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Abstract

This thesis evaluates the performance of three multirate inferential
estimatio'n schemes which infer intersample values of the controlled output
from a more rapidly sampled secondary plant output. Three estimator
equations based on using first and second order plant models are employed.
Each of these estimators is combined with a fixed parameter PI coniroller to
form an adaptive inferential control (AIC) scheme. The control performance
of each AIC scheme was compared with the control behavior of a conventional
PI feedback control strategy.

The AIC schemes have been evaluated, by simulation, for bottoms
composition control of a binay distiliation éolumn and of a five component
depropanizer. The binary column control behavior was simulated using a
transfer fucntion model while simulation of the control behavior of the
depropanizer was performed using a general purpose distillation column
simulator, DYCONDIST. For both columns, the AIC schemes used a tray
temperature as the secondary output. Simulation results showed that the
standard AIC scheme, which required the identification of twelve parameters
when a first order plant model was assumed, provided the best control
performance for control of the bottoms composition of the binary column
modelled by transfer functions when there are changes in feed, set point or
process parameters. However, for control of the bottoms composition of the
depropanizer, this scheme was not able to cope with the nonlinear behavior
of the process while the simplified algorithm, which has only three model
parameters when a first order plant model is employed, resulted in the best
control response. Use of a dead-band on AIC strategies was found to

stablize the control behavior during the initial adaptation period so its



use is strongly recommended for practical applications.

The performance of the AIC algorith.ns were also examined experimentally
for control of the bottoms composition of a pilot scale binary distiliation
column. The experimental results further demonstrated the robust control
performance of the SM-1 algorithm because only three parameters needed to be
estimated. Although the controller settings of the fixed PI controller used
in the AIC schemes were never tuned, the SM-1 algorithm outperformed the
SM-2 simplified and the conventional PI schemes for the cases with -20% step
disturbance in feed rate or one muss percent set point changes.

In general, the simulation and experimental results show the potential

for successful application of the SM-1 control algorithm to industrial

processes.
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Nomenclature and Notation

Polynomial corresponding to process output (c.f. Eq. 2.5)

Polynomial corresponding to process output in the

transformed process model (c.f. Eq. 2.21); equivalent to
-3

Aa’)

System model matrix in Eq. A.4; Aijj is a sub-matrix of A.

A similar system model matrix of A (see Eq. A.l1).

Coefficients of A(q'l) or A(q'J); a, =L

. . -1, _
Coefficients of AJ(q ); a, = 1.

Entries in the system model matrix ia Eq. 2.1

Polynomial corresponding to process input (c.f. Egs. 2.6 and
2.23).

Polynomial corresponding to process input in the transformed
process model (c.f. Eq. 2.18); equivalent to B(q'l) in

Eq. 2.23.

System input vector in Eq. A.4; Bi is a sub-vector of B.
A similar system input matrix of B (see Eq. A.ll).

Entries in the system model vector describing the effect of
process input on the state (c.f. Eq. 2.1).

The total number of components in a distillation column (c.f.
Section 4.2).

Polynomial corresponding to secondary output in the

transformed process model (c.f. Eq. 2.24).



C( ") Polynomial corresponding to secondary output in the

transformed process model (c.f. Eq. 2.16).

f(q’l) Polynomial corresponding to secondary output (c.f. Eq. 2.7).

C System output vector in Eq. A.5; Ci is a sub-vector of C.

C A similar system output matrix of C (see Eq. A.11).

c, Coefficients of C(q%).

< Coefficients of CJ(q'l).

D Diagonal Matrix.

D(q'l) Polynomial corresponding to the white noise in process
output (c.f. Eq. 2.11).

D™ Polynomial as defined by Eq. 2.12.

d Time delay between input and primary output.

d Coefficients of D(q™%).

E(q'l) Polynomial corresponding to the white noise term in Eq. 2.14,

EJ(q'l) Polynomial corresponding to the white noise term in the
transformed process model (c.f. Eq. 2.16).

e Coefficients of E(q'l).

e, Coefficients of EJ(q'l).

e(t) The prediction error in the cost function JK.

h Coefficient relating secondary output to process output.

I Identity matrix.

J Sampling interval of process output.

JK Cost function in the recursive least squares algorithm.

K The upper time limit of the cost function JK.

K(t) Kalman gain. o

M Order of polynomials B(q™Y), C(@}) and E(q'l) in Eq. 2.21.



N Order of polynomials BJ(q'l), CJ(q'l) and EJ(q'l) in
Eq. 2.16; the total number of stages in a distillation

column (c.f Section 4.2).

n Order of the process model.

nv Observability index of secondary output.

ny Order of polynomial NG

P(t) Covariance matrix.

qt Backward shift operator.

R(q'l) Polynomial corresponding to disturbance sequence in Eq. 2.4.
(%) A factor defined by Eq. 2.39.

ri(t) Entries in the vector cerrésponding to disturbance sequence

in process model (c.f. Eq. 2.1).

T Basic sampling time.

Tr(P) Trace of matrix P.

U Upper-triangular matrix.

u(t) Manipulated variable,

v(t) Secondary output.

w(t) Random and unmeasured load disturbance of zero mean and

finite variance.

x(t) State vector.

x(t) A state vector that is similar to x(t) (see Eq. A.12).
X, The i th state of the system.

Y System output vector in Eq. A.5.

y(t) Primary (controlled) output.

2(t) White noise sequence,



Greek

(1)

6(t)

Subscripts

y (1)
¢, (1)

y

nom

3Ca

Parameter used to reset the covariance matrix.

Regressor vector.

Observability matrix.

Forgetting factor.

Process model parameter vector.

A nonsingular matrix which transforms one realization of a
linear system to another "similar" realization.

Uncorrelated random sequence of zero mean and finite variance
corresponding to secondary output (c.f. Eq. 2.2).

Uncorrelated random sequence of zero mean and finite variance
corresponding to primary output (c.f. Eq. 2.2).

Uncorrelated random sequence of zero mean and finite variance

(c.f. Eq. 2.12),

Estimated value of y(t).
Regressor vector using ye(t) instead of y(t).
Nominal value of y.

Scaling factor of y.
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<l

E'

E"

ri

Estimated value of a.

Scaled deviation value of y.

Matrix or vector E obtained from using the secondary output
v(t) (see Eq. A.13).

Matrix or vector E obtained from using the secondary output
v“(t) (see Eq. A.14).

Transpose of the matrix P.

Abbreviations

AIC
AlIE
RLS
SM-1
SM-2
ST-1

TST-2

Adaptive inferential control.

Adaptive inferential estimation.

Recursive least squares.

Simplified AIC algorithrn using a first order plant model.
Simplified AIC algorithm using a second order plant model.
Standard AIC algorithm using a first order plant model.
Truncated ST-1 standard AIC algorithm using two parameters

for secondary output and for manipulated variable.



Chapter 1 : Introduction and Literature Survey

1.1 Introduction

In chemical process control, the control problems are often related to
the control of product quality. A typical example is the control of product
quality of distillation columns. Although the sensitivity, reliability and
speed of response of on-line process analyzers, such as gas chromatographs,
k .ve been vastly improved in recent years, the use of an on-line analyzer
for product quality control frequently introduces long time delay to the
control systems, resulting in poor control performance. To circumvent this
problem, considerable ingenuity has been e?(pended on developing different
ways to infer product compositions,

In addition to the problem of limited measurements of process outputs,
the time-varying nature of most chemical processes often presents serious
problems for conventional control strategies. In order to improve the
control performance for processes which have nonlinear and/or time-varying
characteristics and limited availability of process outputs, an adaptive
scheme which can predict the process outputs at a rate faster than they are
measured is required.

The objective of this thesis is to obtain a solution for the above
problems. The work includes a systematic evaluation of the multirate
adaptive inferential estimation (AIE) scheme proposed by Lu (1989). This
scheme infers intersample values of the controlled output, which is sampled
at a slower rate because of the long cycle time of an on-line analyzer, from
a more rapidly measured secondary plant output. The work by Lu has provided
a solid theoretical basis for multirate adaptive inferential estimation and

control. However, it is still at its early stage of theoretical development



and the algorithm is only derived for linear systems. For industrial
applications, the assumption of iinear systems is usually violated. Since

the assessment of the AIE scheme based on a rigorous mathematical approach
is difficﬁlt so the validity of the A{E scheme for application in indus::ial
processes has to be examined experimentally. Furthermore, Lu's scheme is
proposed in a fundamental form which is essential to a theoretical study but
not practical to the control of a real chemical process. Therefore, many
additional issues must be addressed. For example, the robustness of the
estimation scheme and some implementation details have to be considered.
Only combined with a extensive study of these important issues can the
multirate adaptive inferential estimation anci control be an integral
contribution to the ¢z of process control.

To achieve the stated goal, the thesis includes a thorough study of the
performance of the multirate adaptive inferential estimation and control
strategy for control of distillation columns bottoms compositions. Linear
and nonlinear process models were used in the simulation phase. The
multirate scheme were further evaluated experimentally using a pilot scale
binary distillation column. This systematic evaluation fills the gap
between the theory and application aspects of the multirate adaptive
inferential estimation technique and highlights the potential of immediate

application of the AIE scheme to the control of an industrial chemical

process.

“~tion 1.2, a literature survey of previous studies related to
inferrii. 'y sampled plant outputs, with the emphasis on the topic
of distil.. .n coatrol, is presented. Distillation control has been

the subject 6 wcademiic and indusirial research because of its key role in



many cherrical processing incdustry. Excelient reviews of the distillation
control field, covering the literature published in this area from 1970 to
1984, have been done by Tolliver and Waggoner (1980) and McAvoy and Wang

(1985). The organization oi this the:r wiil be outlined in Section 1.3,

1.2 Literature Survey

1.1.1 Non-adaptive Schemes for Inferring Process Outputs

For distillation column product ¢uality control, probably the most
commonly used technique is regulation oi the temperature of a selected tray
at an appropriate set point. The selection of the location of the control
tray has been the subject of numerous papers. Rademaker et al. (1975)
presented a well-organized summary of the various criteria proposed over the
years. Most criteria proposed beforz 1970 are based on steady state
information (e.g. Wood, 1968). In these approaches, the steady state
temperature profile is plotted and a tray liquid temperature is in the
region where the temperature is changing fairly rapidly from tray to tray is
selected (Desphande, 1985; Bucklev et al., 1985). Qther authors (e.g.
Rademaker et al., 1975; Shinskey, 1984) disagree with this approach and
suggest that dynamic considerations are also important. In addition to the
problem of control tray selection, single tray temperature feedback control
will generally result in offset because maintaining a constant tray
temperature does not necessarily result in constant product composition when
there is a feed disturbance, as shown experimentally by Pakte et al. (1982).
As pointed out by Luyben (1969), controlling an intermediate tray
temperature is usually unsatisfactory for columns separating close-btoiling

products since control over a very narrow temperature range is required.



Furthermore, pressure variations, which are quite common in practice, can
reverse the effects of composition changes on temperatures changes.

Besides single tray temperature feedback control, various heuristic
schemes have also been proposed to regulate product compositions of
distillation columns. To avoid pressure effects, a popular technique is to
control a differential temperature (AT). In this scheme, the difference
between two temperatures on two trays in the same section of the column is
controlled. As pointed out by Webber (1959), some potential problems can
arise as a result of using the AT control strategy. Firstly, the
relationship between AT and product composition is not monotonic. Thus, the
controller action had to be reversed for de.sired values of composition that
were on different sides of the extremum point on the AT versus composition
plot. Secondly, feed composition disturbances in the heavy components
caused poor control performance.

Luyben (1969) proposed a double differential * mperature control scheme
for distillation column control. The basic idea is to measure and control
the difference between two temperature differentials. However, the
procedure for selecting two appropriate temperature differentials is quite
complex. The simulation results presented by Luyben (1969) showed very
little improvement in control performance compared with that achieved by the
AT and single temperature feedback control schemes.

Yu and Luyben (1984) suggested the use of multiple temperature for the
control of .nulticomponent distillation columns. The two schemes presented
were the temperature/differential temperature (TDT) and the temperature/dual
differential temperature (TDzT) schemes. The TDT control structure used a

temperature differential to reset the set point of the temperature



controller of an "optimal" single temperature control tray. However, this
technique did not work satisfactorily for feed composition changes in key
components (light key and heavy key). In the TD’T control scheme, two
temperature differentials were used to adjust the set point of the
temperature controller of a properly selected tray. Simulation results
showed that TD’T control performed well for different feed composition
changes. Nevertheless, this scheme required a significant amount of design
effort and the applicability seemed very case-dependent. Moreover, the
TDT control scheme could not handle disturbances in feed flow rate (Yu and
Luyben, 1984) so the potential of this scheme for practical applications is
very limited. .

Brosilow and co-workers (Joseph and Brosilow, 1978a, 1978b; Brosilow
and Tong, 1978) proposed a more complicated control algorithm called
inferential control. This algorithm uses available secondary measurements
to minimize the stecady state error of a least squares based estimator, and
the selected measurements are used to infer and counteract the effect of the
unmeasured disturbances on the primary (controlled) process output, as shown
in Fig. 1.1. Methods for optimal selection of secondary measurements for
state estimation have been suggested by Joseph and Brosilow (1978a, 1978b)
and were further refined by Morari and Stephanopoulos (1980a, 1980b). As
may be expected, the performance of this inferential control strategy
depends heavily on the accuracy of the secondary process model. As well, in
order to improve the transient response of the estimator, heuristically
derived lead-lag elements should be incorporated into the inferential
control framework. As may be expected, since most chemical processes are

nonlinear and often time-varying in nature, the changing dynamic
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characteristics of the process can easily degrade the performance of an
inferential control system that has been designed on the basis of a
particular process model. A comparative study of the performance of the
inferential control system with the conventional feedback control system has
been performed experimentally (Pakte et al., 1982). Although all results
showed that the inferential control strategy was superior to a conventional
feedback control scheme in rejecting unmeasured load disturbance, steady
state offset was found to be a potential problem with the inferential
control system (Pakte et al., 1982) because of the nonlinear and
time-varying behavior of the process. Another shortcoming of this
inferential control scheme is the requireme;n that all the gains and
approximate time constants that relate the primary and secondary outputs to
all plant disturbances and manipulated variables be known for a particular
operating condition.

The concept on which this inferential control system is based has been
extended by Garcia and Morari (1982), Morari (1983) and by Parrish and
Brosilow (1985) to develop an inferential control system which only uses the
measurement of the primary output to infer the effect of disturbances on
process output. This type of control was designated as "internal model
control" by Garcia and Morari (1982). In this scheme, the effect of the
manipulated variable on the primary process model (i.e. the primary process
model output) is subtracted from the measured primary output. If the
primary process model is perfect, the feedback signal to the controller will
be due to the disturbance only. Thus, the controller can be designed aad
tuned to eliminate the effect of the disturbance on the primary output. The

main disadvantage of using this internal model controller is that its



performance depends heavily on the accuracy of the process model as well as
the on-line tuning. Parrish and Brosilow (1985) proposed some heuristic
rules for on-line tuning of the controller parameters. Their simulation
results showed that superior performance could be obtained using the
inferential control strategy compared with that achieved by using
conventional PID control. Parrish and Brosilow (1988) extended their
inferential control scheme for application to control of a nonlinear
process. Results from two illustrative examples, a laboratory heat
exchanger and a simulated neutralization process, are presented. Their
results indicated that a substantial improvement in control was possible
using the nonlinear inferential controller. ‘

None of the inferential control strategies reviewed in the preceding
material employed measurement of the primary output at long sample intervals
in conjunction with simuitaneous frequent measurement of a secondary output.
It is this type of strategy that is ccnsidered in this work. This approach,
as explained in the material presented in Chapter 2, is different from a
scheme proposed by Luyben (1973). Luyben’s strategy involved the use of a
parallel cascade control scheme which used measurement of a primary output
in a controller to vary the set point of a secondary output controller.
Although this approach eliminates steady state offset, the transient
response is often poor (Pakte et al., 1982) because the set point of the
secondary output controller can only be changed when an infrequent

measurement of the primary output is available.

1.2.2 Adaptive Schemes for Inferring Process Outputs

Conventional control strategies do not always provide satisfactory



control performance because. no adaptive features are incornorated to handle
nonlinear and/or time-varying behaviors of most processes. In recent years,
there has been extensive research activity in adaptive control systems. In
this work, adaptive control systems are defined as those systems which
adjust the parameters of their plant models and/or controllers to compensate
for changes in the process or the environment. There has been extensive
interest in the adaptive control systems in the last decade because of the
breakthroughs in microelectronics that have made it possibie and economical
to implement adaptive controllers for practicat applications. An excelleni
survey of adaptive control strategies for process contro! has been includea
in Seborg et al. (1986). Although this sur;fey article emphasizes
fundamental concepts and alternative controller design strategies, potential
operating problems associated with soms adaptive control schemes as well as
a critical review of recursive parameter estimation techniques are also
presented.

Some adaptive controllers o: estimators have been formulated to control
the infrequently sampled plant outputs at a faster rate. Soderstrom (1980)
developed, for first-order plant models, several minimum variance
controllers which enable the manipulated input to be adjusted during the
intersample interval of the plant output. Scattolini (1988) proposed a
multi-input multi-output self-tuning control algorithm for processes with
infrequent and delayed output sampling. Although the simulation results
demonstrate the satisfactory performance of this control algorithm, no
comparative results are presented. Recently, Lu and Fisher (1989) derived a
multirate adaptive estimation scheme which can be employed to predict the

infrequently sampled output at a faster rate, the rate at which corrective



changes of the manipulated variable can be introduced. Convergence and
stability properties are also proved for open loop operation. This idea has
been extended to obtain a servo control law with input constraints (Lu er al.,
1989) with simulation examples demonstrating the excellent performance of
the multirate estimation schemes.

The adaptive algorithms reviewed above do not make use of the dynamic
information available from other (secondary) plant outputs. It may be
advantageous to use the primary and secondary plant outputs simultaneously
to improve control performance. Shen and Lee (1989) modified the
inferential control scheme of Brosilow and co-workers (Joseph and Brosilow,
1978a, 1978b:; Brosilow and Tong, 1978) to‘ obtain an adaptive inferential
control algorithm for controlling processes with intermittent measurements
of the controlled output. In this adaptive scheme, shown in Fig. 1.2,
frequent measurements of the secondary process output are used to update the
secondary process model on-line and estimate the effect of any load
disturbance. The parameters of the inferential controller are adapted using
infrequent measurements of the process output. The controller design is
based on a discrete inverse convolution model (Shen and Lee, 1985 and 1988)
which is a stable approximation of the inverse of the primary process model.
Simulation results indicated that this adaptive inferential control systein
provided improvement over conventional PID and inferential control in the
presence of unmeasured load disturbances and variations in process
characteristics. However, it is doubtful if this scheme can provide
satisfactory control performance in practice because two process models have
to be identified recursively on-line and the number of parameters that need

to be estimated will be large for a process with long analyzer cycle time.

10
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Guilandoust et al. (1987, 1988a, 1988bL) recently proposed two multirate
adaptive inferential estimators for inferring infrequently measured process
output from other more rapidly sampled secondary output. One estimator is
derived from a state-space model of the process while the other is based
upon an input-output representation of the plant. These adaptive estimation
techniques require minimal design effort compared with the non-adaptive
inferential control scheme. Estimates of the controlled output are
generated at the fast rate at which the secondary output is measured and
these estimates can then be used with either a fixed parameter controller or
an adaptive controller to regulate the controlled output. Since the
parameters of the estimator models can be updated on-line, the proposed
algorithms are able to cope with slow time-varying process dynamics. Their
results obtained from simulation and industrial evaluation indicate the
potential of their schemes for practical applications. However, as pointed
out by Lu (1989), several very restrictive assumptions were employed when
Guilandoust et al. (1987, 1988a, 1988b) derived the control algorithms. In
their state-space formulation, complete observability of the process from a
secondary output is required, a condition which is not common in practice.
When they derived the working equation from an input-output relation, two
process models were assumed, one for the controlled output, y(t), and one
for the secondary output, v(t). However, in order to obtain a werking
equation which related y(t) to v(t) and the manipulated variable u(t), the
same stationary random load disturbance vector must be present in both
models. In other words, the link of y(t) to v(t) and u(t) is only via the
external white noise disturbance and so the working equation is

theoretically not applicable when there are no disturbances.

12



Lu (1989) has formulated two similar multirate adaptive inferential
schemes in a more formal manner. His work has a sound theoretical foundation
and the restrictive assumptions used by Guilandoust er af. (1987, 1888a,
1988b) are not required. It is the objective of this research to evaluate,
by simulation and experimental testing, the multirate adaptive inferential
algorithms of Lu (1989). The basis of comparison is the control performance

that is achieved by a conventional feedback PI control scheme.

1.3 Thesis Organization

The multirate adaptive inferential estimation schemes proposed by Lu
(1989) are derived in Chapter 2. This chapter also describes the recursive
least squares identification a.gorithms used in this work. Some issues
concerning the practical applications of the adaptive schemes are also
discussed in this chapter.

In Chapter 3, the controi performance of the adaptive inferential
control (AIC) schemes is studied by simulation using a transfer function
model of a binary distillation column. The control behavicr is assessed by
computing the integral of absolute error (IAE) values for changes in feed
rate, reflux rate, and set point. The robustness of the AIC schemes is
tested by changing the parameters in the transfer function model.

Chapter 4 is devoted to a evaluation of the control performance of the
AIC schemes when they are employed to control the bottoms composition of a
stmulated multicomponent distillation column. The simulations are pe:tu:med
using a general purpose multicomponent distillation column simulator,
DYCONDIST (Carling and Wood, 1986). "The column model used in this simulator

and the depropanizer tower specifications are also described.

13



Chapter 5 presents experimental results obtained when the AIC schemes
are applied to control the bottoms composition of a pilot scale binary
distillation column. The control performance of the AIC schemes are compared
to that achieved using a conventional proportional plus integral feedback
controller.

Chapter 6 summarizes conclusions from this study and presents

recommendations for future work.

14



Chapter 2 : Development of the Multirate Adaptive Inferential
Estimation Algorithms

2.1 Introduction

The multirate adaptive inferential estimation (AIE) algorithm that is
the focus of this work is derived in Section 2.2. The derivation
concentrates on the development of the equations that form the basis for the
multirate AIE strategy. The output convergence properties have been
considered in detail by Lu (1989) and will not be repeated here. In
addition to the standard and simplified algorithms presented by Lu (1989),
another simpiified version of the standard scheme, designated as the
truncated standard algorithm, is also described in the next section.

In Section 2.3, the underlying theoretical basis for the basic
recursive least squares (RLS) identification algorithm is presented. Three
variants of this basic RLS method used in this work are also outlined.

For practical application of the multirate AIE strategy, in common with
other advanced computer control techniques, some precaution is required. In
this work, it is suggested that a dead-band be employed. The definition of

this dead-band can be found in Section 2.4.

2.2 Derivation of the Multirate Adaptive Inferential Estimation Scheme

The multirate adaptive inferential estimation and control scheme
evaluated in this study is shown in block diagram form in Fig. 2.1. This
scheme, first proposed by Guilandoust et al. (1985, 1987, 1988) used an
algorithm based on either a state space or on an input-output approach.
Their governing equations, although original and practical, were based on

some very restrictive assumptions. For example, the process must be

15
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completely observable from the secondary output when the state space model

is used. A detailed discussion of these restrictive assumptions can be

found in Lu (1989).

2.2.1 Plant Model

The adaptive inferential strategy is based on the assumption that the
primary controlled output, y(t), is sampled every JT time units while the
measured value of the secondary output, v(t), is available every T time
units. The manipulated variable, u(t), is changed at the basic sampling
time T. Assuming that the process is completely observable from v(t) and
y(t) and for T taken as the unit time, it follows from the theory of linear

systems (Wolovich, 1974) that the system can be represented by

0 0 —a1 0 0 --a1 b1
I
nv-1
-2 0 ... 0-a b
nv nv nv
x(t+l) = _ x(t) + u(t)
0 . 0 - . 0~
nv+l nv+l nv+1
I
ny-1 ~
0 0 -a -a b
L n n ] L n i
+ roor r 1% w(t) (2.1)
o Tav Taver n] :
vn) = x (0 + € 2-2)
Y =hx O +x®+E0O 2.3)
where
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w(t), ev(t) and Ey(t) = ‘independent random Gaussian sequences with
zero mean and finite variance
nv = the observability index of v(t)
n = the order of the process
x(t) = the state vector
ny = n - nv.
(NOTE : The implication of the observability index is discussed in Appendix

A)

The time delay between u and y wiii pe considered later. By successive
substitution, it can be shown that the input-output relation from u(t), v(t)

and w(t) to y(t) is

A@ DY) - hv(1) +he (1) - € (O] = (2.4)
B@ Hu(t) + C(a Hv(t) + R(@ Hw(n)
where
Al@Y) =1+ ilq'l + azq’l + 3 oy (2.5)
B@!) =bq’+ b_a" + + nv+1q'“y (2.6)
c@h = -anq'1 - an_lq'2 - - anvﬂq'"y (2.7)
R(Q) = rnq'1 + rn_lq'2 + o+ r“vﬂq'ny (2.8)
Eqg. 2.4 can be rewritten as
A@™y(® = Bla™Hu() + C@Hv(n) + D@ e (1) (2.9)

+ Dia )e(t)
where
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C@’) =C@™") + ha(@™) (2.10)
=c +cqt +cqls+ +¢c q"
0 1 2 ny
D(QY) = hAa@@)) = d,+da’+ dzq‘2 + + dnyq'“" (2.11)
D@yt = R@Hwo) - ha@ e (1) (2.12)

Applying the spectral factorization principle (Astrém, 1970), the last two
terms of Eq. 2.9 can be replaced by E(q'l)z(t) where E(q'l) is defined by

-1, _ -1 -2 -ny
E(q ) =e +eq  +ea + .. + enyq (2.13)

and z(t) is white noise with finite variance so Eq. 2.9 becomes
A@Hy® = B@Huw) + Ca™Hv(r) + E @ )z () (2.14)

For the roots of A(q'l) designated as a (i = 1, ..., ny), multiplication

of both sides of Eq. 2.14 by the polynomial

ny
m [1 + @7 + (@@ + ok (@)™ (aiq)l'J] (2.15)

i=1

yields, as can be shown by mathematical induction (Lu, 1989),

A@ () = Ba Hu®) + Ca™ o) + E @) (216)
where

AJ(q"’) =1+ auq"’ + anq'2J + o+ aJnyq'Jny 2.17)

Ba) =bya’ +b.a’ + . +b a" (2.18)

CJ(q'l) =C + c.uq'1 oo+ cmq'N (2.19)

EJ(q'l) =e. + e‘uq'1 + .+ emq'N (2.20)

for N =J x ny

Eqs. 2.16 to 2.20 form the basis for the multirate adaptive inferential
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estimation and prediction algorithms evaluated in this work. It should be
noted that in Eq. 2.16, the value of y(t) is required only every "J"

sampling intervals instead of every sampling interval. For simplicity of
notation, the "J" subscript is dropped, ny is replaced by n and JN is
denoted by M. If there is a time delay of d between u and y, Egs. 2.16 to

2.20 can be rewritten as

A@ )y = Ba Hu-d) + C@Hv(t-d) + E@ ™z (2.21)
where

A(q"]) =1+ alq'J + azq'z'] + + anq'Jn (2.22)

B@!) =ba’ +ba’+ .. + qu'M~ (2.23)

C(q'l) =c, + clq'1 + czq'2 + ..+ ch'M (2.24)

E(qh) = e, + elq'1 + ezq'2 o+ qu’M (2.25)

2.2.2 The Standard Algorithm

The standard algorithm formulated by Lu (1989) involves identification

of the system parameters, whenever the measurement y(t) is available, using

y) = ¢ (-6 (2.26)
where
(1) =[-y(t-]) -y(t-2]) .. -y(t-n)) (2.27)
u(t-1-d)  u(t-2-d) .. u(t-d-M)
v(t-d) v(t-1-d) .. v(t-d-M)]
B = a0 a(t) . a ® (2.28)
bl(t) bz(t) bM(t)
¢, ¢ .. cM(t)]T
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where ye(t) is the predicted value of y(t) and """ represents estimated
value.

If a measurement of y(t) is available at time t, after updating the
regressof vector (Eq. 2.27) using stored values of Yo U and v, the
parameters in Eq. 2.28 can be estimated using an identification algorithm
(e.g. a recursive least squares algorithm as used in this study). Use of
the values of y, instead of y in the regressor equation, Eq. 2.27, is the
result of employing the output error method for parameter estimation {Lu,
1989; Goodwin and Sin, 1984). Although y(t-J), y(t-2J), ... etc can be used
in Eq. 2.27, these actual measurements are not used in the regressor because
for the period t to t+J, the estimated valués must be used to perform
intersample predictions of y since y is available only every J sample
intervals. Thus, for consistency, ye(t-J), ye(t—2J), ... and ye(t~nJ) are
used in Eq. 2.27.

During the period from t to t+J, the estimated parameters can be used

for the k-step ahead prediction of y, that is ye(t+k), using
ye(t+k) = ¢e(t-l+k)0(t) (2.29)

For the J-step ahead prediction, the number of unknown parameters is

n(2J+1)+1 and so for a first order plant model (n=1) and J=5, 12 parameters

A A A A
(a1 L+ S bs’ c
]

A
1 . cs) must be identified.

o

2.2.3 The Simplified Algorithm

A possible difficulty that may arise when the standard algorithm is
applied to nonlinear and/or time-varying processes is the speed of parameter

convergence due to the large number of parameters that must be identified.
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When the standard algorithm is used with a first order plant model, an
increase in J from § to 10 will require that 22 parameters be estimated
instead qf 12. A simplification of the estimation equations, Egs. 2.26 to
2.28, to overcome this situation by reducing the number of Biand gi
parameters to be identified has been suggested by Lu (1989). The extreme
case presented by Lu (1989) .5 to set gi+1(t)=ei(t)=0 for i#0, J, 2J, ...,
(n-1)J and so the number of parameters to be estimated is only 3n and
independent of . In general, decreasing the number of parameters of the
standard algorithm will increase the plant model mismatch. However, as
pointed out by Lu (1989), the simplified algorithm can achieve exact model
match (if GnJ is not set to zero and is incl‘uded in the parameter estimate
vector) at output sampling interval when there are no disturbances
(E(q'l)z(t)=0 in Eq. 2.21) and the manipulated variable, u, is kept constant
within the slower sampling interval (i.e. from time t to t+J). For a
nonlinear and/or time-varying system, where an exact plant model match is
impossible even if the standard algorithm is employed, reducing the number
of parameters to be identified will improve the numerical conditioning of
the estimation algorithm, thus resulting in better overall control
performance. It may be readily realized that during normal steady states
operation and y is under conventional PI control, u and v are constant
(except for process noises) within the slower sampling interval. Then, if
no excitation signal is added into u during off-line identification, using
the simplified algorithm may be better since the measurements of u and v
within the slower sampling interval are not included in the regressor
vector. Consequently, better initial parameter estimates can be obtained

for the simplitied algorithm.
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Use of a first order plant model for this simplified scheme requires
the estimation of only three parameters (al, b1 and co) while the use of a

A

second order model will involve identification of six parameters (al1 a,,
2]
A

61‘ Ge’ < and 25) . The performance that can be achieved for control of a
linear and a nonlinear system using these algorithms with first and second
order plant models has been investigated by simulation in this work.
Experimental evaluation, iavolving the control of bottoms composition of a

pilot scale binary distillation column, will be also presented.

2.2.4 The Truncated Standard Algorithm

The simplified algorithm suggested b); Lu (1989), to reduce the number
of l; and 2: parameters that must be estimated, represents an extreme
simplification. Different techniques for reducing the number of unknown
model parameters of the standard algorithm may be required depending on the
application. Another approach to reduce the number of parameters to be
estimated is to truncate the standard algorithm. This form of algorithm,
designated as truncated standard algorithm, is presented here as one
possible approach. Use of a first order model with the standard algorithm

A

A A A
would involve identification of bl, vers b5 and o v Cpe The

A
effectiveness of the suggested truncated scheme, which involves setting b3,
A A

A A
b4, b5 and Cpr wes Cg 1O 0, is examined by simulation for control of a

nonlinear system (c.f. Chapter 4).

2.3 Recursive Least Squares Identification Algorithms

The on-line estimation of unknown -process and/or controller parameters

is a crucial part of adaptive contro! scheme. Many books dealing with
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identification methods have been published over the years (Graupe, 1976;

Hsia, 1977; Ljung and Séderstrdm, 1982; Goodwin and Sin, 1984; Ljung, 1987).
Probably the most popular parametric identification method used in adaptive
control is the recursive least squares (RLS) algorithm. Three variants of

the basic RLS estimator used in this work will be briefly described.

2.3.1 Recursive Least Squares with Exponential Data Weighting

Assuming that the system to be identified is described by the following

linear discrete model

y(t) = ¢T()AD) . (2.30)
where

o) = [y(t-1), ¥(t-2), wn u(t=1), u(t-2),..]" (2.31)

07(t) =la, 2, v by, b, ] (2.32)

The basic RLS method is the result of minimization of a quadratic cost
function of the prediction error, e(t), of the form (Ljung and Séderstrém,
1983)

i K

K
K
Ik® = —K—El*

]

-t .2 K K-t T, A .2
e(t)’ = ¢ PP (y(t)-¢ (1)6(r)) (2.33)
t=1

The RLS parameter estimation law is given by the following equations :
Parameter vector update :
a(t) = 6(t-1) + K(t) [y(t) - 87 (t- DB (2.34)
Kalman gain vector update :

K(t) = Pi"l)d’(‘) (2.35)
A+ ¢ (t)P(t-1)¢(t)

Covariance matrix update :
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T
P(t) = [P(t-l) - B)@e (-DP-D) | 1 (2.36)
A+ ¢ (OP(t-1)g(t)

For the basic RLS algorithm, )\, the exponential forgetting factor, equals 1.
A difficulty that may arise when the basic RLS algorithm is employed is that
the algorithm does not retain its adaptivity (Goodwin and Sin, 1984). To
retain the alertness of a RLS algorithm, a "forgetting" or discounting
factor, A (0<X<l), is employed in Eqgs. 2.34 to 2.36. To improve numerical
conditioning, the factorization algorithm of Bierman (1976) is employed.
This method is based on factorization of P into

P=UDU" (2.37)
where D and U are respectively diagonal and an upper-triangular matrices. A
PASCAL subroutine for RLS estimation using the U-D factorization algorithm
can be found in Astrdm and Wittenmark (1984). A FORTRAN version of this
code, developed by Vermeer (1987), has been utilized in simulation of the

contro! behavior of a linear system (c.f. Chapter 3).

2.3.2 Recursive Least Squares with Constant Trace Covariance Matrix

through a Variable Forgetting Factor

Using a fixed forgetting factor in conjunction with the basic RLS
algorithm works well only if the process has sufficient excitation;
otherwise, exponential data forgetting will lead to covariance "blow-up"
(Goodwin and Sin, 1984). In a recent paper, Sripada and Fisher (1987) have
proposed four modifications to the basic least squares algorithm. One of
the proposed modifications is to use a variable forgetting factor which will
keep the trace of the covariance matrix, P(t), constant. This technique has
been used in the identification algorithm for the sﬁnulation of the control
of a nonlinear multicomponent distillation column (c.f. Chapter 4). The
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update equations for the parameter vector, Kalman gain vector and covariance
matrix are as expressed by Egs. 2.34 to 2.36 with the value of the variable

forgetting factor, AMt), to keep the trace of P constant calculated by the

expression
2
20 =1 - i - eo? - D01 (2.38)
where
tr P(t-1) = the trace of P(t-1)
r(t) =1 + $()P(t-1)§(t) (2.39)

2.3.3 Recursive Least Squares with Exponential Data Weighting and

Covariance Resetting

The RLS algorithm with a fixed forgetting factor discussed in Section
2.3.1 is easy to implement and use because of its simplicity. However,
several authors have suggested that it is advantageous to incorporate
covariance resetting (Goodwin and Sin, 1984) into a RLS algorithm to improve
numerical conditioning (Goodwin and Sin, 1984; Vermeer et al., 1988) for
practical applications. Therefore, a fixed forgetting factor and covariance
resetting options have been incorporated into the RLS algorithm utilized in
the experimental evaluation (c.f. Chapter 5) The covariance matrix, P, is
reset to a*I, where I is the identity matrix and « is a user specified
constant, whenever the trace of P drops below a user specified value, i.e.

P(t) = o*I if tr P(t-1) < Pm. (2.40)

1n

2.4 Adaptive Inferential Control Using a Dead-band

As can be readily appreciated, the prediction of the controiled output,
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ye(t), will not be reliable during the initial stage of adaptation following

a disturbance. Since the parameters can only be updated at the cycle time
of the analyzer and the adaptive inferential control (AIC) scheme utilizes
the value of ye(t) for the contro! calculation, it is appropriate to

incorporate a dead-band into the AIC algorithm so that the controller output
will not be calculated using an unreliable value of ye(t). The dead-band

(DB) employed in this work is defined by

- IY(t)"ye(t)l (2.41)

DB x 100 %

y(t)
When a measurement of y(t) is available, the accuracy of ye(t) is checked by
calculating a value of DB using Eq. 2.40. If the calculated DB is larger
than a specified value, the AIC algorithm is "switched off" and the process
will be controlled using a conventional fixed parameter PI control
algorithm. The AIC algorithm will be "switched on" when DB is less than the
specified value. This "safety check” method is better than the approach of
restricting the change in u(t), the manipulated variable, because there is
no measure of the accuracy of the predicted value of y(t) by limiting the
change in u(t). The effect of introducing a dead-band will be addressed in

Chapter 4.
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Chapter 3 : Multirate Adaptive Inferential Control of a Linear System

3.1 Introduction

Three different adaptive inferential control (AIC) schemes, derived
from the standard and simplified estimation algorithms, were evaluated using
a linear model of the pilot scale binary distillation column located in the
Department of Chemical Engineering at the University of Alberta. The
control objective was regulation of the bottoms composition to its set point.
The tests used to investigate the effectiveness of the AIC schemes were
changes in feed rate, set point and process parameters (process gains and
time delays). In Section 3.2, the paramete;s of the transfer function model
are presented. The implementation of the control algorithms and other
details are described in Section 3.3, followed by the simulation results and
discussion in Section 3.4. The control performance of each AIC scheme is
compared with that of a conventional proportional plus integral (PD)
feedback control scheme which uses the composition measurement from the
analyzer as the feedback signal. The effect of secondary output (tray
temperature) selection on the performance of the AIC schemes was also

investigated.

3.2 Linear Mode!l of the Pilot Scale Binary Column

For preliminary evaluation of the performance of control algorithms,
linear models are often used because of their simplicity. The linear model
used in the present study is a transfer function model of the pilot scale
binary distillation column. This column has been used for several previous

studies directed at evaluating different control algorithms (e.g. Chanh,
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1971; Wood and Berry, 1973; Sastry et al., 1977; Morris et al., 1981;
Martin-Sanchez and Shah, 1984) and it has also been used for experimental
evaluation in this work. More details about this equipment are provided in
Chapter 5.

The column separates a 50-50 percent mixture of methanol-water into top
and bottom products of 95 and 5 mass percent methanol respectively. The
control objective is rez':lation of the composition of methanol in the
bottoms at its set point value despite changes in feed flow rate , set point
or the process parameters. A tray temperature was used as the secondary
ottput for the AIC schemes. The transfer function models for bottom

composition, X_, and liquid temperature on the ith stage, Ti, are of the

B’
form
-T.. 8§ -7 -7 5§
d1 d2 ds
Ke K e K e
Xple) = 1 S(s) + —2 E(s) + —2 R(s) 3.0
T s+ 1 T s + 1 rs+ 1
1 2 3
-T. S -T_§
ds de
K K.e Ke
T = 4 g+ = Fis) + - R(s) (3.2)
r4s+l rss+l 163+1

Parameters for Eq. 3.1 are given by Wood and Berry (1973). The transfer
functions for Ti, originally established by Chanh (1971) as second order

plus time delay transfer functions, have been approximated in this vork by
first order plus time delay models since Chanh (1971) found one of the time
constants in each transfer function to be significantly larger than the

other time constant. The values of the parameters of Egs. 3.1 and 3.2 are
summarized in Table 3.1. It should be noted that the cycle time of the

ataiyzer is not included in Eq. 3.1. For all simulations, the cycle time is
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Table 3.1

Parameters for the Transfer Function Model of the
Binary Distillation Column

(a) Parameters for the Bottoms Composition Transfer Functions, Eq. 3.1

T T T T
1 1 d1 2 2 d2 3 3 d3

-2.56 14.4 3.0 0.648 13.2 40 0872 10.9 7.0

(b) Parameters for the Tray Temperature Transfer Functions, Eq. 3.2

T K. r T T T
Tray K4 4 5 5 ds Ke 6 d6

i 22.28 156  -5.95 11.9 1.0 -7.8 125 2.0
35.49 159  -9.99 13.4 1.0  -17.0 182 2.0
40.00 162  -9.47 143 00 -16.6 19.0 2.0
19.48 164  -5.68 147 00 -10.0 176 1.0
20.20 166  -5.38 14.2 1.0 -10.8 19.6 1.0
13.99 16.1 -3.59 142 20 -84 207 1.0

A n A W

NOTE :(1) The units for the transfer function parameters are :
K1‘ Kz, K3 = mass % methanol/(g/s)
[o]
K, Ks, K, = C/g/s)

e Tapr = Tag = minutes
(2) Feed is introduced at tray 4.

(3) Trays are numbered from bottom to top.
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assumed to be 5 minutes so the composition measurement for XB is available
every 5 minutes. The continuous temperature measurement is sampled at a |

minute interval.

3.3 Implementation of the Adaptive .. - - tial Control Algorithms

3.3.1 Estimation Equations and the Control Law

As discussed in Chapter 2, the number of parameters for the standard
estimation algorithm depends on the assumed order of the plant, n, as well
as the ratio (J) of the larger sampling time to the smaller sampling time.
Since the AIC schemes are to be applied in practice to systems which have a
large value of J, the number of parameters involved for the standard
algorithm will be large and so only a first order plant model will be
assumed for the standard algorithm in this work. For the simplified
aigorithm, the number of parameters is equal to 3n, which is independent of
J. Using a second order model for the simplified algorithm will result in
identification of only 6 parameters. Therefore, both first and second order
plant models will be employed for the simplified algorithm in the
simulations. The block diagram representation of the AIC schemes used to
simulate the contro! of bottoms composition, XB’ of the binary column is
shown in Fig. 3.1.

The equation for identification can be expressed as

Y = 4 (t-DeE) (3.3)

Since J=5, the 5-step ahead prediction equation is

y(t5) = g (-1+8)0() (3.4)

For the standard algorithm based on a first order plant model (scheme ST-1),
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the governing equations (c.f. Egs. 2.27 and 2.28) are

¢e(t-l) =[ye(t-5) u(t-6) u(t-7) ... u(t-10) (3.5a)
v(t-5)  v(i-6) ... v(t-10)]
By =[a, b b, .. b, ¢, ¢ - el (3.5b)
¢e(t-l+5) ={ye(t) u(t-1) u(t-2) ... u(t-5) (3.5¢)

v(t)  v(t-1) v(t-2) .. v(t-5)]
In the case of the simplified algorithm, if a first order plant is assumed,

the equations for this control system (scheme SM-1) become

¢e(t-1) = [)’e(t'S) u(t-6) v(t-35)] (3.6a)
) = [21 81 SO]T (3.61)
¢e(t-l+5) = [ye(t) u(t-1) v(t)] (3.6¢)

while if a second order plant is selected the control algorithm for this
scheme, designated as SM-2, is based on the following equations

$(t-1) =y (t-5) y (t-10) u(t-6) u(t-11) (3.7a)
v(t-5) v(t-10)]

8(1) =[?11 a, f;l 85 30 el (3.70)
(-145) = [y () ¥ (1-5) u(t-1) u(t-6) (3.7¢)

v(t)  v(t-5)]
Thus, the numbers of parameiers to be identified for schemes ST-1, SM-1 and
SM-2 are 12, 3 and 6 respectively.
As shown in Fig. 3.1, the predicted output, ye(t), is used as a
feedback signal for the control calculation. In the conventional feedback
control scheme, the measurement of y(t) from the analyzer is used as the

feedback signal. The proportional plus integral (PI) control law used for
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studying the performance of the AIC schemes and the conventional feedback
control scheme is expressed as

OP = K ER + K ['ER dt + BIAS (3.8)

3.3.2 Selection of Secondary Output, Identification and Initial Parameters

A tray temperature was choseir as the secondary output for the AIC
schemes. From Table 3.1, it can be seen that the liquid temperature on the
second tray (Tz) is the most sensitive tray liquid temperature to changes in
feed rate (F) and steam flow rate (S) while the liquid temperature on tray 6
(Te) is the most inseasitive. Trays are numbered from bottom to top, with
the feed being introduced at tray 4. To investigate the effect of secondary
output selection on the percormance of the AIC schemes, simulations were
performed using T2 and also T6 as secondary output in the adaptive
algorithms.

A recursive least squares (RLS) identification algorithm with U-D
factorization (Astrém and Wittenmark, 1984) and a constant forgetting factor
of 0.97 was employed for estimating the parameters of the model equation.
The covariance matrix was initialized to the identity matrix and covariance
resetting was not employed. Initial parameter values for the parameter
vector were obtained by exciting the process with a series of +5%/-5%
changes in feed flow rate.

The initial proportioral plus integral controller settings, obtained
using the process reaction curve method and the Cohen-Coon formulae

' = __8/s =
(Stephanopoulos, 1984), were calculated to be Kp- 0.14 mase and Kl 0.103
g/s

mass %-min °

For each control scheme, the controller was tuned for the case

of -25 % step change in feed rate to obtain a minimum integral of absolute

34



error (IAE). For the conventional PI control scheme, the tuned

; ; =-0.65 —8/S -
controller settings were established to be Kp— 0.65 mass % and KI- 0.111
8/s

w - The tuned controller settings for the AIC schemes are
mass “o-min

summarized in Table 3.2.

Table 3.2

Tuned Co:i ~'.. Constants for the AIC Schemes
Scheme Kp((g/s)/mass %) KI((g/s)/mass %-min)
sT-1% -0.30 -0.033
sMm-1 -0.30 -0.033
sm-2) -0.30 : -0.033
sT-1? -0.20 -0.024
sm-1 -0.17 -0.019
sM-2?) -0.17 -0.019

Note : (1) Liquid temperature at tray 2 is used as the secondary output
(2) Liquid temperature at tray 6 is used as the secondary output

3.4 Simuiation Results

3.4.1 Control of a Time-Invariant Process

Regulatory and servo control performance for each the AIC scheme was
compared with that of the conventional feedback PI control scheme. For the
regulatory control case, a 25% step decrease in feed rate was introduced
into the process at time t=0 minute. For the servo control case, the set
point was increased by 20% to a value of 6.0 mass percent methanol at time

t=0 minute,.
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{i) Step Disturbance in Feed Rate

Table 3.3 provides a summary of the IAE performance values for each AIC
scheme and the conventional feedback PI control scheme when a 25% step
decrease in feed rate was introduced into the process. The closed loop
responses obtained using the ST-1, SM-1 and SM-2 control schemes are
compared in Figs 3.2 to 3.4 with the controlled response obtained by
employing the PI scheme. Also shown in these figures are the parameter
trajectories of the AIC schemes. For the sake of clarity, only seven of the
twelve parameters of the ST-1 scheme are shown in the parameter trajectories
presented in Fig. 3.2 and in all subsequent parameter trajectories for the

5T-1 scheme.

Table 3.3

Summary of Control Performance for a -25% Step Change in Feed Rate

Cont rol IAE Reference
Scheme (mass %-minute) Figures
P! 67.6 3.2-34
ST-1 41.3 32
SM-1| 69.3 33
SM-2 65.2 34

As can be seen from the IAE values reported in Table 3.3, the ST-I
control scheme clearly provided superior control performance compared with
that achieved using the other three control schemes. The IAE value of 41.3
for the ST-1 scheme is more than 50% lower than the IAE values for the SM-1,
SM-2 or PI control schemes. From the control behavior shown in Figs 3.2 to
3.4, it can be observed that all four control schemes were able to return

the bottoms composition, XB, to the set point. The bottoms composition
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response that resulted when the PI scheme was employed is slightly

oscillatory because the controllcr setting': were tuned to obtain a minimum

IAE valqe. If the proportional gain was decreased to remove the small
oscillation, slower controlled response resulted, thus leading to a v " er

IAE value. Similarly. if the proportional gain was increased to give f-ster
response, more osciilatory control behavior was observed and again a larger
IAE value was obtained. The rise time is defined in this work as the time
required for the controlled variable to reach its set point for the first

time after a disturbance or set point change has been introduced. The rise
time for the ST-1 scheme was found to be 40 minutes, approximately the same
as the rise time resulted from utilizing the.PI scheme, but the controlled
response is faster than the controlled response obtained by using either

SM-1 or SM-2 algorithm. The maximum absolute deviation of XB from its set
point, when the ST-1 scheme was employed, is about 1.3 mass percent
methanol, the smallest excursion obtained from employing any of the four
control schemes.

Since the performance of the AIC schemes depends mainly on the accuracy
of the predicted values (ye) of the controlled output (y), it is useful to
compare y_ with y to attempt to understand the control behavior obtained
using the AIC algorithms. In Fig. 3.5 the predicted bottems composition is
compared with the actual composition for each of the AIC schemes. As can be
seen from the top plot of this figure, the estimator of the ST-1 scheme was
able to predict the "trend" of the bottoms composition but since the
parameters were converging to new values due to the disturbance, the
predicted value of XB, which reached a minimum value of 0.7 mass percent

methanol at time t=15 minutes, was not accurate during the initial transient

40
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2.0 T Y r r .
0 $0 i00 150 200 2580
(b) SM-1
2.0 ! T T T —
0 S0 100 150 200 250
(c) SM-2
2'0 1 Al L 1 1
0 SO 100 150 200 250
TIME (min)
Figure 3.5 Comparison of Predicted Bottoms Composition versus Actual

Bottoms Composition for a -25% Step Change in Feed Rate
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period. However, because the "trend” of the X g Wwas correctly predicted, the
ST-1 contro! scheme was able to take corrective contro! action faster than

the PI control scheme did, as can be seen from the changes in steam rate,
the manipulated variable, shown in Fig. 3.2. Because of the

"over-prediction” of the chaiges in XB, the contro!l action applied by the
ST-1 control scheme resulted in the composition deviating significantly from
the set point during the initial 25 minutes following the disturbance. The
minimum value of XB obtained is 3.7 mass percent methanol. Nevertheless,
despite the pronounced change in steam rate (c.f. Fig. 3.2), this control

action in turn resulted in a smaller excursion of XB from the set point than
the other three control schemes. The sudden changes in the parameters shown
in Fig. 3.2 illustrate the adaptation during the initial transient period.

After the parameters had converged to new values, the predicted output
eventually matched the actual output. Almost perfect prediction of the
bottoms composition resulted from using the ST-1 scheme after 60 minutes of
operation. It can be observed by comparing the parameter trajectories shown
in Figs 3.2 to 3.4 that the parameter adaptation patterns of the ST-1 and
SM-2 schemes are quite similar while the changes in the parameters of the
SM-1 scheme are more gradual. Therefore, the predicted bottons composition
obtaines .siiig tht SM ) algorithm was not as oscillatory as that obtained
usimg either the ST-1 or SM-2 scheme during the initial period (c.f. Fig.
3.5). Consequeently, the changes in steam rate were initially not as
pronounced when the SM-1 algorithm was employed. It should be noted that
despite the "over-prediction" of XB by the standard algorithm during the
initial transient period, the ST-'} scheme provided the best control

performance of any of the ‘rur control schemes. Because the process model
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is a combination of first order plus time delay transfer functions, the

"cver-pr ficiton" did not lead to stability and robustness problems. It is

also to be noted that the ST-1 scheme which required the identification of

12 parameters :ncountered 10 problem of parameter convergence. However, it
will be shown ia Chapter 4 that when the process is highly nonlinear, the
ST-1 scheme will not provide satisfactqry control performance because of the
poor initial predictic . e controlled variable. The problems of

employing the standar. .gorithm in practice will also be demonstrated by

the experimental resuits to be presented in Chapter 5.

(if) Effect of a Poor Choice of Secondary Output

To investigate the effect of a poor choice of secondary output on the
control performance of the AIC schemes, one series of simulations were
performed using the liquid temperature at tray 6 (Te) as the secondary
output for each of the AIC schemes. T6 was chosen in this case because from
the values of the parameters of the transfer functions for tray liquid
temperatures (c.f. Eq. 3.2) tabulated in Table 3.1, Te is the least
sensitive to changes in feed and steam rates, as indicated by the small
magnitudes of the gains K4 and Ks‘ This insensitivity is not surprising as
tray 6 is above the feed tray, tray 4. The IAE values that resulted for a
-25% step change in feed rate are given in Table 3.4 and the corresponding
transient responses are displayed in Figs. 3.6 to 3.8. Although each AIC
algorithm was able to regulate the bottoms composition to its set moiit, the
control performance that resulted from using Te as the secondary output of
the AIC schemes is inferior to the control performance obtained by using T2
as the secondary output, as would be expected, because T2 is the most

sensitive temperature to changes in feed and steam rates. By comparing the
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control behavior for the case when T2 was used (c.f. Figs. 3.2 to 3.4) to

the corresponding control behavior when T6 was used (c.f. Figs. 3.6 to 3.8),
it is obvious that because Ts is insensitive to changes in feed and steam
rates, the AIC schemes were not able to take corrective control action as
rapidly as when T2 was used as the secondary output. The AIC schemes rely
heavily on the information available through the changes in the secondary
output to generate good intersample predictions of the controlled output.
Since T6 was not as sensitive to changes in feed and steam rates as Tz' the
information available to the AIC schemes was not as "rich" as in the case T2
used as the secondary output. This resulted in slower speed of convergence
of the parameters of the AIC algorithms, a-s can be observed by comparing the
parameter trajectories shown in Figs. 3.2 to 3.4, for the case where T2 was
used as the secondary output, to the correspondipe parameter trajectories
displayed in Figs. 3.6 to 3.8 that resulted when Ts was the secondary

output.

Table 3.4

Summary of Control Performance for a -25% Step Change in
Feed Rate with Liquid Temperature on Tray 6 Used as the
Secondary Output for the AIC Schemes

Cont rol IAE Reference
Scheme (mass %-minute) Figures
PI 67.6 3.6-3.8
ST-1 74.9 3.6
SM-1| 85.8 3.7
SM-2 68.4 3.8

The degradation in control performance when Te was used as the

secondary output instead of ’I‘2 was most significant when the ST-1 scheme was

47



employed, with the IAE value increasing from 41.3 (c.f. Table 3.3) to 74.9,
an increase of over 75%. The IAE values for SM-1 and SM-2 schemes increased
by approximately 20% in each case. The significant effect of a poor choice
of the secondary output on the control performance of the standard algorithm
2an be attributed to the large number of parameters that need to be
identified when the ST-1 scheme is used. Since the ST-1 algorithm requires
that 12 parameters be identified, "rich" information or excitation is

required to avoid the problem of slow convergence of the parameters. When
Ts was used as the secondary output instead of Tz’ the "richness" of the
information available through this secondary output was reduced. In other
words, the system is "more observable" froﬁ T2 than from Te. The more
profound effect on the rate of convergence of the parameters of the ST-1
algorithm can be readily observed by comparing the parameter trajectories
1own in Fig. 3.6 for the ST-1 schemes to the parameter trajectories
displayed in Figs 3.7 and 3.8 for SM-1 and SM-2 schemes. It is also
noticeable that the parameters for the simplified algorithms converge in a
“smoother” manner than the parameters for the standard algorithm.

(iii) Servo Control Performance

The control performance of the AIC schemes for a step change of 20% in
set point of methanol concentration to 6.0 mass percent at time t=0 is
compared with the performance achieved using the PI scheme in Figs. 3.9 to
3.11. The best control performance, with an IAE value of 33.5, resulted
from using the standard ST-1 scheme while the largest [AE value (42.5)
resulted when the SM-1 algorithm was employed. The IAE values for the SM-2
and PI schemes were calculated to be 37.3 and 39.2 respectively. It can be

seen from the control behavior shown in Figs. 3.9 to 3.1l that the PI scheme
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reacted to the set point change much faster than the AIC schemes, as
indicated by the short rise time that resulted when the PI scheme was used.
This observation is not surprising because a change in set point would not
lead to significant change in the secondary output (T2 in this case)
initially. Thus, during the initial transient period, unlike the case when
there was a large feed disturbance, the regressor of the adaptive algorithm
was not supplied with "rich” information. The initial corrective control
action was due to the set point change only and 50 not until the effect of
the corrective control action caused T2 to deviate from its steady state
value did the AIC schemes benefit from the secondary information for
intersample prediction. This explanation ig supported by the parameter
trajectories shown in Figs. 3.9 to 3.11. There are no changes in the "c"
parameters, which operate on the secondary output, during the first 20
minutes for the AIC schemes, unlike the beha: .- i the parameters for the
feed flow rate disturbance. In the case of the feed disturbance, the
corresponding parameters started changing within 10 minutes of the
introduction the disturbance and furthermore, the "a" and "b" parameters,

related to Y, and u, also changed more quickly.

3.4.2 Control of a Time-Variant Process

_‘nce in practice it is unlikely that exact process models will be
available, it will often be necessary to select controller settings based on
approximate models. To investigate the robustness of the AIC schemes versus
conventional feedback PI control, the performance of the different
algorithms for a 25% decrease in feed rate was studied for a variety of

combined changes in the gains, time constants and delays of the column
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transfer function model. The observed control performance for the case of
increasing the gain K2 to 0.745 and time delay Ta to 4 minutes, and
decreasing the gain Kl to -2.18 and time delay T to 2 minutes are
summarized in Table 3.5. The closed loop responses obtained using the ST-1,
SM-1 and SM-2 control schemes are compared with the controlled response
obtained by employing the PI scheme in Figs. 3.12 to 3.14 respectively.
Changes of the gains and time delays were introduced at time t=0. This is a
severe test of the robustness of the control algorithms because of the

nature of the changes in the process parameters. The changes are such that
the time before the effect of the feed disturbance affects the bottoms
composition, XB, is reduced and the delay~for the manipulated variable to
take corrective action is increased while the magnitude of the effect of the
feed disturbance on XB is increased and the magnitude of the effect of the

manipulated variable on XB is decreased.

Table 3.5

Summary of Control Performance for a -25% Step Change in
Feed Rate with Changes in Process Gains and Time Delays

Control IAE Reference
Scheme {mass %-minute) Figures
Pl 81.8 3.12-3.14
ST-1 68.3 312
SM-1 88.1 3.13
SM-2 83.8 3.14

As can be appreciated from the IAE values listed in Table 3.5, the ST-1
scheme provided the best control performance, yielding an IAE value of 68.3.

The IAE performance index that resulted from employing either the SM-i or
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SM-2 algorithm was comparable to the value that resulted from using the PI
scheme. It should be noted that these changes in process gains and time
delays had the most profound effect on the control performance of the
standard algorithm, with the IAE value having increased by 65% compared to
the base case (c.f. Table 3.3). The effect of the changes in gains and time
delays on the control performance using the PI scheme is minimal (IAE value
increased by 21%) as is the increase in the IAE value for either the SM-1 or
SM-2 scheme of about 28%. When an AIC algorithm is empioyed, the
identification algorithm needs time to adapt the parameters due to the
changed process characteristics in order to generate good prediction of the
actual controlied output. Since the ST-1 s;:heme requires the identification
of 12 parameters, as compared to 3 for the SM-1 scheme and 6 for the SM-2
scheme, it is understandable that it will take the standard algorithm longer
for the parameters to converge to new values and so it is not surprising

that the effect of the changes in process gains and time delays on control
performance is most significant when the ST-1 algorithm is used. The basis
for this explanation can be appreciated by comparison of the controlled
responses and parameter trajectories shown in Figs. 3.12 to 3.14 with the
corresponding base case closed loop control behavior displayed in Figs. 3.2

to 3.4. By comparing the XB trajectory shown in Fig. 3.2 to that in Fig.
3.12, it can be observed that the rise time increased by about 10 minutes
and the maximum excursion of X!3 from the set point increased by approximately
0.7 mass percent methanol when the changes in process gains and time delays
was introduced. The parameter trajectories displayed in these two figures
reveal that for the base case, the parameters changed in a "smoother" manner

than was the case when the process parameters changed. When the parameter
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trajectories for the SM-1 and SM-2 schemes, shown in Figs. 3.13 and 3.14
respectively, are examinad, the robustness of the simplified algorithms can
be readily appreciated because even in this case with changes in process
parametérs, the adaptation of the parameters was almost as "smooth™ as in
the base case (c.f. Figs. 3.3 and 3.4). The effect of the time-variant
nature of the process on the control performance of the simplified

algorithms was not very significant.

3.5 Summary

Simulation to determine the effectiveness of the three AIC algorithms
(ST-1, SM-1 and SM-2) for controlling the bottoms composition of a binary
column, characterized by a transfer function model compared with the
control response achieved using the conventional feedback PI control scheme
' shows that the standard algorithm (ST-1) provided the best control
performance. This was found to be the case for both the step changes in
feed rate and set point.

All three AIC schemes were found to be sensitive to the choice of the
secondary output. Selection of the liquid temperature on tray 6, Te‘
instead of 'I‘z caused the control performance to deteriorate as T6 is not as
sensitive to changes in feed and steam rates as Tz' Because a large number
of parameters (12 in this case) had to be identified , the effect of a poor
choice of the secondary output on control behavior was most profound when
the standard algorithm was employed.

The robustness of the AIC schemes has also been investigated by
changing some process parameters (gains and time delays) when a step

disturbance in feed rate was introduced into the process. The standard
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algorithm again provided the best control performance. However, as in the
case v-here an insensitive secondary output was used, the degradation in
control performance, compared to the base case where the process parameters
were not changed, was most significant when the standard algorithm was used
because of the large number of parameters that had to be identified. These
results indicate that a potential problem of the convergence of parameters
may arise when the standard algorithm is applied to control 2 highly

nonlinear and/or time-varying process.
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Chapter 4 : Multirate Adaptive Inferential Control of a Nonlinear System

4.1 Introduction

The evaluation of the control performance of the AIC schemes for
control of linear systems is extended to the control of a nonlinear system
in this chapter. Control of a five component depropanizer is studied using
DYCONDIST, a general purpose digital dynamic simulator of multicomponent
distillation columns (Wong and Wood, 1985; Carling and Wood, 1986; Yiu et
al., 1989). In Section 4.2, the DYCONDIST program is briefly described and
the depropanizer example used in this work is introduced in Section 4.3.
The four schemes evaluated in Chapter 3 (PI, ST-1, SM-1 and SM-2) were
employed to regulate the composition of the light key (LK) in the bottoms
product of the depropanizer to its set point when the process was subjected
to changes in feed rate, feed compositions, and set point. The robustness
of the AIC algorithms was also investigated by increasing the cycle time of
the composition analyzer. The sensitivity of the AIC schemes to selection
of tray temperature was also examined. The ccntrol performance €.
regulation of bottoms composition using the truncated first order standard
algorithm, presented in Chapter 2, was compared with the performance

obtained using the other AIC algorithms.

4.2 The DYCONDIST Simulator

The DYCONDIST simulator was originally developed by Wong (1985) and
further enhanced by Carling (1986). The program has been developed using a
modular program structure and so the user can easily extend the program to

incorporate modifications to the column model (e.g. new type of tray) or add
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additional control strategies and algorithms for evaluation.

The multicomponent distillation column model employed consists of a
collection of ordinary differential and algebraic equations. /’[hese
equations, based on rigorous material and energy balances, are expressed in
a general form so that the behavior of towers with muitiple feed streams as
well as columns with sidestream draw-offs can be simulated. The material
and energy balance differential equations are based on a general stage
representation (Carling, 1986; Carling and Wood, 1986). The C+! material
balance differential equations employed in the simulator are based on the
following assumptions :

(1) nonreactive mixture

(2) perfect mixing in the stage

(3) negligible material holdup in the vapor phase and of liquid in the

tray downcomers

while the general energy balance for the jth stage is obtained by assuming

(1) negligible energy and material holdup in the vapor phase

(2) negligible energy storage in the stage metal

(3) negligible energy storage in the liquid contained in tray

downcomers

(4) negligible heat of mixing among species
Thermodynamic properties/data for either ideal or nonideal specics can be
easily employed with the simulator because of its modular nature. Column
dynamic behavior is predicte ! by the solution of these material and energy
balance differential equations in conjunction with user specified ideal or
nonideal! vapor-liquid equilibrium functional relationships, Solution of

this set of N(2C+3) equations, known as the "MESH" equations (Henley and
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Seader, 1981), for unsteady state operation involves their solution at each
time step with the liquid composition and flow rate determined first. The
integration algorithm utilized in DYCONDIST is the adaptive semi-implicit
Runge-Kutta (ASIRK) method proposed by Prokopakis and Seider (1981). This
algorithm and the step size control strategy, adopted from the work of
Ballard et al. (1978), have been discussed in detail by Wong (1985).

The stage temperatures and vapor compositions are solved for using an
iterative procedure based on Newton’s method using the stage liquid
compositions in conjunction with the vapor-liquid equilibrium
specifications. Finaily, the stage vapor flow rates are solved from the
energy balance differential equation of eacﬁ stage. The procedure adopted
from Ballard et al. (1978) is discussed in detail by Carling (1986).

In this work, the DYCONDIST simulator has been enhanced to make it more
suitable for evaluating control algorithms by allowing for :

(1) up to twenty separate input disturbances applied to the

column at different times;

(2) feed stream data (temperature, flow rate, compositions), reboiler

duty, and reflux rate to be read from a data file;

(3) a sampled-da/ta process analyzer, with user specified cycle time.

to be implemented for every control loop (except for level
controel).
In addition, the AIC algorithms examined in this work have also been
incorporated into the library of control aigorithms of the DYCONDIST
program. The AIC algorithms have been written in such a way to make the
schemes very general while making minimum modifications to the original

program. The user can control the liquid composition at any tray using the
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liquid temperature at any stage as a secondary output in conjunction with a
vand manipulated variable (e.g. reboiler duty, reflux rate). The time at
.hich to initiate identification of the model paramcters and the time to
activate the AIC algorithm for product composition control can also be
specified. Furthermore, data conditioning can be performed by specifying
nominal values and scaling factors used in forming the regressor vector
(c.f. Section 4.4.2). The algorithm also allows the user to specify a
dead-band when performing the identification and for using the predicted

output from an AIC scheme for control calculation.

4.3 Description of the Depropanizer Column

The depropanizer column used in this work has been studied by Carling
and Wood (1986). The operating conditions for this five component column
are based on those presented by Cook (1980) a~ =~ .ir 1, (1978) and
subsequently modified by Wong (1985). The cowumn has 2% .:ays , 2 total
condenser and a total reboiler. Stages are numbered from top to bottom,
with stage | being the condenser and stage 31 being the reboiler. There is
a single saturated liquid feed consisting of ethane, propylene, propane,
isobutane and cis-2-butene entering at stage 13 (tray 12). Operating
conditions for the 31 ideal stage column are presented in Table 4.1. The
control objective in this study is control of the concentration (XB) of
propane, the light key (LK), in the bottoms to its set point by manipulating
the reboiler duty, QR. It is assumed that 2n on-line composition analyzer
(e.g. gas chromatograph), which has a cycle time of 5 minutes, measures
bottoms composition. Liquid temparature -at .a user specified stage is

sampled at a | minute interval. The details on the polynomiai functions
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Table 4.1

Depropanizer Operating Conditions

Feed :
Temperature 353 K
Pressure 2.6 MPa
Rate 50 kmel/min

Composition (mole fraction)

ethane 0.03
propvlene 0.40
propane (LK) 0.15
isobutane (HK) 0.15
cis-butene - 0.27

Column conditions :

Pressure 2.6 MPz
Reflux rate 90 kmol/min
Reboiler duty 584 k!I/min
Accumulator holdup 50 kmol
Column base holdup 50 kmol
Tray holdup 12-22 kmol(l)

Product rates and purities :

Distillate rate 28.6 kmol/min
Bottoms rate 21.4 kmol/min
Heavy key in distillate 0.42 mole %
Light key in bottoms 1.63 mole %

(1) See Appendix B for tray holdup profile.

64



used to characterize the liquid and vapor enthalpies and equilibrium ratios

are given in Appendix B.

4.4 Implementation of the AIC Algorithms

4.4.1 Selection of the Secondary OQOutput

The secondary output used in the AIC schemes is the temperature of the
liquid on 4 specified tray. In order to compare tie control responses of
the proposed alg~+i‘k =1 with those of single tray temperature feedback
control, the tray . -+ .<mperature used for the adaptive schemes is the
same as would be use! for conventionai single tray temperature feedback
control. Many criteria have been suggested for determining the optimum
cofitrol tray for temperature feedback control ‘e.g. Boyd, 1948 a,c. * =,
1967; Rademaker et al., 1975; Shinskey, 1984; Tolliver and McCune. :978 anu
1980). The criterion used in this work is that the selected tray liquid
temperature should show the largest temperature deviations for step changes
(increzses and decreases) for a given magnitude of disturbance, and thr
temperature deviations should also be symmetrical (Tolliver and McCune,
1978). Fig. 4.1 shows the open loop responses of four stage iiquid
temperatures to a 10% feed flow rate step decrease at time t=0 followed by a
0% feed rate step increazs. to a valuc of 60 kmol/min at t=50 minutes. It
can be seen that the liquid temperature on stage 10 (tray 9) in the
rectification section is not sensitive to the flow rate disturbances.
However, the tcmperature responses of the liquid at the other three stages
(17, 23 and 27) in the stripping section are sensitive. Since the dynamic
response of the liquid temperature on stage 23 (T23) is the most sensitive

to the feed rate changes, this stage is selected as the location for the
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Figure 4.1 Open Loop Respcnses of Four Tray Liquid Temperatures to Step
Changes in Feed Rate (-10% F at t=0 ; +10% F at t=50)
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stripping section temperature sensor, i.e. T23 is chosen to be the secondary
measured ouiput for use in the adaptive control laws. This same stage
liquid temperature was selected by Carling (1986) as the temperature for

tray temperature feedback control of bottoms composition.

4.4.2 Estimation Equations, Identification and Initialization

As mentioned earlier, the cycle time of the analyzer was selected to be
5 minutes and the tray liquid temperature was sampled at a 1 minute
interval. Thus, the ratio of the larger sampling time to the smaller
sampling time, denoted as J in Chapter 2, is 5. Using a first order plant
model for the standard algorithm (ST-1) and first and second order models
for the simplified algorithin (SM-1 and SM-2), the three estimator equations
obtained are the same as those presented in Chapter 3 (c.f. Egs. 3.5 to
3.7). As in Chapter 3, each estimator was combined with a fixed parameter
proportional plus integral controller (Eq. 3.8) to form an AIC scheme. The
control performance obtained using the three AIC schemes is compared witn
the performance obtained using the conventional PI feedback control scheme.

The initial settings of the proportional plus integral controller,

established using the process reaction curve and the Cohen-Coon formulae

MJ/min
mol fract

(Stephanopoulos, 1984), were calculated to be KP=-0.463 ( ) and

MJ/min

mol Fr act-min)' The controller settings for each scheme were

Kls-o.ll6 (
tuned for a 5% step decrease in feed flow rate (from steady state) at time
t=0 followed by a step increase in feed flow rate tc its original steady

state value (50 kmol/min) at t=100 minutes., The settings which gave the

minimum IAE value were chosen as the final settings. For the PI contro!
MJ/min

mol fract ) and

scheme, the controller settings are KP=-1.7 (
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MJ/min
mol fract-min

Ki=-0.425 ( ). The controller settings for the AIC schemes are

summarized in Table 4.2.

Table 4.2

Tuned Controller Settings for the AIC Schemes Using Stage 23
Liquid Temperature as the Secondary Output

MJ/min ) K ( MJ/min
mol fract I'mo! fract - min

Scheme Kp( )

ST-1 ~2.2 -0.176
SM-1 -1.8 -0.180
SM-2 -1.8 -0.180

Since the process is very nonlinear, the RLS identification algorithm
that is implemented utilizes a variable forgetting factor to maintain a
constant trace of the covariance matrix. This idea, originated from the
improved least squares (ILS) algorithm of Sripada and Fisher (1987), has
been presented in Chapter 2. The scaling option in the origin ILS algorithm
was not implemented. To prevent significant bursting in process parameters
when there is a sudden change in the process characteristic, the minimum
value of the forgetting factor, A, is 0.2. If X drops below thic minimum
value, the covariance matrix is reset to its initial value. For all
sirnulations presented in this chapter, the covariance matrix was initialized
to the identity matrix and the trace of the covariance matrix was maintained
constant at its initial value. All the initial parameters in the parameter
vector were the final values obiained from the controller tuning runs which
used the tuned controller settings listed in Table 4.2. To prevent
numerical problems, all the values used in the regressor vector are scaled

deviation values, with the scaled deviation value defined as
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actual value - nominal value
scaling factor

scaled deviation value = “.n

where the nominal values and scaling factors for y (the controlled output),
u (the manipulated variable) and v (the secondary output) are specified by

the user. Thus, the scaled deviation value of y, denoted as y, is given by

-i(t) = y(t) - ynom

y

sca
The scaled deviat’on values of u and v are defined in the same manner. -
Since scaled deviation values are used in the regressor, the predicted y is

also a scaled deviatioi. value. The value of ye(t) is then obtained by

- &
ye(t) - yaca ye (t) + ynom

8Ca

where Y, is the scaled deviation value of Y,
sca

In this work, the nominal values for y, u and v were set to the initial
steady state values. In other words, the nominal values, neglecting the
units for convenience, for y, u and v were 0.0163, 0.5 and 368.56 (if T23
was used as the secondary output). The scaling factors were chosen to scale
each of the deviation values to the same order of magnitude. Based on
closed loop response obtained when the PI scheme was employed, the
magnitudes of the deviation values (i.e. actual value - nominal value) for
y, u and v were in the orde: of 10'2,10'2 and lO1 respectively. The scaling
factors for y, u and v selected were 0.001, 0.001 and 1.0 so that the
resulting magnitudes of the scaled deviation vaives used in the regressor

were all in the order of 101.
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4.5 Simulation Results

The four control schemes (PI, ST-1, SM-1 and SM-2) were evaluated for
changes in feed rate, feed compositions, set point and cycle time of the
composition analyzer. The specific details of these tests are summarized in
Table 4.3. It should be noted that test MD4 is a very severe test of the
robustness of the control algorithms since it involves a large disturbance
in feed rate in addition to an increase of 3 minute in the a‘nalyzer cycle

time.

4.5.1 Single Tray Temperature Feedback Control

As mentioned in Chapter |, the most commonly used composition
estimation technique is the measurement of the liquid temperature on a
single stage in the column. Use of tray temperature feedback control for
regulating product quality will result in steady state offset (Pakte et al.,
1982). This drawback is exemplified by the control behavior shown in
Fig. 4.2 for feedback control of the liquid temperature at stage 23. The

proportional plus integral controller settings, established by Carling

MJ / min MJ/min
K

(1986), employed are KP=0.012 ( K-min

) and KI=O.10 ( ). It is
obvicus from Fig. 4.2 that controlling T23 to its original steady state
value of 386.56 K leads to a large offset in XB for step increases and

decreases i1n feed rate.
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Table 4.3

Description of the Tests Used in Simulation of
Control of the Depropanizer

Test Magnitude and type Duration Cycle time of
of change {minutes) analyzer (minutes)
MDI -20% feed rate 0-1:1 5
MD2 +20% feed rate 0-150 5
MD3 Feed composition 10-150 5
change. New feed
concentrations are :
zl=0.03
zz=0.3'/ (¥ 7.5%)
zs=0.18 (LK, 4 20%)
24=0.12 (HK, ¥ 20%)
zs=0.30 (n 11%)
MD4 +20% feed rate 0-200 8
MSP1 -20% set point 0-150 5
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Figure 4.2 Single Tray Temperature Feedback Control of Bottoms

Composition for +20% and -20% Step Changes in Feed Rate
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4.5.2 Control Performance of the Adaptive Inferential Control Scheme Using

a Sensitive Secondary Output

(i) 20% Step Decrease in Feed Rate

Table 4.4 provides a summary of the IAE performance value for each AIC
scheme and the conventional feedback PI -control scheme when a -20% step
change in feed rate (MDI1 test) was introduced into the process. The closed
loop responses obtained using the ST-1, SM-1 and SM-2 control strategies are
compared in Figs. 4.3 to 4.5 with the controlled response obtained by
utilizing the PI scheme. As mentioned in Chapter 3, for the sake of
clarity, only seven of the twelve parameters of the ST-! :me will be
shown in the parameter trajectories presented in this chapter. As can be
seen from the IAE values reported in Table 4.4, the SM-1| algorithm provided
the best control performance, yielding an IAE value of 0.268. The IAE
performance index resulted from utilizing either $§T-1 or SM-2 scheme is
comparable to the value that resulted from using the PI scheme. It should
be noted that all of the AIC schemes provided superior control performance
to that obtained using the PI scheme. From the controlled responses shown
in Figs. 4.3 to 4.5, it can be observed that all four control schemes were
able io bring the composition (XB) of the light key component in the botioms
product to its set point. However, the controlled response of XB that
resulted when the Pl scheme was employed is more oscillatory than the
controlled behavior achieved using the AIC algorithms. The maximum absolute
excursion of XB from its set point is about the same for all four control
schemes.

Since the performance of the AIC schemes depends mainly on the accuracy

of the predicted values of XB, it is necessary to compare the predicted XB
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with actual XB to exulain the control behavior obtained using the AIC
schemes. In Fig. 4.6, the predicted XB is compared with the actual XB for
each of the AIC schemes. As can be observed fron. .e top plot in Fig. 4.6,
the predicted XB generated by the ST-1 algorithm was very erratic during the
initial transient period when the feed disturbance was introduced but the
prediction matched the actual controlled output after 30 minutes of

operation. However, the plots of predicted XB for the simplified algorithms
reveal that the SM-1 and SM-2 schemes were able to generate quite accurate
predictions of the controlled output during the initial transient period.

As no dead-band (c.f. Section 2.5) was employed with the AIC schemes, the
predicted XB was used for calculating the reboiler duty QR, the manipulated
variable, every 1 minute. Therefore, the erratic prediction generated by

the ST-1 scheme resulted in inappropriate and more oscillatory changes in QR
during the initial transient period, as can be seen from the trajectories in

the reboiler duty shown in Fig. 4.3. Consequently, poorer control

performance resulted when the ST-1 scheme was employed.

Table 4.4
Summary of Control Performance for a -20% Step Change in Feed Rate

Control IAE Reference
Scheme (mol fract-min)  Figures

PI 0.429 4,22-4.24
ST-1 0.312 4.22
SM-1i 0.228 4.23
SM-2 0.223 4.24

The fast speed of convergence of the predicted value of X to the

actual XB when the simplified algorithms were employed could be attributed
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Figure 4.6 Comparison of Predicted Bottoms Composition versus Actual

Bottoms Composition for a -20% Step Change in Feed Rate
(No Dead-band with AIC)
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to the small number of paraineters that had to be identified. The SM-1
scheme only has 3 parameters while the SM-2 algorithm has 6 but the ST-1
scheme has 12 parameters and thus it should take longer for the parameters
of the ST-1 scheme to converge to new values, resulting in slow convergence
of the prediction to the actual controlled output. It can be seen from the
parameter trajectories presented in Figs. 4.3 to 4.5 that the parameters of
the simplified algorithms converged to new values after only 60 minutes of
operation while the parameters of the ST-1 scheme did not converge until
t=100 minutes. Since the ST-1 scheme has 12 parameters, it requires
"richer" information from the regressor than the simplified algorithms so as
to achieve fast parameter convergence. Frc;m the trajectories of the

variable forgetting factor (designed as ) trajectories hereafter) presented

in these figures, it can be observed that there was very slow adaptation
when the ST-1 scheme was employed since the variable forgetting factor, A,
changed very slowly compared with the pattern of change observed for either
of the simplified algorithms.

(ii) 20% Step Increase in Feed Rate

The control behavior obtained using the ST-1, SM-1 and SM-2 control

schemes is compared with that obtained by employing the PI scheme in

Figs 4.7 to 4.9 when a +20% step change in feed rate (test MD2) was
introduced into the process. The best control performance, with an IAE
performance index of 0.320, resulted from using the SM-1 algorithm while the
largest IAE value (1.950) resulted when the ST-1 strategy was employed. The
IAE values for the SM-2 and PI schemes were calculated to be 0.372 ad 0.429
respectively. Due to the highly nonlinear characteristic of the process,

the JAE values obtained for this test MD2 are significantly different from
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those values obtained for the MDI test. The large number of parameters that
needed to be identified when the ST-1 scheme was employed resuited in
unsatisfactory centrol behavior. From the parameter trajectories presented

in Fig. 4.7, ° ' be see that the parameters of ST-1 changed drastically

from t=20 =102 minutes. This slow speed of parameter convergence
caused oscillatory changes in the reboiler duty from t=10 to t=80 minutes,
resulting in the oscillatory controlled response of XB during the initial

100 minutes. Since the parameters did not converge until t=100 minutes,

the response of XB was sluggish and did not return to its set point even

after 150 minutes of operation. The parameter adaptation patterns shown in
Figs. 4.8 and 4.9 for SM-1 and SM-2 schetﬁes are similar to the patterns
observed for the MDI test (c.f. Figs. 4.4 and 4.5). In this case, since the
parameters of the SM-1 scheme converged to new values faster than those of
the SM-2 scheme, the SM-1 provided better control performance than the SM-2
strategy. It should also be noted that the controtied response was slightly
oscillatory when the PI scheme was employed. The ) trajectories of SM-1 and
SM-2 are also similar to the corresponding trajectories for the MDI test.

The value of A for the ST-1 scheme, however, changed more frequently than
was observed with test MDI1, indicating more adaptation of parameters,

(iti) Effect of Using a Dead-band with AIC Scheme- on Control

Performance

As discussed in Section 2.5, for the proposed AIC schemes, the
prediction (ye) of the controlled variable will obviously not be reliable
during the initial adaptation period. In addition, since the parameters can
only be updated at the cycle time of the analyzer and the AIC schemes

utilize the value of y, for calculating the control action during the



intersample interval of the primary output, it is important to incorporate a
dead-band on the AIC schemes so that the controller output will not be
calculated based on a poor predicted value of y. Thke effect of the use of a
dead-band on control performance of the AIC schemes was studied for a -20%
step change in feed rate (test MD2) with the dead-band implemented as
discussed in Section 2.5. The magnitude of the dead-band which provided the
best performance was selected by trial and error method selected from values
of 20%, 15% and 10%. It was found that when a 20% dead-band was used, the
AIC'scheme was not "switched off" frequently enough to eliminate the eficc
of initial adaptation dynamics on the control performance, and yet for a 10%
dead-band the AIC scheme was "switched ()-t‘f’" too often to give robust control
response. Consequently, a 15% dead-band provided the best results, in terms
of dynamic response as well as IAE value, and so it was used for the MD2
test of the AIC schemes.

The IAE values that resulted when a 15% dead-band was used with the AIC
schemes are compared with the IAE performance indices achieved without a
dead-band in Table 4.5 and the controlled responses obtained when the
dead-band was employed are presented in Figs. 4.10 to 4.12. As can be seen
from the IAE values reported, the most significant improvement resulted when
the dead-band was employed with the ST-1 scheme, with the IAE value having
decreased by 33%. Only slight improvement in control performance was
achieved when a dead-band was utilized with the simplified algorithms, with

IAE values for $ix 3.4-1 and SM-2 schemes having decreased by less than 10%.
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Table 4.5

Effect of Employing a {5% Dead-band on Control Performance of the
AIC Schemes for a 20% Step Increase in Feed Rate

IAE with IAE with
Control 15% Dead-~brnd No Dead-band
Scheme (mol fract-min) (mol frac-min)
ST-1 0.626 1.950
SM-1 0.293 0.320
SM-2 0.223 0.372

The profound improvement observed when a dead-band was employed with the
ST-1 scheme can be explained by the slow speed of parameter :onvergence when
the ST-1 algorithm was employed. Since 12 parameters had to be identified,
the predicted XB was very erratic during the initial transient period as thé
parameters had not converged to new values. When no dead-band was employed,
the ST-1 algorithm used the erratic predicted value of XB to calculate the
control action, QR, thus resulting in unsatisfactory control behavior. The
"safety check" incorporated through the use of a dead-band enhanced the
control performance.

In Fig. 4.13, the predicted XB obtained when no dead-band was used with
the ST-1 scheme is compared with the case when a 15% dead-band was employed.
It can be seen that the prediction was very inaccurate during the initial
100 minutes when no dead-band was used but the prediction almost matched the
actual controlled output after only 80 minutes of operation when a dead-band
was applied. This improved prediction of the primary output caused the
large decrease in the IAE performance index. The stabilizing effect of the
dead-band can also be observed by comparing the parameter adaptation

patterns shown in Fig. 4.10 with the parameter trajectories presented in
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Figure 4.13  Effect of Using a Dead-band with ST-1 AIC on Control
Performance for a +20% Step Change in Feed Rate
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Fig. 4.7 which shows that the parameter trajectories were much "smoother"
when a dead-band was used. Since the simplified algorithms are very robust,
only a small improvement in control performance was achieved when a

| dead-ban'd was used with the SM-1 and SM-2 schemes. As can be appreciated by
comparing the parameter and A trajectories of the simplified algorithms
displayed in Figs. 4.11 and 4.12 with the corresponding trajectories shown

in Figs. 4.8 and 4.9, the effect of incorporating a dead-band on the

parameter adaptation was quite minimal. Nevertheless, since in practice it
would be advisable to employ a dead-band for all AIC schemes, a 15%
dead-band has been employed in all subsequent performance evaluations of the
AIC schemes.

(iv) Step Changes in the Concentrations of the Components in the Feed

Stream

The control performance of the AIC schemes for step changes in the
concentrations of components 2 to 5 (propylene, propane, isobutane and
cis-butene respectively) in the feed stream at t=15 minutes (test MD3 in
Table 4.3) are compared with the performance achieved using the PI scheme in
Figs. 4.14 to 4.16 and the IAE indices for the four control schemes are
summarized in Table 4.6. From the calculated IAE values, it is obvious that
the control performance achieved using any of the AIC algorithms is superior
to that obtained by utilizing the PI scheme. Similar to the simulation
results presented earlier in this chapter, the SM-1| algorithm provided the
best control behavior, with an IAE value more than 50% lower than that
obtained using the PI scheme while the controlled response that resulted
from utilizing the SM-2 scheme was comparable to .that of the SM-1 algorithm,

Although the ST-1 algorithm did not provide excellent control behavior, it
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outperformed the PI scheme. From the responses of XB displayed in Fig. 4.14
to 4.16, it can be observed that the simplified algorithms were able to

return XB to its set point value of 1.63 mole percent after 100 minutes of
operation'. The controlled response that resulted when the PI scheme was
used was more oscillatory and inferior to that achieved using any of the AIC
schemes. The outstanding performance of the simplified algorithm can again
be explained by the robust and fast parameter adaptation displayed in

Figs. 4.15 and 4.16. As in the case for the feed disturbance, the

parameters of SM-1 converged in the shortest time (80 minutes) while the
parameters of SM-2 converged to new values approximately 20 minutes later.
The rigorous changes in the parameters of the ST-1 scheme during t=50 to
t=100 minutes (c.f. Fig. 4.14) resulted in slow parameter convergence, thus
resulting in inferior control performance compared with that achieved using

the simplified algorithms.

Table 4.6

Summary of Control Performance for Step Changes in the
Concentrations of the Components in the Feed Stream

Control IAE Reference
Scheme (mol fract-min) Figures

PI 0.429 4.14-4.16
ST-1 0.312 4.14
SM-1 0.228 4.15
SM-2 0.223 4.16

(v) Simultaneous Increase in Feed Rate and Analyzer Cycle Time

To investigate the robustness of the AIC schemes versus the PI scheme,

the performance of the different algorithms for a 20% step increase in feed
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rate was studied when the cycle time of the analyzer was increased from $
minutes to 8 minutes. This MD4 test is a very severe test of the robustness
of the control algorithms because each control scheme, without re-tuning any
parameters of the parameter vector and/or controller, has to cope with the
situation where the measurement of the controlled output is available less
frequently and simultaneously a feed disturbance is introduced. This test

was used to evaluate the robustness of the AIC schemes under the condition
of model-plant- xismatch since the model-prediction equations emploved were
the same as those used for the case where the analyzer cycle time was §
minutes (c.f. Egs. 3.5 to 3.7). The simulation results showed that the
standard algorithm could not handle this se;'ere change in operating
conditions and, consequently, unstable behavior resulted. No closed loop
responses or parameter trajectories are presented because the present design
of the DYCONDIST simulator does not provide for output of transient values
if the program is terminated due to stability and/or convergence problems.
From the execution run summary produced by DYCONDIST, the simulation
terminated after 73 minutes of simulated operation when the concentration
(XB) of propane in the bottoms product reached 21 mole percent versus the
desired set point value of 1.63 mole percent. The performance achieved
using the SM-1 scheme, which has only 3 parameters, resulted in a minimum
TAE value of 0.502, almost half of the IAE value of 0.983 obtained using the
SM-2 scheme and less than one third of the IAE value of 1.528 that resulted
when the PI scheme was used. The controlled responses presented in Figs.
4.17 to 4.18 show that use of either of the simplified AIC algorithms
produced control behavior that was superior to that achieved usi.g the PI

scheme. The propane concentration was controlled to within 10 percent of
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its set point after only 110 minutes of operation when the SM~1 scheme was
employed while neither the SM-2 nor the PI scheme was able to achieve this
excellent control behavior after 200 minutes of operation. The superior
performance of the SM-1 algorithm is attributed to the fast parameter
convergence, as can be observed by examining the parameter trajectories of
the two simplified algorithms displayed in Figs. 4.17 and 4.18. It is

obvious from these trajectories that the parameters of the SM-1 scheme
converged much faster and "smoother" than those of the SM-2 scheme.

(vi) Servo Control Performance

The servo control responses of the four control schemes for a -20% step
change in set point to a value of 1.30 mole; percent are displayed in
Figs. 4.19 to 4.21 and the corresponding IAE values are reported in Table
4.7. The best control performance, with an IAE value of 0.043, resulted
from employing the ST-1 scheme. This IAE value is more than 50 percent
lower than the IAE value achieved using the PI scheme while the IAE indices
obtained for the SM-1 and SM-2 algorithms are more than 40 percent lower
than the IAE value for the PI scheme. As can be seen from the controlled
responses presented in Figs. 4.19 to 4.21, the ST-1 scheme provided the best
control performance while the control behavior that resulted from utilizing'
either of the simplified AIC algorithms was comparable to that obtained
using the standard ST-1 scheme. The controlled response that resulted when
the PI scheme was employed was found to be more oscillatory and inferior to
the behavior obtained using any of the AIC algorithms. Similar to the servo
control responses reported in Section 3.4.1(iii) for a linear process, the
Pl scheme reacted to the set point change faster than the AIC schemes, as

indicated by the short rise time. The explanation for this observation has
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been presented in Section 3.4.1(iii) and will not be repeated here. The
ST-1 scheme provided slightly better control performance than either of the
simplified algorithms. A possible reason is that the process did not

exhibit strong nonlinear behavior for a step change in set point compared
with the behavior for a disturbance in feed flow rate. This is not
unexpected since, as shown by the results obtained for the control of the
binary column presented in Chapter 3, use of the standard algorithm is to be
preferred for control of linear systems. The parameter and A trajectories
shown in Figs. 4.9 to 4.21 also support this explanation that the set point
change introduced did not cause the column to exhibit as much nonlinear
behavior since the parameter and A trajectc;ries obtained in this case are
"smoother” than the corresponding trajectories that resulted for the

disturbance in feed flow rate (c.f. Figs. 4.10 to 4.12).

Table 4.7
Summary of Control Performance for a -20% Step Change in Set Point

Control IAE Reference
Scheme (mol fract-min) Figures

PI 0.096 4.19-4.21
ST-1 0.043 4.19
SM-1 0.051 4.20
SM-2 0.056 4.21

4.5.3 Sensitivity of Control Performance of the Adaptive Inferential Control

Schemes to Selection of the Secondary Output

As shown in Fig, 4.1, 'I'23 is very sensitive to a feed rate disturbance.
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To investigate the sensitivity of the AIC algorithms to secondary output
selection, the liquid temperature at stage 27 (T27) has been used in the AIC
schemes to perform closed loop control of XB. The tests used to evaluate
performance are MD2 and MD4 (c.f. Table 4.3) with the initial parameter
values and controller settings selected in the same manner as described in
Section 4.4.2. It was observed from these simulations that the controller
settings presented in Table 4.2 for each of the AIC schemes also resuited in
minimum IAE values for use of T27 and so the controller settings used were
those listed in Table 4.2. The TAE values obtained with the AIC schemes
using T27 as the secondary output are compared with the values obtained
using T23 as the secondary output in Table 4.8. The responses that resulted
when T27 was used are presented in Figs. 4.22 .. 4.26. As mentioned Section

4.5.2(iii), a 15% dead-band was used with the AIC schemes.

Table 4.8

Effect of Using Stage 27 Liquid Temperature as the Secondary Output
on Control Performance of the AIC Schemes

Test Control IAE Using T27 IAE Using Tzs
Code scheme (mol fract-min) (mol frac-min)
MD2 PI 0.429 0.429

ST-1 0.312 0.626

SM-1 0.228 0.293

SM-2 0.223 0.365
MD4 PI 1.528 1.528

ST-1 unstable unstable

SM-1 0.518 0.502

SM-2 0.600 - 1.983
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For the MD2 test, the control responses achieved by using T27 as
secondary output were superior to those obtained using T23. The most
significant improvement was obtained when the ST-1 scheme was used, with the
IAE value having decreased from 0.626 to 0.312, a decrease of over 50
percent, while the IAE values for the SM-1 and SM-2 decreased by 22% and 39%
respectively. In this case, all AIC schemes provided better control
behavior than that achieved using the PI scheme, as can be seen from the
controlled responses shown in Figs 4.22 to 4.24.

The MD4 test of the ST-1 algorithm, using T27, showed that control with
this scheme was not possible due to the strong nonlinear behavior, as
previously observed using Tzs' The test of the SM-1 algorithm showed that
although the IAE value is slightly larger when T27 was used rather than Tzs
(0.518 vs. 0.502), the transient responses and parameter trajectories for
both cases were quite similar (c.f. Figs 4.17 and 4.25). However, use of
T27 with the SM-2 algorithm shows that T27 was a better choice of secondary
output than Tzs’ as can be observed from the significant decrease in the IAE
value from 0.983 to 0.600 reported in Table 4.8 and the improved control
behavior shown in Fig. 4.26.

One explanation for the improvement in control behavior when 'I‘27 was
used is that T23 might be too sensitive to feed disturbance. This higher
sensitivity of Tzs caused more drifting of the v-parameters, as can be
observed by comparing the trajectories of v-parameters shown in Figs. 4.10
to 4.12 with the corresponding plots in Figs. 4.22 to 4.24 for the MD2 test.

A similar phenomeron can be observed for the MD4 test (c.f. Figs. 4.17 and
4.18 versus Figs. 4.25 and 4.26). The results obtained also showed that for

either choice of stage liquid temperature as the secondary output, the
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simplified algorithms provided superior performance than either the ST-1 or

PI scheme.

4.5.4 Control Performance of the Truncated Standard Algorithm

As mentioned in Chapter 2, a major concern in using the standard
algorithm is the large number of parameters that must be estimated when the
ratio (J) of the sample time of the primary output to that of the secondary
output is large. The resuits presented in the previous two sections have
demonstrated the difficulty that may arise in the use of the AIC schemes to
control a nonlinear system. The simplified glgorithm discussed in Chapter 2
is an extreme case of reducing the number of parameters of the standard
algorithm (Lu and Visher, 1989). However, if the value of J is large and
the process being controlled has slow dynamics, application of the
simplified algorithm may not provide satisfactory contro!. An alternate
approach. called the truncated standard algorithm (TST), has been proposed
in Chapter 2. In this section, the ST-1 algorithm, which has 12 parameters,
is truncated to a 5 parameter algorithm that employs 1 y-parameter, 2

A A A A "
u-parameters and 2 v-parameters (i.e. a., b1’ bz, Cor and 01)‘ The
corresponding estimation scheme, when combined with a fixed parameter
proportional plus integral controller, is denoted as control <:hcme TST-2.
Performance of the TST-2 algorithm for control of bottoms co=:position of the
depropanizer tower using Tzs as secondary output was evaluated for the MD2

and MD4 tests. All initial parameters and controller settings were obtained

in the same manner as described in Section 4.4.2, with the tuned controller

MJ/min MJ/min
mol fract mol fract-min

).

settings found to be KP=-1.7 ( ) and K1='0'l36 (

15% dead-band was used with the TST-2 scheme in the simulations.
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The IAE values that resulted when the depropanizer bottoms composition,
XB, was controlled using the TST-2 algorithm are compared with the
corresponding results using the ST-1 algorithm in Table 4.9. The control
performahce of the TST-2 scheme is shown by the responses preseated in
Figs. 4.27 and 4.28. The TST-2 algorithm outperforms the ST-1 algorithm for
these two tests. Furthermore, it should be noted that for the MD4 test the
use of the ST-1 scheme resulted in unstable behavior while the TST-2 scheme
controlled XB better than the PI scheme. However, the control behavior
obtained using the TST-2 algorithm was found to be inferior to the
performance achieved using either the SM-1 or SM-2 scheme. The effect of
truncating 7 parameters from standard ST-1 algorithm on parameter adaptation
is obvious when the parameter trajectories of the TST-2 schemes displayed in
Fig. 4.27 are compared with the corresponding trajectories of the ST-1
schemes (c.f. Fig. 4.10) for the MD2 test. The parameter trajectories of

the TST-2 schemes are obviously "smoother" than those of th» ST-1 scheme.

Table 4.9
Comparison of Control Performance of the TST-2 and ST-1 AIC Schemes

Test IAE : TST-2 Reference IAE : ST-1
Code (mol fract-min) Figures (mo! frac-min)
MD2 0.381 4.27 0.626

MD4 1.155 4.28 unstable

4.6 Summary

The performance of three adaptive inferential control (AIC) schemes,

designated as ST-1, SM-1, and SM-2, have been applied to control the bottoms
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LK composition of a depropanizer column by simulation using DYCONDIST, a
nonlinear, general purpose column simulator. The simulation results

indicated that the standard algorithm, ST-1, should not be used for

nonlinear and/or time-varying processes because of the large number of
algorithm model parameters that must be identified. The two simplified
algerithms, SM-1 and SM-2, which required the identification of fewer
parameters, outperformed the standard scheme, ST-1, for most of the test
disturbances. However, the ST-1 scheme provided the best performance for
servo control of all the algorithms evaluated because the process does not
exhibit strong nonlinear behavior for a set point change. The best

regulatory control performance was obtaineci using the SM-1 algorithm, which
only involves the identification of 3 parameters. The effect of the use of

a dead-band on the AIC algorithm performance was investigated. Use of a
dead-band was found to stabilize the control behavior during the initial
adaptation period.

When the liquid temperature of a less sensitive tray, T27, was used as
secondary output instead of Tzs’ control performance actually improved for
tests MD2 and MD4. One possible reason is that Tzs was too sensitive to the
disturbance, causing more drifting in the v-parameters. Yet, it can be
conciuded from the results that using either of the stage liquid
temperatures with the simplified algorithms provided superior performance
compared with that achieved using either the ST-1 or the PI control scheme.

Tests of the truncated first order standard algorithm (TST-2) showed
that better control performance could be achieved than was possible using
the standard algorithm but SM-1 and SM-2 schemes provided superior control

performance than that achieved using the TST-2 scheme. Nevertheless, when
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applying AIC algorithms to the control of nonlinear processes, all three
(TST-2, SM-1 and SM-2) should be evaluated to establish which algorithm
will provide the most satisfactory control behavior for the disturbance(s)

of interest.
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Chapter 5 : Experimental Results

5.1 Introduction

The objectives of the experimental phase of this study were somewhat
different from those of the simulation investigation. In order to limit the
time devoted to the experimental study, a detailed comparison between the
control performance of the conventional PI feedback control scheme and that
achieved using the AIC schemes, as performed in the simulation phase of this
work, was not conducted. During the experimental studies, emphasis was
directed to implement, with minimum amount of tuning, the AIC schemes for
closed loop control of bottoms composition of a pilot scale binary
distillation column. The performance of the AIC algorithms was examined
when the process was subjected to feed disturbances or set point changes.
The pilot scale distillation column used for the experimental study is
described in Section 5.2. Details of the implementation of the control law
for controlling the bottoms composition of the column using a microcomputer
computer are presented in Section 5.3. Experimental results are discussed

in Section 5.4.

5.2 Description of the Equipment

A schematic diagram of the pilot scale distillation column used in this
work, which is loca;ed in the Department of Chemical Engineering at the
University of Alberta, is shown in Fig. 5.1. The 22.5 cm diameter column
contains eight trays with tray spacing of 30.5 cm. Each tray contains four
bubble caps arranged in a square pattern.' Féed supply enters at tray 4,

with an option of supplving feed at tray S. The column is equipped with a
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Figure 5.1 Schematic Diagram of the Binary Distillation Column
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total condenser and a vertical thermosyphon reboiler with the liquid levels
in the condenser and the reboiler regulated by manipulating the top and
bottoms product flow rates respectively using two local analog PI
controller. The column pressure is maintained at atmospheric pressure by
manipulating the cooling water flow rate to the condenser. The typical
operating conditions used during the experimental runs are listed in Table
5.1. The description that follows will concentrate on the changes that have
been made to the equipment since the studies performed by Vagi (1988).
Additional details of the column and the associated equipment are given by

Svreck (1967), Lieuson (1980), Kan (1982), Langman (1987) and Vagi (1988).

Table 5.1

Typical Steady State Operating Conditions of the
Binary Distillation Column

Flow Rates :

Feed 17.2 g/s
Bottom Product 8.7 g/s

Top Product 8.5 g/s
Reflux 12.1 g/s
Steam 10.3 g/s
Compositions :

Feed 49.7 mass % MeOH
Top 95.0 mass % MeOH
Bottom 5.0 mass % MeOH

Several changes have been made to the associated equipment since the

work of Langman (1987) and Vagi (1988). These changes were made to enable
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the control of the column using three TCS (Turnbull Control Systems) 6300
series digital controllers, a TCS 6433 programmable signal processor and a
Zenith PC/AT compatible computer equipped with two serial ports. The
material that follows describe the communication link between the Zenith
computer and the TCS controllers and signal processor to collect process
measurements as well as to transmit control signals to the process. The
hardware and software associated with this distillation colurin are

documented in detail by Pacey (1973) and Shook (1989).

5.2.1 Software

The previous controller implementatior; was accomplished using a LSI
11/03 16 bit microcomputer (Langman, 1987; Vagi, 1988). Because of the
limited memory available in the LSI, a Zenith PC/AT compatible computer,
with 1 Mbyte of memory, has been used in the current work.

The computer is equipped with two serial ports for communications as
described in the next section. Except for several low level subroutines for
communicating with the serial ports written in Microsoft Macro-assembly
language, all subroutines and the main control program have been written in
ANSI FORTRAN 77 using Microsoft FORTRAN (version 4.1). The operating

environment is Microsoft MS-DOS (version 3.3 Plus).

5.2.2 Communications

Two serial ports are installed in the personal computer. The
integrator report is sent to serial port 2 (COM2) via the RS-232C integrator
report line. The process measurements available from the three TCS

controllers and the signal processor are accessed via the TCS RS-422
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supervisory link. The data from the RS-422 link is converted to a RS-232
communication signal by a RS-422 to RS-232 converter. The converted RS-232
signal is then transmitted to serial port | (COMI) of the Zenith computer.

Some FORTRAN and ASSEMBLY language subroutines resident in the computer

the data sent to the serial ports.

5.2.3 Top Composition Control

The top composition is measured by an in-line capacitance cell. The
capacitance and the temperature of the methanol-water solution are measured
and the concentration is calculated by a miproprocessor-based instrument
fabricated by the Electronics Division of the Department of Technical
Services (Svrcek, 1970). The instrument output voltage signal is sent 10
one TCS 6366 programmable controller. The stored calibration in the TCS
6366 controller is such that the range of input voltage corresponds to a
composition range of 90 to 100 mass percent methanol. Top composition is
controlled to a set point of 95 mass percent methanol by manipulating the
reflux flow rate using this digital controller. The TCS controller output
is a remote set point which is sent to a pneumatic PI controller. The
pneumatic controller will then adjust the reflux valve position to give the

desired reflux flow rate.

5.2.4 Feed Flow Control

The feed flow rate during each experimental run was set by the
parameters read into the FORTRAN control program when the program was

executed. The control signal was transmitfed, via the RS-422/RS-232
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communication link, to a TCS 6350 digital controller which sent a remote set

point to a pneumatic PI flow rate controller.

5.2.5 Bottoms Composition Control

The bottoms composition is measured by an HP-5722A gas chromatograph
(GC). Automatic sampling of the bottoms product, for the GC, has been
described in detail by Vagi (1988). An HP-3390A integrator has replaced the
HP-1000 computer used previously for analyzing the signal from the GC. The
ASCII composition report from the integrator is sent to a serial port of the
Zenith personal computer via a RS-232C serial communication line. In the
Zenith computer, there is a serial port whicéh receives the report from the
integrator. Two FORTRAN subroutines resident in the computer are used to
extract the bottoms composition from the integrator report.

For this study, the overall cycle time of the GC sampling was selected
to be 5 minutes, with other process measurements, such as temperatures and
flow rates, being sampled at a | minute interval. Previous workers
(Langman, 1987; Vagi, 1988) used an overall cycle time of 3 minutes but the
AIC algorithms evaluated in this work are more applicable to processes with
large controlled output sampling time and so a 5 minute cycle time was
chosen for this work. Increasing the cycle time to 5 minutes did not affect
the precision of the composition measurement. Four and a half minutes were
used by the HP integrator for analysis of the chromatogram and for
generation of the analysis report. Transmission of the report to the Zenith
computer, via a RS-232C link, required approximately 25 seconds, followed by
the sample purge. The time required for.transmission of the report is quite

long because the report from the HP integrator is of fixed format and the
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only way to extract the composition measurement from the report is to scan
the ASCII report line by line until the composition measurement is received,
The sample purge was necessary to return the detector current to the base
line value in preparation of the next sample. At the end of the § minutes,
the FORTRAN contrcl program resident in the Zenith computer initialized the
sample injection. Further details of the sampling mechanism are described

by Vagi (1988).

5.2.6 Temperature Measurements

There are a large number of iron-constantan thermocouples installed at
various locations to measure liquid temperatures. Currently, four liquid
temperatures can be accessed by the Zenith computer. The small voltage (mV)
signals from four thermocouples, which measure the liquid temperatures at
trays 1, 2 and 6 and the GC return line, are transmitted to the TCS 6432
signal processor which enables the temperature signals to be read via a

RS-422 supervisory link.

5.3 Estimation Equations, Identification and Initialization

As mentioned in the previous section, the cycle time of the gas
chromatograph was 5 minutes and the tray temperatures and flow rates were
sampled at ! minute intervals. The control objective is the regulation of
the bottoms product composition, XB, to its set point via manipulating the
steam flow rate. The estimation equations for the ST-1, SM-1 and SM-2
schemes are the same as those presented in Chapter 3 (c.f. Eas. 3.5 - 3.7).
Since the liquid temperature at tray 2 is the 'most sensitive tray

temperature to feed disturbances (c.f. Table 2.1), this temperature was
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selected as the secondary output (v) for evaluation of the AIC algorithm. A
proportional plus integral controller (c.f. Eq. 3.8) was used in each AIC
scheme. The control performance achieved using each AIC scheme was compared
to that obtained using the conventional feedback PI controller.

The initial settings for the proportional plus integral controller,

established using the process reaction curve method and the Cohen-Coon

- g/s
formulae (Stephanopoulos, 1984), were calculated to be Kp- 0.27 mass % and
- g/s .
KI- 0.017 mass %o The controller settings for the PI control scheme

were tuned to obtain a minimum IAE value for a 25% step disturbance in the

feed rate. The final settings were found to be K =-0.32 —_B8/s and
P mass %
. 8/s . . .
Kx" 0.018 mass Bomin As mentioned in Section 5.1, the AIC schemes were

applied to regulate the bottoms composition with minimum amount of tuning
effort. Therefore, the same final controller settings were used in the AIC
schemes.

As in the rirpnlation work presented in Chapter 4, all values used in
the regressor vector are scaled deviation values (c.f. Eq. 4.1). For the
experiments, the nominal values of the controlled variable (v), manipulated
variable (u) and secondary variable (v) were set to the corresponding
initial process values. Since the deviations of y, u and v from its nominal
values were ali in the order of 101, the scaling factors used for y, u and v
were equal to 1.0, The dead-band on the AIC scheme (c.f. Eq. 2.41) used was
arbitrarily chosen to be 10%.

The RLS identification algorithm employs a fixed forgetting factor, ),
and covariance resetting (c.f. Section 2.3.3). The value of A was selected
to be 0.98. The covariance matrix, P, was initialized to 100 times the

identity matrix (I). P was reset to a*l whenever the trace of P dropped
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below a specified value, Pmin. To determine the values of a and Pmin which
would provide satisfactory results, the RLS parameter identification and the
controlled output estimation for the ST-1 scheme were "turned on" during the
controller settings tuning runs. The predicted values of XB were then
compared with the actual measured XB. The values of a and Pmin that
resulted in the best prediction of XB were used for all the experimental
tests. The ST-! scheme was chosen for tuning a and Pmin because this scheme
had the largest number of parameters and so the values of « and Pmin
selected for the ST-1 scheme would work satisfactory for the simplified
algorithms. The o and Pmin values were selected to be 2.0 and 0.3*n
respectively, where n is the number of paraimeters to be identified.

To apply any adaptive control schemes, it is important to obtain good
initial parameters for the parameter vector. The initial parameters for the
AIC algorithms were obtained in the following manner :

(1) XB was regulated to its set point using the conventional PI control

scheme initially;

(2) the regressor vector was initialized at time t=0 minute;

(3) RLS identification and adaptive inferential estimation were

switch "on" at t=20 minutes with XB still controlled using the PI
scheme;
(4) at t=120 minutes, the PI control scheme was switched "off" and the
AIC algorithm switched "on" to control XB;

(5) From observations during the controller tuning runs, after three
hours of RLS identification, the predicted values of XB generated
by the ST-1 AIC algorithm were quite accurate, indicating that the

parameters had converged to reliable values. Thus, for both the
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feed rate disturbance and set point change tests, the change was
introduced at t=180 minutes.
To compare the control performance of the PI, ST-1 SM-1 and SM-2
schemes, the IAE index for each scheme was calculated for the period after

the initial three hours "tune-in" period.

5.4 Results

The performance of the four control schemes, PI, ST-1, SM-1 and SM-2,
have been evaluated for control of the bottoms composition of the pilot
scale binary distillation column when there were feed flow rate disturbances
or set point changes. As will be presented in the next section, the control
performance of the ST-1 scheme was very poor for a 25% step increase in fecd
rate. Therefore, the ST-1 scheme was not evaluated for a decrease in feed

rate or changes in set point,

5.4.1 Step Increase in Feed Rate of 25%

Table 5.2 provides a summary of the IAE performance values for each AIC

scheme and the conventional feedback PI control scheme for a 25% step

increase in feed rate. It should be noted that the IAE values in Table 5.2

were calculated from time t=180 minutes, the time at which the disturbance

was introduced. The closed loop responses obtained using the ST-1, SM-1 and
SM-2 control strategies are compared in Figs. 5.2 to 5.4 with the controlled
responses that resulted from utilizing the PI scheme. Each of these figures

also shows the parameter trajectories and the trajectory of the trace of the
covariance matrix. AS mentioned in Chap'te{ 3, for the sake of clarity, only

7 of the 12 parameters of the ST-1 algorithm are displayed in the parameter
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trajectories. The best control performance for the feed disturbance,

resulting in a minimum IAE value of 106.4, was cbtained using the PI
scheme. The IAE performance indices resulted from employing the SM-1 and
SM-2 algorithms were found to be 32% and 72% larger than the minimum IAE
value achieved using the PI scheme. The ST-1 scheme provided unacceptable
control behavior, as can be seen from the XB trajectories displayed in Figs.
5.2. The controlled responses obtained by utilizing the SM-2 algorithm were
quite oscillatory. Both the PI and SM-1 schemes were able to regulate XB to
within ten percent of its set point value of five mass percent methanol only
80 minutes (i.e t=260 minutes) after the disturbance was introduced while
neither the ST-1 nor SM-2 scheme were able to achieve this performance until
t=320 minutes. It should be noted that the control performance of the SM-1
scheme was quite satisfactory considering the fact that the controller

settings of the fixed PI controller in the adaptive scheme were never tuned.
The SM-1 scheme should be able to provide comparable or even better control
behavior than the PI scheme if its controller settings were tun:d for this

feed disturbance.

Table 5.2

Summary of Control Performance for a +25%
Step Change in Feed Rate

Control IAE Reference

Scheme (mass %-minute) Figures
PI 106.4 5.2-54
ST-1 229.6 52
SM-1 140.9 53
SM-2 182.9 54
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In Fig. 5.5, the predicted values of XB are compared with the actual XB
values for each AIC scheme. As can be observed from the top plot in this
figure, the predicted XB generated by the ST-1 algorithm was quite accurate
during the initial 3 hour "tune-in" period. However, after the feed
disturbance was introduced, at t=180 minutes, the predicted XB was very
erratic for about 100 minutes. Although a 10% dead-band on AIC was
employed, the resulting control performance was still not satisfactory
because of the oscillatory behavior of the prediction, leading to
fluctuations in the controlled and manipulated outputs. The predicted
values of XB obtained using the SM-2 scheme were more accurate than those
obtained using the ST-1 scheme but these éstimated values of XB generated by
the SM-2 scheme were not accurate enough to provide good controlled
responses. In contrast to this performance the predictions generated by the
SM-1 algorithm, displayed in the middle plot of Fig. 5.5, are satisfactory
and clearly superior to both of the ST-1 or SM-2 schemes. The predicted XB
values almost match the actual XB values only 20 minutes after the
disturbance occurred. The accurate predictions resulted in a very smooth
control behavior even though the controller settings of the PI controller
used with the SM-1 algorithm were the values seiected for PI feedback
control.

The fast convergence of the predictions generated by the SM-1 scheme to
the actual controlled output can probably be attributed to the small number
of parameters that needed to be identified. It can be seen from the
parameter trajectories presented in Figs. 5.2 to 5.4 that the parameters of
SM-1 converged to new values only 20 minutes after the disturbance was

introduced while the parameters of the ST-1 and SM-2 algorithms did not
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Figure 5.5 Comparison of Predicted Bottoms Corposition versus Actual

Bottoms Composition for a +25% Step Change in Feed Rate
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converge until t=300 minutes, 2 hours after the disturbance took place.
FFrom the patterns of the trace of the covariance matrix presented in these
figures, it is also obvious that the parameters of SM-1 adapted to new
process characteristics much faster than was the case for either of the

other two AIC schc s

5.4.2 Step Decrease in Feed Rate of 20%

The control performance of the PI, SM-1 and SM-2 scheraes was also
evaluated for a step decrease in feed rate. In this set of experimentai
runs, as described in Section 5.3, the two AIC schemes had three hours
"tune-in" period. At time t=180 minutes, a -20% step change in feed rate
was introduced with the feed rate subsequently increased to its normal
operating value at time t=360 minutes and the test terminated at t=550
minutes. The IAE performance indices, calculated for the period t=180 to
t=530 minutes, are summarized in Table 5.3. The controlled responses
resulted from utilizing the SM-1 and SM-2 algorithms are compared with the
control behavior achieved using the PI scheme in Figs. 5.6 and 5.7,
respectively. From the IAE values and the control responses presented, it
is obvious that the SM-1 control scheme outperformed both the SM-2 and PI
schemes for the feed rate decrease. The SM-1 algorithm was able to bring XB
slowly to its set point with some oscillations while the Pl and SM-2 schemes
resulted in very oscillatory XB trajectories. The control behavior observed
when SM-2 was utilized was very oscillatory, resulting in the largest IAE

value for the three control schemes.
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Table 5.3

Summary of Control Performance for a -20%
Step Change in Feed Rate

IAE
(mass 9, - minute)
Dec r ease Back to
Cont rol from Steady Steady Reference
Scheme State State Figures
PI 204.1 118.6 5.6-5.7
SM-1 177.1 111.2 5.6
SM-2 3439 119.4 5.7

When the feed rate was increased to its steady state value at t=360
minutes, all the three control strategies evaiuated were able to regulate XB
to its set point before the end of the test period. The IAE values
presented in Table 5.3 reveal that the control performance of all the three
control schemes was comparable for this increase in feed rate. The minimum
IAE value of [11.2, which resulted from utilizing the SM-1 scheme, is only
slightly lower than the maximum IAE value which resulted when the SM-2
scheme was employed. The significant improvement in control performance
when the feed rate was increased to its steady state value compared with the
case when the feed rate dropped below its steady state value indicated that
a decrease in feed rate is a more severe disturbance than an increase in
feed rate.

The fast parameter adaptation to new process characteristics achieved
using the SM-1 scheme, because of the small number of parameters invsived,
resulted in the superior control performance of the SM-1 scheme, as can be

observed from the parameter trajectories displayed in Figs. 5.6. The

adaptation patterns of the parameters of the SM-1 are "smoother’ than those
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of the SM-2 scheme shown in Fig. 5.7 when the feed rate was below its normal
value. This explains the poor predictions generated by the SM-2 scheme
compared to those of SM-1 (c.f. Fig. 5.8). When the feed rate was increased
to its steady state value, since both the SM-1 and SM-2 schemes were able to
adapt reasonably quick to this change to the original operating conditions,

the control performance of these two AIC schemes is comparable for t=360 to
t=550 minutes. In summary, only the SM-1 scheme can provide satisfactory

control performance for this set of feed disturbances.

5.4.3 Servo Control Performance

Figs. 5.9 and 5.10 display the controlled responses of the PI, SM-1 and
SM-2 schemes when the process was subjected to set point changes. It should
be noted that the responses for the initial three hours of "tune-in" period
are not shown in these figures. The set point was changed from five mass
percent methanol to six percent at time t=0 minutes and it was decreased to
its normal value of five mass percent methanol at t=180 minutes. The IAE
values obtained for this set of tests are reported in Table 5.4, The
poorest geriostance, with a total IAE value of 98.0, resulted from employing
the PI s\n2ms. The SM-2 algorithm provided the best overall control
behavior, with an minimum IAE value of 77.3, while the performance of the
SM-1 scheme was comparable to that of SM-2. From the XB responses shown in
Figs 5.9 and 5.10, it can be seen that all the three control schemes
evalvated were able to bring XB to its set point within two hours for
either an increase or a decrease in set point. The SM-1 scheme responded
fastest to the increase in set point while the SM-2 algorithm responded

fastest to the decrease in set point,
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Figure 5.8 Comparison of Predicted Bottoms Composition versus Actual
Bottoms Composition for -20% Step Change in Feed Rate
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Table 5.4

Suminary of Control Performance for Step Changes of One Mass Percent
Methanol Concentration in Bottoms Composition Set Point

I1AE
(mass % - minute)
Increase Back to

Cont r ol from Steady Steady Reference
Scheme State State Figures
PI 53.0 45.0 5.9-5.10
SM-1 34.6 51.8 5.9
SM-2 40.0 37.3 5.10

It might have been expecied that since the SM-2 algorithm has three
more parameters to be identified u.an the SM-1 scheme, control performance
of the SM-2 strategy would be inferior to that of SM-1 but this was not the
case. A possible explanation is that unlike the column behavior for feed
flow rate disturbances, the process did not exhibit very strong nonlinear
behavior for changes in set po'nt and so the SM-2 scheme was still able to
quickly adapt its parameters to new values correspnagding to the new set
point. This resulted in accurate predictions of the controlled output, as
can be seen from the prediction plots presented in Fig. 5.11. For the set
point changes introduced, it can be seen that the SM-2 scheme generated more
accurate predictions than S3i-1 for the period t=180 to t=360 minutes,
leading to slightly better overall control performance for SM-2. When the
parameter trajectories shown in Figs. 5.9 and 5.10 are compared with the
trajectories of the .ame algorithms for the feed disturbances (c.f. Figs
5.3, 54, 5.6, and 5.7), it is obvious that the parameter trajectories for
the set point changes are "smoother" than.those for feed disturbances,

indicating that the column exhibited stronger nonlinear behavior when
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subjected to feed flow rate disturbances.

5.5 Summary

The performance of the three AIC schemes, designated as ST-1, SM-} and
SM-2, have been applied to control the bottoms product composition of a
computer controlled, pilot scale binary distillation column. Experimental
results showed that the standard algorithm, ST-1, could not provide
satisfactory control performance for a +25% step change in feed rate because
of the large number of parameters that had to be identified. Thus, use of
this algorithm cannot be recommended f'or_column control.

The simplified algorithm SM-1, which only has three parameters to be
identified, is preferred over the SM-2 simplified scheme and the
conventional feedback PI controi scheme because SM-1 provided satisfactory
control performance for both the step increase and decrease in feed rate as
well as the changes in set point. The SM-2 scheme did not work
satisfactorily when there were feed disturbances but it did control the
bottoms composition in a satisfactory manner for the set point changes. On
the basis of these results, it can be concluded that the SM-1 scheme will
provide better control performance than the PI or SM-2 scheme for

distiliation column control.



Chapter 6 : Conclusions and Recommendations for Future Work

6.1 Conclusions

This work has been concerned with the evaluation, by simulation and
experimental studies, of the control performance that can be achieved using
the .aultirate adaptive inferential estimations schemes which infer
intersample values of an infrequently sampled controlled output from a more
rapidly sampled secondary plant output. A first order plant mode! was used
in the standard algorithm (ST-1 scheme) while first and second order plant
models were employed with the simplified algorithm (SM-1 and SM-2 schemes
respectively). Each of the three estimators obtained was combined with a
fixed parameter proportional plus integral controller to form a multirate
adaptive inferential control (AIC) scheme. The control performance of each
AIC scheme was compared with the control behavior of a conventional P!
feedback control strategy for control of bottoms compositions of
distillation columns. The comparison was accomplished in three stages and

the results of each stage are summarized below :

(1) Simulation of the bottoms composition control of a binary
distillation column modelled by transfer functions : The simulation
results have shown that for the process model used, the standard
algorithm (ST-1), though requiring the identification of 12
parameters, provided the best control performance for step changes
in feed rate or set point. The performance of either of the
simplified algorithms, SM-1 and SM-2, was comparable to that

accomplished using the conventional PI control scheme. The
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(2)

perfcrmance of all three AIC schemes was found to deteriorate when
a less sensitive secondary output (tray liquid temperature at tray

6 in this case) was used instead of a sensitive secondary output
(tray liquid temperature at tray 2). Because of the large number

of parameters (12) that had to be identified, the effect of a poor
choice of the secondary output on control performance was most
profound when the standard algorithm was employed. The same
phenomenon were observed for the case where the process model
parameters (gains and time d¢iuys) were changed when the same step
disturbance in feed rate was introduced into the process. These
results have indicated that a potential problem of the speed of
convergence of parameters may arise when the standard algorithm is
applied to control a highly nonlinear and/or time-varying process.
Simulation of the control of the bottoms LK composition of a
depropanizer column : The simulation of the control behavior of the
depropanizer was performed using a nonlinear, general purpose
multicomponent distillation column dynamic simulator, DYCONDIST.
The simulation results showed that the standard algorithm was not
suitable for control of this nonlinear process because of the large
number of algorithm model parameters that must be identified. The
best regulatory control performance was obtained using the SM-1
algorithm which required the identification of only 3 parameters.
The SM-2 simplified scheme also outperformed either the ST-1 or P!
scheme. It was shown that a different way of truncating the
standard algorithm (designed as ‘TST-Z scheme) also resulted in

improved control performance over the ST-1 and the PI schemes. Use
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of a dead-hand on AIC strategies was found to stabilize the control
behavior during the initial adaptation period and thus its use is
strongly recommended for practical applications.

(3) Experimental evaluation of the control of the bottoms composition
of a pilot scale binary distillation column : The experimental
results further demonstrated the robust control performance of the
SM-1 algorithm because only 3 parameters needed to be identified.
The ST-1 scheme was unable to provide satisfactory control
performance. Although the controller settings of the fixed PI
controller used in the AIC schemes were never tuned, the SM-|
scheme was able to accomplish aéceptable control behavior for a
+25% step disturbance in feed rate. For the cases with -20% step
disturbance in feed rate or one mass percent set point changes, the
SM-1 algorithm outperformed either the SM-2 or Pl scheme. The SM-2

scheme only provided good performance for servo control.

In conclusion, the simulation and experimental results show the the
improvement of overall control performance using the SM-1 control algorithm.
It should be noted that for adaptive control techniques to gain widespread
acceptance in industry, they must be easy to implement and maintenance free.
The robust control resulting from employing the SM-1 scheme in this work has
indicated that this simplified algorithm has the potential to work
satisfactorily in industrial processes with minimal design and tuning
effort. However, the conclusions from this research are not general. Thus,
when applying AIC algorithms to the control industrial processes, which are
mostly nonlinear and time-varying, differént simplifications of the standard

algorithm should be evaluated to establish which algorithm will provide the
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most satisfactory control behavior for the disturbance(s) of interest.

6.2 Recommendations for Future Work

The AIC algorithms studied in this thasis represent practical solutions
to a problem which is commonly encountered in process control, the
intermittent measurements of the primary controlled output due to the long
cycle time of the measuring device. While it has been demonstrated in this
work, by simulation and experimental evaluation, that the simplified (SM-1)
AIC algorithm can provide improved control performance compared with the
performance that can be acccmplished using the conventional PI feedback
control scheme for nonlinear and/or time-varying systems, a number of areas

exist for future work :

(1) The control performance of the simplified algorithms should be
evaluated for systems with long sample time, such as 10 or 20
minutes, in the measured controlled output (y), a very common
situation in the chemical process industry. For a process with a
long dead time, say 20 minutes, a secondary output may often be
accessed at a very fast rate, say every 30 seconds, and the
manipulated variable adjusted at the same rate. Thus, the maximum
rate at which an estimated y can be generated is every 30 seconds.
However, since the model parameters will only be updated every 20
minutes, the intersample predictions may not be accurate for
satisfactory coutrol performance. [t may be preferable to perform
control action every 2 or 4 minutes for robust control. The

sampling rate of the secondary output which will result in good
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(2)

(3)

(4)

()

control performance is, of course, application dependent. It will
depend on the dynamics of the system. If the ratio of the dominant
time constant to the sample time of the primary output is small,
say | to 3, it may be advantageous to implement the simplified
algorithm. Thus, it is worthwhile to evaluate the AIC schemes
using processes with very different dynamics to investigate the
sensitivity of the performance of the AJC straieg: to sampling rate
selection,

More experimental work is required to examine the sensitivity of
AIC performance to the selection of the secondary output.

In many situations, there is more~ than one secondary output which
can be used to infer the primary output and better control may
result if more than one secondary output is used in the AIC
algorithms. Work should be directed to reformulate the AIC schemes
to use multiple secondary outputs and to study their performance.
An adaptive multirate estimation scheme have been proposed by Lu
and Fisher (1988) to predict intersample vabies of the controlled
output without utilizing a secondary measurement. In some
situations, there may be no appropriate secondary outputs which can
be used in the AIC scheme and thus the adaptive multirate
estimation scheme will become useful. Detailed simulation and
experimental evaluations of the adaptive multirate estimation

should be done.

In order to reduce the number of tuning parameters, the RLS
identification algorithms used in this work are quite simple. These

algorithms may not be the "best" for practical applications.
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Several RLS schemes , such as RLS with variable forgetting factor
(Ydstie et al., 1985) and RLS with directional {orgetting factor
(Rogers, 1989), have been shown to provide great potential for
industrial applications. An investigation should be completed to
assess various forgetting techniques in RLS identification schemes
for industrial situations.

(6) The controller used in this study is a fixed parameter proportional
plus integral controller. For time-varying processes, it may be
advantageous to use adaptive controllers or some long range
predictive controllers. Thks potential exists to combine the
adaptive inferential estimation scﬂeme with other adaptive control
techniques, such as self-tuning control and generalized predictive
control, to obtain more powerful adaptive inferential control
algorithms.,

(7) Since most difficult industrial control problems are multi-input
multi-output, the formulation of the AIC schemes should be extended
to handle situations where there are several infrequently sampled
primary outputs and several frequently sampled secondary outputs.

(8) For distillation column control, a feedforward strategy is often
applied to improve feed disturbance rejection ability of the
control scheme. It is worthwhile to incorporate feedforward

control into the AIC schemes.
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Appendix A : The Concept of Observability

A.l1 The Implications of the Observability Index

Consider the plant model given by Egs. 2.1 to 2.3, with all the noise

terms being zero, i.e.

0 0 -a, 0 0 -a, b1
I
nv-1 _
-a 0 ... 0 -a b
nvy ny nv
x(i+l) = o x(t) + u(t)
0 0 - ... 0 -a
nv+l nv+l nv+1
Iny--l _
0 0 -a -3 b
i n R LI
(A.1)
v(t) =x_ (1) (A2)
y(t) = hxnv(t) + xn(t) (A.3)

where
nv = the observability index of v(t)
n = the order of the process
x(t) = the state ve~tor; X is the nv state
v(t) = secondary output
y(t) = primary output

ny = n - nv,
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h = a scalar term.
Egs. A.l1 to A.3 can be rewritten into an multi-input multi-output (MIMO)
structure :

x(t+]) = A x(t) + B u(t)

r

Al A B1
= x(t) + u(t) (A.49)
A21 A2z EzJ
v(t) &
YO = = Cxn = x(t) (A.5)
y(t) -~ Cz
where
0 . 0 -a1
éll = av-1 (A.6a)
-a
nv
- 1
0 0 -a1
Az = co (A.6b)
0 0 -a
L nv |
0 - nv+l
A2l = . (A.6c)
0 0 -a
n

159



. -
0 .. 0-a .
Az = | : (A4.6d)
- ny-1 :
~-a
n
T
-
Bi = _bl b, .. bnv] (A.7a)
T
-
Bz = _bm+1 b o bn] (A.7b)
Ci = [00..100..0] (A.8a)
Cz = [00..100..h] : (A.8b)

Case 1| : A1z and Az21 are zero matrices

The observability index nv, as mentioue¢ in Szct:on 2.2.1, represents
the number of the states that are completely observable from the secondary
output. In this special case, it can be readily seen that the first nv

states (i.e. x P Ky s and xnv) are completely observable from the

*

secondary output v (or x ) and the rest of the states (x , X s e
nv nv+] nv+2
and xn) are completely obszrvable from the primary output, y. However, a
"better” choice of secondary output does not mean that the value of nv is
larger. Similarly, a large value of nv does not imply that the secondary
output selected is a good choice. The reason is that nv only represents the
number (quantity) of different states or "dynamic modes" that can te

observed from the secondary vutput, not the quality of the observation. The

quality of the observation is measured by the condition number of the
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observability matrix (see Section A.2).

Case 2 : A1z and A21 are mot zero matrices

The system represented by Egs. A.4 and A.5 can be decomposed into two

sub-systems as follow

[xl(t+l) xz(t+l) xs(t+l) xm'(u»l)].r

é— nv’n _X_(t) + E nv’l u(t)

= [ én élz] x(t) + B1 u(t) (A.9a)
vt) = C1 x(t) : (A.9b)
[x (061 x (1) x_ (t+1) .. xn(t+l)]T

= A X0+ B w0

= [ ézl ézz] x(t) + Bz u(t) (A.10a)
y(t) = C2 x(t) (A.10b)

It can be easily shown that the rank of the observability matrix for the

first sub-system (Eq. A.9) is nv and the rank of the observability matrix of
the second sub-system (Eq. A.10) is ny (ny = n-nv). In other words, from
the secondary output v(t), av different "states® or "dynamic modes" of the
system can be observed. Correspondingly, ny different "dynamic modes" can
be observed from the primary output y(t). It should be noted that using the
term "dynamic modes" instend of "states” is less ambiguous since the
"dynamic modes” observed are different from the states (defined in Egs. A.9
and A.10) because A12 and A21 are mot zero matrices. The "dynamic modes"
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observed in this case are "similar" to the states defined in Egs. A.9 and

A.l10.

NOTE : From the theory cf linear systems (Kailath, 1980), it is known that
there can be many ways to express the state space model of a linear system.
Two tezlizations of the same linear system are similar to each other if

there exists : nronsingular matrix Q such that

.atan, Ba-a'B, CT=cao (A.11)
The states of the iwo realizations can be related as
x(t) = Q x(ty - (A.12)

A.2 The Effect of the Choice of the Secondary Output on Qbservability

If there are two secondary outputs, v’(t) and v*(t), available, one can
obtain two different but "similar" state space models of the same iinear
system

Model 1 : For v(t) as the secondary output, then

Xt} = A7)+ B’ u(o (A.13a)
v(t)

Y'(t) = = C’ x(t) (A.13b)
¥(t) -

Model 2 : For v*(t) as the sscondary output, then

x(t+1) = A~ x"(t) + B” u(t) o (A.14a)

162



v(t)
Y (v = = C” x"(t) (A.14b)
y(t) -

The observability matrix, ¥, of each model is given by :

Model 1 : ¥ = [_g ca’ cay .. C'(f\_’)"'l]T (A.15)

Model 2 : ¥ = [g_" C"A” C(A") .. C"(é")“"]T (A.16)

If v{(t) is a better choice of secondary output than v*(t), this implies
that the matrix ¥’ is "better conditioned" than ¥” (i.e. the condition
number of ¥’ is closer to | than the condition number of ¥”).

Intuitively, a secondary output, v/(t), which is ‘more sensitive to
disturbances than v”(t), should result in a "better conditioned"
observability matrix than v”(t). This argument will probably hold for
systems that have high signal to noise ratio. For nonlinear systems, the
analysis presented is not applicable and the choice of the secondary output

should rely on the a priori knowledge of the system.
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Appendix B : Tray Liquid Holdup Data and Thermodynamic Parameters

for Depropanizer Column

B.1 Tray Liquid Holdup Data

The tray liquid holdup data used in the control simulation of the
depropanizer column model are listed in this section. These data are the
same as those used by Carling (1986). Stages are numbered from top to

bottom, with stage 1 being the condenser and stage 31 being the reboiler.

Table B.1
Tray Liquid Holdup Profile

Stage Number Holdup (kmol)
2 22.0
3 21.8
4 21.5
5 21.1
6 20.5
7 19.8
8 19.0
9 17.9
10 16.8
11 15.8
12 14.8
13 16.0
14 159
15 15.7
16 15.5
17 15.2
18 14.9
19 14.6
20 14.2
21 13.8
22 13.4
23 13.0
24 12.8
25 12.5
26 12.3
27 ' © 2.2
28 12.1
29 12.0
30 11.9
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B.2 Thermodynamic Parameters

The thermodynamic parameters used for the five component depropanizer
column simulated in Chapter 5 are listed in the following tables. All data

are obtained from Wong (1985).

Table B.2
Equilibrium Data

a., a_.
K = exp{al, + 2y —3—;} (T in K)
1 1 T T
Component ali . azi s
Ethane 0.649086E+00 0.421544E+04 -0.882222E+06
Propylene 0.391245E+01 0.186111E+04  -0.533920E+06
Propane 0.384851E+01 0.192822E+04 -0.560525E+06
Iso-butane 0.684489E+01 -0.167722E+03 -0.252485E+06

Cis-butene-2 0.658149E+01 0.174340E+02 -0.317562E+06

Table B.3
Liquid Enthalpy Data

h =c_.+c¢. T (T in K, h_in kJ/kmol)
i 1i 2i i

Component “y %

Ethane -3.050700 0.040113
Propylene -3.507600 0.045986
Propane ~-5.480700 0.053833
Iso-butane -7.743300 0.038080

Cis-butene-2 -3.899100 0.059589
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gg_mponent

Ethane
Propylane
Propane
Iso-butane

Cis-butene-~2

Table B.4
VYapor Enthalpy Data

C..
1i

e?.i

+eT+e T (TinK, H in ki/kmol)
i 2i 3i i

€
3i

0.684620E+01
0.966230E+01
0.105420E+02
0.134260E+02
0.173470E+02
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0.199386E-01
0.185670E-01
0.138070E-0!
0.947720E-02
0.226330E-02

-0.422788E-05
0.626584E-05
0.206430E-04
0.436136E-04
0.448513E-04



