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Abstract

The inception of Semantic Web including the Resource Description Framework

(RDF) data model that provides a standard framework for publishing and shar-

ing machine-understandable data on the Web enables the development of in-

telligent, semantically-oriented systems. Up to date, thousands of linked RDF

datasets, also known as Knowledge Graphs (KGs), have been constructed and

are available on the Web. Therefore, there is a need for Question-Answering

(QA) systems that provide users with appropriate utilization of existing KGs

and provide detailed and summarizing answers to the users’ questions. Yet,

the diversity of posing questions and the heterogeneity of KGs’ schemas make

the process of querying KGs quite challenging. Moreover, a single KG often

does not provide sufficient information for a variety of questions.

In this work, we propose a methodology aiming at developing a QA system

that can automatically construct KG queries, use information from multiple

different KGs, combine obtained data, and handle conflicting information,

summarize obtained data if suitable. To accomplish that, we introduce a set

of methods for: aligning properties (determining degrees of equivalence) in

different KGs; generating templates based on given question-SPARQL query

pairs; and using generated templates for constructing specific SPARQL queries

for answering newly asked questions. Besides usual/regular questions, the

methods allow for asking questions that contain linguistic terms with im-

precise meanings. They also allow for aggregating answers, generating lin-

guistic summaries for some suitable questions, and handling conflicting in-
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formation retrieved from multiple different KGs. Our running website at

https://www.lingteqa.site/ illustrates such a system.
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Chapter 1

Introduction

1.1 Motivation

One of the notable contributions of the Semantic Web is Resource Description

Framework (RDF). It is a data model that provides a standard framework

for representing data in a machine-understandable format and publishing it

on the Web. Up to date, thousands of linked RDF datasets, also known as

Knowledge Graphs (KGs), have been constructed and are available as a part

of Linked Open Data (LOD)1.

Full utilization of the data available on the Web requires methods and

tools that allow users to use a natural means of communication, i.e., a natu-

ral language, to query LOD data repositories. Another aspect that makes the

retrieval of information difficult is the distribution of relevant data among mul-

tiple repositories existing at different locations. The new methods should be

capable of queries multiple data sources and aggregate obtained information.

So far, a standard way of retrieving RDF data from the Web is to execute

queries represented in an RDF query language – SPARQL Protocol and RDF

Query Language (SPARQL)2. Therefore, translating user’s questions posed

in a natural language into SPARQL queries is the first step in developing an

RDF Question-Answering (QA) system. Additionally, the QAS should find the

information requested by users in various data sources – Knowledge Graphs.

Yet, different KGs often use different vocabularies for describing items; and

1https://lod-cloud.net/
2https://www.w3.org/TR/sparql11-query/
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they may provide conflicting information about the same fact. Therefore,

data fusion mechanisms able to handle the problems are needed to enhance

the results of the QAS.

The recent advances in Natural Language Processing (NLP) and Semantic

Web technologies provide better utilization of the available data and infor-

mation. The user’s quest for easy data accessing and the advancements in

technologies have brought some developments and improvements in the cate-

gory of Question-Answering systems (QASs) that answer end-users questions

posed in a natural language [20][23][45].

Although it looks like a step towards a more user-friendly way of retriev-

ing information, some more work is still needed. We could highlight a need

to develop processes and methods for answering questions that include im-

precise concepts and require additional processing of obtained results. Users

would appreciate working with systems that allow them to ask comprehen-

sive questions containing imprecise terms requiring subjective interpretation

and provide them with the results in a condensed form. Therefore, designing

and developing algorithms and methods, as parts of a QA system, that can

accept questions asked in the user’s natural language with user-defined im-

precise terms and communicate results in the same form are essential steps

towards constructing human-centric systems.

1.2 Objectives

A simplified architecture depicted in Figure 3.2(a) is of a currently existing QA

system. Once a user asks a question, the QA system queries a data resource–

could be a structured database as in the case of WDAqua-core0 [22], or an

unstructured set of documents as in the case of the Wikipedia DrQA [13], and

then it provides an answer to the user.

Our ultimate objective is to develop a set of methodologies and approaches

that are necessary for constructing a system that is more human-friendly and

human-oriented – a system that allows for using imprecise concepts, asking

questions that require additional processing, and providing more summary-

2



like answers.

In other words, our objective is to develop a base for constructing a Human-

centric QA system that would interact with end-users in English and cooperate

with them in processing answers to their questions. In particular, we aim at

building a QA system that can: 1) analyze asked questions to learn how to an-

swer ‘unseen’ questions that are syntactically similar to the ones it has already

‘seen’; 2) accept full-fledged English questions, rephrase them if necessary, then

represent them in a form that facilitates retrieving relevant query templates

from the repository of ‘seen’ questions; 3) populate retrieved query templates

to construct queries executable over multiple different KGs; 4) cooperate with

a user in defining linguistic terms (if any) so that questions contain such terms

can be answered accordingly to the user’s understanding of the terms; and 5)

synthesize answers from information collected from multiple KGs and generate

linguistic data summaries (if suitable) based on them.

By comparison with a ‘traditional’ QA system, our proposed system con-

tains several extensions. These extensions are illustrated in Figure 3.2(b)

(a) (b)

Figure 1.1: ‘traditional’ QA system (a); and Human-centric one (b).

1.3 Contributions

In this work, we aim at constructing methods and algorithms that allow us to

address the previously stated objectives. We anticipate developing a method-

ology that comprises of a set of tools for: aligning properties, i.e., determining
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degrees of equivalence between relations defined by different vocabularies used

in various KGs; generating templates based on provided question-SPARQL

query pairs; using generated templates for constructing specific queries ex-

ecuted over different KGs. The methods will allow for asking both ordinary

questions and questions that contain linguistic terms with imprecise meanings.

To address this, we develop an iPad-based application for entering fuzzy sets

membership functions representing perceptions of users of linguistic terms and

quantifiers.

The ability of the developed QA system to work with a large set of numeri-

cal data, also obtained from multiple sources, means we equip our system with

answer-summarization techniques for aggregating query results and generating

answers in the form of simple linguistic summaries.

In summary, the contributions of our work can be listed as a sequence of

the following points.

1) A new method for generating question-query templates based on pairs

of question-SPARQL query. The generated templates will then be used

for translating newly asked questions into SPARQL queries.

2) A method for constructing SPARQL queries based on chosen KGs and

asked questions using generated templates.

3) An algorithm for determining equivalence degrees between KGs’ prop-

erty. The obtained equivalent property pairs will then be used for col-

lecting and fusing data from multiple different KGs.

4) A user-driven method for entering fuzzy sets defining linguistic terms

and linguistic quantifiers applied for answering questions and generating

linguistic summaries.

5) A novel methodology for fusing collected data from multiple different

KGs. In particular, it includes

– an introduction of the measure called veracity that is used for select-

ing a reliable data from a set of candidates, potentially conflicting
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ones, retrieved from different data sources;

– two approaches for initializing trustworthiness of data sources: an

expert-based approach inspired by Saaty’s priority method [88], and

a data-driven approach based on the degree of equivalence of RDF

properties;

– an algorithm for updating the trustworthiness of data sources based

on the results of a fusion process.

6) A human-centric methodology for summarizing collected data in form of

an aggregated value or linguistic summary. More specifically, we focus

on

– introducing a context into basic operations on data, such as aver-

aging or finding minimum and maximum values;

– converting results of queries into simple linguistic answers that in-

cludes quantifiers and summarizers in a form of linguistic terms.

1.4 Thesis Outline

AQuestion-Answering System over multiple KGs is composed of multiple mod-

ules for: processing users’ questions, generating query templates, constructing

SPARQL queries over multiple RDF datastores and using different vocabu-

laries, collecting data (answers to queries), processing collected data includ-

ing fusion of data from multiple sources, and forming answers. Developing

such a system requires techniques from both Semantic Web and Natural Lan-

guage Processing. Furthermore, the application of fuzzy sets in developing

QA systems allows for more user-friendly interfaces. This thesis introduces

methodologies for developing such a user-friendly QA system. The following

offers a concise summary of topics covered in each chapter and emphasizes the

essential aspects of each of them.

Chapter 1 – Introduction – brings our motivations as well as objectives for

developing a user-friendly QA system. It also states our anticipated contribu-

tions to the RDF Question-Answering Systems.
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Chapter 2 – Background Material – provides brief introductions to such

topics as Semantic Web, Natural Language Processing, and Fuzzy Set theory.

Chapter 3 –Question Answering System: A Basic Version – presents a

basic of our Analogical Problem Solving based QA system, i.e., an approach,

implementation and results; an overview state-of-the-art approaches towards

Question-Answering systems. It also provides an overview on a proposed

Human-Centric QA system with some advanced functionalities (let’s call them

extensions) such as a Graphical User Interface (GUI) for entering membership

functions facilitating answering questions containing linguistic terms, fusing

data collected from multiple KGs, generating linguistic summaries.

Stating from Chapter 4, we discuss each of the extensions in more detail.

In particular,

Chapter 4 –Ipad-based application for entering fuzzy sets defining linguistic

terms – describes an iPad-based software that is an easy procedure of defin-

ing linguistic terms – such as LARGE, MEDIUM, SMALL – and linguistic

qualifiers – ALL, MOSTLY – that are suitable for answering questions with

linguistic terms and generating linguistic summarizations.

Chapter 5 –RDF Data Fusion – provides methodologies for collecting and

choosing true value from collected ones in multiple different Knowledge Graphs.

Chapter 6–Data Summarization – proposes novel methods for aggregating

numeric and generating linguistic summaries.
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Chapter 2

Background Material

2.1 Semantic Web technologies

The term “Semantic Web” originally coined by World Wide Web Consortium

(W3C) and was formally introduced to the world by Sir Tim Berners-Lee [8].

It refers to the vision of the Web of linked data. Semantic Web technologies 1

enable people to create data stores on the Web, build vocabularies, and write

rules for handling data.

2.1.1 Resource Description Framework

The W3C has introduced a graph-based data representation form called Re-

source Description Framework (RDF). It is a de-facto standard for representing

semantically rich information on the Web. In RDF, a piece of information is

represented as an RDF triple: subject-predicate-object. Asserting an RDF

triple means that a relationship represented by a predicate holds between a

subject and an object of that triple. The predicate itself is identified by a

Uniform Resource Identifier (URI) and is also called a property. It is a special

resource that defines a binary relation.

An RDF graph is a set of triples. A single RDF triple can be visualized as

a node-arc-node link. A number of such triples that share subject nodes and

object nodes constitute a Knowledge Graph. A simple RDF graph is depicted

in Figure 2.1.

1https://www.w3.org/standards/semanticweb/
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Figure 2.1: An RDF graph with one triple

There are three kinds of nodes in an RDF graph: Internationalized Re-

source Identifier (IRI), literals, and blank nodes. IRIs and literals denoting

items existing in the world, i.e., in a universe of discourse. They are called re-

sources. Resources denoted by IRIs are named referent, and resources denoted

by literals have datatype values such as strings, numbers, and dates. Liter-

als that are language-tagged strings denote plain text expressed in a natural

language.

2.1.2 Web Ontology Language

An ontology formally defines a common set of terms for describing and rep-

resenting a domain (an area of knowledge). These terms are individuals (in-

stances of objects), classes, properties (attributes and relations), restrictions,

rules, and axioms. As a result, ontologies can introduce a sharable and reusable

knowledge representation and can add new knowledge about the domain.

W3C offers a large palette of techniques to describe and define differ-

ent forms of ontologies in a standard format. These include RDF Schemas

(RDFS), Simple Knowledge Organization System (SKOS), Web Ontology Lan-

guage (OWL)2.

RDFS is a collection of terms we can use to define classes and prop-

erties for a specific application domain. In particular, to define classes we

can use terms such as rdfs:Resource, rdfs:Class, rdfs:Literal, rdfs:Datatype,

rdfs:subClassOf. To define properties, we can use terms such as rdfs:range,

rdfs:domain, rdfs:subPropertyOf, rdfs:label and rdfs:comment. Some other

utility terms are rdfs:seeAlso and rdfs:isDefinedBy.

SKOS provides a standard way to represent knowledge organization sys-

tems such as taxonomies and thesauri using the RDF. Encoding this informa-

2https://www.w3.org/standards/semanticweb/ontology
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tion in RDF allows it to be passed between computer applications in an inter-

operable way. Concept is a fundamental element in any given knowledge orga-

nization systems (KOS). SKOS introduces the class skos:Concept, so that we

can use it to state that a given resource is a concept. Labels on a given concept

can be assigned by using label properties such as skos:prefLabel, skos:altLabel

and skos:hiddenLabel. SKOS also provides some human-readable documenta-

tion properties defined for a given concept like skos:scopeNote, skos:definition,

skos:example. To represent hierarchical structure of the KOS, we can use

skos:broader and skos:narrower which can either be an is-a relationship or a

part-of relationship. SKOS’s specification can be found at W3C Recommen-

dation 18 August 20093.

OWL4 is a Semantic Web language designed to represent rich and com-

plex knowledge about things, groups of things, and relations between things.

OWL is a computational logic-based language such that knowledge expressed

in OWL can be reasoned with by computer programs either to verify the con-

sistency of that knowledge or to make implicit knowledge explicit. The purpose

of OWL is exactly the same as RDF Schema; however, compared to RDFS,

OWL provides us with the capability to express much more complex and richer

relationships. Therefore, we can construct applications with a much stronger

reasoning ability.

In OWL, owl:Thing is the root of all classes, it is also the base class of

rdfs:Resource. To define a class, we can use owl:Class or rdfs:Class. It also

gives us the ability to construct classes by using set operators (owl:intersectionOf,

owl:unionOf, owl:complementOf), enumerating its instances(owl:oneOf), spec-

ifying a class is equivalent to another class (owl:equivalentClass), and speci-

fying a class is disjoint from another class (owl:disjointWith). Furthermore,

OWL provides owl:Restriction used together with owl:onProperty and other

properties such as owl:allValuesFrom, owl:someValuesFrom, owl:hasValue to

describe an anonymous class, which is defined by adding some restriction on

some property.

3https://www.w3.org/TR/skos-reference/
4https://www.w3.org/OWL/

9



2.1.3 SPARQL: An RDF Query Language

SPARQL5 is a query language that we can use to query the RDF data content,

and SPARQL also provides a protocol that we need to follow if we want to

query a remote RDF dataset. These are what SPARQL stands for: SPARQL

Protocol and RDF Query Language. SPARQL features graph patterns, filters,

unions, differences, optionals, aggregations, expressions, subqueries, ordering,

etc.

A SPARQL query is executed against an RDF dataset that represents a

collection of graphs. An RDF dataset contains one default graph, which does

not have a name, and zero or more named graphs, where each named graph

is identified by an IRI. By simply submitting a query, we should be able to

directly get the answer for our information need.

A SPARQL endpoint is an interface that users can access to query a RDF

dataset by using SPARQL query language. This endpoint could be a stan-

dalone or Web-based application that a user can work on. For example,

https://dbpedia.org/sparql and https://query.wikidata.org/sparql are SPARQL

endpoints of DBpedia and Wikidata, respectively. For applications, an end-

point takes the form of a set of Application Programming Interfaces (APIs)

that can be used by the calling agent.

In general, SPARQL 1.1 provides four main forms of query:

� SELECT query

� ASK query

� DESCRIBE query

� CONSTRUCT query

Among these forms, the SELECT query and ASK query are the most

frequently used in question answering systems. In addition, all these query

forms are based on two basic SPARQL concepts: the triple pattern and the

graph pattern.

5https://www.w3.org/TR/sparql11-query/

10



Triple Pattern: SPARQL is built the concept of triple pattern, which is

written as subject, predicate and object, and has to be terminated with a full

stop. Any or all of the subject, predicate and object values in a triple pattern

can be a variable. For example, < https : //dbpedia.org/resource/Canada >

< https : //dbpedia.org/ontology/capital > ?capital. is a SPARQL’s triple

pattern whose subject and predicate are DBpedia’s resources and its object is

a variable, ?capital. A variable in a triple pattern, which can be prefixed with

either a ? character or a $ character, can be viewed as a placeholder that can

match any value.

Graph Pattern: a collection of triple patterns that are within { and }

called a graph pattern. For instance,

{dbr:Canada dbo:capital ?capital. ?capital rdfs:label ?capitalLabel. } is a

graph pattern. Here dbr, dbo, and rdfs are prefixes defined as follows

PREFIX dbr: <https://dbpedia.org/resource/>

PREFIX dbo: <https://dbpedia.org/ontology/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT query

A generic structure of a SPARQL SELECT query is

# base directive BASE < URI > # list of prefixes

PREFIX pref: < URI >

...

# result description

SELECT ...

# graph to search

FROM . . .

# query pattern

WHERE {

...

}

# query modifiers
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ORDER BY ...

The BASE directive and a list of PREFIX are optional, and they are

used for URI abbreviations. The SELECT clause specifies which variable

bindings, or data items, should be returned from the query. As a result, it

selects what information to return from the query result. The FROM clause,

which is also optional, tells the SPARQL endpoint against which graph the

search should be conducted. The WHERE clause contains graph patterns that

specify the desired results; it tells the SPARQL endpoint what to query for in

the underlying data graph. Value constraints specified by FILTER keyword

are logical expressions that evaluate to boolean values when applied on values

of bound variables can be added to the graph patterns. The optional query

modifiers such as ORDER BY... and LIMIT... tell the SPARQL endpoint

how to organize the query results.

CONSTRUCT query

Unlike SELECT query, CONSTRUCT query construct returns a new RDF

graph containing query solutions. Its syntax is similar to the SELECT query’s

syntax. The only difference is the use of the keyword CONSTRUCT at the

position of the keyword SELECT.

DESCRIBE query

Sometimes when querying an RDF we just don’t know much about its vocabu-

laries. If this is the case, we can ask a SPARQL query processor to describe the

resource we want to know, and it is up to the processor to provide some useful

information about the resource we have asked about. The DESCRIBE is the

query used for that purpose. After receiving the query, a SPARQL processor

creates and returns an RDF graph; the content of the graph is decided by the

query processor, not the query itself. For example, the following DESCRIBE

query:

DESCRIBE ?x

WHERE{?x rdfs:label ’Justin Trudeau’@en.}
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when sent to DBpedia SPARQL endpoint will return information about

subject whose English label is ‘Justin Trudeau’ in DBpedia; part of returning

results is

ASK query

SPARQL’s ASK query is identified by the ASK keyword, and the query pro-

cessor returns a True or False value, depending on whether the given graph

pattern has any matches in the RDF graph or not. For instance, following

ASK query:

ASK

WHERE{dbr:Canada dbo:capital dbr:Ottawa.}

when sent to DBpedia SPARQL endpoint will return a value of True.

2.1.4 Linked Data and Open Linked Data Cloud

Linked Data can be defined as a collection of interrelated datasets on the Web.

Linked Data is used for large scale integration of, and reasoning on, data on the

Web. Tim Berners-Lee proposed four principles in his 2006 Web architecture

note as follows6: 1) Use URIs as names for things. 2) Use Hypertext Transfer

Protocol (HTTP) URIs so that people can look up those names. 3) When

someone looks up a URI, useful information should be provided using the

standards (RDF*, SPARQL). 4) Include links to other URIs, so that users can

discover more things.

6https://www.w3.org/DesignIssues/LinkedData.html
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Also according to Sir Tim Berners-Lee, Linked Open Data (LOD)is Linked

Data which is released under an open license, which does not impede its reuse

for free. The goal of the Linking Open Data project is to build a data commons

by making various open data sources available on the Web as RDF and by

setting RDF links between data items from different data sources. As query

results are structured data and not just links to Hypertext Markup Language

(HTML) pages, they can be used within other applications. As of May 2020,

there are 1301 datasets with 16283 links published in Linked Open Data cloud7.

Figure 2.2: The Linked Open Data Cloud from lod-cloud.net

Many datasets in LOD cloud are enormous cross-domain datasets (also

known as Knowledge Graphs-KGs), such as DBpedia8 and Wikidata9, con-

taining million RDF triples.

DBpedia makes the content of Wikipedia available in RDF. It not only

includes Wikipedia data, but also incorporates links to other datasets on the

7https://lod-cloud.net/
8https://wiki.dbpedia.org/about
9https://www.wikidata.org/wiki/Wikidata:Main Page
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Web, e.g., to Geonames. By providing those extra links applications may ex-

ploit the extra knowledge from other datasets when developing an application.

2.2 Natural Language Processing Tools and

Techniques

In this section, we introduce readers to tools and techniques that have been

using by QASs. Although we do not use all of them in developing our system,

the reader will encounter them somewhere in this thesis. We think that they

are beneficial for people interested in natural language processing in general,

question answering in particular.

2.2.1 Some basic terminologies

� A lemma representing the semantic content of the word. In other words,

a lemma is the canonical or base form of the word, such as the form

typically found in dictionaries.

� A part-of-speech tag representing the abstract lexical category asso-

ciated with the word.

� Parsing means taking an input and producing some sort of linguistic

structure for it. One kind of partial parsing is known as chunking.

� Stemming is just stripping off word endings to map the word to its root

or stem, the main part of the word supplying the main meaning.

� Lemmatization is a process of mapping all word surfaces to its root or

stem. For example, the lemmatization each of the words sang, sung, and

sings produces the word sing. In other words, the lemma of these words

is the word sing.

� Tokenization is a task of segmenting running text into words or sen-

tences.
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2.2.2 Some natural language processing tools and tech-
niques

Regular Expression

The regular expression language is the standard notation for characterizing

text sequences used for specifying text strings in situations such as Web-search

and word-processing. It is a powerful tool for pattern-searching. For this

purpose, a string is a sequence of alphanumeric characters (letters, numbers,

space, tabs, and punctuations). Table 2.1 shows some common alphanumeric

characters used in regular expressions.

Table 2.1: Common alphanumeric characters used in regular expression

Character Description Example

[ ] A set of characters ”[a-m]”
\ Signals a special sequence (can also be used to

escape special characters)
”\d”

. Any character (except newline character) ”he..o”
$ Ends with ”world$”
* Zero or more occurrences ”aix*”
+ One or more occurrences ”aix+”
{} Exactly the specified number of occurrences ”al{2}”
| Either or ”falls|stays”
() Capture and group
\d Returns a match where the string contains digits

(numbers from 0-9)
”\d”

\D Returns a match where the string DOES NOT
contain digits

”\D”

\s Returns a match where the string contains a
white space character

”\s”

\S Returns a match where the string DOES NOT
contain a white space character

”\S”

\w Returns a match where the string contains any
word characters (characters from a to Z, digits
from 0-9, and the underscore character)

”\w”

\W Returns a match where the string DOES NOT
contain any word characters

”\W”

Regular expression search requires a pattern that we want to search for,

and a corpus of texts to search through. A regular expression search function

will search through the corpus and returning all texts that contain the pattern.

For example, ”[0− 9]+ (\.[0− 9][0− 9])?” is a regular expression for searching

price with or without fractions of dollars.
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Part-of-speech Tagging

Part-of-speech tagging is the task of assigning part-of-speech or other syntactic

class markers (word class) to each word in a corpus. Parts-of-speech can be

divided into two broad supercategories: closed class types and open class types.

Noun, verb, adjective, and adverb are four open class types of words in

English. A noun is a name given to the syntactic class in which the words

for most people, place, or things occur. Nouns are traditionally grouped into

proper nouns and common nouns. Proper nouns such as Einstein, Canada,

English are names of specific persons or entities. In written English, proper

nouns are usually capitalized. The verb class includes most of the words

referring to actions and processes. The adjective class includes many terms

that describe properties or qualities.

Some closed class types of words in English include preposition, determiner,

pronoun, conjunction, particle, numeral.

Table 2.2 shows the most commonly used Penn Treebank tagsets used in

part-of-speech tagging task.

Given a question Q1: “what is the time zone of Salt Lake City?”. Its

tagged sentence using the Penn Treebank part-of-speech tagsets produced by

nltk API in Python is

what/WP is/VBZ the/DT time/NN zone/NN of/IN Salt/NNP Lake/NNP

City/NNP?/.

Chunking

Chunking is the process of identifying and classifying the flat, non-overlapping

segments of a sentence that constitute the basic non-recursive phrases cor-

responding to the major content-word parts-of-speech: noun phrases, verb

phrases, adjective phrases, and prepositional phrases.

The rules that make up a chunk of grammar using tag patterns to describe

sequences of tagged words. A tag pattern is a sequence of part-of-speech tags

delimited using angle brackets. For example, in Python we can define chunk

tags (CNP-common noun phrase, PNP-proper noun phrase, VP-verb phrase)
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Table 2.2: Common part-of-speech tagsets in Penn Treebank

Tag Description Example Tag Description Example

CC Coordin. Con-
junction

and, but, or RBR Adverb, compar-
ative

faster

CD Cardinal number one, two,
three

RBS Adverb, superla-
tive

fastest

DT Determiner a, the UH Interjection ah, oops
EX Existential

‘there’
there SYM Symbol +,%, &

IN Preposition of, in, by TO ”to” to
JJ Adjective large UH Interjection ah, oops
JJR Adj., compara-

tive
larger VB Verb, base form go

JJS Adj., superlative largest VBD Verb, past tense went
MD Modal can, should VBG Verb, gerund going
NN Noun, sing. or

mass
car VBN Verb, past par-

ticiple
gone

NNS Noun, plural cars VBP Verb, non-3sg
pres

go

NNP Proper noun, sin-
gular

IBM VBZ Verb, 3sg pres goes

NNPS Proper noun, plu-
ral

Carolinas
WDT

Wh-
determiner

which, that

PDT Predeterminer all, both WP Wh-pronoun who, what
POS Possessive ending ‘s WP$ Possessive Wh- whose
RB Adverb fast WRB Wh-adverb How, where

using tag patterns as following

grammar = ”””

CNP : < JJ.∗ > ∗ < NNS? > +

PNP : < NNPS? > +

V P : < V B.∗ >< IN >?

”””

A common noun phrase is previously defined with zero or more optional

adjectives followed by one or more common nouns. Running Python nltk

chunker produces a result whose tree representation is given in Figure 2.3.

Dependency parser

The dependency parser jointly learns sentence segmentation and labeled de-

pendency parsing, and can optionally learn to merge tokens that had been

over-segmented by the tokenizer.
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Figure 2.3: Chunking result of the sentence “what is the time zone of Salt
Lake City?”

In Figure, the root node, the head of the entire structure, is explicitly

marked. Relations among the words are drawn with directed, labeled arcs from

heads to dependents. The labels are taken from the Universal Dependency

set. Table 2.3 shows some selected grammatical relations from the Universal

dependency set [18].

Table 2.3: Some selected grammatical relations from the Universal dependen-
cies
Relation Description Relation Description

acl clausal modifier of noun dep unspecified dependency
advcl adverbial clause modifier det determiner
advmod adverbial modifier dobj direct object
amod adjectival modifier iobj indirect object
appos appositional modifier mwe multi-word expression
case prepositions, postpositions

and other case markers
neg negation modifier

cc coordinating conjunction nmod nominal modifier
ccomp clausal complement nsubj nominal subject
compound compound nsubjpass passive nominal subject
conj conjunct nummod numeric modifier
csubj clausal subject root root

For example, the Stanford Dependency parser produces a dependency tree

of the sentence “what is the time zone of Salt Lake City?” as illustrated in

Figure 2.4.

The spaCy dependency parser produces a dependency tree of the same

sentence “what is the time zone of Salt Lake City?” as depicted in Figure 2.5.
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Figure 2.4: The dependency tree of “what is the time zone of Salt Lake City?”
produced by Stanford’s parser

Figure 2.5: The dependency tree of “what is the time zone of Salt Lake City?”
produced by spaCy’s parser

In the two figures, words are depicted with nodes and relations among the

words are illustrated with directed, labeled arcs(arrows) from heads to depen-

dents. The labels are drawn from a fixed inventory of grammatical relations
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(see Table 2.3). The root of the tree is explicitly marked. Nodes and arcs are

connected creating a upside-down tree. There is a unique path from the root

node to each node in the tree.

These dependency parser has been widely used by QASs. Some represen-

tative systems are NEQA [2], a system by Xu et al. [109], and a system by

Hakimov et al. [41].

Named Entity Recognition

Named Entities (NEs) are definite noun phrases that refer to specific types of

individuals, such as organizations, persons, dates. Commonly used types of

NEs are PERSON, ORG-organization, LOC-location, DATE, GPE-geopolitical.

A named entity recognition system aims at identifying all textual men-

tions of the named entities by first identifying the boundaries of a NE then

identifying its type.

spaCy10 is a free, open-source library for advanced NLP in Python. Using

spaCy’s NER on the question Q1 and a new question Q2:“was Albert Einstein

born on March 14, 1879?” produces the following results:

WordNet: A lexical database of English

WordNet [33] is a large lexical database of English whose lexicalized con-

cepts are organized by semantic relations (synonymy, antonymy, hyponymy,

meronymy, etc.) for nouns, verbs, and adjectives. Semantic relations link the

synonym sets.

In WordNet, a form is represented by a string of ASCII characters, and

a sense is represented by the set of (one or more) synonyms that have that

sense. WordNet contains more than 118,000 different word forms and more

than 90,000 different word senses.

10https://spacy.io/usage/spacy-101#whats-spacy
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Semantic relations in WordNet include the following:

Synonymy is WordNet’s basic relation representing a symmetric relation

between word forms. The synonyms are grouped into synsets with short defi-

nitions and usage examples

Antonymy is also a symmetric semantic relation between word forms,

especially important in organizing the meanings of adjectives and adverbs.

Hyponymy (sub-name) and its inverse, hypernymy (super-name), are

transitive relations between synsets. Because there is usually only one hyper-

nym, this semantic relation organizes the meanings of nouns into a hierarchical

structure.

Meronymy (part-name) and its inverse, holonymy (whole-name), are com-

plex semantic relations. WordNet distinguishes component parts, substantive

parts, and member parts.

Troponymy (manner-name) is for verbs what hyponymy is for nouns,

although the resulting hierarchies are much shallower.

Entailment relations between verbs.

Many QA systems use WordNet as an additional lexical source, Aqua-

Log [69],BELA [89], Power-Aqua [70], system by Yahya et al. [115], and system

by Hakimov et al. [41] for example. However, WordNet only includes lexical

paraphrases; it does not include phrasal or syntactically based paraphrase.

2.2.3 String similarity metrics

Distance functions

Distance functions map a pair of strings s and t to a real number r, where a

smaller value of r indicates greater similarity between s and t.

Minimum edit distance, named by Wagner and Fischer (1974), between

two strings is the minimum number of editing operations (insertion, deletion,

substitution) needed to transform one string into another.

Levenshtein distance between two sequences is the simplest weighting

factor in which each of the two operations (insertion, deletion) has a cost of 1

while a substitution has a cost of 2(Levenshtein, 1966). This distance measure
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has been using by QA systems such as a system by Shekarpour and Auer [90]

Similarity functions

Similarity functions are analogous to Distance functions, except that larger

values indicate greater similarity.

Jaro metric Given strings s = a1 . . . aK and t = b1 . . . bL, define a charac-

ter ai in s to be common with t there is a bj = ai in t such that i−H ≤ j ≤

i + H, where H = min(|s|,|t|)
2

. Let s′ = a′1 . . . a
′
K′ be the characters in s which

are common with t (in the same order they appear in s) and let t′ = b′1 . . . b
′
L′

be analogous; now define a transposition for s’, t’ to be a position i such that

b′j ̸= a′i Let Ts′,t′ be half the number of transpositions for s’ and t’. The Jaro

similarity metric for s and t is

Jaro(s, t) =
1

3
.

(︃
|s′|
|s|

+
|t′|
|t|

+
|s′| − Ts′,t′

|s′|

)︃
(2.1)

A variant of this due to Winkler (1999) also uses the length P of the longest

common prefix of s and t. Letting P = max(P, 4) we define

Jaro−Winkler(s, t) = Jaro(s, t) +
P ′

10
. (1− Jaro(s, t)) (2.2)

Jaccard similarity between the word sets S and T is simply S∩T
S∪T .

term frequency–inverse document frequency (tf-idf) can be de-

fined as

tf − idf(S, T ) =
∑︂

w∈S∩T

V (w, S).V (w, T ) (2.3)

where

V (w, S) =
V ′(w, S)√︁∑︁
w′ V ′(w, S)2

and

V ′(w, S) = log(TFw,S + 1).log(IDFw)

where TFw,S is the frequency of word w in S, N is the size of the “corpus”,IDFw

is the inverse of the fraction of names in the corpus that contain w.
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Vector-based distance

Euclidean distance: given data points in Rd, the Euclidean distance metric

is

Euclidean(x, y) =

⌜⃓⃓⎷ d∑︂
i=1

(xi − yi)2 (2.4)

cosine similarity: Given two non-zero vectors x and y, their cosine simi-

larity is calculated as

cosine(x, y) =

∑︁d
i=1(xi.yi)√︂∑︁d

i=1(xi)2.
√︂∑︁d

i=1(yi)
2

(2.5)

2.3 Fuzzy sets

Fuzzy sets [118] were introduced by Dr. Zadeh in a seminal paper published

in 1965. A fuzzy set contains its elements whose degrees of membership to the

set are not a matter of affirmation or denial, but rather a matter of degree. A

membership degree is a value assigned to an element of A based on the simi-

larity or compatibility with the concept represented by the fuzzy set. A larger

value denotes a higher degree of set membership [84]. The formal definition of

A as follows:

A : X → [0, 1] (2.6)

It can also be defined as a set of pairs of the form:

A = {(x, µA(x))|x ∈ X} (2.7)

where µA(x) is a degree of membership of x in the fuzzy set A.

The ability of expressing gradual transitions from membership to nonmem-

bership and vice versa makes fuzzy sets highly applicable, one of them is in

representing vague concepts expressed in natural language [84].
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Height of a fuzzy set A, denoted by hgt(A), is determined as

hgt(A) = sup(A(x)) for x ∈ X (2.8)

By determining the height of the fuzzy set, we identify elements with the

highest membership degree. They are consider the representatives of the con-

cept represented by A.

The fuzzy set A is normal if hgt(A) = 1.

A set consisting of the elements of the universe whose membership values

to a fuzzy set A are equal to or exceed a certain threshold level α (α ∈ [0, 1])

is called the α − cut of the fuzzy set A, and is denoted by Aα. It is formally

defined as

Aα = {x ∈ X|A(x) ≥ α} (2.9)

A strong α − cut of a fuzzy set A contains all X’s elements whose mem-

bership values to A are greater than α. It is denoted A+
α and formally defined

as

A+
α = {x ∈ X|A(x) > α} (2.10)

The support of a fuzzy set A, denoted by Supp(A), is defined as a set

containing all nonzero membership elements of X. In other words, it is defined

as

Supp(A) = {x ∈ X|A(x) > 0} (2.11)

The core of a fuzzy set A, denoted by Core(A), is defined as a set containing

all X’s elements whose membership grades equal to 1. In other words, it is

defined as

Core(A) = {x ∈ X|A(x) = 1} (2.12)

The cardinality of a fuzzy set A defined in a finite or countable universe

X, denoted by Card(A), is expressed as following sum:
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Card(A) =
∑︂
x∈X

A(x) (2.13)

2.4 Ordered Weighted Aggregation Operator

Ordered Weighted Aggregation (OWA) [114] is one of most widely used nu-

meric data aggregating operators. In the simplest possible statement, this

operator is a weighted sum over ordered pieces of information. In a formal

representation, the OWA operator, defined on the unit interval I and having

dimension n, is a mapping

OWA : In −→ I such that

OWA(a1, a2, ..., an) =
n∑︂

j=1

wj ∗ bj (2.14)

where bj is the jth largest of the ai’s. W = {w1, w2, ..., wn} is a weighting

vector such that 0 ≤ wj ≤ 1 and
∑︁n

j=1wj = 1.

To obtain a weighting vector W associated with an OWA, Dr. Yager in-

troduced families or regular increasing monotone (RIM) quantifier Q. A fuzzy

subset Q represents a RIM quantifier if

1) Q(0) = 0;

2) Q(1) = 1;

3) if r1 > r2 then Q(r1) > Q(r2).

Assuming that a RIM quantifier Q, the weighting vector W can be deter-

mined such that for j = 1 to n:

wj = Q(
j

n
)−Q(

j − 1

n
) (2.15)

2.5 Linguistic Summarization

Dr. Yager [110] introduced linguistic summarization that summarizes obser-

vations of the property V for elements of the set Y = {y1, y2, ..., yn} that are
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represented as a collection of values D = {v1, v2, ..., vn}, where vi = V (yi). A

linguistic summary requires:

1) a summarizer, S: a fuzzy set characterized by its membership function

µS(v), ∀v ∈ D;

2) a quantity in agreement, Q: a fuzzy linguistic quantifier being a fuzzy

set, characterized by µQ(x), x ∈ [0, 1];

3) a measure of validity or truth of the summary – T – can be calculated

according to Zadeh’s (1983) calculus of linguistically quantified proposi-

tions as.

T = µQ(
1

n

n∑︂
i=1

µS(vi)) (2.16)

2.6 Question answering systems

A question-answering (QA) system is a computer system that can automati-

cally answer questions posed by humans in natural languages. Over 60 years,

many systems have been developed, from domain-specific systems such as

BASEBALL [40] and LUNAR [103] to open-domain complex systems such

as IBM Watson [36], Google Assistant, Apple’s Siri, Amazon’s Alexa.

Many approaches have been using in developing QA systems. The most

widely used ones are Information Retrieval (IR) based, template-based, and

most recently neural networks based. The detail of each approach together

with representative systems that have been adopting the approach will be

presented in Section 3.7.
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Chapter 3

Human-centric
Question-Answering System

Question answering is a research area applying information retrieval, natural

language processing, and machine learning techniques in building systems that

automatically answer questions posed by humans in a natural language. Many

question answering systems have been developing so far. However, most of

them are only able to answer questions that have a short answers. In this

chapter, we introduce our human-centric system. We will provide the system’s

overview. Next, we present its main components in more detail and some

extensions that make the system distinctive. We also make a short survey on

approaches adopted by such systems.

3.1 System Overview

A ‘traditional’ Question-Answering system (QAS) could be, in a simplified

form, presented as shown in Figure 3.1. Once a user asks a question, the sys-

tem queries a knowledge base – could be a structured database as in the case

of WDAqua-core0 [22], or unstructured set of documents as in the case of the

Wikipedia DrQA [13] – and an answer is ‘displayed’ to the user.

In comparison with a ‘traditional’ QAS, our human-centric one – called

Linguistic Term Question-Answer system (LingTeQA) – will be equipped with

a number of extensions as illustrated in Figure 3.2
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Figure 3.1: A ‘traditional’ question answering system

Figure 3.2: LingTeQA: A Human-centric Question Answering system

The system – LingTeQA – will allow for using imprecise concepts, asking

questions that required additional processing, and providing more summary-

like answers. To do so, we aim at developing algorithms, methods, and tools

necessary for doing following tasks: 1) template generation from pairs of ques-

tion and SPARQL query; 2) question to query translation based on generated

templates; 3) data collection from Knowledge Graphs (KGs) by executing gen-

erated queries; 4) data fusion on answers collected from multiple different KGs;

5) construction of definitions of user-based linguistic terms and quantifiers (if
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any) so questions that contain such terms can be answered accordingly to

their understanding of the terms; 6) data summarization in forms of linguistic

summaries and aggregated values (if suitable).

3.2 Question Representation

We use a so-called hierarchical structure, namely a dependency tree, for rep-

resenting English questions. A tree is a set of connected labeled nodes, each

reachable via a unique path from a distinguished root node.

3.2.1 Phrasal Dependency Definition

A phrasal dependency tree of a sentence is a directed graph representation, in

which phrases in the sentence are nodes and grammatical relations are labeled

edges in the graph. A phrase, also called a constituent, is a set of words that

act together as a unit. Every phrase has a head that determines the category

of the phrase. So if the head is a noun, then our phrase is a noun phrase (NP),

abbreviated NP-common noun/PN-proper noun. If the head is a verb then

the phrase is a verb phrase (VP), etc.

3.2.2 Phrasal Dependency Tree Generation

We perform the following steps to generate a phrasal dependency tree for a

user’s question.

Step 1. By applying the spaCy dependency parser [46], we obtain typed

dependencies that are triples of a relation between pairs of words of the ques-

tion. For example, given the question “what is the time zone of Salt Lake

City?” the spaCy parser produces typed dependencies whose graphical repre-

sentation is drawn as a tree in Figure 3.3 (with part-of-speech tags presented

in parenthesis).
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Figure 3.3: Word-level dependency tree of the question “what is the time zone
of Salt Lake City?” produced by spaCy

Step 2. By modifying the spaCy original dependency tree (word-level tree),

using specialized heuristics so that it becomes a phrase-level tree. In partic-

ular, words that involve a multiword-expression relation such as ‘compound’,

‘mwe’ are combined to form phrases. Part-of-speech tags of phrases are also re-

named to indicate common noun phrase-(NP), proper noun phrase-(PN), verb

phrase-(VP). The phrase-level dependency tree for the question is illustrated

in Figure 3.4.
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Figure 3.4: Phrase-level dependency tree of the question “what is the time
zone of Salt Lake City?”

3.3 Template Generation Process

The template generator is responsible for generating a pair of ⟨question tem-

plate, query template⟩–⟨Qst, Qrt⟩ from a given pair ⟨natural language ques-

tion, SPARQL query⟩–⟨Qs, Qr⟩ for a given, specified by the user, Knowledge

Graph (K). The template generator is composed of a question template gen-

erator and a query template generator.

3.3.1 Question Template Generator

A question template (Qst) of a given question (Qs) is generated by traversing

the phrasal dependency tree of the question and printing out an accessing

path of every visited node and associated part-of-speech tag of the node. An

accessing path of a node in the tree is a sequence of connections starting from

the root following by edges(arcs) that lead to the node. Figure 3.5 depicts the

question template generation process.

Figure 3.6 shows an example of question template generation of the ques-

tion “what is the time zone of Salt Lake City?” whose phrasal-level dependency

tree depicted in Figure 3.4.
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Figure 3.5: Question template generation process

3.3.2 Query Template Generator

Given a pair ⟨natural language question-SPARQL query⟩ and a knowledge

graph (K), the query template generator is in charge of generating a SPARQL

query template (Qrt) from the SPARQL query. It is done by replacing specific

elements of the SPARQL query (Qr) with placeholders that express the cate-

gory of the query’s elements and the associations between them and phrases

reside in nodes of the dependency tree of the question (Qs). The Figure 3.7

presents the query template generation process.
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Figure 3.6: Question template generation process with an illustrative question

Figure 3.7: Query template generation process
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The whole process of generating a pait ⟨question template, query template⟩–

⟨Qst, Qrt⟩ performed on an illustrative example is shown in Figure 3.8. We

explain the process of mapping phrases form natural language questions into

a knowledge graph’s semantic items (URIs) in the next subsection.

Figure 3.8: Query template generation process with an illustrative question
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3.3.3 Mapping natural language expressions into Knowl-
edge Graph’s semantic items

Mapping a natural language expression (phrase) found in the user’s question

into a target Knowledge Graph’s semantic items, aka URIs, (classes, entities,

properties) is done by matching the expression with URIs’ labels. However, the

variability of natural language phrases and terms used in the Knowledge Graph

creates differences between the phrases and terms. Usually, external sources

such as WordNet and lexicons, are used to find related phrases (synonyms,

different word surfaces,...) to narrow the differences. AquaLog [69],Power-

Aqua [70], for instance, use WordNet [33] for finding synonyms, antonyms.

NEQA [2] uses manually created lexicons such as predicate lexicon and class

lexicon.

In LingTeQA, we use items and properties labels from WordNet, Wiki-

data, and a small manually created lexicon created by us, to obtain additional

phrases. The original phrases and the additional phrases are then mapped

into a target Knowledge Graph’s semantic items with respect to their lexical

categories. In particular:

� A verb phrase identified by a ‘VP’ part-of-speech (POS) will be

treated in the following ways. 1) It will be converted into a noun phrase

using WordNet. For example, ‘wrote’ will be converted into ‘writer’.

Noun versions of some verbs will also be combined with question words

creating noun phrases such as ‘birth place’, ‘birth date’. 2) The obtained

noun phrase will be used to find synonymous phrases using WordNet. For

instance, by using ‘writer’ the system finds ‘author’ as a synonym; 3) The

obtained phrases will be used to find synonymous expressions using ‘alt’

labels in Wikidata. For example, by using ‘author’ to look up synony-

mous expressions in Wikidata, the system finds ‘creator’. The original

verb phrase and additional noun phrases obtained via the three afore-

mentioned steps are mapped into properties of a target knowledge graph

using a label matching procedure. For example, by using label match-

ing between DBpedia’s properties and obtained phrases, LingTeQA ob-
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tains ‘dbp:writer’, ‘dbo:writer’, ‘dbp:author’, ‘dbo:author’, ‘dbp:creator’,

‘dbo:creator’.

� A common noun phrase identified by an ‘NP’ POS will be undertaken

the following processing. 1) It will be used to find its canonical form

(lemma) using WordNet. For example, ‘writer’ is a lemma of ‘writers’;

2) The obtained noun phrase will be mapped into a target Knowledge

Graph class. For example, the system obtains ‘dbo:Writer class when

mapping ‘writer’ into a DBpedia’s class. The obtained noun ‘writer’ is

also used to find synonymous phrases using WordNet and Wikidata. As

mentioned above the system has found ‘author’ and ’creator’ as syn-

onyms of ’writer’. The obtained phrases will be mapped into DBpedia’s

properties such as ‘dbp:writer’, ‘dbo:writer’, ‘dbp:author’, ‘dbo:author’,

‘dbp:creator’, ‘dbo:creator’.

� A proper noun phrase identified by a ‘PN’ POS will be processed by

the following steps. 1) It will be mapped into a target Knowledge Graph

entity (individual) using Entity lookup Application Programming In-

terfaces (APIs) together with querying the Knowledge Graph using its

SPARQL Endpoint. LingTeQA uses WikiData’s API, DBpedia’s API

to obtain a list of entities. In case an empty result list is obtained,

for example from DBpedia, the system uses the API of Wikidata, and

then it uses the property owl:sameAs to find entities in DBpedia, and

vice versa. Next, the system will select among obtained entities those

whose label is best matched with the proper noun. For example, the

system obtains wd:Q16, wd:Q1121436, wd:Q2569593, wd:Q257304, ...

when using Wikidata’s API with the keyword ‘Canada’. Among them,

the system selects wd:Q16 because its label best matches the keyword.

By using the owl:sameAs property the system finds ‘dbr:Canada as a

targeted resource in DBpedia. The proper noun is also mapped into a

string constant.

� An adjective identified by an ‘AJ’ POS will be processed accordingly –
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if the phrase belongs to a nationality/language lexicon, a corresponding

country’s name will be retrieved, and the retrieved proper noun will be

processed similarly to a proper noun mentioned above. WordNet is also

used to find a corresponding nouns from adjectives. For example, the

adjective ‘high’ when using WordNet produces a noun ‘height’. WordNet

also provides attributes of some adjectives. For instance, attributes of

‘high’ are ‘level’,‘degree’, ‘grade’. Attributes of the adjective ‘female’ are

‘gender’, ‘sex’, ‘sexuality’. Obtained noun phrases are then processed

similarly to common nouns. A comparative adjective or adverb will

be mapped into comparative signs using a manual lexicon as well. For

instance, ‘higher/more’ is translated into the sign ‘ >′.

� A cardinal phrase, identified by a ‘CD’ POS will be converted into a

number using our own defined function.

There are expressions that do not correspond to any vocabulary element.

Examples are quantifiers like ‘the most’, comparative expressions like ‘more

than’, cardinals, and superlatives. These expressions correspond to aggrega-

tion operations in SPARQL, such as filtering, ordering, and limits. We use

a fixed, dataset-independent meaning lexicon for mapping them into query

elements.

When the question’s phrase is mapped into a query element such as a KG

resource, a constant, or a comparative sign, a placeholder is created to encode

the mapping process. A placeholder is a string in a function-like format where

the function name is a three-letter string that indicates the type of the target

element, for instance, ‘Cla’ means class, ‘Res’ means resource, ‘Pro’ means

property. The function argument is a string that specifies the position of

the node of the phrasal dependency tree where the associated phrase stored.

For example ‘Res(root.nsubj.prep.pobj)’ is a placeholder in a query template

(Qrt) indicating that a phrase that resides at the node determined by the

accessing path ‘root.nsubj.prep.pobj’ must be mapped into a resource of a

target Knowledge Graph during the process of constructing an executable

query from the query template.
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3.4 Answering Question Process

During answering questions, the system – LingTeQA – processes a question

asked by a user. First, the system analyzes it using the procedure applied

during the template generation process and creates a question template. This

template is used as a key to retrieve a corresponding SPARQL template from

the template repository. The retrieved SPARQL template is then populated

with specific information extracted from the asked question and semantic items

obtained from a mapping process (see Section 3.3.3). Next, it detects linguistic

term(s). If there is no linguistic term in the question, the system invokes a

procedure for answering regular questions, otherwise, it invokes a process for

answering questions with linguistic terms (see Section 4.4). Figure 3.9 provides

an overview of the answering question process.
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Figure 3.9: LingTeQA’s process of answering question without linguistic terms

To illustrate the question answering procedure of LingTeQA, let us take

an example question “what is the capital of Canada?”. Figure 3.10 shows the
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process.

Figure 3.10: LingTeQA’s process of answering an illustrative question
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3.5 Evaluation of Human-centric QA System

on regular questions

3.5.1 Evaluation Datasets

To assess the performance of QA systems a number of datasets have been

proposed. Here, we introduce some of them.

Free917 Free917 is a dataset created by Cai and Yates [12] consisting of

917 questions taken from 81 domains of the Freebase database involving 635

relations, annotated with lambda calculus forms.

WebQuestion Because Free917 requires logical forms, it is difficult to

scale up due to the required expertise of annotating logical forms. Berant

et al. [7] created a new dataset of 5,810 question-answer pairs obtained from

non-experts and named it WEBQUESTIONS. Different from FREE917 which

starts from Freebase properties and solicits questions about these properties,

WEBQUESTIONS starts from questions completely independent of Freebase,

and therefore the questions tend to be more natural and varied.

SimpleQuestion SimpleQuestions was the first large-scale dataset of ques-

tions and answers based on Freebase contains 108,442 questions written by

human annotators so that they are different as much as possible if annotators

encounter multiple facts with similar relationship. [10]

ComplexWebQuestion ComplexWebQuestion [91] is a dataset contain-

ing 34,689 question-answer pairs of complex questions for evaluating QA sys-

tems requiring reasoning over multiple pieces of information. Its authors took

queries from WebQuestion to automatically generate more complex ones by

adding function composition, conjunctions, superlatives, or comparatives. The

obtained queries were then executed against Freebase providing people at

Amazon Mechanical Turk answers to generate corresponding natural language

questions.
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Question Answering over Linked Data

Question Answering over Linked Data (QALD)1 is a series of evaluation cam-

paigns on question answering over linked data. Since 2011 it has provided

up-to-date benchmarks for assessing and comparing state-of-the-art systems

that mediate between a user and RDF data. The current QALD challenge is

the QALD-9th containing two tasks: Task 1-Multilingual question answering

over DBpedia, and Task 2-English question answering over Wikidata.

LC-QuAD is a Large-Scale Complex Question Answering Dataset. Its

original version comprised 5000 questions and corresponding SPARQL queries

over the DBpedia. The dataset included complex questions exhibiting large

syntactic and structural variations i.e. questions in which the intended SPARQL

query does not consist of a single triple pattern [3]. In particular, among them,

only 18% are simple questions, and the remaining questions require queries

either involving more than one triple, or COUNT/ASK keyword, or both.

However, there are no queries with OPTIONAL or UNION keywords in the

dataset. Also, there are no conditional aggregates in the query head. [3].

LC-QuAD 2.0 consists of 30,000 pairs of questions and its corresponding

SPARQL query. The dataset is compatible with both Wikidata and DBpedia

2018 Knowledge Graphs [27].

3.5.2 Experiment Setting and Results

To evaluate LingTeQA’s performance, we did not choose Free917, WebQues-

tion, or ComplexWebQuestion because they are Freebase oriented datasets

and Freebase had been shut down by Google since 2014. We used QALD-9th2

with 408 training questions and 150 testing questions against DBpedia.

We generated a template repository of 107 pairs <question template –

SPARQL query template> from the 408 pairs of <question-SPARQL query>

in the training dataset. The constructed template repository was used to an-

swer 150 questions over DBpedia, and 100 questions over Wikidata (based on

QALD-7th challenge).

1http://qald.aksw.org/
2https://2018.nliwod.org/challenge
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Table 3.1: Results of QA systems answering QALD-9 (DBpedia)

QA system macroP macroR macroF1

WDAqua 0.049 0.053 0.050
ganswer2 0.097 0.116 0.098
TeBaQA 0.129 0.134 0.130
LingTeQA 0.242 0.295 0.246
Elon 0.261 0.267 0.250
gAnswer
(WS)

0.293 0.327 0.298

Table 3.2: LingTeQA results: QALD-9 DBpedia & QALD-7 Wikidata

Dataset microP microR microF1

DBpedia 0.526 0.642 0.535
Wikidata 0.634 0.735 0.642

LingTeQA was able to answer 69 out of 150 over DBpedia, and 55 out of

100 questions over Wikidata. We used precision (P), recall (R), and F1 for

comparing our system with QASs that participated in the QALD challenge.

Table 3.1 shows performance of LingTeQA in comparison with the perfor-

mance of systems participated in the 9th QALD challenge [99]. The macro

precision, recall, and F1 are calculated based on 150 questions. When we eval-

uated our QA system on questions over the Wikidata dataset from QALD-7,

we obtained the values 0.336, 0.390, and 0.340, respectively. The analysis of

obtained results has led us to an interesting observation that some questions

could not ‘find’ entries in the system template repository. Therefore, we have

performed another experiment in which we focus on answerable questions, i.e.,

questions whose syntactic structure identified by LingTeQA. The micro pre-

cision, recall, and F1 of that experiment for both DBpedia and Wikidata are

presented in Table 3.2.
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3.5.3 Discussion

There are several questions whose syntactic structures do not match the struc-

tures of questions in the training dataset. In particular, they are 81/150

questions over DBpedia and 45/100 questions over Wikidata. For example,

“Which American presidents were in office during the Vietnam War?” and

“How many gold medals did Michael Phelps win at the 2008 Olympics?”. As

a result, LingTeQA could not find corresponding query templates.

LingTeQA failed to answer some questions whose syntactic structures are

even known to it because the ground-truth queries of these questions require

very specific semantic items. For example, the query

SELECT ?answer

WHERE {dbr:Chiemsee dbp:depth ?answer.}

was constructed to answer the question “how deep is Lake Chiemsee?” as many

people may expect. However, the correct query must be

SELECT DISTINCT ?n

WHERE {dbr:Chiemsee dbo:maximumDepth ?n.}

The same situation is applied to other questions such as “What is Batman’s

real name?”.

There are also some questions, to which our system responded with more

answers when compared with the reference answers because 1) system-constructed

queries are executed against the current DBpedia version instead of the DB-

pedia 2016-10; 2) our system constructs more properties representing a rela-

tionship between two entities than queries in the testing set. As a result, this

leads to a decrease in precision but an increase in recall. For instance, our

system constructed the query

SELECT DISTINCT ?a

WHERE {?a rdf :type dbo:Language; dbo:spokenIn dbr:Pakistan}

to answer the question “What languages are spoken in Pakistan?”, while the

required query should be

SELECT DISTINCT ?uri

WHERE {dbr:Pakistan dbo:language ?uri}

45



We argue that the structure of the required query is not generic enough for

answering the same type of questions.

The performance of LingTeQA has also been degraded because it has failed

in mapping from natural language phrases into DBpedia’s items. For exam-

ple, the system wrongly has mapped “Indigo” into dbr:Inigo Jones instead of

dbr:Indigo. The mapping from a natural language expression into a DBpe-

dia’s property is even more challenging. For instance, to retrieve the mayor

of a city from DBpedia, the corresponding property is dbo:mayor in the case

of Lyon, dbo:leader in the case of Berlin, and dbo:leaderName in the case of

Tel Aviv. In many cases, the mapping process requires not only a constituent

of a question but the question as a whole. That is the case of the question

“When did Finland join the EU?”. LingTeQA has failed to map “join” to

dbp:accessioneudate.

In addition, some questions are challenging to any existing QA system be-

cause they require reasoning related to temporal data. For example, the ques-

tions “Which American presidents were in office during the Vietnam War?”

and “Give me all American presidents of the last 20 years.”

To deal with questions we have not found templates for, we have adopted

a process called paraphrasing. The more details related to it and its usefulness

are included in the following section – Section 3.6.

3.6 Paraphrasing

3.6.1 Motivation

Many studies showed that state-of-the-art QASs are very sensitive to variations

in the way questions are worded [78][24], and LingTeQA is no exception.

The performance of many Question-Answering systems can improve via

adopting paraphrasing as their first processing step. For example, Duboue and

Chu-Carroll [29] reported that replacing a question with a more felicitously

worded question can potentially result in a 35% performance enhancement.

Similarly, by supplying their QAS with a question and its paraphrases, Dong

et al. [24] reported that the system consistently improves performance, achiev-
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ing competitive results despite the use of simple question answering models.

Paraphrasing can generate an array of lexically and structurally distinct re-

wordings, some of them may better match the processing capabilities of the

system than the original questions. As a result, the question is more likely

answerable and correctly answered [29].

The idea of using a template-based paraphraser as part of a natural lan-

guage question-answering system has been around since the 1970s when such

systems as PLANES developed by Waltz et al. and RENDEZVOUS pro-

posed by Codd et al. had used templates to form paraphrases. It has been

done by filling empty slots in the pattern with information from the user’s

question [58]. Recently, Fader et al. [31] [32] have introduced PARALEX, a

paraphrased-based system that can answer open-domain questions with single-

relation queries.

Another widely-used technique for paraphrasing uses multiple parallel cor-

pora and machine translation [5][4][29][73]. Ganitkevitch et al. [38] have com-

bined several English-to-foreign bitext corpora to extract PPDB:Eng, a large

ranked ParaPhrase DataBase. The PPDB:Eng contains over 220 million para-

phrase pairs, consisting of 73 million phrasal and 8 million lexical paraphrases,

as well as 140 million paraphrase patterns. An improved version of PPDB has

been done by Pavlick et al. [83] and Fujita and Isabelle [37]. Narayan et al. [78]

have trained their model on the PARALEX corpus using the lexical and phrasal

rules from the PPDB, and generated both lexically and syntactically diverse

paraphrases.

Recently, thanks to the advances in deep learning algorithms leading to

the construction of several deep neural network models – Convolutional Neural

Network (CNN), Recurrent Neural Network (RNN), Long Short Term Memory

(LSTM), with some of them focused on NLP tasks. One of the most interesting

techniques of deep learning is transfer learning. In this technique, a model is

first pre-trained on a data-rich task before being fine-tuned on a similar task.

This has emerged as a powerful technique in natural language processing [85].

Text-To-Text Transfer Transformer (T5) model developed by Google’s research

team treats every text processing problem as a “text-to-text” problem, i.e., it
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takes a text as an input and produces a new text as the output.

3.6.2 Paraphrasing and Human-centric QA System

In LingTeQA, because a template that is generated from a given pair of <

question − query > can not be used to answers paraphrases of the question,

we use a T5 transformer 3 to generate up to ten paraphrases of the question. As

a result, up to 10 new pairs– < paraphrasedquestion, query >– are generated.

We also use newly generated pairs to generate templates creating the template

repository that allows for a wider variety of questions. For example, given a

< question− query > pair extracted from QALD-9th training dataset: “what

is the population of Cairo?” and the corresponding query is:

SELECT ?answer

WHERE{dbr:Cairo dbo:populationTotal ?answer.}

Using the transformer, the following paraphrases are available for LingTeQA:

� “what is the population of Cairo?”

� “how many people are living in Cairo?”

� “how many people live now in Cairo?”

� “what is the population of Cairo, Egypt?”

� “What population does Cairo have?”

� “what is the population total of Cairo?”

� “what’s the population of Cairo?”

� “What are the demographics of Cairo?”

Consequently, LingTeQA uses eight pairs of< paraphrazedquestion, query >

to generate eight templates instead of just one. With the extended template

repository, our system can perform slightly better. Our experiment on QALD

3https://github.com/ramsrigouthamg/Paraphrase-any-question-with-T5-Text-To-Text-
Transfer-Transformer
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Table 3.3: LingTeQA results: QALD-9 DBpedia & QALD-7 Wikidata with
and without paraphrases

Paraphrased Dataset macroP macroR macroF1

Yes
DBpedia 0.556 0.665 0.545

Wikidata 0.646 0.739 0.646

No DBpedia 0.526 0.642 0.535
Wikidata 0.634 0.735 0.642

datasets shows some improvement. In particular, without using paraphras-

ing, the system can generate only 107 templates from provided 408 pairs of

<question-SPARQL query> (see Section 3.5.2) whereas it can generate an ex-

tended template repository containing 631 templates by using paraphrased

questions. LingTeQA uses the extended template repository to answer more

questions in 9th QALD DBpedia and 7th-QALD Wikidata (88/150 questions

over DBpedia, 72/100 questions over Wikidata), and with slightly higher pre-

cision, recall, and F1-measure as well. Table 3.3 gives the detailed results.

The paraphrasing process allows LingTeQA to better handle the variability

found in natural language.

3.7 Question-Answering: Related work

In this section, we survey various approaches towards developing question

answering systems. We will provide some main ideas underlying each of them

and list some systems that has been adopting the approach.

3.7.1 Information Retrieval-Based Question-Answering
Systems

Originally, question answering had a strong focus on textual data sources

to find answers, relying mostly on information retrieval techniques[98]. In

this approach, a QAS may broadly have three stages, i.e., question analysis:

parsing, question classification and query reformulation for finding relevant

text (documents, articles, web pages,...); document analysis: extract candidate
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documents, identify answers; and answer analysis: extract candidate answers

and rank the best one [30], [66].

Question classification: some QASs using statistical techniques such

as support vector machine (SVM) classifiers, Bayesian classifiers, Maximum

entropy models for predicting users’ expected answer type. These models

are trained on a corpus of questions or documents that has been annotated

with the particular mentioned categories in the system. IBM’s statistical QA

system [49] utilized a statistical algorithm (maximum entropy model) for pre-

dicting the class of the answer desired by a question and the class of segments

of text based on various N-gram or bag of words features while systems de-

veloped by Moschitti [77], Zhang and Zhao [121] had used SVM classifiers

for question and answer categorization. Some of the knowledge based QA sys-

tems relied on the rule based mechanism. After applying general purpose NLP

techniques, rules are further built to identify question classification features.

Quarc developed by Riloff and Thelen [87] and Cqarc developed by Xiaoyan et

al. [107] used heuristic rules that look for lexical and semantic clues in question

to identify the question class.

Methods used for answer finding task vary from system to sys-

tem. The IBM’s statistical QAS used a two-pass approach. In the first pass,

the system searches an encyclopedia database. The highest scoring passages

were then used to create expanded queries by applying local context analysis

technique. The expanded queries are applied in the second pass scoring of

the TREC documents. Top sentences are then ranked by a maximum entropy

based answer selection model. A QAS by Moschitti [77] implemented similar-

ity measurement model that accounted on different features such as keyword

similarity, length similarity, order similarity and distance similarity

3.7.2 Template-Based Question-Answering Systems

Template-based approach has been applied for structured data such as Database

and Knowledge Bases (aka Knowledge Graphs). Query languages such as SQL

and SPARQL4 are standard ways of accessing the structure data. Therefore,

4https://www.w3.org/TR/rdf-sparql-query/
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the main idea of the approach is the translation from users’ questions into

templates in form of λ− calculus, triple-based, or SPARQL templates. Then

templates are converted into SQL/SPARQL queries. A benefit of templates

is that the mappings to the KG are traceable and can be leveraged to gen-

erate explanations for the user to understand why she receives specific answers.

Template representation

λ− calculus is a formal system in mathematical logic for expressing com-

putation based on function abstraction and application using variable binding

and substitution. It is used by Platypus [92]. For instance, Platypus repre-

sents question “Where was the inventor of dynamite born?” as

{y|∃x < dynamite, inventor, x > ∧ < x, birthP lace, y >}

Triple-based are used in systems such as AquaLog [69], Power-Aqua [70].

For example, AquaLog translates the question ‘Who is a Professor at the

Knowledge Media Institute?’ into an intermediate triple

< who, Professor, Knowledge Media Institute > then map the intermedi-

ate triple into ontology-compliant logical query

< typeOf ?x Professor in Academia > & < work in unit ?x KMi >.

Power-Aqua transforms the question “Give me actors starring in movies

directed by Clint Eastwood” into < actors, starring, movies > and <

actors/movies, directed, Clint Eastwood >.

Other systems use predefined generic templates. For instance, Aqqu [6]

uses three SPARQL query templates: < e1, r1, t >, < e1, r1,m >< m, r2, t >,

and < e1, r1,m >< m, r2, e2 >< m, r3, t > where e is an entity placeholder,

r is a relation placeholder, m is an intermediate object and t is the output

variable.

Many systems employ templates containing < question − query > pairs,

guiding the mapping of utterance constituents onto query components. For ex-

ample, PARALEX [31], a single-relation QA system, using question templates

such as ‘Who r the e books?’, ‘Who is the r of e?’ along with query templates

in forms of r(?, e) or r(e, ?) where r is a relation and e is an entity. OQA [32]

uses 10 hand-written templates, each of them consists of a question pattern
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and a query pattern. The question pattern expressed using noun phrases (NP),

auxiliary verbs (Aux), and ReVerb patterns (RV) while the query pattern is

expressed using triple-based representation. ‘Who/What RVrel NP ′
arg and

(?x, rel, arg) is a template example. QUINT [1] builds a bank of templates

where each template t = (ut; qt;mt) composed of an utterance template ut, a

query template qt, and an alignment mt between the two indicated by shared

ent, pred, and type annotations. For example, based on a pair of question u =

‘Which actress played character Amy Squirrel on Bad Teacher?’ and answer

Au = {LucyPunch} the system builds a template as

Figure 3.11: A template generated by QUINT

For an asked question, QALL-ME Framework [34] and AutoSPARQL TBSL [97]

produce SPARQL-like templates that are SPARQL queries containing slots

which are placeholders for KG’s URIs. For example, AutoSPARQL TBSL [97]

builds two SPARQL templates for the question ‘How many films did Leonardo

DiCaprio star in?’. One of them is

SELECT COUNT (?y) WHERE{?x ?p ?y.}

with slots: <?x, resource, Leonardo DiCaprio > and <?p, property, films >.

QALL-ME Framework [34] generates a question template ’Where can I see

the movie [MOVIE]?’ paired with a SPARQL query template

SELECT ?cinemaName

WHERE{?movie qmo:name “[MOV IE]′′. ?cinema qmo:showsMovie ?movie.

?cinema qmo:name ?cinemaName.}

for questions about the cinemas that show asked movies. Let us take a look

how these templates can be generated.
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Template generation:

Platypus [92] firstly parses a question with standard tools such as CoreNLP,

SyntaxNet, and Spacy yielding a dependency tree. Next, it applies rules on

the dependency tree to produce the logical representation of the question.

QUINT [1] and NEQA [2] uses a distant supervision model with train-

ing data are questions paired with their answer sets to learn templates with

alignments between the constituents of the question utterance and the KG

query.

AquaLog [69] firstly generates intermediate triples in form of term-relation

and then classifies them based on syntactical annotations. Next, it produces

an ontology-compliant logical query by using the structure of the ontology and

information stored in the target KGs, as well as string similarity matching and

lexical resources, such as WordNet and user’s help for disambiguation.

Power-Aqua [70] firstly analyzes an asked question and translates it into its

linguistic triple form. Next, it identifies ontologies that are likely to provide

the information requested by the user. Then it matches the linguistic triple

terms and lexically related words obtained from WordNet and the ontologies.

Once the set of possible syntactic mappings has been identified, it checks its

validity using a WordNet-based filtering methodology. After this process, it

generates a set of Entity Mapping Tables where each table links a query term

with a set of concepts mapped in the different domain ontologies.

AutoSPARQL TBSL [97] firstly obtains part-of-speech information pro-

vided by Stanford POS tagger on an asked question. It then looks up tokens

from the question in a domain-independent lexical, adds to the lexical new

entries if they do not exist. Next, it parses obtained lexical entries to con-

struct semantic representations of the whole question. Finally, it translates

the semantic representations into SPARQL templates.

Aqqu [6] uses conditional probability to map noun phrases in a question

into Freebase entities. Based on entity matches it generates query candidates

using the three predefined templates. For each the query template it selects

relations from the query and match them with phrases in the question using
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literal, derivation, synonym, and context matches. Finally, it uses learning-to-

rank techniques to learn pair-wise comparison of query candidates to choose

the best candidate query for answering the question.

Using templates:

PARALEX [31] and OQA [32] apply hand-written templates on para-

phrased questions from an input question to produce query templates. They

then populate the templates using a lexicon that encodes mappings from nat-

ural language to database concepts. Finally, they executes rewritten query

against a KG to get final answer.

QUINT [1] performs light-weight template matching. The user utterance is

considered matched with a template if a subgraph of its dependency parse tree

is isomorphic to the question template considering their edge labels and the

POS tags in their nodes. For each matching utterance template, QUINT [1]

instantiates the corresponding query template based on alignment and the

lexical L. Next it applies a learning-to-rank approach to rank obtained queries,

and returns the highest ranking query as the one intended by the question.

Platypus [92] first finds the template that best matches a question using a

classifier that ranks the logical representations (templates) according to their

likelihood of being the correct interpretation of the question. Finally, it con-

verts the representations into SPARQL queries, and executes one after the

other on Wikidata, until one of them yields an answer.

3.7.3 Artificial Neural Networks-Based Systems

A widely used methodology of Artificial neural networks (ANN)-based QA

systems is that they use an RNN to produce vector representations for a given

question and candidate KG’s subject entities and predicates associated with

the question. The question is often encoded as the final state of an RNN whose

input is a concatenation of vector representations of its words at a different

level. Next, a probabilistic formulation or a similarity measurement is used

to find the most matched subject-predicate pair for the question. Finally, the

object of the triple whose subject and predicate are found in the previous step
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is returned as the answer to the question.

The differences between QA systems lie in the techniques they adopted for

finding candidate KG’s subject entities and predicates. The system developed

by Dai et al. [16] uses a conditional probability for inferring the implied re-

lation from the given question first, then inferring mentioned subject given

the inferred relation. These conditional probabilities are calculated based on

the exponential of the dot product of vector representations of the condition

(question/relation) and the event (relation/subject). The QA system intro-

duced by Lukovnikov et al. [71] finds candidate subjects and predicates by

first collecting the lowercased English entity labels from a target KG. All word

n-grams of size 1 to L contained in question q are retrieved, filtered, and used

for searching matching entities using rules. Matching entities are then ranked

by the number of triples in the KG. Only m entities with the highest rank

are added to the candidate set. Next, a candidate set of predicates is gen-

erated from triples whose subject belongs to the candidate subject entities.

The QA system for answering simple questions built by Hao et al. [42] uses a

BiLSTM-CRF model in the first stage to split a question utterance into men-

tion span and question pattern. After revising obtained question pattern, each

mention span is used to retrieve subject entities in KG whose names contain

overlap words with the mentioned span. Then the system ranks the candi-

date subject entities according to each entity’s longest consecutive common

subsequence, top-M ranked entities are kept for each question. Afterward,

each of the selected subject entities is used to collect associated predicates. In

the next stage, given a pair of (mention span, question pattern) and sets of

candidate subject entities and associated predicates retrieved in the previous

stage, the system uses cosine similarity score between the encodings of string

surface-form of the mentioned span and entities’ names are calculated to rank

candidate subject entities. The same similarity measure is used to rank the

candidate predicates.

Different from the aforementioned ANN-based systems, the QA system

proposed by Iyer et al. [50] used a neural sequence-to-sequence model to di-

rectly generate SQL queries from natural language questions. The model is

55



an encoder-decoder model with global attention where the anonymized utter-

ance is encoded using a bidirectional LSTM network, then decoded to directly

predict SQL query tokens. Fixed pre-trained word embeddings from word2vec

are concatenated to the embeddings that are learned for source tokens from

the training data. The decoder predicts a conditional probability distribution

over possible values for the next SQL token given the previous tokens using

a combination of the previous SQL token embedding, attention over the hid-

den states of the encoder network, and an attention signal from the previous

time step. The preliminary semantic parser is initially trained, then iteratively

improves this parser using user feedback and selective query annotation.

The ANN-based approach is easier to retrained or reused for a different

domain, avoid error propagation but is hard to control because the systems

are given the freedom to make a decision; thus, they may only be suitable for

answering factoid questions rather than complex questions or questions with

aggregations because they do not handle deeper linguistic phenomena such as

quantification, negation, and superlatives, etc.

3.7.4 Graph-Based Question Answering Systems

Graph-based QA systems map semantic phrases in a question into KG items

to construct the Directed Acyclic Graph (DAG). The systems then reduce the

question answering problem to a subgraph matching problem.

Zou et al. [126] proposed a two-stage graph data-driven solution to answer a

natural language question. In the question understanding stage, they interpret

a natural language question N as a semantic query graphQS in which each edge

denotes a semantic relation extracted from N. The semantic relation is a triple

< rel, arg1, arg2 >, where rel is a relation phrase and its associated arguments

are arg1 and arg2. In the query evaluation stage, they find subgraph matches

of QS over RDF graph G based on the semantic similarity of the matching

vertices and edge in QS and the subgraph match in G. Top-k subgraph matches

with the largest scores computed from the confidence probabilities of each edge

and vertex mapping are used for answering the question N.

Zhu et al. [124] proposed a three-stage graph traversal-based method for

56



answering non-aggregation questions. In the question understanding stage,

they use an entity linking method to detect the mention-entity pairs, of which

the mention is used for the phrase boundary identification. Next, they build

a list of topological patterns to discover the structure by taking advantage of

the parsing result of the query. In the Graph Traversal stage, they build a

subgraph of the underlying knowledge graph rooted from entities found in the

last stage. Then they use a jointly ranking method to find the most appropriate

traversal path in the subgraph. The topological structure is used for semantic

item mapping and judging traversal stop conditions. In the last stage, namely

Focus Constraint, they extract a phrase describing the answer directly from the

query, which is called a focus to help modify final path ranking scores. After

the above three stages, the overall path candidates ranking list is obtained.

The answers found along the path with the highest score will be returned.

Hu et al. [47] also introduced a graph data-driven approach for develop-

ing RDF question answering systems. They first apply Stanford Parser to a

natural language question to obtain a dependency tree. They then extract

semantic relations based on the dependency tree to build a semantic query

graph by mapping the relation mentions and node phrases to candidate predi-

cates/predicate paths and entities/classes, respectively. Next, they find top-k

RDF subgraphs of the chosen RDF graph that matches the previously created

semantic query graph with the highest matching scores.

Interactive Question Answering Systems

The flexibility, complexity, and ambiguity of natural language questions result

in errors in translating natural language phrases into semantic items. Conse-

quently, the errors degrade the performance of QA systems. A natural way of

clarifying ambiguities is by asking some questions back to the users or let them

interact with KGs allowing for manual mapping between natural language ex-

pressions and semantic items. Here are some interactive question answering

systems:

Aqualog [69] is a QA system that asks users for helping disambiguation

when analyzing user’s queries. In particular, the user is asked to help choose
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the right relation or instance.

FREyA [17], a Natural Language Interface for querying ontologies, aims at

improving recall by enriching the domain lexicon from the user’s vocabulary

and improving precision by resolving ambiguities more effectively through the

dialog. There are two kinds of dialog in FREyA. The disambiguation dialog

involves the user resolving identified ambiguities. The mapping dialog involves

the user to map a Potential Ontology Concepts (question terms/phrases) to

the one of the suggested Ontology Concepts (KG instances/individuals, classes,

properties).

SPARKLIS [35], a Semantic Web tool, helps users explore and query SPARQL

endpoints by guiding them in the interactive building of questions and answers.

It integrates Faceted Search (FS), Query Builders(QB), and Natural Language

Interfaces (NLI). The NLI allows users to form questions step by step by se-

lecting words that are generated via auto-completion manner. The FS and

QB give a set of suggestions to refine the current selection, and users only

have to pick a suggestion according to their preferences. The QB lists eligible

constructs at each step enabling query completion with minimal syntax errors.

However, to use the tool, users need to learn how to use it, but that after a

short training, they can answer complex queries.

A system developed by Zheng et al. [123] lets users verify the ambiguities

during query understanding to answer natural language questions over Knowl-

edge Graphs. Given a question, their system firstly enumerates all possible

candidate phrases and then finds their corresponding candidate mappings in

the Knowledge Graph. The phrase mappings are assembled to form complex

query structures based on the input question and the underlying knowledge

graph. If the system does not understand the question for some ambigui-

ties in the whole process (generating candidate phrase mappings and query

structures), it will resort to the user by presenting her with the ambiguous

candidates and letting her make choice.

IMPROVE-QA [122] aims for a better understanding of natural language

questions and more precise-answer returning via users’ feedback to the system.

In particular, it learns from the translation from natural language questions
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to queries and the users’ feedback to generate more precise answers and avoid

translation mistakes on answering subsequent questions using paraphrasing

dictionaries.

NEQA [2], a template-based system, harnesses non-expert user feedback

on an answer set generated as a response to a given question to expand its

template repository.

IQA [120] incorporates user feedback in the question-answering process for

semantic QA pipelines. First, IQA displays the current question along with

a top-ranked query is provided in its natural language representation and a

SPARQL representation. Using this part of the interface, the user can accept

the top-ranked query. User issues the question Q first. Then IQA generates

the question interpretation space and generated interaction options. The user

is then simultaneously presented with the interaction option to accept/reject

until a condition is met, for example, the user accepts the complete question

interpretation, the question interpretation space is empty. The interaction

option is expressed as an inquiry along with a candidate answer. The user

can select from “yes”/“no”/ “don’t know” answers to accept or reject the

interaction option displayed. According to the user feedback, the interaction

option and the top-ranked query are updated.

Conversational Question Answering Systems

Question-Answering systems provide a user-friendly means to find informa-

tion needs from open KGs. On many occasions, users’ information needs are

not always phrased in well-formed and self-contained questions for one-shot

processing. Users tend to ask follow-up questions that usually make complete

sense only in conjunction with the conversation context: the previous question

and the previous answer [65]. To better meet the users’ information needs, QA

systems need to maintain conversation context using entities and predicates

seen so far and automatically inferring missing or ambiguous pieces for follow-

up questions. Such QA systems are called conversational Question Answering

ones.

Building conversational QA systems are challenging because of incomplete
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follow-up questions, implicit entities or predicates, ungrammatical phrase, and

implicit context from previous interactions [15].

To address the challenge, Kumar and Joshi proposed an approach of ques-

tion completion aiming at creating syntactically correct full-fledged interroga-

tive sentences from the user’s inputs using retrieval-based sequence to sequence

learning. They train their system using a labeled dataset containing a few

thousand conversations, by decomposing the original problem into two sim-

pler and independent problems. The first one focuses solely on selecting the

candidate questions from a library of question templates (built offline using the

small labeled conversations dataset). In the second one, they re-rank the se-

lected candidate questions using a neural language model (trained on millions

of unlabelled questions independently). By doing so their retrieval-based sys-

tem can return a complete question for an incomplete follow-up question, given

the conversation context: the previous question and the previous answer. [65].

Christmann et al. [15] developed a solution called CONVEX, an unsuper-

vised method, that can answer incomplete questions over a Knowledge Graph.

Their core method is a graph exploration algorithm that judiciously expands

a frontier to find candidate answers for the initial question. In particular, the

question is used to identify a small subgraph of the KG for retrieving answers.

For incomplete and ungrammatical follow-up questions, they capture the con-

text in the form of a subgraph as well, and they dynamically maintain it as

the conversation proceeds. This way, relevant entities and predicates from

previous turns are kept in the gradually expanding context.

Conversational Question Answering is a challenging but promising task.

We anticipate that it will become one of the active research trends in the

future.

Hybrid Question Answering Systems

HAWK [100] is a hybrid QA system that uses predicate-argument representa-

tions of questions to derive equivalent combinations of SPARQL query frag-

ments and text queries. The system integrates the results of the text queries

into SPARQL to generate a formal interpretation of the query. HAWK im-
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plements an 8-step pipeline in which the first four steps create a predicate-

argument graph annotated with resources from the Linked Data Web. The

next two steps assign semantic meaning to nodes and generate basic triple

patterns for each component of the input query accordingly to a multitude of

features creating a set of SPARQL queries containing text operators as well

as triple patterns. The last two steps discard queries using several rules and

rank queries sing extensible feature vectors and cosine similarity.

A QA system introduced by Xu et al. [108] is another hybrid system that

exploits both structured data from DBpedia and Freebase and free text from

Wikipedia. The system firstly performs entity linking and relation extraction

then uses an integer linear program (ILP) model to solve the disambiguation

among entities and relations across text and KGs. The entity linking is done

by using DBpedia Lookup and S-MART to retrieve top 10 entities from DB-

pedia and Freebase, respectively as candidate entities while relation extraction

is implemented using a MultiChannel Convolutional Neural Networks (MCC-

NNs) model to map relational phrases to KG predicates and paraphrase model

to predict textual relations from the relational phrases.

Platypus [92] is also a hybrid QA system that combines a set of transfor-

mation rules based on sentence grammars and query templates and slot filling.

The system works in three steps. In the first step, its analyzer converts the nat-

ural language question into one or several internal logical representations using

rules. In the second step, its template analyzer ranks logical representations

(templates) according to their likelihood of being the correct interpretation of

the question. In the last step, the representations are converted into SPARQL

and executed one after the other on Wikidata, until one of them yields an

answer.

Multilingual Question Answering Systems

Since both publishing data in languages other than English as well as users

who access this data and speak native languages other than English are grow-

ing substantially, multilingual question-answering systems have been gaining

a great deal of attention from the Semantic Web community. The systems
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provided below are very recently proposed ones.

Platypus [92] is a Multilingual Question Answering Platform for Wikidata.

It can answer questions posed in English or French.

WDAqua-core0 [22] is a rule-based system that supports both full natural

language queries as well as keyword queries posed in English on DBpedia and

English, French, German, and Italian on Wikidata.

MuG-QA [125] is a Multilingual Grammatical Question Answering system

that can answer questions posed in English, German, Italian and French over

DBpedia. Their natural language modeling and parsing are implemented using

Grammatical Framework in which concrete syntaxes for the German, Italian

and French languages, operating with the same categories and concepts of the

common abstract syntax. Once a natural language question is parsed, the

resulting abstract grammar tree is matched with the knowledge base schema

and contents to formulate a SPARQL query.

LAMA [79] is a multilingual (English and French) QA system that uses a

set of lexico-syntactic patterns used to generate the SPARQL queries. LAMA’s

pipeline is composed of 3 main steps: Pre-Processing, Syntax Tree Represen-

tation, and SPARQL Query Generation.

WDAqua-core1 [19] is a multilingual and KG-agnostic QA system. It is

able to query several knowledge bases simultaneously, in different languages.

According to the authors by collecting lexicalizations for different languages

and KGs and using Apache Lucene, their system can easily handle multilin-

gualism.

3.8 Conclusion

We have introduced many developed question-answering systems with various

approaches to show the diversity in question answering. Although we have

adopted the template-based method to develop LingTeQA, our system is dif-

ferent from other template-based systems.

An integral part of the system is a template repository that contains pairs

<question template−SPARQL query template>. A newly asked question is
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converted into a question template and checked against entries of the reposi-

tory. As a result, a corresponding SPARQL query template is retrieved. This

template is used to generate a SPARQL query to answer the question.

To automatically build the repository and perform all tasks leading to

generate and execute a SPARQL query, we have developed algorithms for 1)

interpreting natural language questions, so questions with the same syntactical

structure are mapped into the same pair of templates; 2) generalizing SPARQL

queries; and 3) constructing question and query templates.

The constructed queries are traceable and interpretable. They can be lever-

aged to generate explanations for users so they understand why specific an-

swers were obtained.

Examining the LingTeQA’s performance on generating templates from

question-query pairs in QALD’s training dataset and answering questions in

QALD’s test dataset, we noticed that mapping question’s constituents into

KG’s properties are the most challenging task. Although KG’s properties usu-

ally bear mnemonic names, their only actual connection to natural language

is by the labels that are attached to them. These labels often provide a canon-

ical way to refer to the URI, but usually do not account for lexical variation.

Although the vocabulary of natural language and the vocabulary used by the

data overlap, the expressions a user uses often differ from the labels attached

to the data [98]. As a result, how well the system answers a question heavily

depends upon its syntactic structure and phrases used to express its meaning.

Despite being sensitive to the wording of questions, with generated tem-

plates, our system can answer a variety of questions, including questions con-

taining imprecise concepts (linguistic terms). In addition, it can generate lin-

guistic summaries to answer questions whose answers are long lists of numbers.

We present the processes of answering such questions in subsequent chapters.
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Chapter 4

Human-centric Question
Answering System with
iPad-based Interface for
Defining Linguistic Terms

Searching for information and discovering useful from a large amount of stored

data become an everyday activity of many users. On many occasions, these are

tedious tasks requiring knowledge related to interacting with data repositories

and knowing how to define linguistic terms representing personal perceptions

of concepts understood by users. The users want to use such concepts to learn

how well, i.e., to what degree, the analyzed data satisfies these concepts. In

other words, the users want to know how well the analyzed data matches their

perceptions of concepts.

However, human-computer interaction is crude and far from natural. Users

are forced to interact with data repositories using languages understood by ma-

chines. A simple way to learn more about phenomena represented by data can

be done via representing the data as human-perceived concepts and enabling

a human-like interpretation of it. The users should be able to use linguistic

terms –for example LARGE, SLOW, MOST –as their representations of con-

cepts in order to gain a better understanding of data. Yet, other issues arise:

how to enter definitions of such terms, how to incorporate individual’s under-

standing of their meanings, how to ensure their proper interpretation, and of

course, how to do all this in an easy and simple way.
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In this chapter, we present and describe an iPad-based software that en-

ables an easy procedure of defining linguistic terms. The application –called

Tablet input of Fuzzy Sets (TiFS) – allows users to define terms in a simple

way via drawing their ‘shapes’ using fingers. We provide a detailed application

of Tablet input of Fuzzy Sets (TiFS) in question-answering system.

4.1 Linguistic Terms and Quantifiers as Fuzzy

Sets defined with iPad

An iPad-based application described here, TiFS [113], addresses a need for

a system simplifying the process of defining fuzzy sets. It allows users to

define, or shall we say to draw, shapes of membership functions using their

fingers. The simplicity of the graphical interface of TiFS , and the need for

entering only basic information makes the process of constructing fuzzy sets

very convenient and straightforward.

4.1.1 Defining Linguistic Terms using TiFS

A graphical interface of TiFS is shown in Figure 4.1. It allows for defining

linguistic terms. It is a simple interface that requires a minimum amount of

input data. A user starts with providing a name of the domain on which a

given linguistic term should be defined –the input field DomainName. Due to

the fact that multiple terms can be defined on the domain, the user has to enter

a name of a term she intends to define –the input field Summarizer/Linguistic

Term . Also, the user has to provide information about the domain range –the

input fields Range From: and To: –that allows the user to enter the minimum

and maximum values of the domain.
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Figure 4.1: Interface of iPad application TiFS for defining linguistic terms.

In order to manage previously defined terms on multiple domains, the TiFS

provides the user with a number of options located at the bottom of the screen.

There are (from left to right, Figure 4.1): NEW –to clean the content of input

fields and prepare the application for new definitions of terms; DELETE –to

remove an already existing definition of the term that is identified by the

domain’s name and the term’s name; SAVE –to store the entered definition

of a term into the application storage, the stored data includes: a domain

name, a term name, range and values of the term, and its shape entered by

a user; RETRIEVE –to load the previously defined term from storage based

on the domain and term names, and show the membership function shape

on the screen; DISPLAY –to display fuzzy function membership values of the

previously defined and stored term, the term to be displayed is identified by

the domain and term names.

4.1.2 Web Interface for Defining Linguistic Terms

We have implemented LingTeQA [95] as a Web application. It is accessible

at www.lingteqa.site, and it contains a user-interface, based on TiFS, for

entering membership functions defining linguistic terms.
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Whenever the system answers a question containing a linguistic term, it

collects data from a specified KG by executing a constructed query. It then

prepares a coordinate plane for a user to enter their understanding of the term.

To make the x-axis relevant, the system determines a proper range: it finds

out the minimum and the maximum of obtained results, and uses them to

scale the x-axis properly. A screenshot of the interface when answering the

question “give me large cities in Poland by population” with data collected

from DBpedia is shown in Figure 4.2

Figure 4.2: TiFS-based Web Interface for Defining Linguistic Terms

The user can click on See collected data button to see actual data or See

histogram plot one to see the distribution of data. Screenshots of actually

collected data and its histogram plot are given in Figure 4.3 and Figure 4.4,

respectively.
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Figure 4.3: Five Polish cities with largest population

Figure 4.4: Histogram plot of Polish cities’ population

The user draws or redraws (by clicking on redraw button) a shape of

membership function on the provided coordinate plane until being satisfied

with the shape representing the term. He/she submits the drawn membership

function by clicking on the send Data button.

4.1.3 Function Fitting

Although TiFS provides users with an easy-to-use interface to draw ‘shapes’

of membership functions, their drawings will never be perfect. Therefore,

function fitting (aka curve fitting) is a needed technique to adjust values of

the function parameters to best describe a set of data determined by the user-

drawn shape.
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There are commonly used categories of membership functions. They are tri-

angular, trapezoidal, Γ-shape, S-shape, Gaussian, and Exponential-like mem-

bership functions. All of them are defined in the universe of real numbers. In

our system, we adopt a parametric fitting approach due to the fact that forms

for the functions together with their parameters are known in advance.

We use Scipy, a large Python library of functions used for scientific analysis,

for the curve fitting purpose. In particular, we use the function curve fit. This

function returns two items – they are the best-fit parameters of a fixed-form

function. We also use r2 score function in sklearn (another Python library) to

select a best fitted function to the data provided by the user.

A user-drawn membership function and corresponding function obtained

after the fitting process are given in Figure 4.5

(a) (b)

Figure 4.5: user-drawn membership function (a); and system-fitting one (b).

Hereafter, when we use membership function defined by users, we mean

and use their system-fitted versions.

4.2 Questions with Linguistic Terms

As a human, we can easily detect, capture meanings of linguistic concepts.

However, how a machine can determine velocity as the descriptor of high speed

while height or tallness as the descriptor of high building. This section will

highlight the procedure that allows our QA system: 1) detect linguistic terms

in a given question; 2) identify a descriptor (a KG property) for a detected

linguistic term.
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Algorithm 1 Identify and map linguistic terms to KG’s properties

1: procedure Detect linguistic terms(Q : auserquestion;wn :
WordNet;KG : aknowledgegraph )

2: POSofQ← POS tagger(Q)
3: adjPhrases← ExtractAdjPhrase(POSofQ)
4: linguisticTerms← ∅
5: while i <= len(adjPhrases) do
6: adj, noun← splitAdjPhrase(adjPhrases[i])
7: attributes← getAttributes(adj, wn)
8: if attributes ̸= ∅ then
9: pro← noun2pro(noun,KG)
10: if pro ̸= ∅ then
11: dic.add(adjPhrases[i], pro)
12: else
13: cla← noun2class(noun,KG)
14: if cla ̸= ∅ then
15: instances← getInstances(cla,KG)
16: superlative← getSuperlative(adj, wn)
17: nounsInKG← getMostNoun(instances,KG, noun, superlative)
18: pro← noun2pro(nounsInKG,KG)
19: if pro ̸= ∅ then
20: for (p ∈ pro) do
21: dic.add(adjPhrases[i], p)
22: end for
23: end if
24: end if
25: end if
26: end if
27: i← i+ 1
28: end while
29: return dic
30: end procedure
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4.3 Defining Fuzzy Sets for QA System

Linguistic concepts are both vague and context-dependent. The meanings of

old change when applied to different objects (e.g., a car, a house, a person); the

concept low income may have different meanings when applied to Canadian

and Vietnamese.

For the aforementioned reasons, we choose a direct user-driven approach

that not only addresses the issues but also elicits knowledge from experts.

However, answering questions in the user-driven methods that will be pre-

sented in more detail in Section 4.5.1 becomes a tedious job if there is a big

number of elements of the universe of discourse because the asked expert(s)

has to answer too many questions. They might also accidentally eliminate

the gradual transition between membership grades of adjacent elements of the

universe of discourse that is the desired characteristic of fuzzy sets because

locally and arbitrarily value(s) is assigned to each element or pair of elements

of the universe of discourse.

In line with user-driven approaches, we provide a Web-based application

that provides a convenient and user-friendly interface for entering – using

fingers – definitions of linguistic terms and quantifiers required for linguistic-

based analysis of data. To be more precise, firstly the expert can globally

assign degrees of membership for all elements once at a time by drawing a

shape that is the plot of the corresponding membership function. Second, the

continuity of the shape guarantees a smooth transition between membership

grades for adjacent elements.

Due to the imperfection of human drawing, the drawn shape is then fitted

to seven most commonly used categories of membership functions (triangular,

trapezoidal, Γ-shaped, S-shaped, bell-shaped, exponential-like, and polyno-

mial). A membership function along with its parameters is computed using a

least-square curve fitting algorithm.

The method of Web-based construction of fuzzy set representing a linguistic

term includes 5 steps.

Step 1. Identify a universe of discourse over which a variable that is the
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descriptor of the concept is defined.

Step 2. Collect available values for the variable.

Step 3. A histogram plot is introduced to an expert who is expected to assign

membership grades for elements of the universe of discourse so that he will see

the distribution of the variable, the range of values.

Step 4. The expert will be introduced to a framework that allows him or her

to draw a shape representing his or her proposal membership function that

captures the meaning of the linguistic term. The shape will result in a set of

pairs (x,A(x)).

Step 5. The set of pairs (x,A(x)) is fed to a least-square curve fitting algorithm

that fits the data to seven predefined classes of membership functions.

4.4 Answering Questions with Linguistic Terms

4.4.1 Method

A user’s question containing a linguistic term requires some extra processing

steps in its answering process than one without linguistic terms. We explain

the process of answering such a question in a diagram given in Figure 4.6
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Figure 4.6: LingTeQA’s process of answering a question containing linguistic
term

4.4.2 Example and Analysis

We illustrate the process of answering a user question that contains a linguistic

term by taking the question “give me large cities in Canada by population”

as an example.

The detected linguistic term in the question by LingTeQA is ‘large’. The
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phrasal dependency tree of the question is given in Figure 4.7.

Figure 4.7: Phrasal dependency tree of a illustrative question containing a
linguistic term

The question template (broken into two lines due to the lack of space) of

the question is:

root(V P )root.dative(PRP )root.dobj(NP )root.prep(IN)root.dobj.amod(JJ)

root.dobj.prep(IN)root.prep.pobj(NP )root.dobj.prep.pobj(PN)

LingTeQA found a corresponding SPARQL query template by searching

the question template in its template repository. The query template is:

SELECT DISTINCT ?a ?b

WHERE{?a Pro(type) Cla(root.dobj). ?a Pro(root.prep.pobj) ?b.

?a Pro(root.dobj.prep) Res(root.dobj.prep.pobj).}

LingTeQA then instantiated the found query template resulting in a SPARQL

query for collecting data (cities and their population) from DBpedia. The con-

structed query (Qr1) is
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SELECT DISTINCT ?city ?populationTotal

WHERE{?city rdf :type dbo:City. ?city dbo:populationTotal ?populationTotal.

?city dbo:country dbr:Canada.}

It also constructed a ’soft’ query (Qr2) containing linguistic filter condi-

tion, as following

SELECT DISTINCT ?city (?populationTotal as ?MembershipGrade)

WHERE{?a rdf :type dbo:City. ?a dbo:populationTotal ?populationTotal.

FILTER(LANG(?populationTotal) =′ large′).}

where prefixes used in the queries are defined as follows

PREFIX dbo: <https://dbpedia.org/ontology/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

By evaluating the query Qr1 against DBpedia, LingTeQA received a list

of cities along with their population. First five cities in the query’s result are

given in Table 4.1

Table 4.1: Canadian cities and population as query’s result evaluated against
DBpedia

city populationTotal

http://dbpedia.org/resource/Montreal 1704694
http://dbpedia.org/resource/Ottawa 934243
http://dbpedia.org/resource/Winnipeg 705244
http://dbpedia.org/resource/V ancouver 631486
http://dbpedia.org/resource/Quebec City 531902

The collected data are stored in an RDF graph (G) whose graphical rep-

resentation is given in Figure 4.8.

75



Figure 4.8: A temporary RDF graph storing data for answering linguistic-
term-question

The system set a range in a coordinate based on the collected data for

the user to draw a ‘shape’ of membership function describing the linguistic

term ‘large’. Figure 4.9 shows a user-drawn fitted ‘shape’ describing the term

‘large’.

Figure 4.9: ‘shape’ of membership function drawn by user describing linguistic
term ‘large’ (10k people)

Based on the fitted fuzzy set, LingTeQA calculated membership grades

corresponding to the population of cities. The system then added triples whose

objects are calculated values to resources corresponding to the collected cities

in an RDF graph G. We visualize the newly updated RDF graph G as in

Figure 4.10
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Figure 4.10: An RDF graph storing data for answering question containing
linguistic term

By evaluating the constructed ‘soft’ query Qr2, LingTeQA provided a list

of the top 5 cities whose membership grades are highest to the term ‘large’

based on its meaning provided by the user. A screenshot of the result is given

in Figure 4.11

Figure 4.11: An answer to question “give me large cities in Canada by popu-
lation based on user-provided membership function

However, if the user draws an alternative shape of the membership function

as illustrated in Figure 4.12 then the user will receive a different result as shown

in Figure 4.13
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Figure 4.12: ‘shape’ of membership function drawn by user describing linguis-
tic term ‘large’ (10k people)

Figure 4.13: An answer to question “give me large cities in Canada by popu-
lation based on an alternative user-provided membership function

4.5 Related work

An important aspect of utilization of fuzzy sets and fuzzy set-based technolo-

gies in multiple areas of industrial and commercial applications is related to

their construction processes. Since the introduction of the concept of fuzzy

sets, there are multiple examples of methods and techniques addressing an

issue of building most suitable fuzzy sets, it means determining shapes of

membership functions.

4.5.1 Construction of Fuzzy Sets

In general, there are several techniques for constructing fuzzy sets. They can

be classified into user-driven and data-driven techniques.
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The user-driven approaches can be further divided into direct methods and

indirect methods.

In a direct method, an expert is expected to assign to each given element

x ∈ X a membership grade A(x) that, according to his or her opinion, best

captures the meaning of the linguistic term represented by the fuzzy set A.

This can be done by either defining the membership function completely in

terms of a justifiable mathematical formula or exemplifying it for some se-

lected elements of X by answering questions such as “what is the degree of

membership of x in A” or “ what is the degree of compatibility of x with LA”

[60].

In an indirect method, an expert is asked questions of the form ‘what are

elements of X which belong to fuzzy set A at degree not lower than α?’ where α

is a certain level (threshold) of membership grades in [0, 1]. The elements are

identified by the expert form the corresponding α-cut of A. By repeating the

process for several selected values of α a fuzzy set is finally constructed from

the α-cuts. Another method in this group involves a group of experts. Each of

them is expected to answer questions: ‘does x belong to concept represented

by a fuzzy set A?’ for each element x ∈ X. The membership grade A(x) is

then calculated as the ratio of number of ‘yes’ answers to number of asked

experts. The simplicity of these methods is their advantages, however, they

could exhibit a lack of continuity because the membership grades are separately

computed for elements of the universal of discourse [84].

The priority method introduced by Saaty [88] forms another interesting

alternative in which an expert is requested to compare elements in X in pairs

according to their relative weights of belonging to A with a scale of 5, 7, or

9 levels. The expert will assign a high value of the available scale to the

entry of a so-called reciprocal matrix at position of row ith and column jth if

xi is strongly preferred to xj when being considered in context of the fuzzy

set whose membership function we would like to estimate. The value of 1 at

(i,j) position indicates that xi and xj are equally preferred. The eigenvector

associated with the largest eigenvalue of the reciprocal matrix is then the

needed fuzzy set. This method of constructing fuzzy set helps the expert focus
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on only two elements once at a time thus reducing uncertainty and hesitation

while leading to the higher level of consistency [84].

In the data-driven approaches, fuzzy sets can be formed on a basis of nu-

meric data through their clustering. Fuzzy C-Means (FCM) is one of the

commonly used mechanisms of fuzzy clustering. FCM clustering is completed

through a sequence of iterations starting from a randomly initialized partition

matrix and carry out the updating of clusters’ prototypes and the partition ma-

trix until a certain termination criterion has been satisfied. The final partition

matrix indicates the way of allocation of the data to corresponding clusters.

An entry uik is the membership degree of data xk in the ith cluster[84]. There

is also number of data-driven methods in literature. They differ in complexity

of construction processes. Among variety of methods, membership functions

are constructed using statistical and probability-based algorithms, different

clustering algorithms, entropy, and evolutionary computation [43][101][14]. In

particular, the authors of [101] describe an unsupervised technique that uses

self-organizing maps to generate fuzzy membership function. Another unsu-

pervised method is proposed in [14]. The authors propose method based on

bandwidth mean-shift and robust statistics to construct membership functions.

They use it to build triangular and trapezoidal functions representing under-

lying data. Also, the technique can determine a number of such functions.

Chen et al. [14] proposes a gradient pre-shaped fuzzy C-means (GradPFCM)

algorithm to generate better transparent membership functions. GradPFCM

will preserve the predefined transparent shapes of membership functions dur-

ing the process of the gradient descent based optimization of the clustering

algorithm.

Fuzzy sets constructed by using aforementioned methods are almost invari-

ably normalized, convex, and distinct. While those properties are undoubtedly

useful in many application, they limit the selection of general shapes that may

be used for representing membership functions for linguistic terms [39].
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4.5.2 Fuzzy Queries and Relational Databases

To our best knowledge, LingTeQA is the first system that can answer questions

containing linguistic terms over RDF knowledge graphs. However, fuzzy query

languages extending the standard query language (SQL) and tools for fuzzy

querying to relational databases were already proposed some time ago. Here

we name a few noticeable ones.

FQUERY [52]–[54], [57], a family of fuzzy-logic-based querying systems,

was developed and implemented by Kacprzyk and collaborators as a Microsoft

Access ”add-ons” to extend its capabilities of handling fuzzy terms. FQUERY

uses a set of predefined fuzzy terms maintained and developed by users. Fuzzy

values are defined as fuzzy sets on [-10, 10] interval, whereas the fuzzy linguistic

quantifiers are defined as fuzzy sets on [0, 10] interval instead of the original

unit one. The membership functions of fuzzy values are trapezoidal. The

system has been successfully applied in querying databases and data summa-

rization with linguistic terms.

Summary SQL [86] is a fuzzy query language introduced by Rasmussen

and Yager. In Summary SQL, an attribute in a database (DB) is associated

with a collection of fuzzy concepts defined via membership functions as fuzzy

subsets over the attribute domain. Summary SQL allows for using linguistic

terms in a query. For example, “select all persons where the height is tall”

is such a fuzzy query. The query’s result is a ranked fuzzy subset over the

elements from the DB, including objects and their degree of satisfaction with

the question. However, the authors did not mention how to enter membership

functions defining fuzzy concepts.

Bosc and Pivert introduced a fuzzy set-based extension of the query lan-

guage SQL called SQLf [11]. SQLf recognizes such extensions as selection,

join, and projection with fuzzy conditions. They can also be applied to nest-

ing operators and set-oriented operators. In addition, the language allows for

the partitioning of relations involving groups based on fuzzy quantifiers.

Recently, Zadrożzny and Kacprzyk presented the basic structure of stan-

dard (crisp) analytic functions use in SQL syntax to elucidate the potential
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of extending it using linguistic terms [119]. In particular, they started with

a proposed method for defining “fuzzy” grouping and formulas for executing

aggregate operators (COUNT, AVG, SUM) against resulting “fuzzy groups”

of rows. The COUNT function is computed using a sigma count. The AVG

function can be calculated using a weighted averaging or a Weighted Ordered

Weighted Averaging Operators (WOWA). The SUM operator is calculated as

a weighted sum derived from the AVG operator. After that, they introduced a

new approach to the use of fuzzy terms in analytic functions creating flexible

analytic clauses that enable computation of aggregated values in the context

of a single row. The proposed extensions to the analytic functions have a

potential application in generating more sophisticated linguistic summaries of

data in relational databases.

4.6 Conclusion

The process of constructing SPARQL queries to extract information from RDF

datasets is a challenging task. As far as we know, the existing state-of-the-

art QA systems can answer simple questions, yet questions with imprecise

linguistic terms are not considered.

We have introduced a system capable of answering questions with linguistic

terms represented by user-defined membership functions. This system has

been achieved by automatically performing such tasks as: 1) constructing

a query to collect ‘intermediate’ data; 2) providing a user-friendly interface

for users to draw membership functions enabling personalization of linguistic

terms [113]; and 3) transforming obtained data into answers expected by a

user.

The user-friendly interface allows users to draw shapes of membership func-

tions associated with fuzzy terms representing terms and concepts. A simple

process of inputting shapes as definitions of membership functions allows the

users to quickly modify and/or change their definitions of concepts. We have

illustrated the usefulness and easiness of using the interface to the question-

answering process.
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Chapter 5

Data Fusion

More and more Knowledge Graphs are available on Linked Open Data cloud.

Many of them are cross-domain datasets describing millions of things. Al-

though a single Knowledge Graph may contain billions of facts, it may not

provide sufficient information for a question answering system.

An additional ability to span over multiple Knowledge Graphs (KGs) would

further increase the usefulness and potentially comprehensiveness of the sys-

tem’s responses. Multiple different KGs, as much as they can complement

each other regarding the lack of specific information, quite often contain in-

consistent pieces of information. This makes data fusing a challenging task.

Although many question answering systems over KGs have been developing

thus far, very few systems that collect and resolve conflicting multi-sources

data according to surveys [45][20][44].

In this chapter, we propose a new approach to RDF data fusion applied

on question answering: Veracity of collected data values from a Knowledge

Graph is formulated based on their similarity with other collected values from

other Knowledge Graphs and the trustworthiness of its sources–Knowledge

Graphs. The truth value is then chosen based on calculated veracity. Next,

the trustworthiness of the Knowledge Graphs is updated accordingly to the

truth value. We illustrate the process of data fusion and its usefulness by a

real example. We also provide a literature review on the data fusion task.
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5.1 Fusion of Numerical Data

The process of fusing information/data presented in this chapter focuses on

Resource Description Framework (RDF) data. In general, we propose an ap-

proach to identify the most reliable piece of information/data based on the

data collected from multiple RDF Knowledge Graphs.

5.1.1 Motivation

Items described by triples in diferent KGs are highly overlapping. Although

each of them is represented by a very different name (to be precise by a different

Uniform Resource Identifier (URI)) they are explicitly linked by the property

owl:sameAs – and this means they all represent the same items, see Figure 5.1

for illustration of that.

24 June 1987

wd:Q615
(Lionel Messi)

date of birth (P569)
170 cm

height (P2048)
72 kg

mass (P2067)

dbpedia:Lionel_Messi
(Lionel Messi)

yago-res:Lionel_Messi
(Lionel Messi)

owl:sameAs

owl:sameAs

owl:sameAs

1987-06-24

schema: birthDate

1.7000000

dbo:height

1987-06-24

dbo:birthDate

dbpedia

yago

wikidata

Figure 5.1: Multi-KG answer to query about Lionel Messi (snippet)

In addition, data stored in KGs are manually entered by users/experts

or automatically extracted from Web documents and entered by computer

programs at different points in time results in different values of the same

objects, not mentioned human errors. As a result, data collected from multiple

different KGs may contain conflicting facts. In the question answering task, a

system is required to select and provide reliable values (objects) to users. In

a nutshell, the requirement is to compare triples obtained from multiple KGs
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and identify a single object – among all objects from the retrieved RDF triples

– that is the most representative. In the process of comparing the triples, we

consider three sources of inconsistency and uncertainty:

� properties used in different KGs have different names and not always

they have the same meaning, some degree of equivalence needs to be

determined;

� objects of triples, i.e., values that are subject of comparison are not

always identical, some degree of similarity between should be calculated;

� sources of information, i.e., knowledge graphs could be linked with dif-

ferent levels of trustworthiness.

The proposed process of determining the most representable item (object)

among a set of RDF triples resemble a process of identifying medoids (repre-

sentative objects of a data set or a cluster within a data set) – we look for an

item with the highest degree of similarity to other items from the set.

5.1.2 Method Overview

Let us have a set of triples collected from multiple KGs. For example, we query

KGs [95] for a birthday of Lionel Messi (Figure 5.1), and obtain a set of triples

with Lionel Messi as the subject. However, names of the property birthDay

could be different (vocabulary dependent), as well as dates themselves could

be of various formats and values. In general, the set is composed of triples

with the same subject, but with different properties and objects

RdfT = {⟨s, pi, xi⟩ | i = 1, . . . , N}. (5.1)

Our goal is to select a single xi, a date of birth in the above example, that is a

reliable value in the set RdfT. For that purpose, we introduce a measure called

veracity. It is a measure that indicates how similar a single item is to other

items. The selected item is identified by finding a maximum over all elements

of RdfT

x∗ = argmaxxi
(veracity(xi)). (5.2)
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The measure takes into account mentioned above three sources of inconsistency

and uncertainty. It is calculated using the following formula

veracity(xi) =

[︄
EQ(p, pi) ∗

N∑︂
j=1
j ̸=i

sim(xi, xj)

]︄
∗ Ti (5.3)

where EQ(p, pi) is a degree of equivalence between pi of the RDF triple with

xi as its object and the property p that is treated as the reference property

determined during generation of the query [95];
∑︁

sim(xi, xj) represents sim-

ilarity between xi and all xj of the triples from RdfT, and finally Ti is a degree

of trustworthiness of the KG from which xi is obtained.

Based on calculated values of veracity measures for all elements of the set

RdfT we can determine a level of confidence in the value selection

conf(x∗) =

∑︁n
i=1 veracity(xi|xi = x∗)∑︁n

j=1 veracity(xj)
. (5.4)

It reflects a level of consistency in the obtained answers. If all xi’s are the

same regardless of their veracity, the level of confidence is 1.0 – all queried KGs

agree on the answer. On the other hand, if KGs do not agree on the answer –

different values of xi as well as of EQ(p, pi) and of Ti – the confidence value

reflects that and drops below 1.0.

5.2 Property Equivalence

In this section, we provide a short description of the approach we use to de-

termine equivalence between properties, i.e., EQ(p, pi) required for calculating

veracity.

Let us haveKG1, KG2, ..., KGn as data sources (Knowledge Graphs) whose

corresponding trustworthiness are T1, T2, ..., Tn. One of them – say KG1 with-

out loss of generality – is selected as a reference KG – KGr. It is a primary KG

used in our query process [95]. A subject (in a sense of RDF triple) of a query,

Lionel Messi in our example from Section 5.1.1, is mapped to items on other

KGs, for the purpose of running queries there, via a property owl:sameAs. This

property is defined by Web Ontology Language (OWL), to indicate that two
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items refer to the same thing. In such case, we denote p and pi are properties

of KGr and KGi, respectively.

Previously, we have introduced a simple approach to determine degrees of

equivalences between properties defined by different vocabularies [96]. In this

paper, we propose its modified version

EQ(p, p′) = α ∗ labelSim(p, p′)+

+ (1− α) ∗ tripleSim(p, p′)
(5.5)

where ′ means i = 2, . . . , n.

The proposed equivalence degree is a linear combination of label-based

similarity and triple-based similarity between the two properties. The former

is calculated as follows

labelSim(p, p′) = cosine(labelV (p), labelV (p′)) (5.6)

where labelV (p) is a function that returns a vector embedding of p’s label.

The later is computed as follows

tripleSim(p, p′) =

∑︁M
j=1 objectSim(Oj, O

′
j)

M
(5.7)

where Oj and O′
j are non-empty sets of objects (in a sense of RDF); M is

the number of triple pairs
(︁
⟨sj, p, Oj⟩ ∈ KGr; ⟨s′j, pi, O′

j⟩ ∈ KGi

)︁
such that

⟨sj,owl:sameAs, s′j⟩; and objectSim(Oj, O
′
j) is

objectSim(Oj, O
′
j) = max(sim(x, y)) (5.8)

where sim(x, y) is a similarity degree between x ∈ Oj and y ∈ O′
j and is

computed w.r.t their datatype (see Section 5.3).

5.3 Data Similarity

Objects of RDF triples could be of different datatype. The most common

ones are DATE, NUMBER, STRING, and URI. The similarity between two

values for each of these datatypes is calculated differently. Besides, if any

value is missing we denote it as ’unknown’. The similarity of an ’unknown’

with another value regardless of its datatype is always qual to 0.

87



To accommodate different datatypes, we proposed the following similarity

measures for each of them. For DATE, we have

dSim(xi, xj) =
len(commonStr(str(xi), str(xj))

8
(5.9)

where commonStr is a function that returns a leftmost longest common string,

while str is a function that returns a string representation of a DATE in the

format ’DDMMYYYY’.

The similarity between two NUMBERs is given by following formula with

α ≥ 0.

nSim(xi, xj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1.0 if xi = xj = 0

1− |xi−xj |
|xi|+|xj | if xi ∗ xj > 0

1− |xi−xj |
|xi|+|xj |+max(xi,xj)

if xi ∗ xj < 0
α

|xi|+|xj | if xi ∗ xj = 0.

(5.10)

If xi and xj are two STRINGs whose vector representations are available,

their similarity is computed using a vector similarity metric such as cosine

sSim(xi, xj) = cosine(V (xi), V (xj)) (5.11)

where V is an embedding vector of a string. If xi and xj are two STRINGs

whose vector representations are not available, their similarity is computed

using a string similarity metric to xi and xj such as Levenshtein distance, Jaro

distance, or Smith-Waterman distance.

If xi and xj are two URIs, their similarity degree is calculated as follows

uSim(xi, xj) =

{︄
1.0, if ⟨xi, owl : sameAs , xj⟩
0, otherwise

(5.12)

5.4 Trustworthiness

The comparison of answers obtained using different KGs should include a

measure indicating a degree to which we trust a given KG. It means that

a process of identifying trustworthiness of KGs is quite important. In this

section, we look at processes of initialization of levels of trustworthiness, as

well as their update.
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5.4.1 Initialization – Saaty-based Method

Given a collection of data sources (Knowledge Graphs) KG1, KG2, ..., KGn we

want to estimate their trustworthiness T1, T2, ..., Tn. The method is introduced

by Saaty in 1980s [88], and the process of estimation is as follows.

For each pair of KGs – KGi and KGj – an expert, a designer, or a user is

asked to provide her pair-wise trust in them using a scale with values from 1

and 7 (a scale of 5, or 9 levels can be used as well). If KGi is trusted more

than KGj then she is willing to assign a higher value, say 6 or 7 to the entry

(i, j) in a so-called reciprocal matrix R. A low value, say 3 or 2 is assigned

otherwise. The value of 1 indicates that KGi and KGj are equally trusted.

The inverse of the number in the entry (i, j) is automatically assign to the

entry (j, i).

R =

⎛⎜⎜⎜⎝
1 r1,2 · · · r1,n
1

r1,2
1 · · · r2,n

...
...

. . .
...

1
r1,n

1
r2,n

· · · 1

⎞⎟⎟⎟⎠
Next, the maximal eigenvalue and its corresponding eigenvector are computed.

The eigenvector associated with the largest eigenvalue is then the estimated

trustworthiness.

The constructed reciprocal matrix R has an important property of transi-

tivity. It means that for all indexes i, j, and k rij ∗ rjk = rik. This property

grantees the consistency in evaluation. Also, due to characteristic of R, its

largest eigenvalue λmax is never less than n. The following ration is suggested

in [84]

ϑ =
λmax − n

1− n

as an index of data inconsistency. If ϑ is less than 0.1, the estimation process

is sought to be consistent. Whereas a higher value of ϑ calls for a rerun of the

process.

The aforementioned one-expert priority method of trustworthiness estima-

tion is not free of bias. To alleviate this, multiple experts can be asked to

compare the trustworthiness of KGi and KGj using the same scale.
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5.4.2 Initialization – Property-Equivalence Method

Another approach that can be used to initialize values of trustworthiness is

based on determined values of equivalence of properties of two different KGs.

Assume that our reference Knowledge GraphKGr hasN properties p1, p2, ..., pN .

The trustworthiness of another Knowledge Graph is initialized with respect to

KGr following the formula

Ti =

∑︁N
j=1 EQ(pj, pi)

N
(5.13)

Please, note that pi is a KGi property that is the most equivalent to pj ac-

cording to EQ(pj, p
k
i ) for k = 1 to M (M is the number of properties of KGi).

Again, KGr is the reference KG.

5.4.3 Trustworthiness Update

The trustworthiness Ti of KGi is updated every time a reliable data (x∗) is

determined . The update process follows Algorithm 2.

Algorithm 2 Updating trustworthiness
1: procedure Updating(x∗ : trueV alue, r : reward, n : numberOfSources )
2: count← 0
3: simTotal← 0
4: for i = 1 to n do
5: simTotal← simTotal + sim(xi, x

∗)
6: if xi = x∗ then
7: count← count+ 1
8: end if
9: end for
10: if count ̸= n then
11: for i = 1 to n do
12: if xi = x∗ then
13: Ti ← Ti + r/count
14: else
15: Ti ← Ti − r ∗ (1− sim(xi, x

∗))/(n− simTotal)
16: end if
17: end for
18: end if
19: end procedure

The main idea of the algorithm is that whenever a reliable value is selected

we update trustworthiness of KGs if they provide conflicting values. We in-
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crease the trustworthiness of the KGi if it provides xi that is identical to

x∗ but decrease its trustworthiness an amount that is proportional to degree

of dissimilarity between xi and x∗. Overtime, the data source KGi will be

promoted more credits if it provides more values that is equal to true value.

5.5 Case Study

In order to evaluate a QA system over multiple KGs, we need a dataset that

is to ‘tied’ to any KG, i.e., KG-independent. The existing benchmarks are

KG specific: Free917 [12] and WebQuestions [7] are Freebase-based; versions

of QALD1 benchmark contain questions to be answered over either DBpedia

or Wikidata; while the LC-QuAD [3] contains a set of complex questions that

can be answered over DBpedia.

Therefore, to illustrate the usefulness of the proposed data fusion method

for our QA system, we constructed a KG-independent dataset. It is based on

the 2018 FIFAWorld Cup Russia List of Players downloaded from www.fifa.com.

The dataset contains information about 736 players from 32 national teams.

This dataset is created as an KG-independent, and is treated as a ‘golden stan-

dard’ against which we compare the results of the data fusion experiments.

The collected data for the data fusion experiments come from three of

the largest cross-domain KGs in Linked Open Data (LOD) cloud. They are

DBpedia, Wikidata, and YAGO. DBpedia contains close to 2 billion pieces of

information (RDF triples) out of which 400 million were extracted from the

English edition of Wikipedia. It is connected with Wikidata, YAGO, GeoN-

ames, etc. via around 50 million RDF links. DBpedia is considered ‘the hub’

of the LOD cloud.

A very small snippet of DBpedia is shown in Figure 5.2. It includes RDF

triples describing a few players of the football club FC Barcelona. As it can

be seen, there are nodes that are connected to multiple other nodes. We can

imagine that a single KG is highly interconnected.

1http://qald.aksw.org/
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http://dbpedia.org/resource/Lionel_Messi

http://dbpedia.org/resource/Ansu_Fati

http://dbpedia.org/resource/Francisco_Trincão

http://dbpedia.org/resource/Antoine_Griezmann

http://dbpedia.org/resource/Ousmane_Dembélé

Figure 5.2: RDF triples representing players of FC Barcelona (DBpedia)

Table 5.1: Number of datapoints collected from KGs

Knowledge
Graph

Birth
Date

Height Weight Club

Wikidata 736 680 612 736
DBpedia 736 735 – 729
YAGO 717 – – 735

5.5.1 Data Collection

The three best-known and largest cross-domain KGs are Wikidata, DBpedia,

and YAGO. Each of them contains billions of RDF triples.

The QA system queries each KG for player’s Birth Date, Height, Weight,

and Club based on the player’s team and name as included in the List of

Players. The details of retrieved data are in Table 5.1.

5.5.2 Analysis of Retrieved Data

We evaluate the correctness of the retrieved data in terms of how accurately it

matches the data provided on the List of Players. The data about a player is

correct if there is an exact match with the information provided by the List.

For a case of multiple football clubs, we consider the information as correct if

the club on the FIFA list is included in the retrieved data. If a club name is

available as a string its correctness is assessed using Levenshtein distance (the

distance has to be less than three characters). If a club is identified via URI

then it has to be connected via owl:sameAs with the URI of club on the List.

Table 5.2 shows the results.
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Table 5.2: Correct answers provided by each KG

Knowledge
Graph

Birth
Date

Height WeightClub
(string)

Club
(URI)

Wikidata 723 339 157 179 525
DBpedia 729 548 – 253 580
YAGO 708 – – 171 508

Table 5.3: Conflicting information between KGs

Birth Date Height Club (URI)

13 292 24

Table 5.4: Correct answer for fused data; KGs’ trustworthinesses not consid-
ered

Method Birth
Date

Height Club
(string)

Club
(URI)

Exp 0 727 538 195 530

If we compare the content of Table 5.2 with one of Table 5.1, we see that

retrieved information from KGs matches quite well data regarding Birth Date

and Clubs, yet it shows many incorrect entries for Height.

To be accurate, we examine inconsistencies between pieces of information

collected from the KGs. Table 5.3 includes numbers of conflicts regarding

information about players’ Birth Dates, Heights and Clubs for which they

played when World Cup 2018 took place.

5.5.3 Fusion of Retrieved Data

We start experiments with fusing the data without considering trustworthiness

of KGs – let us call the experiment as Exp 0. Table 5.4 shows the obtained

results.

In the next experiments, we integrate the retrieved data – Birth Date and

Club from all three KGs; and Height from Wikidata and DBpedia – with three

different methods of initialization of trustworthiness. For the first and simplest

method (Exp 1) we assign a value of 1.0 as the degree of trustworthiness

for each KG. In the second case, (Exp 2), the values of trustworthiness are

initialized using the Satty’s priority method. In this approach, we use the scale
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Table 5.5: Correct answers for fused; different methods of initialization of
trustworthiness

Method Birth
Date

Height Club
(string)

Club
(URI)

Exp 1 724 339 179 525
Exp 2 729 549 253 629
Exp 3 729 549 253 629

of 7 to compare KGs pair-wise. A reciprocal matrix R used in our experiment

is

R =

⎛⎝1 1
3

5
3 1 7
1
5

1
7

1

⎞⎠ .

The maximal eigenvalue equals λmax = 3.06, which is slightly higher than the

reciprocal’s dimension. The corresponding eigenvector is equal to [0.39, 0.91,

0.10] and it represents the trustworthiness values of Wikidata, DBpedia, and

YAGO, respectively.

The third method of initialization of KG’s trustworthiness (Exp 3) uses

degrees of equivalence between properties. We selected DBpedia as the primary

KG that it is de facto a hub for Linked Open Data [64]. The average values

for the property-equivalence between the hub and Wikidata, and the hub and

YAGO are 0.62 and 0.43. Thus, the values of trustworthiness for Wikidata,

DBpedia, and YAGO are 0.62, 1.0, 0.43.

With such an initialization of trustworthiness, we perform three experi-

ments with the proposed method for data fusion. The evaluated correctness

of the fused data is shown in Table 5.5.

5.5.4 Discussion

Let us analyze the obtained results. The QA system performs slightly better

when we fuse data from multiple different KGs than it does based on the data

collected from any single KG, Tables 5.2 and 5.5. The tables also show that

the system performs much better for the case of answering questions related

to clubs of players when clubs are represented by URIs than by their names

(strings).
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An interesting observation is that ‘static’ data, such as Birth Date are

easier to be correct while ‘dynamic’ data such as Height and Weight are the

most inconsistent, Tables 5.1 and 5.5.

It seems that the nonuniform assignment of trustworthiness to KGs pro-

duce much more accurate answers than the uniform one, Tables 5.5 and 5.4.

When we compare the results of Exp 0 with the results of Exp 1 we can say

that the numbers of correct answers when fused without taking into consid-

eration of KGs’ trustworthiness are approximately equal to ones when KGs’

trustworthiness are used but equally initialized. Another interesting obser-

vation can be done when the results of Exp 2 are Exp 3 are analyzed: the

results much better when compared with the ones obtained for Exp 0 and

Exp 1, and they are the same. This indicates that both initialization meth-

ods are equally effective and either of them can be used – it would depend if

any experts are available or not. This also suggests that trustworthiness play

an imporant role in determining a true value from ones that are provided by

multiple sources of data.

5.6 Related work

5.6.1 Data Fusion Methods

Data fusion is the process of finding a true value from conflicting values pro-

vided by different sources [25], or the process of fusing multiple records repre-

senting the same real-world object into a single, consistent, and clean repre-

sentation [9].

Data fusion is considered firstly mentioned by Dayal in his paper pub-

lished in 1983 [9]. A simple approach to data fusion is majority voting with

an assumption of equally reliable sources. According to this approach, choose

the value made by the most sources. More advanced techniques often com-

bine the popularity or voting of candidate values with the quality (reliabil-

ity/trustworthiness/authority) of their sources.

Many approaches have been introduced for estimating the quality. One of

the most cited approach is of iterative updating trustworthiness. Two influ-
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ential methods that exploit the link structure of Web page are PageRank [80]

and Authority-Hub analysis [59]. PageRank takes advantage of the link struc-

ture of the Web to produce relative importance of web pages to help search

engines and users quickly make sense of the vast heterogeneity of the World

Wide Web. It starts with an rank initialization, then iterates a eigenvector

calculation based on backlinks a pages until convergence criteria is met. With

some shared similarities with PageRank, Authority-Hub estimates the impor-

tance (authority) of information sources (such as web pages) by utilizing both

out-degree and in-degree hyperlinks instead of solely in-degree ones. Another

difference is that instead of analyzing a full graph (containing all pages), au-

thor focuses on a subgraph: a collection of highest ranked hyperlinked pages

from a text-based search engine related to a specific search topic to reduce

computational cost. A more complicated framework proposed by Pasternack

et al. [82] incorporate many more factors such as the uncertainty in the in-

formation extraction of claims from documents, attributes of the sources, the

degree of similarity among claims, and the degree of certainty expressed by

the sources into the fact-finding process was.

Yin et al. introduced an iterative computational method for finding true

facts from conflicting multi-website information by which at each iteration the

probabilities of facts being true and the trustworthiness of websites are inferred

from each other. The algorithm is called TRUTHFINDER that was claimed

that can select better trustworthy websites than authority-based search engines

such as Google on their experiments [116].

5.6.2 Data Fusion of RDF Data

Mendes et al. introduced Sieve that is a part of a Linked Data Integration

Framework. Sieve consists of a data quality assessment module and a data

confusion one. However, both are user-defined tasks. In particular, users se-

lect quality indicators such as ”Recency”, ”Reputation” and scoring functions

such as ”TimeCloseness”, ”Preference” for quality assessment; users also cho-

sen actions such as ignoring conflicts(”PassItOn”), filtering out information

(”Filter”) and fusion functions such as ”KeepSingleValueByQualityScore”,

96



”PickMostFrequent” for data fusion [74]. Dong and Srivastava implemented

techniques generating snapshot explanations for the data-fusion decision [26].

Liu et al. proposed triple-embedding similarity-based algorithms for resolving

conflicts when fusing RDF data, but not much detail was provided [67]. S.

Thoma et al. proposed an entity-centric RDF data fusion through hierarchical

clustering, the representative selection, finally ranking simply by the number

of sources that support them. However, contradicting information has not

yet addressed, as authors admitted [94]. In an attempt to integrate different

versions of RDF graph to generate entity summaries, Tasnim et al. used some

fusion policies such Union, Subproperty, Authority Graph, Policy Summary

Policies to resolve conflicts [93].

5.6.3 Data Fusion and KB-based QA Systems

Among QA systems that have been developing so far, only few, for exam-

ple [21], [61], [62], [81], are able to collect and merge answers from multi-

ple different sources. However, authors of the systems, for instance Park et

al. [81] and Diefenbach [21], provided very little information about how in-

formation was fused. Ko et al. [61], [62] applied a probabilistic graphical

model that estimates the joint probability of correctness and correlation of all

answer candidates to produce accurate and comprehensive answers collected

from a large collection of documents. Lyu et al. [72] proposed a user-expertise

specific learning framework that encodes latent user vectors into the answer

representation by hierarchical attention mechanisms within Long-Short Term

Memory (LSTM) network for answer selection in a community question an-

swering(CQA). Lui et al. [68] presented an online system, called SOLARIS,

that starts with returning the answers from the first probed source, refreshes

the answers as it probes more sources and terminates probing when it gains

enough confidence (expected, maximum, and minimum probability calculated

based on retrieved data, accuracy of the sources, and copying between the

sources) that data from the unprocessed sources are unlikely to change the

returned answers.
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5.7 Conclusion

The exceptions of better utilization of information stored on the Web in a

semantically rich format of RDF create needs to build QA systems able to

retrieved information and data from multiple different Knowledge Graphs.

In this chapter, we proposed a data fusion method that can determine the

most reliable (a true value) data that stands for a collection of data points

retrieved from multiple KGs. We also proposed and investigated methods for

the initialization of trustworthiness in KGs.

Our experiments show that the trustworthiness of data sources/KGs should

be included in data fusion processes. It seems that the trustworthiness should

be updated over time based on how accurate information each KG provides.

We also investigated various approaches for trustworthiness initialization.

The expert-based one is simple, universal, and computationally efficient, yet

subjective. On the other hand, the data-based method is time-consuming

but objective. However, when collecting data from multiple KGs with various

vocabularies the process of determining equivalent properties is inevitable,

thus the degrees of equivalence are already computed and can be utilized.
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Chapter 6

Data summarization

The increased popularity of Linked Open Data (LOD) and advances in Natural

Language Processing techniques have led to the development of Question An-

swering Systems (QASs) that utilize Knowledge Graphs as data sources. QASs

perform well on simple questions providing precise and concise answers. Yet,

most of them cannot process answers that contain a large volume of numerical

values and are not able to provide users with answers in a human-friendly

format.

In this chapter, we propose a user-defined method for constructing linguis-

tic summarization of multi-feature data. It selects suitable summarizers and

quantifiers and works with linguistic constraints imposed on the data. The

method utilizes definitions of linguistic terms provided by users with an easy

and simple graphical interface. Additionally, we introduce a Context-based

User-defined Weighted Averaging (CUWA) operator that allows users to de-

termine an average over data that satisfy multiple constraints that constitute

defined by user’s context. We include several illustrative examples.

6.1 Human-friendly Output Interface

In order to make the output of our question answering system human friendly,

we have developed Human-friendly Output Interface that contains a method

for context-based averaging of data, and a procedure for human-tuned pro-

cessing of data in order to generate its overview.

At first (Section 6.2), we present a simple CUWA operator. It provides
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the user with the ability to define a set of multi-feature (multi-dimensional)

conditions that are imposed on data being processed. This multi-dimensional

context is created on data attributes and uses linguistic terms provided by the

user. CUWA allows to determine an average value or find min/max values of

a single attribute on data points satisfying the terms of context.

Following that, we introduce and describe the User-defined Linguistic Sum-

marizer (Section 6.3). The process is based on ‘fitting’ the results of a query

into a protoform [117]:

Q FC(O) are/have S (6.1)

where O represents data objects obtained as the result of a query, S is a sum-

marizer, Q is a quantifier, and FC is a linguistic constraint representing a con-

text. The users define linguistic terms that reflect their perceptions of terms in

the domains of selected attributes. These terms constitute a set of summariz-

ers. The procedure is developed to select the most suitable term/summarizer

S representing the query answer data O. Similarly, a suitable quantifier Q is

automatically selected from a set of quantifiers provided by the users.

We would like to highlight, that linguistic terms such as TALL, YOUNG,

HIGH, and quantifiers like FEW, MOST are imprecise concepts that are widely

used in everyday conversations. However, meanings of such linguistic terms

are invariably user-dependent. There are no fixed or predefined fuzzy sets

that will fully fit perceptions of all users. To address this issue in the light of

the proposed human-friendly output interface, we utilize the LingTeQA sys-

tem’s GUI interface dedicated to defining membership functions representing

linguistic terms. The interface enables users to draw shapes of membership

functions [113].

6.2 Context-based User-definedWeighted Av-

eraging Operator

During data analysis processes, quite often there are situations when a user

would like to learn more about data in a specific context. For example, given
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an IQ test dataset one could ask ‘what is the average IQ score of YOUNG

people?’. There are a few possible answers to such a question: if an average IQ

score is calculated over all people, we ignore the context ‘YOUNG’; if a crisp

condition for selecting YOUNG people is used, for example, AGE < 25, many

people whose age is ‘just after’ YOUNG are left out. It seems the calculation

of IQ score should reflect – via some kind of weights – a level of satisfying the

concept YOUNG by each individual in the group.

6.2.1 CUWA Definition

Let us assume a scenario where the LingTeQA system answers the user’s ques-

tion and as a result we obtain a multi-dimensional (multi-attribute) data. It

means, the collected data is a set of n objects O = {o1, o2, ..., on}, with each

object described by m attributes: A1, A2, ..., Ak, ..., Am, where

Ak = {ak1, ak2, ..., akn}. (6.2)

For our exemplary question, O is a set of people, A1 represents their IQ scores,

while A2 is the attribute AGE. The collected data could be used to answer

such questions as: ‘what is the average IQ score of YOUNG people?’ or ‘what

is the average AGE of people of HIGH IQ score?’. Both of these questions

identify a context: ‘YOUNG people’ in the case of the first question, and

‘HIGH IQ score’ in the case of the second one. Each of them is related to a

single attribute and can be represented as a linguistic term. Once individuals

satisfy the context to a required degree the values of the other attribute, IQ

score or AGE in our example, can be averaged.

In general, a context can be defined based on multiple attributes. In such

a case, a logical combination of linguistic terms is employed. Because, data

objects can satisfy a given context to a different degree, the user also provides

Context Satisfaction Level (CLS) that represents the user’s minimum level of

satisfying the context terms by data.

In summary, to calculate a context-based average, the user identifies an

attribute that should be averaged, as well as fuzzy sets corresponding to lin-

guistic terms of the context and operations performed on them. Based on the
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latter, a fuzzy set FC representing a context is constructed and applied to the

considered data set.

Let fC =
[︁
fC,1, ..., fC,n

]︁
is a sequence of degrees of satisfaction of the con-

text FC by data objects. We create a set P of indexes of data objects that

satisfy the CSL, i.e.,

P = {k | fC,k > CSL} (6.3)

Now, we calculate an average value of an attribute Am in the context FC

using the following equation:

CUWACSL(a
m
1 , ..., a

m
n , FC) =

∑︂
j∈P

wj ∗ amj (6.4)

where wj, for j belongs to P , is computed as

wj =
fC,j∑︁
i∈P fC,i

(6.5)

Eq. 6.5 guarantees that wj ∈ [0, 1] and
∑︁

j∈P wj = 1. Now, Eq. 6.4 can be

rewritten as

CUWACSL(a
m
1 , ..., a

m
n , FC) =

1∑︁
i∈P fC,i

∑︂
j∈P

fC,j ∗ amj (6.6)

6.2.2 CUWA Extension

The presented above CUWA calculates an average value over an attribute. It

can be easily extended to handle situations that require determining a min

or max value of the attribute. The following equations are modifications of

CUWA that address such requirements:

CUWAmin
CSL(a

m
1 , ..., a

m
n , FC) = min{aj} (6.7)

CUWAmax
CSL(a

m
1 , ..., a

m
n , FC) = max{aj} (6.8)

where j belongs to P .

Another extension, generalization, of CUWA that involves applying an

arbitrary function on values of the attribute to be averaged. In such a case, a

more generic version of Eq. 6.4 is

102



CUWACSL(a
m
1 , a

m
2 , ..., a

m
n , FC) =

∑︂
j∈P

wj ∗ g(amj ) (6.9)

where g is a strictly continuous monotonic function. For g(b) = b, CUWA

becomes a Weighted Averaging operator, while for g(b) = b2, CUWA becomes

a Weighted Quadratic Averaging operator.

6.3 User-defined Linguistic Summarizer

Quite often, a large numerical data is obtained as the result of asked questions.

In such a situation, the user does not want to analyze the data by herself –

the focus is not on the details but on some kind of overview – summary –

of the obtained data. To address this need, we propose a multi-dimensional

summarization process. We provide a procedure that allows for summarizing

numerical data over a number of different attributes (dimensions), and in the

context specified by the user. The summarization process results in a linguistic

summary of data that is in the form of a ‘customized’ protoform [117].

Q O are/have S (6.10)

or

Q FC(O) are/have S (6.11)

where O is a set of the obtained data objects, S is a summarizer: a single

or compound/complex linguistic term; Q is a quantifier; FC is a linguistic

constraint. Specific instances of S and Q in the context of FC are chosen from

sets of user-provided terms. The user defines the meanings of these terms via

drawing shapes of membership functions [113].

Let us start with a description of the basic process of single-dimensional

(one feature) summarization of data. Further, we generalize the procedure via

introduction of context and multi-dimensional summarization.

6.3.1 Single-Feature Summarization

We assume, the user provides a number m of summarizers S1, S2, ..., Sm rep-

resented by a set of the user-defined fuzzy sets on the attribute Ak. We name

103



this set of the fuzzy sets ΦAk = {FAk,1, FAk,2, ..., FAk,m}. Our goal is to select

a summarizer Sj that best describes the data objects based on the attribute

Ak.

Selecting Summarizer

The first step focuses on determining a value of α-cut that is used to identify

‘core’ data objects that are the basis for selecting the most suitable summa-

rizer/fuzzy set describing the data. We execute the following equation:

α = min(hgt(FAk,1), hgt(FAk,2), ..., hgt(FAk,m)) (6.12)

where hgt(FAk,j) is the height of a fuzzy set FAk,j over all objects from O, and

hgt(FAk,j) > 0 for j = 1, 2, ...,m.

Once, α-cut is determined, we create core files Corej for each fuzzy set

FAk,j. The core file contains data objects o with a degree satisfying a fuzzy

set FAk,j:

Corej = {o ∈ O|FAk,j(o) ≥ α and FAk,j ∈ ΦAk} (6.13)

Now, we are ready to select a summarizer. This process is done using a

few steps.

Step 1: we identify indexes of dominant summarizers based on the size of

their core files

I1S = {j0 | j0 = arg,maxjcard(Corej)}. (6.14)

If I1S is a singleton, then the summarizer Sj whose index j ∈ I1S is chosen as a

summarizer. Otherwise, we perform Step 2.

Step 2: we use indexes of summarizers obtained in Step 1, and determine

fuzzy sets with the largest supporting set

I2S = {p0 | p0 = arg,maxp∈I1Scard(Supp(FAk,p))}. (6.15)

Again, if the I2S is a singleton, then the selection of a summarizer is done,

Sp | p ∈ I2S. Otherwise, we proceed to Step 3.
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Step 3: we determine indexes based on the sum of degrees of satisfaction

of data objects from the supporting set. Now, we have

I3S = {q0 | q0 = arg,maxq∈I2S

n∑︂
j=1

FAk,q(oj)}. (6.16)

If the I3S is a singleton, then the summarizer Sq | q ∈ I3S is chosen. If it is

not a case, we randomly select a summarizer whose index belongs to I3S. In

summary, at the end of the selection process, Sj is the selected summarizer.

Selecting Quantifier

Once the summarizer Sj is selected, we go back to its corresponding fuzzy set

FAk,j.

The set of FAk,j has

c = card(Supp(FAk,j)) (6.17)

objects. Additionally, to summarize fuzzy sets, the user also provides a number

of quantifiers Q1, Q2, ..., Qt and associated with them fuzzy sets FQ,i whose

membership functions are defined on the interval [1, n]. Based on the provided

fuzzy sets, we find an index of quantifier for which its membership level for c

has the highest value. In particular, it identifies

IQ = {i | i = arg,maxtFQ,t(c)}. (6.18)

As the final step, we instantiate the protoform

Qi O are/have Sj (6.19)

with the identified summarizer on the attribute Ak and the selected quantifier.

The truth (validity) value, T , of the summary is

T (Qi O are/have Sj) = FQ,i(c) (6.20)

where T is a number from the unit interval – the closer the value of T is to

one, the more truthful the generated summary is.
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6.3.2 Multi-Feature Summarization

The presented above procedure can be generalized to the case of multi-feature

summarization. Here, we apply a compound summarizer that is a combination

of two or more single summarizers using logistic operations of AND and/or OR.

Without a loss of generality, we assume SAr,1, SAr,2, ..., SAr,p as summarizers

whose fuzzy sets are defined on the attribute Ar and are represented by ΦAr =

{FAr,1, FAr,2, ..., FAr,p}, and SAs,1, SAs,2, ..., SAs,q are summarizers whose fuzzy

sets defined on As are ΦAs = {FAs,1, FAs,2, ..., FAs,q}.

Based on the user-provided terms and corresponding fuzzy sets, we con-

struct their combination. For example, if AND is the connective between each

pair of summarizers, we have

Sl = SAr,i AND SAs,j (6.21)

for l = 1, 2, ..., p ∗ q and i = 1, 2, ..., p; j = 1, 2, ..., q. This leads to the con-

struction of the following compounded summarizers and their corresponding

fuzzy sets

Φ = {FAr,As,l | FAr,As,l = T-norm(FAr,i, FAs,j)} (6.22)

Afterwards, the summarizer selecting process introduced in Section 6.3.1

is performed to identify a compound summarizer from the set of constructed

fuzzy sets.

A compound summarizer can be also formed via ORing single ones. It

would follow the same procedure with a replacement of a T-norm in Eq. 6.22

with a T-cornorm.

6.3.3 Summarization with Linguistic Constraint FC

Another form of the protoform (Eq. 6.11), involves a linguistic constraint FC .

Let us have this constrain’s fuzzy set to be defined on the attribute Av as FAv .

At the beginning, we select data objects with nonzero-membership to the

constraint FC (manifested by the fuzzy set FAv)

O′ = {oi ∈ O | FAv(oi) > CSL} (6.23)
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for i = 1, 2, ..., n.

Then, we refine fuzzy sets representing summarizers by selecting only the

ones of which data objects belong to the set O′

Finally, the selection procedure (Section 6.3.1) is carried out to identify

the most suitable summarizer.

6.4 Case Studies

The presented process of generating linguistic summarization has been ap-

plied to the answers obtained for a number of different user’s questions. The

provided examples illustrate the details of the process and the obtained sum-

maries. We also include a simple case of applying CUWA.

6.4.1 Single-Feature Summarization

Let us have a set of ages of a group of individuals: {25, 13, 12, 19, 37, 25,

56, 45, 73} with a single attribute Age. We use the summarization process to

generate a response to the question ”How old are people in the dataset?”.

In this case, the user is asked to provide four linguistic terms (summarizers)

along with their definitions that can be used to summarize the response: VERY

YOUNG (S1), YOUNG (S2), MIDDLE-AGED (S3), and OLD (S4). The user

uses TiFS [113] to draw shapes of associated membership functions FAg,1,

FAg,2, FAg,3, and FAg,4. They represent the user’s perception of these terms.

They are shown, after cleaning and processing, in Fig 6.1.

Table 6.1 includes the membership levels of data objects from the Age

file calculated based on the user-defined membership functions, as well as

quantities required to determine a suitable summarizer: hgts, |Core|, |Supp|,

and
∑︁

.

Among all provided by the user summarizers S2 has the highest cardinality

of the —Core— equal to four. Therefore, the linguistic term YOUNG is

selected. Next, the user is asked to provide a set of quantifiers. Also, the

membership functions representing them – FEW, ABOUT A HALF, MOST

– are defined using TiFS [113], Fig 6.2.
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Figure 6.1: Membership functions describing linguistic terms – summarizers
– defined on Age: VERY YOUNG (FAg,1), YOUNG (FAg,2), MIDDLE-AGED
(FAg,3), and OLD (FAg,4)

Table 6.1: Membership levels of Age for linguistic terms, as well as calculated
quantities used for selecting a summarizer

Age Very
young

Young Middle-
aged

Old

25 0 1 0.3 0
13 0.4 0.6 0 0
12 0.6 0.4 0 0
19 0 1 0 0
37 0 0 1 0
25 0 1 0.3 0
56 0 0 0.9 0.9
45 0 0 1 0
73 0 0 0 1

Hgt 0.6 1 1 1

|Core| 1 4 3 2

|Supp| 2 5 5 2∑︁
1.0 4.0 3.5 1.9

The value of |Supp| for the summarizer YOUNG is equal to five. This

translates into a degree of 0.8 for the quantifier ABOUT A HALF. Conse-

quently, the answer to the user’s question ”How old are people in the dataset?”

is ”ABOUT A HALF are YOUNG.”, with a truth value of 0.8 (Eq. 6.20).

6.4.2 Summarization of Data from Wikidata

Wikidata1 is an open Knowledge Graph with nearly 60 million data items. It

is a collection of items where each of them has a label, a description, and any

1https://www.wikidata.org/wiki/Wikidata:Main Page
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Figure 6.2: Membership functions describing quantifiers: FEW (FQ,1),
ABOUT A HALF( FQ,2), and MOST (FQ,3)

number of aliases. Items are uniquely identified by a letter Q followed by a

number, for example Douglas Adams has the identifier Q42. Items described

with statements consist of a property and a value. In Wikidata, properties are

marked with a letter P followed by a number – the property educated at has

the identifier P69.

Let the user asks our LingTeQA system a question “How big are cities

in Canada in terms of population?”. Our system constructs a query, sends

it to Wikidata Query Service, and retrieves a list of cities along with their

population.

The system asks the user to provide four terms that would describe size

of cities. The user provides the terms: SMALL, MEDIUM, LARGE, and

VERY LARGE, together with their meanings by drawing four shapes using

TiFS [113]. The corresponding membership functions as depicted in Fig. 6.3.

Based on the provided membership functions, LingTeQA computes their

height, cardinalities of their core sets, and cardinalities of their supporting

sets, Table 6.2.

Because its |Core| is the largest with 286 cities, the summarizer SMALL

(S1) is chosen as the summarizer. The user also provides three quantifier:

FEW, ABOUT A HALF, MOST. Their membership functions are given in

Fig 6.4 .

The quantifier MOST is chosen with a membership level of 1.0 due to

286 cities that satisfy the term SMALL. As a result, LingTeQA provides the
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Figure 6.3: Membership functions describing linguistic terms – summarizers -
defined on Population: SMALL (FPop,1), MEDIUM (FPop,2), LARGE (FPop,3),
VERY LARGE (FPop,4) (in units of 100k)

Table 6.2: Required Quantities for Selecting Linguistic Term (Summarizer)
Describing Population of Canadian Cities

Small Medium Large Very
Large

Hgt 1.0 1.0 1.0 1.0

|Core| 274 9 2 2

|Supp| 286 39 8 3∑︁
282.3 19.2 4.0 2.9

answer: ”MOST cities in Canada are SMALL” with the calculated truth value

of 1.0 (Eq. 6.20)

Further, if the user asks a question “What is the average number of people

of SMALL cities in Canada?” then the context is defined by the term SMALL

with a Context Satisfaction Level – (CLS) of 0.5. Using the proposed CUWA,

our system calculates an averaged value of 32,418 – so the system answers

“The average number of people in Canadian SMALL cities is 32,418.”

6.4.3 Multi-Feature Summarization

Now, we illustrate a scenario when summarizers are defined on two features.

Let us define a set composed of a group of people who participated in an IQ

test: Test Result = { (5,158), (13,162), (12,104), (19,132), (37,127), (25,125),

(56,142), (45,83), (73,137)}, where the first attribute is Age and the second is

IQ score.
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Figure 6.4: Membership functions describing quantifiers: FEW (FQ,1),
ABOUT A HALF( FQ,2), and MOST (FQ,3)

The user asks a question ”How old and intelligent are people in the dataset?”.

This time, two sets of linguistic terms that describe people’s age and intelli-

gence are provided. The given set of linguistic terms and their membership

functions for the attribute Age are shown in Fig 6.5, and for the attribute IQ

score are in Fig 6.6.

Figure 6.5: Membership functions describing linguistic terms (summarizers)
of Age: YOUNG (SAg,1), MIDDLE-AGED (SAg,2), and OLD (SAg,3)

The values of membership levels calculated for the attribute Age are in

Table 6.1, while for IQ score are in Table 6.3.

In total, there are nine combinations of linguistic terms for Age and IQ

score. The membership level for each combination is obtained via aggregating

individual levels usingMIN as a T-norm. The obtained membership levels are

included in Table 6.4. The combination SAg,1&SIQ,3 has the highest number of

elements (5) for the set |Core|. Thus, the summarizer that contains YOUNG

and HIGH IQ is chosen.
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Figure 6.6: Membership functions describing linguistic terms (summarizers)
for IQ score: LOW IQ (SIQ,1), MEDIUM IQ (SIQ,2), HIGH IQ (SIQ,3)

Table 6.3: Membership grades of IQ score to linguistic terms

IQ score LOW IQ MEDIUM IQ HIGH IQ

158 0 0 1
162 0 0 1
104 0 1 0
132 0 0.4 0.8
127 0 0.7 0.5
125 0 0.8 0.3
142 0 0 1
83 0.2 0.4 0
137 0 0.2 1

|Core| 1 6 7

|Supp| 1 6 7

The quantifier (Q2) ABOUT A HALF with a membership level of 0.8 is

selected based on the membership functions representing the three linguistic

quantifiers as in Fig 6.2.

The answer to the user’s question ”How old and intelligent are people in

the dataset?” is ”ABOUT A HALF are YOUNG and (have) HIGH IQ.”

6.4.4 Single-Feature Summarization with Linguistic Con-
straint

In this example, the user wants to know ”How high IQ score have YOUNG peo-

ple in the dataset?” with the value of Context Satisfaction Level (CSL) equal

to 0.5 for the linguistic constraint YOUNG. The dataset is the same as in

the previous subsection, i.e., { (5,158), (13,162), (12,104), (19,132), (37,127),
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Table 6.4: Membership levels of compound linguistic terms

No SAg,1SAg,1SAg,1SAg,2SAg,2SAg,2SAg,3SAg,3SAg,3

SIQ,1 SIQ,2 SIQ,3 SIQ,1 SIQ,2 SIQ,3 SIQ,1 SIQ,2 SIQ,3

1 0 0 1 0 0 0.3 0 0 0
2 0 0 0.9 0 0 0 0 0 0
3 0 0.8 0 0 0 0 0 0 0
4 0 0 0.8 0 0 0 0 0 0
5 0 0.2 0.2 0 0.3 0.5 0 0 0
6 0 0.5 0.3 0 0.3 0.3 0 0 0
7 0 0. 0 0 0 0.9 0 0 0.9
8 0 0. 0 0.2 0.7 0 0 0 0
9 0 0. 0 0 0 0 0 0 1

Hgt 0 0.8 1 0.2 0.7 0.9 0 0 1

|Core| 0 3 5 1 3 4 0 0 2

|Supp| 0 3 5 1 3 4 0 0 2∑︁
0 1.5 3.2 0.2 1.3 2.0 0 0 1.9

(25,125), (56,142), (45,83), (73,137)}. We assume, the sets of the user’s lin-

guistic terms for Age and IQ score and their membership functions are as

shown in Fig 6.5 and Fig 6.6, respectively.

This time, the term YOUNG works here as a context constraint. It is

applied to the attribute Age of objects from the set. The elements with a

nonzero membership level are selected for further processing. Then, the values

of the attribute IQ scores of these objects are used to determine levels of

satisfaction of membership functions associated with terms LOW IQ (SIQ,1),

MEDIUM IQ (SIQ,2), HIGH IQ (SIQ,3). These membership level are given in

Table 6.5.

Based on the obtained values for quantities required for constructing a

summary (Section 6.3) shown in Table 6.5, the summarizer HIGH IQ is cho-

sen because of its dominant cardinality of the set Core. Five object of the

data set satisfy CSL of 0.5 for the constraint YOUNG people. The number

five corresponds to the level 1.0 for the quantifier MOST (according to the def-

initions of linguistic quantifiers in Fig 6.7). This leads to selection of MOST

as the quantifier for the summary.

The summary ”MOST (YOUNG people) have HIGH IQ” (with truth 1.0)

is generated as the response to the question ”How high IQ score have YOUNG
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Table 6.5: Membership levels of YOUNG people for IQ score’s linguistic terms

Age IQ
score

LOW IQ MEDIUM IQ HIGH IQ

25 158 0 0 1
13 162 0 0 1
12 104 0 1 0
19 132 0 0 0.8
37 127 0 0.3 0.5
25 125 0 0.5 0.3

Hgt 0 1 1

|Core| 0 1 2

|Supp| 0 3 5∑︁
0 1.8 3.6

Figure 6.7: Membership functions describing quantifiers to filtered objects:
FEW (FIQ,1), ABOUT A HALF (FIQ,2), MOST (FIQ,3)

Table 6.6: Membership levels for Age for linguistic terms

Age Young Middle-
aged

Old

25 1 0.3 0
13 0.9 0 0
12 0.8 0 0
19 1 0 0
37 0.2 1 0
25 1 0.3 0
56 0 0.9 0.9
45 0 1 0
73 0 0 1

people in the dataset?”.
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6.4.5 Context-based Averaging using CUWA Operator

Let us take a question ”What is the average IQ score of YOUNG people?” as

an illustrative example of applying our CUWA operator. We use the mem-

bership level shown in Table 6.6 (column YOUNG) as a weighting vector for

aggregating IQ score. The value for the Context Satisfaction Level – CSL – is

set to 0.5. Thus, we obtain (Eq. 6.6):

x = (1.0 ∗ 158 + 0.9 ∗ 162 + 0.8 ∗ 104 + 1.0 ∗ 132 + 1.0 ∗ 125)/4.7 ≈ 136,

where 4.7 is the sum of satisfaction levels for the contraint YOUNG.

The answer to the aforementioned question is ”The average IQ score of

YOUNG people is 136.” This answer is very close to the one obtained for the

question ”How high IQ score have YOUNG people in the dataset?” form the

previous subsection, i.e., ”MOST (YOUNG people) have HIGH IQ.”

6.5 Related work

6.5.1 Generalized OWA Operators

The Generalized OWA operators, denoted as GOWA [111], is defined as

GOWA(a1, a2, ..., an) =

(︄
n∑︂

j=1

wj ∗ bλj

)︄ 1
λ

(6.24)

The GOWA operator is not only parameterized by weighting vector but also

λ, which can take different values between -∞ and ∞, except 0, generating a

different type of OWA aggregation. For example:

If λ = 1, the GOWA becomes the classic OWA operator.

If λ = 2, the GOWA becomes the ordered weighted quadratic average

(OWQA)

If λ = 3, the GOWA becomes the ordered weighted cubic average (OWCA).

If λ = −1, the GOWA becomes the ordered weighted harmonic average.

If λ = 0, the GOWA becomes the ordered weighted geometric average

(OWGA).
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If λ = −∞, the GOWA becomes the minimum aggregation.

If λ =∞, the GOWA becomes the maximum aggregation.

Induced OWA operator (IOWA)

The IOWA [112] operator is an extension of the OWA operator that uses a

more general reordering process of the information based on order inducing

variables. It is formulated as follows:

IOWA(< u1, a1 >,< u2, a2 >, ... < un, an >) =
n∑︂

j=1

wj ∗ bj (6.25)

where bj is the ai value of the IOWA pair < ui, ai > having the jth largest

ui, ui is the order-inducing variable, and ai is the argument variable.

[112] proposed an alternative approach to ordering the arguments based

upon using a function of the arguments rather than the arguments themselves

in IOWA. In particular, authors proposed a 4-step iterative algorithm that

is based upon the gradient descent in the back propagation method used for

learning in neural networks.

IOWA can be extended as:

Quasi− IOWA(< u1, a1 >, ... < un, an >) = g

(︄
n∑︂

j=1

wj ∗ g(bj)

)︄
(6.26)

where g is a strictly continuous monotonic function.

Probabilistic OWA operator (POWA)

The POWA operator [76] is an aggregation that uses probabilities and OWA

operators in the same formulation.

POWA(a1, a2, ..., an) = β ∗
n∑︂

j=1

wj ∗ bj + (1− β) ∗
n∑︂

i=1

pi ∗ ai (6.27)

where bj is the jth largest of the ai’s, and β ∈ [0, 1]. P = {p1, p2, ..., pn} is

a probabilistic vector such that 0 ≤ pj ≤ 1 and
∑︁n

j=1 pj = 1.
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Fuzzy Generalized Probabilistic OrderedWeighted AveragingWeight-
ed Average (FGPOWAWA)

The proposed operator unifies the probability, the weighted average and the

OWA operator with consideration of the degree of importance that each con-

cept has in the aggregation [75].

The author further generalizes this approach by using quasiarithmetic

means obtaining the quasi-arithmetic fuzzy POWAWA (Quasi-FPOWAWA)

operator.

Fuzzy OWA (FOWA) operator is an extension of the OWA operator

for uncertain situations where the available information can be assessed with

fuzzy numbers Ψ [75].

FOWA : Ψn −→ Ψ such that

OWA(a1̃, a2̃, ..., añ) =
n∑︂

j=1

wj ∗ bj (6.28)

where bj is the jth largest of the ãi’s. W = {w1, w2, ..., wn} is a weighting

vector such that 0 ≤ wj ≤ 1 and
∑︁n

j=1wj = 1.

The FOWA operator provides a parameterized family of aggregation op-

erators that include the fuzzy maximum, the fuzzy minimum and the fuzzy

average criteria, among others.

A FGPOWAWA operator of dimension n is a mapping FGPOWAWA:Ψn −→

Ψ such that

FGPOWAWA(a1̃, a2̃, ..., añ) =

(︄
n∑︂

j=1

v̂j ∗ bj

)︄ 1
λ

(6.29)

where bj is the j
th largest of the ãi’s, each argument ãi is represented in the

form of a fuzzy number and has an associated weight vi such that vi ∈ [0, 1]

and
∑︁n

i=1 vi = 1, a probability pi with pi ∈ [0, 1] and
∑︁n

i=1 pi = 1, and .

The proposed operator (UWA) was the simplest form of a Fuzzy Gen-

eralized Unified Aggregation Operator (FGUAO) that is a further extended

probabilistic weighted OWA (PWOWA). It is given as
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UWA(a1, a2, ..., an) =
m∑︂

h=1

n∑︂
i=1

Ch ∗ wh
i ∗ ai (6.30)

where Ch is the degree of importance that each concept has in the aggrega-

tion with Ch ∈ [0, 1] and
∑︁m

h=1Ch = 1; wh
i is the ith weight of the hth weighting

vector W with wh
i ∈ [0, 1] and

∑︁n
i=1w

h
i = 1

Many more variations of OWA have been proposed such as an Ordered

Fuzzy Weighted Averages (OFWAs) and Ordered Linguistic Weighted Av-

erages (OLWAs) are introduced by [104]. An Unbalanced Liguistic Ordered

Weighted Average (ULOWA) is proposed by [48]. A Weighted OWA (WOWA)

aggregation was presented by [95] where the weight wj is generated using a

function of sum of the importance weights associated with the j smallest data

points.

6.5.2 Linguistic Summarization of Data

The ability to summarize data is an important means to grasp the meaning of

the content of a large collection of data [110]. Linguistic summarization meth-

ods have been introduced by Yager, Zadeh and further pursued by Kacprzyk

and Zadrożny, and others.

The classic linguistic summary, introduced by Yager [110], is a one-attribute

linguistic summarizer that can be extended to cover more sophisticated sum-

maries involving some confluence of attribute values.

Kacprzyk and Zadrożny have extended the work of Yager and Zadeh by de-

veloping new tools to handle more modalities in fuzzy querying, and linguistic

data summaries [55]. In particular, they constructed a user interface add-on

for of fuzzy querying – FQUERY for Microsoft Access – that was generating a

linguistic summary via execution of the following steps: (1) the user formulates

a set of linguistic summaries of interest (relevance) using the fuzzy querying

add-on, (2) the system retrieves records from the database and calculates the

validity of each summary adopted, and (3) the system uses the validity values

to select the most appropriate summary.

Dubois and Prade [28] proposed a gradual linguistic summarization in the
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form “the more X is F, the more/ the less Y is G” that expresses a progressive

change of the degree to which the entity Y satisfies the gradual property G

when the degree to which the entity X satisfies the gradual property F is

modified.

Inspired by gradual inference rules by Dubois and Prade, Wilbik and Kay-

mak proposed another type of protoform-based linguistic summary – the grad-

ual summaries – that aimed at capturing the change (increasing/decreasing)

within the data points over some time span [102].

Another type of linguistic summary in form of IF-THEN rules whose words

used for each antecedent and consequent are user-provided is proposed by Wu

et al [105], [106].

In order to discover relations in dynamic data such as time series, new

approaches to the linguistic summarization have been introduced by Kacprzyk

et al. [51], [55], [56] and Kobayashi et al [63].

6.6 Conclusion

On multiple occasions, the users are not interested in details of data retrieved

from data sources, but in their distilled, easily understandable form that ex-

plains its essential content. Linguistic summaries and averaging operators are

techniques and tools allowing web-based query-answering systems to provide

the users with summary answers in natural language.

In this chapter, we propose a method for automatic construction of lin-

guistic summaries of numerical multi-dimensional (multi-feature) data which

are answers to the users’ questions. Using the method, LingTeQA can select

the most suitable summarizer (linguistic term) from a set of linguistic terms

provided by the user. It also identifies the most suitable quantifier and can

apply constraints on a subset of attributes of the retrieved data.

We also propose a simple Context-based User-defined Weighted Averaging

(CUWA) operator to determine averages over multi-dimensional data. The

data being averaged must satisfy several constraints (context) imposed on

their attributes.
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The proposed approach mimics the human ability to make conclusions

without precise measurements and calculations. Thus, we move a bit closer

towards human-centric question answering systems via providing such sys-

tems with a limited, at least so far, capability to construct linguistic answers.

Suitable linguistic descriptions are selected from the definitions of imprecise

concepts provided by the users. To simplify a process of ‘entering’ definitions

of fuzzy sets that reflect the user’s perception of the concepts, we utilize a GUI

system for drawing such functions.
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Chapter 7

Conclusion

7.0.1 Overview of Contributions

A large amount of RDF data stored in connected Knowledge Graphs (KGs) is

available for public access. Many of the RDF stores contain millions of triples.

In order to take advantage of this data, users have to possess knowledge of

KGs’ schemas, as well as skills in constructing queries in the RDF quary

language (SPARQL). Yet, although such repositories as DBpedia, Wikidata,

contain billions of triples they are quite often insufficient for uses’ needs, and

in addition they may contain conflicting facts. As a result, a process of finding

needed information in KGs is not a trivial task for most users.

Many question-answering systems have been developed. However, a sig-

nificant majority of them are only able to answer simple questions. These

systems cannot handle questions that require translating them into complex

queries and/or questions that contain linguistic terms. Similarly, they are not

capable of fusing data obtained as a result of queries executed over multiple

KGs, as well as resolving conflicting information.

As it looks like a step towards a more user-friendly way of retrieving in-

formation, we could state that in order to answer some types of questions,

especially the ones that require additional processing of information and some

post-processing of the obtained results, there is still a need to develop ade-

quate processes and methods. It could be said that users would appreciate

asking more comprehensive/in-depth questions, as well as obtaining results in

a more condensed form.
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The thesis is the result of our five successive years of research aiming

at designing and developing a question-answering system that is able to ac-

cept questions asked in the user’s natural language with user-specific impre-

cise terms. This system utilizes multiple knowledge repositories, and com-

municates results in a natural language. Our research results in two jour-

nal and five conference papers and a running Web application LingTeQA at

https://www.lingteqa.site/

LingTeQA allows users to ask questions of higher complexity and to obtain

results as they would interact with another human. It is a white-box system

containing many distinctive capabilities. In particular, LingTeQA is capable

of

1) Constructing SPARQL queries for retrieving answers to the users’ ques-

tions. These queries can be used to explain to the users the answers.

2) Answering complex questions that require queries with multiple triple

patterns, functions, and aggregation.

3) Answering questions containing linguistic terms by providing users with

a friendly GUI for entering fuzzy sets describing linguistic terms

4) Providing short answers in the format of linguistic summaries for some

suitable questions.

5) Extending its template repository by automatically generating templates

from user-provided question-query pairs of syntactically unseen ques-

tions. As a result, the system evolves over time in the sense that it is

able to answer more and more types of questions.

LingTeQA is an efficient system in terms of computational time for the

following reasons:

1) Searching a query template for a newly asked is as simpler as looking at

a word in a small dictionary;
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2) Each query template does not only specify the query structure but also

provides clear guidelines for the mapping process indicating which con-

stituent in the asked question must be mapped into which query item.

7.0.2 Future Work

Although LingTeQA can answer a wide range of questions well, there are some

tasks that can be improved to serve users better.

1) LingTeQA can answer syntactically known questions with high accuracy,

but it can not answer synonymous questions whose syntactic structures

are unknown. It has been shown that paraphrasing can help handle

the variation of natural language statements. Although we adopted a

paraphrasing approach to extend the system?s template repository, the

paraphraser has not been integrated yet into our currently running sys-

tem (Web app) due to the limited configuration of its host. In the future,

we will equip the system with the paraphrasing ability.

2) In order to make a QA system easier to use by more users, it should al-

low them to ask questions in languages other than English. In principle,

the Semantic Web is very well suited for multilingualism, as URIs are

language-independent identifiers. In general, natural language process-

ing tools for English are well-developed, and most existing RDF data

are in English. However, NLP for non-English languages and RDF data

available in other languages are still being developed. Currently, our sys-

tem can only answer English questions. In the future, it will be extended

with the ability to answer questions in languages other than English.

3) The system’s GUI will to be improved as well. The user interface should

be more attractive and easy to use for a wider range of users. We envision

a simple yet effective way of entering shapes of membership functions –

using a finger, stylus or mouse – and an easy to manage repository of

already defined membership functions.
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