
U niversity o f A lberta

F o c u s o f At t e n t io n in R e in f o r c e m e n t L e a r n in g

by

Lihong Li ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of M aster o f Science.

Department of Computing Science

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
A rchives C an ad a

Published H eritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

B ibliotheque et
A rchives C an ad a

Direction du
Patrim oine d e I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95797-7
Our file Notre reference
ISBN: 0-612-95797-7

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“There is nothing more practical than a good theory. ”

James C. Maxwell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To m y parents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

My deepest and foremost gratitude goes to my two supervisors, Vadim Bulitko and Rus­

sell Greiner, who have been serving the roles of mentor, teacher, encourager, collaborator,

and friend. Without their insightful guidance, effective instruction, unwavering patience,

generous donation of time, and everlasting encouragement, I could not have completed the

thesis smoothly. I still remember the very late nights or early mornings when we were still

working together to meet the paper deadlines. And I thank them for giving me the free­

dom to develop and pursue my own interests. Especially, I must acknowledge the dozens of

things they taught me about writing in English — without their suggestions, maybe only

myself could understand this thesis. I would also like to extend special thanks to Prof. Paul

Messinger, from the Business School at the University of Alberta, for agreeing to be on my

committee and spending time reading the thesis.

Undoubtedly, my research interests and viewpoints have been greatly affected by Rich

Sutton. It is my great honor and pleasure to take his first reinforcement learning course

given at the University of Alberta. I owe much to him for sharing many of his insights, for

the very helpful discussions about artificial intelligence and reinforcement learning, and for

the inspiration and encouragement. I wish to be on the same flight with him again so that

I would have another free AI lecture.

I would like to mention the outstanding artificial intelligence/machine learning research

group at the University of Alberta. The Alberta Ingenuity Center for Machine Learning

(AICML) keeps growing rapidly and has been of great benefit to me. Dale Schuurmans

is recognized to be an extremely nice professor always ready to talk, to discuss, and to

help. I have enjoyed attending his lectures and regretted that he had only taught two

graduate courses before I graduated. In addition, I would like to thank Michael Bowling for

broadening my knowledge of game-theoretic learning as well as reinforcement learning, and

Robert Holte for a discussion of my research when I was going to decide the topic.

I have enjoyed the graduate study at the department, partly due to the fellow students

here. I can only name a few of them. I am lucky to work with the other members at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Intelligent Reasoning Critiquing and Learning (IRCL) research group, Greg Lee and

Ilya Levner, who have helped and contributed to this thesis in a number of ways through

our weekly meetings. Bure Derya Gunes helped with preparing some of the figures. The

discussions of ML/RL with Yuxi Li and Tao Wang have been very helpful and encouraging.

In particular, I am grateful to my aunt’s family. It is a great fortune to have their

company during my stay in Edmonton. My aunt and uncle have helped in almost every

aspect in life. My cousins, David and Dickson, are always ready to help me get used to the

new life in Canada and make my life more colorful. I could not have focused entirely on my

work without their unwavering dedication.

I will always wholeheartedly thank my parents and brother, who gave me everything. I

am sorry for leaving home faraway for graduate study; I am sorry for talking less to them

when busy with work. But they never complain and have been supporting me all the time

with unwavering love and dedication. I could not have better parents and brother. Finally,

I want to say a special thank you to Lilian, for sharing both happiness and unhappiness in

the past two years. Her love and understanding has inspired me to work harder.

Funding for this project was provided in part by the University of Alberta, Natural

Sciences and Engineering Council of Canada (NSERC), and the Alberta Ingenuity Center

for Machine Learning (AICML).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

1.1 Sequential Decision Making in Artificial Intelligence .. 1

1.2 Reinforcement Learning: Learning in Sequential Decision M aking 2

1.3 Thesis Overview and Contributions... 3

1.4 Thesis Reading G u id e ... 5

2 Background and M otivation 6

2.1 Sequential Decision Making and Markov Decision P ro cesses.............................. 6

2.2 Reinforcement L e a rn in g ... 8

2.2.1 N otation... 9

2.2.2 Basic A lgorithm s... 11

2.2.3 Two Classes of General Reinforcement Learning A lgorithm s................. 15

2.2.4 Two Types of Reinforcement Learning P ro b le m s 17

2.3 Function Approximation for Reinforcement L earn ing .. 20

2.3.1 Why Function Approxim ation?..20

2.3.2 Reinforcement Learning with Function Approxim ation.............................. 20

2.3.3 Classification-based Approximate Policy Itera tion ..21

2.3.4 Policy Gradient and Actor-Critic M e th o d ...23

2.4 Motivation .. 25

2.4.1 Empirical Results in A Real-World System: MR A D O R E25

2.4.2 A Discussion of Supervised Learning in Reinforcement Learning . . . 28

2.4.3 Research O b jec tiv e s .. 32

3 R elated Work 33

3.1 Two Problems with Function Approximation in Reinforcement Learning . . . 33

3.1.1 The Divergence Problem ..33

3.1.2 The Suboptimality P rob lem ..35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Limitations of Previous W o rk ...36

3.3 Conclusions..38

4 Focus o f A ttention in Classification-based Reinforcem ent Learning 39

4.1 The Policy Switching T h e o re m ... 39

4.2 Focusing Attention: Batch Reinforcement L earning .. 40

4.3 Focusing Attention: Online Reinforcement L e a rn in g ... 43

4.4 Empirical Evaluation..46

4.4.1 Experimental D o m a in ... 47

4.4.2 Experiment I: Batch Reinforcement L ea rn in g .. 47

4.4.3 Experiment II: Online Reinforcement L e a rn in g ... 51

4.5 P ro o fs ... 56

5 An E xtension to th e Value-Function M ethods 62

5.1 Focusing Attention: Batch Reinforcement L earning.. 62

5.1.1 Inconsistency between Policy Values and Value Function Approxima­

tion Accuracy.. 62

5.1.2 Focusing Attention on More Important States... 63

5.1.3 Penalty for Making Suboptimal A c tio n s ... 65

5.2 Focusing Attention: Online Reinforcement L e a rn in g ...65

5.2.1 A Small Exam ple...68

5.2.2 Gradient of Policy Value in Changing Value Function Parameters . . . 70

5.2.3 A Combination of Policy-Gradient and Value-Function Approach . . . 71

5.2.4 An Instantiation of the PGVF A rch itectu re ... 72

5.3 Empirical E v a lu a tio n s ...74

5.4 Further D iscussion ... 76

5.4.1 PGVF vs. Policy Gradient .. 78

5.4.2 PGVF vs. V A P S .. 79

6 Conclusions and Future Work 80

6.1 Thesis S u m m a ry .. 80

6.2 Future Work .. 81

Bibliography 82

A Supervised Learning 89

A .l Overview .. 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2 PAG Learning...............................

A.3 Ensemble L earn ing

A.4 Examples of Supervised Learning

A.4.1 Gradient D escent.............

A.4.2 Artificial Neural Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 A summary of the work in the thesis categorized along two dimensions. . . . 4

2.1 Optimal and two approximate policies for the car-shopping problem..................... 32

4.1 Statistics of the policy value improvements of CS-cRL obtained from 50 runs

of experiment...52

5.1 Features used in the grid-world domain. A state s is represented by its

coordinates, (x, y) ... 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 The agent-environment interface... 2

2.1 Policy iteration.. 13

2.2 Value iteration... 14

2.3 The Monte Carlo algorithm for policy evaluation.. 15

2.4 An implementation of the rollout technique. Simulate is a sub-routine that

generates the next state and immediate reward using a generative model. . . 16

2.5 The S a r s a algorithm....................................'... 17

2.6 The Q-learning algorithm... 18

2.7 CI-cRL: Cost-insensitive classification-based RL. Learn is a sub-routine that

induces a classifier from the input training data...22

2.8 Offline operation of MR ADORE for policy acquisition... 26

2.9 Training data used in MR ADORE, (a) An original photograph, (b) The

corresponding desired labeling provided by an expert as a part of the training

set...27

2.10 Empirical results of S q u a r e L e v .R applied to MR ADORE. When the train­

ing and test errors decrease, the relative policy value increases. See Ap­

pendix A .l for a formal definition of RMSE (root mean squared error) 29

2.11 Empirical results of S q u a r e L e v .R applied to MR ADORE. Although the

training and test errors decrease, the relative policy value can decrease slightly.

See Appendix A.l for a formal definition of RMSE (root mean squared error). 30

2.12 The car-shopping problem.. 31

3.1 Tsitsiklis and van Roy’s example for illustrating the divergence of dynamic

programming with least-squares linear function approximation.............................. 34

3.2 An illustrative example for the problematic STD(A) algorithm..............................37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 CS: Cost-Sensitive batch RL based on classification. CS-Learn is a sub-routine

that induces a cost-sensitive classifier from the input training data....................... 42

4.2 CS-cRL: Cost-Sensitive classification-based RL. CS-Learn is a sub-routine that

induces a cost-sensitive classifier from the input training data................................ 46

4.3 A typical distribution of immediate rewards in the two-dimensional grid-world

used for our empirical evaluation. The rewards were randomly generated

under a mixture distribution scheme consisting of a uniform distribution and

a Gaussian distribution given in Equation 4.24.. 48

4.4 A typical distribution of importance values in the two-dimensional grid-world

used for our empirical evaluation of focused learning.. 49

4.5 Policy value and misclassification cost in the grid-world experiment. Standard

deviations are plotted every 1000 learning trials. In each trial, one training

state is drawn from T for updating the weights in the artificial neural network. 50

4.6 Policy values in the first ten policy iterations, averaged over 50 runs................... 52

4.7 Policy values of the 50 runs. Average performances correspond to the solid

circles in the figures..53

4.8 (Weighted) classification errors on the training set, averaged over 50 runs. . . 54

4.9 (Weighted) classification errors over the entire state space, averaged over 50

runs..55

5.1 Approximating the optimal value function more precisely can lead to policies

with lower quality. The values were averaged over 20 runs of experiments

with variances plotted.. 64

5.2 Comparison of the three batch value function learning methods. VF0 can

decrease RMSE consistently but the policy value may not increase corre­

spondingly; in contrast, VF1 and VF2 can compute a better policy although

the value function is less accurate..66

5.3 Comparison of the three batch value function learning methods. VF1 and

VF2 can produce better policies although the value functions are less accurate

than the one computed by VF0..67

5.4 A simple 2-state MDP...68

5.5 The three different performances of different values of 6 for the policy pre­

diction problem on the 2-state MDP (Figure 5.4). The bottom graph shows

an enlarged fragment of the top graph..69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 An architecture combining policy gradient and pure value function learning

methods, which is flexible enough to allow a tradeoff between the policy value

and value function approximation accu racy .. 71

5.7 An illustration of the arbitrator function defined in Equation 5.9.........................73

5.8 An instance implementing the PGVF architecture... 75

5.9 A comparison between S a rsa (O) and P G -S a r sa (O) using Arj on the 2-state

M D P ... 76

5.10 Different values of jj controls the tradeoff between value function accuracy

and th e policy value in P G -S a r sa (O) using A r3 on th e 2 -sta te M D P 77

5.11 The converged values of 0 with different r] in P G -S a r sa (O) and P G - S a r s a (I)

using Ar3 on the 2-state MDP..77

A.l The mathematical model of a neuron..96

A.2 The Sigmoid function (Equation A.9)... 96

A.3 A multi-layer feed-forward neural network with one hidden layer......................... 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

This thesis is about how a reinforcement learning agent can improve its policy by focusing at­

tention on more important states. As an introduction, this chapter will first give a high-level

overview of the main topic, including sequential decision making, reinforcement learning,

and function approximation. Then we will summarize the motivation and contributions of

the thesis, followed by a thesis reading guide. Formal definitions of the terminology are

found in the next chapter.

1.1 Sequential D ecision M aking in A rtificial Intelligence

Sequential-decision making [Littman, 1996] is one of the key problems in artificial intelli­

gence [?]. In this framework, the task of the intelligent agent cannot be accomplished in

a single step; instead, it has to take multiple actions before the goal is achieved. Such a

problem is very common in many control problems such as bicycle riding, as well as animal

behavior and human activities such as game playing, inventory management, and market

prediction.

For example, imagine an agent playing the game of Tic-Tac-Toe. The agent and its

opponent take turns to place X’s or 0 ’s on a 3 x 3 board. A player wins if she manages

to place three of her marks in a row, either horizontally, vertically, or diagonally. This is

a typical sequential decision making problem, where each agent has to take a number of

moves before the game ends with a winner or a draw, and each move she takes depends on

the current situation of the game board.

A common interface exists in all sequential decision-making problems: the agent-environment

interface (Figure 1.1), in which the world consists of the agent and the environment. In arti­

ficial intelligence, an agent is an entity, either a software or hardware implementation, that

has a goal and can perceive and take actions. The agent has full control over its knowledge

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

feedback

action

environment agent

Figure 1.1: The agent-environment interface.

about the world, as well as its behavior which is determined by its policy. Basically, a policy

answers the question “what shall I do now?” . Everything outside the agent is considered as

part of the environment which the agent may not have a full control over or observation of.

The agent and the environment then interact as follows: in each cycle, the agent perceives

the state of the world, and takes an action according to its policy; in response to each action,

the environment reaches a new state and at the same time provides the agent with some

feedback; then the next cycle begins. An environment is deterministic if the same action in

the same state always leads to the same feedback and the same new state; otherwise, it is

stochastic.

1.2 R einforcem ent Learning: Learning in Sequential D e­
cision M aking

Reinforcement learning (RL) [Sutton and Barto, 1998], or neuro-dynamic programming

(NDP) [Bertsekas and Tsitsiklis, 1996], is the most studied general framework for learning

optimal sequential decision-making policies, through interaction with a possibly unknown

and stochastic environment. Having succeeded in a number of important and difficult appli­

cations, such as the game of backgammon [Tesauro, 1992; 1995], job-shop scheduling [Zhang

and Dietterich, 1995], elevator dispatching [Crites and Barto, 1996], dialogue policy learn­

ing [Singh et al., 2002], power control in wireless transmitters [Berenji and Vengerov, 2003],

and helicopter control [Ng et al., 2004], reinforcement learning has attracted a great deal

of research interest and become one of the central topics in machine learning and artificial

intelligence. This section highlights several key characteristics of reinforcement learning

without delving into technical details.

The first key idea of reinforcement learning is learning from interaction. This is in

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contrast to supervised learning, a large subfield of machine learning [Mitchell, 1997], which

assumes the existence of an external teacher who tells the agent the correct decisions1. Then

a supervised learning agent attempts to emulate the teacher. In reinforcement learning,

however, a teacher is not provided. Consequently, the RL agent has to do trial-and-error

search in the state space and actively collect information for learning the optimal policy,

only by interacting with the environment.

Another key characteristic of reinforcement learning, also common in other sequential

decision-making problems, is the delayed rewards. In real life, it is common that the long­

term consequences of an action are not reflected by the immediate feedback of the environ­

ment. For example, an investor does not know exactly whether his investment in a stock

will bring him profit or loss, or how much profits there will be, until the outcome has come

true. Further, the outcome may also depend on a number of factors that occur after the

investment is made, which makes it even more difficult to evaluate whether the investment

is good. Therefore, the investor (agent) has to solve the well-known temporal credit assign­

ment problem — a problem of appropriately apportioning credit and blame to the states

and actions that lead to the final outcome [Sutton, 1984].

Third, reinforcement learning has to balance the exploitation and exploration of the

environment. Specifically, in order to maximize the rewards, the agent will evaluate how

good an action or state is, and prefers the action or state that seems best according to

its current evaluation. However, it is possible that the evaluation is inaccurate, or the

environment is non-stationary. Thus, it is beneficial for the agent to try suboptimal actions

or states occasionally in the hope of potentially better policies and higher long-term rewards.

1.3 Thesis O verview and C ontributions

A number of reinforcement learning algorithms exist. They either attem pt to learn the opti­

mal policy directly, or to learn an evaluation function from which the optimal policy can be

derived. Almost all real-world problems of interest are so complex and large that some com­

pact representation has to be used to approximate the target policy or evaluation function.

These include a number of widely studied supervised learning techniques such as neural

networks [Haykin, 1999], decision trees [Breiman et al., 1984; Quinlan, 1993], and support

vector machines [Vapnik, 1999]. Two problems exist in the presence of approximation.

First, when function approximation is used, the convergence property of evaluation func­

tion learning is guaranteed only under some very limited conditions. In fact, examples of

1NB: Generally speaking, instructions from the teacher m ay be noisy, m eaning th a t they m ay no t always
be correct. B u t i t is still different from the reinforcement learning problem.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Batch RL Online RL
Classification-based Policy Search Method (Ch. 4)
Value-Function Method (Ch. 5)

Sec. 4.2
Sec. 5.1

Sec. 4.3
Sec. 5.2

Table 1.1: A summary of the work in the thesis categorized along two dimensions.

divergence have been shown even when both the problem and the function approximation

are astonishingly simple. In the last decade, a large amount of efforts have been invested in

studying this problem. This is an important issue, but will not be discussed in detail in the

thesis.

Second, even if the approximated evaluation function converges, it may converge to a

suboptimal solution due to the inaccuracy of approximation or the inability to represent

the optimal policies or value functions exactly. Consequently, the RL agent may try to

approximate the target function or policy as accurately as possible, by using advanced

supervised learning techniques, with the hope that a more accurate evaluation function

results in a better policy. However, the ultimate goal of reinforcement learning is to compute

a good policy, in the sense of high rewards. We present empirical evidence that these two

metrics (function approximation performance and policy quality) can conflict in practice.

In other words, supervised learning should be applied to reinforcement learning problems

with caution for better outcomes.

Thesis Contributions

We show that, in sequential decision making, not all states are equally important in terms

of preferring one action to another. Therefore, it is beneficial for the agent to achieve

optimally when making an important decision thereby increasing higher rewards. The thesis

investigates the problem of focused learning and aims at (i) defining an effective metric for

measuring state importance, and (ii) utilizing such information to learn a better policy in

the sense of sequential decision making. Specifically, two primary classes of RL approaches

are investigated: the policy-search methods that attempt to optimize the policy directly,

and the value-function methods that learn an evaluation function first and then derive a

policy from it. For each class of methods, two settings of reinforcement learning problems

are examined: the batch setting where learning occurs offline using a fixed set of interaction

experiences, and the online setting (also known as the full reinforcement learning problem)

where the agent learns and acts at the same time. Table 1.1 summarizes the work in the

thesis along these two dimensions:

For the first class of approaches, we will consider the classification-based methods, where

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a policy is represented as a classifier mapping states to actions, and the objective is to induce

a classifier mapping states to the optimal actions. We propose a measure of state importance

that is suitable for sequential decision making, and connect the importance directly to

the policy performance. Advantages of focused learning are shown both theoretically and

empirically.

For the second class of approaches, we analyze how individual states contribute to

changes of the global policy quality when the function approximation parameter is updated.

An architecture is proposed by considering this information to avoid the policy degradation

that has been observed in other direct value-function methods. Furthermore, this architec­

ture is shown to be flexible in handling the tradeoff between two possibly conflicting metrics:

the policy quality and the function approximation performance.

1.4 Thesis R eading G uide

Chapter 2 provides the necessary background and notation that will be used throughout the

rest of the thesis. It first gives the notation for sequential decision making and reinforcement

learning, as well as their mathematical model, Markov decision processes. Some technical

details necessary for later chapters will be provided. Then the motivation for the thesis

research is discussed. We show that a more accurate approximation can actually translate

into worse policies. Examples include both toy problems and two large, real-life systems.

Finally, we will summarize the objectives of this thesis research based on these observations.

Chapter 3 reviews the related work. Two major problems in function approximation for

reinforcement learning will be introduced: the divergence problem and the sub-optimality

problem. The limitations in the previous study of the second problem will also be discussed.

Chapter 4 investigates the classification-based methods, where a policy is a classifier

labelling states with actions directly. We propose a definition of state importance which

can be incorporated in existing algorithms to result in better policies. The advantages are

supported by both theoretical and empirical studies in a 2D grid-world domain.

Chapter 5 investigates the value-function methods. An architecture called PGVF (policy-

gradient-based value-function learning) learns a value function while at the same time con­

siders the policy quality. In addition, we show that PGVF is flexible in dealing with the

tradeoff between policy quality and function approximation performance.

Chapter 6 concludes the thesis and discusses several directions for future research.

Appendix A briefly discusses supervised learning with a focus on techniques related to

function approximation for reinforcement learning. It will also introduce several learning

algorithms used in our experiments.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background and M otivation

This chapter first provides background including the notation and necessary technical details

for later chapters. Then the motivation for this thesis research is discussed with support of

empirical evidence.

2.1 Sequential D ecision M aking and M arkov D ecision
Processes

The thesis only considers the discrete-time sequential decision-making problems. More

specifically, we denote the set of states of the environment by S, and the set of actions of the

agent by A- The agent starts from an initial state s0 g S; at each time step t = 0,1,2, ■ ■ •,

the state of the environment is denoted by st € S, the agent chooses action at <E A to

execute, resulting in an immediate feedback in the form of a real-valued reward r t+i € 1R

and the next state G <S. The task is episodic if the process terminates after a finite

number T of steps; otherwise, it is continual (i.e., T = oo).

Formally, the goal of the agent is to maximize the cumulative rewards, 77 + + rz H ,

over time. In the case of continual tasks, the infinite sum of rewards can tend to infinity.

For this reason, a discount factor 7 € [0,1) is introduced to place a decaying weight on each

immediate reward, and the cumulative rewards becomes n + 7 r2 + + 7 V 4 H . If the

reward signal is bounded:

3 R U € R, Vt 6 N, |rt+i| < R u ,

then the discounted sum is also bounded. Note that this sum can also be used in non­

discounted (7 = 1), episodic (T < 00) tasks by letting r* be zero for all k > T. Therefore,

the discounted cumulative rewards can be unified for the two types of tasks, episodic and

continual.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 1 Given a fixed, discount factor 7 between 0 and 1, the return of a sequential

decision-making problem from time t is defined as:
OO

R t — 53 ^
fc=0

Another key concept in sequential decision making is the policy mapping states to actions,

which the agent uses to select actions based on the current state. Two types of policies

exist—deterministic policies and stochastic policies. A deterministic policy specifies the

action for each state; in contrast, a stochastic policy assigns a probability distribution over

the set of actions conditional on the current state. Clearly, deterministic policies are a

special case of stochastic policies.

D efin ition 2 A policy is a probability distribution over the action set conditional on states:

7r : S x A [0,1], where

Vs £ <S, Va £ .4, 7r(s, a) > 0 and
b€A

When a policy is deterministic, we also use 7r(s) to denote the unique action selected by

policy 7r in state s.

In general, the action at selected at time t also depends on the previous history of the

agent: So, <k)>i"i> si> a t> ^2 • • • , $t-i> o,t - i , r t ,s t . However, if the environment’s state contains

sufficient information of the previous history, the agent can just decide at based on st

without considering previous state transitions or rewards. This is called the Markovian

assumption and the resulting model, although simplifies the problem greatly, is surprisingly

useful for modelling many sequential decision-making problems. A formal definition of this

model, Markov decision processes [Puterman, 1994], is given below.

D efinition 3 A Markov decision process (MDP) is a six-tuple (S ,A ,D ,P ,'y ,R) where:

• S is a set of states;

9 A is a set of actions;

9 D is the start-state distribution from which so is drawn;

9 P is the state transition distribution with Psa(s') denoting the next-state distribution

after taking action a in state s:

P sa (s ') = Pr{s4+1 = s' | st = s ,a t = a};

9 7 € [0 , 1] is the discount factor;

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• R : S x A ^ t L is a hounded reward function with R(s, a) denoting the expected

immediate reward collected by taking action a in state s:

R(s, a) ~ E{rt+1 | st = s, at = a}.

It is possible that a task is non-Markovian, the state of the task is not fully observable,

or the state/action spaces are continuous. However, in this thesis we only consider only the

most widely studied MDPs, which satisfy the Assumption 1 below. This class of MDPs,

although simplest in the form, represents a broad range of practical domains.

A ssum ption 1 The MDPs considered in this thesis satisfy the following assumptions:

1. Both S and A are finite sets: |<S| = n and |A| = m;

2. The value of each component in (S , A, D, P, 7 , R) does not depend on time t.

Henceforth, we will use the term MDP model to refer to the reward and transition

function (R and P) of an MDP. For some problem (e.g., the game of backgammon), the

MDP model is completely known to the agent. For other problems (e.g., helicopter control),

however, this model is unavailable and the agent has to compute the optimal policy through

interaction with the environment (the MDP). If an MDP terminates in a finite number of

steps, it is called finite-horizon MDP; if it continues forever, it is called infinite-horizon MDP.

Clearly, the two types corresponds to the episodic and continual tasks, respectively. Below

we state an important assumption that is usually made in the the research of reinforcement

learning.

A ssum ption 2 Given a fixed policy n, assume the stationary state distribution and the

stationary state-action distribution exist, which are denoted by pJo(s) and a), respec­

tively:

/*»(«) = P r{s* = s It—*00

tTLis, a) = lim Pr{st = s, a t = a 17r}.
i —► 00

2.2 R einforcem ent Learning

From this section, we start the discussion of reinforcement learning which addresses the

learning problem in solving MDPs [Bertsekas and Tsitsiklis, 1996; Littman, 1996; Singh,

1994; Sutton and Barto, 1998], The learning problem is to compute a policy 7r to maximize

the return Rt, either based on a model of the MDP or on interactions with the environment.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this section, we do not consider the problem of function approximation. Instead, we

assume th a t the state space is tractable so that all functions and policies can be stored in

a lookup table.

2.2.1 Notation

In making decisions, the RL agent needs to evaluate the utility/merit of each action or

state, and select either the optimal one to maximize the long-term return, or occasionally a

suboptimal alternative to explore the state space. The evaluation is done by maintaining a

value function:

D efin ition 4 The state-value function for policy t t , denoted by is the expected return

by starting from, state s and following 7r thereafter:

V*(s) = E {R t \ s t = s,ir}.

D efinition 5 The action-value function for policy n, denoted by Q*(s, a), is the expected

return by taking action a in state s and following t t thereafter1 ;

Q'K(s,a) = E {Rt | st = s ,a t — a,ir}.

Clearly, P (s) > V ^ s ') indicates that by following policy t t , a larger return is expected

by acting from state s than from state s'. Likewise, Q'K(s,a) > Qv {s,a') indicates that

taking action a in state s has a higher expectation of return than a' when following t t . A

similar comparison can be done between two policies. For example, if

Vs e <S, V n{s) > V^'(s),

then 7r is said to be better than t t ' . Given a policy, the problem of calculating V*(s) or

Q'K(s,a) is called policy evaluation; the problem of improving t t to a better policy is called

policy improvement.

The policy improvement theorem [Bellman, 1957] guarantees that in any MDPs satisfying

Assumption 1, there always exists an optimal policy t t * whose value functions are no lower

than the value functions of any other policy, i.e., 3 t t * , V7r:

Vs e S , V * '(s) > V n(s)

Vs £ <S, Va £ <S, Qv (s, a) > Qv {s, a).

Clearly, V"** (s) = m ax, and Qv' (s, a) = maxT Qv (s, a). Note that there may be

more than one optimal policies, but they share the same optimal value functions.

1Sometimes Q 77(.s, a) is also called the value o f the state-action pair (s ,a).

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 6 The value functions of an optimal policy are called the optimal value func­

tions;

v (s) =

Q*(s,a) = Qv'(s ,a).

Given the definitions of (optimal) value functions, a set of recursive relations among these

value functions exist, which plays a fundamental role in almost all popular RL algorithms.

• The Bellman equations [Bellman, 1957] establish a relation between the values of state

s and its successor states s', given any policy t t :

V ”(s) = ^ f (3 , a) | l ? (S, a) + 7 p » « (a ') F I (S') j , (2.1)

Qn(s,a) = R (s , a) + 7 ^ ^ P s«(s,) E 7r(s,’a,^ ^ s,’a')) ; (2-2)

• The Bellman optimality equations [Bellman, 1957] expresses a relation between the

optimal values of state s and its successor states s':

V*{s) = m a x |p (s , a) + 7 ^ P Sa (s ^ V) ^ , (2-3)

Q*(s,a) = P (s ,a) + 7 ^ (p ,„ (s ') n w x Q * (s ,,o /)) ; (2.4)
s' “

• The following four equations show how the (optimal) state-value and action-value

functions are related [Sutton and Barto, 1998]:

V ^ s) =]T V (s,a)Q*(s,a),
a

Q*{s,a) = R(S, a) + 7] T P sa(s,)V7V) ,
S f

V*(s) — max<5*(s,a),
a

Q*(s,a) = R (s ,a)+ 1 '52P 3a(s')V*(s').
s'

D efin ition 7 Let F (s) or Q(s, a) he the value function estimation of the agent, then it can

derive a deterministic greedy policy with respect to the value function by one-step lookahead

into the futureP

7iy(s) = argmax ^ii(s, a) +7 E W V W . (2.5)

7t q (s) — arg max Q{s,a). (2.6)

2If several actions appear to lead to the same expected re tu rn , then they are trea ted as one action, and
the arg max., operator ju s t returns one of them randomly.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The action selected by the greedy policy is called a greedy action.

Therefore, if an RL agent has estimated the optimal value function, it can derive a

greedy policy by Equations 2.5 and 2.6. The greedy policy is close to the optimal policy i t *

if the estimated optimal value function is accurate enough. However, deterministic policies

do not encourage exploration which is important to an RL agent. We introduce a family of

commonly used stochastic policies called Gibbs softmax policies.

Definition 8 The Gibbs softmax policy with respect to the value function Q(s, a) is defined

w h e r e t i s th e temperature p a r a m e t e r c o n t r o l l i n g th e e x p l o i t a t i o n / e x p l o r a t i o n t r a d e o f f .

The Gibbs softmax policies are useful in that the exploitation/exploration tradeoff is con-

random policy; when r —> 0, 7r(s, a) tends to be a pure greedy policy.

Throughout the thesis, we will use the policy value or policy loss, defined below, as the

performance metric for evaluating a policy. It is clear that maximizing the policy value is

equivalent to minimizing the policy loss. Therefore, these two metrics are equivalent.

Definition 9 The policy value of a policy t t with respect to a state distribution p. is defined

as:

In the rest of the thesis, we will simplify the notation by omitting the p in and

C ^ (t t) when p is the probability of visiting s or (s, a) by following policy t t .

2.2.2 Basic Algorithms

This section presents some of the more important basic algorithms for solving reinforcement

of the MDP is given; Monte Carlo does not require the MDP model, and is conceptually

simple and relatively easy to analyze, but lacks efficiency; temporal difference learning does

not require the model, is efficient and incremental, but much more difficult to analyze. A

as:

(2.7)

veniently controlled by the temperature parameter: when r —> oc, t t (s,a) tends to be a

(2.8)
S

Similarly, the policy loss of t t with respect to p is defined as:

£ » = V(7T*) - V(tt) = £ > (s) (E * (s) - V*(a)). (2.9)

learning problems. Dynamic programming is useful when a complete and accurate model

comprehensive introduction and analysis can be found in [Sutton and Barto, 1998].

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D ynam ic Programming

With the assumption that the MDP model is known, dynamic programming (DP) [Bellman,

1957] can be used to solve the optimal value function by making use of the Bellman (opti­

mality) equations. Algorithms with a time complexity polynomial in the number of states

exist, and their convergence to the optimal solution is guaranteed.

Policy iteration (PI) [Howard, I960] finds the optimal value function by iteratively per­

forming two sub-tasks: policy evaluation and policy improvement (Figure 2.1). An agent

starts with a random policy. In each iteration, the agent first evaluates the value function

of the current policy n, such as Q*(s,a). Then it computes the greedy policy ir' from 7r:

Vs e <S, tt' (s) = argmax<3,r(s ,a). (2.10)a

A theorem called the policy improvement theorem [Sutton and Barto, 1998] asserts that

V(7r') > V(?r), unless 7r' — 7r = 7t* in which case V(7r') = V(tr) = V(7r*). Policy iteration

always terminates in a finite number of iterations. In fact, empirical studies found that it

often converges to the optimal policy very quickly.

Value iteration (VI) [Puterman and Shin, 1978] proceeds by merging the policy eval­

uation and improvement steps, and thus can be viewed as generalized policy iteration. In

particular, it updates the value function using the right-hand-side of Equations 2.3 or 2.4,

which forces the value function to converge to the optimal value function (Figure 2.2).

M onte Carlo

Monte Carlo (MC) is a conceptually simple method that estimates the value of a state or

a state-action pair by averaging the actual returns starting from it. Besides the simplicity,

another advantage of MC is that it does not require the MDP model. Figure 2.3 shows one

MC solution to the policy evaluation problem. Such a routine can be conveniently embedded

in the framework of policy iteration in Figure 2.1.

Note that the algorithm in Figure 2.3 is for episodic tasks, namely the finite-horizon

MDPs; for infinite-horizon MDPs (continual tasks), however, there is only one “episode”

without termination, which renders the algorithm inapplicable at once. For such a case,

however, 7 has to be strictly less than one. Therefore, distant rewards do not affect the

return much and thus can be ignored. This observation forms a basis for a technique called

rollout (Figure 2.4), which is easy to parallelized and has been applied successfully to the

game of backgammon [Tesauro and Galperin, 1997]. By using a reset3, rollout estimates

Q*{s, a) by repeatedly executing action a in state s and then following ir thereafter until a

3A reset is a “bu tton” th a t resets th e agent to any desired state .

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Policy-Iteration
In p u t :

ca : threshold
7 discount factor
R(s, a): reward function
Psa(s'): state transition probabilities

O u t p u t : V fa V*

initialization: n <— random policy
repeat

/ / Policy Evaluation: to compute
re p e a t

A «- 0
for each s € S

Void < - v(s)

V (S) E a (* (s > °) (R (s ’ fl) + 7 E * ' Psa (s ') ^ (« ')))
A <- max{A, |u0id - V(s)|}

until A < 6a

/ / Policy Improvement: to compute it’
changed <— false
for each s € S

7r'(s) <- argmax0 {i?(s,a) + 7 E s/ PSa{s')V(s)}
If 7r = 7r', then changed <— true
7T <— 7T/

until changed = false
return V(s)

Figure 2.1: Policy iteration.

given horizon. The returns of all runs are then averaged and the mean value becomes the

action value estimate, Q,r(s, a). An implementation of rollouts is illustrated in Figure 2.4.

Simulate is a procedure that uses the generative model M to determine the next state and

the immediate reward. Indeed, if 7 < 1, rollouts can approximate the true return to any

desired precision: it is shown [Kearns et al., 2000] that returns after the first Ht steps

contribute at most e/2 to the total return where

e(l - 7)
He = log^

2Rm

Temporal Difference Learning

Temporal difference (TD) learning [Sutton, 1988] is the most popular RL algorithm [Crites

and Barto, 1996; Singh and Bertsekas, 1997; Tesauro, 1995; Zhang and Dietterich, 1995]. It

combines the strengths of MC and DP: it does not require the MDP model (similar to MC),

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Value-Iteration

In p u t :
ca: threshold
7 : discount factor
R (s,a): reward function
Paa(s'): state transition probabilities

O u t p u t : V « V*

initialization: V (s)+— random function
repeat

A < -0
for each s € S

v0\d V (s)
V(s) +- maxa{R (s,a) + 7 ^ , Pea(s')V (s1)}
A <- max{A, |n0id - V(s)|}

until A < ca
return V(s).

Figure 2.2: Value iteration.

and can efficiently utilize the structure of the MDP by updating value functions using the

Bellman (optimality) equations (similar to DP). The basic idea underlying TD learning is

that learning can be achieved from the information called temporal difference errors.

Suppose, for example, that the agent is following a policy 7r and has an estimate of

the state-value function. At time step t, the estimate is Vt (s), and by taking an action at

according to tt a transition is experienced: st —> st+i with an immediate reward of rt+1-

Recall that on average, F 7r(st), F ^ S t+ i), and rt+ 1 should satisfy Equation 2.1. If the

estimate Vt (s) is not accurate or the MDP is stochastic, then the two sides of the Bellman

equation may not equal and the difference is:

<5™ = r(+1 + 7 Vt (at+1) - Vt (st). (2 .11)

According to Equation 2.1, the term rt + 1 + 7 Vt (st+i) above can be seen as an “updated”

estimate of V (s t) at time t + 1, while Vt (st) is the original estimate at time t. Therefore,

the difference S jv between these two estimates is called the temporal difference. And the

value function can be updated using this information:

Vt+1(st)+ -V t (st)+ a 6 ™

where a is the step-size parameter. The update process above is also called a backup.

More generally, a broader family of algorithms called TD(A) [Sutton, 1988] computes

the temporal differences in a more complicated way controlled by a parameter A € [0,1]. In

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M onteCarlo-PolicyEvaluation

In p u t: the policy it to be evaluated

O u t p u t : V (s) « P (s)

initialize: V <— random function
Vs, ReturnList(s) *— 0
repeat until V(s) converges

for each episode generated by i t

R <— return following the first occurrence of s in this episode
Append R to ReturnList(s)
F (s) +— Average(ReturnList(s))

end repeat
return V(s)

Figure 2.3: The Monte Carlo algorithm for policy evaluation.

particular, Equation 2.11 corresponds to TD(0); and the aforementioned MC can be seen

as a special case of TD(1). A number of other RL algorithms are also based on the idea

of learning from TD errors, such as actor-critic [Barto et al, 1983; Konda and Tsitsiklis,

2000],

The most well-known TD algorithms for solving MDPs are S a r s a [Sutton, 1996] and

(^-learning [Watkins, 1989], shown in Figures 2.5 and 2.6, respectively, for the case of A = 0.

Both algorithms are based on the Bellman optimality equation 2.4 and attem pt to compute

Q*(s,a). Note that if Q(s,a) = Q*(s,a), then the expected TD error is 0. Therefore, these

two algorithms can be seen as performing gradient descent on the TD errors. Eventually,

when the TD error reaches 0, Q(s, a) converges to Q*(s,a). In fact, for finite MDPs, if

Q(s,a) is stored in a lookup table with one entry for one (s, a) pair and each (s, a) is

experienced infinitely often, then both S a r s a (O) and Q-learning converge to the optimal

action-value function Q*(s,a) [Singh et ai, 2000; Watkins, 1989],

2.2.3 Two Classes of G eneral Reinforcement Learning Algorithms

A number of modern RL algorithms have been developed since the early 1980’s. These

algorithms can be categorized along different dimensions (e.g., see Chapter 10 in [Sutton

and Barto, 1998]), such as (i) on-policy vs. off-policy, (ii) model-based vs. model-free,

(iii) sample backups vs. full backups, (iv) shallow backups vs. deep backups, etc. In this

thesis, we will focus on two types of RL algorithms: the value-function methods and the

policy-search methods.

Value-function methods [Baird, 1995; Bertsekas and Tsitsiklis, 1996; Sutton, 1988; 1996;

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rollout

In p u t :

M : generative m odel
(so,a0): the state-action pair to evaluate
7r: the policy to be evaluated

r- discount factor
K: number o f trajectories
H: m axim um length o f trajectories

OUTPUT: an estim ate o f Q1* (so, ao)

for k — 1 to K
S <— S o , a 4— a 0
(s', r) <— Simulate(M, s, a)
Q k * ~ r
s <— s'
for h = 1 to H — 1

a *— 7r(s)
(s', r) <— Simulate(M, s, a)
Q l ^ Q l + l hr
S +~~ Sf

Q* - Tc Z L i Q l
return Q*

Figure 2.4: An implementation of the rollout technique. Simulate is a sub-routine that
generates the next state and immediate reward using a generative model.

Sutton and Barto, 1998; Watkins, 1989] are the most popular. Recall that the goal of

reinforcement learning is to acquire a policy. Value function methods, however, do not

compute a policy directly. Instead, they attempt to learn a value function from which a

policy is derived. The algorithms described in the previous subsection belong to this family.

Policy-search methods, as the name suggests, seek the desired policy in a fixed policy

space II [Bagnell et at, 2004; Kakade, 2002; Kearns et al, 2000; Ng and Jordan, 2000;

Ng et al, 1999; Williams, 1992]. They may or may not make use of the value functions.

For example, genetic algorithms [Holland, 1975] and simulated annealing [Kirkpatrick et al.,

1983] can be used to perform stochastic search in the policy space and hopefully, the set of

policies they find converge to a good solution.

Both value-function and policy-search methods have pros and cons of their own, and

have remained a topic of active research. The dominant approach in the last decade has

been the former family of methods. By using value functions (often called critics), these

methods are usually more efficient because the structure of the agent’s interaction history

can be better utilized to compute a good policy. On the other hand, pure policy-search

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S arsa

In p u t :
7 : discount factor

O u t p u t : Q{s,a) « Q*(s,a)

for each (s, a) £ <S x A
Q(s,a) <— random value

repeat until Q(s, a) converges
in itia lize s ~ D
a <— 7Tq (s) (greedy w ith exploration)
repeat

Take action a, observe r and s'
o' t t q (s ') (greedy with exploration)
Q(s, a) <- Q(s, a) + a(r + 7 Q{s', a!) - Q(s, a))
s <— s'
a *— a!

until s is the term inal sta te
end repeat
return Q{s,a)

Figure 2.5: T h e S a r sa algorithm .

methods ignore such useful information. But as we will discuss in the later sections, policy-

search methods are easier to analyze and their convergence guarantees are stronger when

function approximation is used. Also, policy-search has a lower computational cost when

the set A of actions is large or even continuous. For these reasons, there has been a growing

interest in this class of methods. In this thesis, two types of policy-search methods will be

considered:

• the classification-based methods [Fern et al., 2004; Lagoudakis and Parr, 2003b; Lang­

ford and Zadrozny, 2003; Yoon et al., 2002] in Chapter 4;

• policy gradient (including actor-critic) methods [Barto et al, 1983; Baxter and Bartlett,

1999; Konda and Tsitsiklis, 2000; Sutton et al., 2000] in Chapter 5.

2.2.4 Two Types of Reinforcement Learning Problems

So far, we have considered the full reinforcement learning problem. That is, the agent acts

online and learns a policy or a value function at the same time. There is another class

of RL problems called batch reinforcement learning. In batch reinforcement learning, the

agent is presented with a fixed set of experiences from which a policy has to be computed.

That is, the learning process occurs offline. For this reason, batch reinforcement learning is

sometimes called offline reinforcement learning.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q -L earning

I n p u t :
7 : discount factor

O u t p u t : Q(s,a) « Q*(s,a)

for each (s , a) e « S x i
initialize: Q(s, a) <— random value

re p e a t un til Q(s, a) converges
initialize s ~ D
re p ea t

a *- irQ(s)
Take action a, observe r and s'
Q(s, a) *- Q(s, a) + a (r + 7 maxa- Q(s', a') — Q(s, a))
s <— s'.

until s is the terminal state
end repeat
return Q(s,a)

Figure 2.6: The Q-learning algorithm.

The batch/offline reinforcement learning framework is important whenever online learn­

ing is not feasible (e.g., when the reward data are limited), and therefore a fixed set of

experiences has to be acquired and used for offline policy learning [Draper et al., 2000;

Levner and Bulitko, 2004]. A related technique called experience replay has been em­

ployed in robotics and was shown to speed up TD-learning and reduce possible damage to

the learning robot [Lin, 1992]. An experience-replay RL agent simply remembers its past

online experiences and then repeatedly updates its value function or policy using these of­

fline experiences. A recently proposed method called LSPI [Lagoudakis and Parr, 2003a]

was shown to make efficient use of data by applying the least-square technique offline on

reusable sampled experience. Another similar idea has been adopted in the Dyna-Q archi­

tecture [Sutton, 1990], in which the agent improves its policy or value function from both the

“real” online experience and the “imaginary” experience generated by a model. Thus, both

experience replay and Dyna-Q can be viewed as combinations of online and offline/batch re­

inforcement learning. Another advantage of batch reinforcement learning is that sometimes

it facilitates theoretical analysis such as the sample complexity problem [Kakade, 2003;

Kearns et al., 2000], as well as applications of advanced supervised learning algorithms [Di-

etterich and Wang, 2002].

In this thesis, we consider a special case of batch RL assuming that the state space is

sparsely sampled and the optimal action values for these sampled states are computed or

at least estimated. The sampled states together with their optimal action values form the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

training set for supervised learning. For this reason, these sampled states are called tra in ing

sta tes. Formally, we will consider the training data provided in the form of

T q . = { { s ,a ,Q * { s ,a)) | Vs G T, Va G ^4}, (2 .12)

where T C S is a sparsely sampled state space.

Knowing the optimal action values may at first seem unrealistic. In practice, however,

a technique called fu ll-tra jectory-tree expansion can be used to compute or estimate such

values. Using this technique, all possible action sequences are applied to each training state,

and in this way the optimal action values are computed or estimated. Note that in the

infinite-horizon case where the action sequences can be infinitely long, the discount factor

7 has to be strictly less than one, which implies that the optimal action values can be

estimated to any desired precision by considering action sequences up to a limited depth

(cf. the discussion of MC in Section 2.2.2).

Full-trajectory-tree expansion is especially useful for deterministic domains where good

policies generalize well across problems of different sizes. Then the agent can start with

problems of tractable state space and apply the expansion efficiently to obtain the in­

formation needed for batch reinforcement learning. Once a good policy is computed, it

can generalize to problems with larger state spaces. There have been several successful

applications of this technique including [Draper e t al., 2000; Levner and Bulitko, 2004;

Wang and Dietterich, 1999].

For the value-function methods, once the training data T q - are acquired, an optimal

value function approximation Q *(s, a) can be computed using the standard supervised learn­

ing techniques [Dietterich and Wang, 2002]. For the classification-based methods, the class

labels (optimal actions) can be computed:

and the training data for computing the optimal policy approximation (which is a classifier)

are formed:

The subscript Cl (co st-in sen sitive) is in contrast to its cost-sen sitive counterpart that will

be introduced later in Chapter 4.

Vs G T, a*(s) = argmax<3*(s, o),a

Tcl = { (s , a ») | s g T } . (2.13)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Function A pproxim ation for R einforcem ent Learn­
ing

Function approximation [Boyan et al, 1995] in reinforcement learning is the theme of the

thesis. In this section, we will first define the problem as well as the notation, and then

present several important results in this line of research.

2.3.1 Why Function Approximation?

So far, we have considered solving the reinforcement learning problem using a tabular repre­

sentation for policies and/or value functions. Good theoretical results as well as impressive

empirical performance on small problems have been obtained. In solving real-world prob­

lems, however, function approximation becomes critical for the following reasons.

First, most real-world problems of practical interest have very large state spaces which

render the tabular representation infeasible. For example, the size of the state space of

backgammon is estimated to be over 1020 [Tesauro, 1995]. For such large problems, compact

representations (or approximation) have to be used, including decision trees, artificial neural

networks, etc.

Second, even if we can afford to use a lookup table, function approximation is still

important for generalization. Note that many theoretical results are based on an assumption

that the MDP is ergodic and every state is visited infinitely often. But in practice, “infinity”

can never be achieved. Instead, the agent can first compute a good policy for a subspace of

S, and then generalize the policy to other states that are visited less frequently.

Third, for problems with a continuous state space, a lookup table cannot be used because

(i) it is impossible to enumerate all states in a table, and (ii) it is unlikely that a state will

be visited more than once. In such a case, function approximation is even more critical to

the generalization ability to unseen states.

2.3.2 Reinforcement Learning with Function Approximation

Instead of lookup tables, function approximation (see Appendix A.4 for several examples)

can be used as a compact representation parameterized by a fc-dimensional vector 6 € Rfc:

the value functions are denoted by V(s, 6) or Q(s, a, 6), and the policy by 7r(s, a, 0) or more

compactly, n(0). During the learning process, 6 is optimized according to some performance

metric. A natural choice is to minimize the average value function approximation error or

the temporal differences.

In particular, for the agent solving the policy evaluation problem using TD, the target

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

error function can be the mean squared error of V(s, 6) or Q(s, a, 6):

Err£D,M(0) = ^ (^ (V ' t o - V M)) 2,

or,

ErrTD,/x()̂ = ^ 2 K s>a)(Qv (s,a) - Q(s,a ,6))2,
s S S

where p (s) and fi(s, a) are some distributions weighting the errors of different states or state-

action pairs. Usually, they are the stationary distributions p^c(s) and / ^ (s , a). A SARSA

agent may minimize the mean squared error of its optimal value function approximation:

ErrSARSA(0) =]T /£ ,(s ,a)(Q * (a ,a) - Q(s,a,6))2,
s £ S

Correspondingly, it updates the parameter according to the stochastic gradient descent rule

(Equation A.8):4

0t+i = 6 t + at(Q*(st ,a t) - Q{st ,at,6t)) ■ VQ (st ,a t ,dt)-

Note that the state-action pairs (st ,a t) are sampled from a stationary distribution fi^ (s ,a) .

If the step sizes a t satisfy Assumption 4 (cf. Appendix A.4), then the 0t updated by the

rule above are guaranteed to converge to a local minimum of ErrsARSA- Typically, Q*(st ,at)

is unknown. An alternative is to use the TD error in place of the true error Q*(st ,a t) —

Q(st ,at,&t)-

Ot+i = 6 t+ c t - ■ VQ(s, a, 6)

= 6t + a (r t+i + 7 Q(st+1,a t+i , 0t) - Q{st ,at ,dt)) • VQ(st ,a t ,Ot). (2.14)

2.3.3 Classification-based Approximate Policy Iteration

Recently, modern classification techniques have been successfully applied to the approxima­

tion framework of policy iteration using rollouts.

Approximate Policy Iteration

When function approximation is used, computing the exact greedy policy t v ' in policy iter­

ation is infeasible. In this case, we may use a general framework of approximation within

policy iteration known as approximate policy iteration (API) [Bertsekas and Tsitsiklis, 1996],

which is similar to policy iteration, except that (i) the policy (or the value function) is rep­

resented by function approximators (in contrast to the lookup tables in the original policy

iteration), and/or (ii) the value function is not computed exactly but is estimated.

4Throughout th e thesis, th e V denotes the gradient w ith respect to the fc-dimensional vector 9 € Rfc.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cl-cRL

In p u t :

M: generative m odel
T: training sta tes
7 : discount factor
K: number o f trajectories
H: m axim um length o f trajectories

O u t p u t : 7T SS 7T*

7?' <— random policy
repeat

7T <— Tp

T+~ 0
for each s € T

for each a £ A
Q*(s,a) * — Rollout(M, s, a, 7 , 7r, K, H)

a* <- arg max„a ^ (s , a)
for each a £ A

if Q"(a,aZ)> Q *(s ,a)
T <— T U {(s, a*)}

7?' <— Learn (T)
until 7r « 7?'
return 7r

Figure 2.7: CI-cRL: Cost-insensitive classification-based RL. Learn is a sub-routine that
induces a classifier from the input training data.

Unlike in the case of policy iteration, the approximate greedy policy n' computed in API

may be worse than the original policy 7r, due to the errors introduced by approximation.

Such a problem is referred to as the policy degradation problem in the thesis.

Online Reinforcem ent Learning as Classification

Recent developments in the class of policy-search methods include the classification-based

reinforcement learning where a policy 7r is a classifier mapping states to actions [Langford

and Zadrozny, 2003]. Specifically, each state is labeled with the action 7r(s). Then the

task of learning the policy 7r is reduced to learning a classifier labeling the states. By

using classifiers to represent policies and rollouts to estimate value functions, API can be

implemented in a natural way. Figure 2.7 shows an example of API based on classification

and rollouts [Lagoudakis and Parr, 2003b]. Learn is a sub-routine that induces a classifier

from the input training data. Henceforth, we will call this algorithm Cl-cRL (Cost-Insensitive

classification-based RL).

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.4 Policy Gradient and Actor-Critic M ethod

Recently, a class of policy-search methods called policy gradient are receiving growing

attention [Baxter and Bartlett, 1999; Baxter et al., 1999; Berenji and Vengerov, 2003;

Kakade, 2001; 2002; Williams, 1992]. Such methods perform gradient ascent on the policy

value in the parameter space, and an immediate advantage is that they directly optimize

the policy value. In addition, convergence is easier to guarantee.

In this section, we will introduce two such methods in more details: the policy gradient

by Sutton et al. [Sutton et al., 2000], and the actor-critic method by Konda & Tsitsik­

lis [Konda and Tsitsiklis, 2000; Konda, 2002], Since these two pieces of work are very

similar, both of them will be referred to as policy gradient in the thesis. When policy gradi­

ent is discussed (here and in Chapter 5), we always assume the policies satisfy the following

assumption [Sutton et al., 2000].

A ssum ption 3 The parameterized stochastic polices ir(s,a,8) satisfy the following as­

sumptions:

1. The probability of selecting any action under any policy is always nonzero:

Vs G <S, Vo € A, V0 e Rfc, ir(s, a, 8) > 0;

2. Vs, a, V 7r exists; Vs,a,i,j , | j | is bounded. Furthermore, Vs, a, the Rk-valued

function 8 —* V In tt(s , a, 8) exists and is bounded;

3. V8 € Rfc, the Markov chains' {st } and {(st ,a t)} have stationary probabilities P x i s)

and /^ (s , a) = p00(s)800(s)-rr(s,a,d), respectively;

The assumption contains three parts. The first two are easily satisfied by designing

ir(s,a,8) appropriately. For example, the Gibbs softmax policy is a choice often used

(cf. Sections 2.2.1 and 5.2.4). The third part in the assumption is automatically satis­

fied if Assumption 2 holds. In fact, for an MDP with a fixed policy n, there exist at least

two Markov chains: {st } and {(st , at)}. A well-known result for Markov chains with a finite

state space is that the stationary distribution poa exists if (i) every state is visited infinitely

often, and (ii) the probability of visiting any state at time step t is eventually non-zero as

t —* co. Further, the distribution p ^ is independent of the start-state distribution D. The

reader is referred to the texts (e.g., [Isaacson and Madsen, 1976]) for formal definition and

details of Markov chains. Assumptions of policies for more general MDPs with continuous

state space is found in [Konda, 2002].

®A Markov chain can be seen as an M DP w ith a singleton set of actions, i.e., \A[— 1.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The key step in the policy gradient method is to estimate the gradient of the policy

value. A theorem [Konda and Tsitsiklis, 2000; Sutton et al., 2000] states th a t6:

W =] > > - (s) E (V7T(s ,a ,8) -Q e(s,a)) (2.15)
a

= E E (W U s) - 7r(s ’°>£0) • Q9(s> a) ■ - r - a - vVTt(s, a, 6)
seSaeA ' ' ’ ’ '

= E E (^ (^) ' ^ . “) - ^ ^)) . (2T6)
a&A

where

ip(s,a,6) = - - ; V7r(s, a, 0) = Vln7r(s, a, 9)
7 r (s , a, ft)

and

= ^oo(s) ' *(s,a,6).

A problem in estimating the gradient in Equation 2.15 is that the true action-value

function, Q9{s,a), is unknown. Fortunately, it is shown [Konda and Tsitsiklis, 2000] that

although Qe(s,a) is a high-dimensional vector7 that may be difficult to learn, it affects the

gradient VV only through an inner product in a space with lower dimension (cf. Equa­

tion 2.16). In particular, the inner product is defined as

(Q.voe = E E^°° ■ Q(s ' a ’d) ■‘<p(s >a ’9) ’
o.̂ .A

and it suffices to learn the projection of Qe(s, a) in a linear subspace with a dimension of k:

Q 9(s, a, w*) = w* ■ ip(s, a, 6), (2-17)

where w* € Kfc and tp(s, a, 0) are called features under the policy parameterization. Any

TD method can be used to estimate w*. After w* is computed or estimated, the policy

gradient can be computed by:

VV = E E (s> a) ' (s ’a ’w) ‘ ^ (s ’a ’0)) ’ (2 -i8)

Based on this insight, a family of policy gradient methods are proposed. All of them

estimate w* first, and then compute VV by Equation 2.18. This approach has recently been

applied to power control in wireless transmitters [Berenji and Vengerov, 2003].

6To simplify th e notation, we also use 6 in replace of th e policy n{s, a, ff) if there is no ambiguity. For
instance, the action-value function will be simplified as Qe, and th e policy value V(7r(0)) will be
rew ritten as V{0), etc. This convention will also be adopted in C hapter 5

7A function defined on a discrete set can always be imagined as a vector. For example, Q0(s,a) can be
seen as a |S X *4|-dimensional vector with one entry for each (s, a) pair.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 M otivation

The rest of this chapter discusses the motivation for the thesis research. We will start with

the empirical evidence in a complex, real-world system, showing that making the function ap­

proximation more accurate may not result in a better policy for sequential decision making.

Similar phenomena were also observed for the game of backgammon [Weaver and Baxter,

1999]. Finally, a discussion of the application of function approximation in reinforcement

learning as well as the thesis research objectives conclude this chapter.

2.4.1 Empirical Results in A Real-World System: M R ADORE

Recently, reinforcement learning has been applied to the problem of automated image in­

terpretation and has shown promising results. The system MR ADORE (Multi-Resolution

ADaptive Object REcognition) [Bulitko et al., 2003; Levner and Bulitko, 2004], as an ex­

tension to ADORE (ADaptive Object REcognition) [Draper et al., 2000], models the image

interpretation process as an MDP, where the states are image tokens (e.g., images, lines,

etc.) and the actions are image processing operators (e.g., thresholding, smoothing, equal­

ization, etc.) The learning problem in such a system is to acquire a good control policy that

selects which operator to apply at each image level.8

MR ADORE was designed with the following objectives: (i) rapid system development

for a wide class of image interpretation domains; (ii) low demands for subject matter,

computer vision, and Al expertise on the part of the developers; (iii) accelerated domain

portability, system upgrades, and maintenance; (iv) adaptive image interpretation wherein

the system adjusts its operation dynamically to a given image; (v) user-controlled trade-offs

between recognition accuracy and resources utilized (e.g., time required).

The objectives above favor the use of readily available off-the-shelf image processing

operator libraries (IPL). However, it is difficult to learn a good control policy because the

task of automated image interpretation is both complex and adaptive [Levner, 2003]:

• It is complex in the sense that there is rarely a one-step mapping from input images to

their interpretations; instead, a series of operator applications are required to bridge

the gap between raw pixels and semantic objects.

• It is adaptive in that there is no fixed sequence of actions that will work well for

most images. For instance, the steps required to locate and identify isolated trees are

different from the steps required to find connected stands of trees.

8At the current stage, the policy is to choose fixed-length sequences of operators, which can be viewed
as macro-actions [Hauskrecht et al., 1998],

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

User-provided Training Datum

1
Desired

Label
Initial
Im age

Full breadth Reward
computationlimited depth

expansion

(state,action,Q)

Sampled Q-function

Possible Labels

Figure 2.8: Offline operation of MR ADORE for policy acquisition.

Several challenges exist for MR ADORE, including:

• the raw state (image token) requires an order of 107 bytes for representation;

• the number of states is prohibitively large (e.g., the number of possible initial states

is estimated to be up to 10r’200,000);

• the online actions (image processing) are expensive.

In response, the following techniques were taken (Figure 2.8 from [Levner, 2003]). First,

MR ADORE uses training data (here, annotated images) to provide relevant domain infor­

mation. Each training datum is a source image, annotated by an expert with the desired

output. Figure 2.9 demonstrates a training datum in the forestry image interpretation

domain.

Second, during the offline stage the state space is explored via limited depth expansions

of training images. Within a single expansion, all sequences of actions (IPL operators) up

to a certain user-controlled length are applied to the training image. Since training images

are user-annotated with the desired output, terminal rewards can be computed based on

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Input image (b) Desired output

Figure 2.9: Training data used in MR ADORE, (a) An original photograph, (b) The
corresponding desired labeling provided by an expert as a part of the training set.

the difference between the produced labeling and the desired labeling. Then, dynamic

programming are used to compute the optimal value function for the explored parts of the

state space. Note that MR ADORE does not use a discount factor, making the entire

problem a non-discounted finite-horizon MDP.

Third, as the raw state descriptions are on the order of mega-bytes each, we first extract

features f (s) of each state s. Then supervised machine learning extrapolates the sampled

Q*-values, computed in the previous step, onto the entire state space. The resulting optimal

value function approximation then is Q (f(s),a ,9).

Finally, when presented with a novel input image to interpret, MR ADORE first com­

putes the abstracted state representation f(s) , and applies Q (f(s),a , 9) to estimate Q *(f(s), a)

for each IPL operator a; then it performs the greedy action a* = arga max Q (f(s), a, 9). The

process terminates when the policy executes action submit ({labeling)) and the image token

(labeling) becomes the system’s output.

Experim ents using Artificial Neural Networks

In the first set of experiments, multi-layer feed-forward neural networks were used as the

regressors. Common sets of features including RGB-HISTOGRAM, HSV-HISTOGRAM,

HSV-MEAN, textural features, etc. were used. Experiments were run with combinations

of different features and neural network topologies. Thirty two forestry aerial images with

user-annotated labeling were used. Since the training data are very limited, leave-one-out

cross-validation was employed for evaluation. In each run, one image was selected for testing

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

while the other thirty one images were used for training. Three performance metrics were

measured9: the training error of Q(s, a, 9), the test error of Q(s, a, 9), and the relative value

of the resulting control policy ir#. The three performance metrics were then averaged over

all the thirty two runs.

Experimental results showed that the approximated optimal policy achieved an aver­

age relative reward of over 85% on the forestry plantation data with HSV-histogram as

features [Levner et al., 2003]. It is indeed helpful to the success of MR ADORE tha t the

function approximator approximates the optimal value function as accurately as possible.

Therefore, we tried boosting to approximate Q*(s,a), hoping that obtaining a more accu­

rate estimate Q(s, a, 6) results in a better control policy tt#. However, this is not always the

case [Li et al., 2003], as shown in the next subsection.

Experim ents using B oosted Artificial Neural Networks

The second set of experiments is conducted using S q u a r e L e v .R [Duffy and Helmbold,

2002] on different sets of features, and with ANNs of different topologies. We observed that

training and test errors were decreased significantly in almost all experiments. The resulting

average relative policy value, however, did not increase for all features; sometimes we found

that the relative reward even decreased. Figures 2.10 and 2.11 shows these two different

cases.

These results show that boosting may not improve the value of a control policy even if the

approximation error to the optimal value functions does decrease. Reinforcement learning

problems behave differently from regression problems in terms of boosting/leveraging meth­

ods applied to the value function. Note that if the optimal value function can be learned

with an arbitrary precision, then the resulting control policy can be made arbitrarily close to

the optimal policy (cf. Section 3.1.2). In practice, however, the complexity of the problems

frequently does not allow learning the optimal value function arbitrarily well. This section

demonstrates that in such cases boosting methods can have an opposite effect on the policy

value.

2.4.2 A D iscussion of Supervised Learning in Reinforcement Learn­
ing

The problem discussed in the previous section was also noticed by other researchers. Weaver

et al. [Weaver and Baxter, 1999] gave a two-state example to show that even if the lin­

ear function approximation in TD(A) converges to a near-optimal solution in minimizing

the temporal difference error of the value function approximation, it could converge to a

^Formal definitions of th e common term s in supervised learning are found in A ppendix A.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0. 09

0. 085

0. 08

\ test errorw
^ 0 .0 7 5

0. 07 training error
0 .0 6 5

0. 06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Boosting Iterations

0.85

cu

0. 75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Boosting Iterations

Figure 2.10: Empirical results of S q u a r e L e v .R applied to MR ADORE. When the training
and test errors decrease, the relative policy value increases. See Appendix A .l for a formal
definition of RMSE (root mean squared error).

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 . 12

0 .1 1 5

0 . 11
test error

0. 105

0. 095

0 .0 9
error

0. 085

0. 08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Boosting Iterations
0. 55

3 0.53

o 0.51

Oh

© 0.49

3 0.47

0. 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Boosting Iterations

Figure 2.11: Empirical results of S q u a r e L e v .R applied to MR ADORE. Although the
training and test errors decrease, the relative policy value can decrease slightly. See Ap­
pendix A.l for a formal definition of RMSE (root mean squared error).

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.12: The car-shopping problem.

suboptimal policy although the optimal policy can be represented by the linear function

approximator. More importantly, they observed a similar phenomenon when training their

backgammon player program online. They found that although the estimated error in

approximating the value function decreases by about 50% during training, the winning pro­

portion of their game playing program, however, decreases significantly from 0.46 to 0.30

— a decline of about one-third. This suggests that the commonly used metrics, function

approximation accuracy, TD errors, and the policy value, can conflict in practice. And this

problem is not just hypothetical, bur rather, it does occur in real-life domains.

It would be helpful to look into a small and concrete example to understand why naive

applications of function approximation in reinforcement learning can be problematic. We

consider the classification-based policy search methods in the batch learning setting, and

the agent is presented with a set of training data To (Equation 2.13). High classification

accuracy is usually deemed to correlate with high policy value. But this is not true even for

the toy problem below.

Figure 2.12 shows the car-shopping problem modelled as a three-step (finite-horizon),

non-discounting MDP. Non-terminal states are labeled with the decisions the user is to

make. The edges are labeled with the actions and the immediate rewards. The agent starts

by choosing the engine condition and finishes with the need to re-sell the car. Starting with

the state engine condition, she has two choices: good and poor. Then she decides on the size

of the car small/large, and finally on its color black/white. After the choices are made, the

agent buys the car and collects the final rewards by reselling the car.

The optimal policy tt* is shown in Table 2.1. If the agent uses 7r*’s choices of action

a*(s) in the training data set Ten it may learn two approximate policies tti and it2 (also

shown in the table). Policy ny has the classification accuracy of 86 % and the policy value

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

color size engine condition
optimal policy i t * white large good

policy 7T1 white large poor
policy 7T2 black small good

Table 2.1: Optimal and two approximate policies for the car-shopping problem.

1̂ (7̂) of 30. Policy 7T2, on the other hand, is considerably less accurate (14%) but enjoys a

much higher policy value of 1, 000 .

2.4.3 Research Objectives

An intuitive explanation for the observed phenomenon in the car-shopping problem is that

not all states are equally important in terms of affecting the policy value. It is beneficial for

the agent to increase the classification accuracy and agree with the optimal policy in more

states. However, it can be more crucial to agree with the optimal policy in states that are

more important in affecting the policy value.

The goal of this thesis is to investigate the policy value by focusing the learning process

on more important states. In doing so, we:

• introduce a precise definition of decision-making importance of a state;

• propose a novel family of algorithms that focus learning on more important states;

• evaluate importance-sensitive learning empirically and theoretically.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

R elated Work

This chapter reviews some of the more important related work on function approximation

for reinforcement learning. Two problems will be introduced: the divergence problem and

the sub-optimality problem. Then we will discuss the limitations in previous work, followed

by some concluding remarks.

3.1 Tw o Problem s w ith Function A pproxim ation in R e­
inforcem ent Learning

Function approximation is critical to the application of reinforcement learning in many real-

world problems with large or even continuous state spaces. However, two problems arise in

the presence of function approximation.

3.1.1 The Divergence Problem

Several theoretical results about convergence to the optimal solution apply to the case of

tabular representation [Bertsekas and Tsitsiklis, 1996; Singh et al., 2000; Sutton and Barto,

1998], Unfortunately, these properties may not be guaranteed when function approximation

is used. Several simple counter-examples were found where dynamic programming or TD

learning do not converge [Baird, 1995; Boyan and Moore, 1995; Gordon, 1996; 2001; Tsitsiklis

and Van Roy, 1997], even with very simple function approximators. Although in practice,

function approximation for RL can work well (e.g., [Crites and Barto, 1996; Sutton, 1996;

Tesauro, 1995; Zhang and Dietterich, 1995]), it becomes much less assuring without such a

convergence guarantee.

The simplest divergence example using dynamic programming in policy evaluation was

given by [Tsitsiklis and Van Roy, 1997]. The example is illustrated in Figure 3.1. This

is a discounting MDP with three states: the grayed square is the terminal state, and the

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l - €
20

Figure 3.1: Tsitsiklis and van Roy’s example for illustrating the divergence of dynamic
programming with least-squares linear function approximation.

other two (circles) are non-terminal. Actions (edges) are labeled with the state transition

probabilities. Immediate rewards are all zero on all transitions and therefore, the value

function V ^ s) = 0 for any policy n. A linear function approximation is used, and the

only parameter for tuning is a scalar 6. Clearly, if 9 — 0, then the function approximation

represents the true value function exactly. However, when a simple least-squares technique

is combined with Monte Carlo to update the parameter, the sequence {6t} diverges if 7 >

5/(6 — 4e) and do 7 ̂0.

In order to address this problem, Baird & Moore [Baird, 1995] proposed the residual

gradient algorithm, and more generally, the family of residual algorithms. The target of

residual gradient algorithm is to perform gradient descent on the mean squared Bellman

residual (the next state is denoted by s'):

E rrm s b r ($)

= £ (,& (*) • (E a,r y ^ { r + y V (s ',&)} - V(s,G))2) (3.1)
ses

= E I ■ (£ * (« , «) (* (* ,«) + 7 E f t . (* W . «)) - V (s,0))) . (3.2)
ses \ \aes \ s 'e s / / /

The corresponding online update rule is:

6 t+ i—6t - a t ■ VJSrrMsBR

= et - a t • (r t+1 + jV (s t+1,e t) - V (st ,e t)) ■ (t W ^ + i A) - W { s t ,e t)). (3 .3)

Since this update rule performs stochastic gradient descent on ErrusBR(6), it is guaranteed

to converge to a local minimum as long as the step-size parameters a t satisfy Assumption 4.

However, residual gradient may be slow in learning [Baird, 1995]. A possible improvement

is the residual algorithm family which is a linear combination of Equations 3.3 and 2.14.

One improvement was made by Tsitsiklis and van Roy [Tsitsiklis and Van Roy, 1997],

who proved that TD with linear function approximation is guaranteed to converge to a near-

optimal solution. Indeed, they showed that in the limit, the TD update rule is a contraction

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operation in a linear space spanned by the state features. With such a theoretical guarantee,

linear function approximations appear suitable for reinforcement learning.

There have been other attempts to tackle the divergence problem in reinforcement learn­

ing. For example, stability (non-divergence) is guaranteed if the function approximation does

not extrapolate from observed target values. These methods such as the nearest neighbor

technique [Cover and Hart, 1967; Gordon, 1995] are not that popular as neural networks or

linear function approximations for real-valued function learning.

3.1.2 The Suboptimality Problem

Another potential problem in using value function approximation is that the function ap­

proximator cannot be expected to represent the target policy or value function exactly.

Therefore, it remains important to investigate how the approximation errors affect the re­

sulting policy value.

Singh and Yee [Singh and Yee, 1994] proved that if a good approximation of the optimal

value function can be obtained for a stationary MDP with stationary deterministic policies,

then a reasonable policy performance can be guaranteed. In particular, they proved that if

3e > 0, Vs € S, |Y*(«) - V(«, 0)| < e, (3.4)

then

(3.5)
1 - 7

Williams and Baird [Williams and Baird, 1993] gave another theoretical bound on the

policy loss based on the Bellman residual/error defined as:

Br(s, 0) = max j R(s, a) + 7 Psa(s') V(s', 6) j - V(s,d). (3.6)

Intuitively, Br(s, 6) measures to what degree the Bellman optimality equation (Equation 2.3)

is violated by V(s, 6). Note that if V(s, 9) = V*(s), then Br(.s, 0) ~ 0, and vice versa. A

theorem states that if

3e> 0, Vs e«S, |Br(s,0)| < e, (3.7)

then

(3.8)
1 - 7

These two bounds above suggest that the resulting policy loss is upper bounded by a

simple function of the errors in Equations 3.4 or 3.7. Therefore, in order to maximize the

policy value V(7r), or equivalently, to minimize the policy loss C(n), the RL agent can instead

try to minimize the upper bound of |Y*(s) — Y(s,0)| or |B r(s,6)\.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 L im itations o f Previous Work

Although the previous work on the suboptimality problem introduced in the previous sec­

tion is interesting and important in furthering understanding of function approximation in

reinforcement learning, it is limited for two reasons.

First, the two bounds in Equations 3.5 and 3.8 depend on the £oo-norm (max-norm) of

E*(s) — V(s,6) and Br(s,0). However, a great majority of supervised learning algorithms

for regression aims at reducing the £ 2-norm of the error (cf. Appendix A). An inconsistency

exists between the norm required by the error bounds and the norm that popular supervised

learning techniques minimize. A tractable solution to this norm incompatibility problem was

proposed by Guestrin, Roller and Parr [Guestrin et al., 2001] for factored MDPs, a restricted

class of MDPs. But a general efficient approach remains unknown.

Second, even if a supervised learning algorithm for minimizing the £ ao-norm error is

used, this max-norm can be quite large in real-world problems where the true function

is too complex to be captured by the function approximator. Therefore, as the agent is

increasing the accuracy of value function approximation, the resulting policy value can still

degrade.

An important issue closely related to the motivation of the thesis (cf. Section 2.4) is

the difference between supervised learning and reinforcement learning. Supervised learning

focuses on one-stage decision making. The performance of a learning algorithm can be

defined straightforwardly, such as the classification error or the (root) mean squared error.

For sequential decision-making problems, however, the target performance is the policy

value. If supervised learning methods such as boosting are applied naively, the learning

agent can end up with a worse policy, in the sense of sequential decision making, by spending

more resources in computing a more accurate value function or policy approximation, in the

sense of supervised learning. Such an observation also explains the paradox in the car-

shopping problem as well as the findings in MB ADORE and the game of backgammon

(cf. Section 2.4).

STD(A)

After observing the policy degradation phenomena in backgammon, Weaver et al. argued

that this problem comes from the fact that TD(A) takes no account of the value of the policy

derived from the function approximation. Thus, they proposed STD(A) (state temporal

difference learning), which is a variation to the classical TD(A). The idea of STD is that the

agent learns the state value differences, V 7r(s\) — E * ^) , instead of the state values E ^ s) .

More specifically, they considered only the binary MDPs in which at most two successor

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.2: An illustrative example for the problematic STD(A) algorithm.

states are possible at any time. Then STD(A) tries to minimize:

ErrsxD = - V(s',0)) - (V*(s) - (3.9)
8 , 8 '

where fj,e00(s , s') is the stationary probability that state s is visited with s' being its sibling

state by following policy jr. In Figure 3.2, for instance, states s b and s c are sibling states.

Specifically, STD depends on the following Bellman equation:

V*{st) - V ”{s’t) = {R{su a t) - R{s't ,a't)) + ^ { 3 ^) - V"{s't+l)). (3.10)

Note that the actions at and a!t above are chosen according to the policy 7r; s[and sj+1 are

sibling states of st and st+i, respectively.

A closer examination of Equation 3.10 may find it problematic. STD adopts the idea

from differential training [Bertsekas, 1997]. Suppose two state transitions are observed:

t ~ i rt+i,St+i,

st r t+ iist+i>

and the respective Bellman equations are:

V*(st) = r t + x + T ^ a t + i)

V * &) = r’t + l + J V*(s't+1).

Subtracting these two equations yields:

V ”(st) - V ”(s't) = (rt+1 - r’t+1) + 1 {V*{st+1) - V*(s>t+1)). (3.11)

Equation 3.11 can be viewed as the Bellman equation for a new MDP. But in STD a similar

form of Equation 3.11 does not hold. Consider the example in Figure 3.2. STD attempts

to update F (sb, 0) — V (sc ,9) by using V (sn,6) — P (se ,0). But it is clear that these two

quantities do not have any relation in general and thus the Bellman equations underlying

STD (A) are not justified and the algorithm is problematic.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Conclusions

In this chapter, we briefly reviewed the related work on approximating the value function

in solving complex reinforcement learning problems. We also discussed the limitations of

previous work. The most related problem is that they have not taken into account the

policy value. STD(A), which aims at improving the policy value, is limited to binary MDPs,

and more importantly, its underlying Bellman equation seems incorrect. In the next two

chapters, we will consider how policy values can be improved by focusing attention in more

important states, for the case of classification-based and value-function methods.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Focus of A ttention in
Classification-based
Reinforcem ent Learning

This chapter formalizes the idea of focused learning and investigates how to improve pol­

icy value by focusing attention in classification-based policy learning [Li et al., 2004a;

2004b]. We will first give a theorem that forms the foundation for later development.

Then we examine the batch reinforcement learning and online reinforcement learning cases,

respectively. For each case, we define a metric for measuring the sequential decision-making

importance of a state; several theorems explains why utilizing state importance is helpful.

Following are experimental results for both cases in a grid-world domain. Proofs of all

theorems will be provided in Section 4.5.

For simplicity, only binary-action problems with deterministic policies are examined. A

short discussion of the extension to MDPs with stochastic policies and multiple actions is

found at the end of the chapter, but a detailed treatment will be in the next chapter.

4.1 T he P olicy Sw itching T heorem

Theorem 1 below forms the basis of our proposed methods. It establishes how the policy

value changes after a switch between two policies. For simplicity, we only give the results

and proofs for discounted, infinite-horizon MDPs with binary actions, but the theorems and

methodologies still apply to non-discounted finite-horizon MDPs with multiple actions.

T heorem 1 Let v and r be two arbitrary policies for a discounted, infinite-horizon MDP,

and an agent changes its policy from v to r . Define Gv{s, v —> r) = Qv(s, t (s)) — Q ‘/ (s , v { s)) ,

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then

V(r) - V M = J 2 (G"(S>1/ r) ' X ^ 7 tMtT’£>(«)) , (4-1)
s€<S \ t= 0 /

where the state visitation distribution, pJ'D(s), is the probability that state s is visited at

time t by following policy t with start states drawn randomly according to D.

This theorem parallels a result in [Kakade and Langford, 2002], and a concept similar

to G v (s , t t —> r) was introduced in [Baird, 1993] and called advantage. To simplify the

notation, let

OO
dT'D(s) = ^ 7 * -p t 'D{s).

t—o

An interesting observation is that the policy improvement theorem (cf. Section 2.2.2)

can be easily derived from Theorem 1. Namely, let v and r be a policy -n and its greedy

policy 7r' computed by Equation 2 .10. Then Gn (s,n —> tt1) = Q 7T(s , t t ' (s)) - Q t (s , t t (s)) ,

and Equation 4.1 becomes:

V (tt') - V(tt) = £ ((Q * (* , tt'(s)) - QT{a, n{s))) ■ d*'’D(s)) .
s £ S

Since ir' is the greedy policy and p * ’D is a state visitation distribution, it always holds for

all states s € S that Qn(s, tt'(s)) — Q*(s, rr(s)) > 0 and a!* ,D(s) > 0. For ergodic MDPs

where d* ,D(s) > 0, V(7r') — V(7r) > 0 unless Gn(s,ir —* tt') = 0 in which case it satisfies the

Bellman optimality equation 2.4 and thus is the greedy policy 7r*.

4.2 Focusing A ttention: B atch R einforcem ent Learning

In Chapter 2, we demonstrated that not all states are equally important in the sense of

sequential decision making. In this section, we will propose a novel batch reinforcement

learning algorithm based on cost-sensitive classification that focuses on more important

states. More specifically, the decision-making importance of states is used as the misclassi-

fication cost. As a result, the learning algorithm is able to focus on more important states

thereby improving the convergence speed and the policy value. The exposition is done in

two steps as follows. First, we show that the global metric of policy loss has a strong relation

to the importance of individual states. Then an approximation step is taken to make the

algorithm practical.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

State Im portance in Batch Reinforcem ent Learning

The first step is to introduce a formal measure of state importance. Intuitively, a state is

important from the decision-making point of view if making a wrong decision in it can have

significant repercussions. Therefore, the importance of a state s, G*(s), can be defined as

the difference in the optimal values of o*(s) and a(s), where a*(s) is the optimal action and

a(s) is the other (sub-optimal) action.1

Definition 10 The importance of a state s is defined as:

G*(s) = Q *(s,a*(s))-Q *(s,a(s)), (4.2)

Likewise, G*(s, n) is defined as the difference in the optimal values ofa*(s) and jt(s);

G*(s ,7r) = <?(s,a*(s)) - Q*(s,rr(s)) = { ^ f . (4.3)

Expressing Policy Loss Through State Im portance

Like the policy value, the policy loss (Equation 2.9) is a global attribute of a policy insomuch

as it is computed over a distribution p of start states, and for each state s, computing I™ (so)

involves the decisions made in other states as well as rewards gathered at each time step

along the trajectory. This fact limits the use of policy loss in incremental policy learning

since C(ir) is not conveniently evaluated. Consequently, a direct use of the policy loss as the

optimization criterion in classification learning would require recomputing it over all states

every time a change to the classifier is made. Without further approximation this procedure

is intractable.

The non-locality of policy loss can be addressed by approximating it with a local and

computationally feasible metric. We develop such an approximation in two steps. First,

the policy loss will be expressed through the importance of individual states. We have the

following result.

Theorem 2 The policy loss can be expressed through policy importance as follows:

£(*) = £ (g *(s , tt) ■ = £ (G*(«, jt) • d*’D(s)) . (4.4)
s&s V t—o / Ses

Approxim ating Policy Loss

So far, we have represented the global metric of policy loss via policy importance of individual

states. The representation, however, is still of a limited practical value since dn’D(s) is

LNB: we are considering the binary action case in th is chapter.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cs
In p u t :

T q -: training data

O u tp u t : 7?* « t t *

Tcs *- 0
for each s 6 T

a* <— argmax0 Q*(s, a)
a <— the other (suboptimal) action
g ^ Q * (s ,a *) - Q * (s ,a)
Tcs <— Tcs U { (s ,a * ,p)}

7? * <— CS-Learn (Tcs)
return 7?*

Figure 4.1: CS: Cost-Sensitive batch RL based on classification. CS-Learn is a sub-routine
that induces a cost-sensitive classifier from the input training data.

usually not available to the agent. Therefore, we propose an approximation to minimizing

the policy loss by minimizing the upper bound of C(n):

T(ir) < Y , (G*(s>7r) =
s€S \ t=0 /

Correspondingly, a practical approach is as follows:

cs = arg min ^ ^ (s , ?) (4.6)
sCS

— arg min —-— V"' G*(s, w*)
5f*en 1 - 7 s€-o

« arg min C (i f *) .
7r*€n

Using the definition of G*(s, it) in (4.2), computing 7r£s becomes the cost-sensitive classifica­

tion problem with the misclassification costs conditional on individual cases [Turney, 2000].

Indeed, s is the attribute, a*(s) is the desired class label, and G*(s) is the misclassification

cost. Thus, given a set of training data Tq♦ described in (2.12), the agent can first compute

G*(s) for all states s € T by (4.2) forming a training set:

Tcs = { (s ,a * (s) ,G ») | s e T } (4.7)

and then solve the optimization problem (4.6). The corresponding importance-sensitive

algorithm, called CS, is summarized in Figure 4.1. It calls a subroutine, CS-Learn, which is

a cost-sensitive classification algorithm.

In contrast, a naive, importance-insensitive agent will solve the following classification

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem based on Ta (Equation 2.13):

7Tq = arg min 1(9* (s) ^ 7r*(s)), (4.8)
ses

where I is the indicator function defined in Equation A.3. The resulting algorithm, called

Cl, is the same as CS except that it uses a cost-insensitive classification algorithm Learn to

induce the policy 5r*.

A question of both theoretical and practical interest is therefore: Is it preferable to solve

’’cs (̂ -®) as opposed to (4.8)? Theorem 3 below connects the quality of the classifier to

the resulting policy value, and provides an upper bound on the policy loss of 7r£s . In contrast,

Theorem 4 establishes that 7Tq can be arbitrarily poor in the sense that the policy loss can

be arbitrarily close to its upper bound given by Equation 4.5, as long as the classification

error of 7rj, is non-zero.

T h eo rem 3 I f n ^ has a sufficiently high quality:

3e > 0, s.t. < 6, (4 .9)
G (*)

then

£(*cs) < (4 1 °)

T heorem 4 Let

e = w i E (4 .11)
' ' ses

be the classification error of ttq, then Ve,£ > 0, there exists an MDP and tIq, s.t.

£ (? ci) > 7— | E G*(S)- (4-12)

4.3 Focusing A ttention: O nline R einforcem ent Learn­
ing

In this section, we extend the idea of focused learning to the online reinforcement learning

problem. Note that in the online RL setting, the optimal action values are unknown and

therefore, the state importance cannot be computed by Equation 4.2. Below we will give

another suitable definition of state importance. This extension is supported by several

theorems demonstrating how Gn(s) can be used as the misclassification costs to efficiently

improve policy values in API. A novel algorithm is then proposed.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The classification-based API framework (cf. Section 2.3.3) will be considered. In the

inner loop of CI-cRL (Figure 2.7), a high-accuracy classifier returned by Learn is used to

approximate the greedy policy id. If the classifier has a low classification error, the resulting

policy 7?' has a high probability of taking the same action as 7r'. Hence, it is expected that

a more accurate classifier results in a better approximate greedy policy. In summary, the

Ci-cRL agent is importance insensitive and seeks:

^CI-cRL = argm axP(ir'(s) = tt'(s)) (4.13)ir'en
= arg min P (? '(s) 7̂ 7r'(s)). (4.14)

ir 'e n

In the following subsections, we will derive an importance-sensitive counterpart of CS-cRL

that can result in better policies by focusing on important states.

State Im portance in Online Reinforcem ent Learning

In order to analyze policy improvement within API formally, we define the importance of

state s under policy 7r.

Definition 11 In online reinforcement learning, the importance of a state s is defined as:

G"(s) = Qv (s, a* (a)) - Q’ (a, o*(«)), (4.15)

where a*(s) = arg max,, Cff (s, a) is the greedy action and d„(s) A arg max,, Cff (.s, a) is the

non-greedy action, with respect to the policy it. Likewise, for any policy r , G*(s, r) is defined

as the difference in the values of a^(s) and t (s) with respect to policy it:

G*(s , t) = Q*(s,a;(s)) - Q > ,r (*)) = { ■ (4.16)

Intuitively, Gw(s) measures how much additional return can be obtained by switching

the action aw(s) to a£(s) in state s, and then following the policy it thereafter. The following

theorem relates the policy importance of if' in each state to the difference of policy value

between 7r' and n'.

T heorem 5 I f during policy improvement a policy it is changed to ir' which is an approxi­

mation to the greedy policy it' w.r.t. it, and

Vs e 5 , |d*''D(s) - d%''D(s)\ < e, (4.17)

then

V(7r ') -V (? f ') < "^2 Gn(s, ir') ■ cT'’D(s) + e ^ Gv (s). (4.18)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CS-cRL: C ost-Sensitive C lassification-based R ein fo rcem en t L earn ing

Theorem 5 bounds V(7r') — V(7r') via the policy importance in each individual state. Note

that 7r' and V(tt') are determined if tt is fixed. Therefore,

arg max = arg min { V (7 r ') — V (7 r ') } .
tt' 5r/

In other words, in order to maximize V(7r'), we can instead minimize V(7r/) —V(7r') by (4.18).

The representation is, again, still of a limited practical value since d* ,D(s) and £ are usually

unavailable to the agent. However, if e is not large, then we can minimize the upper bound

of the first term in the right-hand-side of Equation 4.18. A similar practical approximation

is proposed as follows:

Conveniently, (4.19) is exactly the cost-sensitive classification problem where the misclassi­

fication costs are conditional on individual cases [Turney, 2000]. In the RL settings, s is the

attribute, a*(s) is the desired class label, and G*(s) is the misclassification cost. Based on

(Figure 4.2). Since costs are introduced, the algorithm is called CS-cRL (Cost-Sensitive

classification-based Reinforcement Learning) as the learning procedure CS-Learn is cost-

sensitive.

The following two theorems describe a key difference between CI-cRL and CS-cRL. Theo­

rem 6 states that if the cost-sensitive classifier in CS-cRL has a sufficiently high quality, and

if e (the Coc-norm difference between the two state visitation distributions in Equation 4.17)

is not large, then the approximate greedy policy ? ' will be close to tt' in terms of policy value.

In contrast, Theorem 7 establishes that, even if e — 0, we can always construct an MDP

so that V (t t 1) — V (t t 1) is arbitrarily close to its upper bound as long as the cost-insensitive

classifier in CI-cRL has a non-zero classification error.

T heorem 6 I f i ? c s-cR L has a sufficiently high quality, i.e.,

3e > 0, £ s€SGM ^ cs- cRl) < £) (4.20)
G (s)

and assume the notation in (4-17), then

(4.19)

« a r g m i n { V (7 r /) — V (7 r ')}7T7
= arg max V{n').

the analysis above, an algorithm is proposed that focuses learning on more important states

(4.21)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CS-cRL

In p u t :

M: generative model
T : training states
7 : discount factor
K: number of trajectories
H: maximum length of trajectories

O u t p u t : t t « t t *

t t ' +- random policy
re p e a t

7T <— Tt'

T *— 0
for each s 6 T

for each a € A
Qn(s, a) <— Rollout(M, s, a, 7 , 7r, K , H)

a* ■<— arg rna.xae^ Q*(s, a)
if Q*{s,a?n) > Q*(s,a),Va ^ a%

9 Q*(s> «») ~ Q*is ia)
T <r-TU{(s,al,g)}

t t ' <— CS-Learn (T)
u n til 7T w 7?'
re tu rn i t

Figure 4.2: CS-cRL: Cost-Sensitive classification-based RL. CS-Learn is a sub-routine that
induces a cost-sensitive classifier from the input training data.

T heorem 7 Let it' be the greedy policy of it and

e = (4-22)
' ' s g S

b e the classification error of t t ' , then Vg,£ > 0, there exists an MDP, Tt, t t ' and t t ' , s.t.

V{ tt') - V { tt') > ^ (4.23)
7 ses

4.4 Em pirical Evaluation

In this section, we report the empirical results in a 2D grid-world domain to evaluate the

advantages of importance-sensitive classification-based reinforcement learning. This domain

is adopted from Dietterich & Wang [Dietterich and Wang, 2002], which can be thought of

as a simplified version of some discrete problems such as SAT [Hopcroft et al., 2000] being

solved by the Davis-Putnam-Logemann-Loveland (DPLL) procedure [Davis et al., 1962].

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.1 Experimental Domain

We consider grid-worlds of N by N cells with no walls. Each state is represented as a tuple,

(x , y) where x, y € {1,2, • • ■ , N}. Start states are randomly chosen in the leftmost column,

(1,2/). At every step, the agent has two possible actions, north-east and south-east. The

two actions deterministically take the agent from the position (x,y) to {x + l , y + 1) or

(x + 1, y — 1), respectively. If the agent attempts to step out of the grid-world (i.e., y — 1 or

y + l exceeds the range [1, N}), it will continue to move along the boundary (i.e., go towards

east). An episode is terminated when the agent reaches the rightmost column.

4.4.2 Experiment I: Batch Reinforcement Learning

In the first experiment, N = 100. In order to make the optimal policy have a positive value

(which is more intuitive in our evaluation below), we assign a small positive reward of 2 to

each action (note that this does not change any policy). Additionally, 3000 units of negative

rewards with a value of —1 each are randomly positioned in the grid-world according to some

distribution scheme. If more than one reward is placed in the same cell, then the rewards are

accumulated. The distribution scheme used in our experiment was a mixture of a uniform

distribution and a two-dimensional Gaussian distribution centered at the cell (50,50) with

the variance a = 10 in each dimension. The uniform and Gaussian distributions carried the

weights of 0.4 and 0.6, respectively. Formally, for all x, y £ {1,2,- • - , 100}, the weight2 of

cell (x, y) is computed by:

, , , 0.4 , 0.6 f (* - 5 0) ! + (# - 5 0) ! l
d{x' y) ~ io o V I o o ex4>\ S 3 } ' (4'24)

Figure 4.3 illustrates an example of the reward distribution in the grid world. This problem

is a non-discounted finite-horizon MDP. The goal of the agent is to learn a policy to maximize

its cumulative rewards by minimizing the negative rewards throughout the grid-world.

In each run of the batch RL experiments, a random set of training states, T c S,

was generated, then full-trajectory-tree expansion was applied to each training state in T

to compute its optimal action values. Finally, these optimal action values were used to

construct Tci (2.13) and Tcs (4.7). Figure 4.4 illustrates an example of the state importance

values in the grid world.

We compared two different algorithms. One algorithm, called Cl, is the baseline algo­

rithm that solves the importance-insensitive optimization problem (4.8); the other, called

CS, solves the importance-sensitive classification problem (4.6). We used a feed-forward

multi-layer artificial neural network (ANN) as the classifier. The topology and parameters

2I.e., the probability of getting a negative reward a t s ta te (x, y).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.3: A typical distribution of immediate rewards in the two-dimensional grid-world
used for our empirical evaluation. The rewards were randomly generated under a mixture
distribution scheme consisting of a uniform distribution and a Gaussian distribution given
in Equation 4.24.

of the ANN were fixed throughout the experiments, so that both classifiers, 7r£| and ’’CS)

have the same learning ability. Cost-sensitivity in classification can be achieved in different

ways [Zadrozny and Langford, 2003], We adopted simple resampling, where the training

samples are drawn according to the following distribution:

G*{s)Pr(select state s £ T for training) =
E « '6 T ^ * (S0

Each of the algorithms was evaluated along the two performance measures:

• Relative Policy Value (RPV)3, defined as:

RPV« = ^ :

• Average Misclassification Cost (MCC) over the entire state space, defined as:

Z . G ' MMCC(tt) =
1-51

3NB: since V* fa) is guaranteed to be positive, higher R PV indicates a b e tte r policy.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4: A typical distribution of importance values in the two-dimensional grid-world
used for our empirical evaluation of focused learning.

The true objective of our reinforcement learning agent is to maximize RPV while the clas­

sifier’s objective is to reduce MCC.

In the experiments, T contained 1000 states randomly sampled from the original state

space: 700 of them were used for training, and the other 300 were used for validation to

guard against overfitting. Ten random 100 x 100 grid-worlds were generated according to

the reward distribution, and 20 learning sessions were conducted in each of them resulting in

a total of 400 trials for each algorithm. The results are plotted in Figures 4.5 with standard

deviation as the error bars. Several observations are in order.

First, note that the importance-sensitive algorithm CS increased the policy value sub­

stantially faster than the importance-insensitive Cl. The significant advantage was observed

early in the learning process. Note that the importance values of the grid-world states vary

significantly, as shown in Figure 4.4. For many states, the importance is negligible or even

zero; on the other hand, some of the states have much greater importance which makes

them more significant in affecting the policy value and deserve more attention in learning.

This observation leads to the conjecture tha t CS can learn even better when there is a high

variance in the importance distribution over the state space.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0. 96

0. 94

0. 92

' • 9 ' S i :

- f f
86 -

o CS
0. 84

20000 25000150001000050000
Learning Trials

0. 34

0. 32

0. 28

0. 26

y 0 .2 4 s
0 . 22

0. 18

0. 16

0. 14
2500020000150001000050000

Learning Trials

Figure 4.5: Policy value and misclassification cost in the grid-world experiment. Standard
deviations are plotted every 1000 learning trials. In each trial, one training state is drawn
from T for updating the weights in the artificial neural network.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Second, we note that the importance-sensitive learner CS was able to reduce the average

misclassification cost (MCC) faster than Cl 4. The superior ability to reduce MCC appears

to be the reason for a more rapid RPV improvement exhibited by CS. The results also

suggest an efficiency of our approximation in (4.6).

Finally, we find that the standard deviation of the policies obtained by CS is lower

(Figure 4.5(a)). This seems to be due to the fact that CS pays more attention to more

important states. In turn, it is able to do better with the same amount of training time and

data.

4.4.3 Experiment II: Online Reinforcement Learning

For the online learning experiment, we used support vector machines5 as the classifiers.

Smaller mazes6 with a size of 50 by 50 were used. 2000 pieces of rewards each with a value

of 1 were placed in the state space according to a similar reward distribution in the previous

section. The center of the Gaussian distribution was moved to the cell (25,25) and the

variance a — 5. In summary, the reward distribution used was:

,, . 0.4 0.6 f (x - 25)2 + { y - 25)2 1d(x, y) — —-— — + - — exp { ------------------------------- .
' ' 50 x 50 27rcr r [2er2 J

500 states were selected randomly from the entire state space as the training state set T,

which was then presented to CI-cRL and CS-cRL, respectively. Three metrics were used to

evaluate the approximate greedy policy 5?' in each iteration:

• Policy Value (PV) V(5P);

• Classification Error (CE), defined as:

C E (f) =

• Weighted, Classification Costs (WCE), the classification error weighted by the state

importance G*(s), defined as:

WCE(if') = £ . € * 0 ^) =

In the original form, SVMs are cost insensitive and do not take the misclassification costs

into account. We again used the simple resampling technique by making the number of

occurrences of a training sample (s, a, g) in T proportional to its importance value g.

4Note th a t MCC is different from th e standard uniform classification error insomuch as it is weighted by
s ta te importance (the misclassification cost).

5We used LS-SVMlab [Suykens et al., 2002], a publicly available im plem entation of SVMs in th e M a tla b
environment.

6We used sm aller mazes because running SVM implemented in MATLAB took a long tim e for a 100 X 100

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

CD3
cd>-
o

o
0-,

100

80

60

40

20
9 10 111 2 3 4 6 7 85

I t e r a t i o n s o f API

-^-CI-cRL
-a-CS-cRL

Figure 4.6: Policy values in the first ten policy iterations, averaged over 50 runs.

I t e r a t io n 1 2 3 4 5
Advantage - 13.6 + 15.7 11. 1 + 17.4 12.2 + 14.3 8. 1 + 11. 0

Prob (b e tte r) - 81% 76% 86% 76%

Table 4.1: Statistics of the policy value improvements of CS-cRL obtained from 50 runs of
experiment.

In the experiment, a maze was randomly generated and 50 runs of experiments were

conducted. The average policy value of CI-cRL and CS-cRL in the first 10 API iterations

are shown in Figures 4.6.

First, we observed that CS-cRL successfully increased the policy values by 10-20% in

the second to fifth iterations7, compared with CI-cRL. Although the advantage of improv­

ing policy values was not observed for each run of the experiments, CS-cRL did produce

better policies in most cases. Statistics for the second to the fifth iterations are given in Ta­

ble 4.1, including the average policy value improvement of CS-cRL (with variances) defined

as V(7tcS_cRL) — V ^ ci- cRl), as we^ 88 the probability that CS-cRL did better than CI-cRL

during the 50 runs. Figure 4.7 gives the complete comparison of policy values between

these two algorithms. Each point in each graph corresponds to one of the 50 runs, and the

large solid circle corresponds to the average performance. It shows that, on average, CS-cRL

consistently works better than CI-cRL.

7Note th a t the perform ance of the first iteration will not be com pared because th e policies were random
policies.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

110

100

90

80

70

60

50

40

3 1 2 0

60 70 80 90 100 110 120 130 140

P o lic y Vaue (CI-cRL)

(e) Iteration #5
140

130

g 100

90

<£ 80

70

60

60 70 80 90 100 110 120 130 140
P o lic y Vaue (C I-cR l)

(h) Iteration # 8

% 50

10 2 0 30 40 50 60 70 80 90

P o lic y Vaue (CI-cRL)

(a) Iteration #1 (random)

40 50 60 70 80 90 100 110 120

P o lic y Vaue (CI-cRL)

(b) Iteration # 2

130

120

110

53 100

90

80

oa. 70

60

50
50 60 70 80 90 100 110 120 130

P o lic y Vaue (CI-cRL)

(c) Iteration # 3
140

130

120jj

o 110
100

90

70

60

60 70 80 90 100 110 120 130 140

P o lic y Vaue (CI-cRL)

(f) Iteration # 6

3110
a 100

* 90

60 70 80 90 100 110 120 130 140

P o lic y Vaue (CI-cRL)

(i) Iteration # 9

140

130

O 120ex
s 110

100

90

80

70

60
80 90 100 110 120 130 140

P o lic y Vaue (CI-eRL)

(d) Iteration # 4
140

130

100

90

a. 80

70

60

60 70 80 90 100 110 120 130 140

P o lic y Vaue (CI-cRL)

(g) Iteration # 7
140

130

3s 120

k no
100

90

o 80

70

60
60 70 80 90 100 110 120 130 140

P o lic y Vaue (CI-cRL)

(j) Iteration #10

Figure 4.7: Policy values of the 50 runs. Average performances correspond to the solid
circles in the figures.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0. 06

« 0-05 cd-p
cd

“ 0-04
c

• pH

•S 0.03
COEh

E-h

g 0.02
cuC_>

0. 01

8 10 114 6 7 92 3 51
I te r a t io n s o f API

(a) CE
0. 13

« 0. 12
toQ
g> 0. 11

i ° - 1cdUE—
g 0. 09

56 0,08

0. 07
10 118 93 4 6 71 2 5

I te r a t io n s in API
(b) WCE

- “-C I-cR L
-a-CS-cRL

- “-C i-cR L
-a - CS-cRL

Figure 4.8: (Weighted) classification errors on the training set, averaged over 50 runs.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n 0.29
GO

2 0.28
cS

£ 0.27

o 0.26 _c

m 0. 25

Z 0.24

° 0.23
cuo

0 . 22
7 8 9 10 111 3 4 62 5

-CI-cRL
-CS-cRL

I t e r a t io n s in API
(a) CE

0.22

0. 19

«£ 0.18 b=
Js 0.17 -(->
S3 0.16

0. 15

0.14
9 10 111 3 4 6 7 82 5

I te r a t io n s in API
(b) WCE

CI-cRL
-a-CS-cRL

Figure 4.9: (Weighted) classification errors over the entire state space, averaged over 50
runs.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Next, we will examine the relations between CE/WCE and PV in the experiments to

see whether it is helpful to focus on more important states. Figures 4.8 and 4.9 give the

results (CE/WCE) on the training set and over the whole state space, respectively. It is

clear from the results that CS-cRL managed to decrease the WCE while it has a performance

comparable to CI-cRL in terms of reducing CE. These results together with Figure 4.6 suggest

that the proposed method is able to focus on more important states, which appeared to be

the reason why important-sensitive learning is helpful.

4.5 Proofs

This section provides detailed proofs of the Theorems 1-7 in the previous sections.

P roof o f Theorem 1

Suppose the agent follows the policy r from any start state so ~ D. The trajectory is

denoted by s0, a0 , n , s i , a i , ■ • ■ , st , at ,rt+i, st+1, ■■■. Then:

= E {r1 + 7r u(s1) - G (s o ,u - T) }
T

= E {7*1 + 7 r2 + 7 2 V v (s 2) - G(s0,v -* r) - 7 G(si,w -+ r)}

= E {77 + 7 r2 + 7 2r3 + 'ysV v (s3) - G(s0, v -> r) - 7 G(s1;v -> r) - 7 2G(s2, v —► r)}
r v

V (s 0) = Qv (so,v(so))

= Q v (s q , t (s 0)) - G(s0,v -»• t)

= E { r1 + 7 F " (Sl) - G (So, V ^ r) }
T

(4.25)

Note that equation (4.25) is recurrent. In a similar fashion we derive:

Therefore,

(4.26)

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Taking the expectation of equation (4.26) over all start states so according to the distribution

D, then:

V (t) - V (v) = E (F r(s0) - Vw(a0)}sa~D

E_
5or' r>} }
OO

= E ^ En {G{*t,v->T)}
S o S0~D’T

OO

= E 7‘ E (G'^ ’u ^ r ^ T,Dw)
i~ 0 s€ S
oo

= E E (G(s ’ v - * T) - i t v Tt ’D(s))
t —0 5 ^ 5

«es V t—o)

Q.S.V.

P roof o f Theorem 2

In Theorem 1, let t = t t and v = t t * , then

Gv {s,v —>t) = Q*(s,n(s)) - Q*(s, 7 r* (s)) = - G * (s ,7 t) .

Then the policy loss L(tt) can be computed by Theorem 1,

L(tt) = V (7 T *) - V X jt)

= ~ {V (t) - V (v))

- J 2 (G ^ s , v ^ r) . ± ^ D(s))
s £ S \ t - Q /

/ OO >

- E (- G*(s -7r) • E 7^ r,D^
afzS \ t = 0

E (G* (s ’?r) • E T'VJ’"0 (»)) •

Q.£.Z>.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof o f Theorem 3

It always holds that p^’D(s) e [0,1], V7r ,D ,s , t . Therefore, by Theorem 2,

L(ir) =

OO

S(zS
1

On the other hand, ttqS satisfies Equation 4.10, therefore,

Q.S.V.

P roof o f Theorem 4

We are going to prove this theorem by giving an MDP and a policy that has an arbitrary

low classification error (bounded by e), but has an arbitrarily poor policy value. For the

MDP described below, we show that its parameters, p and R*, can always be tuned to make

(4.12) true even when (4.11) is guaranteed.

The MDP has N states ({s1,^2,-- - , s^}) and two actions for each state: one is the

optimal action a*, the other is the suboptimal action a. Taking a* in state s 1 lead to a

positive reward R* while the reward is r* in all other states; taking a always results in a

zero reward. The next state distribution is independent from the current state and actions

taken: there is a probability p to go to s1 and a probability (1 — p) / (N — 1) to go to any

other state. The start state distribution is:

We let R* 3> r* > 0 and p being close to 1. Intuitively, s1 is much more important than any

other state from the sequential-decision-making point of view. Note that this is an ergodic,

infinite-horizon MDP.

Assume there is a policy 7?* that selects the optimal actions for all states except for state

s 1. That is,

(4.27)

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r*, s ŷ= s l

It is easy to verify that,

G* ^ = { R*, s = s l ’

n*(a -n-\ — / s ^
G M - \ R*, s = s ' •

It can be computed that for all n, D, t:

*,D{ \ _ / P' S = s lHt (*) - { ^ f i / s ! ,

and by Theorem 2, the policy loss of 7?* is:

i (r) (< ? (. , , o f > V ’D(«>) - ^ S L + (4.28)
ses \ t=o J 1 1

Note that the classification error of 9* is 1/iV. By letting 1/7V < e, or equivalently,

N > [f] , the policy has a classification error of at most e. But for any positive real

£ € (0,1), let

L(9*) > i $ > * (*) = 7— + (N - 1)r *)'

By considering (4.28), we have

(p - l + O i T > { (l - Z) { N - l) - (l - p)) r * .

Therefore, as long a s p —l + £ > 0 , o r p > 1 — £, the appropriate range of R* can be solved:

R * > ((l - O (^ - l) - (l - P)) r *

P ~ l + £

In summary, for any c ,(£ (0,1], we have solved the ranges for p, R*, so that even if

(4.11) is guaranteed, (4.12) can still be true.

Q.S.V.

Proof of Theorem 5

In Theorem 1, let u = n. Then letting r be t t ' and 9' yields the following equations,

respectively:

V «) - V (t t) = (G * (s , t t t t ') • < * * ' ■ %)) ,

ses

V(9') - V(7r) = ^ ~+ k ') • d*''D (s f j .

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By subtracting these two equations and using Equation 4.17 we have:

V (tt') - V (tt')

=] T (g ^ s , 7t —> 7r/) • - G*(s, tt - 5?') • d*'’D(s))
s6<5

=
ses

where,

f l f (s) = G7r(s, 7T —> tt') • < f ,D(s) — G n (s, 7T —f- 7 r ') • t f ,£>(s).

If 7r(s) = a* (s), then

G n (s , ir —► 7r') = 0,

G”(a,7r-*7r') = -G ’r(«)-I(5r/(s)?4 7r,(s))-

Therefore,

s(*) = <r ' ^ (S)-G " (s).T(7f'(S) ^ 7r'(s))

= d*’’D(s) ■ G 7r(s,7r/)-

If 7r(s) 7̂ u^(s), then

G ^ tt- W) = G '(s),

G *(s,7r - * 7r') = GT(s) - I (7f'(s) = 7r'(s))

= G » - (l - I (7f'(S) ^ 7r'(s))).

Therefore,

g(s) = G '(s)((T '-c (S) - d s '-D(s)+d*'*D(a)-I(?r, (a) ^ i r'(a)))

= G7r(s)(<f,,D(s) - d*'-0 ^)) + G*(*) • (f ' 'D{s) ■ I(7r'(s) ^ tt'(s))

< £ • G ^ s) + G ^ s) • dr 'D{s) ■ 2(tt'(s) =£ 7r'(s))

= e-G*(«) + G,r(a,?r/)-d * '-D(«)

In either case,

5 (a) < e - G J!{s) + G lr{ s , T r ') - (f ' D {8).

Consequently,

V (tt') - V(Tf') = Y 9^
S

< J] (e - G *(s) + G*{s, tt') • < f ' ’D (s))
5

= Y l e f t (G v (s , 7?') • ^ ' ^ (s) + £ ' Y

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q.S.V.

P roof o f Theorem 6

It always holds that d*''D(s) G [0,1], Therefore, if Equation 4.20 is true, then by Theorem 5,

Q.S.V.

P roof o f Theorem 7

This existence proof is the same as the proof of Theorem 4. The same example is used, and

let 7r = 7r' = it* and 5?' = w* defined in Equation 4.27. Then following the same calculations

in the proof, we can always find N , p, r*, and R* such that 5?' has an e-classification error

but V (7 r ') — V (tt') can be arbitrarily close to its upper bound, YlseS G*(s).

V(tt/) - V(7f0 !"(a)

On the other hand, 5r(-s_cR|_ satisfies Equation 4.20, hence,

Q £.V .

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

An Extension to the
Value-Function M ethods

This chapter extends the idea of focused learning to the value-function methods to prevent

the policy degradation problem (cf. Section 2.3.3). Two problem settings (batch and online)

will be considered. More focus will be on the online learning problem, where the MDPs are

ergodic and the policies satisfy Assumption 3.

5.1 Focusing A ttention: B atch R einforcem ent Learning

We start with the batch learning problem. Again, it is assumed that the training data for

batch learning are provided in the form of Equation 2.12 which is repeated below for the

reader’s convenience:

Tq* = {(s,a, Q*(s,a)) \ s e T , a £ A}, (5.1)

or

T v ={<s ,F*(s)> | s g T}. (5.2)

A natural approach would be to train a regressor using standard supervised learning tech­

niques to minimize the MSE, i.e., to solve the following optimization problem:

9st = arg min V (Q*(s,a) - Q (s , a ,6) f . (5.3)
e , es

5.1.1 Inconsistency between Policy Values and Value Function Ap­
proximation Accuracy

In this section, we will present empirical evidence for the inconsistency between policy

values and value function approximation accuracy in the batch reinforcement learning set­

ting, by using the same 2D grid-world domain described in Section 4.4.1. We used 100

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Feature Set Features
0 coarse tiling
#1 polynomial: (x ,y ,x 2 ,y2 ,■ ■ ■ , x k, y k)
2 (x, y, d, d2, ■ • • , dk) where d = y/{x — 50p + (y — 50)^
3 (x, y, dx , dy, c(2, d2, ■ ■ ■ , dk,dk) where dx = \x - 501 and dy — \y -

50|

Table 5.1: Features used in the grid-world domain. A state a is represented by its coordi­
nates, (x, y).

by 100 grid-world with 3000 unit rewards randomly placed according to the mixture dis­

tribution of Equation 4.24. In the experiment, the training state set T consisted of 400

states drawn randomly whose optimal action values are known. The EL agent uses a linear

combination of features as the value function approximation, and least-mean-square (LMS,

cf. Appendix A.4.1) algorithm was used for training. For simplicity in constructing features,

we used training data in the form of Equation 5.2 and assumed the agent has a world model

including the reward function and transition matrices. The features are simple nonlinear

functions defined on the 2D coordinates (x , y) (Table 5.1).

We ran the experiments 20 times solving the optimization problem in Equation 5.3. In

each run of the experiments, two performance metrics were recorded: the policy value and

the value function approximation accuracy (root mean squared error). Figure 5.1 gives

the average performance with variance plotted. It shows that, as the training goes on,

the policy quality degrades: the policies have smaller average value and greater variance

(Figure 5.1(a)). On the other hand, the value function approximation was getting more and

more accurate. This example demonstrates the inconsistency between the two metrics.

5.1.2 Focusing Attention on More Important States.

In this section, we used the measure of state importance defined in Equation 4.2. We

compared three learning methods. VF0 is the baseline LMS without employing G*(si)

in the training data; VF1 updates the weight vector only using states s with non-zero

importance G*(s); VF2 re-samples the training states s* in T according to the distribution:

Pr(select state s* for training) = —-

A large number of experiment settings were tried, including the size of input features

(determined by k in Table 5.1), the learning rate, the number of training data. As shown

by the results, VF1 and VF2 worked no worse than VF0 in terms of policy values most of

the time. Figure 5.2 shows an example where VF1 and VF2 are better. VF0 decreased the

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Policy Value

0

- 0.2

- 0 .4

- 0 . 6

- 0.8

1

- 1. 2

Training Epoch
(a) Policy value in the first 100 training epochs

RMSE Of V (s)

0 . 45 --------- — ---------------------
0 .4 ::---

0 . 35
0. 3

0 . 25
0.2

0 . 15
0. 1

0 . 05

0 20 40 60 80 100

Training Epochs
(b) Root mean squared error of the state-value function estimate in the first 100 training epochs

Figure 5.1: Approximating the optimal value function more precisely can lead to policies
with lower quality. The values were averaged over 20 runs of experiments with variances
plotted.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMSE successfully, but did not work well in improving the resulting policy. In contrast,

although the value function approximate produced by VF1 and VF2 had a larger RMSE,

the resulting policies had higher values.

Even in the case where VFO managed to improved the policy value, VF1 and VF2 can

sometimes produce a policy with a higher value although their root mean squared errors of

function approximation were larger (Figure 5.3).

5.1.3 Penalty for Making Suboptimal Actions

Another possible way to improve the naive approach in Equation 5.3 is to use a penalty

to encourage the agent to make the right decision in training states, and when the value

function approximation is generalized, the resulting policy will be more likely to agree with

the optimal policy in other unseen states. In fact, this idea has been employed by Dietterich

& Wang [Dietterich and Wang, 2002], where the optimal value function approximation is

computed by solving three different optimization problems with the kernel tricks [Scholkopf

and Smola, 2001]. Details are found in [Dietterich and Wang, 2002] and will not be discussed

here.

5.2 Focusing A ttention: O nline R einforcem ent Learn­
ing

In considering online value-function methods, we assume the MDP has an infinite horizon

and is ergodic. The policy is denoted by t x (s,a,6) where 8 G K* is the fc-dimensional

parameter vector. The distribution p(s) in evaluating V(rr) is fixed to be the on-policy

distribution p£_,(s). To simplify the notation, tx(s,a,6) is replaced with 8 when there is no

ambiguity.

Note that the policy considered here always satisfies Assumption 3. In addition, we

expect a policy to select the greedy action most frequently while having an exploration

behavior. An often used form of such policies is the Gibbs softmax policy (Definition 8):

eQ(s,a)/T

7r(s ,a ̂ = qU W F ’ (5‘4^

where r is the temperature parameter controlling the exploitation/exploration tradeoff:

when r —* oo, 7r(s, a) tends to be a random policy; when r —► 0, t x (s,a) tends to be a

pure greedy policy.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Policy Value

- 0. 1

- 0 . 2

3 □ P

- 0 .4
Hi 1

5

- 0 . 6

Training Epoch
(a) Policy value of the three approaches

RMSE of V (s)

V VFO
n VF1
a VF2

0 . 25

0 . 2

0 . 15

0. 1
0*^^»*A^A -̂.-.BBOOOBeoaODOan0Bool,DOoaooBo6oODBOoB'»oBoaooBDDnB»aao£5noaoDBOBoBQooooocHJoaBi

& VF2

20 80 10040 60

Training Epoch
(b) Root mean squared error of the state-value function estimate

Figure 5.2: Comparison of the three batch value function learning methods. VFO can de­
crease RMSE consistently but the policy value may not increase correspondingly; in contrast,
VF1 and VF2 can compute a better policy although the value function is less accurate.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Policy Value

- 0. 1

- 0 . 2

- 0.3

- 0 .4

- 0.5

- 0.6

- 0 . 7

Training Epoch
(a) Policy value of the three approaches

RMSE of V (s)

~o~ VFO
■a VF1
& VF2

. 5

.4

.3

2

1
20 80

• VF1
* VF2

10040 60

Training Epoch
(b) Hoot mean squared error of the state-value function estimate

Figure 5.3: Comparison of the three batch value function learning methods. VF1 and VF2
can produce better policies although the value functions are less accurate than the one
computed by VFO.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R = - 0.1
0.2 0.3

3 i

a2

Figure 5.4: A simple 2-state MDP.

5.2.1 A Small Example

We will start with a small example that solves the policy evaluation problem in a toy MDP

using TD(A) with linear function approximation. The MDP in Figure 5.4 has two states (1

and 2), two actions (ai and 02), and the discount factor 7 = 0.9. As shown in the figure,

the approximate action-value function is linear and the only parameter to adjust is a scalar

9. For a fixed 6, the policy tt{9) is the Gibbs softmax policy defined in Section 2.2.1. The

agent will be taken to state 2 deterministically by taking either action in state 1, and vice

versa. Actions are labeled with the immediate rewards.

Suppose the agent starts with one of the two states with the same probability, and is

following the policy n which always selects with probability 0.9 and 02 with probability

0.1, regardless of the current state. It is easy to verify that V(7r) = 2.1. Different policy

evaluation algorithms are available: TD(1)/MC minimizes the mean squared error (MSE)

of Q(s,a,6); and residual gradient minimizes the mean squared Bellman residual (MSBR).

Figure 5.5 plots the different performance metrics for different values of 6, where PV stands

for the policy value. The two measures, MSE and MSBR, are minimized by different values

of 9. Therefore, different algorithms are likely to end up with different solutions according to

their own criteria. However, the minima found by TD(1) and residual gradient have policy

values much lower than V(7r). Numerical computation shows that the resulting policy value

is 2.1 when 9 « 1.75. In contrast, the policy values of the TD(1) and residual gradient

solutions are about 1.3 and 0.1, respectively.

The large gap in policy values can be a problem in approximate policy iteration, leading

to the policy degradation problem, meaning tha t the greedy policy w.r.t. Qv has a lower

value than 7r. However, it is anticipated tha t 7?' is no worse than i t . Therefore, it is necessary

to consider the policy value to avoid this undesired situation.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MSE

MSBR

32. 51. 5 21 - 0 .5 0 0. 5 1■2 - 1 . 5

theta
^— _ — J0-

d 11
b
.tr......

"a
□ r-j K p' .'7.a

b, MSBR /M __..tr-.-i a"r-p cT MSE'a. A'-& a'.& &. a ''n- * -P" » >.D n A.-* A. A -t.PV _
1 4 t

- 0 . 5 0 0 . 5 1 1.5

theta

Figure 5.5: The three different performances of different values of & for the policy prediction
problem on the 2-state MDP (Figure 5.4). The bottom graph shows an enlarged fragment
of the top graph.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Gradient of Policy Value in Changing Value Function Param­
eters

The policy degradation problem happens because the existing methods such as TD(A),

S a rsa , residual algorithms, do not take the policy value into account. In this section, we

will study how policy value is affected by parameter updates in the value function V (0) as

9 - ^ 9 + A9. We denote the policy derived from Q(s, a, 9) by 7r(s, a, 9) and let the start-state

distribution D (s) be / ^ (s) , then according to the Policy Switching Theorem (Section 4.1):

V(9) - V(9 + A0) = J 2 (<?(*) ’ Ge+A0(s, 0 + A0 -* 0)).
S

Since

Ge+Ae(s,9 + A 9-> 9)

= (7r̂ s ’ ^ ' Q e+Ae (s>a)) - (7r(s ’a ,d + ^ ' Qe+Ae(s >a))
a a

= (Qe+Ae(s’a) ■ °>e) ~ 7r(s ’fl’6 + A0))) >
a

V{9) - V{9 + A0) = - (s) ^ 2 (Q e+Ae(s, a) ■ (ir(s, a,0 + A0) - ir(s, a, 0))^J .

Therefore,

w - lim w t w z y m
a $-*o A 9

- jig. E f-1* w E ^ ̂ 9+ ^ ~ ̂ ^)

The last equation parallels the results in [Sutton et al., 2000] and [Konda and Tsitsiklis,

2000], which have already been introduced in Section 2.3.4. This relation is important in

that it expresses how each state contributes to the global policy gradient. In other words,

VV = ^ G U
s

where

Ge(s) = <?(s) J 2 {Q6(s, a) ■ Vtt(s, a, 0))
a

can be viewed as a measure of generalized state importance in learning a value function.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VF

PG

designer preference AR

AO

Figure 5.6: An architecture combining policy gradient and pure value function learning
methods, which is flexible enough to allow a tradeoff between the policy value and value
function approximation accuracy.

5.2.3 A Combination of Policy-Gradient and Value-Function Ap­
proach

In the previous section, we have computed the policy value gradient using the Policy Switch­

ing Theorem and obtained the same result as in the literature. Therefore, in updating the

parameter 6, this gradient can be taken into account to prevent policy degradation. Here,

we will describe a policy-gradient-based value-function method, henceforth called PGVF. It

consists of three parts: (i) the value function learner (VF); (ii) the policy gradient estimator

(PG); and (iii) the arbitrator (AR). Below is a description of these three parts. A concrete

example instantiating this architecture is presented in the next section.

The Value Function Learner

The task of the value function learner is to approximate the value function accurately in

terms of minimizing the MSE of the value function or the mean squared Bellman residual.

Similar to other TD methods such as S a r s a and Q-leaming, the value function is param­

eterized by a fc-dimensional vector 6 e Mfc. The learner VF can apply any TD methods to

update the parameter. We denote this update by A # t d -

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he Policy Gradient Estim ator

The task of the policy gradient estimator is to estimate the direction of policy gradient.

For any 9, a stochastic policy ir(s, a, 9) is derived from the value function approximate

Q(s, a, 9). We require that the policy satisfies Assumption 3. Then the features ip(s, a, 9) —

Vln7r(s, a, 9) can be extracted. As explained in Section 2.3.4, PG only needs to estimate

the projection Q (s,a,w) on a fc-dimensional subspace T®. Again, TD can be applied in

computing the parameter w. The output of PG is an estimate of the policy gradient,

denoted by A0py.

The Arbitrator

The task of the arbitrator is to produce a final update of the parameter, A9*, by combing

the output of VF (A # t d)> the output of PG (A 0 p y) , and designer-supplied preferences.

This final update will be used to change the parameter 9.

5.2.4 An Instantiation of the PG VF Architecture

Figure 5.6 presents the abstract architecture of PGVF. In practice, the designer has the

freedom in determining the representation of Q (s,a ,9) and the policy ir(s,a,9), as well as

in incorporating preferences into the arbitrator. In this section, we propose an algorithm

by instantiating the PGVF architecture as follows:

• The value function is a linear combination of state-action pair features;

• The stochastic policy is the Gibbs softmax distribution;

Selecting th e Value Function R epresentation

In practice, linear function approximation is often used because it is simple enough to ana­

lyze and efficient to compute. In addition, it has been shown that TD learning with linear

function approximation converges. In fact, linear function approximation can represent non­

linear functions by using nonlinear basis functions or employing the kernel tricks [Scholkopf

and Smola, 2001], Here, we will adopt this form of function approximation:

Q (s,a,9) = ip(s, a) ■ 9, (5.5)

where ip(s, a) is the fc-dimensional feature vector extracted from the state-action pair (s, a).

Selecting the Stochastic Policy

In order to satisfy Assumption 3, we use the Gibbs softmax as the policy:
eQ(s,a,S)/r e¥>(*,a).0/T

7T(S, a, 9) = ^ e Q { s , b , 0) / r = ~F'

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

" A0PV

P >
A6>TD = A d '

Figure 5.7: An illustration of the arbitrator function defined in Equation 5.9.

Then the features for the projection in Equation 2.17 can be computed by:

V>(s, a, 6) = V In 7r(s, a, 9) = <p(s, a) - 7r(s, b)<p(s, b), (5.7)
b

and the value function projection is

Q(s, a) = a, 9) ■ w. (5.8)

The policy gradient estimator is required to estimate w* that satisfies Equation 2.17.

Selecting the Arbitrator

The final step is to select the arbitrator that combines the outputs of PG and VF according

to some predefined human preferences and knowledge. If we want the value function to be as

accurate as possible without degrading the policy value, then a natural way is to guarantee

the angle between A9* and VV(0) is not blunt. Figure 5.7 illustrates the two cases of how

A9* can be computed. The corresponding arbitrator function is formally defined as:

A > / A0t d , A0td • APV > 0
A0 = Ar i (A0TD, Apv) = { A0t d _ A ^ f f i a A pv, A#TD . Apv < 0 ' (5'9)

Similarly, an alternative is to increase the policy value without degrading the accuracy of

value functions:

A 9* — Ar2(A#TD> A0pv) = Ari (A0pv, A # t d)- (5.10)

The third way to compute A 9* is to use a scalar rj to balance the tradeoff between value

function accuracy and policy value:

A9* = Ar3(A$TDi Adpv) = V • A # td + (1 ~ v) ' A^pv> V G [0,1]. (5.11)

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When rj — 0, Ar3 implements the policy gradient algorithm, as in [Sutton et al., 2000]; when

r j = 1, it becomes the conventional TD methods.

It is worth mentioning a practical issue that will be used in our empirical study later.

Suppose the agent computes A#pv and adopts the first arbitrator function A ri. When the

parameter 9 reaches a local maximum of V{9), A9py is probably close to 0 rather than

being exactly 0 . In this case, the sign of A # t d • Apv is very noisy. Hence, a better way is

to have a threshold t g > 0 , so that when |A0pv| < t g , Art treats it as 0 and always outputs

A 0 T d ; when |Apv| > t g , Ari computes A9* by Equation 5.9.

The Final Algorithm

More practical issues need to be solved before a final algorithm is available. Note that PG

requires that 9 is fixed when it estimates the gradient VV. If at each time step, A6* is used

to update the parameter 9 using w for Q(s, a, w), then the policy n(s, a, 9) is changed, and

therefore, the is changed, resulting in w* being changed. A similar problem is met in

[Konda and Tsitsiklis, 2000] and [Sutton et al., 2000]. The approach suggested by Konda &

Tsitsiklis is to let the time scale for updating 9 be slower than that for updating w [Konda

and Borkar, 1999]. Formally, let a f and a “ be the step-size parameter on time step t for

updating 9 and w, respectively. If

a 6
lim ^ = 0 ,

t —*oo a w

then 9 and w can be updated simultaneously.

Here we adopt a simpler approach more similar to that used by Sutton et al. [Sutton et

al., 2000]. We will use batch update for the parameters. In particular, 9 will be fixed for a

while, and the A # t d computed at each time step will be accumulated but won’t be used to

update 9. When the value of w converges, it can be used to compute A 9py by Equation 2.18.

Finally, the true update A9* is computed by a predefined arbitrator function. The algorithm

is summarized in Figure 5.8.

5.3 E m p irica l Evaluations

We will use the same MDP in Figure 5.4. Two basic algorithms are studied: S a r s a (O) and

Sa r s a (I). The corresponding algorithms that implement the PGVF architecture are called

P G -S a r s a (O) and P G -S a r s a (I) , respectively. A threshold tg = 0.02 was used.

Figure 5.9 compares S a r s a (O) and P G -S a r s a (O) with Arj. Without considering the

policy value, the conventional S a r s a (O) converges to 9 & 0.13 which has a low policy value

of around 0.7 (Figure 5.5). As expected, P G -S a r s a (O) managed to converge to 9 « 0.95

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PG V F

I n p u t :
7 : discount factor
a w,a s : step sizes

O u t p u t : Q (s,a ,9) « Q*(s,a)

initialize s ~ D
a <— 7r(s, a, 9)
6<~0
repeat until 9 converges

w *— 0

/ / Estimate Q (s,a,w)
re p e a t

Take action a and observe r and s'
a' a', 9)
J td * - r + 7 Q(s', a', w) - Q(s, a, w)
w <— w + a w ■ $ td • V wQ(s, a, w)
s *— s'
a <— a1

u n til w converges

/ / T o estimate the policy gradient A#pv
A 0py ■f— 0
A ^ td 0
re p e a t

Take action a and observe r and s'
a1 *— 7:(s', a', 9)
Std * - r + 7 <3 (s', a', 9) - Q(s, a, 9)
A # t d *— A # t d + ■ 5 t d • S > Q (s >° i 0)

A^pv <— A0pv + oce ■ (Q(s, a, w) ■ a, 6) — 9)
s +— s'
a <— a'

u n til A0pv converges

/ / To compute the final update A9*
A9* *— Ar(A0TD> A0pv)
9 ±— 9 + A#*

end repeat
return Q(s, a, 9)

Figure 5.8: An instance implementing the PGVF architecture.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

6

5

. if
is 4 |
a>

PG-Sarsa(O)

Sarsa(O)
0

0 50 100 150 200

Time Steps/Iterations
250 300

Figure 5.9: A comparison between Sarsa(O) and PG-Sarsa(O) using Ari °n the 2-state
MDP.

Figure 5.5, V V « 0 when 9 > 1.5. In the first 20 iterations of Figure 5.9, therefore, PG-

S a r s a (O) behaves almost the same as S a r s a (O) as A0pv < t$. When 6 decreases, VV

increases. Consequently, P G - S a r s a (O) eventually stops decreasing 9 which converges to

0.95. The second arbitrator function Ar2 is very similar to Ari and leads to similar results.

Next, we investigate the third arbitrator function Ar3 and study how r] controls the

tradeoff. Figure 5.10 show how 9 is updated by P G - S a r s a (O) using different values of r\.

The results is consistent with our analysis above: larger rj indicates a smaller preference on

the policy value. In particular, when r) = 1, this is the conventional S a r s a (O); when tj = 0,

the algorithm is equivalent to policy gradient, and since larger 9 corresponds to greater

policy value, P G - S a r s a (O) with rj = 0 tends to consistently increase 9. Figure 5.11 gives

the converged values of 9 given different rj. Similar results were observed with P G - S a r s a (I) .

5.4 Further D iscussion

In this section, we will give a comparison between PGVF and two closely related lines of

work: policy gradient and VAPS [Baird, 1999]. On one hand, PGVF is able to consider

the policy value by computing VV, which is similar to policy gradient. On the other hand,

it explicitly handles the tradeoff between value function learning performance and policy

with a policy value much closer to the optimal policy value (V(7r*) « 2.5). As shown in

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

eta = 0
5

eta = 0. 14

eta = 0. 9
3

2

1

0
0 100 200 30050 150 250

Iterations

Figure 5.10: D ifferent values of 7] controls the tradeoff betw een value function accuracy and
th e policy value in P G -S a r sa (O) using A r3 on th e 2-sta te M DP.

n34-*̂
2 3

\\ PG-Sarsa (0)'O - ,.____________

"^O---
•~0~- O

PG-Sarsa(1)
.i..

0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eta

Figure 5.11: T h e converged values o f 6 w ith different r j in P G -S a r s a (O) and P G - S a r s a (I)
using Ar3 on th e 2-sta te M DP.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value, which is similar to VAPS in that it can perform value function learning and policy

search simultaneously.

5.4.1 PGVF vs. Policy Gradient

Both PGVF and policy gradient can improve the policy value by computing the policy

gradient VV. The only difference between them is that the parameter 6 in policy gradient

is the policy parameter, and the objective is to compute a locally optimal policy t t(s , a, 6)

directly. On the other hand, the 6 in PGVF is used for the value function Q{s,a,6), and

the goal is to learn a value function from which a good policy is derived. There are reasons

why PGVF may be better than the direct policy gradient method.

First, as discussed in Chapter 2, value functions are critical to reinforcement learning

because they make use of the structure of the problem thereby making the learning process

more efficient. In particular, value functions contain more information than policies alone.

To illustrate this, consider the optimal policy it* that selects a* in state s. The only

information extracted from ir* is that a* is better than any other action in state s. Now

consider a value function whose greedy action is also a* in state s. In addition to the

information that a* is optimal, the function also predicts the quantity of how better it is, or

its advantage [Baird, 1993] over other actions. This and possibly other kinds of information

turn out to be very important in designing efficient algorithms as well as for multi-scale

learning such as abstraction and hierarchical learning [Dietterich, 2000c; Kaelbling, 1993;

Precup, 2000; Russell and Zimdars, 2003; Sutton e t al., 1999].

However, the policy gradient agent does maintain a critic Q (s,a ,w), which can also be

considered as an approximation to the true value function Qe(s, a). Can Q(s, a, w) be used

to replace Q(s, a, 6)1 This leads to the second difference between PG and PGVF. Although

both function approximations use a linear combination with fc-dimensional parameters (6

and w, respectively), Q (s,a,6) is expected to be more accurate than Q (s,a,w). Notice

that the features <p(s, a) used in Q(s, a. 6) are directly related to the state-action pairs;

while the features ip(s,a) — Vln7r used in Q (s,a,w) are less intuitive and depend on the

policy parameter 6 that is changed during learning. For this reason, it should be easier

to incorporate expert knowledge into ip(s, a) than into a, 6) thereby making Q(s, a, 9)

more accurate than Q(s, a, w).

Third, PGVF explicitly considers two important, but potentially conflicting performance

metrics: the policy value and the value function approximation performance (e.g., mean

squared error, mean squared Bellman residual, or mean squared temporal difference). By

doing this, PGVF provides a more flexible mechanism for using a p r io r preferences of the

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

designers, and thus, has a more flexible tradeoff between these two metrics.

5.4.2 PG V F vs. VAPS

A similar idea of balancing the tradeoff between value-function learning and policy search

is also implemented by VAPS (Value And Policy Search) [Baird and Moore, 1999]. VAPS

starts with a definition of error e{ht) of a sequence ht :

ht = s0,o o ,r i , s i ,a i , r 2 ,s 2l ■ • • , s t - i , a t- i . rt, st .

Then it performs gradient descent on the expected total error B during a period ended in

time T where T = 1,2,3, • • •. Under certain conditions, VAPS provably converges to a local

minimum of B. By defining e(ht) in a similar way to Ar3 , VAPS is able to handle the

tradeoff between value function learning and policy value.

PGVF is more flexible than VAPS in that it allows more complicated forms for handling

the tradeoff. For example, the agent can make its value function more and more accurate

without degrading the resulting policy simply by using A ri. In VAPS, however, if the agent

tries not to degrade its policy, it has to put all weights on the policy performance without

considering the value function accuracy. In such a case, VAPS degrades to pure policy-search

methods without using a value function. In addition, other types of arbitrator functions

other than Equations 5.9—5.11 can be used in PGVF to fit the designer’s preferences.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

6.1 T hesis Sum m ary

This thesis investigated the problem of improving the value of RL policies by focusing the

learning process on more important states. In particular, we examine two classes of RL

algorithms: the policy-search methods based on classification, and the value-function meth­

ods. For each of them, we consider two settings of the RL problems: the batch and online

learning.

• For the classification-based policy-search methods, we proposed a measure of the se­

quential decision-making importance of a state (G*(s) and Gv (s) for the batch and

online settings, respectively), which were shown to be closely related to the policy

value. By focusing attention of learning in more important states, the agent can com­

pute a better policy with less computation resources such as learning time. In addition

to several theoretical results, the advantages of focusing attention are supported by

empirical studies in a 2D grid-world domain.

• For the batch value-function methods, we discussed two ways of connecting the policy

value to the error in function learning. One is to focus learning in more important

states so as to make the function approximation more accurate at these states. Conse­

quently, it is less likely that the agent will make suboptimal decisions in these states.

Another idea is to add a penalty term to the value function errors, so that the agent is

encouraged to agree with the optimal policy in the training states that it sees. In this

way, when the value function is generalized to the whole state space, it is expected to

result in a high-quality policy. The latter idea has also been studied by Dietterich and

Wang [Dietterich and Wang, 2002].

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• For online value-function methods, we proposed an architecture PGVF that combines

the strengths of gradient descent and value function learning. This architecture con­

sists of three parts. The PG element estimates the direction in the parameter space

along which the policy value increases. The VF element implements the conventional

value-function methods to minimize the MSE, MSBR, or temporal difference errors.

Finally, the arbitrator AR decides on the final parameter updates based on the up­

dates computed by PG and VF, as well as designer preferences and knowledge. We

argue that such an architecture has the flexibility to handle the tradeoff between the

possibly conflicting performance metrics that VF and PG attem pt to optimize.

6.2 Future Work

The promising results open several avenues for future research. First, for classification-

based focused learning methods, we can further prune down the training data set by placing

a threshold on the importance level of a training state. A direct advantage is a reduction in

training time. However, the extent to which such an a priori pruning may lead to overfitting

needs to be explored.

Another area for future research is an investigation of the extent to which this approach

depends on the cost-sensitive classifier used to represent a policy. In particular, it would be

interesting to investigate the benefits of modern cost-sensitive classification methods (e.g.,

boosting [Fan et al., 1999]) over the naive training data resampling we employed in the

experiments.

Third, in designing approximations to the classification-based focused learning methods,

we always approximated the original problem by minimizing the upper bound of the policy

loss. However, if the state distribution is somehow known a prior, or can be estimated by

an online agent, better approximations may be found.

Fourth, the PGVF architecture requires more time to compute the parameter updates

than pure value function methods. Furthermore, each PGVF agent has to maintain two sets

of parameters, 6 and w, for the value functions Q(s, a, 0) and Q(s, a, w) respectively, which

makes learning more complex. It would be helpful if the characteristics of the underlying

MDP can be utilized to replace the PG in the architecture. In particular, we envision

subclasses of MDPs that allows more efficient value function learning algorithms that are

guaranteed not to degrade the policy.

Lastly, all the algorithms were only tested on small problems. Their demonstrated

strengths need to be tested in complex, real-life applications. In addition, it is interesting to

investigate under what conditions our proposed methods and focused learning are beneficial.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Bagnell et al., 2004] J Andrew Bagnell, Sham Kakade, Andrew Y. Ng, and Jeff Schneider.
Policy search by dynamic programming. In Advances in Neural Information Processing
Systems (NIPS-OS), volume 16, 2004.

[Baird and Moore, 1999] Leemon Baird and Andrew Moore. Gradient descent for general
reinforcement learning. In David Cohn Michael Kearns, Sara Solla, editor, Advances in
Neural Information Processing Systems, volume 11, pages 968-974. MIT Press, 1999.

[Baird, 1993] Leeman Baird. Advantage updating. Technical Report WL-TR-93-1146,
Wright-Patterson Air Force Base, OH, 1993. Available from the Defense Technical infor­
mation Center, Cameron Station, Alexandria, VA 22304-6145.

[Baird, 1995] Leemon Baird. Residual algorithms: Reinforcement learning with function
approximation. In the Twelfth International Conference on Machine Learning (ICML-
95), pages 30-37, 1995.

[Baird, 1999] Leemon Baird. Reinforcement Learning Through Gradient Descent. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,
May 1999.

[Barto et al., 1983] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neu­
ronlike elements that can solve difficult learning control problems. IEEE Transactions
on Systems, Man, and Cybernetics, 13:835-846, 1983. Reprinted in J. A. Anderson and
E. Rosenfeld, Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA,
1988.

[Baxter and Bartlett, 1999] Jonathan Baxter and Peter Bartlett. Direct gradient-based re­
inforcement learning: I. Gradient estimation algorithms. Technical report, Research
School of Information Sciences and Engineering, Australian National University, July
1999.

[Baxter et al., 1999] Jonathan Baxter, Lex Weaver, and Peter Bartlett. Direct gradient-
based reinforcement learning: II. Gradient ascent algorithms and experiments. Technical
report, Research School of Information Sciences and Engineering, Australian National
University, September 1999.

[Bellman, 1957] Richard Bellman. Dynamic Programming. Princeton University Press,
1957.

[Berenji and Vengerov, 2003] Hamid R. Berenji and David Vengerov. A convergent actor
critic based fuzzy reinforcement learning algorithm with application to power management
of wireless transmitters. IEEE Transactions on Fuzzy Systems, ll(4):478-485, August
2003.

[Bertsekas and Tsitsiklis, 1996] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, September 1996.

[Bertsekas, 1997] Dimitri P. Bertsekas. Differential training of rollout policies. In Proceed­
ings of the Thirty-Fifth Allerton Conference on Communication, Control, and Computing,
1997.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Boyan and Moore, 1995] Justin A. Boyan and Andrew W. Moore. Generalization in re­
inforcement learning: Safely approximating the value function. In Advances in Neural
Information Processing Systems (NIPS-94), volume 7, Cambridege, MA, 1995. MIT Press.

[Boyan et al., 1995] Justin A. Boyan, Andrew W. Moore, and Richard S. Sutton, editors.
Proceedings of the Workshop on Value Function Approximation, 1995. In the Twelfth
International Conference on Machine Learning (ICML-95).

[Breiman et al, 1984] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone.
Classification and Regression Trees. Kluwer Academic Publishers, 1984.

[Breiman, 1996] Leo Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.

[Bulitko et al, 2003] Vadim Bulitko, Lihong Li, Greg Lee, Russell Greiner, and Ilya Levner,
Adaptive image interpretation : A spectrum of machine learning problems. In ICML-03
Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and
Data Mining, Washington B.C., August 2003.

[Cover and Hart, 1967] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern
classification. IEEE Transactions on Information Theory, IT-13(l):21-27, 1967.

[Crites and Barto, 1996] Robert H. Crites and Andrew G. Barto. Improving elevator per­
formance using reinforcement learning. In Advances in Neural Information Processing
Systems (NIPS-95), volume 8, pages 1017-1023, 1996.

[Davis et al, 1962] M artin Davis, George Logemann, and Donald Loveland. A machine
program for theorem proving. Communications of ACM, pages 394-397, 1962.

[Dietterich and Wang, 2002] Thomas G. Dietterich and Xin Wang. Batch value function
approximation via support vectors. In Advances in Neural Information Processing Systems
(NIPS-01), volume 14, 2002.

[Dietterich, 2000a] Thomas G. Dietterich. Ensemble methods in machine learning. Lecture
Notes in Computer Science, 1857:1-15, 2000.

[Dietterich, 2000b] Thomas G. Dietterich. An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning, 40(2); 139-3157, 2000.

[Dietterich, 2000c] Thomas G. Dietterich. Hierarchical reinforcement learning with the
MAXQ value function decomposition. Journal of Artificial Intelligence Research, 13:227-
303, 2000.

[Draper and Baek, 1998] Bruce Draper and Kyungim Baek. Bagging in computer vision.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 144-149, Santa
Barbara, CA, June 1998.

[Draper et al., 2000] Bruce Draper, Jose Bins, and Kyungim Baek. ADORE: Adaptive
object recognition. In International Conference on Vision Systems, Spain, 2000.

[Duffy and Helmbold, 2000] Nigel Duffy and David Helmbold. Potential boosters? In Ad­
vances in Neural Information Processing Systems (NIPS-99), volume 12, pages 258-264.
MIT Press, 2000.

[Duffy and Helmbold, 2002] Nigel Duffy and David Helmbold. Boosting methods for regres­
sion. Machine Learning, 47:153-200, 2002.

[Fan et al., 1999] Wei Fan, Salvatore J. Stolfo, Junxin Zhang, and Philip K. Chan. AdaCost:
Misclassification cost-sensitive boosting. In Proceedings of the Sixteenth International
Conference on Machine Learning (ICML-99), pages 97-105, Bled, Slovenia, 1999.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Fern et al., 2004] Alan Fern, SungWook Yoon, and Robert Givan. Approximate policy
iteration with a policy language bias. In Advances in Neural Information Processing
Systems (NIPS-03), volume 16, 2004.

[Freund and Schapire, 1996] Yoav Freund and Robert E. Schapire. Experiments with a
new boosting algorithm. In Proceedings of the Thirteenth International Conference on
Machine Learning (ICML-96), pages 148-156, 1996.

[Gordon, 1995] Geoffrey J. Gordon. Stable function approximation in dynamic program­
ming. In Armand Prieditis and Stuart Russell, editors, Proceedings o f the Twelfth In­
ternational Conference on Machine Learning (ICML-95), pages 261-268, San Francisco,
CA, 1995. Morgan Kaufmann.

[Gordon, 1996] Geoffrey J. Gordon. Chattering in SARSA(A). Technical report, School of
Computer Science, Carnegie Mellon University, April 1996.

[Gordon, 2001] Geoffrey J. Gordon. Reinforcement learning with function approximation
converges to a region. In Advances in Neural Information Processing Systems (NIPS-00),
volume 12, 2001.

[Guestrin et al., 2001] Carlos Guestrin, Daphne Roller, and Ronald Parr. Max-norm projec­
tions for factored MDPs. In Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI-01), Seattle, Washington, August 2001.

[Hagan et al., 1996] Martin T. Hagan, Howard B. Demuth, and Mark Beale. Neural Network
Design. Brooks Cole, 1996.

[Hauskrecht et al., 1998] Milos Hauskrecht, Nicolas Meuleau, Craig Boutilier, Leslie Pack
Kaelbling, and Tom Dean. Hierarchical solution of Markov decision processes using macro­
actions. In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-98), pages 220-229, 1998.

[Haykin, 1999] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall Inc., 2nd edition, 1999.

[Holland, 1975] John H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975. Reprinted in 1992 by MIT Press, MA.

[Hopcroft et al., 2000] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro­
duction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing,
2nd edition, November 2000.

[Hornik et al., 1989] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural Networks, 2(5):359-366, 1989.

[Howard, 1960] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT
Press, Cambridge, MA, 1960.

[Isaacson and Madsen, 1976] Dean L. Isaacson and Richard W. Madsen. Markov Chains:
Theory and Applications. John Wiley & Sons, 1976.

[Kaelbling, 1993] Leslie P. Kaelbling. Hierarchical reinforcement learning: Preliminary re­
sults. In Proceedings of the Tenth Interational Conference on Machine Learning (ICML-
93), pages 167-173, 1993.

[Kakade and Langford, 2002] Sham Kakade and John Langford. Approximately optimal
approximate reinforcement learning. In Proceedings of the Nineteenth International Con­
ference on Machine Learning (ICML-02), 2002.

[Kakade, 2001] Sham Kakade. Optimizing average reward using discounted rewards. In
Proceedings o f the Fourteenth Annual Conference on Computational Learning Theory
(COLT-01), 2001.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Kakade, 2002] Sham Kakade. A natural policy gradient. In Advances in Neural Information
Processing Systems (NIPS-01), volume 13, 2002.

[Kakade, 2003] Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD
thesis, University College London, UK, 2003.

[Kearns et al., 2000] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate
planning in large POMDPs via reusable trajectories. In Advances in Neural Information
Processing Systems (NIPS-99), volume 12, 2000.

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220:671-680, May 1983.

[Konda and Borkar, 1999] Vijay R. Konda and Vivek S. Borkar. Actor-critic-type learning
algorithms for Markov decision processes. SIAM Journal on Control and Optimization,
38(1):94-123, 1999.

[Konda and Tsitsiklis, 2000] Vijay R. Konda and John N. Tsitsiklis. Actor-critic algorithms.
In Advances in Neural Information Processing Systems (NIPS-99), volume 12, 2000.

[Konda, 2002] Vijaymohan Konda. Actor-Critic Algorithms. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, MA,
June 2002.

[Lagoudakis and Parr, 2003a] Michail G. Lagoudakis and Ronald Parr. Least-squares policy
iteration. Journal of Machine Learning Research, 4:1107-1149, 2003.

[Lagoudakis and Parr, 2003b] Michail G. Lagoudakis and Ronald Parr. Reinforcement
learning as classification: Leveraging modern classifiers. In Proceedings of the Twentieth
International Conference on Machine Learning (ICML-03), Washington DC, 2003.

[Langford and Zadrozny, 2003] John Langford and Bianca Zadrozny. Reducing T-step re­
inforcement learning to classification. In Proceedings of the Machine Learning Reductions
Workshop, Chicago, IL, 2003.

[Levner and Bulitko, 2004] Ilya Levner and Vadim Bulitko. Machine learning for adaptive
image interpretation. In Proceedings of the Sixteenth Innovative Applications of Artificial
Intelligence Conference (lAAI-Of), 2004.

[Levner et al., 2003] Ilya Levner, Vadim Bulitko, Lihong Li, Greg Lee, and Russell Greiner.
Towards automated creation of image interpretation systems. In Proceedings of the Six­
teenth Australian Joint Conference on Artificial Intelligence (AI-03), Perth, Australia,
December 2003.

[Levner, 2003] Ilya Levner. Multi resolution adaptive object recognition system: A step
towards autonomous vision systems. Master’s thesis, Department of Computing Science,
University of Alberta, Edmonton, Alberta, Canada, September 2003.

[Li et al., 2003] Lihong Li, Vadim Bulitko, Russell Greiner, and Ilya Levner. Improving
an adaptive image interpretation system by leveraging. In Proceedings of the Eighth
Australian and New Zealand Intelligent Information System Conference (ANZIIS-03),
Sydney, Australia, 2003.

[Li et al, 2004a] Lihong Li, Vadim Bulitko, and Russ Greiner. Batch reinforcement learning
with state importance. In Proceedings of the European Conference on Machine Learning
(ECML-04), Pisa, Italy, 2004.

[Li et al., 2004b] Lihong Li, Vadim Bulitko, and Russ Greiner. Focusing attention in rein­
forcement learning. In AAAI-04 Workshop on Learning and Planning in Markov Pro­
cesses: Advances and Challenges, 2004.

[Lin, 1992] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8:293-321, 1992.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Littman, 1996] Michael L. Littman. Algorithms for Sequential Decision Making. PhD
thesis, Brown University, Providence, Rhode Island, March 1996. CS-96-09.

[Maclin and Optiz, 1997] Richard Maclin and David Optiz. An empirical evaluation of
bagging and boosting. In the Fourteenth National Conference on Artificial Intelligence
(AAAI-97), 1997.

[Meir and Rasch, 2003] Ron Meir and Gunnar Rasch. An introduction to boosting and
leveraging. In Advanced Lectures on Machine Learning, LNCS, pages 119-184. Springer,
2003.

[Mitchell, 1997] Tom Mitchell. Machine Learning. McGraw-Hill, March 1997.

[Ng and Jordan, 2000] Andrew Y. Ng and Michael Jordan. P e g a s u s : A policy search
method for large MDPs and POMDPs. In Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI-00), 2000.

[Ng et al., 1999] Andrew Y. Ng, Ronald Parr, and Daphne Roller. Policy search via density
estimation. In Proceedings of the Sixteenth International Conference on Machine Learning
(ICML-99), Bled, Slovenia, 1999.

[Ng et al., 2004] Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, and Shankar Sastry. Au­
tonomous helicopter flight via reinforcement learning. In Advances in Neural Information
Processing Systems (NIPS-OS), volume 16, 2004.

[Precup, 2000] Doina Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis,
University of Massachusetts at Amherst, MA, May 2000.

[Puterman and Shin, 1978] Martin L. Puterman and Moon Chirl Shin. Modified policy
iteration algorithms for discounted Markov decision problems. Management Science,
24(11):1127-1137, July 1978.

[Puterman, 1994] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley-Interscience, New York, 1994.

[Quinlan, 1993] J. Ross Quinlan. C4-5: Programs for Machine Learning. Morgan Kauf-
mann, 1993.

[Resenblatt, 1962] Frank Resenblatt. Principles of Neurodinamics: Perceptron and Theory
of Brain Mechanism. Spartan Books, Washington D.C., 1962.

[Rumelhart et al., 1994] David E. Rumelhart, Bernard Widrow, and Michael A. Lehr. The
basic ideas in neural networks. Communications of the ACM, 37(3):87-92, March 1994.

[Russell and Zimdars, 2003] Stuart J. Russell and Andrew L. Zimdars. Q-decomposition for
reinforcement learning agents. In Proceedings of the Twentieth International Conference
on Machine Learning (ICML-03), Washington DC, August 2003.

[Schapire, 1990] Robert E. Schapire. The strength of weak learnability. Machine Learning,
5(2): 197-227, 1990.

[Schdlkopf and Smola, 2001] Bernhard Scholkopf and Alexander J. Smola. Learning with
Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT
Press, Cambridge, MA, Decemter 2001.

[Singh and Bertsekas, 1997] Satinder Singh and Dimitri P. Bertsekas. Reinforcement learn­
ing for dynamic channel allocation in cellular telephone systems. In Advances in Neural
Information Processing Systems (NIPS-96), volume 9, pages 974-980, 1997.

[Singh and Yee, 1994] Satinder Singh and Richard C. Yee. An upper bound on the loss from
approximate optimal-value functions. Machine Learning, 16(3):227-233, 1994.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Singh et al., 2000] Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba
Szepesvari. Convergence results for single-step on-policy reinforcement-learning algo­
rithms. Machine Learning, 38(3):287-308, 2000.

[Singh et al., 2002] Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker.
Optimizing dialogue management with reinforcement learning: Experiments with the
NJFun system. Journal of Artificial Intelligence Research, 16:105-133, 2002.

[Singh, 1994] Satinder Singh. Learning to Solve Markovian Decision Processes. PhD thesis,
University of Massachusetts, Amherst, MA, February 1994.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, March 1998.

[Sutton et al, 1999] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs
and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artifi­
cial Intelligence, 112:181-121, 1999. An earlier version appeared as Technical Report 98-
74, Department of Computer Science, University of Massachusetts, Amherst, MA 01003.
April, 1998.

[Sutton et al., 2000] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function approximation.
In Advances in Neural Information Processing Systems (NIPS-99), volume 12, 2000.

[Sutton, 1984] Richard S. Sutton. Temporal Credit Assignment in Reinforcement Learning.
PhD thesis, University of Massachusetts, Amherst, MA, 1984.

[Sutton, 1988] Richard S. Sutton. Learning to predict by the methods of temporal differ­
ences. Machine Learning, 3:9-44, 1988.

[Sutton, 1990] Richard S. Sutton. Integrated architectures for learning, planning and react­
ing based on approximating dynamic programming. In Seventeenth International Con­
ference on Machine Learning (ICML-90), pages 216-224, 1990.

[Sutton, 1996] Richard S. Sutton. Generalization in reinforcement learning: Successful ex­
amples using sparse coarse coding. In Advances in Neural Information Processing Systems
(NIPS-96), volume 8, pages 1038-1044, 1996.

[Suykens et al, 2002] Johan Suykens, Tony Van Gestel, Jos De Brabanter, Bart De Moor,
and Joos Vandewalle. Least Squares Support Vector Machines. World Scientific Pub. Co.,
Singapore, 2002.

[Tesauro and Galperin, 1997] Gerald Tesauro and Gregory R. Galperin. On-line policy im­
provement using Monte-Carlo search. In Advances in Neural Information Processing
Systems (NIPS-96), volume 9, 1997.

[Tesauro, 1992] Gerald Tesauro. Practical issues in temporal difference learning. Machine
Learning, 8:257-277, 1992.

[Tesauro, 1995] Gerald Tesauro. Temporal difference learning and TD-Gammon. Commu­
nications of the ACM, 38(3):58-68, March 1995.

[Tsitsiklis and Van Roy, 1997] John N. Tsitsiklis and Benjamin Van Roy. An analysis of
temporal-difference learning with function approximation. IEEE Transactions on Auto­
matic Control, 42:674-690, 1997.

[Turney, 2000] Peter Turney. Types of cost in inductive concept learning. In The Seventeenth
International Conference on Machine Learning (ICML-00) Workshop on Cost-Sensitive
Learning, pages 15-21, Stanford, CA, 2000.

[Valiant, 1984] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134 - 1142, November 1984.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Vapnik, 1999] Vladimir Vapnik. The Nature of Statistical Learning Theory. Sringer Verlag,
NY, 2nd edition, 1999.

[Wang and Dietterich, 1999] Xin Wang and Thomas G. Dietterich. Efficient value func­
tion approximation using regression trees. In Proceedings of the IJCAI-99 Workshop on
Statistical Machine Learning for Large-Scale Optimization, Stockholm, Sweden, 1999.

[Watkins, 1989] Christopher J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis,
King’s College, University of Cambridge, UK, 1989.

[Weaver and Baxter, 1999] Lex Weaver and Jonathan Baxter. Reinforcement learning from
state and temporal differences. Technical report, Department of Computer Science, Aus­
tralian National University, September 1999.

[Williams and Baird, 1993] Ronald J. Williams and Leemon Baird. Tight performance
bounds on greedy policies based on imperfect value functions. Technical Report NU-
CCS-93-14, College of Computer Science, Northeastern University, 1993.

[Williams, 1992] Ronald J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8:229-256, 1992.

[Yoon et of., 2002] SungWook Yoon, Alan Fern, and Robert Givan. Inductive policy selec­
tion for first-order MDPs. In Proceedings of the Eighteenth Conference on Uncertainty in
Artificial Intelligence (UAI-02), Edmonton, Canada, 2002. Morgan Kaufmann.

[Zadrozny and Langford, 2003] Bianca Zadrozny and John Langford. Cost-sensitive learn­
ing by cost-proportionate example weighting. In Proceedings of the IEEE International
Conference on Data Mining (ICDM-0S), 2003.

[Zhang and Dietterich, 1995] Wei Zhang and Thomas G. Dietterich. A reinforcement learn­
ing approach to job-shop scheduling. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), pages 1114-1120, 1995.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Supervised Learning

Supervised learning [Vapnik, 1999] is a subfield of machine learning that addresses the prob­

lem of how to learn a mapping from a set of input-output pairs. In contrast to reinforcement

learning, the decisions made in supervised learning are single-step. This section briefly in­

troduces the basic concepts, methodologies, and several examples that were used in the

thesis.

A .l O verview

The goal of supervised learning is to induce a function called hypothesis to approximate a

target function from a set of training pairs, so that the prediction error of the hypothesis is

minimized. Formally, let / : X i-» y be the target function with domain X and range y . A

set of training data are given:

T = {{a:,, yi) | Xi € X, yi = f (x i) G y , i = 1 ,2, • - • , /} ,

where the inputs are drawn randomly from an unknown distribution: a ~ DX - The learning

agent is given a class of hypotheses, H. Each element h e H is function mapping X to y ,

and can be viewed as a candidate approximation to / . The prediction error of h on an

instance, (x ,f(x)} , is denoted by E rr(f(x),h (x)) . The prediction error of h on the whole

input set X is then defined as:

Err(fc) = (Dx {x) ■ Err(/(a;), h(x))). (A.l)

The goal of a supervised learning agent is to induce the optimal hypothesis h* from H:

h* = argm inErr(h).
hen v

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Regression and Classification

The two most studied supervised learning problems are regression and classification. In

regression, the goal is to learn a real-value function (i.e., ^ C E); the error on an instance

is usually defined as the squared error:

E rrregression(/(:r) , h(x)) -- (f (.'r) h(xjj ,

and the prediction error of h on X is called the mean squared error (MSE):

E rrregression (/r) = (Dx (x) • (/ (x) - h (x))2^ . (A.2)
xex

Sometimes we will also use the root mean squared error (RMSE) in place of MSE, which is

defined as the squared root of MSE: RMSE(h) = i/MSE(/i).

Classification is different from regression in that y is a discrete set and the 0 /1-loss is

often used as the error function. For simplicity, we only consider the binary classification

problem where y = {+ 1 ,-1} , and the error function is:

Errciassi5cation(/(*^)i ^(^)) ~ (f (x) 7̂ h(x) j ,

where

is the indicator function. Correspondingly, the error of h on X is called the classification

error:

Err classification (fi) = [DX •£ (/(*) 7̂ h{x))) . (A.4)
xGX

H ypothesis Evaluation

The distribution D x in the definitions above, however, is usually unknown. Therefore,

any learning algorithm cannot minimize the prediction error Err(/i) directly. Instead, they

minimize the regularized empirical error:

i
Err(h) = y ^ E rr(/(aq), h(xi)), h e Ti­

lt should be emphasized that the training data are randomly drawn according to the same

distribution, Dx- An important tradeoff has to be made between the complexity of h and

the empirical error Err(h). It has been known that if H is very complex, then the prediction

error Err(/i) may be large even if the empirical error is very small. This is an important

issue, but is out of the scope of the thesis.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In practice, k-fold cross-validation is often used to evaluate a learning algorithm. A

common approach would be to divided the original training data set into several subset:

X i, T2 , • • ■ , Tf.. Then cross-validation repeats the training/testing process k times. At the

i-th iteration, T —Ti is used as the training set while X, as the test set. A learning algorithm

is used to induce a hypothesis hi, whose empirical errors on the training set (T — Tj) and

the test set (Tj) are denoted by e)raln and e*est, respectively. Finally, the empirical errors in

different iterations are averaged and the mean values become the final training/test errors:

1

E rr™ '1 = _ y " e ‘rain

E rr teSt =

In the extreme case where the data are limited, a special form of cross-validation called

leave-one-out (LOO) is used. In LOO, each subset Xi contains exactly one training datum,

and the number of folds k = |T|.

A . 2 PAC Learning

Ensemble learning techniques have been used in our experiments. This is a very useful and

interesting topic in machine learning. Before discussing ensemble learning in the following

subsection, the probably approximately correct (PAC) learning model [Valiant, 1984] has to

be introduced.

D efinition 12 Assuming the same notation used in the previous section, a function class

J- is PAC-learnable by a learner L using a hypothesis space H iff, V / £ JF, 'dDx, VO <

e, 6 < 1/2, L will output a hypothesis h 6 Tt such that Err(h) < e, with probability at least

(1 —S), in time polynomial in 1/e and 1/5. [Mitchell, 1997j

However, not all target function classes are PAC-learnable by all learners. For example,

consider a linear hypothesis space: % = {h | h(x) = w ■ x}. We cannot expect any h £ 7i

to represent a nonlinear target function with an arbitrary small error. In such cases, the

learner L can only achieve reasonably well. To distinguish a good learner from a poor one,

we introduce two definitions adopted from [Duffy and Helmbold, 2000]:

D efinition 13 A strong PAG learner L for a target function class J- has the property that

VDx, V/ £ T , VO < e,<5 < 1/2, with probability at least (1 — <5), L outputs a hypothesis h

with Err(h) < e, in time polynomial in 1 je and 1 / 5.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 14 A weak PAC learner is similar to a strong PAC learner, except that it needs

to satisfy the conditions only for a particular (eo,^o) pair such that 0 < eo,<5o < 1/2.

A .3 Ensem ble Learning

Ensemble learning [Dietterich, 2000a] is a class of learning algorithms that construct a

set of base hypotheses and then make predictions on new data by taking a vote of the

their predictions. Successful ensemble methods developed in recent years include boosting,

leveraging, and bagging.

B oosting and Leveraging.

Boosting was first proposed in [Schapire, 1990], and then has attracted a lot of research

interests in the past decade [Meir and Rasch, 2003]. A number of boosting algorithms were

developed, which provably boost weak PAC learners to strong PAC learners by iteratively

calling the weak learner to produce base hypotheses and then combining them linearly. At

iteration k, they modify the training data or their weights according to the performance

of previous base hypotheses; then they call the weak learner to produce the fe-th base

hypothesis, hk- When predicting an instance x € X , a linear combination is used to combine

the base hypotheses:

H(x) = ^ 2 a khk(x),
k

where a* are computed during the training phase. A well-known boosting algorithm for

classification with great success both in theory and in practice is A d a B o o s t [Freund and

Schapire, 1996], Another boosting algorithm for regression called SquareLev.R was pro­

posed recently [Duffy and Helmbold, 2002],

Leveraging algorithms are boosting-like algorithms except that they do not enjoy the

PAC-boosting property [Duffy and Helmbold, 2000], i.e., they cannot provably boost a weak

PAC learner to a strong PAC learner. But they can work well in practice.

Bagging.

Bagging [Breiman, 1996] (Bootstrap AGGregatING) operates very similarly to boosting,

except they do not modify the training data or their weights, but only build base hypotheses,

hki by presenting the learner with bootstrap replicates consisting of training data drawn

randomly with replacement from the original training set. When making predictions on a

new instance x € X , a majority vote of hk becomes the final, ensemble hypothesis:

H{x) = a khk(x).
k

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The parameters a k above are usually set to be equal and sum up to 1, in which case the vote

is an unweighted majority vote. In some cases, setting them differently may help [Draper

and Baek, 1998]:

Bagging was shown effective to reduce the variance of the classifiers or regressors, espe­

cially when they are unstable (e.g., decision trees and neural networks). Although it is simple

to use and easy to parallelize, most empirical studies show that it is often outperformed by

boosting [Dietterich, 2000b; Maclin and Optiz, 1997].

A .4 Exam ples o f Supervised Learning

In this section, we give a short introduction to several supervised learning algorithms that

were used in our empirical studies. Each of them has its own architecture and parameters

to represent a function, and the corresponding learning algorithms differ.

A.4.1 Gradient Descent

Gradient descent (GD) is a class of general methods that are guaranteed to converge to

a local optimum by performing gradient descent to minimize a target error function. The

gradient of the error function at any point is a vector pointing in the direction of steepest

descent.

Sim ple Gradient D escent

Specifically, let the hypothesis be h(x,8), where x is the input vector and 9 € R* is the

fc-dimensional parameter. The error function, denoted by e(9), is a smooth, nonnegative,

scalar function. Note that e(9) can be several prediction error functions mentioned in the

previous sections including Equation A.2. For the error function in Equation A.4 which is

not smooth, it can be approximated by other smooth error function. For example, h{x) can

be a “soft” classifier which can smooth: h : X <-* [— 1,1]. When making a prediction on a

date point x, the class label is +1 if h(x) > 0 and —1 if h(x) < 0.

Starting from an initial value 6q which is usually a random value or zero, the learning

agent iteratively updates the parameter to minimize e(6) gradually. At the f-th training

step, the gradient is computed by:

1
a k = —:----

Err(A*)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where 9l denotes the i-th component of 9. Then the value 9t is updated by being moved

towards a new value that minimizes e(9) with a small, positive step size ap.

@t+i *— @t — a tV e($ t), (A .5)

The step-size parameter at is important to the convergence of the gradient descent

method. If it is too small, Bt may not converge to a local minimum; if it is too large, 9t

may fail to converge by oscillating around the local minimum. It is well-known that if a t

satisfies Assumption 4 below, then gradient descent with Equation A.5 is convergent to a

local minimum. Intuitively, Equation A.6 guarantees that a t is large enough to reach any

point in Rfc from any initial value 6>o, and Equation A.7 guarantees that the oscillation of 0t

decreases over time and therefore 6t converges.

A ssu m p tio n 4 The step-size parameters, at, satisfy the two conditions:
OO

y ^ a t = O O , (A.6)
t=o
OO

Y L a * < °°- (A-7)
t=o

Incremental and Stochastic Gradient D escent

In many learning problems, as mentioned before, the distribution D x of input vectors is

unknown and it is infeasible to compute the error function e(9). Furthermore, the difficulty

of computing e(9) exactly is increased if the input space X is large, or if the training data

come in one by one. In such a case, incremental gradient descent updates 6 incrementally

to minimize the errors at data points drawn randomly according to Dx-

Specifically, a t the t-th training step of incremental gradient descent, the training datum

x t ~ Dx- (If the training data set is fixed, then x t is drawn randomly from the training

data set.) The error at point x t is defined as e(xt , 9) which, for example, can be the squared

error in the regression problem. Then 6t is updated by

Ot+i *~8t - a f Ve(xt , 0t). (A.8)

LMS and Linear Function Approxim ation

As an example, we briefly introduce the least-mean-square (LMS) algorithm for linear func­

tion approximation. Using the same notation as before, a linear function approximator is a

mapping:
k

h{x, 9) = x ■ 6 = x l6'.
i - 1

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The LMS algorithm aims at minimizing the squared error:1

e(0) = \ Y l D x (/W ~ h (x ' 6) f •
X

Differentiating e(9) with respect to the parameter 9 yields

Ve(<?) = - J 2 D x - h (x > ^)) • x,
X

and the corresponding update rule is:

6t+i * -6 t + a t f (/(*) - h(x, 9)) ■ x,

which is easy to compute.

A.4.2 Artificial Neural Networks

Artificial neural networks [Haykin, 1999] (ANNs), inspired by biologic structures and pro­

cesses of human brains, provide a general and practical way of supervised learning. They

have been studied for long time and have been widely used in practice [Rumelhart el, ai,

1994].

Neuron and Neural Networks

In ANN, a learning system (agent) is represented by a collection of interacting neurons.

As a fundamental element to the operation of a neural network, a neuron maps the input

signal to an output signal which becomes the input of other neurons or the system output

(Figure A.l). Formally, let x € Kfc be the input signal and the neuron outputs y € E. The

mapping implemented by the neuron is usually modelled as:

k
y = 4>{w -x + b) = wix i + b),

i= l

where w is the weight vector of the neuron weighing the each input component aq, 4>{v)

is a nonlinear activation function. There exist many choices for the activation function,

including the sigmoid function used in our experiment (Figure A.2):

^ s i g m o i d (v) — j ^__v ■ (A D)

A single neuron already has some level of learning ability [Resenblatt, 1962]. When a col­

lection of neurons are linked together and interacting with each other, the whole system (neu­

ral network) is able to demonstrate a more complex behavior and learning ability [Hornik

1the factor 1 /2 in the definition does not affect th e gradient direction of e($), b u t will simplify the
equations later.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

Figure A.l: The mathematical model of a neuron.

0.8

0.6

0.4

0.2

V

Figure A.2: The Sigmoid function (Equation A.9).

et al., 1989]. There have been a number of neural network architectures/typologies, among

which is the multilayer feedforward neural networks. Figure A.3 illustrates such an archi­

tecture with one hidden layer. Each circle in the figure is a neuron, and the directed edges

show how signals are transmitted within the network.

The Back-Propagation Algorithm

A well-known algorithm for training multilayer feedforward neural networks is the back-

propagation (BP) algorithm. The basic idea is to apply the chain rule in computing the

gradient (Equation A.5). Derivation and detailed update equations can be found in a number

of textbooks for neural networks and supervised learning [Hagan et al., 1996; Haykin, 1999;

Mitchell, 1997],

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output LayerHidden Layer

Figure A.3: A multi-layer feed-forward neural network with one hidden layer.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

