reducing the speed to less than 7.7 rpm).

Recalling the maximum reduction ratios of various "speed adjusters" from Figure
6-12, and considering that the system'’s pruning criterion limits the number of components
in each configuration to two, it readily follows that from the four possible configurations
(helical-spur, helical-helical, helical-bevel and helical-worm-gear) with maximum combined
reduction ratios of (12 x 8, 12 x 12, 12 x 10 and 12 x 40 respectively), only the last
configuration survives the pruning procedure as it is potentially capable of bringing the speed
down to 7.7 rpm or less. Conceptual Designer was able to find two feasible instances of the
helical-gear drive and one feasible instance of the worm-gear drive for each one'*, The
resulting two solutions to the sub-problem are presented in Figure 6-13.

*5Note that due to the non-deterministic nature of a GA search, neither the number nor the identity of the
instances of a component found through the search is necessarily the same in each iteration, Whereas a previous

run of the GA routine had resulted in, for example, 3 instances of helical-gear drives (Figure 6-11), this time
it found only 2 instances.
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Helical Gear/Pinion Worm/Gear Output Speed

Al 1: 144 teeth / 12 teeth (ratio 12:1) 1 thread / 38 teeth (ratio 38:1) 7.6 rpm
Alt, 2: 168 teeth / 14 teeth (ratio 12:1) 1 thread / 40 teeth (ratio 40:1) 7.2 rpm

Figure 6-13: The two solutions to the speed-adjustment sub-problem

The niext node in the search tree to expand is the bevel-gear drive. An attempt by
the system to instantiate this component resulted in another failure message, as one of the
constraints in the component’s constraint set was violated by the input speed of 3450 rpm.
The violated constraint was the one that limits the pitch-line velocity of a bevel gear to 1000
ft/min (Shigley and Mischke 1989). To satisfy the constraint, a pinion with a pitch diameter
of one inch or less would have to be mounted on the output shaft of the electromotor; and
this would be inconsistent with the strength requirements of the gear. This option was
therefore discarded and the system considered the next option, namely a worm-gear drive.

As for the worm-gear drive, the system expectedly chose the highest reduction ratio
allowed (40:1) and tried to augment it with a second speed-reducer. Of all the options
availavle to it (Figure 6-11), the system found only two components capable of performing
the desired task, a helical-gear set and a second worm-gear set. The other options were
eliminated as they had maximum reduction ratios of 10:1 or less, which could not bring the
speed down to the desired level. The resulting solutions for this sub-problem are illustrated
in Figure 6-14.

First Component Second Component Output Speed
All. It worm-gear (40 teeth/] thread) helical-gear set (161 teeth/14teeth) 7.5rpm
Al 2 worm-gear (40 teeth/] thread) helical-gear set (144 teeth/12 teeth) 7.2 pm
Alt. 3:  worm-gear (40 teeth/] thread) worm-gear (24 teeth/2 thread) 7.2 rpm

Figure 6-14: Results of the expansion of the worm-gear node

Figures 6-13 and 6-14 present the five solutions to the sub-problem (i.e. to carry out
function 2 "adjust rotational speed" for the cable-hoist). These are all the solutions the
system could find, as the other potential candidates (belt drive and chain drive) cannot reduce
the speed to 7.7 rpm or less in one or two steps.
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Following the "analysis order" of the problem (Figure 6-2), the system now
augments the five partial solutions presented above with the component “cable-hoist” it had
picked earlier. For each of the five alternatives, the output speed of the sub-system is unified
with the input (drum) speed of the cable-hoist and the resulting knowledge-pool is explored
by Conceptual Designer.

If an instance of the cable-hoist is found which can wind the wire rope at a speed
of 4.2 ft/min as a result of the drum speed specified by one of the five alternatives above then
the system will no longer need to consider functions 4 and 5 in Figure 6-2 (i.c.
"adjust_linear_speed" and "redirect_linear_motion"}, as the rope can be directly connected
to the elevator box and lift it at the desired speed. Otherwise, the system will have to find
additional components to carry out those functions.

In the current example, since Conceptual Designer has aiready examined function
3 with the final desired speed of 40.2 ft/min assigned to its output speed and has back-
propagated the implications of this assignment to the previous function (function 2), one can
expect that the system will readily find feasible instance(s) of the hoist and hence will skip
functions 4 and 5.

The actual instantiation of the cable-hoist led to the very same results. Feasible
instances of the hoist were found for the five speed-adjusters presented above and hence five
partial solutions (speed-adjuster plus cable-hoist) were reported (Figure 6-15). All five
solutions complied with the requirements of the global (environment) constraint of the
problem. They also satisfied the functional precedence order prescribed by the problem.
Therefore they were all marked as feasible partial designs and were reported to the structural
representation panel of the blackboard.

Having fully expanded the "cable-hoist" node of the search tree, the system back-
tracks to the parent node and finds five more child-nodes to be expanded. These nodes
represent the alternative ways to convert rotational motion to linear motion. They include
the "chain-hoist”, the "hydraulic-drive”, the "pneumatic-drive”, the "rack-and-pinion-drive"
and the "power-screw-drive".

Using a similar approach to exploring these nodes as the one used in the case of the
cable-hoist, Conceptual Designer considers those nodes one by one and reports the results
to the blackboard. To avoid repetitious discussions, we shall skip the details of the
exploration process for the five nodes and will rather present the results. The following is
a brief diary of the process including the more important resuits.
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Alternative 1:

Alternative 2:

Allernative 3:

Alternative 4:

Alternative 5:

[helical_gear_drive (12/144 teeth, 30 deg_helix)] [worm_gear_drive (1
thread/38 teeth, 20 deg_lead)] [cable_hoist (8x19-0.5 in_rope, 20.3
in_dia_drum])

[helical_gear_drive (14/168 teeth, 15 deg_helix)] [worm_gear_drive (]
thread/40 teeth, 15 deg_lead)] [cable_hoist (8x21-0.5 in_rope, 21.4
in_dia_drum}

{worm_gear_drive {1thread/40 teeth, 25 deg_lead)] [helical_gear_drive
(161714 teeth, 15 deg_helix)] [cable_hoist (6x19-0.5 in_rope, 20.5
in_dia_drum]

fworm_gear_drive (1thread/40 teeth, 20 deg_lead)] [helical _gear_drive
(144/12 teeth, 15 deg_helix)] [cable_hoist (6x21-0.56 in_rope, 22.4
in_dia_drum)

fworm_gear drive (1thread/40 teeth, 15 deg_lead)] [worm_gear_drive
12 thread/24 teeth, 25 deg_lead)] [cable_hoist (8x25-0.44 in_rope, 21.3
in_dia_drum]

Figure 6-15: Solutions to the speed-adjuster/cable-hoist sub-problem

Examining the chain hoist, Conceptual Designer faced the violation of the speed
constraint and backed up to function 2 where it again found three ways to reduce the
speed of the electromotor. It then found matching hoist-instances for each speed
reduser and reported the following three solutions (Figure 6-16).

Alternative 1: [helical_gear_drive (14/140 teeth, 30 deg_helix}] [worm_gear_drive (1

thread/35 teeth, 20 deg_lead)] [chain_hoist (0.5%1.34 in_chain, 15.6
in_dia_drum]

Alternative 2: [worm_gear_drive (1thread/38 teeth, 20 deg_lead)] [helical_gear_drive

(144/12 teeth, 15 deg_helix)] [chain_hoist (0.625x1.875 in_rope, 20.3
in_dia_drum)]

Alternative 3: [worm_gear_drive (2thread/42 teeth, 25 deg_lead)] [worm_gear_drive

(1 thread/18 teeth, 15 deg_lead)] [chain_hoist (0.5x1.34 in_chain, 16.8
in_dia_drum)

Figure 6-16: Solutions to the speed-adjuster/chain-hoist sub-problem

Next the hydraulic-drive option was explored. This time, the system did not come
across a violated speed-constraint, as the initial port of the sub-system, namely the
rotor of the puinp, can be directly connected to the electromotor shaft. The desired
final speed of 40.2 ft/min as well as an additional speed equal to half of that value
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were sequentially assigned to the output'®, linear speed of the sub-system (the piston
speed) and the speed of the electromotor shaft was assigned to the input speed of the

pump. The resulting knowledge-pool was then explored and the four solutions
presented in Figure 6-17 were reported.

Alternative 1: [gear_pump (3450 rpm, 125 psi, 24 gpm)] [hydraulic_cylinder (4.4
Alternative 2: [gear_pump (3450 rpm, 200 psi, 16.4 gpm)] [hydraulic_cylinder (5.0
Alternative 3: [vane_pump (3450 rpm, 75 psi, 46 gpm)] [hydraulic_cylinder (6.0

Alternative 4: [vane_pump (3450 rpm, 175 psi, 14 gpm)] [hydraulic_cylinder (5.0

in_bore, 2.18 in_rod, 40.2 ft/min, 16 ft_stroke)]
in_bore, 2,25 in_rod, 20.1 ft/min, 8 ft_stroke)]
in_bore, 2.8 in_rod, 40.2 ft/min, 16 fi_stroke)]

in_bore, 2.8 in_rod, 20.] ft/min, 8 ft_stroke)]

Figure 6-17: Solutions to the hydraulic-drive sub-problem

The results presented in Figure 6-17 shows that the system has found two feasible
instances of the hydraulic drive that can move the elevator box 16 feet at a speed of
40.2 ft/min. It has also found two instances of the same mechanism that can raise the
box 8 feet at a speed of 20.1 ft/min. If another mechanism could be found to double
the displacement of the box (and hence its speed, as the time is constant), then one
would end up getting the same outcome while saving the cylinder half of its stroke.
This option, though maybe economically infeasible, was included here to
demonstrate the possibility of hinting the system to explore non-trivial options.
The fourth option, i.e. the pneumatic drive, was next explored. As in the case of
hydraulic cylinder, the system unify the initial (electromotor) and final (elevator)
specified speeds with the input and output speeds of the candidate component and
was able to find two feasible instances of it (Figure 6-18).

In the case of rack and pinion, two options are considered in the component cel!: u
fixed pinion with a moving rack which would lift the elevator box , and a fixed rack
with a "climbing” pinion attached to the box. The difference being, among other

things, that in the former case the rack would be subject to buckling whereas in the
latter it would not.

"®As an example of how the DbE mode] allows for the exploitation of domain-specific knowledge, we have
included in the component-cells of hydraulic- and pneumatic-drives the optional choice of half or full piston
stroke with the same stroke time. In the half-stroke case, a displacement magnifier (doubler) mechanism would
be then added to the system to provide the desired full displacement and, since the stroketime remains the same,

full speed. The cells are set up so that the exploration module would consider both options and result in two
(sets of) solutions.

212



Alternative 1: [vane_pump (3450 rpm, 80 psi, 34.4 gpm)] [pneumatic_cylinder (5.0
in_bore, 2.0 in_rod, 40.2 ft/min, 16 ft_stroke)]

Alternative 2: [vane_pump (3450 rpm, 100 psi, 26.2 gpm)] [pneumatic_cylinder (6.0
in_bore, 2.0 in_rod, 20.]1 ft/min, 8 ft_stroke)}

Figure 6-18: Solutions 1o the pneumatic-drive sub-problem

In both cases Conceptual Designer confronted constraint violations due to the high
speed of the electromotor, and issued system constraints to restrain the rotational
speed of the pinion between 9.6 rpm and 35 rpm (due to upper and lower limits on
the pitch diameter of the pinion and its hub diameter). I then sought speed reduction
prior to instantiating the rack and pinion mechanism. The results are illustrated in
Figure 6-19.

Alternative 1:

Alternative 2:

Alternative 3;

Alternative 4:

Alternative 5:

Alternative 6:

Alternative 7;

[helical_gear_drive (14/84 teeth, 20 deg_helix)] [worm_gear_drive (1
thread/25 teeth, 15 deg_lead)] [rack_f.pinion_drive (16.0 ft_rack, 306
teeth_rack, 0.63 in_c.pitch, 34 teeth_pinion, 5 d.pitch]
[worm_gear_drive (1 thread/38 teeth, 25 deg_lead)] [spur_gear_drive
(15/105 teeth, 5 d.pitch)] [rack_f.pinion_drive (16.0 ft_rack, 123
teeth_rack, 1.57 in_c.pitch, 25 teeth_pinion, 2 d.pitch]
[bevel_gear_drive (16/64 teeth, 14/76 deg_pitch)] [worm_gear_drive (1
thread/34 teeth, 20 deg_lead)] [rack_f.pinion_drive (16.0 ft_rack, 367
teeth_rack, 0.52 in_c.pitch, 38 teeth_pinion, 6 d.pitch]

[bevel gear_drive (14/140 teeth, 6/84 deg_pitch)] [helical_gear_drive
(14/154 teeth, 15 deg_helix)] [f.rack_pinion_drive (16.0 ft_rack, 192
teeth_rack, 1.0 in_c.pitch, 21 teeth_pinion, 3 d.pitch]

[belt_drive (A64, 2/18 in_p.dia)] [helical_gear_drive (12/144 teeth, 30
deg_helix)] [f.rack_pinion_drive (16.0 ft_rack, 306 teeth_rack, 0.63
in_c.pitch, 23 teeth_pinion, S d.pitch]

[worm_gear_drive (1thread/35 teeth, 20 deg_lead)] [belt_drive (B66,
3/18 in_p.dia)] [f.rack_pinion_drive (16.0 fi_rack, 245 teeth_rack, 0.78
in_c.pitch, 40 teeth_pinion, 4 d.pitch]

[worm_gear_drive (1thread/36 teeth, 15 deg_lead)] [chain_drive (80,
67 in_chain, 1 in_pitch, 15/60 teeth_sprocket)] [f.rack_pinion_drive
(16.0 ft_rack, 184 teeth_rack, 1.0 in_c.pitch, 20 teeth_pinion, 3 d.pitch)

Figure 6-19: Results of the expansion of the rack-and-pinion node

213



In the description of the components in Figure 6-19, the term "f.rack_pinion_drive"
denotes a fixed rack with "climbing" pinion whereas the term "rack_f.pinion_drive"
refers to a fixed pinion with a moving rack. Also the terms "c.pitch" and "d.pitch”
refer to "circular pitch” and "diametral pitch" respectively.

- The same procedure was followed in the case of the power-screw-drive. Again the
system ended up reducing the speed of the electromotor before instantiating the
candidate drive. In this case, however, only one option (fixed screw with climbing
nut) was considered. The results of the exploration stage are presented in Figure 6-20.

Alternative 1: [spur_gear_drive (20/96 teeth, 10 d.pitch)] [power_screw_drive (2.25-
0.33p-0.67L-Acme)]

Alternative 2: [helical_gear_drive (15/108 teeth, 15 deg_helix)] [power_screw_drive
(2.5-0.33p-1.00L-Acme))]

Alternative 3: [worm_gear_drive (2thread/15 teeth, 20 deg_lead)]
[power_screw_drive (2.5-0.33p-1.00L-Acme)]

Alternative 4: [bevel_gear_drive (25/120 teeth, 12/78 deg_pitch)]
[power_screw_drive (2.25-0.33p-0.67L-Acme)]

Alternative 5: [belt_drive (AS50, 2.5/12 in_p.dia)] [power_screw_drive (2.75-0.33p-
0.67L-Acme)]

Alternative 6: [chain_drive (60, 65 in_chain, 0.75 in_pitch, 10/72 teeth_sprocket})
[power_screw_drive (2.5-0.33p-1.00L-Acme})]

Figure 6-20: Results of the expansion of the power-screw node

- This completed the expansion of the first leaf-node of the search tree (Figure 6-7) at
this level. This means that the system had explored all possibilities (according to its
database) of carrying out, partially or completely', functions 1 through 4 (supply
mechanical power in the form of motion and convert the motion to a lincar one with
a desired speed) using a 2 hp, 3450 rpm electromotor.

The expansion of this leaf-node resulted in 27 partial design alternatives. This met
the second tiere of the pruning criterion and activated the mechanism. The redundant

alternatives were removed from the tree and that reduced the number of remaining
designs to 13 (Figure 6-21),

""The term partial refers to those designs that would provide for half the desired speed, namely the ones using
a type 2 hydraulic/pneumatic drive to linearize the rotational motion as discussed earlier. The next step in

augmenting these designs would be to find components that can double their linear speed/displacement. We
shall further explain this shortly.
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LEVEL 1, ALTERNATIVES 2, 3 AND 4 (Figure 6-7)

Conceptual Designer then expanded the other nodes at this level before going to the
next level and further augmenting the partial designs in Figure 6-21. The results of
these expansions will be presented shortly in this chapter. The details of the
expansions, however, will not be discussed.

LEVEL 2, ALL ALTERNATIVES

The first leaf-node to be expanded at the next level of the search tree was the
(electromotor-helical gear drive-worm gear drive-cable hoist) (Figure 6-15). The first
of the remaining functions for this node was to "sense position". This function is
necessary for determining when the elevator box must be stopped.

Files Edit Run Compile Options Setup

* STRUCTURAL REPRESENTATION PANEL *
[Elevator, Partial Design Alternatives)

Alternative 1(S).  [electric_motor (110362, 3450 rpm, 2 hp)] [helical_gear_drive (12/144 teeth,
30 deg_helix)) [worm_gear_drive (1 thread/38 teeth, 20 deg_lead))
[cable_haoist (8x19-0.5 in_rope, 20.3 in_dia_drum]

Alternative 2(S).  [electric_motor (110362, 3450 rpm, 2 hp)] [helical_gear_drive (14/140 teeth,
30 deg_helix)] [worm_gear_drive (1 thread/35 teeth, 20 deg_lead)]
[chain_hoist {0.5x1.34 in_chain, 15.6 in_dia_drum]

Alternative 3(S):  [electric_motor (110362, 3450 rpm, 2 hp)] [hydraulic_drive (gear_pump (3450
rem, 125 psi, 24 gpmy), hydraulic_cylinder (4.4 in_bore, 2.18 in_rod, 40.2
f/min, 16 ft_stroke))]

Alternative 4(Sy.  [electric_motor (110362, 3450 rpm, 2 hp)] [hydraulic_drive (gear_pump (3450
rpm, 200 psi, 16.4 gpm), hydraulic_cylinder (5.0 in_bore, 2.25 in_rod, 20.1
ft/min, 8 ft_stroke))] [differential_pulley (2:1, 8x19-0.5 in_rope, 22
in_dia_pulley, 0.27 in_groove-radiugroove-radius)]s))

Alternative 5(S):  [electric_motor (110362, 345G rpm, 2 hp)] [pneumatic_drive (vane_pump
(3450 rpm, 80 psi, 34.4 gpm}, pneumatic_cylinder (5.0 in_baore, 2.0 in_rod,
40.2 ft/min, 16 ft_stroke)]

Alternative 6(S):  [electric_motor (110362, 3450 rpm, 2 hp)] [pneumatic_drive (vane_pump
(3450 rpm, 100 psi, 26.2 gpm), pneumatic_cylinder (6.0 in_bore, 2.0 in_rod,
20.1 ft/min, 8 ft_stroke))] [differential_pulley (2:1, 8x19-0.5 in_rope, 22
in_dia_pulley, 0.27 in_groove-radius)]

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-21: Pruned search tree after expanding the first leaf-node
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Files Edit Run Compile Options Setup

Alternative 7(S): [electric_motor (110362, 3450 rpm, 2 hp)] [helical_gear_drive {14/24

teeth, 20 deg_helix)] [worm_gear_drive (1 thread/25 testh, 15
deg_lead)] [rack_{.pinion_drive (16.0 ft_rack, 306 teeth_rack, 0.63
in_c.pitch, 34 teeth_pinion, 5 d.pitch)

Alternative 8(S): [electric_motor (110362, 3450 rpm, 2 hp)] [bevel_gear_drive {14/140

teeth, 6/84 deg_pitch)] [helical_gear_drive (14/154 teeth, 15 deg_helix))
{f.rack_pinion_drive (16.0 ft_rack, 192 teeth_rack, 1.0 in_c.pitch, 21
taeth_pinion, 3 d.pitch]

Alternative 9(S): [electric_motor (110362, 3450 rpm, 2 hp)] [spur_gear_drive (20/96 teeth,

10 d.pitch)] [power_screw_drive (2.25-0.33p-0.67L-Acme)]

Alternative 10(S): felectric_motor (110362, 3450 rpm, 2 hp)] [helical_gear_drive (15/108

teeth, 15 deg_helix}] [power_screw_drive (2.5-0.33p-1.00L-Acme)]

Alternative 11{S): {electric_motor (110362, 3450 mpm, 2 hp)] (worm_gear_drive (2thread/15

teeth, 20 deg_lead)) [power_screw_drive (2.5-0.33p-1.00L-Acme)]

Alternative 12(S): [electric_motor (110362, 3450 rpm, 2 hp)] [bevel_gear_drive (25/120

teeth, 12/78 deg_pitch)] [power_screw_drive (2.25-0.33p-0.67L-Acme)]

Alternative 13(S): [electric_motor (110362, 3450 rpm, 2 hp)] [belt_drive (A50, 2.5/12

in_p.dia)] [power_screw_drive {2.75-0.33p-0.67L-Acme)]

Alternative 14(S): [electric_motor (110362, 3450 mpm, 2 hp)] {chain_drive (60, 65 in_chain,

0.75 in_pitch, 10/72 teeth_sprocket)] [power_screw_drive (2.5-0.33p-
1.00L-Acme})]

End Panel

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-21 (continued)

In its components-database, Conceptual Designer found only one component capable
of performing this functions, namely the "proximity_switch (923AA2XM_A7T_L)"
(MICRO SWITCH Catalog). The component was added to the above node and (later
on) to all nodes for which the function "sense position" was being explored.
Exploration of the proximity-switch cell revealed that, in addition to the task for
which it was selected (senseing the position), it could perform the function "switch
on/off" by sending a signal to the respective device. Hence functions 5 and 6 were
removed from the requirements list of the above-mentioned nodes. For these nodes,
the "remaining functions" list now began with "stop_motion (2 hp, <3450 rpm>,
<0.67 ft/sec>)".

For those pariial designs with output speeds equal to half of the desired speed (c.g.
alternatives 2 and 4 in Figure 6-17 and alternative 2 in Figure 6-18) the expansion of
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the node resulted in the selection of a differential pulley, as it was the only
component in the database capable of adjusting linear motion. A differential pulley
with aratio of 2:1 (i.e. doubling the displacement and hence the speed of the elevator
box) was added to these alternatives (Figure 6-22).

[electric_motor (110362)] [hydraulic_drive (gear_pump (3450 rpm, 200 psi,
16.4 gpm), hydraulic_cylinder (5.0 in_bore, 2.25 in_rod, 20.1 ft/min, 8
ft_stroke))] [differential_pulley (2:1, 8x19-0.5 in_rope, 22 in_dia_pulley, 0.27
in_groove-radius)]

[electric_motor (110362)] [hydravlic_drive (vane_pump (3450 rpm, 175 psi,
14 gpm), hydraulic_cylinder (5.0 in_bore, 2.8 in_rod, 20.1 ft/min, 8 ft_stroke))]
[differential_pulley (2:1, 8x19-0.5 in_rope, 22 in_dia_pulley, 0.27 in_groove-
radius)]

[electric_motor (110362)] [pneumatic_drive (vane_pump (3450 rpm, 100 psi,
26.2 gpm), pneumatic_cylinder (6.0 in_bore, 2.0 in_rod, 20.1 ft/min, 8
fi_stroke))] [differential_pulley (2:1, 8x19-0.5 in_rope, 22 in_dia_pulley, 0.27
in_groove-radius)]

-----------------------------------------------------

Figure 6-22: Typical partial designs with half-stroke hydraulic/pneumatic drives

Note that at this stage, the partial designs just mentioned were "two functions behind"
the others (i.e. the ones already containing a proximity switch). While the latter
nodes covered functions 1 through 6, the former group only covered up to function
4. One could therefore expect that not all branches of the search tree would reach the
goal stage (performing all required functions) at the same time.

For convenience, we shall now divide the partial designs generated thus far into four
groups and, in the rest of this section, shall refer to each group by its number. A
partial design may or may not contain a half-stroke hydraulic/pneumatic drive and
a differential pulley. Also, it may or may not already contain a "locking” element
(e.g. a brake-motor, a worm-gear drive and a power-screw drive). We shall refer to
those designs containing a half-stroke drive and no locking elements as “group 1"
designs and to those with the same drive and a locking element as “group 2" designs.
Designs that contain neither a half-stroke drive nor a locking element are referred to
as "group 3" designs and those without a half-stroke drive but with a locking element
as "group 4" designs.
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LEVEL 3, ALL ALTERNATIVES

Proceeding to the next level of the tree, the four groups of designs mentioned above
were treated as follows.

For "group 1" and “group 2" partial designs the next function was "sense_position".
A mapping of this function resulted in the addition of a proximity switch (similar to
the one selected before) to the corresponding designs.

For "group 3" partial designs the next function to consider was "stop_motion (2 hp,
<3450 rpm>, <0.67 ft/sec>)". Conceptual Designer found one component to carry
this out, namely a disk brake [disk_brake (2 hp, 3.0 Ib_ft_torque, 8.0 in_dia_disk)].
The component was then added to corresponding partial designs.

As for "group 4" partial des as, the next function was function 8
(measure_acceleration). Function 8 is part of a batch of three functions (functions
8 through 10 in Figure 6-2) meant as a safety precaution against the possible "free
drop" of the elevator box. To avoid this worst scenario, the acceleration of the box
would be continually monitored and if it equalled that of the gravity, a "grabbing"
mechanism would stop the box from falling.

For function 8 (measure acceleration), Conceptual Designer found a single
component (accelerometer AX-535-502) (Motion Control Catalog)] with a sensing
range of 0.03 g - 20.0 g. As in the case of the proximity switch, the accelerometer
could also switch off the electromotor (function 9) by sending it a signal. Therefore,

for this group of partial designs, the list of "remaining" functions shrank to one
function: “grab the box".

LEVEL 4, ALL ALTERNATIVES

Proceeding to yet the next level of the search tree, the system mapped the function
"stop_motion" for "group 1" designs and augmented these nodes with a disk-brake
similar to the one previously added to “group 3" designs.

For "group 2" and "group 3" designs the next function was "measure-acceleration”.
Again, the same accelerometer (AX-535-502) was added to the partial designs of
these two groups.

The next group of designs to consider was "group 4", for which the system now had
to map function "grab" (the elevator box). Conceptual Designer found no
components to carry out this function and therefore issued a failure message. No
precautions had been made to rid the system from this impass.

This situation underscores one of the main characteristics of the Conceptual
Designer: that it designs through mapping of given functions to the components
present in its database. If such a mapping cannot be performed, either because the
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function is not a Standard Elemental Function (Chapter 1) or because no component
in the database can carry it out, the system will terminate the design process and issue
a failure message.

The last group of functions (functions 8 to 10) was intentionally included in the
problem to highlight this characteristic of the model. This being done, and our
purpose in this chapter being to demonstrate the functioning of the DbE model rather
than actually designing a particular machine, we then modified the original problem
to exclude function 8 to 10, and undid any steps Conceptual Designer had made to
carry out those functions. This implied the removal of the accelerometer from "group
2" and "group 3" designs.

- Faced with the modified problem, Conceptual Designer continued the solution

process by checking all 35 partial design alternatives left on the blackboard after
undoing the implications of functions 8 to 10. None of the remaining alternatives
met the pruning criterion, hence they were all saved on the structural representation
panel, although their number exceeded 20.
The system then examined the functional description of each design and compared
it with the original requirements. All designs were found to have satisfied the entire
set of functional requirements. They were therefore marked “complete” and
presented as final solutions. Each of the 35 final solutions is shown in a separate
window in Figure 6-23 at the end of this chapter. For visvalization purposes, we
have added a simple sketch to each alternative.

Navigating through the steps that took the system from the initial state of the
problem to its goal state, one realizes the importance of the assertions that form the
foundation of the DbE model. First of all, we notice that the wha'~ process is based on a
series of careful mappings of the elemental functions to physical components, The mappings
are not necessarily one-to-one. Some functions (e.g. adjust-speed) have been mapped to
more than one component and some components (e.g. a gear-motor) contribute to more than
a single function.

Exploration of the candidate components before each mapping is central to the
functioning of the model. If, for example, the function "linearize-motion" had been directly
mapped to the component “cable-hoist" without the constraint set of the component being
explored, the system would not have become aware of the conflicting constraints and would
have prescribed that the hoist be directly connected to a 3450 rpm electromotor. Or if the
system had not studied the functional behavior of the brake-motor to learn about its
secondary function "stop-rotational-motion” while choosing it for the function "supply-
motion", it would unnecessarily have used an additional brake to carry out the former
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function.

The other fundamental "axiom" of DbE states that only by considering all (partial)
alternatives can one guarantee the system’s arival at the optimal solution. A best-first search
strategy is likely to be deluded into selecting a sub-optimal or even infeasible path, just
because at some point along the path there is a node which dominates its fellow nodes at its
level. For example, if at the first level of the search tree the system had chosen the option
"electromotor” over the other options (brake-motor and gear-motor) because it costs the least,
it could have missed the optimal final solution, possibly among the final designs containing
a brake- or gear-motor.

As discussed earlier, a selection module (based on a given optimization criterion)
can be added to the program to evaluate each final alternative and choose the optimal one(s).

This, however, would require detailed information about those aspects of the design on
which the optimization criterion is based.

In practice, many of the commonly used criteria (e.g. cost, manufacturability,
dimensions and weight) revolve around the structural specifications of the designs. We also
note that conceptual design, by definition, is not expected to determine these characteristics,
as its job is to decide the major, function-defining components only. For instance, if the
desired function is to adjust a rotational speed, conceptual design may suggest a gear-drive
and/or a V-belt-drive, but will normally not mention the shafts and bearings required to
support them.

This makes the traditional selection (optimization) task virtually impossible in this
case. Nonetheless, Conceptual Designer is prepared to carry out the optimization process
should the user decide to settle for a criterion based only on the major components of a
design (such as cost/weight/manufacturability of major components). As an example of this,
in the current example we made the program generate a simple “comparison table" based on

the number of major components in each final design. The table is shown in Figure 6-24,
with "design numbers" referring to those in Figure 6-23.

6-9 COMPARISON OF RESULTS WITH THOSE OF HUMAN DESIGNERS
As mentioned earlier, the elevator design problem considered here was also
assigned to two groups of senior undergraduate students of mechanical engineering. In this
section we shall briefly present the design ideas generated by these groups, and then make
a comparison between those ideas and the ones generated by the conceptual designer while
highlighting some of the more important similarities and differences between the two.
Figures 6-25 and 6-26 schematically represent the ideas generated by the two

student groups. An asterisk (*) to the left of a schematic caption indicates the alternative of
choice by the group.
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Design Number 121314 |56 |7 (8|9 |10]11(12]13
Number of Major 6|16|5|615]|616|6]|4 (4 |4 |4 |3
Components

Design Number 14 1516 |17 |18 119 (20|21 |22 |23 |24
Number of Major 4 |5 |5 |4 |5 |4 [5]5 |5 |4 [4
Components

Design Number 25 (26 (2712829 (30|31 [32]33}34}35
Number of Major 4 |4 |4 14 |4 (4 |5 |6 |5 |4 |4
Components

Figure 6-24: Number of major components in each of the final design alternatives

A quick comparison of the ideas presented in these two figures with those presented
in Figure 6-23 shows that except for schematics (6-25-f / 6-26-f) and (6-26-b), all the other
basic designs by the student groups are also generated by the Conceptual Designer (C.D.).

Regarding the two exceptions, the first one (a scissors mechanism) had not been
included in the system’s components database or otherwise the system would have chosen
it for its function "amplify displacement”, just as it chose a differential pulley for the same
purpose, and therefore would have come up with the very same design as well.

As for the second exception (DC motor and cable pulley), the system did initially
choose a DC motor, but as we mentioned earlier, this option was later rejected on the basis
of enviroment considerations, that is, due to the fact that direct current is normally not
available in residential buildings.

The above comparison supports the following proclamations that we have made in
this work:

- Based on the DbE model, the C.D. is capable of generating a set of design ideas
(conceptual design iustances) comparable to, and often richer than, those produced
by human designers.

- Indoing so, it thoroughly relies on the information embedded in its knowledge- and
data-bases. C.D. cannot "improvise" in unprecedented situations, nor can it suggest
components that are not contained in its components database. The richer its
knowledge sources, the more design concepts it will be able to generate.
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Both "domain-expertise” and "experience” can, to a certain extent, be encapsulated
and incorporated in automated design systems. In the current example, the student
groups benefited from the expertise and experience of elevator designers through
consulting certain companies and examining existing elevator configurations. C.D.,
on the other hand, relied solely on its experts modules both in generating raw design
ideas and in evaluating and screening those ideas. If we adopted the popular
definition of Artificial Intelligence, i.e. "the study of how to make computers do
things at which, at the moment, people are better" (Rich 1991), we could certainly
claim that C.D. demonstrates some degree of Al

Generally, the information generated by C.D. is not enough for design optimization
in a practical sense. That is, one cannot apply common optimality critera such as
weight, cost, etc. to design alternatives as presented by the C.D. This is quite natural,
as C.D.’s only commitment is to find embodiments (configurations of physical
elements) for the specified functions, and very often this does not lead to a detailed
design wherein the cost, weight and other characteristics of the entire design can be
determined and used as a measure of desirability of the design. Consequently, unlike
the student groups, Conceptual Designer did not attempt to choose a single design as
the optimal one. Had the necessary information been initially specified, or the
optimality criteria been based only on the factors that could be measured in the
products of C.D., the system could have easily carried out the optimization.
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Figure 6-25; Student-group design ideas for the elevator - first group.  a) hydraulic cylinder with
differential pulley b) cable pulley ¢) cable pulley-details
d) power- screw e} hydraulic cylinder f) scissors mechanism
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Figure 6-26: Student-group design ideas for the elevator - second group.  a) rack and pinion
b) DC motor and cable pulley ¢) AC winch d) power screw
¢} hydraulic cylinder f) scissors mechanism
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Files Edit Run Compile Options Setup
* STRUCTURAL REPRESENTATION PANEL *
[Elevator, Fina! Design Alternatives]
Alternative 1(S):  [electric_motor (110362, 3450 rpm, 2 hp)] (helical_gear_drive (12/144 teeth,
30 deg_helix)] [worm_gear_drive (1 thread/38 teeth, 20 deg_lead)]

[cable_hoist {8x19-0.5 in_rope, 20.3 in_dia_drum)] [proximity_switch
(923AA2XM_ATT_L)] [disk_brake (2 hp, 3.0 Ib_ft_torque, 8.0 in_dia_disk)]

¢
T
1

F2.Save [F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Finat design alternatives
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Files Edit Run Compile Options Setup
Allernative 2(S): [electric_motor (110362, 3450 rpm, 2 hp)] [helical_gear_drive (14/140
teeth, 30 deg_helix)] [worm_gear_drive (1 thread/35 teeth, 20 deg_lead))

[chain_hoist (0.5x1.34 in_chain, 15.6 in_dia_drum)) [proximity_switch
(923AA2XM_AT7T_L)] [disk_brake {2 hp, 3.0 [b_ft_torque, 8.0 in_dia_disk))

1’-1-’-:_—« o il
=1

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files

Alternative 3{S}).

F2-Save

Edit Run Compile Options Setup

[electric_motor (110362, 3450 rpm, 2 hp)] [hydraulic_drive (gear_pump
{3450 rpm, 125 psi, 24 gpm), hydraulic_cylinder (4.4 in_bore, 2.18 in_rod,
40.2 ft/min, 16 ft_stroke))] [proximity_switch (923AA2XM_A7T_L)]
[disk_brake (2 hp, 3.0 Ib_ft_torque, 8.0 in_dia_disk)]

F3-Load

F6-Switch

F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files

Alternative 4(S);

F2-Save

Edit Run - Compile Options Setup

[electric_motor (110362, 3450 rpm, 2 hp)] [hydraulic_drive (gear_pump
(3450 rpm, 200 psi, 16.4 gpm), hydraulic_cylinder (5.0 in_bore, 2.25
in_rod, 20.1 f/min, 8 fi_stroke}))] [differential_pulley (2:1, 8x18-0.5 in_rope,
22  in_dia_pulley, 0.27 in_groove-radius)}  [proximity_swilch
(923AA2XM_A7T_L)] [disk_brake (2 hp, 3.0 [b_ft_torque, 8.0 in_dia_disk))

F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 5(S): {electric_motor (110362, 3450 rpm, 2 hp)] [pneumatic_drive {vane_pump
(3450 rpm, 80 psi, 34.4 gpm), pneumatic_cylinder (5.0 in_bore, 2.0 in_rod,
40.2 ft/min, 16 #t_stroke))] [proximity_switch (923AA2XM_A7T_L)]
[disk_brake (2 hp, 3.0 Ib_ft_torque, 8.0 in_dia_disk)]

N

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23; Final design alternatives (Continued)
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Files

Alternative 6(S):

F2-Save

Edit Run Compile

Options Setup

lelectric_motor (110362, 3450 rpm, 2 hp)] [pneumatic_drive {(vane_pump
{3450 rpm, 100 psi, 26.2 gpm), pneumatic_cylinder (6.0 in_bore, 2.0
in_rod, 20.1 f/min, 8 fi_stroke))] [differential_pulley (2:1, 8x19-0.5 in_rope,
22 in_dia_pulley, 0.27 in_groove-radius)] [proximity_switch
(923AA2XM_AT7T_L)] [disk_brake (2 hp, 3.0 Ib_tt_torque, 8.0 in_dia_disk)]

F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Conlinued)
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Files Edit Run Compile Options Setup

Alternative 7(S): [electric_motor (110362, 3450 rpm, 2 hp)] (helical_gear_drive {14/84 teeth,
20 deg_helix)] [worm_gear_drive (1 thread/25 teeth, 15 deg_lead))
[rack_f.pinion_drive (16.0 ft_rack, 306 teeth_rack, 0.63 in_c.pitch, 34
teeth_pinion, 5 d.pitch] [proximity_switch (923AA2XM_A7T_L)] [disk_brake
(2 hp, 3.0 Ib_ft_torque, 8.0 in_dia_disk)]

—
I
ey

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 8(S): [electric_motor (110362, 3450 rpm, 2 hp)] [bevel_gear_drive (14/140 teeth,
6/84 deg_pitch)] [helical_gear_drive (14/154 teeth, 15 deg_helix)]
(f.rack_pinion_drive (16.0 ft_rack, 192 teeth_rack, 1.0 in_c.pitch, 21
teeth_pinion, 3 d.pitch] [proximity_switch (923AA2XM_A7T_L)] [disk_brake
(2 hp, 3.0 Ib_ft_torque, B.0 in_dia_disk)]

R

A A AN ol

F2-Save F3-Load F6-Switch FS-Compile Alt-X-Exit

Figure 6-23: Final design alternatives {Continued)



Files

Allernative 9(S):

F2-Save

Edit Run Compile Options Setup

[electric_motor (110362, 3450 rpm, 2 hp}] [spur_gear_drive (20/96 teeth,
10 d.pitch)] [power_screw_drive (2.25-0.33p-0.67L-Acme)]
{proximity_switch (923AA2XM_A7T_L)]

F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup
Alternative 10(S): {electric_motor (110362, 3450 rpm, 2 hp)] [helical_gear_drive (15/108
teeth, 15 deg_helix)] [power_screw_drive (2.5-0.38p-1.00L-Acme)]
[proximity_switch (923AA2XM_A7T_L)]
’EL‘ ________________ (‘
B
F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives {Continued)
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Files Edit Run Compile Options Setup

Alternative 11(S): [electric_motor (110362, 3450 rpm, 2 hp)] [worm_gear_drive (2thread/15
teeth, 20 deg_lead)] [power_screw_drive (2.5-0.33p-1.00L-Acme}]
[proximity_switch (923AA2XM_A7T_L}]
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F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 12(S): [electric_motor (110362, 3450 rpm, 2 hp)] [bevel_gear_drive (25/120 teeth,

12/78 deg_pitch)) [power_screw_drive (2.25-0.33p-0.67L-Acme))
[proximity_switch (923AA2XM_A7T_L)]

5 & ”
17{;;:”-“” IR
P I, ) I‘ T
L‘::ﬁfr}:liff
F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Alternative 13(S):

Files Edit Run Compile Options Setup

felectric_motor (110362, 3450 rpm, 2 hp)] [belt_drive (A50, 2.5/12
in_p.dia)] [power_screw_drive {2.75-0.33p-0.67L-Acme)] [proximity_switch

(923AA2XM_ATT_L))

: ‘_E’ ---------------- G
F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 14(S): [electric_motor (110362, 3450 rpm, 2 hp)] [chain_drive (60, 65 in_chain,
0.75 in_pitch, 10/72 teeth_sprocket)] [power_screw_drive (2.5-0.33p-
1.00L-Acme)] [proximity_switch (923AA2XM_A7T_L)]
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F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design aliernatives (Continued)
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Files Edit Run Compile Options Setup
Alternative 15(S): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [helical_gear_drive
(12/144 teeth, 30 deg_helix)] [worm_gear_drive (2 thread/38 teeth, 20
deg_lead)] [cable_hoist (8x19-0.5 in_rope, 20.3 in_dia_drum)]
[proximity_switch (923AA2XM_A7T_L})]
11-1
F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 16(8): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [helical_gear_drive
(12120 teeth, 30 deg_helix)] [worm_gear_drive (2 thread/35 teeth, 20
deg_lead)] [chain_hoist (0.5x1.34 in_chain, 15.6 in_dia_drum})
[proximity_switch (923AA2XM_A7T_L)]

frmmm e cacmee.——

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives {Continued)
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Files Edit Run Compile Options Setup
Allernative 17(S): [electric_brake_motor (12052822, 1740 rpm, 2 hp)} [hydraulic_drive
(gear_pump (3450 rpm, 125 psi, 24 gpm), hydraulic_cylinder (4.4 in_bore,
2.18 in_rod, 402 fvmin, 16 ft_stroke))] [proximity_switch
(923AA2XM_ATT_L)]
B E
F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives {Continued)
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Files Edit Run Compile Options Setup

Alternative 18(S): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [hydraulic_drive
(gear_pump (3450 rpm, 200 psi, 16.4 gpm), hydraulic_cylinder (5.0
in_bore, 2.25 in_rod, 20.1 ft/min, 8 ft_stroke))] [differential_pulley (2:1,
8x19-0.5 in_rope, 22 in_dia_pulley, 0.27 in_groove-radius))
[proximity_switch (923AA2XM_A7T_L))
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F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figu. « 6-23: Final design alternatives {Continued)
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Files Edit Run Compile Options Setup

Alternative 19(S): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [pneumatic_drive
(vane_pump (3450 rpm, 80 psi, 34.4 gpm), pneumatic_cylinder (5.0
in_bore, 2.0 in_rod, 40.2 ft/min, 16 fi_stroke})] [proximity_switch
(923AA2XM_ATT_L)]

F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run

Alternative 20(S):

(923AA2XM_ATT_L)]

F2-Save F3-Load F5-Switch

[electric_brake_motor (12052822, 1740 rpm, 2 hp)] [pneumatic_drive
(vane_pump (5450 rpm, 100 psi, 26.2 gpm), pneumatic_cylinder (6.0
in_bore, 2.0 in_rod, 20.1 ft/min, 8 fi_stroke))} (diferential_pulley (2:1, 8x19-
0.5 in_rope, 22 in_dia_pulley, 0.27 in_groove-radius)] {proximity_switch

Compile Options Setup

F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 21(S): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [helical_gear_drive
(16/64 teeth, 20 deg_helix)] [worm_gear_drive (1 thread/19 teeth, 15
deg_lead)] [rack_f.pinion_drive (16.0 fi_rack, 305 teeth_rack, 0.63
in_c.pitch, 34  teeth_pinion, 5  d.pitch] [proximity_switch
(923AA2XM_ATT_L))

F2-Save F3-Load F6-Switch F9-Compile Ali-X-Exit

Figure 6-23: Final design alternatives {(Continued)
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Files Edit Run Compile Options Setup

Alternative 22(8): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [beve!_gear_drive
(14/70 teeth, 6/84 deg_pitch)] [helical_gear_drive (14/154 teeth, 15
deg_helix)] [f.rack_pinion_drive (16.0 ft_rack, 246 teeth_rack, 0.78
in_c.pitch, 20  teeth_pinion, 4  d.pitch] [proximity_switch
(923AA2XM_ATT_L}Y]

F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files

Alternative 23(8): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [spur_gear_drive
(15/36 teeth, 10 d.pitch)] [power_screw_drive (2.5-0,33p-1.00L-Acme)]
{proximity_switch (923AA2XM_A7T_L}]
: ooty — |
F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Edit Run Compile Options Setup

Figure 6-23: Final design alternatives {Continued)



Files Edit Run Compile Options Setup

Alternative 24(S): [electric_brake_motor (12052822, 1740 rpm, 2 hp)j [helical_gear_drive
(20/144 teeth, 15 deg_helix)} [power_screw_drive (2.5-0.33p-1.00L-Acme)]
[proximity_switch (923AA2XM_AT7T_L)]

. —

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 25(S). (electric_brake_motor (12052822, 1740 rpm, 2 hp)] [worm_gear_drive (5
thread/19 teeth, 20 deg_lead)] [power_screw_drive (2.75-0.33p-0.67L-
Acme)] [proximity_switch (923AAZXM_A7T_L)}

———————————————————

bl

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Allernative 26(S): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [bevel_gear_drive
(20748 teeth, 12/78 deg_pitch)) [power_screw_drive (2.25-0.33p-0.67L-
Acme)] [proximity_switch (923AA2XM_A7T_L}]

TR T T R T
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7
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F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 27(S): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [belt_drive (ASE6, 5/12
in_p.dia}] [power_screw_drive (2.75-0.33p-0.67L-Acme)] [proximity_switch
(923AA2XM_AT7T_L)]

i
S -
F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design aliernatives (Continued)
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Files Edit Run Compile Options Setup
Alternative 28(S): [electric_brake_motor (12052822, 1740 rpm, 2 hp)] [chain_drive (60, 62
in_chain, 0.75 in_pilch, 15/54 teeth_sprocket)] [power_screw_drive (2.25-
0.33p-1.00L-Acme)] [proximity_switch (923AA2XM_A7T_L))
B
[ S“Sl“l'lﬂvlllb
F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 29(S): [electric_gear_motor (2ETB216800, 7.5 rpm, 2 hp)] [cable_hoist (8x19-0.5
in_rope, 20.2 in_dia_drum)] [proximity_switch (S23AA2XM_A7T_L}))
[di#k_brake (2 hp, 3.0 Ib_ft_torque, 8.0 in_dia_disk)]

F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 30(S): [electric_gear_motor (2ETB214000, 9 rpm, 2 hp} [chain_hoist (0.5x1.34
in_chain, 16.1 in_dia_drum}] [proximity_switch (923AA2XM_ATT_L}]
[disk_brake (2 hp, 3.0 Ib_ft_torque, 8.0 in_dia_disk}]

F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 31{S): [electric_gear_motor (2ADBL2450, 280 rpm, 2 hp)] [hydraulic_drive
{gear_pump (280 rpm, 100 psi, 34.3 gpm), hydraulic_cylinder (5.0 in_bore,
20 in_rod, 402 f{Y/min, 16 ft_stroke))] [proximity_switch
(923AA2XM_ATT_L)] [disk_brake (2 hp, 3.0 |b_ft_torque, 8.0 in_dia_disk)]

- e o ————

F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files

Alternative 32(S):

F2-Save

F3-Load

Edit Run Compile

Options Setup

[electric_gear_motor (2ADBL2450, 280 rpm, 2 hp)] {hydraulic_drive
{gear_pump (280 rpm, 150 psi, 17.2 gpm), hydraulic_cylinder (5.0 in_bore,
2.0 in_rod, 20.1 {/min, 8 ft_stroke))} [ditferential_pultey (2:1, 8x19-0.5
in_rope, 22 in_dia_pulley, 0.27 in_groove-radius)] [proximity_switch
(923AA2XM_ATT_L)) [disk_brake (2 hp, 3.0 ib_tt_torque, 8.0 in_dia_disk}]

F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 33(S): {electric_gear_motor (2ADBL2450, 280 rpm, 2 hp)] [pneumatic_drive
(vane_pump (280 rpm, 100 psi, 25.3 gpm), pneumatic_cylinder (4.5
in_bore, 2.2 in_rod, 40.2 fYmin, 16 ft_stroke))] [proximity_switch
(923AA2XM_AT7T_L)] [disk_brake (2 hp, 3.0 ib_ft_torque, 8.0 in_dia_disk)]

===
i

1

@
I

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 34(5): [electric_gear_motor (2CTB24200, 30 rpm, 2 hp)] [f.rack_pinion_drive
(16.0 t_rack, 246 teeth_rack, 0.78 in_g.pitch, 20 teath_pinion, 4 d.pitch}
[proximity_switch (923AA2XM_A7T_L)] [disk_brake {2 hp, 3.0 1b_{t_torque,
8.0 in_dia_disk))

................................

F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Continued)
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Files Edit Run Compile Options Setup

Alternative 35(S): {electric_gear_motor (2ADBL2450, 280 rpm, 2 hp)] [spur_gear_drive
(15/36 teeth, 10 d.pitch)] [power_screw_drive (2.5-0,33p-1.00L-Acme)]
[proximity_switch (923AA2XM_A7T_L)]

Lo [N

End Panel
F2-Save  F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure 6-23: Final design alternatives (Concluded)
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CHAPTER 7
SUMMARY AND CONCLUSIONS

In this chapter we present the essence of the research reported here and the
foundations on which it has been built. We shall not, however, go into details of the points
outlined here, as they have been elaborated in the body of the work.

We started off by distinguishing between design and design methodology, and
described the latter as the answer to the question "how to design” (that is, how the design
process does, or should, take place) rather than "what to design". We then discussed the
major paradigms intended to set forth the basic steps of the design process in general.

Having recognized the main stages of the mechanical design process as functional-,
conceptual- and parametric-design, we then explained how well each stage has so far been
explored and discussed some of the complications that have impeded a thorough
understanding and computer-implementation (automation) of the entire process.

We asserted that the process of mechanical design in its entirety may not be
automated until, for each and every stage of the process, a formal model is developed that
would suggest a clear, logical and realistic scheme for implementing that stage, and that
could be implemented in computer code.

This assertion plus the observation that by far only the third stage of the mechanical
design process (i.c. parametric design} has been fairly well modelled and implemented made
us realize the importance and urgency of developing computer-based models for conceptual-
and functional-design stages.

Of these two stages mentioned above, conceptual design was the logical choice at
this time because:

- The stage was bounded from below by the well-established parametric design,
meaning that we knew the expectations and implications of the following stage on
the current one (e.g. the need for parametric consistency), and we would be able to
exploit this knowledge to avoid post-development inconsistencies between the two
stages. Furthermore, there was an overlap between the two stages, as they were both
concerned with the examination of the components’ constraint sets, And

- Conceptual design seemed implementable with the existing computer technology,
whereas functional design, because of its highly abstract nature, was, and stil] is,
beyond the reach of existing Al technology.

A survey of the literature on computer-based models of mechanical conceptual
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design showed that the very few models proposed in recent years either are highly case-

dependent or are still at a theoretical leve! and lack a practical implementation scheme. This

motivated us to focus on the development and computer implementation of a model that can
be applied to a relatively large class of mechanical systems.

In this work, we have presented a computer-based model for mechanical conceptual
design called Decign by Exploration. The model builds on three main assertions, viz.

1. Mechanical systems can be conceptually designed through a stepwise transformation
of their functional description to structural description, provided that the former is
expressed in terms of a set of standard functions, and that those functions can be
mapped, individually or collectively, onto existing physical components.

2. A blind, one-to-one mapping of functions to physical components will result in poor
or even infeasible designs. Each mapping should be supported by an exploration of
the component’s functional behavior. The constraint set of the component must be
solved before its contribution to the overall functioning of the system can be fully
determined.

3. A best-first search of the solution space i5 likely to result in the loss of the optimum
design and/or some of the feasible designs. Wherever possible, all design
alternatives should be considered so that the system could generate more design ideas
and preserve them for a final selection stage.

Design by Exploration has been implemented in the context of Conceprual
Designer, a design environment which would allow the user to introduce a design problem
in terms of its desired functions plus any applicable qualitative/quantitative constraints, and
obtain a number (2 1) of feasible solutions to the problem simultaneously.

We acknowledge the fact that the function of a mechanical system is affected, one
way or another, by the environment that surrounds it, and that in the assessment of the
"feasibility" and "goodness" of a system, one should consider the entire lifecycle of the
system as well as its environment. This acknowledgement obliges us to take into account
not only the specified functional requirements but also the implications of other lifecycle
objectives (such as manufacturability, cost, etc.) as well as the environment.

To accommodate this, Conceptual Designer has been designed based on a
blackboard paradigm of problem solving. The paradigm allows multiple expert modules,
representing various lifecycle objectives and the environment, to contribute to the design
process. This enables the exploilation of the expert knowledge of experienced designers in
an automated design system; a feature that most such design systems lack.

Earlier we mentioned "universality" or "domain-independence" as an important
characteristic of a good design system. To implement this in Conceptual Designer, we have
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employed such universal (domain-independent) computational techniques as the Genetic
Algorithms to make it possible for the system to handle problems of virtually any initial
specifications with minimum or no need for user intervention.

Nevertheless, one should bear in mind that neither Design by Exploration nor its
implementation, the Conceptual Designer, are meant as stand-alone entities. They form a
middle link in the three-link chain of mechanical design which only collectively can perform
the design process in its entirety. DbE relies heavily on the information generated at the
Functional Design stage, and in turn produces the essential information for the next stage,
i.e. Parametric Design.

The instantiation scheme developed as part of the DbE's exploration stage can also
be regarded as a universal parametric-design scheme and can be implemented into a separate
package. Whenever required, we have articulated our reasons for choosing the
computational and search techniques that we have employed in this scheme. The reader
should note that the implementation scheme presented in this work is only one, possibly out
of several, ways to implement the proposed model. Whereas we believe that it is a robust
scheme, we do not rule out the possibility of other schemes being developed now or with the
emergence of new computational techniques.

The DbE model has been successfully applied to the design of several systems/sub-
systems, including the one presented in Chapter 6. However, there are, of necessity,
limitations to its capabilities and the type of problems it can solve. These limitations have
been highlighted in previous Chapters, especially in Chapters 5 and 6. It is our future goal
to try to overcome these limitations and to develop a greater computer system for carrying
out the entire process of mechanical design.

To summarize, the main contributions of this thesis are as follows:

1. A computer-based model of mechanical conceptual design has been proposed which,
unlike some of the existing models, is not inspired by the models of electrical- or
software engineering, and hence can be applied to mechanical design problems more
accurately and efficiently. The model is superior to the existing models in three
major ways:

a. It prescribes the "instantiation” of the selected components during the function-
to-embodiment transformation rather than after it’s completion. This will allow
the specific characteristics of mechanical elements (such as multifunctionality
and form-function relations) to be taken into consideration in the design
process and will therefore result in more feasible and more realistic solutions.

b.  Itprescribes the preservation of virtually all feasible solutions generated at cach
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stage of the process (as opposed to a best-first strategy) and thus greatly
decreases the chance of the optimal solution being lost or overlooked.

c. It allows for the consideration of constraints (both "initially specified" and
"system generated") in addition to the functional requirements, and therefore
can be applied to real-world problems.

2. A comprehensive implementation scheme for the proposed model has been
developed which is virtually user-independent and insensitive to the case (the product
to be designed) and the initial specifications of the problem. It also accommodates
the notion of concurrent design, that is, the implications of the product’s various
lifecycle objectives and the environment are taken into account in the design process.
The scheme has been, for the most part, implemented in code and successfully tested
on a variety of problems.

3. A new approach to parametric design has been presented based on the use of Genetic
Algorithms. The use of GAs enables the system to process numerical and certain
non-numerical constraints simultaneously. The presented approach is superior to the
calculus-based "constraint management" approaches in that, among other things, it
does not require knowledge of mathematical nature of the constraints (e.g. continuity
and differentiability).

The development of so-called intelligent systems that can possibly replace human
designers or even accurately mimic them in their design activities is still far from reality. We
do not claim, nor have we ever claimed, that we have achieved this goal with the research
presented here. However, we believe that with this work we have achieved a better
understanding of the nature of this highly intelligent activity of human mind and have
contributed to the development of systems that will reduce the burden of routine design so
that designers can devote their creativity to more challenging tasks. This by itself is an
ambitious goal one cannot leap to, and has to be approached incrementally. The current
research is one step towards this goal.
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GLOSSARY

The following is an alphabetical glossary of the major terms that recur throughout this
work. The definition of each term is followed by a reference to where it is first articulated
in the text.

Blackboard Model: A general model of problem solving based on the cooperation of
multiple domain experts that can simultancously access/affect a
common representation of a design problem (Sec. 4.3).

Chromosome: A (binary) string of specified length representing the encoded values
of a certain number of design variables of a search/optimization
problem (Sec. 5.2.5.1).

Conceptual Design: The middle stage of the mechanical design process wherein the
standard functional description of a product is transformed to a
generic structural description and thus a configuration of components
is specified which will carry out the specified function(s) (Sec. 1.4).

Concurrent Design: The process of mechanical design in which requirements and
implications of various stages of a product’s lifecycle are considered
concurrently rather than sequentially (Sec. 1.4).

Crossover: Random, partial swapping of two mating chromosomes for the
purpose of producing new ones (Sec. 5.2.5.1).

(Element) Knowledge

Cell: A component-specific database unit containing the component’s design
equations and constraints as well as other design-related information (Sec.
.

(Element) Knowledge

pool: Combination of all the constraints applicable to a component plus any
other given information (e.g. initial specifications) (Sec. 3.2.3).
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Evaluation
Knowledge-Source:

Expert Module/
Knowledge Source:

Exploration
Knowledge-Source.

External Constraints:

Fitness:

Funcrional Design:

Function Block
Diagram (FBD):

The third of the four "generating” knowledge-sources of the
Conceptual Designer’s blackboard architecture, in charge of
determining the contribution of the explored candidate components
to the satisfaction of the overall requirements of a problem (Sec.
4.4.2).

Each of several domain-expert subroutines in a blackboard model,
each watching and possibly modifying partial designs as they develop
(Sec. 4.3).

The second of the four "generating" knowledge-sources of the
Conceptual Designer’s blackboard architecture; in charge of
evaluating and solving the constraint sets of the candidate
components (Sec. 4.4.2).

Qualitative/quantitative  constraints included in the initial
requirements of a design problem (Sec. 3.2.1).

The value of the objective (fitness) function for the variables
represented by a particular chromosome, representing the goodness
of that chromosome (Sec. 5.2.5.1).

The early stage of the mechanical design process wherein the overall,
abstract function of a product is refined and expressed in terms of
standard functions (Sec. 1.4).

A structured graphical representation of the function(s) of a
mechanical  system consisting of a set of nodes (functions) and
arcs (relations) (Sec. 1.9).
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Genetic Algorithms:

Incidence Matrix
{of an Equation Set):

Instantiation:

Internal Constraints:

Muration:

Nomination

Knowledge-Source:

Parametric Design:

Partitioning (the
Incidence Matrix
of an Equation Set):

Population Size:

A gencral purpose scarch/optimization method based on the
principles of natural genetics and survival of the fittest (Sec. 5.2.5.1.

The incidence matrix [a,] of a sct of p equations in ¢ variables ix a
p X g matrix in which a,= 1 if variable j appears in equation J, and
a,= 0 otherwise (Sec. 5.2.2).

The process of finding a number of feasible instances of a selected
component by solving its constraint set for given specifications (Sec.
3.1).

Equality/inequality constraints initially contained in a component’s
knowledge-cell, including its design equations (Sec. 3.2.1).

Occasional changing of a randomly selected bit in a chromosome
from O to 1 or vice versa (Sec. 5.2.5.1).

The first of the four "generating” knowledge-sources of the
Conceptual Designer's blackboard architecture; in charge of finding
qualified candidate components (i.e. the ones that can carry out one
or more of the desired, specified functions) (Sec. 4.4.2).

The last stage of the mechanical design process wherein the values of
the function- and form-defining parameters of every component in the
above configuration are determined (Sec. 1.4).

Rearranging the incidence matrix into a block-triangular form so that
each block on the main diagonal would represent an irreducible
subset of equations to be solved simultaneously (Sec. 5.2.5.4).

The (fixed) number of chromosomes processed in cuch iteration of
the GA (generation) (Sec. 5.2.5.1).
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Reproduction:

Standard Elemental
Functions (SEFs):

System Constraints:

Variable Matching:

Verification
Knowledge-Source:

The process of producing new, generally better, chromosomes by
applying genetic operators to existing ones (Sec. 5.2.5.1).

A set of standard, supposedly universal mechanical functions used as
a vocabulary to express the higher-level functions of
mechanical systems (Sec. 1.9.1).

Constraints generated by the design program to reflect the
implications of selecting a particular component (Sec. 3.2.1).

Setting up a one-to-one assignment between each equation in an

equation set and a variable in that equation (Sec. 5.2.2).

The fourth of the four "generating" knowledge-sources of the
Conceptual Designer’s blackboard architecture; in charge of verifying
the validity of each generated (partial) design (Sec. 4.4.2).
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APPENDIX A

A DIRECTORY OF THE STANDARD ELEMENTAL FUNCTIONS

The following is a directory of the Standard Elemental Functions (SEFs) introduced
in section 1.9.1, SEFs form the vocabulary wherein the function(s) of a mechanical system,
or any component thereof, is formally described. As discussed in chapter |, these functional
descriptions are systematically generated through the Functional Design of a device.

To generate this directory, we have introduced eight basic functions, of which five
(Supply, Keep, Damp/Dissipate, Sense and split) primarily deal with single entities whercas
the other three (Coalesce, Compare and join) deal with multiple entities. Each of these basic
functions has then been applied to the three main quantities: material, energy and signal, and
sub-classes have been formed accordingly. Some of the finer sub-classes are not shown here
due to space limitations. For instance, the sub-class "Change-Form-Material-Solid" can be
broken up into "Crush", "Forge", "Extrude”, "Machine", etc.

Whereas the following classification of the mechanical functions is by no means
unique, it results in a fairly standard set of elemental functions. Other classifications may
start with a different set of basic functions and take different appraoches to breaking them
up, but they will one way or another result in similar elemental functions. In this sense, the

presented directory can be considered universal and be used to represent various mechanical
systems.
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Solid

Material | Liquid
Gas
Mechanical Translational
Supply Mechanical Reciprocal
Mechanical Rotational
Mechanical Vibrational
Energy Electrical
Chemical
Magnetic
Light
Sound
Signal
Solid
Material Liquid
Gas
Keep Store Mechanical Translational
Mechanical Reciprocal
Mechanical Rotational
Energy Mechanical Vibrational
Electrical
Chemical
Magnetic
Light
Sound
Energy Static
Sustain (Mechanical) Dynamic Translational
Rotational
Mechanical ~ Translational
Mechanical Reciprocal
Mechanical  Rotational
Mechanical Vibrational
Damp/ Energy Electrical
Dissipate Chemical
Magnetic
Thermal
Light
Sound
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Change

Form

Material(Solid)

Signal Integrate

Differentiate

Magnitude

Displacemen

Velocity

Energy Acceleration

Force
Torque
Pressure
Stress
Density
Friction
Electrical
Magnetic
Thermal
Light
Sound

Linear
Rotational

Linear
Rotational

Linear
Rotational

Signal

Direction

Displacement Linear
Rotational

Velocity Linear

Rotational

Acceleration Linear
Rotational

Force
Torque
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Solid

Material { Liquid
Gas
Displacement Linear
Transport/ ‘ RPtational
Transmit Velocity Linear
Rotational
Acceleration Linear
Mechanical Rotational
Force
Torque
Energy Pressure
Stress
Density
Electrical
Magnetic
Thermal
Light
Sound
Signal
Solid
| Material Liquid
Gas
Sense Mechanical
Detect Electrical
Chemical
Energy Magnetic
Thermal
Light
Sound
Signal
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Measure

Quality

Quantity

Material Various
Energy Character-
Signal istics

Display

Signal

Mark

Material

Solid
Liquid
Gas

Split

Branch

Material

Solid
Liquid
Gas

Energy

Mechanical
Electrical
Magnetic
Thermal
Light
Sound

Signal

Isolate

Material

Solid
Liquid
Gas

Energy

Mechanical
Electrical
Magnetic
Thermal
Light
Sound
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Separate

Material

Solid
Liquid
Gas

Signal

Switch

Material

Solid
Liquid
Gas

Energy

Mechanical
Electrical
Magnetic
Thermal
Light
Sound

Signal

Valve

Material

Solid
Liquid
Gas

Energy

On-Off

Continuous

Mechanical
Electrical
Magnetic
Thermal
Light
Sound

Signal

On-Off

Continuous
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Coalesce

Join

Material (Solid)

Add

Material

Solid
Liquid
Gas

Energy

Mechanical
Electrical
Chemical
Magnetic
Thermal
Light
Sound

Signal

Add
Subtract
Multiply
Divide
And

Or

Mix

Material

Solid
Liquid
Gas

Compare/
sort

Quality

Quantity

Material Various
Energy Character-
Signal istics
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APPENDIX B

STRUCTURAL REPRESENTATION OF MECHANICAL SYSTEMS

In Section 1.9 we discussed our method of representing the functional behavior of a
device. In this appendix we provide an overview of the method we use to represent the
physical structure of a device. Note that the method introduced here is intended to
exclusively describe the structure of the artifacts and not their behavior or function. As
mentioned in Chapter 4, throughout the design process the conceprual designer continually
displays the structure of partial designs on the structural-representation panel of the system’s
blackboard. It was also mentioned that the final products of the design process, i.e. the
comgleted designs, will be graphically presented to the user.

We formally represent mechanical devices as well as their components using a set of
algebraic and predicate logic statements. The presented method can be considered a
simplified version of the representation scheme proposed by Kannapan and Marshek
(Kannapan and Marshek 1990). The major difference between our method and the one
reported in Kannapar and Marshek’s work is that our representation of a device does not
encompass the function or behavior of the device. This is because we have chosen, for the
sake of clarity and convenience, to use a different methed, namely the Function Block
Diagrams (Chapter 1), for our functional representation purposes. This choice of ours has
been motivated by the fact that, compared to Kannapan and Marshek’s proposed scheme,
FBDs would provide us with more flexibility and accuracy when it comes to such aspects of
a design as the complex interrelationships among the individual functions of the device.

We represent objects (systems as well as their individual components) both
graphically and symbolically. Either representation provides information about the object’s
constituent elements as well as the configuration and interconnections of these elements.
Graphically, each component is represented as a box with a number of "ports" connected to
its perimeter. Contained in each box is the name of the component as well as a number (2 1)
of component attributes. Attributes are significant structural features of a component which
contribute to the characterization of its function. Axis of a shaft and surface of a friction
clutch are examples of attributes. Component boxes are interconnected through their ports
to form systems. It is through these ports that various entities (material, energy and signal)
are transfered from one object to another.

Figure B-1 shows the graphical representation of four single components (shaft,
bearing, external spur gear and machine frame). Consider, for instance, Figure B-1(a). The
information inside the box tells us that the component is a shaft with the axis (ax1). Three
ports arc shown connected to the box. Ports 1 and 2 indicate that other objects can be
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connected 1o either end
of the shaft. Port 3
refers to the possibility
of other objects being
mounted on the shaft.
An asterisk (*) next to
the port  number
indicates that the port
may be replicated an
indefinite number of
times in an instance of
the shaft, ie. an
indefinite number of
objects may be
connected to the shaft
through instances of this
port (numbered as 3.1,
3.2. etc.). Also, an
integer appearing in
brackets next to a port
number indicates the
minimum number of
times a particular port
should be replicated.
Figure B-2
shows the graphical
representation of two
subsystems “gear_pair"
and "shaft_support”. In
each case the dashed-
box represents the

3‘-
1 i haf 2 ,7-,,”a*}
| Sat . l;\i-._ B 2
| axl - —_—
{
3*
a) solid shaft 2
-T"'L-‘
L. ——————— e . 1 Y
},,5 bearing 2 .aX1
' axl
N
. \-
b} radial & axial bearing
2*
1 gear \2% 1 _T iaxl
o axl :
c) spur gear
e’
, [211%}
frame (211~ l faxl
axl ’ L
I i :
| |
d) frame -

Figure B-1; Graphical and schematic representation of four typical
components

subsystem boundaries. As could be seen in Figure B-2(a), each of the two mating gears have
two port instances: one representing the gear's hub and the other representing the external
meshed contact with the other gears. Note that the second port in each gear originally has
a (*) associated with it [Figure B-1(c)], meaning that the gear can be externally engaged with
an indefinite number of other gears. However, since in this case there is only one external
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engagement, the second port has been instantiated just once.

We have chosen port 1 of gear | and port 1 of gear 2 to represent the two gear hubs.

These two ports are therefore free for later connections. Note that the two ports have been
numbered differently inside and outside the subsystem boundaries. Whereas they are both
"port 1" internally, they become "port 1" and "port 2" at the subsystem boundaries, The other
two ports (port 2 of gear | and port 2 of gear 2) are connected together to represent the

engagement of the two gears.

In Figure B-2(b)
ports 1 and 2 of shaft 1
are free for future
connections whereas the
first instance of its third
port (i.e. port 3.1) is
connecled to port 1 of
the bearing, indicating
that the bearing is
mounted on the shaft.
The other instance(s) of
the shaft’s port 3 (i.e.
ports 3.2, 3.3, etc. as
implied by the asterisk)
remain open, meaning
that other components
can be mounted on the
same shaft, Meanwhile,
port 2 {external
perimeter)  of  the
bearing is connected to
port 1.1 of the frame,
implying  that  the
bearing is externally
supported by the frame.
The other two (or more,
as implied by the
asterisk) ports of the
frame (i.e. ports 1.2, 1.3,

a) gear pair

_______

b) shaft support
e

3.2

" shafe 1
2 ——
AEEC> RN

3.1

1

bearing

Figure B-2: Graphical representation of two subsystems



1.4, etc.) are reserved for other components to be supported by the frame.

Graphical representation is only 'sed to present to the user the solution(s) generated
by the design system, and will not be utnized by the system in its desig.» activities.

Compared to graphical representation, symbolic representation of devices plays a
more prominent role in the design process, as the majority of the design information posted
to the system’s blackboard by various contributing modules is reflected in this type of design
representation. This information typically includes the current status of (partial) design(s),
functional requirements to be further satisfied, internal constraints stemming from
interactions among the components, and some of the quantitative information required to
carry out the rest of the design.

Symbolic representation of an object comprises a set of "algebraic expressions” and
“predicate statements". Algebraic expressions generally tell us which component(s) a device
is composed of and how these components are connected to one another, whereas the
predicate statements provide quantitative information as well as that part of the qualitative
information which is normally not included in the graphical representation of the device.
The algebraic part of a component’s symbolic representation typically has the following
format.

(component name; port names; attribute name: attribute type)
Where parentheses delimit representations, semicolons separate sets of specifications and
commas separate members of a set (if more than one). For example, the symbolic (algebraic)
representations of components shown in Figure B-1 are as follows respectively.

(shaft; 1, 2, 3*%; axl: axis-type)
(bearing; 1, 2; axl: axis-type)
(gear; 1, 2% axl: axis-type)

(frame; [2]1*, ax]: axis-type)

Similarly, the algebraic part of a system/subsystem’s symbolic representation typically

has the following format.
(system name; free port names,; component names; PCons)

Where "free ports" of a system are the few component ports that remain untied internally and
are reserved for connection to the free ports of other systems. The PCons (Port
Connections) part provides the information about interconnections among the system’s
components. PCons is the set of pairs (two-tuples) of component-port names where cach
pair represents a single connection between two components {one port from each). As an
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example, the algebraic representations of the sub-systems of Figure B-2 are presented below.
Note that in this example we have assigned a code of the form (Sn: n =1, 2, ...) to each
system to distinguish between similar elements of different systems.

S1:=(gear_pair; gear_I: 1, gear_2: 1; gear_l, gear_2: PCons [S]])
PCons{81]:= {(gear_1: 2, gear_2: 2)}

In the above example, gear_pair is the name of the subsystem, gear_I and gear_2
are the names of its components and gear_I: I (port 1 of gear_1) and gear_2: I (port | of
gear_2) are the free ports of the subsystem. Also, the only member of the set of port
connections of the subsystem (PCons[S1]) represens the tie between port 2 of gear_1 and
port 2 of gear_2 [Figure B-2(a)].

Similarly, the subsystem of Figure B-2(b) is represented as follows.

8§2:= (shaft_support; shaft: 1, shaft: 2, shaft: 3.2%, frame: 1.2%, frame: 1.3%;
shaft, bearing, frame; PCons[S2])
PCons [S2]:= [(shaft: 3.1, bearing: 1), (bearing: 2, frame: 1.1)}

Here again we have a minimum of five free ports, namely ports 1 and 2 of the shaft, a
number (> 1) of port 3’ of the shaft where the latter refers to the indefinite number of

compornents that can be mounted on the shaft, and a number (22) of port 1% of the frame.
We also have three components, namely the shaft, the bearing and the frame, and two port
connections as illustrated in Figure B-2(b).

With this we conclude our discussion of our structural representation method. There
are some fine details of the method which we did not, and are not going to, discuss here.
This is because in the current research, "representation” is regarded only as a means for
communucaiion and does not play a crucial role in the process of design itself.
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APPENDIX C

TYPICAL SEARCH PATTERN OF THE GENETIC ALGORITHM
(PARTIALLY SHOWN)

The evolution of the generations for the gear-design example from a typical run of
the GA is illustrated here. In the following tables values of Penalty Function (PF) have been
shown instead of the Objective Function to make it easier to study the rate of convergence.
An asterisk (*) in the last column denotes a solution (PF=0).

Generation | Family | ML{(mm) NPT AlS(MPa) FW(mm) PF

1 2.5 24 20.0 12 1.127
2 1.5 26 50.0 14 1.202
3 3.0 40 72.5 18 0.541
4 1.5 30 515 35 1.336
5 5.0 28 57.5 80 0.000 *

1 6 16.0 30 50.0 14 16.423
7 4.0 17 50.0 14 1.012
8 12.0 19 20.0 70 0.787
9 6.0 16 20.0 70 0.354
10 6.0 20 125.0 12 0.504
11 9.0 34 51.5 16 3.665
12 16.0 19 125.0 12 3.676
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Table contd.

Generation | Family | ML{mm) NPT AlS(MPa) FW{mm) PF
1 4.0 38 209 12 1.065
2 1.5 24 20.0 14 1.280
3 6.0 17 57.5 18 0.689
4 12.0 34 57.5 45 9.786
5 5.0 28 125.0 80 1.322
2 6 25 40 200 16 0.935
7 12.0 18 50.0 70 0.554
8 1.5 18 50.0 55 4,027
9 3.0 17 50.0 70 0.934
10 6.0 15 57.5 12 0.978
11 5.0 38 57.5 14 0.733
12 16.0 19 125.0 12 3.675
1 3.0 40 50.0 12 0.899
2 3.0 26 50.0 45 0.426
3 6.0 16 50.0 18 0.777
4 16.0 17 57.5 18 2.357
5 6.0 15 72.5 80 0.000 *
3 6 1.5 18 55.0 16 1.391
7 16.0 18 20.0 55 2.758
8 2.5 19 200 70 1.884
9 1.5 16 57.5 40 2.114
10 9.0 28 57.5 12 1.803
Il 20.0 34 57.5 14 42,691
12 6.0 40 125.0 25 1.150
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Table contd.

Generation | Family | ML{mm) NPT AlS(MPa) FW(mm) PF

1 4,0 38 55.0 12 0.813
> | a0 28 55.0 80 0.103
3 6.0 26 72.5 60 0.000 *
4 16.0 16 50.0 30 1.765
5 2.5 14 72.5 55 1.185

5 6 9.0 15 72.5 55 0.054
7 6.0 21 55.0 70 0.000 *
8 6.0 19 125.0 45 0.015
9 1.5 16 20.0 16 1.475
10 1.0 30 55.0 10 1.364
I 4.0 34 37.5 18 0.567
12 12.0 16 20.0 40 0.447
1 3.0 26 50.0 45 0.426
2 6.0 34 55.0 60 0.303
3 6.0 19 125.0 60 0.000 *
4 6.0 14 125.0 55 0.000 *
5 6.0 19 125.0 55 0.000 *

8 6 6.0 28 57.5 70 0.010
7 10.0 16 72.5 60 0.058
8 8.0 19 72.5 60 0.015
9 6.0 26 20.0 80 0.045
10 6.0 15 72.5 45 0.031
11 4.0 22 72.5 45 0.097
12 4.0 21 72.5 80 0.103
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Table contd.

Generation | Family | ML{mm) NPT AlS(MPa) FW(mm) PF
1 - 6.0 19 125.0 70 0.000 *
2 6.0 15 72.5 60 0.000 *
3 6.0 18 57.5 55 0.000 *
4 6.0 19 57.5 60 0.000 *
5 6.0 19 57.5 35 0.146
10 6 8.0 15 72.5 60 0014
7 10.0 4 125.0 60 0.058
8 10.0 15 125.0 70 0.026
9 4.0 19 55.0 70 0.117
10 10.0 21 72.5 80 0.397
11 6.0 22 72.5 50 0.003
12 4.0 16 125.0 45 0.079
1 2.5 14 57.5 45 1.098
2 6.0 18 72.5 55 0.000 *
3 4.0 24 57.5 55 0.070
4 6.0 18 125.0 50 0.003
5 6.0 19 125.0 55 0.000 *
14 6 6.0 19 125.0 50 0.003
7 6.0 18 125.0 35 0.064
8 10.0 15 125.0 35 0.194
9 6.0 17 72.5 70 0.000 *
10 6.0 16 72.5 60 0.000 *
11 4.0 22 125.0 45 0.000 *
12 6.0 14 57.5 45 0.148
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Table contd.

Generation | Family | ML(mm) NPT AIS(MPa) FW{mm) PF

1 6.0 16 72.5 45 0.017
2 6.0 16 125.0 80 0.000 *
3 6.0 18 72.5 50 0.003
4 4.0 34 1250 35 0.000 *
5 4.0 16 125.0 60 0.040

17 6 6.0 15 125.0 70 0.000 *
7 6.0 18 72.5 70 0.000 *
8 6.0 19 125.0 70 0.000 *
9 5.0 19 72.5 S5 0.000 *
10 6.0 19 72.5 35 0.074
11 6.0 19 72.5 55 0.000 *
12 6.0 17 72.5 55 0.000 *
1 6.0 17 72.5 80 0.000 *
2 6.0 16 125.0 45 0.014
3 6.0 19 72.5 70 0.000 *
4 4.0 34 125.0 35 0.000 *
5 6.0 19 125.0 55 0.000 *

18 6 6.0 14 125.0 50 0.002
7 6.0 18 72.5 70 0.000 *
8 6.0 21 125.0 70 0.000 *
9 5.0 18 72.5 55 0.000 *
10 6.0 15 72.5 70 0.000 *
11 6.0 19 72.5 55 0.000 *
12 6.0 15 72.5 55 0.000 *
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APPENDIX D

INDEX TO THE COMPONENTS-DATABASE

The following index is used to retrieve the names and the file-addresses of the
components capable of performing a specified Standard Elemental Function. Given an SEF,
the Conceptual Designer scans this index and spots all the components in the components-
database that have the specified SEF in their list of functions. It then returns the names of
thase compoaents and the file-addresses of corresponding component-cells (.OBJ files).
These component-cells are later used to f.rm knowledge-pools of the candidate components
(in the form of Turbo Prolog’s projects), which in turn will be used in the exploration of the
functional behavior of the candidate components.

For brevity, only part of the index, mostly those records used in the example
of chapter 6, are shown here. Each record has the following format.

component(name_of_the_component, (.OBJ)_file_name, {SEFI, SEF2, ........... , SEFn])

where n is the number of Standard Elemental Functions the component potentiaily performs.
Also, the letter "d" following a function indicates that the function is dependent on or
coupled with the other function(s) performed by that component. For example, the function
"brake" in a brake-motor is always associated with the other function of the component, i.e.
“supply rotational motion", and cannot be used independently to, say, stop the motion of
another object.
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Files Edit Run Compile Options Setup

/* compindex.dat, Turbo Prolog 2.0
Each record follows the format

"component(name_of_the_component, (.OBJ)_file_name, [SEF1, SEF2, ........... SEFn])*]

component(electric_motor, elc_motr.obj, [supply_mechanical_energy (rotational_motion)]}

component(electric_gear_motor, gear_mtr.obj, [supply_mechanical_energy
{rotational_motion), adjust_rotational_speed(d)))

component{electric_brake_motor, brk_motr.obj, [supply_mechanical_energy
(rotational_motion), stop_rotational_motion{d)})

component(internal_combustion_engine, ic_engin.obj,
fconvert_chem_energy_to_mech_energy, supply_mechanical_energy {rotational_motion])

component(cable_hoist, cabl_hst.obj, [convert_rot_motion_to_lin_motion, pull, transfer_{orce
(steady)))

component(chain_hoist, chn_hst.obj, [convert_rot_motion_to_lin_motion,
convert_kin_energy_to_pot_energy, supply_force])

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure D-1: Index to the components-database
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Files Edit Run Compile Options Setup

component(hydraulic_drive_(gear), hyd_gear.cbj, [convert_rot_motion_to_lin_motion,
convert_kin_energy_to_pot_energy, supply_force])

component({cable_haist, cabl_hst.obj, [convert_rot_motion_to_lin_motion, pull,
transfer_force(steady}])

component({chain_hoist, chn_hst.obj, [convert_rot_motion_to_lin_motion,
converi_kin_energy_to_pot_energy, supply_force])

component(hydraulic_drive_{gear), hyd_gear.obj, [convert_rot_motion_to_fin_motion,
convert_kin_energy_to_pot_energy, supply_force])

component(hydraulic_drive_(vane), hyd_gear.obj, [convert_rot_mation_to_lin_motion,
convert_kin_energy_to_pot_energy, supply_force])

component{hydraulic_drive_(pstn), hyd_gear.obj, [convert_rot_motion_to_lin_mation,
convert_kin_energy_to_pot_energy, supply_force))

component(pneumatic_drive, pnum_drv.obj, [convert_rot_maotion_to_lin_maotion,
convert_kin_energy_to_pot_energy, supply_force])

component(spur_gear_drive, spr_gear.obj, [transmit_power(rot), transmit_torque(rot),
adjust_rot_speed})

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure D-1 (Continued)
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Files Edit Run Compile Options Setup

component(bevel_gear_drive, bvl_gear.obj, [transmit_powar({rot), transmit_torque(rot),
adjust_rot_speed))

component(helical_gear_drive, hel_gear.obj, [transmit_power(rot), transmit_torque(rot),
adjust_rot_speed])

component(worm_gear_drive, wrm_gear.obj, [transmit_powaer{rot}, transmit_torque(rot},
adjust_rot_speed, make_ang_offset, stop_motion))

componeni(rack_and_pinion, rack_pin.obj, [convert_rot_maotion_to_lin_maotion,
transmit_power(rot)])

component{power_screw, pwr_scrw.obj, [convert_rot_motion_to_lin_motion,
transmit_power(rot}, stop_motion(d)})

component{beli_drive, belt_drv.obj, [adjust_rotational_speed, transmil_power(rot}})
component({chain_drive, chn_drv.obj, [adjust_rotational_speed, transmit_power(rot)})

component(differential_pulley, dif-puly.obj, [redirect_lin_motion,
adjust_lin_displacement, adjust_lin_speed])

F2-Save F3-Load F6-Switch F9-Compile Alt-X-Exit

Figure D-1 (Continued)
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Files Edit Run Compile Options

component{disk_brake, dsk_brke.obj, [dissipate_mech_energy,
stop_rot_motion(brake])

component(disk_clutch, dsk_clch.obj, [dis/connect_rot_motion(coaxial),
dis/connect_mech_energy(rot)])

component(rigid_coupling, rgd_cplg.obj, [transmit_rot_motion(coaxial),
transmit_torque_coaxial(rot)])

component(flexible_coupling, flx_cplg.obj, [transmit_rot_motion(coaxial),
transmit_torque_coaxial(rot)])

component({proximity_switch, prx_swch.obj, {sense_position(lin}])
component(accelerometer, acclrmtr.obj, [measure_acceleration(lin)])
component(pressure_gauge, prss_gge.obj, [measure_pressure])

component(slider_crank, sldr_crk.obj, [converi_rot_motion_to_lin_motion
F2-Save  F3-Load F6-Switch F9-Compile

Setup

(recipr)])
Alt-X-Exit

Figure D-1 (Concluded)
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APPENDIX E

TEST PROBLEMS TO DETERMINE OPTIMUM VALUES

OF THE GENETIC PARAMETERS

For each problem the following are presented: a nomenclature of the variables of the
problem, the equality and inequality constraint sets of the problem, and the penalty function

to be minimized (zeroed) by the Genetic Algorithm.

TEST PROBLEM 1: DESIGN OF A SPUR GEAR SET (from Shigley 1986)

Nomenclature:
SR:

IS:

0s:

TP:

NPT:

NGT:

ML

CD:
AT:
TL:
MBS:
AlS:

Equality Constraints:

ML . NPT .

Speed Ratio (Input to Output)
Input Speed(rpm)

Output Speed{rpm)
Transmitted Power(w)
Number of Pinion Teeth
Number of Gear Teeth
Module(m)

Face Width(m)

Centre Distance{m)

Applied Torque{N-m)
Transmitted Load(N)
Maximum Bending Stress(Pa)
Allowable Stress(Pa)

Lewis Form Factor

Velocity Factor

1+SR

TP . 60

ML . NPT.IS. =

AT = IP
Is
€D =
TL =
oS -

IS / SR

3N



NGT

SR =
NPT
MBS = L
k . FW.ML.Y
. 360

Y ML .NPT.IS.~® + 360

e
H

- 1.8 x 1078 . NPT* + 4.6 x 10°% . NPT?

- 45 x 10 . NPT? + 0.02 . NPT + 0.05

Inequality Constraints:

CD -04 <0

02 -CD<0

SR -80<0 (SR>0)
FW - 16 ML < 0

9ML - FWs 0
MBS - AlS < 0
Penalty Function:
PF. = [max (0, Cl:):’"‘)]’ « [max (0, 0'2(;3‘:19)]2
+ max 0, TR + [max 0, T
+ max (0, 9?;’;;;’ F + max (0, XLy
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TEST PROBLEM 2: DESIGN OF A HELICAL COMPRESSION SPRING (From Juvinall and
Marshek 1991; Oberg and Jones 1971

Nomenclature:

SAL: Spring Axial Load (Ib)
SWD; Spring Wire Diameter (in)
COD: Coil Outside Diameter (in)
STD: Spring Total Deflection (in)
NAC: Number of Active Coils
§SS: Spring Shear Stress {psi)
MAS: Maximum Allowable Stress (psi)
SFL: Spring Free Length (in)
HSIL Helical Spring Index

SWF: Spring Wahl Factor

UTS: Ultimate Tensile Stress (psi)

Equality Constraints:

8 x NAC x SOD 3 x SAL

STD =
TME x SWD *
usy = 30D
SWD
SWF = 4 x HSI -1 . 0.615
4 x HSI -4 HSI
SSS = 8 x SWF x SOD x SAL

T x SWD?

Inequality Constraints:

585 < MAS
SFL/SOD £ 4.0
SSS £ 0.32x UTS |Based on a fatigue life of 1{)* fluctuations)
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Penalty Function:

SSS - MAS ., » SFL - 40 x SOD , »
PF. = [Max (0, =———)] - + [Max (0, -
[Max ( 55 )] ( ( SFL )|
. (Max (0, 555 7032 x UTS, ,
5SS

TEST PROBLEM 3: DESIGN OF A ROTATING SHAFT UNDER COMBINED LOAD
(From Oberg and Jones 1971)

Nomenclature:

SOD: Shaft Quiside Diameter (mm)

SID: Shaft Inside Diameter (mm)

HSF: Hollow Shaft Factor

MSS: Maximum Shearing Stress (N/mm*)

MAS: Maximum Allowable Shearing Stress (N/mm?)

BMF: Bending Moment Factor (Combined Shock and Fatigue)
TMF; Torsional Moment Factor {Combined Shock and Fatigue)
MBM; Maximum Bending Moment {(N-mm)

MTP: Maximum Transmitted Power (milliwatts)

SRS: Shaft Rotational Speed (rpm)

TSD: Torsional Shaft Deflection (degrees)

LSD: Linear Shaft Deflection (mm)

LOS: Length of Shaft (mm)

SME: Shaft's Module of Elasticity (N/mm2)

TME: Torsional Medule of Elasticity (N/mm?2)

Equality Constraints:

k]
mss = SV X HSF © foME x MBM) 2 + (IMF x MTM) 2
soD *
Tag - 955 X MTP
SRS

k!
HSF = |1- (3P4
\I SOD
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32 x MBM x LOS *
n x SME x (SOD * - SID )

LSD

il

32 x MTM x LOS
n x TME x (SOD % - SID %)

TSD

Inequality Constraints:

MSS £ MAS
ASD < LOS /(20 x SOD) |Based on maximum allowable deflectio. 1 one deyree per 20
diameters of the shaft]
LSD € LOS /1200 [Based on maximum allowable deflection of one mm per 1200 mm length
of the shaft]
Penalty Function:
MSS - MAS 20 x SOD x ASD - LOS

P.F. = [Max (0, )1 % + [Max (0,

MSS ASD 2

1200 x LSD - LOS

+ [Max (0, IsD

NE
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