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Abstract 

Adaptive learning systems (ALSs) serve as a way to personalize learning experiences for 

students to improve their learning outcomes. Many studies have been conducted to develop and 

examine ALSs in terms of their effects on student learning outcomes compared to the traditional 

classroom settings. Comparisons of these studies revealed that different ALSs exhibited varying 

degrees of success in promoting learning achievement (i.e., discrepant magnitudes of system 

effectiveness). However, little work has empirically examined factors that impact the 

effectiveness of ALSs, thus constraining their application in practice. This study performed a 

meta-analysis of 46 studies on ALSs in order to identify factors significantly accounting for the 

variation in system effectiveness. The analyses of 77 effect sizes confirmed substantial 

heterogeneity in system effectiveness (Mean = 1.48; Range = .09-9.06). Using three-level 

correlated and hierarchical effects modeling, the heterogeneity was explained by the variability 

both within publications (i.e., 12.06%) and between publications (i.e., 83.47%). Specifically, the 

magnitudes of system effectiveness were significantly moderated by learner characteristics and 

modeling approaches. Moreover, in comparison with other subject areas such as mathematics 

and computer science, ALSs used to support the learning of the English language were likely 

associated with higher system effectiveness. No evidence of publication bias was detected in 

these data. Findings from the present research facilitate the understanding of what and how 

system components are associated with the effectiveness of ALSs and inform decision making 

on their design. Implications for pedagogical theories and practice, limitations of this research, 

and future directions for developing and implementing ALSs in educational settings are 

discussed.  
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Chapter 1 Introduction 

Is it possible for a computer to mimic a human teacher to provide personalized 

instruction? The development of adaptive learning systems (ALSs) seems to have the potential to 

provide a positive answer to this question. However, what one might ask is whether ALSs 

advance learning outcomes as effectively as one-on-one human instruction. This unsettled 

question deserves further exploration and motivates the present research. 

ALSs, which are also called adaptive learning environments, are often defined as digital 

learning systems or environments that adapt learning content, presentation styles, or learning 

paths based on individual learner characteristics (Tseng et al., 2008; Yang et al., 2013). The goal 

of ALSs is aligned with exemplary instruction (Shute & Towle, 2003): delivering the right 

content to the right person at the proper time in the most appropriate way – any time, any place, 

any path, any pace (National Association of State Boards of Education, 2001). That is, ALSs are 

designed and developed to achieve personalized learning.  

The idea of personalized learning can be traced back to John Dewey’s enduring work in 

learner-centered education in the early 20th century (Redding, 2016; Zhang et al., 2020). For 

example, Dewey (1929) pointed out that effective education must begin with understanding how 

learner capacities, interests, and habits can be directed to help individuals succeed. After decades 

of development in learning sciences, educational research, and artificial intelligence (AI), 

personalized learning has been assimilated into modern education dramatically (Mohd & 

Shahbodin, 2015; Muñoz et al., 2022; Zhang et al., 2020). Nowadays, personalized learning is 

used to describe learning environments in which learning objectives and content along with 

learning methods and pace may all vary depending on individual learners (U.S. Department of 

Education Office of Educational Technology, 2010). 
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Traditional classroom settings could be used to offer personalized learning environments. 

For example, DeMink-Carthew et al. (2017) conducted a qualitative study and explored goal-

setting approaches as a whole-school initiative on personalized learning. They found that 

learning goals that engage students in exploring their personal interests would contribute to the 

construction of personalized learning environments. However, achieving personalized learning 

within traditional classroom learning environments (e.g., empowering each student as a co-

designer of their own learning) is too costly for most societies to bear on a large scale. In 

addition, systematic guidelines for adding personalized learning elements to traditional 

classroom settings are scant (DeMink-Carthew et al., 2017). 

Unlike traditional classroom settings, ALSs present a new opportunity for accomplishing 

personalized learning at a massive scale (Kerr, 2016; Liu et al., 2017). Enabled through 

technological advances and methodological innovation, various ALSs have been established and 

used in real education scenarios. For example, one of the well-known ALSs is DreamBox 

Learning, which teaches mathematics to elementary students. In response to the opportunity that 

ALSs provide, education departments of many countries have formulated action plans (Li et al., 

2021). For example, the U.S. Department of Education released the report “Enhancing Teaching 

and Learning through Educational Data Mining and Learning Analytics” to realize personalized 

learning with the help of ALSs (U.S. Department of Education, 2012). 

ALSs commonly invoke three stages (Alfonseca et al., 2006; Brusilovsky & Maybury, 

2002): retrieving information about learners, processing the information to initialize and update a 

learner model, and providing adaptive effects based on the learner model. For example, Tseng et 

al. (2008) designed a two-source adaptive learning system to help junior high school students 

learn mathematics. Specifically, students’ learning styles (e.g., processing information 
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sequentially) and learning behaviors (e.g., learning achievement, learning effectiveness) were 

analyzed and recorded in its learner model. Then, the two sources of individual information were 

exploited to adjust presentation styles and difficulty levels of learning materials. Students who 

lack sequential processing skills receive subject materials presented in a non-linear manner, at 

different difficulty levels. In contrast, for students who prefer to process information sequentially 

and are with high learning effectiveness and test score, the system provides learning materials 

with increased difficulty levels, in a sequential frame. 

Studies on ALSs typically evaluate system effectiveness in terms of learning outcomes 

improvement. For example, Tseng et al. (2008) examined the effectiveness of their system in 

enhancing student learning performance in mathematics. After comparing test scores of students 

under adaptive learning or non-adaptive learning approaches, Tseng et al. (2008) confirmed the 

high utility of the system in promoting student learning achievement. As Tseng et al. (2008) 

found, the benefits of ALSs to student learning outcomes have been supported by research 

published in influential mainstream journals (e.g., Liu et al., 2017; Hwang et al., 2020; Yang et 

al., 2013). To maximize the benefits of ALSs to student learning process, researchers from both 

academia and industry attempt to develop new systems by incorporating cutting-edge techniques 

(e.g., conversational AI). As a result, hundreds of ALSs have been established over the last three 

decades. Systematic reviews or meta-analyses, as powerful research methods of comparing, 

analyzing, and combining results from different studies, have enormous potential to enlighten 

our understanding of established ALSs.  

There have been 26 systematic reviews of research on ALSs. Their titles and publication 

years have been presented in Appendix A. Figure 1 shows the total number of reviews year by 

year. As indicated by Figure 1, scholarly efforts in reviewing and critically assessing research on 
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adaptive learning have grown significantly since 2015. On closer inspection, most studies focus 

on qualitative analyses of the current ALSs. For example, a recent study by Martin et al. (2020) 

reviewed designs, context, strategies, and technologies of ALSs from publications between 2009 

and 2018. As the main goal of ALSs is to ensure personalized learning experiences, it is 

becoming essential to know their effects on learning outcomes improvement (Dziuban et al., 

2017, 2018; Essa & Laster, 2017). Although there are different categories in terms of learning 

outcomes, this study aims to examine learners’ advances in cognition such as knowledge 

achievements and high-order competence. Resulting changes in learners’ cognition can be 

evaluated using an exam specifically designed to evaluate it. However, little work has 

systematically examined the effectiveness of the existing ALSs in advancing student learning 

outcomes, constraining their continual improvement and applications in educational scenarios. It 

is worth noting that the term “effectiveness” may be defined as “learners achieve targeted 

learning goals using shorter time” or “learners increase their learning motivation” in some 

studies. However, for simplicity’s sake, “effectiveness” specifically denotes the degree of 

improvement in learning outcomes that learners obtain after using ALSs in this research.  

 

Figure 1. Number of Literature Reviews on Adaptive Learning from 2000 to 2022 
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In addition, as efforts to leverage the power of ALSs to students’ learning grow, notable 

disparities in system effectiveness have emerged, raising the question of what factors account for 

the heterogeneity. For example, Verdú et al. (2008) conducted a literature review and identified a 

wide range of the effectiveness of ALSs in improving student learning outcomes: The effect 

sizes (i.e., Cohen’s d) of fifteen ALSs from publications between 1997 and 2007 ranged from 

0.10 to 3.86. This broad range indicates there are considerable challenges in getting the full 

benefits of ALSs with respect to promoting student learning outcomes. A better understanding of 

factors contributing to the heterogeneity is clearly needed. To fill this research gap, this study 

seeks to identify factors that significantly account for the variability in system effectiveness. 

However, directly recognizing influential factors is difficult because different ALSs are often 

equipped with not attuned system contents (Vandewaetere et al., 2011). To overcome this 

obstacle, this study starts with a system component that is well documented in the literature: 

learner modeling (Abyaa et al., 2019; Brusilovsky et al., 2004). 

Learner modeling denotes the detailed monitoring of learner characteristics within ALSs 

(Abyaa et al., 2019). The resulting learner models are computational representations of learners’ 

cognitive and non-cognitive characteristics, which inform adaptive effects provided by ALSs. 

That is, learner modeling acts as the footing of system adaptation. There have been a large 

number of reviews that specifically focus on learner modeling of ALSs (e.g., Abyaa et al., 2019; 

Vandewaetere et al., 2011). For example, Abyaa et al. (2019) categorized learner characteristics 

modeled in studies published between 2013 and 2017 into six groups: learner profile, knowledge, 

cognitive characteristics, social characteristics, personality traits, and motivation. They also 

grouped modeling approaches into five categories: clustering and classification, predictive 

modeling, overlay modeling, uncertainty modeling, and ontology. 
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Most ALSs model more than one learner characteristic for constructing learner models 

(e.g., Alshammari et al., 2015), while in some ALSs, only one learner characteristic is modeled 

in their learner models (e.g., Kabudi et al., 2021; Surjono, 2011). The choice of learner 

characteristics that are modeled in ALSs depends on system designers and developers. There is a 

broad consensus on the relative frequency of learner characteristics that have been modeled in 

the existing ALSs. For example, Nakic et al. (2015), Martin et al. (2020), and Muñoz et al. 

(2022) found that learning style is the commonly modeled learner characteristic in the present 

established ALSs. Although learning style is frequently modeled as a source of personalizing 

learning experience in ALSs, it is unclear how the selection of learner characteristics affects 

system effectiveness. Particularly, it is necessary to investigate whether ALSs that model 

learning style are likely to have higher system effectiveness. If they are, learning style indeed 

deserves more attention than other learner characteristics as it is currently the case in practice. 

In addition, there exist various modeling techniques to construct learner models and 

multiple approaches are available to model a specific learner characteristic. For example, among 

predictive modeling techniques, item response theory (e.g., Chen et al., 2005; Mohamed et al., 

2012) and Bayesian knowledge tracing (e.g., Pardos & Heffernan, 2010) are ready to model 

learners’ prior knowledge. In terms of learning style, there are multiple questionnaires (i.e., 

Kolb’s learning style scale and Jackson’s learning styles profiler questionnaire) that can be used 

to profile learners’ learning styles in ALSs. The more precisely learner characteristics are 

modeled, the more fitly adaptive instructions will be delivered (Abyaa et al., 2019; Truong, 

2016). That is, the option of modeling approaches is likely to be related to the degree of success 

that ALSs customize instruction to suit individual learners. However, it is unknown which 

modeling approaches are more likely to contribute to more effective ALSs.  
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To sum up, of particular interest for this study is the debate about whether influences of 

different learner characteristics and modeling approaches are sufficiently robust to be taken into 

account, out of consideration for system effectiveness. If yes, identifying learner characteristics 

and modeling approaches that significantly contribute to system effectiveness will provide 

practical guidelines for advancing the field of ALSs. The lack of effectiveness evidence and the 

difficulty in reusing successful design practices (e.g., the combination of a specific learner 

characteristic and a modeling approach or the assembly of different student characteristics) 

constitute barriers for ALSs to fulfill their full potential in the context of modern educational 

practice (Sunitha et al., 2011). 

Research Purpose  

Three research questions guide this work: (a) How effective are existing ALSs in 

promoting student learning outcomes? (b) Is the system effectiveness heterogeneous? (c) If so, 

which factors significantly account for the heterogeneity of system effectiveness? For the third 

research question, the effect of learner modeling on system effectiveness along with other 

potential factors was examined. To answer these questions, this research performed a meta-

analysis of studies on ALSs. 

Organization of the Dissertation 

This dissertation is organized into five chapters. An overview of each chapter is described 

as follows. The current chapter, Chapter 1, is an introduction to the relevant research area as well 

as a justification for the research questions investigated in this study.  

Chapter 2, a literature review, gives an overview of ALSs. Particularly, it presents 

definitions of adaptive learning, the development history of ALSs, two frameworks that are 

commonly applicable to different ALSs, and previous reviews (i.e., literature reviews and meta-
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analyses) on ALSs. In addition, Chapter 2 provides detailed descriptions of learner modeling, 

which correspond to the common component between the two frameworks of ALSs.  

Chapter 3 describes the methods of this meta-analysis study. It starts with detailed 

procedures to select candidate studies to be included in this meta-analysis and variables to be 

coded for the selected studies. Then, different types of effect sizes are introduced and compared, 

including calculations of effect sizes and their variances. Finally, statistical methods to answer 

each research question as well as publication bias examination are explained. 

This is followed, in Chapter 4, with the results of the meta-analysis. Results include a 

mapping of the main characteristics of included studies, publication bias examination, the 

heterogeneity and the overall system effectiveness analysis, and moderator effects investigation.  

Chapter 5 covers a discussion of the findings, theoretical and practical implications, 

limitations, and future directions. The results of this study open up discussions on the 

effectiveness of the existing ALSs and relevant influential factors. Also, they serve as evidence-

based recommendations for future developments of ALSs. This chapter also presents 

implications for pedagogical theories and practice, followed by some limitations facing the 

present study and possible directions for future studies. This chapter concludes with a summary 

of the entire research process and significant findings.   
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Chapter 2 Literature Review 

What is Adaptive Learning?  

Learning has been widely recognized as a personalized experience in which learners 

progressively expand their personal knowledge, perspective, skills, and understanding 

(Shemshack et al., 2021; Shemshack & Spector, 2020). For instructions to be maximally 

effective for learning, instructors should capitalize on learner characteristics. In other words, 

enhancing learning performance is a function of adapting instructions to suit individuals best. 

These statements have been evidenced by the research field of aptitude-treatment interactions 

(Cronbach & Snow, 1977; Shute, 1993), which regards learner characteristics as important 

considerations for constructing learning environments and optimizing learning outcomes.  

Research on aptitude-treatment interactions in recent years, which serves individual 

learners with customized instruction within digital learning environments, naturally leads to the 

emergence of adaptive learning (Shute & Towle, 2003). For example, Mödritscher et al. (2004) 

suggested limiting the control over learning processes for learners with low-prior knowledge or 

enhancing such control for learners who have high performance. In addition, Sugawara et al. 

(2020) examined the relationship between learning effects and learning types using a case of e-

learning. They found that e-learning may have little effect when the e-learning system does not 

match learners’ learning types (e.g., short-term learning and long-term learning type).  

Importantly, the field of adaptive learning scales up personalized learning experiences at 

high efficiency. As AI and big data are booming in education, ALSs are able to dynamically 

facilitate learning processes by automatically monitoring learner characteristics and inferring 

learner preferences (Shute & Zapata-Rivera, 2008; Vandewaetere et al., 2014). Thus, adaptive 
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learning has been regarded as a critical technology-empowered learning approach and a research 

hotspot in the field of AI in education (AI-Ed). 

Since adaptive learning is sometimes used interchangeably with the term personalized 

learning (Shemshack & Spector, 2020), a comparison could help to build a better understanding 

of these terms. Although personalized learning has been used for hundreds of years in the form 

of apprenticeship and mentoring (Shemshack & Spector, 2020), it has followed different 

pathways. For example, Jenkins and Keefe (2002) described a couple of basic elements of 

personalized instruction at school (e.g., teachers maintain both coach and advisor roles, and the 

schedule of a school is flexible). Following these guidelines, schools create a caring and 

collaborative environment and value student diversity and individual development. However, 

small teacher-student ratios in school settings seem to be a major obstacle to making learning 

experiences personalized for individual students without technology (Lee et al., 2018). 

As educational technologies began to mature in the last half of the previous century, 

personalized learning took the form of intelligent tutoring systems. The rise of hypermedia and 

the World Wide Web (WWW) was poised to transform personalized learning once again, leading 

to the advent of adaptive educational hypermedia systems. More recently, personalized learning 

is increasingly defined as a technology-based instructional model (Bingham et al., 2018; 

Walkington & Bernacki, 2020). In accordance with this tendency, adaptive learning can be 

depicted as a scalable personalized learning approach in essence (Li et al., 2021). Compared to 

approaches not involving technologies, adaptive learning is able to ensure personalized learning 

experiences for large and heterogeneous groups of learners. More specifically, ALSs, as 

important carriers of adaptive learning, overlap with technology-based approaches to 

personalized learning. That is, intelligent tutoring systems and adaptive educational hypermedia 
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systems, which are reviewed in the section that follows, have long been regarded as technologies 

that stimulate ALSs (Beldagli & Adiguzel, 2010; Surjono, 2011).  

Adaptive learning has numerous definitions and various forms of implementation in the 

literature. For example, Kerr (2016, p. 88) describes adaptive learning as an educational 

technology that delivers learning materials based on learners’ interaction with previous content 

automatically, dynamically, and interactively. In contrast, Lowendahl et al. (2016) define 

adaptive learning as a process that “dynamically adjusts the way that instructional content is 

presented to students based on their comprehension of the material as revealed in their responses 

to embedded assessments or learner preferences such as visual presentation of materials” (p. 7). 

Whether defined as a technology or a process, adaptive learning essentially represents unique 

learning experiences accounting for individual characteristics to ensure personalized learning 

experiences (Liu et al., 2017; Rosita Cecilia et al., 2016).  

A common way of carrying out adaptive learning is to develop web-based adaptive 

learning environments as stand-alone learning platforms. Thus, ALSs are also called adaptive e-

learning systems or computer-based adaptive learning environments. With the popularity of 

learning management systems (e.g., Moodle), researchers offer a new framework that brings 

learning management systems and ALSs together (Jagadeesan & Subbiah, 2020; Qazdar et al., 

2015). A learning management system is a web-based software application that is designed to 

present learning content, assessment tools, and reports of learning progress and student activities 

(Kasim & Khalid, 2016). Generally, there is no adaptation component in learning management 

systems. The resulting adaptive learning management systems are advantageous for both 

institutes (e.g., universities) and students. Nonetheless, different forms of ALSs are characterized 

by system adaptivity, even though they may differ in the degree of how advanced adaptation that 
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systems can deliver. System adaptivity refers to the capability of a computer-based system or 

environment to monitor important learner characteristics, behaviors, and performance and 

thereupon provide adaptive instruction (Leutner, 2004; Shute & Zapata-Rivera, 2008). 

Accordingly, ALSs are computerized learning systems that are equipped with system adaptivity 

for supporting student learning. A relevant but different concept from system adaptivity is 

system adaptability (also called learner control or user control). Chou et al. (2015) described 

adaptability as “systems provide an adaptable framework, tools, or choices to enable learners to 

adapt content sequences, pacing, context, task difficulty, and learning supports per their needs 

and preferences”. In the present study, system adaptation indicates system-controlled adaptation 

(i.e., system adaptivity), unless otherwise specified. 

Tracing the developmental history of ALSs is beneficial to understand what an ALS is 

and how it is different from other educational technologies. The following section begins with 

two intertwined technologies (i.e., intelligent tutoring systems and adaptive educational 

hypermedia systems) that collaboratively boost the development and prosperity of ALSs. They 

are presented in chronological order in the section that follows.  

Development History of Adaptive Learning Systems 

Intelligent Tutoring Systems 

Intelligent tutoring systems emerged in the 1980s and aimed to instruct learners in an 

intelligent way. There is no generally agreed single definition of what it means to tutor 

“intelligently”. However, a characteristic shared by many intelligent tutoring systems is that they 

infer models of individual learners’ current understanding of a subject and use this model to 

provide individualized instructions (Ma et al., 2014). For example, SCHOLAR, which is often 

regarded as the first intelligent tutoring system (Carbonell, 1970), constructed questions on given 
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topics, carried on contextual dialogues with learners, and provided feedback on the correctness 

of learners’ responses to questions about the geography of South America.  

With respect to intelligent tutoring systems, researchers have articulated a four-

component conceptual structure: an interface, a domain model, a learner model, and a tutoring 

model. These four structural components are generally accepted and remarkably resilient, even 

as intelligent tutoring systems themselves vary significantly in their contents (Dede, 1986; 

Hartley & Sleeman, 1973). The function of an interface is to communicate with learners by 

presenting and receiving information. To some degree, an interface determines what operations 

learners can make in responding to questions and seeking information. A domain model includes 

knowledge that learners intend to grasp (Nwana, 1990). A set of logical propositions, production 

rules, or any suitable knowledge representation format can be defined in a domain model. A 

learner model of intelligent tutoring systems represents relevant aspects of learners’ traits, which 

is determined by learners’ responses to questions or their interactions with the interface. A 

tutoring model represents instructional strategies such as offering a hint or cue when learners are 

unable to generate a correct response or assigning a problem that requires knowledge only 

slightly beyond the current knowledge level (Ma et al., 2014).  

Instead of emphasizing the structure of intelligent tutoring systems, VanLehn (2006) 

summarized their behavior. Specifically, there are two loops embedded in intelligent tutoring 

systems: the outer loop and the inner loop. There are four common types of the outer loop 

(VanLehn, 2006): (a) the learner selects a task from a menu of all tasks; (b) the system assigns 

tasks in a predetermined sequence; (c) the system assigns tasks from a unit’s pool of tasks until 

the learner has mastered the knowledge taught by the unit; (d) the system tracks learners’ traits 

such as learning styles and mastered knowledge components and chooses a task based on the 



 

14 
 

match between the task’s traits and the learner’s traits. The outer loop executes once for each 

task. In contrast, the inner loop executes once (e.g., give feedback and hints) for each step taken 

by the learner when solving a task (VanLehn, 2006). The inner loop can also assess the learner’s 

changing competence and update a learner model, which is used by the outer loop to select the 

next task that is appropriate for the learner. 

For example, the Basic Instructional Program (BIP), as an example of earlier intelligent 

tutoring systems (Barr et al., 1976), offered tutorial assistance to learners solving introductory 

programming problems. Its domain model presented curriculum structure and also constructed a 

domain representation that mapped target skills to programming tasks. Learners’ performance on 

tasks supported inferences about their acquisition of skills linked to these tasks. The problem 

presentation sequence is individualized based on curriculum structure and individual learners’ 

state of knowledge. A recent example of an intelligent tutoring system is a C# language 

intelligent tutoring system developed by Al-Bastami and Naser (2017). After selecting a lesson 

that learners intend to learn, they are presented with many questions relevant to the chosen 

lesson. Based on learners’ performance on questions, they are suggested to go back to easier 

lessons (i.e., less than 50% mark), repeat exercises within the same lesson (i.e., between 50% and 

70%), or move to more difficult lessons (i.e., more than 70% mark). Learning materials relevant 

to C# language topics are stored in its domain model. In its tutoring model, learners can practice 

questions generated at every difficulty level of each lesson. 

As the field of AI techniques develops, intelligent tutoring systems are capable of 

customizing instructional activities and strategies based on learners’ characteristics and needs, 

which are not limited to knowledge levels (e.g., Cha et al., 2006; Malekzadeh et al., 2015). 

Although learner knowledge is the most common factor that is modeled in intelligent tutoring 
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systems, other characteristics such as learning styles, activities, and affect states are becoming 

increasingly prevalent recently. Overall, modeling learner characteristics to build learner models 

and to provide individualized instruction is the essential feature that distinguishes intelligent 

tutoring systems from earlier computer-based instructional systems (e.g., computer-assisted 

instruction systems; Ge et al., 2012; Ma et al., 2014).  

The number of systematic reviews and meta-analyses of intelligent tutoring systems is 

mounting in recent ten years. For example, Mousavinasab et al. (2021) conducted a systematic 

review of characteristics, applications, and evaluation methods of intelligent tutoring systems 

from 2007 to 2017. They found that action-condition rule-based reasoning, data mining, and 

Bayesian network were the most frequent AI techniques used in intelligent tutoring systems. In 

addition, the majority of intelligent tutoring systems were evaluated based on learners’ 

performance after using the systems. Positive evidence for the effectiveness of intelligent 

tutoring systems on student academic learning accumulated over the years. For example, Ma et 

al. (2014) conducted a meta-analysis of intelligent tutoring systems and found that there are 

positive effect sizes at all levels of education and in almost all subject domains. Kulik and 

Fletcher (2016) further clarified the median effect of intelligent tutoring systems on learning 

performance is 0.66 standard deviations higher than conventional teaching.  

Adaptive Educational Hypermedia Systems 

At the end of the 20th century and the beginning of the 21st century, the combination of 

AI and hypermedia technology produced a new set of systems, namely adaptive hypermedia 

systems. According to Brusilovsky (1996), an adaptive hypermedia system should satisfy three 

criteria: (a) it should be a hypertext or hypermedia system; (b) it should have a user model; (c) it 

should be able to adapt based on the user model. There are various application areas of adaptive 
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hypermedia systems (e.g., online information systems), among which the area of adaptive 

educational hypermedia systems is most popular (Brusilovsky, 2001). 

Inspired by intelligent tutoring systems, adaptive educational hypermedia systems try to 

combine adaptive instructional systems and hypermedia-based systems to produce applications 

in which learning content, link structures, and presentation styles are dynamically adapted to 

learner characteristics. A typical architecture of adaptive educational hypermedia systems 

consists of two layers (see Figure 2; Nguyen & Do, 2008): runtime layer and storage layer. Like 

an interface of an intelligent tutoring system, the runtime layer of an adaptive educational 

hypermedia system is also responsible for presenting adaptive learning materials to learners and 

observing learners’ actions (Nguyen & Do, 2008).  

The storage layer is the main engine that controls the adaptive process with four sections: 

(a) a learner model describes information and data about an individual learner, such as 

knowledge status and learning style preferences. Information gathered from the runtime layer 

can also be used to update the learner model; (b) a media space contains learning resources and 

associated descriptive information; (c) a domain model describes the structure of domain 

knowledge; (d) an adaptation model contains concept selection rules and content selection rules. 

Concept selection rules are applied to select an appropriate concept from the domain model. 

With regards to content selection rules, they are used to choose a suitable educational resource 

from the media space. 
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Figure 2. The General Architecture of Adaptive Educational Hypermedia Systems 
 

Note: This model was produced by Nguyen and Do in 2008. From “Learner model in adaptive 
learning”, by L. Nguyen and P. Do, 2008, World Academy of Science, Engineering and 
Technology, 21, p. 396. 
 

An adaptive e-learning hypermedia system based on learning styles, which is developed 

by Mustafa and Sharif (2011), is a good example of an adaptive educational hypermedia system. 

In the system, learners’ learning styles and knowledge levels were recognized and stored in its 

learner model. Specifically, the system used Fleming’s visual, aural, read/write, and kinesthetic 

learning style model (Fleming, 2001) to classify learners into four learning style categories: 

learners in a visual category prefer to receive information in maps, diagrams, flow charts, and all 

symbolic arrows; learners in an auditory category have a preference for information that is heard 

or spoken; learners in a read/write category tend to receive information displayed as text; 

learners in a kinesthetic category prefer to use experience and practice to obtain information. In 
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addition, the system used an evaluation quiz to identify learners' knowledge about each domain 

knowledge concept. Accordingly, the system is typified by two kinds of adaptations: learning 

style adaptation and prior knowledge adaptation.  

The learning style adaptation regulates which object concepts from resource space are 

chosen for learners with specific types of learning styles. The knowledge adaptation mechanism 

determines which concepts from knowledge space to be covered based on knowledge attributes 

in its learner model. Object concepts are indexed to knowledge attributes and are also labeled 

with text, audio, visual, and kinetic values. It is worth noting that lesson contents appear in its 

navigation area as a tree-like structure of hyperlinks, whilst learning content is presented with the 

media matched for learners’ preference in its content area. 

There are some literature reviews of adaptive educational hypermedia systems (Akbulut 

& Cardak, 2012; Al-Azawei & Badii, 2014). For example, Akbulut and Cardak (2012) 

conducted a content analysis of seventy studies on adaptive educational hypermedia systems that 

accommodate learning styles. They found that the majority of studies proposed a framework or 

model for adaptation whereas few studies investigated the effectiveness of learning style-based 

adaptive educational hypermedia systems. The insufficiency of studies with empirical 

evaluations of systems might explain the absence of meta-analytic studies in this field. 

Comparisons Between the Two Types of Systems 

Intelligent tutoring systems and adaptive educational hypermedia systems are two major 

research streams in the field of ALSs. Intelligent tutoring systems provide problem solving 

support by tracing learners’ actions and responses (Desmarais & d Baker, 2012). Certain 

limitations exist such as they may lack requisite learning material, their regular application is in 

well-structured domains (e.g., geometry, programming, physics, and algebra; Anderson, 2000), 



 

19 
 

and it is hard to formalize learning processes including metacognition and reflection. Adaptive 

educational hypermedia systems research was motivated by addressing the issues of intelligent 

tutoring systems and some problems related to online learning such as cognitive overload and 

disorientation (Brusilovsky & Peylo, 2003). 

In the narrow sense, tutoring models of intelligent tutoring systems may behave 

differently from adaptation models of adaptive educational hypermedia systems. Intelligent 

tutoring systems assist learners in solving a problem by offering moment-to-moment hints, cues, 

or prompts on any step of a solution or a full solution. However, adaptive educational 

hypermedia systems usually utilize the whole information in learner models and guide learners 

through link, learning content, or presentation mode adaptation. 

VanLehn (2006) disambiguated intelligent tutoring systems from other learning systems 

with inner-loop and outer-loop adaptations. The inner-loop adaptation means systems help 

learners while they are working on a given learning task. Typically, the inner-loop adaptation 

performs step-specific scaffolding strategies, such as error-correction feedback and cues that 

orient students to essential parts of the current task state. The outer-loop adaptation, in contrast, 

determines the next learning task that learners will perform, such as a problem to solve or a 

learning material to read. As stated by Nye (2015), the inner-loop adaptation is a defining 

characteristic of intelligent tutoring systems, whereas other learning systems (e.g., adaptive 

educational hypermedia systems) usually employ the outer-loop adaptation. These differences 

correspond to their diverse functions: intelligent tutoring systems generally assist in the use of 

concepts to solve problems whereas adaptive educational hypermedia systems are better suited 

for the instruction of subject concepts (Phobun & Vicheanpanya, 2010). 
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However, with computational advances, the scopes and objectives of intelligent tutoring 

systems and adaptive educational hypermedia systems cannot be sharply demarcated. Their 

advantages in personalized learning are gradually merged to provide a full learning environment 

(Phobun & Vicheanpanya, 2010). For example, Brusilovsky and Peylo (2003) proposed adaptive 

and intelligent web-based educational systems (AIWBESs) as a new and exciting stream of work 

in the AI-Ed field. Both intelligent tutoring systems and adaptive educational hypermedia 

systems are considered as classic AIWBES technologies. Evolving from AIWEBSs, ALSs 

frequently introduce new means of adaptive mechanisms (e.g., educational data mining, learning 

analytics) into commonly adaptive learning facilities (e.g., adaptive educational hypermedia 

systems or some intelligent tutoring systems). In this regard, adaptive educational hypermedia 

systems and intelligent tutoring systems collaboratively level up the development of ALSs. Thus, 

ALSs could be adaptive educational hypermedia systems or intelligent tutoring systems with 

adaptive functionality (Abyaa et al., 2019; Nguyen & Do, 2008; Vandewaetere et al., 2011).  

Common Structures of Adaptive Learning Systems 

Constructing an ALS is labor-intensive (Murray, 1999). Although designers and 

researchers aim to build ALSs that can greatly advance users’ learning, notable disparities come 

up in terms of system effectiveness in improving learner learning outcomes. For example, Yang 

et al. (2013) found a significantly better learning achievement when learners applied an ALS in a 

computer science course. However, Liu et al. (2017) did not find significant improvement in 

learners’ learning in biology, chemistry, and information literacy using an ALS. The incongruous 

performance might be because different ALSs provide varying degrees of adaptations depending 

on the subjects (Koedinger et al., 2012) and/or knowledge components (Aleven & Koedinger, 

2013). Thus, identifying factors that would affect system effectiveness is becoming increasingly 
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critical (Brusilovsky et al., 2004). Nevertheless, studies on ALSs typically examine the 

effectiveness of one ALS only and sparsely involve comparisons (Vandewaetere et al., 2011). 

This in turn leads to difficulties in recognizing influential factors of system effectiveness. 

Common grounds of diverse ALSs, which have been recognized by prior studies (Brusilovsky et 

al., 2004; Vandewaetere et al., 2011), served as a useful starting point for further investigation of 

influential factors of system effectiveness. They are Brusilovsky et al.’s (2004) layered 

evaluation structure and Vandewaetere et al.’s (2011) tripartite structure. 

Layered Evaluation Structure 

Brusilovsky et al. (2004) pointed out the success of an ALS is addressed at two distinct 

layers: learner modeling and adaptation decision-making. 

Learner Modeling. For an ALS, the process of gathering relevant information in order to 

infer cognitive and non-cognitive state of a learner is defined as learner modeling (Abyaa et al., 

2019; Thomson & Mitrovic, 2009). Learner models are computational representations of 

learners’ characteristics so as to be accessible and useful to ALSs. Imagine a learner model as an 

avatar of a real learner in the virtual world, the contents of learner models correspond to the 

characteristics of a real learner (Yang et al., 2013).  

Adaptation Decision-Making. Based on learner models derived from the learner 

modeling phase, adaptation decisions are made to generate specific adaptive effects (i.e., to 

behave differently for different learners). The logic of adaptation decision-making is often 

captured into a set of adaptation rules that determine which adaptation constituent(s) should be 

selected. Adaptive effects could be adaptive presentations, adaptive navigations, and adaptive 

content aggregations (Esichaikul et al., 2011; Premlatha & Geetha, 2015).  
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The adaptive presentation indicates adapting the presentation of information to individual 

learners in accordance with their characteristics. That is, a hypermedia page is individually 

assembled for each learner. Common technologies of adaptive content presentation include 

conditional text, stretch text, and page variables (Nguyen & Do, 2008). The adaptive navigation 

refers to manipulation of a linkage structure to guide individuals to find learning content. Popular 

technologies of adaptive navigation include direct guidance, adaptive link hiding, adaptive link 

sorting, adaptive link annotation, adaptive link generation, and map adaptation (Nguyen & Do, 

2008). The adaptive content aggregation adapts learning content to learners’ knowledge, goals, 

and other features (Premlatha & Geetha, 2015).  

For example, Yang et al. (2013) developed an ALS based on learners’ learning styles and 

cognitive styles. They utilized learning styles to achieve adaptive content aggregation, whereas 

cognitive styles are used to deal with adaptive navigation modes. In particular, the ALS provides 

learners with a visual learning style with more visual learning materials (e.g., diagrams, sketches, 

photographs); the ALS serves learners with a sensing learning style with more specific examples 

of concepts and illustrations of how concepts can be applied to practical applications. In addition, 

learners with a field-dependent cognitive style are supplied with links to the current learning 

content. This separate presentation form aims to avoid distractions from learning content. On the 

contrary, learners with a field-independent cognitive style are served with other relevant 

information at the same time to help them make a comprehensive inspection of learning content.  

To summarize, learner modeling generates and updates learner models, based on which 

adaptation decision-making process brings about adaptive effects (e.g., adaptive presentation or 

adaptive navigation, see Figure 3). In this study, the learner profile is defined differently from the 

learner model. This is also the view held by Nguyen & Do (2008): learner profile describes basic 
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information about a learner (e.g., gender, class, questionnaire response); in contrast, learner 

model depicts references about learner characteristics based on information stored in learner 

profile and/or learner interactions with learning systems. Keeping track of previous ALSs, it can 

be noted that the same learner model can produce varied adaptation decisions. For example, 

Yang et al. (2013) provided adaptation navigation based on learners’ cognitive styles (i.e., field 

dependence/independence). However, Triantafillou et al. (2004) adapt presentation modes to 

learners’ cognitive styles (i.e., field dependence/independence). The independence of the two 

layers enables us to evaluate them independently (Brusilovsky et al., 2004). 

 
 

Figure 3. Two Layers Decomposed from Adaptive Learning Systems 
Note: This structure was produced by Brusilovsky et al. in 2004. From “Layered evaluation of 
adaptive learning systems”, by P. Brusilovsky, C. Karagiannidis, and D. Sampson, 2004, 
International Journal of Continuing Engineering Education and Life Long Learning, 14(4–5), p. 
406.   
 
Tripartite Structure  

After reviewing a large number of studies on ALSs, Vandewaetere et al. (2011) extracted 

underlying building blocks across different ALSs, which constitute a tripartite structure (see 

Figure 4). The first component is the source of adaptive instruction, the second component refers 
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to the target of adaptive instruction, and they are connected to each other by the third 

component—pathway.  

 
Figure 4. Tripartite Structure of Adaptive Learning Systems 

Note: This structure was produced by Vandewaetere et al. in 2011. From “The contribution of 
learner characteristics in the development of computer-based adaptive learning environments”, 
by M. Vandewaeter, P. Desmet, and G. Clarebout, 2011, Computers in Human Behavior, 27, p. 
122. 
 

The Source and Target of Adaptive Instruction. The source of adaptive instruction, as 

a starting point from where adaptation occurs, determines what type of adaptation an ALS can 

provide (Siddique et al., 2019). It answers the question “To what will be adapted in an ALS?” In 

contrast, the target of adaptive instruction responds to the question “What will be adapted in an 

ALS?” Specifically, the target comes in many forms such as adaptive content, adaptive 

presentation, and adaptive navigation. 

The Pathway of Adaptive Instruction. The pathway of adaptive instruction targets to 

address the question “How to translate source into target?” Vandewaetere et al. (2011) called the 

route from the source to the target as a modeling process. In addition, they summarized modeling 

approaches in computer-based ALSs and categorized them into four types: (a) stereotype 
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modeling; (b) feature-based modeling; (c) the combination of stereotype modeling and feature-

based modeling; and (d) constraint-based modeling.  

Stereotype modeling clusters learners into different groups. Learners in the same group 

share common characteristics and receive the same instruction adapted to the group feature. 

Instead of modeling learners at a group level, feature-based modeling is a more fine-grained 

approach and focuses on modeling specific features of individual learners such as their prior 

knowledge, interests, and learning goals. The advantage of feature-based modeling is the ability 

to dynamically track changes in learner characteristics. Constraint-based modeling mainly 

focuses on erroneous knowledge (e.g., learners’ errors or misconceptions). This method follows 

Ohlsson’s learning theory of performance errors, in which he argues that learning is 

demonstrated through the correction of errors (Ohlsson, 1996).  

Among these modeling categories, feature-based modeling is currently the dominant 

approach in web-based adaptive systems (Brusilovsky & Millán, 2007). The combination of 

feature-based modeling with stereotype modeling is a promising direction. It means that a learner 

is classified into a group firstly where after an individual feature-based model is initiated. This 

method allows for alleviating the effect of the cold start problem in adaptive learning 

environments, where no or very limited information about new learners is available when they 

enter an ALS (Brusilovsky & Millán, 2007; Pliakos et al., 2019). The four categories described 

by Vandewaetere et al. (2011) are coarse-grained classifications of modeling techniques in 

ALSs. Specific modeling approaches to individual characteristics are not touched upon in their 

study. 

For example, Tseng et al. (2008) developed an ALS, in which student learning behavior 

and learning styles were adapted. Specifically, the system can provide subject materials 
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(adaptation target: adaptive content) at different difficulty levels after monitoring student test 

scores and learning time on subject units. In addition, the system presented learning materials in 

the sequential form or using non-linear hypermedia based on student learning styles (adaptation 

target: adaptive presentation). By comparison, Yang et al. (2013) established an ALS by 

including student cognitive styles and learning styles as adaptation sources. Its layout (adaptation 

target: adaptive presentation) was based on student cognitive styles (i.e., field-dependent, field-

independent) and its instructional strategy (adaptation target: adaptive content) was in harmony 

with student learning styles (e.g., active, reflective). 

Comparisons of the Two Common Structures 

Since Brusilovsky et al. (2004) proposed the layered evaluation structure, it has greatly 

facilitated studies of developing and evaluating new ALSs (e.g., Chrysafiadi & Virvou, 2013; 

Ounaies et al., 2012). Likewise, the tripartite structure of ALSs proposed by Vandewaetere et al. 

(2011) has acted as an important impetus in carrying out new literature reviews on adaptation 

source (e.g., Normadhi et al., 2019; Truong, 2016), adaptation pathway (e.g., Almohammadi et 

al., 2017; Mavroudi et al., 2018), and adaptation target (e.g., Premlatha & Geetha, 2015). Their 

broad quotations, which are supported by the number of times cited by other studies (i.e., 224 

and 242), demonstrate the two structures are generally applicable to ALSs, if not all-inclusive.  

Although outwardly different, the layered structure and the tripartite structure are 

connected internally. Learner characteristics, learner modeling, and adaptive effects in the 

layered structure correspond to the source, the pathway, and the target of adaptive instruction in 

the tripartite structure, respectively (Martin et al., 2020). However, the tripartite structure does 

not touch upon the adaptation decision-making process. Nonetheless, both structures emphasize 

the importance of learner modeling in ALSs (Martin et al., 2020). In fact, learner modeling could 
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be regarded as a construct with three layers (Brusilovsky & Millán, 2007): (a) What is being 

modeled (the nature of learner characteristics)? (b) How is the information represented 

(structures of modeled learner characteristics)? And (c) how different kinds of models are 

maintained (learner modeling approaches)? In summary, learner modeling, involving learner 

characteristics (i.e., nature and structure) and modeling approaches, is a crucial component of 

ALSs. However, it remains a topic of much debate (Abyaa, 2019; Martin et al., 2018). The 

literature on learner modeling of ALSs is particularly reviewed in the following section. 

Learner Modeling 

Rarely do ALSs from different authors share an identical learner modeling component. 

The lack of coherence stems from various modeling technologies being used to establish learner 

models as well as different pedagogical theories being applied to the creation of the models. This 

section examined existing literature reviews on learner modeling, followed by three commonly 

involved learner characteristics in ALSs and their modeling approaches. 

Existing Literature Reviews on Learner Modeling 

To configure the learner model of an ALS, researchers and designers need to carefully 

consider what information and data about learners should be gathered and how it can be 

accurately modeled (Nguyen & Do, 2008). The more appropriate and precise the learner model 

is, the more advanced adaptive effects the ALS can provide (Abyaa, 2019; Vandewaetere et al., 

2011). Given the significance of learner modeling in ALSs, five studies in the past decade 

reviewed learner modeling (i.e., Abyaa et al., 2019; Chrysafiadi & Virvou, 2013; Nakic et al., 

2015; Normadhi et al., 2019; Vandewaetere et al., 2011). 

As shown in Table 1, a wide variety of learner characteristics has been included in the 

development of ALSs. Nakic et al. (2015) enumerated 16 different variables that act as the 
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source of adaptive instruction in ALSs. The other four studies categorized learner characteristics 

into groups (e.g., cognition, affect, and behavior) and each group contains several fine-grained 

features. However, none of the existing ALSs model all these features to provide adaptive effects 

in practice. Most ALSs model only a small number of learner characteristics. For example, Nakic 

et al. (2015) found that the most frequently used variable for adaptation is learning style. The 

second most commonly used variable is background knowledge, while cognitive styles and 

preferences are following. Martin et al. (2020) also found that learning style is the most used 

learner characteristic, followed by cognitive style and thinking style, and learner prior 

knowledge. In summary, current literature reviews reach a consensus that learning style, 

cognitive style, and prior knowledge are the most commonly modeled learner characteristics in 

ALSs. The remainder of this section elaborates on the nature, structure, and modeling approaches 

of learning style, cognitive style, and prior knowledge, separately. 

Learning Style and Modeling Approach 

Within the last three decades, the proposition that learner study in different ways has 

emerged as a prominent pedagogical issue (Hawk & Shah, 2007). Learning style is typically 

defined as the way people learn and prefer to learn (Honey & Mumford, 1992; Jonassen & 

Grabowski, 1993; Truong, 2016). Different learners have different favored methods to acquire 

knowledge. For example, some learners may understand quickly through graphical 

representations of learning materials; in contrast, some may prefer audio materials (Popescu,   
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Table 1 
 
Literature Reviews on Learner Modeling of ALSs 
 

Authors Year Title Venue Learner Characteristics 

Vandewaetere 
et al. (2011) 

No year 
limitation 

The 
contribution of 
learner 
characteristics 
in the 
development of 
computer-based 
adaptive 
learning 
environments 

Computers 
in Human 
Behavior 

(1) Cognition 
(2) Affect 
(3) Behavior 

Chrysafiadi & 
Virvou (2013) 

2002 to 
2012 

Student 
modeling 
approaches: A 
literature review 
for the last 
decade 

Expert 
Systems 

with 
Applicatio

ns 

(1) Knowledge 
(2) Errors/Misconceptions 
(3) Learning styles & 

Preferences 
(4) Other cognitive aspects 
(5) Affective features 
(6) Motivation 
(7) Meta-cognitive features 

Nakic et al. 
(2015) 

2001 to 
2013 

Anatomy of 
student models 
in adaptive 
learning 
systems: A 
systematic 
literature review 
of individual 
differences from 
2001 to 2013 

Journal of 
Education

al 
Computing 
Research 

(1) Age 
(2) Gender 
(3) Cognitive abilities 
(4) Meta-cognitive abilities 
(5) Psychomotor skills 
(6) Personality 
(7) Anxiety 
(8) Emotions and affect 
(9) Cognitive styles 
(10) Learning styles 
(11) Experience 
(12) Background 
knowledge 
(13) Motivation 
(14) Expectations 
(15) Preferences 
(16) Interaction styles 

Normadhi et al. 
(2019) 

2010 to 
2017 

Identification of 
personal traits in 
adaptive 

Computers 
&  

Education 

(1) Cognition 
(2) Affective 
(3) Behavior 
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learning 
environment: 
Systematic 
literature review 

Abyaa et al. 
(2019) 

2013 to 
2017 

Learner 
modelling: 
Systematic 
review of the 
literature from 
the last 5 years 

Education
al 

Technolog
y Research 

and 
Developme

nt 

(1) Student profile 
(2) Knowledge 
(3) Cognitive 

characteristics 
(4) Social characteristics 
(5) Personality traits 
(6) Motivation 

2008). Keefe (1991) indicated that learning style is not only a characteristic that indicates how a 

learner studys and prefers to study but also an instructional strategy informing the cognition, 

context, and content of learning. Learning style has been included in a considerable number of 

ALSs. Most of these ALSs explore content-level adaptation attempting to match a learner with a 

specific learning style to content that should be the most appropriate for his/her learning style. 

Reviewing previous learning style-based ALSs revealed two main approaches to modeling 

learners’ learning styles. 

First, several inventories or questionnaires are applied to label learners with learning 

styles. One learning style model is the Felder-Silverman learning style (FSLS), which has been 

adopted by many ALSs (e.g., Hong & Kinshuk, 2004; Paredes & Rodriguez, 2004). The FSLS 

model classifies learners into four dimensions: active/reflective, sensing/intuitive, visual/verbal, 

and sequential/global (Felder & Silverman, 1988). Another learning style model is the visual, 

aural, read/write, and kinesthetic, which divides learners according to sensory preferences for 

learning (Fleming & Mills, 1992). As concluded by Truong (2016), the FSLS model is by far the 

most widely used learning style model in ALSs. For example, Hong and Kinshuk (2004) use the 

FSLS model to categorize learners into different learning styles, based on which their ALS 

presents course contents to individual learners. Specifically, if learners are recognized as with the 
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sensing style, the system provides examples first, followed by exposition; in contrast, learners 

with the intuitive style receive exposition first, followed by examples. 

Although questionnaires are easy to use, results from questionnaires may be biased as 

they depend on self-assessments of learners. In addition, results from questionnaires are not easy 

to update when learning styles change over time (Truong, 2016). For example, the questionnaire 

corresponding to the FSLS model can reach over 40-question long, thus updating learning styles 

would be time extensive. These drawbacks of questionnaires have encouraged a growing number 

of researchers to explore other alternative approaches. Recently, studies have been more 

concerned with automatically detecting learners’ learning styles, with the aid of machine 

learning algorithms. The rationale is simple: learners’ actions and interactions with ALSs’ 

interfaces are analyzed to acquire learners’ learning styles.  

For example, Graf et al. (2010) introduced a framework that monitors learners’ actions in 

online courses and uses this information to frequently update learners’ learning styles. Using the 

FSLS model, action information (e.g., the number of times a learner visited or skipped a content 

page) serves as indications of a specific type of learning style (e.g., global style). In comparison 

with questionnaires, modeling learners’ learning styles with machine learning algorithms is 

unobtrusive and likely to produce more user-friendly ALSs (Abyaa et al., 2019). However, one 

challenge of implementing machine learning algorithms to model learners’ learning styles is to 

figure out connections between learning styles and observations of learners’ actions and 

behaviors in ALSs. Most of the research done in this area requires the usage of questionnaires to 

validate the accuracy of machine learning classifiers (Rasheed & Wahid, 2021).    

Although learning style is the most widely modeled learner characteristic in ALSs, there 

are no proven recipes for its usage. First, the extent to which such learning style-based ALSs 
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improve learners’ learning performance is unclear at present. In the background of classroom 

learning, a number of experimental studies (e.g., Papanagnou et al., 2016), which aim to evaluate 

the value of treating learners with different learning styles differently, concluded findings 

without any significant differences. Aslaksen and Lorås (2018) reviewed studies that examined 

the impact of tailoring instruction toward learning style preferences on learning outcomes. They 

did not find supportive statistical evidence for enhanced learning outcomes by aligning 

instruction to specific learning styles. However, some studies have reported that students’ 

learning performance could be improved if proper learning style dimensions could be taken into 

consideration when developing ALSs (e.g., Hauptman & Cohen, 2011; Hwang et al., 2013). 

Given that learning style is quite a prevalent feature in ALSs, it is necessary to examine the 

benefits that learning style-based ALSs bring to learning outcomes.  

Second, diverse structures of learning styles are available when researchers and designers 

establish ALSs. As claimed by Tseng et al. (2008), Keefe’s learning style, which is used to 

identify sequential processing, discrimination, analytic, and spatial of learners, is the most 

suitable model for a web-based ALS. However, there is no supportive evidence for this claim. In 

practice, ALSs typically involve a specific learning style structure; they rarely incorporate more 

than one learning style structure and compare their effects on learning outcomes improvement. 

Because of this, it seems arbitrary to conclude that Keefe’s learning style structure is the best 

option for ALSs. A meta-analysis allows us to compare the effects of different learning style 

structures and modeling approaches on learners’ learning outcomes. 

To sum up, questions such as “the extent to which such learning style-based ALSs 

improve learners’ learning performance” and “whether system effectiveness of ALSs with 
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different combinations of learning style structure and modeling approaches is sufficiently 

different” deserve further exploration.  

Cognitive Style and Modeling Approach 

Researchers typically define cognitive style as an individually preferred and habitual 

approach to organizing and representing information (Messick, 1984; Riding & Rayner, 1998). 

Learners’ differences in cognitive style relate to different browsing strategies and learning 

preferences. For example, field-dependent learners generally perceive things in the entire 

perceptual field, whereas field-independent learners tend to see things individually (Witkin et al., 

1977). In computer-based learning environments, cognitive style has been regarded as one of the 

key learner characteristics to system configuration. Likewise, some ALSs are typified by 

presentation- or navigation-level adaptation attempting to match a learner typified with a 

cognitive style to a specific interface condition (Mampadi et al., 2011; Uruchrutu et al., 2005). 

Questionnaires relevant to different cognitive style models are used to measure learners’ 

cognitive styles in ALSs. The most exploited constructs of cognitive styles are field 

dependence/field independence (Witkin et al., 1977), holist-serialist cognitive style (Pask, 1976), 

and verbalizer/imager cognitive style (Riding & Buckle, 1990). These cognitive styles have been 

successfully employed in the implementation of different instructional strategies in ALSs (e.g., 

Stash & De Bra, 2004; Triantafillou et al., 2004). For example, Triantafillou et al. (2004) 

developed an adaptive educational system based on cognitive styles (AES-CS). In the AES-CS, 

the Group Embedded Figures Test (GEFT) is the tool to determine learners’ cognitive styles (i.e., 

field-dependent/independent). The system adapts system presentations to learners’ cognitive 

styles. Specifically, field-dependent learners are provided with learning materials from general to 
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specific. In contrast, learners with a field-independent cognitive style are served with learning 

contents from specific to general. 

Research results about the impact of incorporating cognitive style as an adaptation source 

on the effectiveness of ALSs is a story of mixed success. On one side, a number of studies 

confirmed that learners with different cognitive styles search and browse information differently. 

On the other side, few successful stories on using cognitive styles to increase system 

effectiveness were reported. For example, Uruchrutu et al. (2005) found that most participants 

show their preference for the image and whole interface or the verbal and analytic interface. 

However, there is no significant improvement in participants’ learning performance when they 

are in a matched interface condition. The possible reason is that learning strategies developed by 

learners (e.g., learning skills, strategies, and study orientations) prevail over their cognitive styles 

in improving learning. As a whole, the situation of modeling cognitive styles in ALSs is similar 

to the case of including learning styles in ALSs: Adaptation to cognitive styles may hold 

potential to improve the effectiveness of ALSs, but existing research offers almost no practical 

suggestions on what structures of cognitive style deserve modeling in ALSs. 

Prior Knowledge and Modeling Approach 

Learners’ prior knowledge of the subject or the domain being taught is often used to 

adapt learning content in ALSs (Brusilovsky & Millan, 2007; Chrysafiadi & Virvou, 2013). The 

majority of ALSs focused on two types of domain knowledge: conceptual knowledge (i.e., facts 

and relationships) and procedural knowledge (i.e., problem-solving skills). Conceptual 

knowledge is typically represented in the form of a network of concepts. Procedural knowledge 

is most frequently represented as a set of problem-solving rules. Systems that focus on helping 

learners solve educational problems usually rely on procedural knowledge. In contrast, systems 
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that assist learners in selecting educational content always rely on conceptual knowledge. The 

process of modeling learners’ prior knowledge is also called knowledge modeling. There are 

multiple knowledge modeling approaches available for ALSs. 

The simplest form of knowledge modeling is the scalar model approach, which estimates 

the level of learner domain knowledge by a single value on a quantitative scale (e.g., a number 

ranging from 0 to 5) or qualitative scale (e.g., good, average, poor). A number of ALSs use the 

scalar model to support an adaptive presentation. That is, systems divide learners into distinct 

groups according to their knowledge level and serve different versions of learning content to 

learners with different levels of knowledge.  

Another form of knowledge modeling is the overlay model. The purpose of the overlay 

model is to represent an individual learner’s knowledge as a subset of a domain model, which 

reflects expert-level knowledge of a subject. In order to use the overlay model, domain 

knowledge must be able to be broken down into generic items such as rules, concepts, and facts. 

Basically, the overlay model estimates the mastery status of each item in the domain model (i.e., 

yes or no). Thereby, the complexity of the overlay model depends on the granularity of the 

domain model structure. As concluded by Chrysafiadi and Virvou (2013), the overlay approach 

is the most preferred technique for representing learners’ mastery of knowledge.  

With advances in educational data mining algorithms, learners’ mastery status represents 

the degree to which students know a domain fragment. That is, educational data mining 

algorithms are combined with the overlay model to infer learners’ knowledge states. Unlike yes 

or no resulting from the overlay model, educational data mining algorithms provide probabilistic 

diagnoses of mastering state. For example, Chrysafiadi and Virvou (2013) developed the fuzzy 

knowledge state definer, which is able to dynamically identify and update a learner’s knowledge 
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level of all the concepts of the domain knowledge. The functionality is achieved by combining 

fuzzy theory with the overlay model. 

Research Gaps and the Need for a Meta-Analysis 

As a new generation of technology-enhanced learning systems, ALSs have attracted high 

interests of researchers over the previous three decades. There have been dozens of reviews that 

summarized critical components of ALSs (e.g., Vandewaetere et al., 2011). Additionally, some 

studies specifically reviewed learner modeling of ALSs (e.g., Abyaa et al., 2019; Martins et al., 

2008). However, upon closer inspection, several questions concerning system effectiveness in 

promoting student learning performance are still unresolved. 

First, the overall effectiveness of ALSs in improving student learning outcomes is 

unclear. Basically, ALSs are established to achieve personalized learning on a large scale. As an 

exemplary method of personalized learning, one-to-one tutoring was found to be with a two-

sigma effect size compared with group instruction (Bloom, 1984). More recently, the effect size 

of intelligent tutoring systems in promoting learning outcomes has been broadly investigated 

(e.g., Kulik & Fletcher, 2016; Ma et al., 2014). For example, Ma et al. (2014) found that the use 

of intelligent tutoring systems was associated with greater student achievement (Hedges’s g = 

0.42) in comparison with teacher-led, large-group instruction. Although intelligent tutoring 

systems lay the groundwork for the development of ALSs, they are not equivalent.  

In addition to intelligent tutoring systems which are typified by system adaptation, 

adaptive educational hypermedia systems also account for a large proportion of ALSs. However, 

there is a dearth of meta-analyses of empirical studies on adaptive educational hypermedia 

systems. The conclusion of a medium-to-large effect size of ALSs in Verdú et al.’s (2008) study 

requires further verification by meta-analyses. The effect size of ALSs concluded by Fontaine et 
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al. (2019) is only suitable for health professionals and students. This dissertation intends to 

provide a more accurate effect size estimate by conducting a systematic meta-analysis with a 

comprehensive review of existing ALSs studies that focused on the evaluation of ALSs’ effects 

on learner learning outcomes. Thereupon, the estimated effect size would provide an orientation 

on how far existing ALSs are away from other instructions (e.g., one-to-one tutoring, intelligent 

tutoring systems) in advancing learning achievements. 

Second, although the diversity of existing ALSs is widely accepted, no research is 

available on the difference in their effectiveness in promoting learning achievement. For 

example, the importance of learner modeling to ALSs has been broadly recognized. Constructing 

a learner model requires choosing learner characteristics (e.g., learning style), structures of 

learner characteristics (e.g., the FSLS model), and learner modeling approaches (e.g., 

questionnaire). With regard to each layer, there are various options open to researchers. As a 

result, there is a wide variability of learner modeling for existing ALSs (Abyaa et al., 2019; 

Normadhi et al., 2019). In addition, both Verdú et al. (2008) and Fontaine et al. (2019) found 

significantly discrepant magnitudes of system effectiveness. Thus, it is necessary to investigate 

the heterogeneity of system effectiveness in improving student learning outcomes.  

Third, there is no research on what critical factors could contribute to the effectiveness of 

ALSs. For example, to date, the selection of learner characteristics and modeling approaches 

often depends on researchers’ or designers’ personal preferences and experiences. Given that a 

multitude of learner characteristics and modeling approaches have been identified in the 

literature, it is therefore important to know which of them are directly associated with student 

learning process when they are used in ALSs. Otherwise, the design of a learner model will 

become unnecessarily complex or arduous. In this study, the most frequently used learner 
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characteristics (i.e., learning style, cognitive style, and prior knowledge) are considered. 

Although previous research described implementations of these characteristics in ALSs, there is 

sparse data related to the empirical effectiveness of adding them to learner model in increasing 

student learning outcomes (Vandewaetere et al., 2011). Therefore, a meta-analysis is warranted 

to identify the effectiveness of the three learner characteristics and their corresponding modeling 

approaches, thus avoiding a larger proliferation of ad hoc constructed learner model in the field 

of ALSs.  

To fill research gaps surrounding system effectiveness, it is important to emphasize the 

need for a meta-analysis of prior efforts in developing ALSs in order to enhance the 

effectiveness of adaptive learning environments. 

Objectives of the Present Research 

The objective of this meta-analysis is to gain quantitative insight into the effectiveness of 

ALSs in advancing student learning outcomes. For the meta-analysis to produce meaningful 

results, the present study needs to focus on a specific topic in order to include studies that are 

sufficiently comparable. With reference to the layered evaluation structure (Brusilovsky et al., 

2004) and the tripartite structure (Vandewaetere et al., 2011), this study focuses on the common 

ground across different ALSs: learner modeling. The primary questions that this meta-analysis 

seeks to answer are as follows: Is the system effectiveness heterogeneous? If so, does the 

variability of learner modeling (i.e., learner characteristics and modeling approaches) 

significantly account for the heterogeneity of system effectiveness? Specifically, we are 

interested in identifying important contributors to system effectiveness, under consideration of 

promoting student learning outcomes.  
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The present research makes the following contributions. Theoretically, the overall effect 

size of ALSs not only provides a comprehensive picture of the existing efforts on the 

implementation of ALSs, but also acts as a landmark that instructs the continued development of 

ALSs. For example, ALSs and other types of instruction (e.g., one-to-one tutoring and intelligent 

tutoring systems) could be compared in terms of their effectiveness (i.e., effect size) in 

promoting student learning outcomes. Practically, identifications of critical factors such as 

appropriate learner characteristics provide a mapping between influential factors and system 

effectiveness for system designers and developers. Specifically, the results of this research are 

useful for the decision-making process when system designers and developers only model one or 

a few student characteristics in their ALSs.  
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Chapter 3 Methodology 

Glass and his colleagues (1981) proposed four steps to conduct a meta-analysis: (a) 

finding studies, (b) coding study features, (c) measuring study effects, and (d) statistically 

analyzing and combining findings. This four-step procedure has been widely used in meta-

analysis studies (e.g., Cheng et al., 2019; Garzón & Acevedo, 2019; Kulik & Fletcher, 2016) and 

was adopted in the present study. 

Finding Studies 

A thorough and systematic search was employed to find studies for this meta-analysis, 

which consists of three steps: (a) assembling a large pool of candidate studies through computer 

searches of electronic library databases; (b) developing inclusion criteria to capture evidence 

relevant to research questions; (c) examining the candidate studies individually to determine 

whether they are suitable for this meta-analysis. 

Candidate Studies 

Computer searches were carried out in six databases: Educational Resources Information 

Clearinghouse (ERIC), Web of Science, Google Scholar, ScienceDirect, Scopus, and ProQuest 

Dissertations & Theses Global. Different from the other five databases, the ProQuest 

Dissertations & Theses Global database includes unpublished dissertations, which are commonly 

examined in meta-analysis studies (e.g., Ma et al., 2014; Steenbergen-Hu & Cooper, 2013). The 

search string was: (intellige* OR adapt* OR customi*) AND (learning OR instruction OR 

education OR tutoring OR mentoring) AND (system OR environment OR software OR 

application OR program). The asterisk is a commonly used wildcard symbol that broadens a 

search by finding words that start with the same letters. The following key terms were searched 

in returned titles: adapt* e-learning system*, adapt* e-learning environment*, adapt* e-learning 
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hypermedia system*, adapt* learning system*, adapt* scaffolding e-learning system*, online 

adapt* learning tool*, computer-based adapt* learning environment*, computer-based adapt* 

learning system*, adapt* and intellige* education system*, and adapt* intellige* tutor* system*. In 

addition, the word “adaptive” or its variants (i.e., “adaptation” or “adaptivity”) had to appear in 

abstracts. No restrictions were imposed regarding the publication year and publication type 

during the searches to prevent leaving out relevant studies. References retrieved were exported to 

Endnote version X9 (The Endnote Team, 2013), resulting in a pool of candidate studies. 

Additional studies were searched by branching from reference sections of existing 

literature review studies on ALSs (e.g., Erümit & Çetin, 2020; Fontaine et al., 2019; Jando et al., 

2017; Kumar et al., 2017; Martin et al., 2020; Normadhi et al., 2019; Özyurt & Özyurt, 2015; 

Verdú et al., 2008; Xie et al., 2019) and manually added to the candidate pool. Three literature 

reviews and one meta-analysis were especially helpful in developing a more comprehensive 

candidate pool: Normadhi et al. (2019) reviewed 78 adaptive learning environments that were 

established spanning the year of 2010 to 2017; Erümit and Çetin (2020) reviewed 32 studies on 

adaptive intelligent tutoring systems; Martin et al. (2020) systematically reviewed adaptive 

learning research (n = 61) ranging from 2009 to 2018; Fontaine et al. (2019) investigated 21 

studies to calculate the effectiveness of ALSs in improving knowledge, skills, and clinical 

behavior of health professionals and students.  

It is important to note that the term “adaptive learning system” rather than the term 

“intelligent tutoring system” was centered when databases were searched to assemble the 

candidate studies pool for two reasons. First, the usage of the keyword “adaptive learning 

systems” is consistent with how existing systematic reviews search for studies on ALSs. For 

example, Kabudi et al. (2021) performed a systematic mapping of the literature on AI-enabled 
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ALSs. They used two main terms to perform database searches: adaptive learning system and AI. 

In contrast, Xu et al. (2019) used the keyword “intelligent tutoring systems” to search databases, 

given that their research focused on intelligent tutoring systems. Second, there have been several 

meta-analyses of intelligent tutoring systems in the literature (e.g., Kulik & Fletcher, 2016; Xu et 

al., 2019), but few meta-analytic studies focused on ALSs in the literature. For example, Xu et al. 

(2019) conducted a meta-analytic study on the effectiveness of intelligent tutoring systems on K-

12 students’ reading comprehension. They included studies published in peer-reviewed journals 

from 2000 to 2017. 

Inclusion Criteria 

In order to select target studies from the candidate studies pool for the current meta-

analysis, the following six inclusion criteria were developed: (a) the study is published in a 

journal article, scientific book, book chapter, conference proceeding, or dissertation; (b) the 

study is published in the English language; (c) the study compares the effectiveness of its ALS 

on learning outcomes of individual learners to those under non-adaptive instructions; (d) the 

study adopts a randomized experimental or quasi-experimental design with an independent 

comparison group; (e) the study provides sufficient quantitative information for the calculation 

or estimation of effect sizes; and (f) the study provided detailed information regarding the 

architecture of ALSs (i.e., learner model, domain model, and adaptation model). 

Criterion (a) and criterion (b) are used to include high-quality and accessible 

publications. Meeting abstracts are excluded in this selection step because it is unclear whether 

these types of documents had been subjected to peer review, which is a generally accepted 

criterion for ensuring scientific quality. 
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Criterion (c) is used to select studies relevant to the purpose of this meta-analysis. In this 

selection step, studies that do not compare the effectiveness of ALSs to non-adaptive 

instructional methods are excluded. Studies that focus on providing general information about 

the interface design of an ALS or proposing a new framework for an ALS but do not provide 

quantitative evidence for their systems’ effectiveness are excluded.  

With regard to criterion (d), selected studies could be either field evaluations or 

laboratory investigations, but a randomized experimental or quasi-experimental design is 

required. Their control group(s) need to receive instructions without adaptations, which could be 

either a group that got a traditional teacher-led classroom instruction or a group that received 

computer-based non-adaptive instructions. If a quasi-experimental design is used, evidence has 

to be provided that the treatment and comparison groups were equivalent at baseline (What 

Works Clearinghouse, 2013). Studies with a significant pre-existing difference between the 

treatment and comparison groups are excluded unless the information is available to calculate 

effect sizes that would consider the prior difference. In this case, the method of estimating effect 

sizes from a pretest-posttest-control group design was used. That is, effect sizes are calculated 

based on the mean pre-post change in the treatment group minus the mean pre-post change in the 

control group, divided by the pooled pretest standard deviation (Morris, 2008).  

Criterion (e) is used to select studies that reported sufficient data to calculate effect sizes. 

In this respect, common learning outcome measurements including course grades or scores on 

either locally developed tests or standardized tests are considered acceptable for this meta-

analysis. However, studies that do not measure learners’ learning outcomes in a quantitative way 

were excluded from this meta-analysis. 
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Criterion (f) is also relevant to the purpose of this meta-analysis. That is, studies that 

clarify the architecture of ALSs are chosen. Detailed information on the architecture of ALSs, 

especially for learner models, is necessary to answer the third research question of this study. 

The common article structure of candidate studies is shown in Figure 5. That is, the authors of 

these studies first introduce the architecture of ALSs, which includes learner models, domain 

models, and adaptation models. Information about learner characteristics and modeling 

approaches is usually provided in learner models, followed by their experimental design (e.g., 

quasi-experimental design) and experimental results (e.g., mean score of experimental/control 

group) presented in their studies. 

 

Figure 5. Common Structure of Candidate Studies 

Note: TCI: Traditional Classroom Instruction; CBI: Computer-Based Instruction. Components 
within dotted lines could be absent for some candidate studies.  
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Final Data Set 

According to the six inclusion criteria, selections from candidate studies were performed. 

The process of selecting studies followed the procedure of the Preferred Reporting Items for 

Systematic reviews and Meta-Analysis (PRISMA; Moher et al., 2009). An adapted PRISMA 

flow diagram for the process of literature search and the number of studies identified, screened, 

ultimately eligible, and included in the meta-analysis can be viewed in Figure 6. 

 

Figure 6. A Step-By-Step PRISMA Flowchart for Selecting the ALS Articles 

As shown in Figure 6, the phase of identification found 5131 studies that were imported 

into Endnote. During the first step of the screening phase, all the duplicates were removed, and 
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2996 publications were further examined. In the second step of publication selection, studies that 

did not use the English language or were published as workshop introductions were identified 

and excluded. Included publications could be peer-reviewed journal articles, conference 

proceedings, and dissertations/theses. During the third step of the screening phase, the titles and 

the abstracts of 2945 studies were read to make sure these publications were relevant to ALSs. 

After the execution of phase two, the number of publications was reduced to n = 2709 for 

consideration in the study. 

During the eligibility phase, the methodological designs and the data generated by the 

studies were examined. Studies that did not provide adequate data for calculating effect sizes 

were excluded. Studies that did not depict architectures of ALSs were also excluded. Studies 

could have reported multiple student outcome measures, such as a midterm score or a final exam 

score. These data were used to calculate effect sizes using the appropriate equations for the 

outcomes. The statistical analysis section provides more details about the specific statistical 

models employed. To summarize, this study consists of 46 studies and a total of 77 effect size 

estimates; individual studies contributed between 1 and 12 effect sizes. A complete list of these 

studies can be found in Appendix B.  

Coding Procedures 

A detailed coding protocol to guide information retrieval and coding was designed (see 

Table 2). The protocol covered the major characteristics of the studies, which included (a) study 

design features (e.g., sample sizes; whether the study used a randomized or quasi-experimental 

design; whether the study compared an ALS with regular classroom instruction or computer-

based non-adaptive instruction), (b) contexts of instruction (e.g., subject domain; education level; 

the duration of ALS instruction), (c) architectures of ALSs, including learner characteristics (i.e., 
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learning style, cognitive style, and prior knowledge) and modeling approach (i.e., questionnaire, 

machine learning algorithms, scalar modeling, and overlay modeling), and (d) study outcomes 

(e.g., the magnitude and the direction of effect sizes). 

Table 2 
 
Study Features and Associated Coding Categories in the Meta-Analysis 
 

Features and Coding Categories 

Category 1: Study Design Features 
Study Design 

Randomized-experimental design (RED) 
Quasi-experimental design (QED) 

Control Group 
Regular classroom instruction (RCI) 
Computer-based instruction (CBI) 

Sample Sizes 
Sample size for treatment/control group 

Category 2: Contexts of Instruction 
Subject Domains 

Mathematics 
Physics 
Computer science 
Language and literacy  
Biology and physiology  
Humanities and social science 
Not reported 

Education Levels 
Elementary school  
Middle school 
High school  
Postsecondary  
Mixed grades  
Not reported 

Duration of Treatment: A number that describes the instruction duration in weeks 
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Category 3: Adaptation Content 
Student Characteristics 

Learning style  
Cognitive style  
Prior knowledge 
Mixed characteristics  

Modeling Approaches 
Questionnaire 
Machine learning algorithms 
Scalar 
Overlay 
Mixed approaches 

About 35% of the studies (i.e., randomly selected 16 from the 46 studies) were coded 

independently by the author and another graduate student, both with more than four years of 

research experience in education. Both coders understood what and how features should be 

coded, and their codes were checked and compared. The inter-coder reliability as percentage 

agreement reached 94.5%, with a Cohen’s Kappa of 0.89, indicating that the level of agreement 

was strong (McHugh, 2012; Stemler & Tsai, 2008). Inconsistent codes were discussed and 

resolved. The rest of the studies (i.e., 30 studies) was reviewed and coded by the author. 

Calculating Size of Effects 

An effect size is a metric introduced by Glass (1977) representing the difference between 

the means of an experimental group and a control group expressed in standardized units (i.e., 

divided by a standard deviation). Three most common methods for calculating an effect size are 

(a) Glass’s delta (Glass, 1976), which uses the standard deviation of the control group, (b) 

Cohen’s d (Cohen, 1962, 1988), which makes use of the pooled standard deviation of the control 

and experimental groups, and (c) Hedges’s g (Hedges, 1982), which applies a correlation to 

correct the problem of the overestimation of the effect size based on small samples.  
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Researchers usually choose one of the three methods to calculate effect sizes. For 

example, Tamim et al. (2011) conducted a second-order meta-analysis to summarize 40 years of 

research on the impact of instructional technology on student learning. In their study, four of the 

25 meta-analyses, covering a total of 128 studies, used Cohen’s d exclusively to report size of 

effects; six meta-analyses, covering 505 studies, used Glass’s delta exclusively to calculate effect 

sizes; and ten meta-analyses, covering 239 studies, used Hedges’s g exclusively. Glass’s delta 

and Hedges’s g are the two estimators of size of effects that are used more often than Cohen’s d. 

A review of the literature on ALSs was conducted and six relevant meta-analyses were identified 

(Kulik & Fletcher, 2016; Ma et al., 2014; Nesbit et al., 2014; Steenbergen-Hu & Cooper, 2013; 

2014; Xu et al., 2019). All of the six studies used Hedges’s g to calculate effect sizes. The 

preference for Hedges’s g over other standardized-difference indices such as Cohen’s d and 

Glass’s delta, is due to the fact that Hedges’s g can be corrected to reduce the bias that may arise 

when the sample size is small (i.e., n < 40; Glass et al., 1981). It should be noted that study 

samples in the field of ALSs are usually small.  

To avoid potential influences of different effect sizes over analysis results, Cohen’s d, 

Hedges’s g, and Glass’s delta were reported in this study. However, we gave primary emphasis 

to Hedges’s g and treat Cohen’s d and Glass’s delta as important supplementary measures. Our 

preference for Hedges’s g is based primarily on our preference to make a correction of effect 

sizes from studies with small samples. Their calculations were shown below. 

The standardized mean differences effect size statistic (i.e., Cohen’s d) is calculated as  

 𝑑 =  
�̅�1 − �̅�2

𝑆𝑝𝑜𝑜𝑙𝑒𝑑
, (1) 
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where �̅�1 and �̅�2 are means of treatment and control groups, and the 𝑆𝑝𝑜𝑜𝑙𝑒𝑑  is pooled standard 

deviation, defined as 

 𝑆𝑝𝑜𝑜𝑙𝑒𝑑 =  √
𝑆1

2(𝑛1 − 1) + 𝑆2
2(𝑛2 − 1)

𝑛1 + 𝑛2 − 2
, (2) 

where 𝑛1 and 𝑛2 are the numbers of subjects in treatment and control groups, and 𝑆1 and 𝑆2 are 

the standard deviations for treatment and control groups. The variance of Cohen’s d is derived by  

 𝑉𝑑 =  
𝑛1 + 𝑛2

𝑛1𝑛2
+ 

𝑑2

2(𝑛1 + 𝑛2)
 , (3) 

and the standard error of Cohen’s d is the square root of its variance (as shown in Equation 4) 

 
𝑆𝐸𝑑  =  √

𝑛1 + 𝑛2

𝑛1𝑛2
+

𝑑2

2(𝑛1 + 𝑛2)
. 

(4) 

An unbiased alternative estimator (i.e., Hedges’s g) developed by Hedges (1981) was 

used to correct for bias from small sample sizes as follows:  

 𝑔 = [1 − 
3

4(𝑛1 + 𝑛2 −  9)
] 𝑑, (5) 

where 𝑛1 and 𝑛2 are the numbers of subjects in treatment and control groups, and 𝑑 is the biased 

standardized mean difference shown in Equation 1. The variance and standard error of this 

estimator is calculated as  

 𝑉𝑔  = [1 − 
3

4(𝑛1 + 𝑛2 −  9)
]

2

×  𝑉𝑑 , (6) 

and  

 𝑆𝐸𝑔  = √[1 − 
3

4(𝑛1 + 𝑛2 −  9)
]

2

×  𝑉𝑑 , (7) 

where 𝑉𝑑 is calculated by Equation 4.  
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Glass’s delta is defined as the mean difference between the experimental and control 

group divided by the standard deviation of the control group, which is calculated using Equation 

10  

 𝐷 =  
�̅�1 − �̅�2

𝑆2
. (8) 

In the absence of reported means or standard deviations, other procedures prescribed by 

Lipsey and Wilson (2001) using test statistics (F or t) were used to estimate unbiased size of 

effects. The F value can be used to calculate effect size as 

 𝑑 = 2√
𝐹

𝑁
, (9) 

where N denotes the total number of participants. In addition, the effect size can be calculated by 

t value as follows:  

 𝑑 = 𝑡√
(𝑛1 + 𝑛2)2

(𝑛1𝑛2)(𝑛1 + 𝑛2 − 2)
. (10) 

The calculations of effect sizes shown above are suitable for studies without significant 

pre-existing differences between the treatment and control groups. For studies that have 

significant difference in pretests of different groups, the method of estimating effect sizes from a 

pretest-posttest-control group design is used (Morris, 2008). That is, pretest results of the 

treatment and control group are also used to provide a more precise estimate of the treatment 

effect,  

 𝑑 = 𝑐𝑃 [
(�̅�1 − �̅�𝑝𝑟𝑒,1) − (�̅�2 − �̅�𝑝𝑟𝑒,2)

𝑆𝑝𝑟𝑒
], (11) 

where the pooled standard deviation is defines as 
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 𝑆𝑝𝑟𝑒  = √
(𝑛1 − 1)𝑆𝑝𝑟𝑒,1

2 + (𝑛2 − 1)𝑆𝑝𝑟𝑒,2
2

𝑛1 + 𝑛2 − 2
 (12) 

and 

 𝑐𝑃  = 1 −
3

4(𝑛1 + 𝑛2 − 2) − 1
. (13) 

The �̅�𝑝𝑟𝑒,1 and 𝑆𝑝𝑟𝑒,1 represent the group mean and the standard deviation of the treatment group 

at pretest. Likewise, the �̅�𝑝𝑟𝑒,2 and 𝑆𝑝𝑟𝑒,2 describe the group mean and the standard deviation of 

the control group at pretest. After getting effect sizes of Cohen’s d, Equations 5 can be used to 

calculate Hedges’s g. 

Statistical Analysis 

This study extracts and integrates empirical research data for performing a meta-analysis 

to obtain the overall effect size between different quantitative works and to contrast the average 

effect of research groups with different characteristics. The software R (R Core Team, 2022) was 

adopted to conduct the meta-analysis, including the estimation of the potential publication bias, 

the overall effect size, and the moderator effects among the 46 collected articles.  

Publication Bias 

Publication bias is defined as “an editorial predilection for publishing particular findings, 

which leads to the failure of authors to submit negative findings for publication” (Porta, 2014). 

Publication bias is a widespread problem in systematic reviews and meta-analyses, which can 

affect the validity and generalization of conclusions. The current study assessed publication bias 

through funnel plots (Bartolucci & Hillegass, 2010), trim and fill method (Egger et al., 1997), 

and Fail-Safe N approach (Orwin, 1983). 

A visual tool—funnel plot—is often used to examine publication bias (Bartolucci & 

Hillegass, 2010). It is a simple scatterplot of the treatment effects estimated from individual 
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studies (horizontal axis) against a measure of study size (vertical axis). In the absence of bias, 

results from small studies will scatter widely at the bottom of the graph, with the spread 

narrowing among larger studies (Sterne & Harbord, 2004). However, publication bias may lead 

to an asymmetrical funnel plot. In this case, a nonparametric “trim and fill” method can be 

employed (Duval & Tweedie, 2000a, 2000b) to adjust potential publication biases. 

Rosenthal’s (1979) Fail-Safe N is an estimate of the number of unpublished studies that 

would be needed to reverse a conclusion that an effect does indeed exist. According to Rothstein 

(2008), a Fail-Safe N value, which equals to or is greater than five times the number of studies 

plus ten studies, would indicate that the meta-analytic results are robust to the threat of 

publication bias. The “meta” package together with its “funnel.meta” and “trimfill” functions was 

used to print a funnel plot and adjust publication bias. The “fsn” function from the “metafor” 

package was used to conduct a Fail-Safe N analysis. 

Models for Meta-Analysis 

Meta-analysis is a method that enables the combination and summary of quantitative 

information from different studies. Using data from different studies creates the opportunity to 

provide a structured summary of a specific research topic and to find relationships between 

variables that otherwise would not be detected. To synthesize effect size estimates from selected 

studies and to investigate potential moderators for the heterogeneity across different studies, 

correlated and hierarchical effects (CHE) models (Pustejovsky & Tipton, 2022) were used. 

Correlated and Hierarchical Effects Model. Statistical independence is one of the core 

assumptions when effect sizes are analyzed in a meta-analysis. If there is a dependency between 

effect sizes, this can artificially reduce heterogeneity and thus lead to false-positive results. 

Hierarchical effects models and correlated effects models are commonly used models to handle 
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effect sizes’ dependency that is regularly encountered in meta-analytic research (Fisher & 

Tipton, 2015). Hierarchical effects models assume that dependence arises solely through 

common features of a research group, while within a group, each effect size is estimated on an 

independent sample. In contrast, correlated effects models assume that dependence emerges 

because effect sizes are estimated based on the same sample (e.g., multiple measures of a 

common outcome construct or one outcome assessed over multiple time points). Like 

hierarchical effects models and correlated effects models, the CHE model provides an approach 

to include dependent effect sizes in meta-regression analyses, even when the nature of the 

dependence structure is unknown. Moreover, by combining features of hierarchical effects 

models and correlated effects models, the CHE model allows for both between-study 

heterogeneity and within-study heterogeneity in true effect sizes (Pustejovsky & Tipton, 2022). 

In this study, effect sizes are not independent; instead, some are nested within the same 

studies. Furthermore, effect sizes within the same studies are dependent such as their calculations 

depending on the same participants. Thus, the CHE model, which not only considers nested 

structure but also accounts for relations of effect sizes from the same studies, is appropriate for 

the present study. Given the CHE model can be regarded as an extended multi-level model, a 

multi-level model (i.e., three-level model) is shown below, followed by the CHE model. In terms 

of a three-level meta-analysis model, effect size dependencies are accounted for by three levels.  

First, in each of the selected publications, the author(s) “pooled” the results of individual 

participants in study 𝑗 and report the aggregated effect size 𝑖. The first level model is denoted as  

 �̂�𝑖𝑗 = 𝜃𝑖𝑗 + 𝜖𝑖𝑗, (14) 

where �̂�𝑖𝑗 is an estimate of the true effect size 𝜃𝑖𝑗, the term 𝑖𝑗 can be understood as “effect size 𝑖 

nested in study 𝑗”, and 𝜖𝑖𝑗 is the random sampling error.  
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Then, on level 2, these effect sizes are nested within different clusters. These clusters can 

either be individual studies or subgroups of studies. The second level model can be represented 

as  

 𝜃𝑖𝑗 = 𝜅𝑗 + 𝜁(2)𝑖𝑗, (15) 

where parameter 𝜅𝑗 is the average effect size of study 𝑗.  

Lastly, on level 3, pooling the aggregated cluster effects leads to the overall true effect 

size. The third level model can be represented as 

 𝜅𝑗 = 𝜇 + 𝜁(3)𝑗, (16) 

where parameter 𝜇 is the overall average population effect. The overall formula is  

 �̂�𝑖𝑗 = 𝜇 + 𝜁(2)𝑖𝑗 + 𝜁(3)𝑗 + 𝜖𝑖𝑗. (17) 

There are two heterogeneity terms in the overall formula: (a) 𝜁(2)𝑖𝑗 stands for the within-

cluster heterogeneity on level 2, and (b) 𝜁(3)𝑗 represents the between-cluster heterogeneity on 

level 3. It is worth noting that the three-level model assumes effect sizes within one study are 

independent (i.e., Cov(𝜖ℎ𝑗 , 𝜖𝑖𝑗) = 0). Thus, the only source of dependence between effect sizes in 

the same study is about the true effect sizes, not estimation error.  

The structure of the CHE model is the same as the multi-level model, but the CHE model 

assumes that effect size estimates within studies are dependent. That is, when several effect sizes 

are from one study, their sampling errors are expected to be correlated. A single, known 

correlation 𝜌 between pairs of effect sizes from the same study, which is the same across all 

studies, is assumed and Cov(𝜖ℎ𝑗 , 𝜖𝑖𝑗) = 𝜌𝑠𝑗
2. When the CHE model is performed, the Robust 

Variance Estimation (RVE; Hedges et al., 2010; Tanner-Smith et al., 2016) is firstly used to 

handle dependent effect sizes. The RVE approach is used to output a sandwich estimator (White, 
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1982), which is also known as the empirical variance-covariance matrix estimator and a useful 

tool for variance estimation (Ma et al., 2014). The resulting sandwich estimator can be used in 

combination with the CHE model to obtain robust confidence intervals and p-values. 

Given there is a broad variety of dependent effect sizes in the present study, the CHE 

model was selected to synthesize effect sizes from different studies and investigate potential 

moderator effects for the heterogeneity of effect sizes across studies. Specifically, a three-level 

CHE model (i.e., participant, effect size, and publication) was compared with a two-level CHE 

model (i.e., participant and effect size). The Akaike Information Criterion (AIC; Akaike, 1974), 

the Bayesian Information Criterion (BIC; Schwarz, 1978), and a likelihood-ratio test were used 

to compare the two models. The more robust model was used to examine moderator effects. 

Moderator Effect Analyses with the Correlated and Hierarchical Effects Model. As 

shown above, the CHE model allows to examine differences in outcomes within studies (i.e., 

within-study heterogeneity) as well as differences between studies (i.e., between-study 

heterogeneity). If there is evidence for heterogeneity in effect sizes, moderator analyses can be 

conducted to test variables that may explain within-study or between-study heterogeneity. For 

these analyses, the CHE model can be extended with different characteristics. In this study, 

factors (i.e., learner characteristic, modeling approach, subject area, publication source, and 

publication year) were added to equations to examine their moderation effects. For example, 

predictors can be entered into the three-level CHE model 

 �̂�𝑖𝑗 = 𝜃 + 𝛽𝑥𝑖+ 𝜁(2)𝑖𝑗 + 𝜁(3)𝑗 + 𝜖𝑖𝑗, (18) 

where 𝜃 is the intercept and 𝛽 is the regression weight of a predictor variable 𝑥. When 𝑥 is a 

dummy variable, the model performs a subgroup analysis. When 𝑥 is continuous, the formula 

represents a meta-regression model. A p < 0.05 significance level was adopted for the CHE 
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model analyses. Given the complexity of the CHE model as well as the large number of the 

moderators, the moderators were entered to the CHE model one by one. As suggested by 

Pustejovsky and Tipton (2022), the “rma.mv” function of the “metafor” package was used to 

construct a series of CHE models.  
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Chapter 4 Results 

This study intends to figure out how successfully the existing adaptive learning 

environments advance student learning performance in comparison with non-adaptive 

instruction. This purpose was achieved by a meta-analysis of quantitative evidence from 46 

studies on ALSs. The meta-analysis also identified factors contributing to the varying success of 

adaptive learning environments in promoting student learning outcomes (i.e., different 

magnitudes of system effectiveness). This chapter arranges the findings in four sections: The 

mapping of the main characteristics of the 46 studies and the examination of publication bias of 

the effect sizes are presented in the first two sections, followed by the analyses of the overall 

system effectiveness and moderator effects. 

Mapping of Study Characteristics 

Following the procedure of the PRISMA (Moher et al., 2009), this study found 46 studies 

that were eligible for this meta-analysis. The mapping of the main characteristics of the 46 

studies is shown in Table 3. A total of 77 effect sizes were reported in the included studies, 

which involved 3699 participants. In terms of publication channels, 69.57% (n = 32) of the 

included papers were published in scientific journals, and 21.74% (n = 10) were conference 

papers published in conference proceedings. The articles were categorized based on the 

educational levels of their included participants. Most of the articles (n = 34; 73.91%) established 

ALSs that targeted students at the postsecondary education level, and 21.74% (n = 10) adopted 

participants at the elementary and secondary education levels. Correspondingly, there were 

different subject areas where ALSs aimed to improve student learning: The subject area of 

computer science represents the highest proportion of the included articles (n = 23; 50.00%), 

followed by English language learning (n = 8; 17.39%). Some articles developed ALSs for 
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Table 3 
 
Overview of the Background Characteristics of the Reviewed Studies 
 

Overview of the Studies Included in this Meta-Analysis 

No. of Studies: 46 

No. of Effect Sizes: 77 

No. of Participants: 3699 

Publication Channel 
Journal: 32 (69.57%) 
Conference Proceeding: 10 (21.74%) 
Dissertation: 3 (6.52%) 
Book: 1 (2.17%) 

Educational Level 
Elementary: 4 (8.70%) 
Secondary: 6 (13.04%) 
Postsecondary: 34 (73.91%) 
Unclear: 2 (4.35%) 

Subject Area 
Computer Science: 23 (50.00%) 
Mathematics: 5 (10.87%) 
Technology/Science: 4 (8.70%) 
English Language: 8 (17.39%) 
Others (e.g., botanical): 6 (13.04%) 

Treatment Duration: From one week to 24 weeks, Mean = 9 weeks, SD = 6.95 for studies 
providing numbers of weeks 

Control Group Condition 
Traditional Classroom Instruction: 8 (17.39%) 
Computer-Based Instruction: 36 (78.26%) 
Unclear: 2 (4.35%) 

Publication Year 
2000–2010: 6 (13.04%) 
2011–2015: 19 (41.30%) 
2016–2022: 21 (45.65%)  

Learner Characteristic 
Learning Style: 14 (30.43%) 
Prior Knowledge: 23 (50.00%) 
Cognitive Style: 2 (4.35%) 
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Note: Each study can contribute multiple ESs; thus, the total number of ESs exceeds the total 
number of studies. The learner characteristics that were modeled in the 46 ALSs were not limited 
to learning style, prior knowledge, and cognitive style.  

subject areas of technology/science (n = 4; 8.70%) and mathematics (n = 5; 10.87%). The rest of 

the articles were categorized into one group (n = 6; 13.04%), which covered subject areas such as 

botanical learning and grammar of the Chinese language.  

The duration that researchers conducted randomized experiments or quasi-experiments 

ranged from one week to 24 weeks. More specifically, the average duration was approximately 

nine weeks (SD = 6.95). However, it was difficult to get accurate measures of time on tasks 

because most of the articles did not report the accurate duration that participants used ALSs. It 

seems arbitrary to regard the duration of experiments to be equivalent to the duration of system 

usage. Unlike other meta-analyses that investigated the effectiveness of technology-enhanced 

learning systems on student learning (e.g., Xu et al., 2019), this study did not investigate the 

moderator effect of interaction duration on the magnitude of system effectiveness in the 

moderator effects section. In terms of control conditions, most of the included articles (n = 36; 

78.26%) compared students’ learning performance under ALSs with those under non-adaptive 

computer-based instruction. Participants of control groups in eight studies (17.39%) received 

traditional classroom instruction (i.e., large-group instruction). Although there was no restriction 

on publication years when studies were searched and screened, most of the included studies were 

published between 2010 and 2022 (n = 40; 86.96%).  

In terms of learner characteristics, 50% (n = 23) of the included articles modeled 

learners’ prior knowledge in their established ALSs. There were 30.43% (n = 14) of the proposed 

ALSs that provided adaptive instruction based on learners’ learning styles. However, only two 

articles (4.35%) modeled learners’ cognitive styles in their developed ALSs. Learner 

characteristics that the 46 studies modeled in their ALSs were not limited to prior knowledge, 
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learning style, and cognitive style. Other learner characteristics such as motivation and goals 

were also modeled, which served as the source of adaptive instruction. It is worth noting that 

58.70% (n = 27) of the included studies modeled one learner characteristic (e.g., modeling prior 

knowledge), but 26.09% (n = 12) modeled more than one learner characteristic (e.g., modeling 

both prior knowledge and learning style).  

There were 23 studies that limited learner characteristics to knowledge, learning style, 

and cognitive style. As shown in Figure 7, 17 studies modeled prior knowledge, and eight studies 

modeled learning style, among which three studies modeled both of them. In terms of modeling 

approaches of prior knowledge, the most commonly used technique among the 17 studies was 

overlay modeling (n = 8; 47.06%). The questionnaire of the Index of Learning Styles (Felder & 

Spurlin, 2005) was the most frequently used tool to model learners’ learning styles (n = 6; 75%). 

Among the 23 articles, there was only one study that used cognitive style as the source of 

adaptation instruction via the Study Preference Questionnaire (Ford, 1985).   

Risk of Bias within Studies 

This study employed a funnel plot to test for potential publication bias of effect sizes 

reported by the selected studies (Bartolucci & Hillegass, 2010). In a funnel plot, publications 

with larger sample sizes appear at the top of the funnel, while those with smaller sample sizes 

appear at the bottom. As shown in Figure 8(a), most of the reported Hedges’s g appeared at the 

top, indicating large sample sizes. However, the funnel plot was asymmetric (t = 7.498, p < .01), 

which indicates potential missing values and publication biases. To adjust the potential 

publication biases, the method of trim and fill was used. Results indicated that 18 potential 

Hedges’s g were missed (shown as white dots in Figure 8[b]), which is significantly lower than 

the number of Hedges’s g (i.e., 77) in this study. Also, the difference between the adjusted  
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Figure 7. Distribution of Studies across Learner Characteristics and Modeling Approaches 

estimate suggested by the trim and fill method and the unadjusted estimate was calculated. The 

difference is less than 20%, suggesting the bias can be classified as absent or negligible (Kepes 

et al., 2012; Vevea et al., 2019). 

To account for the possibility that the current meta-analysis overlooked non-significant 

results, the Fail-Safe N analysis was performed (Rosenthal, 1979). Fail-Safe N suggested the 

number of Hedges’s g that is needed to obtain no effect to completely nullify the observed mean 

effect size. Using R, a Fail-Safe N value of 31037 was calculated. According to Rothstein 

(2008), a Fail-Safe N value which equals to or is greater than five times the number of studies 

(i.e., Number of Hedges’s g) in the original meta-analysis plus ten studies (i.e., [5×77 + 10] 

would indicate that the meta-analytic results were robust to the threat of publication bias. 

According to this guideline, the cut-off value for missing Hedges’s g in this study was 395. 

23 
Articles

Prior Knowledge 
(17)

Overlay Modeling (8)

Scalar Modeling (3)

EDM Modeling (1)

IRT Modeling (1)

Constrained-Based Modeling (1)

Learning Style (8)

Kolb’s Learning Style Scale (1)

Jackson's Learning Styles Profiler 
Questionnaire (1)

Felder-Soloman Index of Learning 
Styles (6)

Cognitive Style (1) Study Preference Questionnaire (1)

https://link.springer.com/article/10.1007/s10956-020-09875-z#ref-CR74
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Given that the Fail-Safe N value was significantly larger than the cut-off value, there appears to 

be limited publication bias. Thus, the consensus among the inspection of the funnel plot of 

studies and results of the trim and fill method as well as the Fail-Safe N test suggest that the 

publication bias is unlikely to be a problem in the meta-analysis for examining the effectiveness 

of ALSs.  

 

Figure 8. Funnel Plot and the Adjusted Funnel Plot using Trim and Fill Approach 

Overall Effectiveness and Heterogeneity 

Models Selection 

Forty-six publications met the inclusion criteria, and some of them reported more than 

one Hedges’s g. That is, multiple effect sizes might be nested within one publication in this 

study. Thus, a two-level (i.e., participant and effect size) CHE model was compared to a three-

level (i.e., participant, effect size, and publication) CHE model. As shown in Table 4, the 
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likelihood-ratio test indicated that the difference between the two models was significant and the 

three-level CHE model had a better model fit, with lower AIC and BIC values (p < .001). That is, 

the three-level CHE model was found to be more robust than the two-level CHE model for the 

present study. Thus, the three-level CHE model was used in the following data analyses. 

Table 4 
 
Model Comparison between the Two-Level and Three-Level CHE Models 
 
 Two-Level CHE Model Three-Level CHE Model 

% of Total Variance   

𝐼0
2 (%) 5.655 4.462 

𝐼𝑇
2 (%) 94.345 83.471 

𝐼𝐴
2 (%) – 12.061 

𝑇𝑜𝑡𝑎𝑙 𝐼𝐴
2 (%) 94.345 95.532 

Heterogeneity   

𝑄𝑀(𝑑𝑓) 621.329 (76) 621.329 (76) 

p < .001 < .001 

Model Fit of   

AIC 277.771 235.142 

BIC 282.433 242.134 

Between Two Models p < .001 

 
The Effectiveness of ALSs 

According to model comparison results, the three-level CHE model was used to analyze 

the effectiveness of ALSs reported in the 46 publications. Results revealed that the overall 

estimated Hedges’s g was 1.227 (95% CI = 0.832, 1.622; p < .001). Thus, the overall summary 
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estimate of the 77 effect sizes demonstrated a substantial level of effects that ALSs had on 

student learning performance.  

In addition to the overall effectiveness of ALSs on student learning outcomes, the 

individual effectiveness was calculated in terms of different control group conditions: regular 

classroom instruction and non-adaptive computer-based instruction. Results showed that the 

estimated Hedges’s g was 1.025 (95% CI = 0.065, 1.986; p < .001) when compared to large-

group classroom instruction, and 1.206 (95% CI = 0.786, 1.627; p < .001) when compared to 

non-adaptive computer-based instruction. Furthermore, there was no significant difference 

between learning from large-group classroom instruction and non-adaptive computer-based 

instruction (𝑄𝑀  = 0.114, df = 1, p = .735).  

Although the average estimates of effect sizes were large, an examination of the 

heterogeneity in effect sizes contributed to a better understanding of ALSs’ effects on learning 

outcomes. The forest plot (see Figure 9) displays the heterogeneity of Hedges’s g estimates 

across the 77 effect sizes. Model results indicated that the variance of Hedges’s g was high 

(𝑄𝑀  = 621.329, df = 76, p < .001). The 𝐼2 (95.54%) suggested that the total variability in 

Hedges’s g estimates could be attributed to the true within- and between-study heterogeneity and 

not a sampling error (𝜏2 = 4.46%). Furthermore, the within-publication (i.e., effect size, level 2) 

and between-publication (level 3) variability accounted for 12.06% and 83.47% of the total  
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Figure 9. A Forest Plot of the Hedges’s g Estimates and the Overall Estimate in the Reviewed Studies
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heterogeneity, respectively (see Table 4). Thus, the between-study variability was the major 

source of the heterogeneity in ALS effectiveness. Moderator analyses are necessary to test 

variables that can explain the between-study heterogeneity. The section below presented the 

effects of five moderators (i.e., learner characteristic, modeling approach, subject area, 

publication source, and publication period) on the heterogeneity in system effectiveness. 

Moderator Analyses of System Effectiveness 

Learner Characteristic 

Given that only two of the 46 publications modeled cognitive styles, we compared the 

effectiveness of ALSs that modeled prior knowledge and/or learning style. Publications that 

exclusively modeled prior knowledge and/or learning style were classified into three categories: 

only learning style (6 effect sizes), only prior knowledge (17 effect sizes), and both of them (14 

effect sizes). We performed a subgroup analysis by entering the learner characteristic indicator 

into the three-level CHE model. The subgroup analysis results are summarized in Table 5.  

A test of the three-level CHE model showed that the model was able to explain a 

significant portion of the variation in the 77 effect sizes (Q = 9.155, df = 2, p < .05), although it 

was not able to explain all the heterogeneity (Q = 72.149, df = 34, p < .001). This result indicates 

that learner characteristic is a variable that can significantly moderate the effectiveness of ALSs. 

In addition, the average effect sizes are 1.067 (95% CI = 0.689, 1.444) for ALSs modeling both 

prior knowledge and learning style, 0.737 (95% CI = 0.552, 0.921) for ALSs merely modeling 

prior knowledge, and 0.572 (95% CI = 0.275, 0.869) for ALSs only modeling learning style. All 

these effect sizes are significantly different from zero. Moreover, the expected average effect 

size of ALSs modeling only learning style is 0.495 points (Z = -2.019, p < .05) lower than that of 
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ALSs modeling both prior knowledge and learning style, with the standard error 0.245 and a 

confidence interval of -0.975 and -0.014. 

Table 5 
 
Effects of the Learner Characteristic Modeling on System Effectiveness 
 

Moderator 
Subgroup Analysis Heterogeneity 

ES  
(g) 

Standar
d Error 

95% 
Lower 

95% 
Upper 

Z 
Value 

p 
Value 

Q 
Value df p 

Value 

PK and LS  1.067 0.193 0.689 1.444 5.539 < .001    

PK only 0.737 0.094 0.552 0.921 7.831 < .001    

LS only 0.572 0.151 0.275 0.869 3.779 < .001    

Total 
Between 

      9.155 2 < .05 

Note: ES = effect size; g = Hedges’s g; PK = prior knowledge; LS = learning style. 
 

The moderator analysis results presented above showed that the current ALSs that model 

both prior knowledge and learning style are likely to have significantly higher system 

effectiveness than those only modeling learning style. Although the current ALSs that model 

both prior knowledge and learning style have higher system effectiveness in comparison with 

those only modeling prior knowledge, their difference is insignificant. Altogether, these results 

indicate that merely modeling learning style is likely to relate to the lower effectiveness of ALSs, 

in comparison with systems modeling both prior knowledge and learning style.  

Modeling Approach 

Considering that only two of the 46 publications modeled cognitive styles, this section 

focused on the investigation of modeling approaches of prior knowledge and learning style. 

There are 14 studies (17 effect sizes) that specifically modeled prior knowledge and five studies 
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that exclusively modeled learning styles (6 effect sizes). We performed a subgroup analysis to 

compare the effectiveness of ALSs that used different approaches to modeling prior knowledge. 

In terms of learning style, we presented descriptive statistics of the effectiveness of ALSs that 

employed different modeling approaches. 

To investigate moderating effects of modeling approaches of prior knowledge in ALSs, 

publications that exclusively modeled prior knowledge were classified into four groups: overlay 

modeling (7 effect sizes), scalar modeling (2 effect sizes), educational data mining modeling (3 

effect sizes), and item response theory modeling (2 effect sizes). We performed a subgroup 

analysis by entering the modeling approaches indicator into the three-level CHE model. The 

subgroup analysis results are summarized in Table 6. 

As shown in Table 6, ALSs that employed educational data mining approach to modeling 

prior knowledge were associated with higher effectiveness in improving student learning 

outcomes (1.144; 95% CI = 0.608, 1.681); in contrast, ALSs that used item response theory 

modeling approach generated lower effectiveness (0.375; 95% CI = -0.250, 1.000). In addition, 

the difference in effect sizes between ALSs using the educational data mining approach and 

those employing the item response theory modeling approach is marginally significant (Z = -

1.830, p = .067). Furthermore, the average effect size estimate of ALSs using the item response 

theory modeling approach is insignificantly different from zero (Z = 1.176, p = .240). There is no 

significant difference in effect sizes among ALSs using the educational data mining modeling, 

overlay modeling, and scalar modeling approach. 

Table 6 

Effects of the Modeling Approach of Prior Knowledge on System Effectiveness 
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Moderator 
Subgroup Analysis Heterogeneity 

ES  
(g) 

Standar
d Error 

95% 
Lower 

95% 
Upper 

Z 
Value 

p 
Value 

Q 
Value df p 

Value 

EDM  1.144 0.274 0.608 1.681 4.179 < .001    

IRT 0.375 0.319 -0.250 1.000 1.176 .240    

Overlay 0.912 0.145 0.629 1.196 6.304 < .001    

Scalar 0.624 0.253 0.128 1.121 2.463 < .05    

Total 
Between 

      4.332 3 .228 

Note: ES = effect size; g = Hedges’s g; EDM = educational data mining; IRT = item response 
theory. 
 

Regarding the comparison of modeling approaches of learning style in ALSs, it is 

unfeasible to perform statistical modeling analyses because of the small sample size of available 

publications (i.e., n = 5). Rather than presenting statistical differences in the effectiveness of 

ALSs with different modeling approaches, we showed an overview of the effectiveness of the 

five ALSs in Table 7. Among the five ALSs, one ALS modeled learning style with Kolb’s 

Learning Style Scale (Kolb, 1985), and one ALS used Jackson's Learning Styles Profiler 

Questionnaire (Jackson, 2005) to model learning style. The other three ALSs used the Index of 

Learning Styles Scale (Felder & Spurlin, 2005) to profile learners’ learning styles.  

The average effect size of ALSs that modeled learning style using the Index of Learning 

Styles scale (0.473) is lower than those using Kolb’s Learning Style Scale (1.020) or Jackson's 

Learning Styles Profiler Questionnaire (0.497). In fact, all three ALSs that modeled both learning 

style and prior knowledge utilized the Index of Learning Styles Scale to model learning styles. 

Although the Index of Learning Styles Scale is commonly used in ALSs to model learning styles, 

ALSs might be not as effective in enhancing learning outcomes as others using Kolb’s Learning 
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Style Scale or Jackson's Learning Styles Profiler Questionnaire. However, these results from 

descriptive statistical analysis require further investigation.  

Table 7 
 
Overview of ALSs Modeling Learning Style 
 
 No. of Studies No. of ES M SD 

Kolb’s Learning Style Scale 1 1 1.020 NA 

Jackson's Learning Styles Profiler 
Questionnaire 

1 2 0.497 0.574 

Index of Learning Styles Scale 3 3 0.473 0.141 

Index of Learning Styles Scale* 3 14 0.990 0.290 
Note: NA = not applicable; * denotes studies modeled both learning style and prior knowledge.  

Subject Area 

In this section, we examined the effect of the subject area variable on the effectiveness of 

ALSs. Publications were classified into five groups based on their subject areas: computer 

science (38 effect sizes), the English language (23 effect sizes), mathematics (5 effect sizes), and 

technology/science (4 effect sizes). We performed a subgroup analysis by entering the subject 

area indicator into the three-level CHE model. As shown in Table 8, the test of the three-level 

CHE model indicated that the variable of subject area was a significant moderator for system 

effectiveness (Q = 9.598, df = 3, p < .05).  

More specifically, the expected mean effect sizes of ALSs aiming to improve the English 

language learning (2.483; 95% CI = 1.571, 3.395) and the learning of the computer science area 

(0.981; 95% CI = 0.453, 1.508) are significantly higher than zero. In terms of English language 

learning, adaptive systems aim to improve learners’ vocabulary, grammar, and reading. In 

contrast, the estimated mean effect sizes of ALSs designed for subject areas of mathematics 
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(0.684; 95% CI = -0.451, 1.819) and technology/science (0.801; 95% CI = -0.461, 2.063) are 

insignificantly different from zero. In addition, comparisons among effect sizes of the four 

subgroups show that the mean effect size for studies improving the English language learning is 

significantly higher than those targeting other subject areas (i.e., computer science, mathematics, 

and technology/science). That is, ALSs included in this study and targeted to improve the 

English language learning are likely to have more positive effects on improving student learning 

outcomes. However, there is no significant difference in the average effect sizes of ALSs for the 

other three subject areas (i.e., computer science, mathematics, and technology/science).  

Table 8 
 
Effects of the Subject Area on System Effectiveness 
 

Moderator 
Subgroup Analysis Heterogeneity 

ES  
(g) 

Standard 
Error 

95% 
Lower 

95% 
Upper 

Z 
Value 

p 
Value 

Q 
Value df p 

Value 

CS  0.981 0.269 0.453 1.508 3.644 < .001    

English 
Language 

2.480 0.459 1.580 3.381 5.399 < .001    

Mathematics 0.684 0.579 -0.451 1.819 1.181 .237    

Technology/
Science 

0.801 0.644 -0.461 2.063 1.244 .214    

Total 
Between 

      9.598 3 < .05 

Note: ES = effect size; g = Hedges’s g; CS = computer science. 
 
Publication Source 

This section examined the effect of the publication source variable on the effectiveness of 

ALSs. The 46 publications were categorized into four groups based on their publication source: 

journal article (n = 32), conference proceeding article (n = 10), dissertation/thesis (n = 3), and 
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book chapter (n = 1). Given that only one article was published as a book chapter, the moderator 

analysis focused on comparisons of ALSs within the other three categories. We performed a 

subgroup analysis by adding the publication source indicator into the three-level CHE model. As 

shown in Table 9, the test of the three-level CHE model indicated that the variable of publication 

source is an insignificant moderator of system effectiveness (Q = 1.067, df = 2, p < .587).  

Table 9 
 
Effects of the Publication Source on System Effectiveness 
 

Moderator 
Subgroup Analysis Heterogeneity 

ES  
(g) 

Standard 
Error 

95% 
Lower 

95% 
Upper 

Z 
Value 

p 
Value 

Q 
Value df p 

Value 

Journal 1.371 0.244 0.894 1.849 5.625 <.001    

Dissertation/ 
Thesis 

1.176 0.794 -0.381 2.732 1.481 .139    

Conference 
Proceeding 

0.858 0.436 0.004 1.712 1.969 <.05    

Total 
Between 

      1.067 2 .587 

Note: ES = effect size; g = Hedges’s g. 
 

Specifically, the journal article group that represents the vast majority of the 46 

publications has an overall effect size at d = 1.371 (95% CI = 0.894, 1.849), p < .001. The 

average effect sizes for the conference proceeding article group and the dissertation/thesis group 

are 0.858 (95% CI = 0.004, 1.712) and 1.176 (95% CI = -0.381, 2.732). Although there is no 

significant difference in the effectiveness of ALSs published in the form of a journal, conference 

proceeding, and dissertation/thesis, the average effect size of ALSs published as 
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dissertation/thesis is not significantly different from zero, which is different from those published 

as journal articles or conference proceeding articles. 

Publication Period 

The effect of the publication period variable on the effectiveness of ALSs was also 

examined in this study. Publication years of the 46 articles were grouped into three publication 

periods: 2004 to 2010 (n = 6), 2011 to 2015 (n = 19), and 2016 to 2021 (n = 21). We performed a 

subgroup analysis by entering the publication period indicator into the three-level CHE model. 

The subgroup analysis results are summarized in Table 10. 

Table 10 
 
Effects of the Publication Period on System Effectiveness 
 

Moderator 
Subgroup Analysis Heterogeneity 

ES  
(g) 

Standar
d Error 

95% 
Lower 

95% 
Upper 

Z 
Value 

p 
Value 

Q 
Value df p 

Value 

2004 to 
2010 

0.672 0.556 -0.419 1.763 1.208 .227    

2011 to 
2015 

1.216 0.312 0.605 1.828 3.897 < .001    

2016 to 
2021 

1.396 0.296 0.816 1.977 4.713 < .001    

Total 
Between 

      1.322 2 .516 

Note: ES = effect size; g = Hedges’s g. 

As shown in Table 10, the statistics of Q = 1.322, df = 2, p = .516 suggest that the 

between-level difference was not statistically significant for the publication year. However, the 

estimated effect sizes of ALSs have increased over the last twenty years. Specifically, the 

estimated effect size of ALSs in publications between 2004 to 2010 is 0.672 (95% CI = -0.419, 
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1.763), which was not significantly different from zero; in contrast, the estimated effect sizes of 

ALSs in publications after 2010 are significantly higher than zero (1.216 for publications 

between 2011 to 2015 and 1.396 for publications between 2016 to 2021). 

Summary 

 By performing the meta-analysis of the effectiveness of ALSs on student learning 

outcomes, we found that the existing adaptive learning environments certainly enhance student 

learning outcomes, no matter whether compared with large-group traditional classroom 

instruction or non-adaptive computer-based instruction. In addition, we found that the 

effectiveness of ALSs is moderated by variables of learner characteristics, modeling approaches, 

and subject areas. The next chapter discusses these major findings and expands them into the 

field of ALSs to provide insights into educational implications and future research directions.  
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Chapter 5 Discussion 

Chapter 5 restates the purpose of the study, discusses the major findings, and expands 

into theoretical and practical implications. It also points out the limitations of the study and 

presents suggestions for future research on establishing adaptive learning environments and on 

investigating the effectiveness of adaptive learning environments. 

Purpose of the Study 

 In response to the COVID-19 pandemic, lots of learners have shifted from face-to-face 

learning environments to e-learning. As an extension of e-learning, the field of ALSs has gained 

its importance and prevalence in the present education scenario. However, the effectiveness of 

ALSs in promoting student learning outcomes is unclear and little work has examined variables 

that impact the effectiveness of ALSs in this growing field. To fill these research gaps, the 

twofold purpose of this study was: (a) to estimate the effectiveness of ALSs in enhancing student 

learning outcomes and (b) to identify moderators of the effectiveness of ALSs. Following the 

PRISMA statement, six databases were searched and a total of 46 publications with 77 effect 

sizes were included in the meta-analysis. With the three-level CHE modeling, the overall effect 

size for the effectiveness of ALSs was estimated. The estimated effect size provides evidence 

that ALSs certainly have more effects on improving student learning outcomes in comparison 

with large-group traditional classroom instruction and non-adaptive computer-based instruction. 

However, we should be careful in interpreting the overall estimated effect size because the 

effectiveness of ALSs in enhancing student learning performance differed considerably across 

the 46 publications. Analyses of moderator effects revealed that the effectiveness of ALSs was 

moderated by learner characteristics, modeling approaches, and subject areas. 
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Discussion of the Findings 

The last four decades have witnessed important developments in the area of technology-

enhanced learning systems, among which ALSs are of great interest to researchers given their 

potential to personalize learning. The theoretical structures and the practical implementations of 

ALSs have been well documented in the literature. As noted in Chapter 2, the layered evaluation 

structure (Brusilovsky et al., 2004) and the tripartite structure (Vandewaetere et al., 2011) depict 

common components of diverse ALSs. Starting with learner modeling that both structures 

highlight across different ALSs, this study investigates how the design of learner modeling (i.e., 

learner characteristics and modeling approaches) affects the effectiveness of ALSs in practice. 

This section discusses the findings, which add to the growing theory and empirical knowledge 

base concerning the continued development and implementation of ALSs.  

Characteristics of Included Studies 

This meta-analysis included 46 publications, most of which investigate participants from 

the postsecondary level of institutions of higher education. The distribution of grade level is 

consistent with other meta-analyses that investigate the effectiveness of technology-enhanced 

learning systems (e.g., Kulik & Fletcher, 2016; Ma et al., 2014). This finding is unsurprising as 

researchers are housed in institutions of higher education and may find accessing student 

populations easier than collecting relevant data in K-12 schools. In addition, the estimated effect 

sizes showed positive results in favor of ALSs’ effectiveness in helping both K-12 and 

postsecondary students. Furthermore, this study did not detect a significant difference in the 

estimated effect sizes between K-12 and postsecondary levels.  

The subject of computer science is the most common learning topic within the 46 

publications, followed by the English language. It was found that ALSs focusing on the English 
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language instruction overperformed ALSs concentrating on other disciplines (i.e., mathematics, 

computer science, science/technology, and database). It is interesting to note that ALSs designed 

for the computer science learning appear not effective as those established for the English 

language learning, although the computer science community has been a vocal advocate of 

ALSs. Because many studies on ALSs lack the requisite information for this meta-analysis, it is 

likely that the 46 articles included in the present study are not representative of the full spectrum 

of the existing ALSs. As shown in Chapter 3, 2663 of 2709 studies were excluded because of the 

absence of mean scores, standard deviations, the number of observations, or descriptions of their 

architecture. Although the overall estimated effect sizes of ALSs designed for the five disciplines 

were positive, ALSs that target to help students learn mathematics, science/technology, and 

database did not significantly perform better than non-adaptive instruction. 

Unlike previous systematic reviews (Nakic et al., 2015, Martin et al., 2020, Muñoz et al., 

2022), prior knowledge is the most frequently modeled learner characteristic of the 46 

publications rather than learning style. This inconsistency may be a result of different inclusion 

criteria involved in previous systematic reviews and this study. The systematic reviews 

performed by Nakic et al. (2015), Martin et al. (2020), and Muñoz et al. (2022) did not require 

eligible studies to report quantitative information for the calculation of effect sizes. However, 

reporting quantitative information about empirical experiments for the calculation of effect sizes 

is an important selection criterion in this study. In addition, researchers typically used the overlay 

modeling approach to profiling learners’ knowledge status and questionnaires to model learning 

styles in ALSs. Although modern computing power and interaction capabilities have led to a 

broadening in learner modeling techniques (e.g., educational data mining and learning analytics), 
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the results of this study showed that these emerging learner modeling techniques have not been 

the mainstream in the field of ALSs. 

The Effectiveness of ALSs 

The overall estimated effect size (i.e., Hedges’s g) of the 46 publications was found to be 

substantial (1.227; 95% CI = 0.832, 1.622). The other recently published meta-analysis on ALSs 

(Fontaine et al., 2019) also showed positive, statistically significant overall effect sizes ranging 

from .70 (for knowledge) to 1.19 (for skill). The inconsistency in effect sizes between the present 

study and Fontaine et al.’s (2019) study may be a function of the choice of databases for their 

search strategies: The present research did not include academic medical sources (e.g., PubMed); 

in contrast, Fontaine et al. (2019) limited their search to medical databases. Although their effect 

sizes are different, both of them confirmed the effect of ALSs in promoting student learning 

outcomes is considerable. In comparison with the earlier study conducted by Verdú et al. (2008), 

the effectiveness of ALSs seems to be improved from a medium level (e.g., around 0.5 of 

Cohen’s d) to a large level (e.g., higher than 0.5 of Cohen’s d) over the last few years. 

This review also compared ALSs to other instructional strategies in terms of their 

effectiveness. First, this study compared the estimated effect size of ALSs in this study and the 

effect sizes of intelligent tutoring systems reported by previous meta-analyses. Specifically, Ma 

et al. (2014) found that the use of intelligent tutoring systems was associated with greater 

achievement in comparison with teacher-led large-group instruction (Hedges’s g = 0.42) and 

non-intelligent tutoring system computer-based instruction (Hedges’s g = 0.57). Kulik and 

Fletcher (2016) found that the median effect size in 50 studies on intelligent tutoring systems 

was .66 (Glass’s delta). In this study, the use of ALSs was associated with greater achievement 

in comparison with traditional large-group instruction (Hedges’s g = 1.025) and non-adaptive 
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computer-based instruction (Hedges’s g = 1.206). Based on these findings, ALSs appear to have 

more effects on learning achievement than intelligent tutoring systems.  

In addition, this study compared the estimated effect size of ALSs in this study to the 

effect size of one-on-one human instruction reported by Bloom (1984). Specifically, Bloom 

(1984) reported a two-sigma effect size (i.e., Glass’s delta = 2.00) of one-on-one human 

instruction in replacement of classroom teaching. In this study, the use of ALSs was associated 

with about one-sigma effect size (i.e., Glass’s delta = 1.30) in comparison with teacher-led large-

group instruction. Thus, ALSs appear to have fewer effects on student learning achievement than 

one-on-one human instruction. Nevertheless, it is interesting to observe that the effectiveness of 

ALSs has been stably improved in the recent five years. Specifically, the publications within the 

year 2016 to 2022 yielded an average effect size of 1.396 (Glass’s delta) as a result of the 

continued development in the field of ALSs.  

We should be cautious about interpreting the overall estimated effect size of ALSs in this 

study. This is because the 46 publications did not produce homogeneous effect sizes about the 

use of ALSs. Instead, the effectiveness of ALSs varied significantly among different 

publications. The three-level CHE modeling results, which indicated the effect sizes between 

publications (level 3; 83.47%) contributed a larger percentage to the overall heterogeneity than 

that found within publications (level 2; 12.06%), confirmed the heterogeneity in effect sizes from 

the 46 publications. This finding highlights the wide range of ALSs in promoting student 

learning and indicates that a better understanding of influential factors would be helpful to 

advance this area of work (Brusilovsky et al., 2004; Vandewaetere et al., 2011). As Bernacki et 

al. (2021) claimed, significant opportunities exist to improve ALSs before systems can be 

applied in education. To achieve this goal, it is crucial to inspect factors that account for the 
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variability in system effectiveness. Given that most effect sizes within one publication shared 

many attributes (e.g., common system architecture) and the main source of heterogeneity is 

between publications, it is important to investigate publication factors.  

Learner Modeling Accounting for the Heterogeneity 

Previous literature reviews consistently suggested learner modeling to be a crucial 

component of ALSs. For example, Vandewaetere et al. (2011) pointed out that the difference 

among various ALSs centered on learner characteristics and modeling approaches. This theory-

guide emphasis on the importance of learner modeling to ALSs was confirmed by empirical 

findings obtained in this study. Analyses of design features of learner modeling within the 46 

publications revealed that the choice of learner characteristics and modeling approaches 

significantly accounted for the heterogeneity in system effectiveness. Specifically, ALSs that 

model both learning style and prior knowledge are likely to enhance student learning 

achievement more than those only model learning style. This finding is consistent with the 

statement that the effectiveness of ALSs improves with an increased number of learner 

characteristics considered to build systems (Dhakshinamoorthy & Dhakshinamoorthy, 2019).  

The observations from the existing adaptive systems reveal that the development of 

systems that adapt to more than one learner characteristic is more challenging than systems that 

adapt to a single learner characteristic (Brusilovsky et al., 2004). If only one learner 

characteristic can be included in the learner model of an ALS, our results suggested that prior 

knowledge seems to be associated with better learning outcomes in comparison with learning 

style. In addition, educational data mining methods are associated with more effects of ALSs on 

student learning outcomes, in comparison with other modeling approaches to prior knowledge 

(i.e., overlay modeling, scalar modeling, and item response theory modeling). 
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However, the comparison results of system effectiveness should be interpreted with 

caution because studies included in this meta-analysis typically used questionnaires to model 

learning styles. In the literature, there have been some studies (e.g., Botsios et al., 2008; Dorça et 

al., 2013) that applied machine learning algorithms to automatically detect learners’ learning 

styles. The effectiveness of ALSs which model learning styles using machine learning 

algorithms and those modeling prior knowledge deserves further comparisons. 

Taken together, these findings highlight the importance of system feature specification 

when embarking on ALSs work in education. 

Educational Implications 

Instead of inventing a new ALS, this study systematically evaluated established ALSs. 

The findings on the system effectiveness and the influential factors of the system effectiveness 

contribute to the increasing theory and empirical knowledge concerning ALSs.  

Theoretical Implications  

The synthesis of the effectiveness of different ALSs facilitates a comprehensive 

evaluation of the current ALSs. In addition to the meta-analysis conducted by Fontaine et al. 

(2019), to my knowledge, this is the second meta-analysis of empirical studies on ALSs. 

Fontaine et al. (2019) limited their focus to health professionals and students. In contrast, this 

study investigated the effects of ALSs on K-12 and postsecondary students’ learning 

achievements. Thus, this study acts as an important supplement to Fontaine et al.’s (2019) study 

concerning the evaluation of ALSs. 

The evaluation of ALSs revealed that ALSs appear to be associated with more effects in 

improving student learning achievement than those of intelligent tutoring systems. However, the 

current ALSs do not seem to be comparable to one-on-one human instruction in promoting 
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student learning outcomes. As the exemplary method of personalized learning, one-on-one 

human instruction is expected to provide “the right content at the proper time in the most 

appropriate way” (National Association of State Boards of Education, 2001). ALSs may be not 

capable to deliver adaptive instruction to the degree of human instructors. There have been 

studies that investigated important components that make one-to-one instruction one of the most 

effective tutoring methods (e.g., Graesser et al., 1995; Zhang et al., 2021). For example, one 

prominent component of effective human tutoring is the collaborative dialogue between learners 

and tutors (Graesser et al., 1995). However, few ALSs carry out the function of dialogue. Thus, 

continued development of ALSs, especially in the improvement of system adaptation, is 

warranted to be a parallel alternative to one-on-one human instruction. The improved 

effectiveness of ALSs in the last seven years indicates a promising trend for the future of ALSs.  

The comparison result between ALSs and intelligent tutoring systems needs to be 

interpreted carefully because these systems cannot be clearly separated in the literature. ALSs 

and ITSs are two overlapping fields and the boundary between them is blurred. In comparison 

with Ma et al.’s (2014) results, the effect sizes in this study were higher when compared to non-

adaptive computer instruction and traditional large-group instruction. However, Ma et al. (2014) 

reviewed evaluative studies on intelligent tutoring systems published prior to 2013. The different 

publication year ranges might be the reason for the inconsistency in system effectiveness. 

Although the comparison between ALSs and intelligent tutoring systems is impracticable, a 

feasible research direction is to investigate the effects of the inner loop and the outer loop 

feedback on learning process and performance. It is uncommon for ALSs to offer the inner loop 

feedback to learners. However, Tacoma et al. (2020) suggested that providing both the inner loop 

and the outer loop feedback would benefit students more than merely delivering a single type of 
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feedback. A great deal is still unknown and requires further investigations about which design 

options (i.e., inner loop and outer loop) are effective under which circumstances (e.g., knowledge 

level, knowledge component).  

Analysis results of factors that are associated with the effectiveness of ALSs add to the 

growing theory concerning the architecture of ALSs. Specifically, the discussion on the 

similarities and differences between the layered evaluation structure (Brusilovsky et al., 2004) 

and the tripartite structure (Vandewaetere et al., 2011) in Chapter 2 provides insights into the 

core components of ALSs. That is, the importance of learner modeling to ALSs is emphasized 

theoretically. This study performed a series of three-level CHE models and found the significant 

effects of learner characteristics and modeling approaches on the effectiveness of ALSs. This is 

the first study that supported the significance of learner modeling to ALSs empirically. These 

results account for the breadth of challenges when approaching technology-enhanced learning in 

education (Cha et al., 2006; Xie et al., 2019): not only implementations but also designs of 

adaptive learning require deliberate efforts in the research communities.  

Practical Implications 

The findings on the estimated effectiveness of ALSs offer practical implications for 

practitioners and policymakers. Along with the prevalence of computers and improved Internet 

connectivity in schools, ALSs present a viable option for providing accessible personalized 

instruction for students. Although the use of ALSs is associated with fewer effects in promoting 

student learning achievement in comparison with one-on-one human instruction, ALSs certainly 

promote student learning performance in comparison with non-adaptive computer instruction and 

traditional large-group instruction. In addition, like other technology-enhanced learning systems, 
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ALSs may provide a good opportunity for under-served and geographically dispersed 

populations who may otherwise not have easy access to well-trained teachers.  

In addition, the mapping between system effectiveness and influential factors is useful for 

designers and developers of ALSs. To establish an ALS, system designers and developers need 

to select suitable learner characteristics and modeling approaches since learning materials 

delivered by ALSs are to be adapted to the modeled learner characteristics with artificial 

intelligent mechanisms. The lack of empirical research on the association between system 

effectiveness and learner modeling is not only a key issue but also a challenging research area in 

the development of ALSs (Abyaa et al., 2019). However, the present study performed a meta-

analysis of different ALSs, which makes it feasible to compare the option of different learner 

characteristics and modeling approaches in terms of system effectiveness. The findings of this 

study facilitate researchers and educators to better incorporate learner characteristics and 

modeling approaches in the development of ALSs. 

Specifically, ALSs that model both learning style and prior knowledge are associated 

with more effects on student learning achievement, especially when compared with ALSs merely 

modeling learning style. In addition, prior knowledge has more potential in comparison to 

learning style profiled by questionnaires if only one learner characteristic is included in the 

learner model of an ALS. Moreover, in comparison with other modeling approaches to prior 

knowledge, educational data mining methods tend to be associated with more effects of ALSs on 

student learning outcomes. In terms of learning style questionnaires, Kolb’s Learning Style Scale 

(Kolb, 1985) and Jackson’s Learning Styles Profiler Questionnaire (Jackson, 2005) appear to be 

associated with larger effect sizes in comparison with the Index of Learning Styles Scale (Felder 

& Spurlin, 2005). These findings are useful for the decision-making process when system 
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designers and developers only model one or two student characteristics from prior knowledge 

and learning style in their ALSs. 

Limitations 

The current research is characterized by limitations that must be considered when 

interpreting its findings. The limitations are categorized into two groups in this section: issues 

with theoretical framework and issues with quantitative evaluation.  

Issues Related to Theoretical Framework 

This study distinguished between adaptive learning systems and intelligent tutoring 

systems in Chapter 2. The term “adaptive learning system” was centered when databases were 

searched to assemble the candidate studies pool in Chapter 3. However, in the literature, it is still 

debatable whether intelligent tutoring systems belong to adaptive learning systems. For example, 

Xie et al. (2019) stated that one important stream of adaptive learning systems is intelligent 

tutoring systems. In contrast, when Kabudi et al. (2021) performed a systematic mapping of the 

literature on AI-enabled learning systems, they identified adaptive learning systems and 

intelligent tutoring systems as separate streams of AI-enabled learning systems.  

As stated by Psotka et al. (1988), intelligent tutoring systems employ computational 

algorithms or models to deliver immediate feedback and learning instructions to learners. That is, 

intelligent tutoring systems are characterized by step-specific scaffolding strategies (e.g., error-

correction feedback and cues; Nye, 2015). However, from the standpoint of both the layered 

evaluation structure (Brusilovsky et al., 2004) and the tripartite structure (Vandewaetere et al., 

2011), adaptive effects mainly include adaptive presentations, adaptive navigations, and adaptive 

content aggregations (Esichaikul et al., 2011; Premlatha & Geetha, 2015). Because intelligent 
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tutoring systems also deliver step-specific scaffolding strategies, which are not specified by the 

two structures, this study specifically focused on ALSs.  

However, we cannot draw a clear boundary between intelligent tutoring systems and 

adaptive learning systems in fact. From the perspective of adaptation, intelligent tutoring systems 

typically provide both inner-loop and outer-loop adaptation; in contrast, ALSs usually serve 

outer-loop adaptation. Their advantages in personalized learning are gradually merged to provide 

a full learning environment (Phobun & Vicheanpanya, 2010). Future studies might include 

intelligent tutoring systems and adaptive learning systems and compare the effectiveness of 

inner-loop, outer-loop, and/or a combination of inner-loop and outer-loop adaptation.  

Issues Related to Quantitative Evaluation 

One of the limitations related to the meta-analysis is that this study merely examined the 

effectiveness of ALSs in promoting student learning outcomes. However, there are other aspects 

of ALSs’ evaluation. For example, learning satisfaction is found to be an important factor that is 

able to predict learners’ decision to drop out or persist in e-learning (Park & Choi, 2009). In real 

education scenarios, the high dropout rate in e-learning has been of concern to many educational 

institutions and organizations (Njenga & Fourie, 2010). Thus, exploring the association between 

learning satisfaction and learner modeling has enormous potential for the development of ALSs. 

Another limitation related to the meta-analysis is that this study did not investigate the 

association between adaptive effects and the effectiveness of ALSs. Like learner modeling, 

which was investigated in the present study, adaptive effects are important components of an 

ALS (Brusilovsky et al., 2004; Vandewaetere et al., 2011). However, because researchers do not 

report adaptive effects explicitly, it is difficult to code adaptive effects of an ALS. Specifically, 

studies on ALSs always mix together adaptive presentations, adaptive navigations, and adaptive 
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content aggregations. However, to advance our understanding of ALSs, it appears necessary to 

examine the impacts of different types of adaptive effects on system effectiveness.  

Finally, this study examined the effects of multiple moderator one by one. However, 

interactions among moderators are possible. Although interaction effects between moderators 

might be meaningful to understanding ALSs’ effectiveness, Dusseldorp et al. (2016) pointed out 

that “when several study features are available, regression in meta-analysis lacks sufficient 

power to detect interactions between them (p. 1)”. As the body of work continues to grow, future 

studies can explore feature interactions. For example, interactions between learner characteristics 

and modeling approaches are possible, making further explorations of these factors essential for 

improving system effectiveness and building more effective ALSs needed for the changing 

landscape of education efforts. In addition, although researchers are suggested to give priority to 

prior knowledge when selecting modeled learner characteristics in ALSs, it is unclear whether 

learning style is a more important learner characteristic in specific subject areas. 

Recommendations for Future Research  

There are at least four directions for future research. First, future studies might focus on 

comparisons between intelligent tutoring systems and adaptive learning environments. As 

discussed above, some researchers consider intelligent tutoring systems as a stream of adaptive 

learning environments because intelligent tutoring systems are characterized by system 

adaptation (Xie et al., 2019); in contrast, some researchers regard them as separate AI-enabled 

learning systems because of different adaptive effects provided by them (Kabudi et al., 2021). A 

key factor that researchers consider whether to include studies on intelligent tutoring systems 

might be what research questions they would like to answer. For example, studies should 

incorporate intelligent tutoring systems when they aim to provide a comprehensive review of the 
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present AI techniques of system adaptation (Imhof et al., 2020; Kabudi et al., 2021). In contrast, 

studies are suggested to leave intelligent tutoring systems out when they refer to the layered 

evaluation structure (Brusilovsky et al., 2004) and/or the tripartite structure (Vandewaetere et al., 

2011). Future studies should conduct a review of adaptive learning environments and intelligent 

tutoring systems and clarify their connections, based on which propose guidelines on how to 

delimit the scope of research on adaptive learning environments.  

Second, future studies might focus on comparing the effectiveness of ALSs using other 

modeling approaches. Specifically, this study found ALSs using an artificial neural network to 

model prior knowledge were associated with higher system effectiveness in comparison with 

other modeling approaches (i.e., overlay modeling, scalar modeling, and item response theory 

modeling). However, this finding cannot be generalized to other data mining techniques. 

Regarding learning style, publications included in this study typically employ different types of 

questionnaires. The effectiveness of ALSs modeling prior knowledge was found to be higher 

than those modeling learning styles with questionnaires. However, the effectiveness of ALSs that 

used machine learning algorithms to model learning styles has not yet been compared with the 

effectiveness of ALSs that modeled prior knowledge. It is possible that modeling approaches of 

learning styles rather than learning styles themselves should be taken seriously in the design of 

ALSs. That is, only specific modeling approaches could accurately capture learners’ learning 

styles when they use ALSs. Future studies might conduct experiments to examine the 

effectiveness of ALSs, which model learning styles with machine learning algorithms, in 

comparison with non-adaptive instruction. These studies will contribute to profiling a 

comparative complete picture of learner modeling comparison (i.e., prior knowledge and 

learning style) in ALSs. 
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Third, future studies might focus on students’ learning satisfaction with using ALSs. 

With improved internet connectivity, ALSs have gained prevalence in real educational settings. 

Along with the wide application of ALSs, students’ learning satisfaction is becoming an 

important aspect of ALS evaluation. Low learning satisfaction is likely to increase the dropout 

rate of ALSs, thus deteriorating learning improvement (Park & Choi, 2009; Tan & Shao, 2015). 

In this study, the lack of sufficient information and the inconsistency of reporting across 

publications constitute barriers to the evaluation of learners’ learning satisfaction from different 

ALSs. Future studies on the development of new ALSs might survey the learning satisfaction of 

students who use ALSs and report students’ learning satisfaction as an indicator of system 

effectiveness. When there are more studies available on students’ learning satisfaction with using 

ALSs, researchers may conduct a more comprehensive meta-analysis to investigate the 

relationship between different system characteristics and learning satisfaction. 

Potential of Measurement Model for Adaptive Learning Systems 

Psychometrics can be an important building block of ALSs, given its dominance in the 

measurement of proficiency levels. Chang (2015) claimed that the field of computerized adaptive 

testing (CAT) has enormous potential to greatly facilitate individualized learning. Specifically, 

providing more efficient latent trait estimates with fewer items by CAT (e.g., Weiss, 1982) 

would put ALSs at an advantage in terms of knowledge modeling. In addition, cognitive profiles 

identified by cognitive diagnostic computerized adaptive testing (CD-CAT) can be used to 

customize exercises and learning materials in ALSs. However, methodologies in the field of 

psychometrics for measuring underlying individuals’ abilities are not commonly used in the 

present ALSs. This might be because the ALS community’s participants are usually associated 

with computer science (Nakic et al., 2015). 
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Zhang and Chang (2016) indicated that it is necessary for adaptive learning to find its 

niche in the current educational institution; otherwise, both schools and students are challenged 

to take full advantage of adaptive learning. This warning corresponds to the basic question of 

“how to integrate technology into a traditional learning environment”. Chang (2015) holds the 

perspective that technology should help classroom instructors rather than completely replace 

their roles. A good integration of ALSs and traditional learning scenarios will promote the 

acceptance of ALSs among schools, teachers, and students (Zhang & Chang, 2016). Wang et al. 

(2013) worked on making paper-and-pencil tests adaptive, which sets a good example of how to 

integrate technology into the classroom. Specifically, their design includes a PC server and a 

smart printer-scanner. Students’ answers to paper-and-pencil tests are scanned into the system by 

the printer-scanner. Then, the system automatically scores students’ answers and generates 

individualized diagnostic reports. Based on the diagnostic results, the system can also generate a 

stapled booklet that provides an assignment with personalized instructions to each student. 

Conclusion 

 ALSs serve as a way to personalize learning experiences for students to improve their 

learning outcomes. The study performed a meta-analysis to investigate the potential of ALSs to 

promote student learning outcomes. Findings indicate that the current ALSs can advance student 

learning achievement greatly. However, they are not as effective as one-on-one human 

instruction. The high level of heterogeneity in the success of existing efforts for ALSs indicates 

many opportunities for continually improving their effectiveness. As found in the present 

research, the choice of learner modeling (i.e., learner characteristics and modeling approaches) 

significantly accounts for the wide variation in system effectiveness. Regarding learner 

characteristics, ALSs that model both learning style and prior knowledge are associated with 
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higher student learning achievement than those that only model learning style. In addition, prior 

knowledge has more potential in enhancing student learning outcomes in comparison with 

learning styles modeled by questionnaires if only one learner characteristic is included in the 

learner model of an ALS. Regarding modeling approaches of prior knowledge, the educational 

data mining method (i.e., artificial neural network) was found to be associated with larger effect 

sizes of ALSs, in comparison with other modeling approaches (e.g., overlay modeling and item 

response theory modeling). These findings can act as evidence-based recommendations for 

ongoing and flourishing developments in ALSs.   
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Appendix A 

The Titles and Publication Years of the Existing Literature Reviews on ALSs 
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User modeling and user profiling in adaptive e-learning systems 2005 
Adaptive educational hypermedia systems in technology enhanced 
learning: A literature review 

2010 

The contribution of learner characteristics in the development of 
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Adaptive systems: A content analysis on technical side for e-learning 
environments 

2015 

Learning style based individualized adaptive e-learning environments: 
Content analysis of articles published from 2005 to 2014 
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Learning content design and learner adaptation for adaptive e-learning 
environment: A survey 

2015 

Application of data mining in adaptive and intelligent tutoring systems: A 
review 

2015 

Integrating learning styles and adaptive e-learning system: Current 
developments, problems and opportunities 

2016 

Adaptivity in educational systems for language learning: A review 2017 
Learning styles based adaptive intelligent tutoring systems: Document 
analysis of articles published between 2001 and 2016 

2017 

Review of data mining techniques and parameters for recommendation of 
effective adaptive e-learning system 

2017 

Learner modelling: Systematic review of the literature from the last 5 
years 

2019 

Identification of personal traits in adaptive learning environment: 
Systematic literature review 

2019 

A literature review of the adaptive algorithms adopted in adaptive 
learning systems 

2019 

Trends and development in technology-enhanced adaptive/personalized 
learning: A systematic review of journal publications from 2007 to 2017 
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A systematic review of process modelling methods and its application for 
personalised adaptive learning systems 

2019 

Design framework of adaptive intelligent tutoring systems 2020 
A systematic review: Machine learning based recommendation system for 
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2020 

Learning path personalization and recommendation methods: A survey of 
the state-of-the-art 

2020 

Enhancing students’ ability in learning process of programming language 
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Systematic review of adaptive learning technology for learning in higher 
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2022 

Personalized and adaptive context-aware mobile learning: Review, 
challenges and future directions 

2022 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

115 
 

 
 

Appendix B 

An Overview of Studies on ALSs Selected in the Present Meta-Analysis 
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33 Su (2017) 
Designing and developing a novel hybrid adaptive learning 
path recommendation system (ALPRS) for gamification 
mathematics geometry course 
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