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Abstract

In this thesis a mathematical model of HIV transmission and diagnosis is used to estimate
the total size of the HIV-positive population and the HIV incidence from HIV case report
data for the Province of Alberta.

Worldwide, estimates of the size of the HIV-positive population are used to allocate
medical resources and target disease prevention efforts, while estimates of HIV incidence
are used to evaluate the effectiveness of intervention programs and track changes in risk
behaviours. Many HIV surveillance programs are based on reports of newly diagnosed
cases. HEstimating the total size of the HIV-positive population from this data is chal-
lenging as those who are HIV-positive but have not been diagnosed are not included.
Furthermore, trends in HIV diagnosis do not reflect trends in incidence as the length of
time newly diagnosed HIV patients have been infected is usually unknown.

Fitting the model used in this thesis is complicated by the presence of non-identifiable
parameters. Non-identifiable parameters occur when all parameter values on a surface
in the parameter space have identical model outcomes for the quantities represented in
the data. Methods for systematic detection of this behaviour and resolution of non-
identifiabilities are discussed in a general modelling framework and applied to the HIV
model for the assessment of the Province of Alberta data.

Interval estimates for all parameters are obtained using an iterated Markov chain
Monte Carlo (MCMC) method and the resulting fitted model is validated. The validated
model is used to produce estimates of the total size of the HIV-positive population
including those who have not been diagnosed for the years 2001 to 2020. Estimates
of HIV incidence, time from infection to diagnosis, and the size of the undiagnosed

population are also computed using the model. Uncertainty and sensitivity analysis

ii



are used to determine how much uncertainty remains in these estimates and which
parameters are most important to the model outcomes. Finally, the model is used to
simulate several potential intervention strategies to reduce HIV incidence in the province.

The potential impact of antiretroviral drug resistant strains of HIV on a hypothetical
“treatment as prevention” program in the context of a generalized HIV epidemic is
studied using another model. This model includes the development and transmission of
drug resistant viral strains. Sensitivity and uncertainty analyses are used to explore the
potential outcomes.

Finally, the asymptotic behaviour of a simple disease model similar to the Alberta
HIV model, but using more general forms of population dependent transmission, is
analyzed mathematically. It is shown that for some types of population dependence this
model can display complicated dynamical behaviours including backward bifurcations

and Hopf bifurcations.
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Chapter 1

Introduction

Information about the size of human immunodeficiency virus (HIV) epidemics is vital
for public health workers worldwide as this information can be used to allocate medical
resources, target disease prevention efforts, and evaluate the effectiveness of interven-
tions. Quantities of particular interest include the size of HIV-positive populations and
the yearly number of new infections. It is rarely possible to measure these quantities
directly. Instead they are estimated from HIV surveillance data.

In the Province of Alberta, as in many other industrialized contexts, HI'V surveillance
is based on reports of diagnosed cases. This type of data is relatively easy to collect,
but is challenging to use to estimate the overall size of the HIV-positive population.
This challenge is caused by the fact that case report data only includes the part of the
HIV-positive population that has already been diagnosed. Those who are HIV-positive
but undiagnosed are an important component of the HIV-positive population as they
are the source of many new infections. Information about the size of the undiagnosed
population can be used in healthcare planning and to target and evaluate diagnosis
programs. Estimating the yearly number of new HIV cases is also challenging using
case report data. HIV has a relatively long period with few symptoms and diagnosis
may occur several years after infection, therefore case report data does not directly
reflect trends in new infections.

In this thesis a method is developed for estimating the total size of the HIV-positive
population, the size of the undiagnosed population, and the number of yearly new in-

fections from case report data.

1.1 The Size of an Epidemic

Two different quantities are often used to describe the size of an epidemic such as HIV:

prevalence and tncidence.

Prevalence: The proportion of the population infected with a disease is the preva-

lence. This quantity may be reported as a fraction or a percentage. In the case of HIV it
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is most commonly reported as a number per 100 000 population. However it is reported,
the prevalence describes the total number of people infected as a fraction of the total

population.

Incidence: The number of new infections per unit time is the incidence. For HIV, the
time unit used is usually one year. The incidence may also be reported as the proportion
of the susceptible population who become infected in a fixed amount of time. In either
case, the incidence describes how quickly new cases are occurring.

In the case of a disease like HIV which causes permanent infection which patients
may survive for many years, the prevalence does not always give a good sense of the
current state of disease transmission. Many prevalent cases have been infected for years
and a change in incidence may not impact the prevalence significantly for several years.

However, prevalence does indicate how much of the population is affected by HIV.

1.1.1 A Method for Estimating HIV Prevalence and Incidence

In the Province of Alberta and many other places worldwide, case reports for HIV and
AIDS are routinely recorded for HIV surveillance. As has already been discussed, this
type of data poses a problem in estimation of overall HIV incidence and prevalence
because HIV infections may remain undiagnosed for many years and the size of the
undiagnosed population is unknown. In this thesis, a novel method of solving this
problem and producing estimates of HIV prevalence and incidence from case report
data will be developed.

The method uses a deterministic, population based model of HIV transmission and
diagnosis to describe an HIV epidemic. The model is calibrated using case report data.
Once it has been calibrated the model is used to produce estimates of the total size
of the HIV-positive population and HIV incidence, including past trends and future
projections. The model may also be used to estimate other features of disease trans-
mission and diagnosis such as the size of the undiagnosed HIV-positive population and
the fraction of the undiagnosed population that has been undiagnosed for many years.
The model can be used to simulate the potential results of intervention programs that
target HIV transmission or diagnosis.

An introduction to the most common methods used worldwide in monitoring HIV
prevalence and incidence is found in Section 1.2. The majority of these methods require
data from HIV prevalence surveys. This data may be the result of cross-sectional surveys
sampling from the entire population, or may be collected at sentinel surveillance sites
such as health clinics. Collecting and interpreting this data is a challenge in itself.
Cross-sectional surveys are large undertakings which cannot be repeated frequently while
sentinel surveillance covers only specific sub-populations.

Prevalence surveys do not directly provide information about HIV incidence which

must be estimated separately. The Spectrum package is a tool for HIV incidence esti-
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mation developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS).
Spectrum uses data from HIV prevalence surveys to fit a mathematical model and pro-
duce estimates of HIV incidence along with past trends and future projections. Unlike
the method developed in this thesis, the Spectrum model cannot be calibrated using case
report data and cannot directly make estimates regarding the undiagnosed population.

The only commonly used method for HIV incidence estimation using case report
data is back-projection. The method uses a statistical model for the time from infection
to diagnosis and attempts to correct case report data for diagnosis delay. This produces
estimates of incidence trends for the past. As many of those who have been recently
infected will not yet be diagnosed, back projection is best used retrospectively. Unlike
the model used in this thesis it does not allow for projection into the future.

The model that will be used in this thesis has some similarity to the models used by
Wilson [142] and Bezemer [14]. However both of these authors use models with multiple
disease stages and must determine values for many more parameters. The model used by
Wilson is not calibrated to surveillance data and is not intended to provide prevalence
or incidence estimates. The model used by Bezemer is calibrated using HIV and AIDS

reports, but does not include HIV transmission dynamics.

1.2 Literature Review

A number of papers have recently been published discussing and comparing multiple
methods for estimating the size of HIV/AIDS epidemics. The Working Group on Esti-
mation of HIV Prevalence in Europe focuses on methods that can be used to estimate the
number of HIV-positive people who are undiagnosed including a comparison of several
back-projection based methods [144]. Brookmeyer discusses estimation and measure-
ment methods more generally including a discussion of biomarker based methods for
estimating HIV incidence [22]. Other papers focus on particular national contexts. For
Kenya and Uganda, several methods to estimate HIV incidence are compared including
Spectrum, sequential prevalence surveys, the BED immunoassay, and a cohort study [81].
For the Netherlands, several methods to estimate HIV prevalence are compared includ-
ing the UNAIDS Workbook method, multiparameter evidence synthesis, and Spectrum
[133]. These methods and others will be discussed in further detail in this section.
The World Health Organization defines three different epidemic types.

e In Jow level epidemics, HIV has not spread significantly in any subpopulation
including those at high risk such as intravenous drug users, men who have sex

with men, or sex workers and their clients.

e In concentrated epidemics, HIV is well established in subpopulations at high risk,

but is not commonly transmitted to the general population.
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e In generalized epidemics, HIV is established in the general population and many

cases are not related to individuals at increased risk.

The type of epidemic occurring in a region determines which methods of estimating

prevalence and incidence are most appropriate[145].

1.2.1 Prevalence

Several well established methods can be used to estimate HIV prevalence. These meth-
ods do not, by themselves, give any information about HIV incidence but may provide

information required by methods to estimate incidence.

Sentinel Surveillance and The Direct Method: In much of the world, the most
readily available source of data on HIV prevalence comes from the testing of blood
samples collected at antenatal clinics. In generalized epidemics, sexually active women
of childbearing age are at moderate to high risk for HIV and the HIV prevalence in this
population is assumed to be correlated with HIV prevalence in the general population.
Thus many national estimates of HIV prevalence depend heavily on information from
sentinel surveillance based in antenatal clinics.

In low level and concentrated epidemics, other surveillance programs can be targeted
at populations at high risk to provide more information about the overall epidemic. For
example, surveillance programs using sexually transmitted infections clinics can provide
information about all those who are sexually active including both heterosexual men and
men who have sex with men (MSM). Other surveillance programs may target drug users
or sex workers. This type of data can be used directly to examine prevalence within
the particular subpopulations being surveyed. For example, surveillance programs often
target injection drug users [103, 127], men who have sex with men [85, 84], and sex
workers [111, 3].

Prevalence data for groups at higher risk can be combined with estimates of the size
of the relevant subpopulations to determine an overall prevalence estimate. This method
is sometimes called the direct method and is the basis for the UNAIDS Workbook, a
spreadsheet based guide to using the direct method to construct an estimate of HIV
prevalence for a region. The UNAIDS Workbook has been recommended for use in low
level and concentrated epidemics [91]. China and Ukraine, among others, have used the
UNAIDS Workbook to produce prevalence estimates [140, 83] while the United Kingdom

has used a customized version of the direct method [97].

Multiparameter Evidence Synthesis: An alternative to the direct method for com-
bining surveillance data for high risk groups into overall estimates of HIV prevalence
is multiparameter evidence synthesis [1]. This method uses similar data to the direct

method, but defines a Bayesian framework and fits the relevant prevalence parameters
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using a Markov chain Monte Carlo (MCMC) method. This method is intended to pro-
vide a more careful quantification of uncertainty than the direct method allows and it
can also be used in cases where some of the data has known or suspected biases. Mul-
tiparameter evidence synthesis has been applied in the United Kingdom [108] and the
Netherlands [133].

Cross-Sectional Surveys: Another approach has been to include HIV testing in
large scale surveys at the national level. These projects require selecting a represen-
tative sample of the population and usually involve both an interview and collection
of specimens for HIV testing. National demographic and health surveys including HIV
testing have been done in a number of different countries since the year 2000 [18, 98, 46].
A similar survey was performed in New York City in 2004 [102].

Cross-sectional surveys such as these avoid some of the concerns with basing HIV
prevalence estimates on antenatal clinic surveillance, but they may still be subject to
bias. In particular, response bias may be a factor in cross-sectional surveys as those at
highest risk may not be available to complete the survey [8]. Furthermore, those who are
already aware that they are HIV-positive may refuse to participate. Nonetheless, cross-
sectional surveys are often very successful, with only a small number of non-responders
[98].

Cross-sectional surveys are expensive and can be difficult to conduct, requiring sig-
nificant human and laboratory resources. As a result, cross-sectional surveys cannot be
repeated frequently and, while they provide a good estimate of HIV prevalence, they
cannot be used to track short term changes in the epidemic. They are particularly
difficult in low-level epidemics where infection is relatively rare and a large sample will
be required to accurately estimate prevalence [47]. In concentrated epidemics some of
the populations most at risk for HIV are difficult to include in large scale surveys which

often use household based sampling procedures.

1.2.2 Incidence

Measuring HIV incidence is more difficult than measuring prevalence. Measuring in-
cidence requires information about new cases which are often not easy to distinguish
from long-standing cases as regular testing is not common and many HIV cases are not

diagnosed until long after infection.

Repeated Prevalence Estimates: One method for constructing incidence estimates
requires age specific prevalence estimates to be repeated at multiple points in time.
Assumptions about population aging and deaths are applied to estimate how many new
cases have occurred during the time between the prevalence estimates. This process has
been applied to estimate HIV incidence in South Africa [114] and a number of other

countries [62].
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The assumptions about deaths in the HIV-positive population are particularly crucial
to this method and changing death rates due to the increasing availability of treatment
can bias the results [61]. For example, an increase in disease prevalence could be caused
by more new infections or it could be caused by infected persons surviving longer due
to treatment. If the death rate is assumed to be constant when it is actually decreasing,
this method will overestimate HIV incidence. Reliable information on the death rate
in the HIV-positive population is not always available, limiting the usefulness of this
method.

Disease Progression Biomarkers: Another method of estimating HIV incidence
involves laboratory tests for infection recency. Such tests indicate not only whether or
not a specimen is HIV-positive but also whether or not the HIV infection is recent.

One early technique used a less sensitive detuned HIV antibody assay to discriminate
recently acquired infections from longer term infections. This technique uses the fact
that those who have been recently infected generally have a lower concentration of
HIV antibodies than those who have been infected for a longer period. Unfortunately,
this technique may also classify many people with advanced AIDS as having a recently
acquired infection as their HIV antibodies are waning due to immune system damage.
Furthermore, those who have long standing infections that are successfully suppressed
using antiretroviral therapy (ART) may also appear to be recently infected using this
test [27].

Other tests for recent infection use different aspects of the immune response to dis-
tinguish between recently acquired and longstanding infections. The most commonly
used of these is the BED IgG-Capture Enzyme Immunoassay [9]. While the BED Im-
munoassay outperforms older detuning techniques, it is still known to misclassify some
of those who have long term infections. When applying biomarker methods to deter-
mine HIV incidence, the possibility for false recent results must be accounted for. This
may occur prior to the testing phase, so that biomarker tests are not used to determine
infection recency for those who are known to have long standing infections, or statistical
methods may be used to remove this type of error in the analysis phase [141].

Incorporating such tests with sentinel surveillance or cross-sectional survey methods
for estimating HIV prevalence allows these survey methods to also provide an estimate
of recently acquired HIV. Interpreting such estimates in terms of HIV incidence requires
knowledge about the average time during which a person will test positive for recent
infection. The value of this parameter can be calculated during cohort studies [105] but,
as these are rare and typically small, a great deal of uncertainty may remain.

The BED Immunoassay was included in the 2005 national household survey in South
Africa [113] in order to estimate HIV incidence. The BED Immunoassay is also used
in the United States where data collected using this method is combined with back-

projection methods for estimating HIV prevalence and incidence trends [79, 107].
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Cohort Studies: The most direct method of measuring HIV incidence is to perform
a cohort study in which a defined population is followed up regularly for repeated HIV
testing over some time period. While this provides a direct measurement of HIV inci-
dence over the study period, cohort studies are costly and it is difficult to repeatedly
follow up with a large population. Therefore, this type of study is usually done on a
smaller scale, targeting some specific subpopulation, for example agricultural workers in
Kericho Kenya [115]. Cohort studies are sometimes intended to investigate the impact
of particular interventions [78] or to determine the influence of specific risk factors [124].
The resulting measurements of HIV incidence may not be generalizable to a larger pop-
ulation. Additionally, participation in a cohort study and the associated repeated HIV

testing is thought to influence behaviours and bias the resulting estimates [22].

1.2.3 Trends and Projections

In addition to estimates of epidemic size at a single point in time, information on how
HIV prevalence and incidence have changed in the past and how they may continue to
change in the future is extremely valuable. A number of specialized methods have been

developed for determining trends in HIV incidence and prevalence.

1.2.3.1 Back-projection

Back-projection, also known as back-calculation, is one of the oldest methods for recon-
structing historical HIV incidence curves. It is a statistical method using HIV and/or
AIDS diagnosis data. As already mentioned, this information is routinely tracked by
public health surveillance programs in the industrialized world as this data is relatively
straight-forward to collect. However, the delay between infection and diagnosis requires
care in interpreting this information in terms of prevalence and incidence. Newly diag-
nosed HIV patients may have been HIV-positive for some time depending on a number
of factors including the individual’s perceived level of risk and exposure to HIV test-
ing. Additionally, newly diagnosed AIDS patients may have been HIV-positive for many
years depending on their adherence to treatment.

The back projection method was originally designed for use with AIDS case report
data but has been updated more recently to utilize other data sources, such as HIV
case reports and infection recency information [11, 123]. The updated back-projection
method involves choosing an appropriate statistical distribution for the time from in-
fection to diagnosis. This distribution is used together with HIV diagnosis data to esti-
mate the number of new infections in previous years. Usually the distribution of time
to diagnosis is chosen as a combination of several distributions accounting for various
motivations for testing such as development of symptoms or a suspected exposure [101].
These distributions must additionally be time dependent if they are to be applicable to

both the beginning of the epidemic and more recent data.
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It may be possible to estimate some of the parameters required to specify these dis-
tributions from data, however the available data is usually insufficient to compute all the
required parameters. This may be addressed either by making additional assumptions
to reduce the number of parameters required, or by including additional data. In par-
ticular, the method described in [148] uses partial infection recency data in specifying
distribution parameters.

There are several versions of the back-projection method in use in different parts of
the world depending on the data available locally. One method, applied in Canada and
Australia, uses both HIV and AIDS reports but does not require that these two datasets
be linked [149, 139]. Another method, applied in the United States, uses similar HIV
and AIDS report data, but requires that the data be linked so that time between HIV
and AIDS diagnosis is available [59].

The back-projection method can be used to estimate historical trends in incidence.
A drawback of the back-projection method is that it is most effective at computing
incidence several years in the past. Estimates for more recent years are prone to bias as
some of the HIV-positive population infected recently may not yet be diagnosed. This
also means that back calculation methods are not well suited to projection into the
future [92].

1.2.3.2 Spectrum

The Spectrum package is a collection of tools for estimation of HIV prevalence and
incidence trends developed and maintained by UNAIDS. It was originally developed as
two separate tools: Spectrum and the Estimation and Projection Package (EPP) [129].
These tools are updated regularly to include new features, modelling assumptions, and
estimation procedures [6, 122, 24, 25, 23, 49]. Most recently, these tools have been
merged together to form a single software package known as Spectrum [7, 121]. These
tools are primarily intended for use in estimating generalized epidemics but can also
be used along with the UNAIDS Workbook methods discussed earlier in the case of
low-level and concentrated epidemics.

From a mathematical perspective, the core of Spectrum is a deterministic disease
transmission model. Some of the model parameters, such as the parameters for the
AIDS survival time distribution, are fixed to appropriate values, while others, such as
the time dependent birth rate, are set by the user to reflect the local situation. Four
parameters remain to be fitted using data: the transmission coefficient, the time of the
start of the epidemic, the fraction of the population entering the at risk group, and a
behavioural response parameter. The parameters are fit using antenatal clinic sentinel
surveillance data and/or prevalence data from cross-sectional surveys.

Changes to EPP/Spectrum have been implemented in response to a variety of con-
cerns. For example, as antenatal clinic and other surveillance programs have expanded,

the data on the epidemic has become more complete including data from lower risk areas.
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Cross-sectional surveys are another relatively new source of HIV prevalence data. The
2005 version of EPP /Spectrum included tools to use data from an expanding surveillance
system [23].

The increasing availability of antiretroviral therapy (ART) has also required changes
in EPP/Spectrum. In the 2009 version, changes to the underlying model have been
made to account for the effects of ART on disease transmission [24, 122]. This change
added more parameter requirements to the model. The user must now provide a number
of details about ART availability and effectiveness in the local context.

Despite these and other changes, EPP/Spectrum has not always been able to es-
timate the size of all epidemics sufficiently well. In response to this, the 2011 version
of EPP/Spectrum changes the model substantially. The model is streamlined some-
what and fewer parameters are fitted, but the transmission coefficient is now stochastic,
varying with some randomness over the course of the epidemic [6].

Whichever version of Spectrum is used, the calibrated model produces historical
prevalence and incidence curves from beginning of the epidemic and projections into the

future.

1.2.3.3 Other Models

A variety of other models of HIV epidemics have been developed. These models take a
variety of forms including deterministic population based models [14], individual based
microsimulation models [13], and statistical models based on back calculation [60].

The models are often tailored to specific purposes and many of these models are not
intended primarily for estimating the size of the epidemic. Instead they are often created
to examine the potential impact of one or more intervention programs. For example,
interventions that have recently been explored using models include changing treatment
guidelines [69] and effectiveness [17], antiretroviral treatment for discordant couples [44]
and sex workers [134], promoting testing for men who have sex with men [142], and
changes in condom usage [68]. A variety of different models have been developed to
address the question of the effectiveness of treatment programs in preventing new HIV
infections [40]. Other models are intended to estimate the costs and savings associated
with these potential interventions [122, 135]. While only a few of these models are de-
signed specifically to estimate HIV prevalence and incidence, comparisons of prevalence
and incidence in multiple scenarios are often used to evaluate the impact of intervention
programs [47].

As the model structures vary widely, so too does the information used in calibra-
tion. Often some of the parameters are fitted using data. Most often this is prevalence
data such as the results of cross-sectional surveys or antenatal clinic surveillance [40].
Occasionally, HIV or AIDS case report data may be used [14, 60]. In most cases, at
least some of the parameters are chosen either by assumption or with reference to other

literature such as cohort studies and ART drug trials.
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1.3 Thesis Outline

In the remainder of this thesis, a new method of estimating the size of an HIV epidemic
will be developed and used to produce estimates for the province of Alberta. Chapters
2 to 4 detail the process of creating the model, validating it on additional data, and
using it to estimate the size of the HIV epidemic in Alberta. In Chapter 2, the model
is developed and calibrated to the available data using both a non-linear least squares
method and a Bayesian approach. The concept of identifiability is discussed as we must
determine which parameters can be successfully estimated using the data. In Chapter
3, the techniques that will be used to validate the model are explained and the model is
validated using additional data from several different sources. The validation methods
are based on Bayesian hypothesis testing using the results of the Bayesian fitting routine
from Chapter 2. In Chapter 4, the validated model is used to estimate HIV prevalence
and incidence including both historical trends and future projections. This chapter also
contains estimates of a number of other quantities of interest including the size of the
undiagnosed HIV-positive population, the time to diagnosis, and the potential impact
of some intervention strategies. Uncertainty analysis is used to quantify the potential
variation in outcomes while sensitivity analysis is used to identify parameters that may
be of particular interest for interventions.

Chapter 5 includes some examples of the possibilities for disease modelling in the
absence of data appropriate for model fitting techniques. Section 5.1 takes a computa-
tional approach to determining the potential effects of an intervention program for HIV
on the prevalence of drug resistant viral strains. Parameters are specified from medical
and epidemiological literature and tools from sensitivity and uncertainty analysis are
used to explore the possible range of outcomes. Section 5.2 on the other hand, takes a
theoretical approach. In this section the asymptotic behaviour of a simple disease model
with a more general transmission term is investigated. A discussion of the equilibria and
stability of the model is included and the existence of backwards and Hopf bifurcations
is demonstrated.

Finally, Chapter 6 contains conclusions as well as some discussion of potential future

directions for this work.
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Chapter 2

Creating the Model

In this chapter, the model that will be used to estimate the total size of the HIV-positive
population is developed. The chapter begins with an exploration of the available data
followed by a description of the model and a discussion of model calibration. The model
calibration step is complicated by the presence of nonidentifiable parameters. These
must be detected and resolved before model calibration can proceed. Two methods of
model calibration are used: nonlinear least squares which provides rapid results, and
Bayesian parameter estimation which provides a natural way to validate the model and
quantify parameter uncertainty. Validation and uncertainty analysis will be discussed
in detail in Chapters 3 and 4. While the available data is for HIV in the Province of
Alberta and estimating the size of the HIV-positive population in Alberta will be the
focus for the next several chapters of this thesis, the methods described here may be

applicable to other contexts.

2.1 Data

The major source of data for this project is HIV case reports and HIV deaths. Only
the aggregated quantities are used, ie. number of reported cases and deaths each year.
These two quantities allow the estimation of the total number of living people diagnosed

with HIV, another useful quantity.

2.1.1 Province of Alberta

The data for the Province of Alberta is provided by Alberta Health and is gathered as
part of the notifiable disease program in the province. The data includes cases that date
back to the beginning of AIDS reporting in the province. However, HIV did not become
a notifiable disease until 1998 so the data from earlier years is incomplete and consists
only of AIDS patients. The last complete year included in this data is 2010. The data
was acquired in May of 2011 and so only partial data is included for that year. Figures
2.1, 2.2, and 2.3 illustrate the data.

11
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Yearly HIV diagnosis
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Figure 2.1: Yearly number of reported HIV and AIDS cases.

The jump in reported cases, in the late 1990s corresponds to the beginning of the re-
quirement that HIV cases be reported. Prior to this, the reported cases were exclusively
AIDS cases. The decline in deaths around the same time is probably due to increasingly
effective treatments. Both of these contribute to the increasing trend in the cumulative
diagnosed cases.

In order to successfully fit the model, information is also required about the size of
the overall population. This is available from Statistics Canada. In particular data is
available for population size [119] and annual deaths [120].

The Province of Alberta data also includes information on exposure categories. Us-
ing this additional information, more detailed models could be created to investigate
questions about the sources of HIV transmission. This possibility is discussed in Section
6.2.

2.2 Proposed Model

The model that will be used for much of the remainder of this thesis is a compartmental

disease transmission model described by the system of differential equations

A~ (BT + fpD)2 — ds$

S = ~
: S
I = (Bil+ppD)5; — ol —dil
D = al —dpD. (2.1)
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Yearly HIV deaths
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Figure 2.2: Yearly number of deaths for reported HIV and AIDS cases.
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Figure 2.3: Cummulative number of diagnosed HIV and AIDS patients.
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Figure 2.4: Model diagram for an HIV model including transmission, and diagnosis.

The model compartments, S, I, D, and N, are described in Table 2.1 while the param-
eters are summarized in Table 2.2. The model diagram for this model is illustrated in
Figure 2.4. Each of the equations represents the rate of change of the size of one of
the subpopulations that we are considering. The terms on the right hand side of the
equations describe how the population moves between the compartments.

This model is related to the standard ST model, but has been modified to include the
effects of diagnosis. In order to compare to the ST model framework the D compartment
could be considered as an additional disease stage. Theoretical results exist dealing with
the equilibria and stability of this type of model [55].

While these theoretical results are useful in determining the qualitative behaviour of
the model on long time scales, this type of result may not be useful from a public health
perspective. Discussions of equilibria and stability generally only give information about
the long term behaviour of the system. This type of analysis requires that parameter
values be fixed for all time and does not generally consider how long it could take for the
system to approach equilibrium. On the other hand, it is not realistic to assume that
parameter values will be fixed or continue to change predictably into the future. This
in turn means that models are not expected to be valid over the long term. Instead we
consider model behaviour in detail over shorter periods of time.

The structure of the model is chosen to allow parameter fitting using the available
case report data. As this data captures diagnosis, the model must distinguish between
those who are diagnosed as HIV-positive and those who are infected but have not been
diagnosed. Since one of the major goals of this thesis is to estimate the size of the
HIV-positive population that is not diagnosed, we will be particularly interested in the
I compartment of the model. Additionally, the transmission coefficients, especially Gy,
are particularly difficult to estimate directly and so these are of particular interest in
the model fitting that will follow.

This model makes a number of assumptions. First, by not distinguishing between
sexes, risk groups, or geographic locations we assume that it is reasonable to model the
overall disease transmission scenario without these features. Although there may be im-
portant differences between groups, the simple model we use simplifies parameter fitting
and may allow a clearer understanding of the results. When the results are interpreted

we will have to keep in mind that the population described by the simple model is a
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Susceptible population

Undiagnosed HIV-positive population
Diagnosed population

Total population N =S+ 1+ D

2o~ ®

Table 2.1: Description of model compartments for the HIV transmission model illus-
trated in Figure 2.4.

Br, Bp Transmissibility coefficients
a Diagnosis rate

dg, dr, dp, Death rates

So, Iy, Do, Initial population sizes

Table 2.2: Description of parameters of the HI'V transmission model illustrated in Figure
2.4.

combination of many different subpopulations which may have differing levels of risk.
The parameter values we will end up selecting must be considered to be weighted aver-
ages of the parameter values that would be used in the case of a more complicated model
structure containing these additional features. Models which divide the population into
risk groups are discussed briefly in Section 6.2

Since the Alberta data does not include specific information on treatment, the model
does not consider treatment separately from diagnosis. The result is that the D com-
partment contains all those who have been diagnosed HIV-positive. The majority are
assumed to be well treated, but a few may have not yet started treatment, while others
may have stopped treatment. The parameter Sp is a weighted average transmission
coeflicient for those who are effectively treated along with those who are simply diag-
nosed. Similarly, the death rate dp is a weighted average for the diagnosed and treated

populations.

2.3 Parameter Selection

In order to create a model that will describe the HIV population effectively, it is necessary
to select appropriate parameter values for the model. Estimated values for some of the
parameters may be available in medical and public health literature, however we will
attempt to find as many of these parameter values as possible using parameter fitting
techniques with the available data.

Although it may be simpler to select the values of some parameters in advance from
medical and public health literature, we attempt to fit all of them in order to investigate
how much information about the parameter values can be found solely from the case

report data. As a side effect, this could allow us to compare estimated parameter
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values to those found in medical and public health literature in order to check that the
modelling results are reasonable.

Parameter selection will proceed in two steps. First, the population parameters A
and dg will be fit using overall population data including total population and yearly
deaths for the Province of Alberta. These parameters are fit using only the S com-
partment of the model. The HIV-positive population is small compared to the total
population of the province so it is reasonable to assume that the addition of the disease
compartments will not have a significant impact the population parameters.

Some reparameterizations of the disease parameters will be used in order to enforce
relationships between the parameters. Most of those who are diagnosed as HIV-positive
are treated. Treatment is thought to greatly reduce the chance of transmission and so
Bp < Br. In order to enforce this, we use fp = af; with a < 1. Additionally, we look
for the initial condition Iy as a multiple of the total diagnosed population at the initial
time Iy = rDy. The initial conditions Dy and Ny = Sy + Iop + Dy can be computed

directly from the data and are considered to be known before model fitting begins.

2.3.1 Identifiability

The parameter fitting step is complicated by the presence of nonidentifiable parameters.
This is a common problem when parameter values must be estimated from data. When
two or more parameters have similar effects on the model outcomes that are observed
in the data, it may not be possible to determine appropriate values for these param-
eters. Concerns about model identifiability arise whenever mathematical models must
be calibrated using data and have been noted in such diverse fields as mathematical
epidemiology [43], viral dynamics [146], biochemical modelling [118], plant science, [38]
economics [28], and engineering [77].

There are a number of different definitions of identifiability used by different authors,

but the most common seems to be the following from [137]. Consider a general model

i(t,p) = f(l‘(t),p)

2.2
z(0,p) = wo(p) 22

with observations
y(t,p) = g(=(t),p) (2.3)

where p is a vector of parameters, which may include initial conditions for the model
and any parameters required for the observation function. Both x and y may be vector

or matrix valued. Then we define

Definition 1. A parameter p;, i = 1,...,m, is structurally nonidentifiable if for almost
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any p* there exists no neighbourhood V' (p*) such that

p € V(p*) and y(t,p) = y(t,p*) Vt = p; = pj.

In other words, if a parameter is nonidentifiable, there are many possible values for
that parameter which result in identical observed model outcomes. This phenomenon
often occurs because multiple parameters have similar effects on the model outcomes that
can be observed. Although multiple values of the nonidentifiable parameters result in
the same observed outcomes, they do not necessarily result in the same model behaviour.
In fact, the behaviour of unobserved parts of the model may be very different. If the
model is to be used to draw conclusions about behaviours not captured in the data, care
is required around the question of identifiability.

In practice, a system that is nonidentifiable will usually have an entire surface of
values for p which give the same observed behaviour y(¢,p). This occurs because two or
more parameters have the same effect on the observed output. The parameters involved
can be thought of as being linked together, a change in one can be counteracted by an
opposing change in the others such that no change is observed in the output.

Other authors differ in the details of their definitions, but all capture the same idea:
models fail to be identifiable when there are multiple parameter values giving the same
observed output.

This definition of identifiability is quite theoretical. It assumes that observations will
not be subject to observational error and that there is no randomness in the effects being
modelled or modelling errors in the model itself. Further, it assumes that observations
will be available for all times. In practice, these assumptions are inappropriate when
modelling real world phenomena. Models and measurements are never perfect and data
is certainly not available for all times. As a result structural identifiability, as defined
above, is only one of the reasons that a model can fail to be identifiable from observed
data. For example, a model may fail to be identifiable because of insufficient observation.
If only the initial state of the model is observed, any parameters related to how the state
changes after the initial time will be unidentifiable.

On the other hand, a model may be nonidentifiable even when observed quantities
are available for all ¢ as in the definition of structural identifiability. In this case, the
problem is not an insufficient quantity of data, but rather the type of data available
does not provide all the necessary information.

In the case of the HIV transmission model described in Section 2.2, the available

data determines the observation function y. In particular, y is vector valued with three
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t
dmg _ / Oé[
t—1

t
death / dDD (24)
t

yrr(t) = S@t) + I(t) + D(t)

components:

represent total new diagnosis in the year ending at time ¢, HIV deaths in the same time
period, and total population at time ¢ respectively. Details of the numerical computation
of these integrals is given in the Appendix A.1. Of course, the data is only available once
each year, so the function y will, in fact, only be observed at discrete times, {t1,ta, ..., t, }.

data while the corresponding observation

The data measured at time ¢; will be denoted Y;
from the model is given by y(¢;,p).

Given this, we will address the question of identifiability on a practical level by
asking whether there is a unique value of the parameters p = p* that minimizes the sum

of squared errors

SSE(p Z ’y tj,p) — d“m (2.5)

This type of identifiability is called local least squares identifiability in [53]. The sum of

squared errors can also be written in matrix form as

SSE(p) = (y(p) — Ydata)” (Y¥(P) — Ydata) (2.6)

where y(p) is the vector valued observation function constructed by concatenating the

data

vectors y(t;,p) and y is the vector of measured data constructed similarly, ie.

y(tl , p) ydata

y(t2 , p) ydata
y(p) _ . and ydata _ 2

Y(tn, ) Yt

Note that in the case of the Alberta HIV data these vectors have length ¢ := 3n.

The sum of squared errors is an important quantity for all of the parameter fitting
methods we will use in this thesis and it will appear again in Sections 2.3.2 and 2.3.3. As
a result, this more practical condition addresses the question that we are most interested
in: Is it possible to find a (at least locally) unique best fit value for the parameter p
from the data that is available?

There are a number of methods available to asses the SSFE for the surfaces of min-
ima that result from nonidentifiable parameters. We will use a simple graphical method
along with a method based on the local sensitivity matrix and the singular value de-

composition.
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Graphical method: For the graphical method we begin by using a numerical tool
to find some value p = p* which minimizes the sum of squared errors. We then vary
the components of p in pairs, compute the sum of squared errors at each point, and
draw a contour or surface plot of the resulting surface. In order to avoid confusion by
considering values of the parameters very far from the original fitted values, only a small
domain is used when the parameters are varied. The resulting plots can be examined for
long flat valleys which indicate that the two parameters being varied are counteracting
each other in their effect on the sum of squared errors.

This graphical method has a number of drawbacks. First, as a graphical method,
it is somewhat subjective and to complicate matters the scaling of the axes can greatly
change the appearance of the plot. Secondly, it can only easily diagnose identifiability
problems involving no more than two parameters. If changes in a parameter can be
counteracted only by changing multiple parameters at the same time, this behaviour
will be missed. Plots involving more parameters may be possible, but they quickly
become computationally intensive and difficult to interpret. Another concern with this
method is that the values for parameters not being varied must be fixed in advance. This
means that identifiability is considered only near a single point. As we will see when
these methods are illustrated using the Alberta dataset, the identifiability structure may
be quite different at different points in the parameter space. Nonetheless, the graphical
method can give a simple illustration of some of the potential identifiability concerns

with a particular system.

Local sensitivity: The remaining methods we will use are based on the Jacobian
matrix. To understand these methods, consider that if we attempted to analytically
find a minimum for equation (2.5) we would begin by differentiating with respect to

each of the parameters and setting these derivatives equal to zero,

8SSE(p) _ zi &Uk(p) (yk(p) - data) =0 (27)

= y
op; op; F

k=1
This can be written in matrix form as

dSSE(p)

- 2J(p)" (y(p) — y™*) =0 (2.8)

where J(p) is the Jacobian matrix with entries a%’“—p(ip). If the matrix J has full rank then
this expression describes m equations for the m parameters p; and it may be possible
to find a unique minimum. On the other hand, if the matrix J has rank » < m then
there are only r independent equations for the m parameters and the minimum is not,
in general, unique. Unfortunately it is usually unwieldy to analytically compute J for
the problems we are interested in so we instead rely on numerical tools.

The matrix J is already computed as a side effect of the least squares minimization
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routine. The quantities represented in y and p may have very different magnitudes,

therefore we continue by defining

JRel — [sz}

JRel = Ayk(p) pi (2.9)
pi | e Yk (p*)

This is the relative local sensitivity matrix around the point p* including the standard
scaling that is used to allow comparisons between elements of different sizes. It will
appear again in Section 4.3 when we discuss the sensitivity of model outcomes to changes
in the parameters.

A special case of the identifiability problem occurs when the observed values y(t, p)
are not sensitive to one or more parameters. In other words, changes in a single pa-
rameter cause only minor changes in the observed values. In this case, it is a single
parameter, rather than a combination of parameters that is non-identifiable. Identifia-
bility problems arising due to a lack of sensitivity can be diagnosed by examining the
local sensitivity matrix J7 as defined in (2.9). If all the elements of a column of J7¢
are small, this indicates that none of the observed values are sensitive to the parameter
associated with that column. To simplify the process of examining J7¢ we will consider

only the maximum magnitude element in each column.

Singular value decomposition: For identifiability problems involving more than one
parameter the singular value decomposition is useful The singular value decomposition
is commonly used to numerically estimate the rank and null space of a matrix and so it
is well suited to identifying situations where J has deficient rank.

Because we already have a technique for diagnosing the case when a single parameter
has very little effect on the observed values, we remove the impact of this type of
identifiability problem by first normalizing the columns of J. This normalization is

standard for variance decomposition. Define,

JNorm _ [Jé\iformjl

-1/2
JNorm _ Jlf,el (p*) Z JRel (210)
{2
The singular value decomposition is used to write the matrix JN'™ as
Jherm — syt (2.11)

where U and V are orthogonal square matrices, and S is an n by m diagonal matrix
with non-increasing elements {1 ...\, }. If these computations were done analytically,

any zero elements on the diagonal of S would indicate a deficiency in the rank of JNor™,
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However, when the computations are done numerically, we instead look for diagonal
elements of S that are small compared to the maximum element. In particular we

compute the condition indices
M

Ai

Large values for v; indicate deficiencies in the rank of J.

(2.12)

Vi

Variance decomposition: In order to determine which parameters are involved in
the nonidentifiable surface, a variance decomposition method is used. This method
is commonly used to diagnose colinearities in data to be used in linear least squares
problems. A discussion of variance decomposition in the linear case can be found in
[12]. In order to apply it to the nonlinear problem we begin by linearizing the function

y(p) about a predefined point p*

y(p) = y(p*) + J(")(p —p*)- (2.13)

Incorporating the scaling (2.10) into the linear approximation for y(p) in (2.13) can
be interpreted as a rescaling of the quantities p — p* and y(p) — y(p*). The result of this
rescaling is

Ay = +JVrmAp (2.14)

n * 1/2 * * — *
where Ap; = (X0, J5 (7)) pi(p — p) and Ay = ye(p) ™ (u(p) — ye(p")). Now
the same techniques usually used for linear least squares allow the calculation of an

estimate for Ap

&) _ (JNormTJNorm)—lJNormTAydata (215)
where Ay?at® =y, (px) =1 (ydate — .. (p*)). An estimate for the variance-covariance ma-
trix &) is given by

cov(Bp) = g2 (JNorm™ gNormy—1 (2.16)

—1, data

where o2 is the variance of the scaled data yy(px) ) This variance-covariance

estimate is based on the standard assumptions for least squares problems which will
be described in Section 2.3.2. Once again using the singular value decomposition this

matrix can be rewritten as

cov(&)) _ UZ(JNormTJNorm)—l
=o? (VvSTUT)(UsvVT))
= o (VSTsyT) ™
=o2VSvT,

(2.17)

where S72 is the square m x m matrix with entries )\j_2 The variances of the elements
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of Ap are found on the diagonal of the matrix cov(&)) and are therefore given by

2

— n Vii
var(Ap;) =0y /\{2 : (2.18)
i=1 "

From this expression we see that var(ﬁ\pj) consists of a sum of elements corresponding
to each of the singular values \;. As the singular values appear in the denominator, small
values of A; will in general correspond to large variances for Z;] Parameters involved
in nonidentifiabilities will have most of their variance coming from terms associated
with small values of \;. In order to identify these parameters we examine the fraction
of var(g\pj) found in each element of the sum found in (2.18) using the matrix with
elements ;;

S TSRS S (2.19)
Y >kt 2,\%22
The jth column of this matrix represents the fractions of the variance U(Z’I“(K\pj) which
are associated with each of the singular values. Note that because this matrix contains
fractions of the variances, it is not necessary to maintain the scaling of K\pj The
variances of p will have the same fraction associated with each singular value as the
variances of &)

As already mentioned, a large fraction of the variance appearing in terms associated
with small singular values indicates that the parameter p; is likely to be involved in the
nonidentifiability surface. The ith row of the matrix 7 represents the contributions to
the various variances by terms influenced by A;. If A; is very small, any of the variances
it impacts will be increased.

Since this method uses the numerically computed matrix J evaluated at a single
parameter value p = p*, the results will be better the closer the fixed parameter value p*
is to the true value of the parameters. Additionally, this method gives only local infor-
mation about the nonidentifiability surface. However it is able to diagnose identifiability
problems involving multiple parameters.

An analysis of the identifiability structure is performed for the Alberta data and

illustrates these methods.

2.3.1.1 Identifiability for Alberta Data

Using a preliminary model fit for the value of p*, the condition indices from the nor-
malized Jacobian JN"™ are given in Table 2.3. The values of the first four condition
indices are acceptable. The largest two condition indices are quite large indicating a
nearly singular Jacobian matrix and a linkage between some of the parameters. These
condition indices lead us to expect that it will be necessary to fix two of the model
parameters in order to achieve a fully identifiable model.

The proportions of the variances associated with each of the singular values is used
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Proportion of Variance

var(a) var(d;)  war(dp) war(B;)  war(a) var(r)
1.0 | 5.389e-14 2.560e-10 0.005227 3.429e-14 9.435e-08  3.749e-13
2.3 | 6.098e-14 7.689e-11 0.6974 1.030e-14  5.002e-08  3.891e-13
4.7 1 9.330e-13  1.246e-10 0.2667 1.667e-14 2.128e-07  3.619e-11
45.9 | 6.166e-11  1.799e-07 0.02927 2.423e-11  0.0007494 6.859e-12
3.057e4 | 4.066e-05 0.8373 1.233e-06  1.796e-05 2.013e-05  4.066e-05

3.150e6 | 0.9999 0.1627 0.001447  0.9999 0.9992 0.9999

Vj

Table 2.3: Condition indices and the proportion of variance in the parameter estimates
associated with each. The largest two condition indices account for the majority of the
variance of all parameters except dp.

Parameter Largest Sensitivity

a 1.10453
dr -0.00075
dp 1.00397
By 2.07566
a 0.00001
r 1.00004

Table 2.4: Maximum local sensitivity of the observed quantities with respect to each of
the parameters.

to determine which parameters are involved in the nonidentifiability. This information
is also found in Table 2.3. The last row of the table indicates that the majority of the
variance for parameters «, 57, a, and r is associated with the smallest singular value
while the majority of the variance for the parameter d; is associated with the smallest
two singular values. Taken together, this suggests that all parameters except dp are
involved in the nonidentifiability, resulting in a two dimensional surface of minima in
the five dimensional space of all parameters except dp.

The graphical method confirms that parameters dj, 57, and a are involved in the
nonidentifiability. The contour plots for these parameters are illustrated in Figure 2.5
and contour plots for some other pairs of parameters are included in Figure 2.6 for
comparison.

Examination of the sensitivities of the parameters found in Table 2.4 indicates that
the observations have low relative sensitivity to the parameters a and d;. This is in addi-
tion to involvement of these parameters in the nonidentifiability revealed either through
the variance decomposition in Table 2.3 or as seen through the graphical method in Fig-
ure 2.5. This suggests that the data does not give much information about parameters

a and dy and so these parameters will be fixed to resolve the nonidentifiability problem.
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Figure 2.5: Contour plots of the sum of squared errors for pairs of parameters that
are not simultancously identifiable. A whole line of parameter values attain the same
minimum.
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Looking for local minima Looking for local minima
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Figure 2.6: Contour plots for pairs of parameters that are simultaneously identifiable.
The minimum occurs at a unique point in the parameter space.
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Proportion of Variance
var(a) var(dp) war(Br) var(r)
1.0 | 2.5733e-08 0.024853 1.3062e-08 3.154e-08
1.6 | 6.9905e-08 0.50241  2.9938e-09 1.0076e-08
2.6 | 2.3379¢-07 0.44261  1.3605e-09 3.4356e-07
6857.1 | 1 0.030126 1 1

Condition Indices

Table 2.5: Condition indices and variance decomposition for the remaining parameters.

A value for the parameter d; can be fixed using the death rate from untreated HIV
as is observed in other contexts. We choose d; = 1—12
Choosing a value for a is more complicated. This parameter represents the fraction
of diagnosed HIV patients who are still transmitting the virus, either because they have
only recently been diagnosed and are not yet effectively treated, or because they have
stopped or failed treatment. The identifiability structure at different values for a appears

to be quite different. We consider two cases, a = 0, and a = 0.001.

Case 1: a = 0: An optimistic value would be to choose a to be equal to zero. The
preliminary least squares fit that we have been using to select the parameter values
chooses the value of a to be extremely small, but not zero. Since a is not identifiable,
this value is meaningless. Instead we fix @ = 0. Now the graphical method suggests that
there is a link between the parameters o and 8;. This is problematic as a has a direct
impact on the outcomes we are interested in — a change in the rate at which those who
are HIV-positive are diagnosed will definitely also change the size of the undiagnosed
population. At the same time f; is extremely difficult to measure experimentally. The
fact that we cannot take either of these parameters from some other source means that
we will not be able to resolve this identifiability problem, however such a small value of
a is almost certainly overly optimistic. The D category does not include only those who
are successfully treated, but also those who have not yet started treatment and those
who have stopped treatment for any reason. It is unlikely that no one who is diagnosed

as HIV positive ever transmits the virus.

Case 2: a = 0.001: If a is instead chosen to be somewhat larger at a = 0.001, the
graphical method suggests that the remaining parameters are all uniquely identifiable.
These results are illustrated in Figure 2.7. Examination of the variance decomposition,
found in Table 2.5, indicates that the largest condition index is still somewhat large,
but greatly improved from those computed before fixing a and d;y. We conclude that
the four remaining parameters are sufficiently identifiable. The last row of Table 2.5
indicates the parameters associated with the smallest singular value. It can be seen
that the parameters «, S7, and r are affected. These are all parameters which we are
particularly interested in so it is not desirable to fix any of them in the hopes of further

improving the identifiability properties of the model.
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Figure 2.7: Contour plots of the sum of squared errors for all remaining pairs of param-
eters illustrate that each pair can be simultancously identified. A unique minimum is
seen in each plot.
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2.3.2 Nonlinear Least Squares

Nounlinear least squares is a standard method for curve fitting. The basic idea is to find
parameter values p = p which minimize the sum of squared errors as defined in 2.5. This
corresponds to minimizing the vertical distance between the fitted curve y(t,p) and the

data ip the Iy norm. This is a simple and intuitive concept of what is required for

data y
a “good fit” — the fitted curve should be as close as possible to the available data.

In our problem, the sizes of the individual parts of the data are very different. In
particular, the data includes the overall population a quantity which is much larger than
the number of HIV deaths. This has the result that the least squares fitting routine tends
to treat the overall population as more important and a better fit will be found for this
component at the expense of a good fit for the disease components that we are most

interested in. For this reason, we use a weighted version of the sum of squared errors
n 2
SSE(p) = Y [W(ylt;,p) — )| - (2.20)
j=1

In the case of the HIV data, we choose W to be a 3 x 3 diagonal matrix where the

diagonal elements are given by

—1
n

Wdiag _ l diag
= - j
j=1
—1
n
Wdeath _ % Z y;'leath (221)
7j=1
n —1
1
pop __ - pop
e =1 2.4
j=1

That is, each component of the data is weighted by the average value of that data
component. The inclusion of weighting improves the results of the fitting procedure by
emphasizing all types of data similarly regardless of the size of the quantities involved.
The weighted version of the sum of squared errors 2.20 can be reduced to the original
unweighted version 2.5 by including the weights in the functions y;(p) and the data.
Therefore the weighting will be omitted in the remainder of the discussion of nonlinear
least squares.

If the function y(¢, p) is linear in the parameters p, the least squares method reduces
to linear least squares and the optimal value for p can be calculated analytically. For
nonlinear least squares, the optimal value of p must be estimated numerically. Methods
for numerically solving nonlinear least squares problems are included in the standard
MATLAB libraries [95]. We use the function 1sqnonlin extensively.

With the addition of a few more assumptions, it can be seen that the nonlinear
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least squares formulation is equivalent to maximum likelihood methods of parameter

estimation. In particular, assume that
ylite =y (ti,p) + € (2.22)

where ¢;; ~ N (O,O'Z-Qj) is a random variable describing the error produced when y;; is

estimated by y(t;,p). If the value of 0;; = o is the same for all the observations, then

the likelihood of observing the data y;; given the parameters p is

1 _ssE

¢ 207 (2.23)

me=PMm=02W

Then choosing p = p to maximize the likelihood is the same as choosing it to minimize
the sum of squared errors which appears in the exponent.

The likelihood formulation also allows the use of statistical methods for estimating
confidence regions for the computed parameters p. One simple method is based on the
fact that if X; is a random variable with the standard normal distribution, X; ~ N(0,1)
then

j=1

Then if the value of ¢ is known, a confidence region for p can be determined by finding

all the points where the sum of squared errors is less than some threshold value

Z(yij —y;(ti,p)* < c. (2.25)

j

A threshold value of ¢ = Uxi70_95 will give a confidence region for the 95% confidence
level. These confidence sets are related to the plots that we have created using the graph-
ical method for diagnosing identifiability problems. In two dimensions the boundary of
the confidence set will be a contour line as seen with the graphical method.

This method of computing confidence regions is simple in theory, but there are a
number of drawbacks. First, the value of ¢ must be constant for all the data. This is
not particularly problematic as varying values of o;; could be removed by appropriate
weighting of the least squares problem. However, to implement this, the values of o;;
must be known in advance or estimated from the data. In general these values are
unknown, and since we have only one data point for each quantity at each time, it is not
possible to estimate the values of o;; from the data available. As a result, another method
must be used to compute interval estimates for the fitted parameters. A Bayesian
method is used to compute parameter distributions, and thus interval estimates. This

is discussed in Section 2.3.3.
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Parameter Fitted Value
A 96345
dg 0.00579

Table 2.6: Fitted values for population parameters.

x 10

2. 8 1 1 1 1 1 1
1998 2000 2002 2004 2006 2008 2010 2012

Figure 2.8: Fitted curve for the population model.

2.3.2.1 Fitted Alberta Model

The first step to fitting the Alberta model is to fit the population parameters A and
dg. For this purpose we use Statistics Canada population estimates and yearly deaths
estimates for the Province of Alberta and the model without any disease. Note that it
is necessary to use the yearly deaths estimates for this parameter fitting as the linear
population growth model is nonidentifiable if only population data is available.

The results of fitting the population parameters are given in Table 2.6. The resulting
population curve is visually a very good fit for the data as shown in Figure 2.8.

In Section 2.3.1.1, we determined that it will only be possible to fit the parameters «,
dp, Br and r = %ﬁ. The unconstrained nonlinear least squares fitting routine results in
the parameter estimates found in Table 2.7. The fitted curves and the data are plotted
in Figure 2.9.

While the fitted curves from this initial fitting approximate the data as well as can

be expected, there is concern over the appropriateness of the parameter values chosen.
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Figure 2.9: Fitted curves for the HIV trans-
mission model.
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Fitted Parameters All Parameters
Parameter Value Parameter Value
o 0.12045 A 96345
dp 0.00766 dg 0.00579
Br 0.23774 dy 0.08333
r=4 1.60778 dp 0.00766
«@ 0.12045
Br 0.23774
6D 0.00024
So 3071704.74193
Iy 1707.45882
Dy 1062.00000

Table 2.7: Fitted parameter values for the HIV transmission model.

In particular, the fitted value of o = 0.12045 seems much to small for the Province of
Alberta context resulting in an excessively long average time to diagnosis. This value
indicates that the average HIV-positive person spends 1/a = 8.3 years infected with
HIV but undiagnosed. This same concern is also reflected in the fitted value of the
initial condition Iy = 1707.46. This is about 61.6% of the total HIV-positive population
and, while the exact value of Iy is unknown, national estimates for the percentage of
the HIV-positive population that is undiagnosed are available for the year 2002 [19].
These national estimates indicate 29% (21.5% to 36.1%) of the HIV-positive population
was undiagnosed in 2002. While the Province of Alberta may differ somewhat from the
national population, this estimate does suggest that the initial fitted parameters are
inappropriate.

In order to address the concerns raised by these fitted parameter values, the impact
of the initial condition parameter r = % on the fitting results will be considered in
more detail. The national estimates of the size of the HIV-positive population which
was undiagnosed in 2002 correspond to a range for r of (0.266,0.564) [19] while the
preliminary least squares indicated a value of r = 1.608. To investigate these results
further, fifty different values of r are considered from the range (0.1,2). For each of these
values of r, the least squares estimate of the other parameters is calculated, holding r
fixed.

The changes in the fitted parameter values and SSFE resulting from changes in the
fixed value of r are displayed in Figure 2.10. This figure illustrates that, decreasing
the value of r from its least squares fit increases the SSFE. This increase is small but
begins increasing more quickly below = 0.5. At the same time, the best fit values of o
and f; also increase. Figure 2.10 also illustrates the range estimated for » by [19] and
the best fit value for the parameters when r is constrained to remain in this range. We

conclude that while such a constraint does not allow the model to attain the best possible
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Figure 2.10: Impact of varying the parameter r on the sum of squared errors and the
fitted values for 5; and dr. The dashed lines indicate the estimates for r found in [19]
while the solid line indicates the best fit values for the sum of squared errors, 8;, or dj.
The circles indicate the best constrained and unconstrained fits.
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Fitted Parameters All Parameters
Parameter Value Parameter Value
« 0.34873 A 95632.09068
dp 0.00766 dg 0.00581
Br 0.46504 dr 0.08333
r=4 0.55554 dp 0.00766
«@ 0.34873
Br 0.46504
Bp 0.00047
So 3064748.53601
Iy 589.98075
Dy 1062.00000

Table 2.8: Fitted parameter values for the HIV model using constraints on the value of
r

fit, the increase in the SSFE from the unconstrained model is small. Additionally, the
constrained model results in a more reasonable fitted value for «. This will be taken
as the final model fitted by the least squares method. The parameter values determined
by this model fit are an estimate of the appropriate parameters for the model in the
context of the Province of Alberta. However, such a simple least squares estimate does
not provide all the desired information about these quantities. In particular, computing
a confidence region for the parameter values requires a number of further assumptions
which cannot be easily justified. Therefore model fitting will continue using Bayesian

techniques.

2.3.3 Bayesian Parameter Estimation

The Bayesian method assumes that the parameter values will be random variables from
some probability distribution. Initially, these distributions are set using whatever out-
side knowledge is available about the possible parameter values. These assumed distri-
butions are known as the prior distributions or simply “the priors”. The data is then
used to update the priors to get the posterior distributions.

Bayesian techniques are discussed at length by others [29, 50] but briefly, Bayesian

methods rely on computation of the posterior distribution:

L Plylp)Pp)
Plolys) = [ P(y;lp)P(p)dp

(2.26)

where P(y;|p) is the likelihood of observing the data given a particular value of p and
P(p) is the prior distribution of the parameter p. Once the posterior distribution 2.26 is
computed, point estimates for the parameters p can be obtained as the mode of P(ply;)
and interval estimates can be obtained as percentile ranges.

Computing the likelihood portion P(y;|p) of the Bayesian posterior requires some
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Figure 2.11: Updated fitting results for the
HIV model using constraints on the value of
r.
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additional assumptions. Commonly it is assumed that the errors introduced in collecting

data are normally distributed. That is,

y; = y(tj,p) +¢j.

Where ¢; is a random variable with £; ~ N (0, 02). It is also usual to assume that o2 is a
random variable itself with o following an inverse gamma distribution, o ~ InvT'(n, 3).

Using these assumptions, the likelihood portion of the posterior can be written as

P(yjlp) = /P(yjp,O'Q)P(O'Q)dUZ

N
2

1 _M BO& —2((¥—1) _ﬁ 2
= o2 o2
/ (27T(72> e 2 ) o e Zdo

N
2

_ B < 1 ) I(§ +a)
- D(e) \ 27 (SSEp)—Q—Zﬁ)(%”’O‘)’

2

where

SSE(p) = Z ly(ty,p) — 5P, (2.27)

When the prior, P(p), and the scaling factor, [ P(y;|p)P(p)dp, are included, the expres-
sion for the posterior, P(ply;), can become quite complicated. For this reason we do
not usually hope to compute it analytically. Instead, we use Markov chain Monte Carlo
(MCMC) methods to approximate the distribution by drawing a sample from it. In
particular, we use the Metropolis-Hastings algorithm [32] as implemented in MATLAB.
A brief introduction to the algorithm is given in Appendix A.2.1.

Once a sample from the posterior distribution has been computed, it is necessary to
analyze further in order to find point and interval estimates for the parameters. For the
point estimate, we wish to use the maximum posterior density point (the mode) of the
distribution. For interval estimates, we will project the highest posterior density (HPD)
region onto the various axes. In order to find the maximum posterior density point
and the highest posterior density region, we first use a kernel method to estimate the
posterior density function from the sample. An introduction to kernel density estimation
is found in [117].

2.3.3.1 Nonidentifiable Parameters

In theory, the Bayesian method is applicable even in the presence of nonidentifiable
parameters. However, when some of the parameters are nonidentifiable, the choice of
prior distribution becomes extremely important [48] and convergence for the numerical
sampling methods may be extremely slow [41]. As we do not have good information with

which to choose a prior distribution, it will be important to fix some of the parameters
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in order to use an identifiable model as we did for the least squares fitting.
However, this means that the Bayesian method will not provide interval estimates
for the parameters which are fixed in advance. In order to produce interval estimates

for all parameters, we use an iterated method.

Iterated MCMC Method In order to compute interval estimates for all parameters,
including those which are nonidentifiable, we propose the following iterated Markov

chain Monte Carlo (iMCMC) method for a model with m parameters, p1,pa, ..., Pm-

1. Determine the identifiability structure of the model and use this information to fix
some of the model parameters so that the remaining parameters are all identifiable.

We suppose that there are r identifiable parameters, p1, po, .. .p,, and m —r fixed

parameters Pri1, Pr42, - -« Pm-

2. Use the method to find point and interval estimates for the r identifiable parame-

ters, p1, po, ... pr. Use the fitted point estimates to fix the values of all parameters.

3. Allow p,41, which was fixed in Step 1, to vary and repeat the data fitting step to

find an interval estimate for this parameter.
4. Repeat Step 3 as necessary to find interval estimates for py42,...,Pm.

The interval estimates obtained by this method are credible intervals from the joint
distributions of the parameters being fit given that the parameters not being fit are
fixed at predefined values. This is true regardless of what step of the method is creating
the interval, however intervals created at different steps will have different combinations
of fitted and fixed values. As a result, the order in which non-identifiable groups of
parameters are fitted will make a difference in the reported interval estimates. Interval
estimates computed when many parameters are being fit to data and only a few are
fixed will tend to be wider than those computed with only a few other parameters being
fit.

2.3.3.2 A Toy Problem

In order to illustrate the iterated method on as simple a model as possible, we will

consider the linear growth model where the compartment population is observed.
T=r+dzx
y=x

In the absence of disease, the disease transmission models that we have been considering
reduce to this model. In our disease models, we have relabeled »r = A and d = dg. We

have already mentioned that this model is nonidentifiable if the data is the population
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Parameter Fixed Quantities Point Estimate Interval Estimate
d r=22 3.2526 (1.2491,7.7719)
r d = 3.2526 2.3145 (0.62387,4.4544)

Table 2.9: Interval estimates from iMCMC method for a simple population growth
model.

of the compartment. The two parameters d and r are linked. For the Alberta case, we
avoided this problem by providing deaths data in addition to the population data.

When fitting the disease data, we do not wish to add additional complication by
finding interval estimates for the population parameters. The point estimates computed
in section 2.3.2 are sufficient for our purposes. However this simple model makes a good
illustration of the iterated MCMC method. Here, we use this simple model to create
some data and then use the model and the created data to compute interval estimates
using the MCMC method.

The data for this illustration is created by setting r = 2, d = 3, and computing
y; = dz(t;) for t; = 29.0,29.1,29.2,...,29.9,30.0 with x(29.0) = 0.5. To make the
problem a little more realistic, some noise is added with mean 0 and standard deviation
0.01.

Since the parameters are nonidentifiable, this data is used to illustrate the iMCMC
method. First, the value of r is fixed allowing the parameter d to be identified. Although
we could chose the correct value for r which was used to create the data, this is not
usually possible in practice so we instead choose r = 2.2. That is, we perturb the true
value of r by 10%. A Metropolis-Hastings sample for d is used to estimate the Bayesian
posterior. We calculate a point estimate for d by selecting the mode of the estimated
posterior distribution. A 95% credible interval is selected using the 2.5% and 97.5%
percentiles of the sample. The posterior distribution for d is illustrated in Figure 2.12.

In order to compute an interval estimate for r, the procedure is repeated. This time,
d is fixed at the previously computed point estimate and a sample is selected from the
Bayesian posterior for r. As before, a 95% credible interval is selected using the 2.5%
and 97.5% percentiles of the sample. The posterior distribution for r is illustrated in
Figure 2.12, and the results of the iterated procedure are summarized in Table 2.9.

Notice that the intervals listed for d are conditional on r taking the fixed value
r = 2.2 as defined before the first MCMC run. The interval for r, on the other hand, is
conditional on d taking the value d = 3.2526 as estimated in the first MCMC run and
fixed for the second MCMC run.

In order to confirm these results, we perform both steps of the procedure a second
time fixing the parameters in the opposite order. That is, we begin by fixing d = 3.3
and compute the distribution for r. Then we fix r at the point estimate and compute
the distribution for d. The results are found in Figure 2.13 and Table 2.10
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Figure 2.12: Results of iMCMC method for a simple population growth model.
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Figure 2.13: Results of iIMCMC method for a simple population growth model.

Parameter Fixed Quantities Point Estimate Interval Estimate

r d=33 2.1223 (0.61087, 4.4538)
d r=21223 3.1164 (1.2646, 7.675)

Table 2.10: Parameter values resulting from iMCMC method for a simple population
growth model.
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The results for this simple model show a good correspondence between the fitting
results and the true parameter values. The difference between the point estimate of the
parameter d and the true value is the result of the influence of the prior distribution
along with the choice of fixed value for r. The prior distribution and the fixed value for
r were chosen as if the true values of the parameters were unknown as this information
would realistically not be available. A more careful choice of prior distribution for d and
fixed value for r would give better results. The same is true for r, the difference between
the fitted estimates and the true value can be attributed to the prior distribution and
the difference in the fitted value of d. The results from the second fitting procedure,
when r was fit first followed by d are similar indicating that the order in which these

parameters are fitted has only a minor impact on the fitted point and interval estimates.

2.3.3.3 Alberta Bayesian Results

The priors used for the parameter values in the Alberta model are given in Table 2.11.
Using uniform prior distributions for most of the priors requires us to specify only a
plausible range for the parameter values. These priors provide no additional informa-
tion about the parameter value and avoid influencing the posterior distribution with
unjustified assumptions. Most of the parameter ranges allowed under the assumed uni-
form priors are generous — they do not impose serious restrictions on the parameter
values. In contrast, the prior for r is chosen using estimates of the undiagnosed popu-
lation in 2002 the by the Public Health Agency of Canada (PHAC) [19]. A triangular
distribution with mode at the estimated value and maximum and minimum covering the
estimated range is used. This distribution influences the resulting posterior by adding
additional weight to PHAC’s estimated value as well as constraining the support of
the resulting posterior. These assumptions are similar to the constraints placed on the
parameter values in the final least squares fitting using the PHAC estimates.

The results of the fitting procedure are given in Table 2.12. While the point estimates
are similar to the estimates calculated by the least squares method, the fitted value of
r has been reduced somewhat by the triangular prior adding additional weight to the
PHAC estimate. This in turn, increases the value of o and 3 as expected by our previous

examination of the impact of changing the value of r.
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Parameter Description Prior Distribution
A Population growth Fixed A = 100570
dg Removal rate for S Fixed dg = 0.005
dr Removal rate for I Uni(0,0.2)

dp Removal rate for D Uni(0.005, 0.0833)
e! Diagnosis rate Uni(0,2)

Br Transmission coefficient for I Uni(0,2)

1655} Transmission coefficient for D Bp = afr

a Transmission remaining for D Uni(0,0.1)

So Number in S in 2001 Fixed Sy = 2932300
Iy Number in I population in 2001 Iy =rDy

T Iy as a fraction of Dy Tri(0.266, 0.408, 0.564)[19]
Dy Number in D in 2001 Fixed Dy = 1062

Table 2.11: Description and prior distributions for parameter values in the HIV model.

Parameter Point Estimate Interval Estimate

Br 0.56548 (0.2637,1.019)

« 0.42813 (0.024503, 1.0984)

dp 0.0080529 (0.0057914, 0.017563)

r 0.41542 (0.29525,0.5632)

a 0.00071391 (0.000030036, 0.064314)
dr 0.090582 (0.014496, 0.19983)

Table 2.12: Results of iMCMC method for the HIV model parameters.
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Chapter 3

Validating the Model

A model should be validated to to determine how well it performs before being used to
make predictions. Validation usually involves comparing model predictions to data. In
this chapter, methods for validating models will be discussed and the Bayesian model
from Chapter 2 will be validated.

A model that has been calibrated using data will usually have a good correspondence
with the data that was used in calibration. Comparing model predictions to the data
used for calibration gives little information on model performance in predicting other
outcomes. Therefore, it is important to use data not included in the model fitting
process to validate the model. In the case of the HIV model from Chapter 2, there
are two possible sources of validation data. First, parts of the original data set may be
reserved for validation. This is straightforward but has a number of drawbacks. The
data sets we are using are limited and it may be undesirable to limit them further by
reserving data for validation. Furthermore, the data that we have available gives only
indirect information about some quantities of interest. This concern may be addressed
by a second source of validation data: independent estimates of model outcomes or
parameters. In general, this type of validation data may not be available but, if available,

it can provide a broader picture of the performance of the model.

3.1 Validation Methods

Intuitively, when comparing model predictions to validation data, one wishes to deter-
mine if the model produces results that are “close” to the validation data. But how
close is close enough? We begin our discussion of model validation by introducing the
measures of closeness that we will use.

As the the final model created in Chapter 2 is based on Bayesian principles, we
will use Bayesian methods to evaluate its performance in predicting validation data. In
particular, we will follow the Bayesian hypothesis testing approach outlined in [112, 88].
This method begins by testing a null hypothesis, Hy, against an alternative, H 4, using
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the Bayes factor and the posterior null probability. For the purposes of model validation,

the hypotheses will be
e Hj: The model is “correct”.
e H,: The model is “incorrect”.

In order to be useful, the hypotheses must be formulated more carefully. In fact, there
is more than one different type of “correctness” that we may wish to evaluate. Different
formulations of the hypotheses will be useful for evaluating these different types of
“correctness”. Regardless of the specific hypotheses chosen, the Bayes factor is defined

as
_ P(yv‘HO)

~ P(y|Ha)

where ¥, is the validation data. A Bayes factor that is greater than one indicates that
the observed validation data is more probable under the null hypothesis than under the
alternative hypothesis. Thus with B > 1, the validation data gives more support to the
null hypothesis than the alternative hypothesis. Similarly, a Bayes factor less than one
gives more support to the alternative hypothesis.

The null posterior probability is P(Hy|y,). In order to compute this quantity we
assume prior probabilities P(Hy) and P(H4) and use Bayes’ theorem to write

P(Holyo) _ Plyo|Ho) P(Ho) _ , P(Ho)

P(Haly,)  P(yv|Ha) P(Ha) P(Hya)

Using the fact that the null and alternative hypotheses are assumed to be exhaustive,

this becomes
P(Holy,) B P(Hy)

1— P(Holy,) ~ 1— P(Ho)

which can be rearranged to give

_ BP(Ho)
= BP(Ho) +1 - P(Ho)’

P(Holyv)

This quantity gives a measure of the strength of the evidence for the null hypothesis
given by the data. If the prior probabilities of P(Hy) and P(H4) are assumed to both
equal 0.5, this quantity will simplify to

P(Holy,) = Brl

3.1.1 Types of Hypotheses

Hypotheses about Distributions: To validate the estimated distributions for the

model outcomes we choose the null and alternative hypotheses as

e Hjy: The model gives the true distribution for 6
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e H,: The true distribution for € is something else

where 0 is the estimated quantity whose distribution is to be validated. In order to
complete the computation of the Bayes factor, we will need to specify a distribution to
be used for H 4. In general we will choose a minimally informative distribution such as
a uniform or triangular distribution for H4. Using a uniform distribution requires that
bounds are placed on the possible values of 6, while using a triangular distribution also
requires that the mode of the distribution be specified. Once the distribution to be used
in Hy is specified, the computation of the Bayes factor and posterior null probability
are straightforward.

Whatever the source of the validation data, it must be assumed that there is some

measurement error associated with the data collection. In most cases we will assume
Yo =Y +¢€

where y is the true value of the quantity being measured and ¢ is a random variable with
e ~ N(0,0?). Knowledge about the source of validation data can guide us in selecting
an appropriate value for ¢. Incorporating the presence of measurement error requires

an integration:

Py Ho) = / Fly) Frro () dy

where f(y,|y) is the probability density function for the measured data given that the
true value is y, and fm,(y) is the probability density function for y under the assumption
that Hp is true. The quantity P(y,|Ha) for the alternate hypothesis is computed in
exactly the same way.

These quantities are all based on a Bayesian framework. In a classical hypothesis

testing framework, a p-value is commonly used. The p-value is defined as
p= P(T > T(y»)|Ho) (3.1)

where 7' is some test statistic whose distribution can be computed assuming the null
hypothesis is true and T'(y,) is the actual observed value of the test statistic. The p-
value is a measure of how unusual the observed data is under the null hypothesis. If
the observed data is very unusual, this provides evidence that the null hypothesis is
unreasonable. While p-values are usually used in a classical framework and take into
account only the distribution of the measurement error in determining the distribution
for T, computing p = P(T > T(y,)|Hp) is also possible in the context of validating
distributions in the Bayesian framework. While the “true” value y is assumed to be fixed
in the classical framework, it is assumed to be a random variable with a distribution on

the Bayesian context. The measured value ¥, is assumed to have a distribution in both
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the classical and Bayesian contexts. In the Bayesian context, we can compute

p= / P(T > T(y)|Ho) f (o 9)dy

This quantity will behave like a p-value, a familiar quantity to researchers in many ap-
plied fields. In particular, small values of p indicate evidence against the null hypothesis.
There are a number of different test statistics that could be used to produce p-values.

For our purposes, we will use
T(y)=(y-9C ' (y-9"

where 7 is the mean and C' is the variance-covariance matrix for y under the null hy-
pothesis. This test statistic can be interpreted as the squared distance from y to § using

a distance measure that takes into account the covariance structure of y.

Hypotheses about Regions for Parameters: Rather than validating the estimated
distributions for the model outcomes, we may instead wish to validate the interval
or region estimates for the parameters. In this case we will formulate the null and

alternative hypotheses differently:
e Hy: el
e Hy: 0¢1.

In these expressions, # is again the quantity to be validated. It is a scalar or a vector
consisting of parameter values. The interval I may be a one dimensional interval or
a region in a higher dimensional space. Computing the probabilities P(y,|Hy) and
P(yy|Ha) , we may write B as

I; Fyly(8)) £(6)de
Jrc f(ys0)f(0)do

B=

where I¢ is the complement of I and f(6) is the probability density function for 6
and f(y,|y(0)) is the probability density function for the validation data accounting for
measurement error. Notice that the value of B must be larger if a larger set I is used.
In other words, if there is sufficient evidence to support 6 € I; then the same evidence
also supports 6 € I if I C Is.

In Sections 3.2 and 3.3, validation is performed using both reserved data and results

from independent studies. In each case, two sets of hypotheses are considered.

e First, the distributions for the model outcomes obtained from the distributions
for the parameter values found in Section 2.3.3 will be validated by comparing

the modelled distribution to a triangular distribution with mode at the measured
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Validating Distributions

B P(Hylyy) p-value
2011 and 2012 Diagnoses 8.4214 0.8939 0.6485
1999 and 2000 Diagnoses 1.7659 0.6405 0.8371
1999 and 2000 Deaths 0.0013 0.0013 0.0002
Validating 50% HPD Region

B P(HO‘yv)
2011 and 2012 Diagnoses 1.5186 0.6030
1999 and 2000 Diagnoses 1.3910 0.5818
1999 and 2000 Deaths 0.0032 0.0032

Table 3.1: Validation results with reserved data

value of the validation data and maximum and minimum defined by a 99 percentile

range of the modelled distribution.

e Sccondly, the confidence set obtained as a 50% highest posterior density (HPD)
region for the parameters is validated. Validation of this region also acts as valida-
tion of any larger region — for example the 95% confidence region or the joint 95%

confidence intervals obtained by projecting this region onto the parameter axes.

3.2 Validation with Reserved Data

A validation dataset can be created simply by reserving some of the data for validation
before fitting begins. Given the small sizes of the datasets that are available, it is
tempting to include all available data in the fitting routine. However, as we have already
mentioned this may cause the model to appear better than it really is. As we wish to
use the model to project into the future as well as simply describing the present, it is
vital to have a validation data set which was not used in the fitting procedure. The
data for the Province of Alberta model was originally accessed in 2011. At that time,
diagnosis and deaths numbers were only complete to the end of 2010. Since that time,
further data has become available. Number of new diagnosis for 2011 and 2012 will be
the primary validation data. Additionally, our modelling dataset begins in 2001 even
though data is available from 1999 onward. This allows us to additionally validate the
model using diagnosis and deaths data from 1999 and 2000.

The validation results are summarized in Table 3.1. Bayes factors, B > 1 indicate
that the additional diagnosis data for both the 2011-2012 and 1999-2000 time periods
provide support for the modelled results. The posterior null probabilities, P(Hop|y,) >

0.5 indicate the validation data is more likely to come from the modelled distributions
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Figure 3.1: Marginal distributions for the number of reported cases in 2011 and 2012
given the null hypothesis that the sampled distribution is correct (blue) and the alterna-
tive hypothesis that these quantities follow independent triangular distributions (green),
along with the measured validation data (red).

for these quantities than from the triangular distributions to which they were compared.

To further illustrate these results we plot the distributions for the reported cases in
2011 and 2012 under the null and alternative hypotheses. As this validation data is two
dimensional, we can view either the marginal distributions for reported cases in each
year or the two dimensional joint distribution of both outcomes. Figure 3.1 displays the
marginal distributions and shows that the modelled density is higher than the alternative
density near the measured data value, indicating a good validation result. Figure 3.2
shows a contour plot of the two dimensional joint distributions. The solid black dot
indicates the validation data and again falls in a region where the modelled density is
higher than the alternative density.

Figures 3.3 and 3.4 show the same distributions for the reported cases in 1999 and
2000.

The 50% HPD regions being validated in the second type of validation are regions
for the fitted parameters. Figure 3.5 shows the estimated marginal distribution for the
number of reported cases in 2011 and 2012 under the null hypothesis that the parameters
are in the 50% HPD region and under the alternative hypothesis that the parameters
are outside of this region. Figure 3.6 shows the joint distributions. As before, the data
is more probable under the null hypothesis than under the alternative hypothesis.

In contrast, the data on HIV/AIDS deaths in 1999 and 2000 does not validate our
model results. The Bayes factor, B, for this data found in Table 3.1 is much less than
one and the posterior null probability is likewise small. This is not unexpected as
improvements in treatment have decreased the rate of HIV/AIDS deaths since 2000.
Furthermore, the diagnosed HIV-positive population has changed due to an increased

availability of early testing further decreasing the death rate. Indeed, the model predicts
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Figure 3.2: Joint distribution for the number of reported cases in 2011 and 2012 given
the null hypothesis that the sampled distribution is correct (left) and the alternative
hypothesis that these quantities follow independent triangular distributions (right). The
black dot indicates the measured validation data value.
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Figure 3.3: Marginal distributions for the number of reported cases in 1999 and 2000
given the null hypothesis that the sampled distribution is correct (blue) and the alterna-
tive hypothesis that these quantities follow independent triangular distributions (green),
along with the measured validation data (red).
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Figure 3.4: Joint distribution for the number of reported cases in 1999 and 2000 given
the null hypothesis that the sampled distribution is correct (left) and the alternative
hypothesis that these quantities follow independent triangular distributions (right). The
black dot indicates the measured validation data value.
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Figure 3.5: Marginal distributions for the number of reported cases in 2011 and 2012
given the null hypothesis that the parameters are in the 50% credible region around the
point estimate (blue), and the alternative hypothesis that the parameters are outside of
this region (green), along with the measured validation data (red).
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Figure 3.6: Joint distribution for the number of reported cases in 2011 and 2012 given
the null hypothesis that the parameters are in the 50% credible region around the point
estimate (left) and the alternative hypothesis that that the parameters are outside of
this region (right). The black dot indicates the measured validation data value.

far fewer deaths for the 1999-2000 period than were actually reported for the same time
period. Distributions under both the null and alternative hypotheses are illustrated in
Figure 3.7. It is clear that the observed validation data, which occurs at the mode of
the alternative distribution, is much larger than predicted by the modelled distribution.

Overall, the validation using reserved data is either successful, providing evidence
that our model is appropriate, or fails in predictable ways, indicating limitations of our
model that are not surprising.

3.3 Validation with Independent Results

The results of independent studies of HIV incidence, prevalence, and diagnosis can also
be used to validate the model. These may include studies estimating the prevalence of
HIV or evaluating the success of intervention programs. Any quantities computed in
other studies that can also be estimated using the model developed in this thesis can be
used for validation. The validation results obtained using this type of data are limited
by the amount of similarity between the population included in the independent study
and the general population of Alberta which is described by the model. However, this
type of data can allow us to evaluate how well the model corresponds with reality for
a wider variety of model outcomes. The model for the Province of Alberta is validated

using

e 2005, 2008, and 2011 PHAC estimates of the percentage of the HIV-positive pop-
ulation who are undiagnosed [19, 149, 31].

e 1998 and 2006 emergency department sentinel surveillance studies [71, 70].
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Figure 3.7: Distribution of the number of HIV deaths in the year 2000 given the null
hypothesis that sampled modelled is correct (blue), and the alternative hypothesis that
this quantity follows a triangular distribution (green). The observed validation data
value for this quantity is 20.

e Results of 2002-2004 prenatal screening [106].

Each of these populations differs from the general population of the province of Alberta
which the model describes. The PHAC estimates include the entire Canadian popula-
tion which may differ somewhat from the population in the Province of Alberta. The
emergency department studies considered only those undergoing blood tests in emer-
gency departments. This group is likely to be at higher risk of HIV than the general
population. Similarly, those undergoing prenatal HIV screening are also a specific subset
of the population of Alberta. This group is likely to be at lower risk of HIV than the
general population.

Nonetheless, comparison to these quantities will act as a validation of the model
results. For some of these studies, the population involved is similar enough to the
general population of Alberta that we expect the validation to be successful. For others
of these studies, the population is thought to be different enough from the general
Alberta population that it will be a greater cause for concern if the model agrees with
the data than if it does not.

The validation results for these independent studies found in Table 3.2 have the
expected outcome. In particular, the PHAC estimates validate the modelled results
with Bayes factors greater than one for both for the distribution and for the 50% HPD
Region. This is the case when considering either the most recent two estimates or
when combining the data from the years 2002, 2005, 2008, and 2011. The resulting

52



CHAPTER 3. VALIDATING THE MODEL

Validating Distributions

B P(Hylyy) p-value
2008 and 2011 PHAC Estimates 1.4387 0.5899 0.2410
2002 — 2011 PHAC Estimates 3.5006 0.7778 0.1829
1998 Emergency Study 0.0049 0.0049 0.0000
2006 Emergency Study 0.0000 0.0000 0.0000
Prenatal Screening 0.0133 0.0131 0.0013
Validating 50% HPD Region

B P(Holyv)
2008 and 2011 PHAC Estimates 1.1395 0.5326
2002 - 2011 PHAC Estimates 1.1744 0.5401
Prenatal Screening 0.4091 0.2903

Table 3.2: Validation using independent results

four-dimensional distribution validates easily with B = 3.5006 and P(Hy|y,) = 0.7778.

The model behaves only moderately well compared to each of the PHAC estimates
individually. In each estimate, the model somewhat underestimates the fraction of the
HIV-positive population that is undiagnosed. This is illustrated for the years 2008 and
2011 in Figure 3.8. In this figure, it can be seen that the majority of the modelled
distribution falls below the validation data values and the alternative distribution has
higher density near the validation data. Nonetheless the model predicts the correct trend
in the fraction of the HIV-positive population that is undiagnosed. Correctly predicting
this trend increases confidence in the null hypothesis that the modelled distributions are
correct. The joint distribution is illustrated in Figure 3.9.

When validating the 50% HPD Region using PHAC estimates of the fraction of the
HIV-positive population who are undiagnosed, the validation is always successful. Bayes
factors greater than one in Table 3.2 indicate that validation data is more likely to be
produced by parameter values inside the 50% HPD Region than by parameter values
outside this region. The distributions under the null and alternative hypotheses for this
test are found in Figures 3.10 and 3.11.

On the other hand, the emergency room studies and the prenatal screening data
do not validate the model. The Bayes factors for these quantities, in Table 3.2 are all
less than one, and some of them are quite small. As already mentioned, this is to be
expected. The emergency room study considers only a very high risk population and the
model estimates a much lower HIV prevalence than measured in the emergency room
setting. On the other hand prenatal screening applies only to a population at lower risk
than the general population and the model estimates a somewhat higher HIV prevalence

than is measured for this population.
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Figure 3.8: Marginal distributions for the fraction of the HIV-positive population un-
diagnosed in 2008 and 2011 under the null hypothesis that the sampled distribution
is correct (blue) and the alternative hypothesis that these quantities follow triangular
distributions (green). The size of the undiagnosed HIV-positive population as estimated
by PHAC is shown in red.
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Figure 3.9: Joint distributions of the fraction of the HIV-positive population undiag-
nosed in 2008 and 2011 under the null hypothesis that the sampled distribution is correct
(left) and the alternative hypothesis that these quantities follow independent triangular
distributions (right). The validation data is indicated by the black dot.
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Figure 3.10: Marginal distributions for the fraction of the HIV-positive population un-
diagnosed in 2008 and 2011 under the null hypothesis that the parameter values are
with their 50% credible region (blue) and the alternative hypothesis that the parameter
values are outside this region (green). The PHAC estimate for this quantity is shown
in red.
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Figure 3.11: Joint distributions for the fraction of the HIV-positive population undiag-
nosed in 2008 and 2011 under the null hypothesis that parameter values are within their
50 % credible region (left) and the alternative hypothesis that the parameter values are
outside this region (right). The PHAC estimate for these quantities is shown indicated
with a black dot.
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Overall, the validation with independent results is successful. The PHAC estimates
provide some support for our model, especially when taken together. The emergency
room studies and prenatal data do not support the model results. However, this is to be
expected as the populations in these studies are not directly comparable to the general

population of the province modelled by the current project.

56



Chapter 4

Using the Model

Since it includes both transmission and diagnosis dynamics, the model that has been
created in Chapter 2 and validated in Chapter 3 allows the description of a variety
of features of disease transmission that are not easily studied by other methods. In
this chapter, we estimate the total size of the population living with HIV, the time to
diagnosis, and HIV incidence. The model is also used to predict the future course of the
disease and the potential outcome of changes to public health programs.

In order to produce these estimates it is necessary to describe how uncertainty in
the parameter values will be accounted for. Some uncertainty remains in the parameter
estimates and is described by the distributions and interval estimates computed. The
result of this uncertainty in the parameter values is that the model results for the
quantities of interest will also be uncertain.

To determine which parameters might have important effects on the outcomes of
interest, we employ sensitivity analysis. Both relative local sensitivity coeflicients and
global sensitivity coefficients based on partial rank correlations will be used. Each of
these methods of sensitivity analysis gives slightly different information about how the

parameter values relate to the outcomes.

4.1 Uncertainty Analysis

It is important to take into consideration the fact that the parameter values we have
calculated for the model are uncertain. In fact, we have calculated a number of different
possible parameter values for the model. The least squares fit gives a single parameter
value that best fits the data, but the data itself may contain some random variation
and perhaps even errors. Therefore, we have also used Bayesian methods to fit the
model resulting in not only a single point estimate for the parameters, but also interval
estimates and estimates of distributions for the parameters.

There are a number of different methods available for uncertainty analysis [35, 64].

We will use a method based on a random sample of the uncertain quantities. The core

57



CHAPTER 4. USING THE MODEL

of this method is to use the distributions for the uncertain quantities (the parameters)
and the model equations to create distributions for the outcomes of interest — size of
the HIV-positive population in 2010 and 2015 for example. The Bayesian model fitting
that was carried out in Chapter 2 resulted in a sample from the joint distribution of the
parameters. This is the sample we will use in the uncertainty analysis.

If a sample was not already available for the uncertain quantities, we would need to
create one. A common technique is to use a Latin hypercube sample as in Section 5.1,
but any sampling technique appropriate to the desired parameter distribution can be
used [16, 63]. A brief introduction to Latin hypercube sampling is given in Appendix
A2.2.

Transforming the sample of parameter values to create a sample for the model out-
comes of interest requires computing the model outcomes for each element of the pa-
rameter sample and thus creating a sample from the distribution of model outcomes.
Once this sample is created, it must be analyzed and appropriate conclusions drawn
from it. This analysis may take a number of different forms but is likely to include the
computation of summary statistics and result in point and interval estimates for the

outcomes of interest.

4.1.1 Reporting Uncertainty Results

One common method of reporting the results of an uncertainty analysis is to use a
box plot. Examples of box plots can be found in Figures 4.1, 4.3, and several other
figures throughout this chapter. This plot displays the median, interquartile range, and
95th percentile range of the sampled outputs. In the plot style used here, the median
is indicated by a circle, the interquartile range by a narrow filled box, and the 95th
percentile range by vertical lines. This information is often included for the same model
output calculated at several different time points and displayed on the same plot. This
type of plot can give a simplified view of how the distribution of a quantity is changing
over time.

However, this style of plot has a significant drawback for reporting results from the
differential equation based models that are used in this project. In particular, the box
plot discards all information about the relationships between model outcomes that may
have been contained in the sample. While a box plot gives no information about the
relationship between quantities, the outcomes we are interested in are related to each
other. A box plot may give an incorrect impression of these relationships.

For example, consider the box plots in Figure 4.1. This figure shows box plots (A, B,
and C) for three different samples. Sample paths for these samples are also illustrated
(D, E, and F). In each of these samples the box plots are identical at the points 1 and 2.
A viewer may be tempted to conclude that the value of the underlying quantities does
not change between these two points. This is the case in Figure 4.1 A and D. However, in

Figure 4.1 B and E the sign of the quantity changes between these two points. In Figure
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Figure 4.1: Identical boxplots for three different samples. In the first (A, D), the quantity
is equal at t; and t3. In the second (B, E), the quantity at ¢ is negative that at ¢1. In
the third (C, F), the two quantities are statistically independent.
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Figure 4.2: The two components of this data have a nonlinear relationship and illustrate
how the use of marginal medians can be nonrepresentative of nonlinear data.

4.1 C and F the value of the quantities at the two points are statistically independent.
The box plot cannot distinguish between these three situations. This concern may be
partially remedied by also displaying the sample paths in the underlying data, however
showing data in such a raw form can be somewhat difficult to interpret.

The medians highlighted by the box plot may also give an incomplete impression.
Consider the data illustrated in Figure 4.2. The two components of this data have a non-
linear relationship with each other. The medians of each component of the data however
do not follow this relationship. Reporting only the marginal medians, as indicated by
the x in the figure, may suggest that it is possible to have elements of the sample near
the point in the plane identified by the pair of medians.

Despite these limitations of the box plot, it is a commonly used method of summariz-
ing some types of uncertainty results and it continues to be a useful tool for describing
the possible range of many model outcomes simultaneously. However, it has already
been noted that model outcomes of interest may have important relationships with
each other. Figure 3.4 on page 50 illustrated a strong relationship between the num-
ber of cases reported in two subsequent years. To avoid discarding information about
the relationships between quantities of interest, we develop a new way of summarizing
uncertainty results which can augment the results often summarized in the box plot.

The method we will use to summarize uncertainty results is based on a simple idea:
whenever we are interested in the relationships between model outcomes, they should
not be analyzed one at a time but instead multivariate methods should be used to

consider several model outcomes simultaneously.
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There are several multivariate methods that could be appropriate to summarize
uncertainty results. A simple method could use the mean vector and the variance-
covariance matrix to create point estimates and prediction regions for the multivariate
model outcome. However, determining point estimates and prediction regions from these
quantities requires assumptions about the joint distribution for the model outcomes. In
particular, this method works well if the outcome distribution is a multivariate normal
distribution. Since the distributions we are considering are not in general normal, the
point estimates and prediction regions given by this method may not be appropriate.

The correlation matrix can be used to quantify the strength of a linear relationship
between model outcomes. However, as these relationships may be nonlinear this may
fail to capture some of the relationships that we are interested in. Therefore, for the
purposes of this thesis, we will use a method based on a density estimate. A discussion

of density estimation can be found in [117]. The method is as follows:

o A kernel density estimator is computed for the multivariate model outcome under

consideration.

e The maximum density sample point is taken as the point estimate for the mul-
tivariate model outcome. This point may be interpreted as a “representative”

outcome or the “most likely” outcome.

e A prediction region for the model outcome is defined using the 50% or 95% highest
density region. The 50% region corresponds to the interquartile range often shown
in a box plot, while the 95% region is a more common size for a prediction region.
This region can be projected onto the model outcome axes to create joint prediction

intervals the for individual outcomes.

When considering only two model outcomes, contour plots of the 50% and 95%
highest density regions along with the maximum density point can be produced. These
plots may be considered to be a two dimensional version of the box plot.

This method has the advantage of preserving any relationships between the compo-
nents of the multivariate model outcome that is used. Additionally, since an element
of the sample will be chosen as the point estimate, it is guaranteed that the behaviour
illustrated by the point estimate is a possible behaviour of the model. One limitation
in using this method is that it quickly becomes unwieldy when attempting to analyze
many model outcomes simultaneously. A great deal of data is required to adequately
resolve a high dimensional density estimate and results in higher dimensions are difficult
to visualize and report. Therefore, we will use this method to investigate relationships

between only two or three model outcomes simultaneously.
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Year Median 25 75 2.5 97.5
2000 1319 1269 1365 1146 1452
2005 2372 2234 2514 1961 2809
2010 3558 3099 4088 2369 5437
2015 4933 3909 6328 2602 10995
2020 6582 4699 9569 2726 22844

Table 4.1: Median and percentiles of model results for the estimated total number of
people living with HIV in selected years.

4.2 Model Results

The model from Chapter 2 can be used to determine the values of a variety of model
outcomes that are not easily determined by other methods. For example, the fitted
model can be used to estimate the total size of the HIV-positive population — including
those who have not been diagnosed. Additionally, the model can be used to estimate
the fraction of the HIV-positive population who are undiagnosed, and HIV incidence.
All of these quantities can be computed for any time when the model is believed to
be appropriate. For the Province of Alberta model, results will be given for the years
2000 to 2020. Recall that the model was fitted on data from 2001 to 2010 and validated
using data from 1999 to 2012. Whether or not the model will remain valid until 2020
depends on the amount of change in HIV transmission behaviours, diagnosis patterns,

and treatment effectiveness that occurs in this time period.

4.2.1 People Living with HIV

A box plot and a selection of sample plots for the total number of people living with
HIV for years 2000-2020 are illustrated in Figure 4.3. In these plots the median number
of people living with HIV is seen to increase steadily over this time period. At the
same time, the amount of uncertainty in this quantity, captured by the interquartile
and percentile ranges, increases rapidly. Most of the increase in uncertainty occurs at
the top of the range. The lower end of the 95 percentile range is mostly constant after
2010. The median, interquartile range, and 95 percentile range are given in Table 4.1.
Examining the sample included in Figure 4.3, it can be seen that sample elements
with a large HIV-positive population in earlier years, usually also have a large HIV-
positive population in later years. This suggests that there are relationships among the
yearly total number of HIV-positive people. To further investigate this possibility we
consider the joint distributions created using the number of HIV-positive people in two
different years. Figure 4.4 displays a contour plot of the estimated density. In these plots
the filled region indicates a 50% prediction region and the outlined region indicates a 95%
prediction region. The maximum density point is also indicated. The density contour

plot reveals a moderate association between the number of HIV-positive people in 2005
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Figure 4.3: Boxplot and a sample of model results for the estimated total number of
people living with HIV.

63



CHAPTER 4. USING THE MODEL

Year Median 25 75 2.5 97.5

2000 0.343 0.317 0.372 0.271 0.430
2005 0.207 0.171 0.248 0.115 0.355
2010 0.157 0.115 0.213 0.058 0.393
2015 0.134 0.090 0.196 0.036 0.413
2020 0.122 0.077 0.187 0.025 0.422

Table 4.2: Median and percentiles of model results for the estimated fraction of the
HIV-positive population who are undiagnosed in selected years.

and 2015. The association between the number of HIV-positive people in 2010 and 2020
is slightly stronger. In particular, a low HIV-positive population in 2005 or in 2010
tends to occur for the same parameter values as a low HIV-positive population a decade
later. The low density region in the lower right indicates that significant decreases in
the HIV-positive population are unlikely. Nonetheless, there are some parameter values
which exhibit a decline in the size of the HIV-positive population from 2010 to 2020.
In general, these occur in cases where the HIV-positive population in 2010 is already
relatively small. At the same time, the low density region in the upper left reveals that

very large increases in the size of HIV-positive population are also unlikely.

4.2.2 Undiagnosed HIV-Positive Population

The faction of the HIV-positive population that is undiagnosed is investigated similarly.
A box plot and a selection of sample plots for this fraction in the years 2000-2020 are
illustrated in Figure 4.5. In these plots the median fraction is seen to decrease from
2001 to 2010 and appears to level off slightly above 0.1. The decrease may partially
be the result of the total number of people with HIV increasing while the number who
have not been diagnosed remains relatively constant. At the same time, the amount
of uncertainty in this quantity, captured by the interquartile and percentile ranges,
increases from 2000 to 2010 but does not change substantially from 2010 to 2020. The
median, interquartile range, and 95 percentile range are given in Table 4.2.

Once again, the sample included in Figure 4.5 suggests that there is a relationship
between the outcomes for subsequent years. To further investigate this possibility we
consider the joint distributions created using the fractions of the HIV-positive population
who are undiagnosed in two different years. Figure 4.6 displays the contour plot of the
estimated density. As before, the filled region indicates a 50% prediction region and
the outlined region indicates a 95% prediction region. The maximum density point is
also indicated while the dashed line indicates no change over the decade. These plots
reveal a strong association between the fractions of the HIV-positive population who are
undiagnosed in 2005 and 2015 and an even stronger association between the fractions of
the HIV-positive population who are undiagnosed in 2010 and 2020. For the majority

of sampled parameter values this quantity declines over the decades from 2005 to 2015
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Figure 4.4: Contour plots of the two dimensional distributions of the estimated total
number of people living with HIV in 2005/2015 and in 2010,/2020.
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Figure 4.5: Boxplot and a sample of model results for the estimated fraction of the
HIV-positive population who are undiagnosed.
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Year Median 25 75 2.5 975

2000 8.49 7.26 9.88 518 13.48
2005 8.36 7.09 9.68 4.68 12.59
2010 8.73 6.09 12.16 2.67 22.73
2015 9.55 5.51 16.01 1.62 43.86
2020 10.80 522 2149 1.08 85.88

Table 4.3: Median and percentiles of model results for the estimated number of new
HIV cases / 100 000 population in selected years.

and from 2010 to 2020. These declines are generally small resulting in prediction regions
consisting of a narrow band in the output space. Declines in the fraction of the HIV-
positive population who are undiagnosed are greater for small values of this quantity in
2005 and 2010. For some very large values of this quantity, a small increase is observed

over a decade.

4.2.3 Incidence

The same methods are used to investigate HIV incidence. A box plot and a selection
of sample plots for the number of new HIV cases per 100000 population for years 2000-
2020 are illustrated in Figure 4.7. In these plots, the median HIV incidence is seen to
remain mostly constant over this time period. However, the amount of uncertainty in
this quantity, captured by the interquartile and percentile ranges, increases rapidly for
the second half of the time period. The median, interquartile range, and 95 percentile
range are given in Table 4.3.

As before the sample included in Figure 4.7 suggests that there are relationships
among the incidences of HIV in subsequent years. Particularly after 2005, a the samples
with high incidence remain high in future years. To further investigate this possibility
we counsider the joint distributions created using the incidence of HIV in two different
years. These plots are found in Figure 4.8. As before, these plots are a two dimensional
version of the box plot with the filled region indicating a 50% prediction region and
the outlined region indicating a 95% prediction region. These plots reveal a moderate
association between the incidence of HIV in 2005 and 2015 and a somewhat weaker
association between the incidence of HIV in 2010 and 2020. The maximum density
point exhibits very little change from 2005 to 2015 and even less change from 2010 to
2020.
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Figure 4.6: Contour plots of the two dimensional distributions of the estimated fraction
of the HIV-positive population who are undiagnosed in 2005/2015 and in 2010/2020.
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Figure 4.7: Boxplot and a sample of model results for the estimated HIV incidence.
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Figure 4.8: Contour plots of the two dimensional distributions of the estimated HIV
incidence in 2005/2015 and in 2010,/2020.
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Figure 4.9: The fraction of the undiagnosed population who have been infected for more
than 1 year (blue) and more than 5 years (red).

4.2.4 Time to Diagnosis

The average time that individuals being diagnosed have been infected is given by % The
Bayesian fitting results summarized in Table 2.12 give a point estimate of o = 0.42813
with an interval estimate for o of (0.024503, 1.0984). This translates to point and interval
estimates for the average time undiagnosed of é = 2.33 years with an interval estimate
of (0.910,40.8) years. While the top end of this range is not realistic, only a small
number of sample points are near the top end.

The fitted model also allows the time between infection and diagnosis to be explored
in more detail. In particular the fraction of the undiagnosed population at time ¢ that
has been infected for longer than time 7, ®,(¢) , can be calculated. This is accomplished
by considering how many of those who were in the undiagnosed population at time ¢ — 7
remain in the undiagnosed population at time ¢. For the constant death and diagnosis

rates that have been used for the Province of Alberta model, this fraction is given by

I(t — 7)e-(atdr
1(t)

. (t) =

Box plots for the resulting fractions ®;(¢) and ®5(¢) are illustrated in Figure 4.9.
These quantities give the fraction of the undiagnosed population that has been infected
for more than a year or more than five years respectively. Both of these fractions can be
seen to be nearly constant over the time frame simulated. This is due to the fact that
constant parameters are used and the population of the compartment I changes very
little over the time frame simulated.

The median, interquartile range, and 95% range for the ®;(2015) and ®5(2015) are
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Median 25 75 2.5 97.5
®,(2015) 0.5622  0.5057 0.6036 0.3823 0.6752
®5(2015) 0.0568  0.0337 0.0806 0.0085 0.1407

Table 4.4: The median, interquartile range, and 95% range for fraction of the undiag-
nosed population who have been infected for at least one year and at least five years in
2015.

found in Table 4.4.

4.3 Sensitivity Analysis

Sensitivity analysis is used to quantify how model outcomes change when model inputs
such as parameters change. This idea has multiple uses in a modelling project. In
Section 2.3.1, the local relative sensitivity of the model outcomes given in the data with
respect to the parameters was used as part of the discussion of parameter identifiability.
It was noted that if all model outcomes for which there is data are insensitive to the
parameters, it will not be possible to choose appropriate parameter values.

Sensitivity results are sometimes used to augment uncertainty analysis. These re-
sults can indicate how much model outcomes could vary as a result of uncertainty in
parameter values. As sensitivity indicates what the potential impact of changes to the
parameters might be, this information may also be used to suggest potential interven-

tions — parameter changes to achieve a desired effect on model outcomes.

4.3.1 Local Sensitivity

The term local sensitivity refers to sensitivity calculated at a single point in the pa-
rameter space. This is the type of sensitivity that we have already encountered. The
sensitivity of a model outcome y(p,t) to changes in a parameter p; is usually computed

via the partial derivative. Recall from (2.9) on page 20

Jrer = [Jij]
yi p; (4.1)

Jij = .
T Opjl,e vi(pY)

where p* is the point at which sensitivities are to be calculated — usually a fitted point
estimate. This sensitivity is a relative sensitivity — it is scaled by the size of p7 and
the size of y;(p*) to allow for comparisons between the sensitivities to parameters and
outcomes of different sizes [74]. This scaling should not be used in cases where y;(p*) is
close to zero.

While relative local sensitivities were used as part of the investigation of identifia-
bility prior to parameter fitting, the model outcomes that we are interested in here are

different from those previously considered. Previously, sensitivity of the model outcomes
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for which data is available was considered. Now, sensitivity will be calculated for other
outcomes of interest such as the total size of the HIV-positive population, the fraction
of the HIV-positive population who are undiagnosed, and the HIV incidence.

Local sensitivities are straightforward to interpret — they indicate the relative change
in the model outcomes caused by a small change in a single parameter near a given point.
However, this reliance on a single point also means that they are not easily applied in

the case of uncertain parameter values.

4.3.2 Global Sensitivity

Global sensitivity attempts to quantify the sensitivity of model outcomes to parameters
over an extended region rather than at a single point. There are several methods avail-
able for global sensitivity analysis, but we will consider only one — a statistical method
using a sample of the parameter space and partial rank correlation coefficients [16, 93].

The sample from the parameter space required for this method can be the results of a
Bayesian fitting routine or a Latin hypercube sample chosen specifically for uncertainty
and sensitivity analysis. Using the sample from the parameter space, the model outcomes
of interest are computed for each element of the sample as was done for uncertainty
analysis. Then the partial rank correlations between the parameters and each of the
model outcomes are computed. We used the MATLAB [95] routine partialcorr with
the type option ‘Spearman’ to produce rank correlations.

Rank correlations assess the strength of the monotonic relationship between two
quantities while the use of partial correlations also controls for the effects of the other
parameters. The result is sensitivity coefficients that are between —1 and 1. A value
near 1 indicates that the model outcome y always increases when the parameter p;
increases while a value near —1 indicates that y always decreases when p; increases. A
value near 0 indicates that there is no monotonic relationship between y and p; — y may
increase, decrease or remain fixed when p; increases. These coefficients do not give any
indication of how large an effect changes in parameter values may have. Instead, high
values of the correlation coefficients indicate that the association between y and p; is
reliable, occurring for a wide range of parameter values.

Despite the fact that global sensitivities are somewhat more difficult to interpret,
they are a useful supplement to local sensitivities indicating whether the behaviour
observed using a local sensitivity can be expected to occur over a range of parameter

values.

4.3.3 Sensitivity Results

Sensitivities will be calculated for the same quantities that were used in the investigation
of uncertainty: Total size of the HIV positive population, fraction of the HIV positive
population that is undiagnosed, and annual HIV incidence per 100 000 population. The
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Figure 4.10: Local sensitivity results for the year 2015
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Figure 4.11: Local sensitivity results for the years 2001 to 2020
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results for the year 2015 are highlighted in Figures 4.10 and 4.12, while Figures 4.11 and
4.13 illustrate how the sensitivities change over time. Local sensitivities are calculated
around the point estimate from the Bayesian fitting routine from Table 2.12. Global
sensitivities are calculated using the sample from the parameter space selected during

the Bayesian fitting routine.

4.3.3.1 Local Sensitivity Results

The local sensitivity results for the year 2015 are illustrated in Figure 4.10. For all three
of the quantities we are interested in, the largest sensitivities are to the parameters Sy
and «. The sensitivities to 8 are positive, indicating that an increase in 7 will lead to
increases in the total size of the HIV positive population, the fraction unaware of their
HIV positive status, and HIV incidence.

HIV incidence is the most sensitive of these quantities to changes in 8;. A local
sensitivity of nearly 9 indicates that if 3; is increased by 1%, the HIV incidence will
increase by almost 9%. For the same 1% increase in 8, the fraction unaware of their HIV
positive status will increase by 3.6% and the total size of the HIV positive population
increases by 4.4%.

Similarly, changes in a have a large impact on the quantities we are interested in. A
1% increase in « results in a 5.5% decrease in incidence, a 3.4% decrease in the fraction
unaware of their HIV positive status, and a 2.5% decrease in the total size of the HIV
positive population.

Considering the changes in the local sensitivities over time illustrated in Figure 4.11,
it can be seen that in the year 2001, the only parameter that has any impact on the total
size of the HIV positive population and the fraction that is unaware of their status is r.
These two model outcomes have zero sensitivity to the remainder of the parameters as
this is the initial time and r is the only parameter that appears in the initial condition.

The sensitivities to the other parameters increase as time passes.

4.3.3.2 Global Sensitivity Results

Global sensitivity results indicate that the parameters S; and « also have the most
consistent effects on the model outcomes. Results for the year 2015 are found in Figure
4.12.

The parameter S; has partial rank correlations of 0.79 with HIV incidence, 0.80 with
the fraction unaware of their HIV positive status, and 0.79 with the total size of the HIV
positive population. These correlations indicate that an increase in §r is consistently
associated with an increase in these model outcomes across the parameter space.

Similarly, the parameter a has partial rank correlations of —0.86 with HIV incidence,
—0.93 with the fraction unaware of their HIV positive status, and —0.83 with the total

size of the HIV positive population. These correlations indicate that an increase in « is
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Figure 4.12: Global sensitivity results for the year 2015
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Figure 4.13: Global sensitivity results for the years 2001 to 2020
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consistently associated with a decrease in these model outcomes across the parameter
space.

The parameters a and dj also have moderately high partial rank correlations al-
though the local sensitivity to these parameters was small. This indicates that while
the effect of these parameters is not large, it is somewhat consistent. An increase in
a usually results in an increase in the model outcomes while an increase in dy usually
results in a decrease.

The changes of the global sensitivities over time, displayed in Figure 4.13, show
several shifts in importance. For example, all three outcomes begin with a high global
sensitivity to the initial condition r and this sensitivity declines over time. For the
fraction of the HIV positive population unaware of their status, this sensitivity changes
from positive to negative around the year 2013. Recall that r represents the number
undiagnosed at the initial time as a fraction of those diagnosed. An increase in this
quantity will naturally increase the fraction unaware of their HIV positive status near
the initial time. As more of those who where undiagnosed at the initial time become
diagnosed, they will begin to increase the denominator of the fraction H_LD decreasing

the overall fraction unaware of their HIV positive status.

4.4 Interventions

One of the advantages of mathematical disease models is the ability to test a variety of
interventions. In this section we consider several theoretical intervention programs.

The sensitivity results show that when considering the number of people living with
HIV, the fraction of those who are undiagnosed, and the HIV incidence rate, the largest
change is produced by varying the diagnosis rate a and the transmission coefficient
Br. Public health programs aimed at increasing testing could increase the parameter «
while programs aimed at decreasing risky behaviours could decrease the parameter ;.
In this section, the potential results of implementing such programs will be explored.
These hypothetical intervention programs will begin in 2015 and two different scenarios
will be investigated: a long term program where parameter values are modified for the
entire period from 2015 to 2020, and a short term program where parameter values are
modified for only a single year in 2015 before returning to their preintervention values.
In both cases large changes are made to parameter values which may not be possible to
implement in practice.

As each of these intervention programs is represented mathematically by modifying
the value of a single parameter, they do not include some of the potential side effects
of these types of programs. For example, programs aimed at increasing diagnosis may
have additional effects on the parameters a and dp as the population that has been

diagnosed changes.
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Figure 4.14: The effect on number of new diagnoses of short term (green) or long term
(red) interventions to reduce diagnosis delay. The single simulation shown on the left
uses the mode value of the parameters as a starting point, while the plot on the right
shows the results for the entire uncertainty sample.
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Figure 4.15: The effect on number of new infections of short term (green) or long term
(red) interventions to reduce diagnosis delay. The single simulation shown on the left
uses the mode value of the parameters as a starting point, while the plot on the right
shows the results for the entire uncertainty sample.

4.4.1 Reducing Diagnosis Delay

To investigate the potential impact of reducing diagnosis delay, we consider the impact of
reducing the average time from infection to diagnosis to one year. This is accomplished
by setting a/™ = 1. As already mentioned, the intervention begins in 2015 and two
cases are considered: a long term program in which the increased diagnosis is maintained
through 2020 and a short term program in which « returns to the preintervention value
after one year.

For both the short and long term intervention, the result is a temporary spike in
new diagnoses . For the short term, program this increase lasts only a single year. Once
the program ends, the yearly number of diagnoses falls below the number simulated
by the model with no intervention. This occurs because the size of the undiagnosed

population has been reduced. For the long term program, the number of new diagnoses
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Figure 4.16: The effect on the total number of people living with HIV of short term
(green) or long term (red) interventions to reduce diagnosis delay. The single simulation
shown on the left uses the mode value of the parameters as a starting point, while the
plot on the right shows the results for the entire uncertainty sample.

remains high for slightly longer than a year, but eventually also falls as the undiagnosed
population is depleted. The effect of the interventions on number of new diagnoses is
illustrated in Figure 4.14.

At the same time, both programs result in reductions in the number of new infections.
For the short term program, new infections fall during the intervention and continue to
fall for the next year due to the reduction in the undiagnosed population. Within two
years of the end of the program, new infections begin to increase slightly. For the long
term program, new infections continue to decline resulting in dramatic reductions in the
number of new HIV infections by the year 2020. Even the short term program has a
lasting impact on the number of new infections. These effects are illustrated in Figure
4.15

This dramatic decrease in new infections results in the size of the HIV-positive
population levelling off by 2020 with the long term program. With the short term
program the size of the HIV-positive population continues to increase but the rate of
increase is slower than predicted with no intervention. Figure 4.16 displays these results.

Figures 4.14, 4.15 and 4.16 also include uncertainty analysis for the effect of the
intervention programs. As diagnosis delay is an important source of uncertainty in the
model outcomes, specifying the value of a for the duration of the intervention has the

additional effect of reducing uncertainty in the outcomes.

4.4.2 Reducing Transmission

We also consider the impact of an intervention which reduces HIV transmission by half.
This is accomplished by setting ﬁf"t = 0.5ﬁ}\' onlnt Gince the value of 8p is given by
afr, this is a reduction in transmission from all sources. As already mentioned the

intervention begins in 2015 and two cases are considered: a long term program in which
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Figure 4.17: The effect on number of new infections of short term (green) or long term
(red) interventions to reduce HIV transmission. The single simulation shown on the left
uses the mode value of the parameters as a starting point, while the plot on the right
shows the results for the entire uncertainty sample.
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Figure 4.18: The effect on the total number of people living with HIV of short term
(green) or long term (red) interventions to reduce HIV transmission. The single simula-
tion shown on the left uses the mode value of the parameters as a starting point, while
the plot on the right shows the results for the entire uncertainty sample.

the decreased transmission is maintained through 2020 and a short term program in
which £; returns to the preintervention value after one year.

For both the short and long term programs, the result is a decline in infections in
2015. For the short term, program some of this decline is lost after the end of the
program, but the number of new infections remains below the level predicted with no
intervention. For the long term program new infections continue to decline resulting in
dramatic reductions in the number of new HIV infections by the year 2020. The effects
of the intervention on new infections is illustrated in Figure 4.17.

This dramatic decrease in new infections results in the number of total size of the
HIV-positive population levelling off almost immediately. With the long term program
the size of the HIV-positive population nearly constant after 2015. With the short term

program the size of the HIV-positive population resumes increasing after the program
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is ended. These results are illustrated in Figure 4.18

Figures 4.17 and 4.18 also provide uncertainty results for the outcome of these in-
tervention programs.

Comparing the results for increased diagnosis intervention to those for the decreased
transmission intervention, we see that the two types of interventions have similar impacts
on the number of new infections and the number of HIV-positive people if the program
is continued over the long term. However, the short term program to increase diagnosis
results in a reduction in HIV incidence that persists even after the program has ended.
Much of the decrease in HIV incidence observed for the transmission prevention program
is lost at the end of the program. This can be seen by comparing the green curves in
Figures 4.15 and 4.17.
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Chapter 5

Modelling in the Absence of Data

While the main focus of this thesis is HIV modelling using disease surveillance data to
compute parameter values, appropriate data is not always available. In this case, model
behaviours may be investigated by fixing the values of all parameters manually using
values found in medical literature. This procedure bypasses the model fitting step and
replaces it with careful interpretation of the model parameters. As quantities reported
in medical literature may not correspond exactly with the required parameters, there
may also be a number of assumptions which must be made. This process is greatly
aided by medical and epidemiological experts who can provide insights and intuition
into appropriate parameter values.

Alternatively, it may also be possible to theoretically determine some of the be-
haviours of the model without specifying parameter values. This is often only possible
for simple models and most often provides information about the long term behaviours
of the system rather than the short to medium term results that have been considered
thus far.

This chapter contains two smaller projects involving modelling that do not rely on
parameter fitting from data. A study of transmitted drug resistant HIV strains is found
in Section 5.1. For this project, model behaviours are investigated using parameter
values found in medical literature. Section 5.2 contains an investigation of long term

model behaviour for a simple model without specifying parameter values.

5.1 Drug Resistance

Treatment with combination antiretroviral therapy (cART) reduces viral load and could
result in reduced transmission [99]. This effect has been observed on an individual level
as the risk of transmission in discordant couples is strongly correlated with viral load
[110, 90, 33] and on a community level as increased treatment coverage is associated
with a decline in transmission [45, 143, 10].

A recent modelling study considered the impact of universal testing and prompt
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Figure 5.1: Model diagram for an HIV model including both acquired and transmitted
drug resistance.

treatment on HIV transmission in South Africa [51]. The model predicted a major im-
pact on transmission including elimination of HIV transmission within 50 years. How-
ever, the model considered acquired drug resistance only to note that second line drugs
could increase the cost of the program. Transmission of drug resistance was not consid-
ered at all.

In this section, a mathematical model is developed to examine HIV transmission un-
der conditions of universal testing and treatment. The model includes treatment failure
and the potential for drug resistant strains to develop and be transmitted. Population
parameters appropriate for the country of Botswana are used for this model and the
results are intended to apply to a context in which HIV is endemic and spread largely

through heterosexual contact.

5.1.1 Methods
5.1.1.1 The Model

The model used in this project was developed as part of an interdisciplinary collabora-
tion lead by Dr. S. Houston of the Faculty of Medicine and Department of Public Health
and Dr. M. Li of the Department of Mathematical and Statistical Sciences. The model
is illustrated in Figure 5.1. Descriptions of the compartments and parameters are given
in Tables 5.1 and 5.2 respectively. As in the Province of Alberta model, this is a com-
partmental disease transmission model described by a system of differential equations.
However, due to the complexity of tracking treatment failure and drug resistant viral

strains this model is substantially more complicated than the one used for the Province

85



CHAPTER 5. MODELLING IN THE ABSENCE OF DATA

of Alberta data. The full system of 15 equations is

Sl

A — (BaA+ B + Bp, D1 + Br The + Bry, Tu + Br, F1)S
— (B2 Tae + By Tor + Bpy D2 + Bpy D3 + Bry, Rat + Bry, Ria + B8R, F2)S — ds S,
A" = (BaA+ BrI + Bp, D1 + Bry, The + Bry, Tu + Br, F1)S
— pA — A —daA,
' = (Bro.Toe + By Toi + Bpy D2 + Bpy D3 + Bry, Rt + Bri, Ria + BrF2)S
— Y2 R1y — ds1 Ray,
I = pA—ayl—dyl,
D} = y1A— a1 Dy —dp, D,
Dy = yoRi; — ay Dy — dp, Dy,
D3 = y3R1a — agD3 — dp, D3,
Ti, = ail + oy Dy — 61 The — e1The — dpy, The,
1 = e1Tie — 0211 — dry, T,
T = asD3 — 03Tse — e2Toe — dry, Toe,
b = €2The — 04T — dry, Ty,
Fy = 69 Toe + 00Ty — dp, F,
F| = 01Tie + 0uTu — pFr — dp, F,
1o = p1F1 +a1Dy —y3R1, — dg,, Ria,
Ry = poFy — dR,Ry.

(5.1)

Those who are infected with a non-resistant viral strain but have never been treated
may be either asymptomatic (compartment A) or symptomatic (compartment I). As
the parameters chosen correspond to an intensive program of testing and treatment the
population in the symptomatic compartment will decline to insignificant levels within
the first year modelled. Upon diagnosis, (compartment D) those who are HIV-positive
immediately receive treatment and move into compartment 71, as the treatment sup-
presses their viral load. First line treatment is divided into two compartments represent-
ing early and late treatment, (compartments T3, and T7;) in order to capture a higher
failure rate within the first year of treatment. Treatment failures (compartment F})
may result in acquired drug resistance (compartment Ri,).

At the same time, drug resistance may be transmitted and those who have never
been treated but are nonetheless infected with drug resistant strains (compartment
Ry:). This population also benefits from the intensive testing program. Since the model
includes no resistance at the initial time, a symptomatic but undiagnosed compartment
is not necessary for the drug resistant population. While this population is diagnosed

at the same rate as the non-resistant population, treatment with first line drugs does
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Compartment Description
S Susceptible Population

Viral Strains Without Drug Resistance

A Infected, Treatment Naive, Asymptomatic Population
1 Symptomatic Population

Dy Diagnosed Population

Tie Population in Early First Line Treatment

Ty Population in Late First Line Treatment

Fy Population with First Line Treatment Failure

Viral Strains With Drug Resistance

Ryt Infected, Drug Resistant, Treatment Naive Population
D- Drug Resistant, Diagnosed Population

Ry, Previously Treated, Drug Resistant Population

Ds Population Diagnosed as Drug Resistant

Toe Population in Early Second Line Treatment

Ty Population in Late Second Line Treatment

F Population with Second Line Treatment Failure

Ro Population with Resistance to Second Line Treatment

Table 5.1: Description of model compartments in the drug resistance model

not reduce their viral load and they are incorporated into compartment Rj, until their
resistant status can be diagnosed.

Upon diagnosis of resistance, second line treatments are available. Once again, these
have a higher failure rate within the first year of beginning the treatment (compartments
T and Ty;).

As this model is intended to model a context in which resources are limited, it is

assumed that upon failure of second line treatments, no further treatments are available.

5.1.1.2 Parameters and Uncertainty

A number of assumptions are imposed on the parameter values. Of particular interest
are the transmission coefficients 5. The transmission coefficient for the compartment A
is used as a baseline and all the other transmission coefficients are expressed in terms of
this value. In particular, it is assumed that the resistant virus will not be as transmissible
as the non-resistant virus. The coeflicient ap is introduced to capture this reduction.
Similarly, it is assumed that diagnosis will have an impact on transmission through
changes in behaviour. This effect is captured through the introduction of the coefficient
ap. Finally, it is assumed that those who are effectively treated transmit very little.
These relationships are summarized in Table 5.3.

The population parameters A and dg are chosen to ensure that population growth
and death rates are appropriate for the country of Botswana. This was done by fixing

dg using estimates of life expectancy and fitting A using the population growth curve
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from 1981-1991 before any significant impact from HIV. The transmission coefficient 54
was likewise fitted using the model without diagnosis or treatment and HIV prevalence
data for Botswana from 1991-2001 when there were few treatment programs available.

The remaining parameter values were determined through reference to a variety of
sources. For each parameter, an estimate and a range were chosen. These estimates
were used to numerically compute the model results over a 50 year period. The ranges
were used to perform an uncertainty analysis on the model. Parameters were assumed
to be independent and follow triangular distributions with support given by the range
chosen and mode at the point estimate. A Latin hypercube sample was drawn from this
parameter distribution and model outcomes of interest were computed at each sampled

point.

5.1.2 Results

During the first 5 years of the testing and treatment program, the incidence of HIV falls
dramatically. After this time, the incidence levels off at a greatly reduced level where
it remains, increasing only slightly over the next several decades. At the same time,
the uncertainty increases. The 95th percentile of the sample indicates that for some
sampled parameter values, the majority of the initial decrease in incidence is eventually
lost. A box plot of the incidence per 100 000 population is found in Figure 5.2.

Figure 5.3 shows the prevalence of drug resistant strains as a fraction of the total
HIV-positive population. This includes both acquired and transmitted resistance and is
seen to increase steadily. Even the parameter values with the least drug resistance have
over half of the HIV-positive population infected with resistant strains after 50 years of
the testing and treatment program. Parameter values leading to high resistance may
have as much as 90% of the HIV-positive population infected with strains resistant to
some treatments.

The roles of parameters ag, d1., and ap are now considered in more detail. All
parameters are set to their baseline estimated values and the parameters agr, ap, and d1¢
are varied one at a time. In Figures 5.4 and 5.5, three levels are displayed for each of the
varied parameters: a low level representing an optimistic scenario, a moderate level, and
a high level representing a pessimistic scenario. This procedure of varying parameters
one at a time is related to local sensitivity analysis in that both procedures investigate
the impact of varying individual parameters separately. While local sensitivity analysis
uses a partial derivative to describe the effect of varying a parameter near a single point,
the procedure used in this section provides a bigger picture by displaying the results of
varying parameters by predetermined amounts. Results are displayed for the incidence
of HIV per 100 000 population and for the prevalence of resistance in the HIV-positive

population.
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Parameter Symbol Estimate Range
Influx of susceptible A 6.4 x 10% (5.8,7) x 10*
Life expectancy at age fifteen % 40 (35,50) [30]
Life expectancy of T d% 4 years (2,5) years [100]
Life expectancy of Ry ﬁ 2 years (1,4) years

2
Life expectancy of A, Ry %, d; 5 years less than %

1t

Life expectancy of Dy, Do ﬁ, ﬁ 5 years less than %

1 2
Life expectancy of Ty, T1; dTl , # 6 years less than %

le 11
Life expectancy of Ta., Ty dTl , # 8 years less than %

2e 21
First-line failure rate (< 1 year) d1e 10% (3%, 30%) [10, 56]
First-line failure rate (> 1 year) 01 5% (1.5%,15%) [10, 56]
Second-line failure rate (< 1 year)  da. 20% (6%, 40%)
Second-line failure rate (> 1 year) dy 7.5% (5%, 20%)
Rate of acquired resistance among p; 50% (30%, 70%) [10, 104,
failures 136, 67]
Annual diagnosis rate " 100% Assumed [51]
Diagnosis time of resistance 712 2.5 years (1,5) years
HIV progression % 10 years (5,15) years [100]
Length of treatment a% 0.167 year  (0.125,0.2) year
Early stage for ART treatments &, % 1 year Assumed
Disease progression after failure p—12 8 years (5,10) years
Impact of behavioral changes ap 75% (30%, 100%) [26, 42]
Fitness of resistant strains aR 30% (10%, 50%) [34, 128,

37, 86]

Table 5.2: Parameter values for the drug resistance model
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Compartment Transmission Coefficients
Tie, Thy Bry. = Br,, = 0.00184

Tae, Ty By = By = 0.00154

Ry BRry, = arfBa

I, Dy, Fy Br = Bp, = Br, = aBfa
Dy, R4 Bpy = BRri, = aBARSA

Iy, Ry, D3 Br, = Br, = Bp; = aparfBa

Table 5.3: Relationships between the transmission coefficiencts for the drug resistance
model.
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Figure 5.2: Boxplot of HIV incidence simulated by the drug resistance model.
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Figure 5.3: Boxplot of simulaton results for the prevalence of drug resistant strains as a
fraction of the total HIV-positive population.

Transmitted Resistance: The parameter ag, representing the relative transmissi-
bility of the resistant strain, is one of the most important parameters for overall HIV
incidence. In Figure 5.4 A, B, and C, three levels of this parameter are considered. In
the optimistic case, a relative transmissibility of 0.1 indicates that the resistant virus is
only 10% as likely to be transmitted as the non-resistant strain. In this case the inci-
dence is seen to level off at around 750 cases per 100 000 population with transmitted
resistant strains only a small part of that number. For the moderate case, a relative
transmissibility of 0.3 is used, resulting in incidence levelling off at around 1000 cases
per 100 000 population. In this case, transmitted resistance eventually rises to become
over half of all new cases. In the pessimistic case, a relative transmissibility of 0.5 is
used indicating that the drug resistant strain is half as transmissible as the non-resistant
strain. In this case HIV incidence initially drops to around 1000 cases per 100 000 pop-
ulation, but subsequently increases again to over 2000 cases per 100 000 population.
Much of this increase is driven by an increase in transmitted drug resistant strains.
The impact of the parameter ar on the prevalence of the resistant strain in the HIV-
positive population is illustrated in Figure 5.5 Parts A, B, and C. The optimistic value of
the parameter results in a fraction of the HIV-positive population with drug resistance of
under 0.5 for the entire modelled duration. As indicated by the incidence results, much
of this fraction will be due to treatment failures rather than transmission of resistant

strains. The moderate value of ar results in the fraction of the HIV-positive population
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with drug resistance reaching 0.5 after about 20 years and continuing to increase slowly.
The pessimistic value results in the fraction of the HIV-positive population with drug
resistance continuing to increase steadily and reaching about 0.9 after 50 years. The
incidence results previously discussed suggest that much of this fraction will be due to

transmission of drug resistant strains.

Treatment Failure: The parameter d1. representing the rate of treatment failure
during early first line treatment was considered at the optimistic level of 0, the moderate
level of 0.15, and the pessimistic level of 0.3. The results for HIV incidence and fraction
with resistant virus are found in Figures 5.4 and 5.5 Parts D, E, and F. As late first line
treatment was constrained to have a failure rate of half that of early first line treatment,
the optimistic case resulted in no failure of first line treatment. This was the only case
in which HIV incidence could be completely eliminated with no resistance developing.
In the moderate and pessimistic scenarios, treatment failure has only a small impact
on the HIV incidence after 50 years, but did have an impact on how quickly incidence
declined. Similarly, treatment failure has only a small impact on the fraction of the
HIV-positive population with drug resistance after 50 years, but does effect the rate at

which this fraction increases.

Behavioural Change: The final parameter for which several scenarios are considered
is ap. This parameter captures changes in behaviour due to diagnosis. The optimistic
scenario assumes that transmission can be reduced by 50% for those who are aware
of their status. The moderate scenario uses a transmission reduction of 25% while
the pessimistic scenario considers the possibility that those who are diagnosed will not
make any changes their behaviour to reduce transmission. The incidence results for
these three scenarios are found in Figure 5.4 Parts G, H, and I. The optimistic scenario
results in an HIV incidence that continues to decline slowly for the entire time computed
by the model and results in an incidence of about 500 per 100 000 after 50 years. The
moderate scenario does not see this continued decline. Instead the HIV incidence levels
off at around 1000 per 100 000 after about 5 years and remain at this level for the
remainder of the time modelled. The pessimistic scenario of no behavioural changes
results in the HIV incidence beginning to increase slightly after 5 years and produces an
incidence of around 1750 per 100 000 population after 50 years.

Behavioural changes have very little impact on the fraction of the HIV-positive
population with drug resistance. This is because behavioural changes have no impact
on the probability of acquiring drug resistance through treatment failures, and although
changes in behaviour can reduce HIV incidence, drug resistant and non-drug resistant

viral types are affected equally. This is illustrated in Figure 5.5 Parts G, H, and 1.
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Figure 5.4: The impact of a variety of factors on the incidence of HIV (black) and the
incidence of drug resistant HIV strains (red). In Parts A, B, and C the transmissibility
of the drug resistant strain, ap, is varied. In Parts D, E, and F the treatment failure
rate, dje, for first line treatment is varied. In parts G, H, and I the reduction in risk
behaviour, ap, is varied.
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Figure 5.5: The impact of a variety of factors on the fraction of HIV cases with drug
resistance. In Parts A, B, and C the transmissibility of the drug resistant strain, ag, is
varied. In Parts D, E, and F the treatment failure rate, di., for first line treatment is
varied. In parts G, H, and I the reduction in risk behaviour, ap, is varied.
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5.1.3 Conclusion

The results of this model suggest that a program of universal testing and prompt treat-
ment could have a significant impact on HIV incidence in a context where the virus is
endemic. However, the model results highlight the potential concern arising from ac-
quired and transmitted drug resistance. The increase in resistance that is found in all
cases indicates that universal testing and treatment programs should include provision

for management of both acquired and transmitted drug resistant viral strains.

5.2 Population Dependent Transmission

This section has been previously published [36] and appears here with only minor
changes. The mathematical analysis and the majority of the manuscript composition
for this section are my own work. My supervisor, Dr. M. Li, assisted with problem
formulation and some aspects of manuscript composition.

In this section a simple mathematical disease model is used to investigate the effects
of population dependent transmission on long term model behaviour. The model used
in this section bears some resemblance to the model we have used Chapters 2 through 4
to describe HIV transmission in the Province of Alberta, however, there are important
differences as well and the results in this section are not directly applicable to the model
used previously. In particular, rather than having a diagnosed population D the model
described in this section has a recovered population R which never transmits the disease.
Secondly, the HIV model in the previous chapters uses a standard proportionate term
to model disease transmission while in this section we consider the potential effects
of including other types population dependence in disease transmission. Population
dependent transmission may be thought of as capturing social or behavioural changes
that may occur due to changes in the total population size.

It should be noted that the use of the word incidence differs slightly in this section
from the definition most commonly used in epidemiology and in the other chapters of
this thesis. In both cases, incidence refers to new infections. In other sections of this
thesis, we have taken incidence to mean the number of new cases in some fixed time
period (usually one year). Incidence is often reported as the number of new cases per
population in one year. In this section we take a more mathematical perspective and

use the word incidence to refer to an instantaneous rate of disease transmission.

5.2.1 Introduction

For infectious diseases, incidence describes the rate at which new infections occur. To
model the transmission dynamics of an infectious disease, accurately describing and esti-
mating disease incidence are of utmost importance. In classical epidemic models such as

those of Kermack-McKendric [21, 80], infection occurs through horizontal transmission,
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and the disease incidence is customarily modelled by a bilinear form, SI(¢)S(t), which
is in proportion to the size or density of the sub-population of susceptible hosts S(¥)
and that of the sub-population of infectious hosts I(¢). The parameter 3 represents the
transmission coefficient and is dependent on the frequency of host-host contact and the
probability of a contact being infectious [2]. For infections that spread through sexual
contacts, as in HIV and other STD transmissions, the incidence is typically modelled by
a proportionate form I(f\,)—(stgﬂ, where N(t) is the total host population and the constant
B describes the effective contact rate among hosts [21]. When the host population is

predominantly susceptible or infectious, saturated incidence forms, B i_(:)ss(t(; ) or 8 f_ﬁt}é()t)

respectively, have been used to account for the saturation of contacts [21, 125]. Nonlin-
ear incidence of the form SI(¢)PS(¢)? is used in [89] and shown to lead to complicated
behaviours such as multiple endemic equilibria and existence of periodic oscillations.
Other general forms of incidence terms have been used and further studied in more
recent work [87, 147].

Among these common incidence forms, the proportionate incidence B%(St()t) depends
explicitly on the total population size N(t), and is said to be density dependent. If N ()
is a constant, it can be combined with ( so that the proportionate incidence is equivalent
to the bilinear one. However, due to density dependence, the proportionate incidence
and the bilinear incidence differ when N(t) varies with time. More general forms of
density dependence can be incorporated into the incidence term as SI(t)S(t)f(N(t)),
for certain classes of functions f. A typical example is f(N) = N™%, « > 0. When
a = 0, we obtain the bilinear incidence, and when o = 1, we arrive at the proportionate
incidence. It is shown in [54, 55] that, if 0 < a < 1, the incidence form 3 % typically
leads to standard threshold behaviour in simple epidemic models: the disease dies out
if the basic reproduction number Ry < 1 and the disease becomes endemic and persists
at a unique endemic equilibrium when Ry > 1. In Section 5.2, we show that if f(NV)
takes more general and yet biologically plausible forms, density-dependent incidence
BI()S(t)f(N(t)) can lead to complicated dynamics even in the simplest SIR models.

To introduce and interpret density dependence in disease incidence, we first recall

that the disease incidence can be calculated as

In this expression, the contact rate, A(N), is the average number of effective contacts
made by a single infectious individual in one unit of time. Such a contact is made
with a susceptible individual, and therefore produces an new infection, with probability
%. Multiplied by the total number I(t) of infectious hosts, the expression gives the
total number of new infections per unit time. Density dependence will be introduced
through A(N). For bilinear incidence, we have A(N) = SN, which assumes the number

of contacts is linearly proportional to the size of the population. This may be plausible
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for populations of large urban centres where, because of limited living space, an increase
in population size is likely to increase population density and the frequency of contact.
In proportionate incidence, we have that A(IN) = 8 and is independent of population size
N. This is plausible for populations in rural areas where an increase in population size
does not necessarily increase population density and the frequency of contact. In a more
general incidence 31(t)S(t) f(N(t)), we have the contact rate equal to A(N) = SN f(N).

The first class of f(IN) considered is f(N) = BN~®, a > 1. In this case, the contact
rate A(N) = BBN'=®. When « > 1, an increase in N leads to a decrease of contact.
This is plausible for diseases which require a significant level of contact to be transmitted
and a culture where people in large urban centres tend to have less contact with their
neighbours when population density increases. We demonstrate that, with this incidence
form, backward bifurcations can occur in a simple SIR model, namely, multiple endemic
equilibria exist when Ry < 1. Backward bifurcations have been investigated in a variety
epidemic models and are known to lead to catastrophic effects in terms of disease control
[4, 15,20, 39, 52, 58, 57, 72, 82, 94, 109, 116, 131, 138]; when backward bifurcation occurs,
the outcome of a disease outbreak not only depends on the parameter values, but also
critically depends on the initial conditions. Some known biological mechanisms that may
lead to backward bifurcations are imperfect immunity [52], a vaccine that provides only
partial protection [4, 82], and behavioural responses to perceived disease risk [58]. In
many of these models, backward bifurcation occurs due to asymmetry among different
contact groups or multiple routes for transmission. Our result shows that backward
bifurcation can result solely from density dependence in the incidence form.

A second class of f(N) investigated is f(N) = aN? + bN + ¢, a > 0. In this
case, the contact rate A(N) = BN (aN? + bN + ¢) is a cubic function that increases
for small or large values of N, and may decrease for intermediate values of N. Such
a region of decrease can be the result of adjustment of social behaviours as population
size increases. For this class of f, we show that multiple endemic equilibria can exist
when Ry > 1. Furthermore, one of the endemic equilibria can undergo stability change,
and a Hopf bifurcation occurs, producing stable periodic oscillations. Such dynamical
outcomes have been observed in SEIR models of constant total population with nonlinear
incidence [89]. Our result shows that the same phenomenon can also explained through
density dependence in the disease incidence.

We also consider the effect of adding multiple infectious stages to the model with
these classes of f(IN). Our result shows that endemic equilibria for the multi-stage
model can be identified using the same analysis that was used in the single stage model.
Furthermore, we determine that the existence of a backward bifurcation depends on the
number of infectious stages as well as the model parameters.

Incidence forms that incorporate social behaviour changes have been investigated
in epidemic models using nonlinear incidence forms [58, 116]. A piecewise incidence

function incorporating a sharp change in social behaviours is studied in [5] and shown
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A ? BISf(N) |T| I ?‘

|
dsS I drR

Figure 5.6: The transfer diagram for model (5.2).

to lead to periodic behaviour. While incidence forms in our study may be considered
as social behaviours related, they are different from those in previous studies in that we
incorporate social behaviours through nonlinear density dependence, dependence on the

total population size N, rather than explicit nonlinear dependence on I or S.

5.2.2 The Model and Preliminaries

We consider a simple SIR epidemic model with population dependant incidence. The
transfer diagram is depicted in Figure 5.6. Here, S is the susceptible population, I is
the infectious population, and R is the recovered or removed population. The total

population N = S+ 1+ R. The model is described by a system of differential equations:

S =A—BISf(N)—dsS
I =BISf(N)—~I —d;I (5.2)
R=~I —dgR.

The average per capita contact rate is given by A(N) = SN f(IN). The parameter A
indicates the influx of susceptibles, and v denotes the rate constant for recovery. The
mean infectious period is given by “ly We assume that the disease can be fatal and
the death rate d; for the I compartment may contain both natural and disease-related

death. That is, we assume that the death rates dg,d; and dp satisfy
0<ds <dgr, and dg<dj. (5.3)

This assumption is sufficient for the total population N to be time dependent. In
contrast, if dg = d; = dg = d, then N'(t) = A — dN(t), and N(t) = A/d as t — oo and
model (5.2) can be replaced by a limiting system with N = A/d.

It can be verified that solutions to model (5.2) with nonnegative initial conditions

remain nonnegative and bounded for all ¢ > 0. Furthermore, the compact region
I'={(S,[,R) eR} | S+1+R<A/ds}

is positively invariant for model (5.2) and globally attracting. It suffices to investigate
the global dynamics of model (5.2) in T
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For all nonnegative parameter values, the model has a disease-free equilibrium Py =
(S,0,0), with S = A/dg. The Jacobian matrix of of model (5.2) at P, is given by

—dg —BSf(S) 0
0 BSFS)—(dr+~) O
0 v —dg

and has eigenvalues \; = —dg < 0, Ay = —dg < 0, and \3 = 3Sf(S) — (d; + ). There-
fore, the disease free equilibrium Py is asymptotically stable if and only if 3Sf(S) <
dr + . Let
B~ -
= Sf(S). 5.4
T5513) (54
This is the basic reproduction number for model (5.2) [2, 65]. When f(N) =1, Ry =
dl%yg , which agrees with the basic reproduction number for SIR models with bilinear
incidence. When f(N) = 1/N, Ry = #,
number of STR model with proportionate incidence. Note that Ry < 1 if and only if
BSf(S) < d; +~. The following threshold result is standard.

Ry

which agrees with the basic reproduction

Proposition 1. If Ry < 1, then the disease-free equilibrium Py is asymptotically stable.
If Ry > 1, then Py is unstable, model (5.2) is uniformly persistent, and an endemic

equilibrium exists in the interior of I'.

Endemic equilibria, (S*, I*, R*) with I* > 0, of model (5.2) are determined by

0 =A — BI*S*f(N*) — dsS*
0=S"f(N*) — 7 —d; (5.5)
0 =I* — dgR".

From the second equation in (5.5) we obtain

BS*f(N*) =~ +dj. (5.6)
Denoting . . 5
Y
b d1+“/+de1+7 A Y (5-1)

and using the remaining equations in (5.5), we obtain
N* = (1—pdg)S* + pA. (5.8)

The parameter p is the mean life expectancy of those who become infected. The param-
eter o is a measure of total transmissibility over the mean infectious period #. In the
case where f(N) = %, o is the average number of effective contacts made by an infective
in its mean infectious period, in other words the contact number [65]. Assumption (5.3)

implies that pdg < 1.
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Define
9(S) = SF(N(9)) (5.9)

with
N(S)=(1—pds) S+ pA.

Then, from equation (5.6), an equilibrium S* must satisfy

1 _
g(S*) = pt S* € (0,5]. (5.10)
In the following two sections, we will show that for different classes of f(N), it is
possible for model (5.2) to have multiple endemic equilibria, which in turn can lead to

complicated dynamics.

5.2.3 Backward Bifurcations

In this section, we assume that f(N) = BN ®. For « < 1, it is known that the
traditional threshold result holds for model (5.2) [54, 55]: if Ry < 1 then the disease-free
equilibrium Py is globally stable; if Ry > 1, then a unique endemic equilibrium exists
and is globally stable in the interior of the feasible region.

In the rest of the section, we assume that a > 1. The function g(.5) defined in (5.9)

is written as
BS

[(1 = pds)S + pA]*”

9(8) = (5.11)
_ -«

Note that g(0) = 0, g(S) = ( S) , and ¢(S) is continuous and positive for S > 0.
(5.1

Differentiating g(S) in 1) gives

B[S(1 —pds)(1 — @) + pA]

gl(S) = [(1 _ pds)S +pA]a+1 ’

and ¢(S) has a single critical point

pA

%t = 0 pds)(a 1)

When a < 5 d , 9(8) is monotone in the interval (0, S), and multiple endemic equilibria
can not occur. When ﬁ < a, Serit € (0,5), and equation (5.10) can have two
solutions in (0, S).

The value of g at the critical point is given by

98) _ (a-1r!

9Serit) = i) (pds)o a0

(5.12)

Since the function h(z) = (1 — x)(z)*~! has its maximum value of % attained at
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g(S)

0 Serit S

Figure 5.7: Possible solutions of equation g(S) = 1 with f(N) = §=.

1 . 1
1= = «, we see that, if T—pds < @ then

(a _ 1)@—1

(1 = pds)(pds)*™ < —— (5.13)

As a consequence, g(Serit) > g(S) and g(Seri¢) is @ maximum. We can draw conclusions

about the number of solutions of (5.10) based on the location of g(S..i¢) and g(S) relative

to %, as summarized in the next proposition. Figure 5.7 illustrates the possibilities.

Proposition 2. Let f(N) = BN~® and assume that o > ﬁ. Then system (5.2) has

no endemic equilibria if g(Serit) < +, exactly one endemic equilibria if g(S) > %, and

two endemic equilibria if g(S) < % < g(Serit)-
We note that g(S) = Sf(S), and thus og(S) = 1 if and only if Ry = 1. Similarly,
from (5.12) we know og(Serit) = 1 if and only if Ry agrees with

aOl

Ry = (0 — 1)o—1

(1 - pds)(pds)* . (5.14)
We see from (5.13) that Ry < 1.

Proposition 2 implies existence of two endemic equilibria when Ry is in the range
Ry < Ry < 1. When this happens, system (5.2) is said to undergo a backward bifurcation
at Ry =1 [72]. To complete the bifurcation diagram, we discuss the stability of endemic
equilibria. We can show that, in the case when dg = dp, if two endemic equilibria
P* = (8%, I*, R*) and P, = (S, I, R) exist, with S* < S,, then P* is unstable and
P, is asymptotically stable. See Proposition 4 in Appendix A.3 for proof. The result is

summarized in the following theorem, and the bifurcation diagram using either B or R
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Ro = Ro Ro=1

Figure 5.8: Backward bifurcation at Ry = 1 for model (5.2) when f(N) = .

as a bifurcation parameter is illustrated in Figure 5.8.
Theorem 1. Let f(N) = BN™%, « > m. Assume that dg = dg.

(1) If0 < Ry < Ry, then the disease-free equilibrium Py is the only equilibrium in T

and it is asymptotically stable.

(2) If Ry < Ro < 1, then there exist two endemic equilibria P* = (S*,I*, R*) and
P, = (Ss, L, Ry) with S* < S,. Equilibrium P* is unstable while Py and Py are
asymptotically stable.

(3) If Ry > 1, then Py is unstable, and a unique endemic equilibrium Py, = (S, L., Ry)

exists and is asymptotically stable.

5.2.4 Hopf bifurcations

In this section, we consider the class of functions

f(N) = B(N? +aN +1b).

We will assume that Ry = o g(S) = dfmg f(S) > 1 and investigate possibilities of

multiple endemic equilibria. As shown in Section 2, an endemic equilibrium P* =
(S8*,I*, R*) satisfies equation (5.10). In this case, the function g(.S) is a cubic function

9(S) = B1 S (S* + a1 + by), (5.15)
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251

051

Figure 5.9: Shaded region indicates parameter values (a1, b;) for which three endemic
equilibria are possible with a quadratic f(IV).

with

2pA
By = B(l —dsp)?, a1 = 22PR 0 nd by =

(pA)? + apA + b
- 1—pds’ .

(1 - pds)?

(5.16)

We require that ¢(S) = 0 if and only if S = 0. This is the case when coefficients in g(5)
satisfy relation
a1? < 4b;. (5.17)

Function g(S) in (5.15) has two critical points

Si - —aq + \/al2 — 3b1
= 3 .

c

(5.18)

When these critical points are real, distinct, and located in the interval (0, S ), equation
(5.10) will have three solutions for appropriate values of By, resulting in three endemic

equilibria. For both critical points to be real, distinct, and positive, it is necessary that
a1 <0, and 3b; < a1% (5.19)

Since g(S) > %, for all solutions of g(S) = % to belong to (0,S), it is necessary and

sufficient that ¢’(S) > 0 and ¢”(S) > 0 , namely that
by > —2a;5 — 3(5)* and a; > —38S. (5.20)

Figure 5.9 illustrates the nonempty region in the (a1,b1) parameter space defined by

conditions (5.17), (5.19) and (5.20), where three endemic equilibria are possible.
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Using
ay = —g(Sj +S.) and b =3SFS.,

we can rewrite g(.S) as
9(S) = 315[52 - g(sj +SO)S+ 35:5;]
Then
o(S;) = 2ES 2355~ 5) and g(S) = 2LSPES, 8D (2

The point S; is a local maximum for the function g(S) while the point S; is a local
minimum. Whether three endemic equilibria occur is determined by relative relations

among ¢(S¥), ¢(S) and L.

Proposition 3. Let f(N) = B(N?+aN +b). Assume that Ry = og(S) > 1, ¢'(S) > 0,
and g"(S) > 0.

(1) If L < g(5F), then model (5.2) has ezactly one endemic equilibrium.
(2) If g(SF) =1, then model (5.2) has two endemic equilibria.
(3) If 9(SF) < L < g(S,), then model (5.2) has three endemic equilibria.
(4) If g(S7) = L, then model (5.2) has two endemic equilibria.
(5) If g(ST) < L, then model (5.2) has exactly one endemic equilibrium.

Proposition 3 is illustrated in Figure 5.10. Using (5.16) and (5.21) we can rewrite
conditions in Proposition 3 in terms of ranges for parameter B;. For instance, the range

of B for model (5.2) to have three endemic equilibria is

2

S < By
Se(38E —5¢)

<—
S&7(38e — SF)

To investigate secondary bifurcations when multiple endemic equilibria exist, we
examine the stability of endemic equilibria. Routh-Hurwitz conditions for all eigenvalues

of the Jacobian matrix F' at an endemic equilibrium to have negative real parts are
1. T = trace(F') <0,
2. D =det(F) <0, and
3.C=TM—-D <0,
where M is the sum of the second-order principle minors of F. It can be verified that
T=-If(N)—ds—dg <0,
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Figure 5.10: Number of solutions of equation of g(S) = % in [0,5) with a quadratic
J(N).

and that d
D= 77R[f(N) + ISf(N)[drds + vds — dr(d; + )]
= —dr(d; + VI f(N) + ISf(N)(1 - pdg)]
dg(S)
= —dr(d; +7)—5~ qS

Then, whenever dg (S) < 0, D is positive and the equilibrium will be unstable. As shown
in Figure 5.10, When there are three endemic equilibria, the equilibrium with interme-
diate S* value will always be unstable. When dg (S) > 0, the stability is determined by
the sign of C' = TM — D. This allows the p0831b111ty for one of the branches to undergo
stability change, and possibility for Hopf bifurcation.

Numerical computation using MATLAB reveals that the sign of C' at the endemic
equilibrium with the largest value of S* can change as values of parameters change.

Since dg(gg*) > ( at this equilibrium, a sign change in C indicates that a pair of complex

eigenvalues cross the imaginary axis and the occurrence of a Hopf bifurcation.
Numerical bifurcation analysis using XPPAUTO confirms that the system has a
Hopf bifurcation at the endemic equilibria with the largest value of S*. We show in the
bifurcation diagram in Figure 5.11 that, as a bifurcation parameter B decreases, the
equilibrium changes from being stable to unstable, and a supercritical Hopf bifurcation
occurs, creating a stable periodic orbit. MATLAB simulations also confirm that model
(5.2) has a stable periodic orbit in the range of B given in the bifurcation diagram. In

Figure 5.12a, a solution of (5.2) is shown to converge to a stable periodic solution when
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Figure 5.11: Bifurcation diagram when f(N) is quadratic. A supercritical Hopf bifur-
cation occurs when B decreases through B = 55. The dark closed loop indicates stable
periodic solutions, and they exist for B in the range (0.5, 55).

B = 50. In Figure 5.12b, we show that solutions converge to an endemic equilibrium
at a B = 75, before the Hopf bifurcation occurs. We remark that, since the incidence
form is BISB(N? + aN + b), bifurcation observed as we vary parameter B can also be

observed if we vary parameter 3.

5.2.5 Multiple infectious stages

Similar results and analysis in Sections 3 and 4 can be carried out for epidemic models
with more complex structures than the simple SIR model. We consider a multiple-
stage model that describes the transmission dynamics of infectious diseases progressing
through a long infectious period such as HIV/AIDS [126, 54, 55, 73, 75, 76, 96]. The
n-stage model as depicted in Figure 5.13 is a generalization of the single-stage SIR model
(5.2). The infectious period is partitioned into n distinct stages with I;(¢) individuals in
the j-th infectious stage. Individuals in the j-th infectious stage are assumed to have a
transmission coefficient 8; and the transfer rate from the j-th stage to the next is given
by «vj, j = 1,--- ,n. We assume that all parameter values are nonnegative and, as in

the preceding sections, that 0 < ds < dg, and ds < dj;, j = 1,--- ,n. The model is

106



CHAPTER 5. MODELLING IN THE ABSENCE OF DATA

5000 5000
4800 4800
4600 4600

4400+ 4400+

4200 4200
@ 4000 - © 4000 -
3800 3800
3600 3600

3400 3400

3200t 3200
3000 . . . . . 3000 . . . . .
0 200 400 600 800 1000 0 200 400 600 800 1000
t t
(a) A solution converges to a stable periodic (b) A solution converges to an endemic equi-
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Figure 5.12: MATLAB simulations for B = 50 and B = 75.
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Figure 5.13: Transfer diagram for the n-stage model (5.22). Incidence term is given by
AS =370 Bilif(N)S.

107



CHAPTER 5. MODELLING IN THE ABSENCE OF DATA

described by a system of n + 2 differential equations

S'=A—X\S—dgS,
IL =AS — L —dp 1,

(5.22)
Iz/ = 7i—1Ii—1 - ’7,'[ — dIiI, for 1=2--- n,
R =~,I, — dgR,
where the force of infection is given by
A=Y "BiILif(N). (5.23)
j=1

Adding the equations in (5.22) we obtain
N =A—dgS—dpIy ——dp, Iy — L, < A —dgN.

It follows that tlim sup N(t) < A/dg. The global dynamics of model (5.22) can be
—00

. . . " . . 12
investigated in the positively invariant compact subset of R}

Let ) -
dr, +m 0 0
i G A o 0
0 — dr, +
A= T M (5.24)
dfn + Tn 0
—In dR_

Then A is a lower triangular matrix with non-zero entries on the diagnonal. Therefore,

A is invertible. In particular we can define,
Op = (617"' 7ﬁn>O)A_1(1>07"' >0)T7 (525)

and
pn=(1,---,1)AY1,0,---,0)T, (5.26)

where the superscript 7' denotes the matrix transposition. The inverse A~! of the
triangular and bidiagonal matrix A can be computed to give the explicit expressions for

o, and py,

n ﬁj
On = di_q > 0, 5.27
jz—; di, +7; ' 520
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and

- 1 1
o = (Z . _oj_l) 6, >0, (5.28)

where Jy is given by

Notice that when n = 1, the values given in (5.27) and (5.28) agree with ¢ and p
in Section 2. Thus o, can be regarded as the total transmisibility for the n-staged
model (5.22) and p,, can be interpreted as the mean remaining life expectancy of those
who become infected. The quantity d; represents the proportion of those who become
infected who survive to reach the (k + 1)-th stage of infection.

The basic reproduction number of (5.22) is derived in [54] as

Ro =0, 5 f(5), (5.29)
A
dg’
n = 1, the expression for Ry in (5.29) reduces to that for the single stage model in
Section 2. For f(N) = N"® and 0 < o < 1, it is also established in [54] that if Ry <1
then the disease-free equilibrium Py = (5,0, ,0) is globally asymptotically stable in
A; if Ry > 1 then Py is unstable and the model (5.22) is uniformly persistent. As a

where S = using the method of next generation matrix [132]. We see that, when

consequence, an endemic equilibrium P* = (S*, If,--- , I}, R*) exists in the interior &
of A. Furthermore, it is shown in [54] that P* is unique and globally asymptotically
stable in g when Ry > 1. We show in this section that when f(N) is chosen from a
wider class functions, more complicated dynamics are possible.

In the following, we investigate the number of endemic equilibria following the pre-
sentation of [54]. An endemic equilibrium (S, I}, - -, I}, R*) of (5.22) satisfies

0= A—dgS* — \* S*,

0= XS*— (df, + n1)I7,

0=yl y—(d,+v)If, i=2,...,n—1, (5.30)
0= m-1ly_y — (dr, + )17,

0= v, — dpR*

where

X =Y B f(NY) (5.31)
j=1

is the force of infection at an endemic equilibrium P*. We write the equations in (5.30)
for If,---, I} and R* in the form

(va 7I;7R*)t:/_\* S*A_l(l,O,--- 70)t7 (532)
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where A is the matrix in (5.24). Multiplying the row vector (31, - - , 8n,0) to (5.32) and
using (5.23) and (5.25), we obtain

Zﬁljz* = (517 e 7ﬁn70) (Iikﬂ e 7I;7R*)t = (517 e 7ﬁn70)A_1(1707 T 70)t/_\*5*
i=1
=0\ S* = 0n f(N*)S™ Y BiI7.
j=1

Since Y1 | Bl # 0 at an endemic equilibrium, it follows that
on S* f(N*) = 1. (5.33)

Similarly, multiplying row vector (1,---,1) to (5.32) and applying (5.26) we have
SR =1 D) IR = paf(ND)STY 817 (5.34)
i=1 j=1

where p,, > 0 is defined in (5.26). From the first equation of (5.30) we get

FIN)S* D BiI7 = A—dgS™,

j=1

which, together with (5.34), implies

Y I + R = pu(A—dsS),

i=1
and thus
N*=8"+Y "I} + R* = 8"+ po(A — dsS*) = (1—pnds)S™ + pnA. (5.35)
i=1
Substituting (5.35) into (5.33) we obtain the following equation for an endemic equilib-
rium P* = (S*I},--- , I}, R*)

1(S") i= 8" 11~ puds)S" + puh) = —. (5.36)

Comparing equation (5.36) to the equilibrium equation (5.10) for the single stage

model, we see that the number of endemic equilibria for the n-stage model (5.22) can

be determined in exactly the same way as in Sections 2-4. As a consequence, results

in Sections 3 and 4, Theorem 1 and Proposition 3 in particular, hold for the n-stage
model, with p and ¢ replaced by p,, and o,, respectively.

We now consider the effects on the dynamical outcomes described in the preceding
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Figure 5.14: Graphs of function g,(S) for n =1 and n = 5.

sections of adding additional infective stages to an SIR model. To simplify the discussion,
we assume that 8; = 8, dj; = dy, and v; = nvy for all j. In other words, we chose all
the stages of the disease to be identical and assume that individuals move through the
stages at a constant rate. The choice of v; = ny means that adding stages will not
change the average length of infection for those who recover.

In such a case, the expression for p,, is simplified to
1 ny \" 1 ny \n»
3 () 1+ )
Pn d]|: <d1+7w> +dR dr +nvy
B 1+(1 B 1)( ny >”
dy dr dj dr +ny

The quantity p,, depends on n only through the term 6, = (#)n, which is a de-
creasing function of n. Since we assume that d; > dg, we know p,, and m decrease
as n increases. As a result, the range of « values for which backward bifurcation occurs
(Theorem 1) becomes larger as n increases; adding more infective stages to a simple SIR
model with f(N) = N=% « > 1, will increase the chance for backward bifurcation and
the associated catastrophic behaviours.

For example, Figures 5.14a and 5.14b show the function g, (S) for n =1 and n = 5,
respectively. With only a single stage, ¢1(S) is monotonic and has no critical points;
only one sub-threshold endemic equilibrium is possible. With five stages, g5(S5) has a
critical point in the feasible region; two sub-threshold endemic equilibria and backward

bifurcation are possible for suitable range of parameter values.

5.2.6 Conclusions

It is known that complicated dynamics can occur through backward bifurcation or Hopf
bifurcation in epidemic models with nonlinear incidence [66, 89], or complex group struc-

tures [58, 72], or with time delays [130]. In this Section, we have shown that nonlinear
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density dependence in disease incidence can also give rise to backward bifurcations and

Hopf bifurcations, in simple models of SIR type.

BIlS
N

and bi-stability can occur for Ry < 1. We have also shown that incidence functions of the
form SIS f(N) with f(NN) being quadratic can lead to periodic oscillations through Hopf

bifurcation. On the one hand, our results provide a new mechanism for complicated

For incidence functions of the form a > 1, we proved that backward bifurcation

dynamics to occur in simple epidemic models. On the other, they indicate that, by
restricting incidence terms to traditional bilinear form (375) or standard form (&Ns), we
may have unintentionally eliminated the possibility of many complicated but interesting

dynamics.
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Conclusion

6.1 Summary of Results

In this thesis we have focused mostly on the problem of estimating HIV incidence, the
total size of the HIV-positive population, and the size of the population that is HIV-
positive but undiagnosed. Methods for estimating these quantities are developed in
Chapters 2, 3, and 4 and the methods are demonstrated using the Province of Alberta
as an example. Although the focus of this thesis has been on HIV in the Province
of Alberta, the techniques used in this thesis can apply to a wide variety of different
modelling contexts including HIV in other regions or other transmissible diseases. The
project on antiretroviral drug resistant strains of HIV in Section 5.1 uses several of the
same methods. Section 5.2 explores the asymptotic behaviour of a simple disease model

with population dependent transmission.

6.1.1 HIV in Alberta

In the province of Alberta, newly diagnosed HIV cases are reported to Alberta Health for
disease surveillance. Using this type of data to estimate the total size of the HIV-positive
population is complicated by the fact that there may be a long delay in diagnosis of HIV
and a significant number of those who are HIV-positive may remain undiagnosed. In
this thesis we have addressed this problem by creating a mathematical model describing
HIV transmission and diagnosis. The model is calibrated using the available case report
data and validated using both reserved data and data collected for other studies.
Calibration of the model was carried out using two methods. Nonlinear least squares
fit was used for preliminary exploration while a Bayesian fit was employed to include
uncertainty in the fitted parameters and was carried out using an MCMC method. Fit-
ting the model requires special care as some of the model parameters are nonidentifiable
using the available data. In order to detect the presence of nonidentifiable parameters
the local sensitivity matrix was examined using singular value decomposition. Variance

decomposition was used to indicate which parameters are not simultaneously identifi-
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able. These results were further verified by examining two-dimensional contour plots of
the sum of squared errors.

Model validation used a method based on Bayesian hypothesis testing. In this
method, the distribution for the validation data estimated by the fitted model was com-
pared to an alternative distribution. Reserved data from 1999, 2000, 2011, and 2012 and
PHAC estimates of the fraction undiagnosed were shown to support the model results.

The fitted model was used to produce estimates of HIV incidence and the size of the
total HIV-positive population including those who are have not yet been diagnosed. The
model predicts that the total size of the HIV-positive population in 2015 will be around
4900 people with about 13% of this population undiagnosed. The predicted incidence
rate for 2015 is around 9.5 new cases per 100 000 population. These estimates were
projected into the future to give information on how these quantities can be expected
to change over the next several years. The amount of uncertainty in these projections
was also quantified.

A sensitivity analysis indicated that the two parameters which have the greatest
effect on the outcomes of interest are the transmission coefficient 5; and the diagnosis
rate a. The theoretical interventions represented by modification of these parameters for
future years were tested. The results of these simulations suggest that a significant im-
provement in disease incidence can be achieved by modifying either of these parameters
over the long term. If only a short term modification is possible, temporarily increasing
the diagnosis rate a has a more lasting effect than a temporary intervention targetting

the transmission coefficient S;.

6.1.2 Antiretroviral drug resistance

It has recently been accepted that widespread HIV testing and antiretroviral drug treat-
ment can greatly reduce the transmission of the virus by reducing the viral load of those
who are successfully treated. In Section 5.1 a mathematical model was used to in-
vestigate the potential impact of this type of “treatment as prevention” program on
the development of antiretroviral drug resistant viral strains. The parameters for the
model are selected by referring to a variety of sources in medical literature. This project
utilizes many of the sensitivity and uncertainty techniques discussed in the context of
the Province of Alberta project in Chapter 4. The results indicate that drug resistant
viral strains may have an important effect on the success of a program to reduce HIV

transmission through increased treatment.

6.1.3 Population dependent transmission

While much of this thesis considered only short to medium term model outcomes, Section
5.2 considered the long term behaviour of a simple model with population dependent

incidence. Two different types of population dependence were used in order to demon-
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strate that even simple models can undergo complicated behaviour. In particular, both
backward bifurcations and Hopf bifurcations can occur if the appropriate type of pop-

ulation dependence is included in disease transmission terms.

6.2 Future Possibilities

There are a number of possibilities for future work on this project. These can be divided

into two main categories: extensions to the model and additional modelling tools.

6.2.1 Extending the HIV model

The HIV model used in Chapters 2 to 4 can be used to answer some questions about
HIV incidence and prevalence. However the model is quite simple and there are many
questions which are beyond its scope. In this section, some of the most obvious ex-
tensions of the model are discussed. In some cases, adding more detail to the model
may improve the model fit or make it more realistic for longer term projection. At
the same time, using a more detailed model may allow new outcomes to be measured.
However, using a more detailed model usually also requires determining values for more
parameters, a task that will most often require additional data along with additional

computation time at all stages in the modelling process.

6.2.1.1 Risk groups

One possibility for adding more detail and realism to the model is to include a number of
different risk groups. This can be used to account for the fact that different parts of the
population have differing risk behaviours. Some groups, such as intravenous drug users
and men who have sex with men, are known to be at much higher risk of infection and
may also have differing rates of diagnosis, treatment, and death. In fact, we have already
seen how one group differs from the total population modelled using the single group
version of the model. In Section 3.3 we noted that data from prenatal HIV testing did
not provide validation for the single group model. This suggests that males and females
are also important groups to consider.

Including all the the risk groups already mentioned, a model with five different groups
could be constructed as illustrated in Figure 6.1. Each of the risk groups illustrated
follows the simple model from Chapter 2, found in equations (2.1) on 12. The arrows
indicate disease transmission between and within groups. Individuals may also move
between risk groups as they change their risk behaviours.

Useful results may also be available by including only some of these populations.
A two-group model that divides the population into males and females could provide
information on sex differences in HIV risk behaviours. A three-group model that addi-

tionally includes a group of men who have sex with men could be used to investigate the
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Figure 6.1: A model with five risk groups. Arrows indicate contact between groups.
Each risk group follows the simple model.

role of homosexual and bisexual men in HIV transmission. A four-group model dividing
the population by sex and level of risk could be used to add additional detail.
Increasing the number of risk groups increases the number of model compartments
and the number of parameter values required to completely specify the model. Since
case report data stratified by risk group is available, the increase in required parameters
is partially compensated by an increase in the data available. However, unlike for the
simple one group model, there is not much data available on the total population sizes
for several of the risk groups because it is difficult to know how many intravenous drug
users or men who have sex with men there are. On the other hand, if the necessary
parameters can be fit using the case report data, it may be possible to produce estimates
of the sizes of the risk populations over time as a byproduct of the disease model fitting.
Whether or not this is possible will depend on the identifiability of the initial size,

growth, and death rates for the unknown populations.

6.2.1.2 Treatment and disease stages

Another possibility for including more detail into the model would be to include ad-
ditional compartments in the base model. These could be used to describe treated
populations or to provide more detailed disease progression through the inclusion of
multiple disease stages.

For example, a model including treatment is illustrated in Figure 6.2. In this model,
a treated compartment 7' is added to the simple transmission and diagnosis model. The
population represented by this compartment is assumed to be effectively treated with
viral loads undetectable or nearly so. The treated population is therefore assumed not to

transmit the virus to others and their death rate is improved over those who are merely
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Figure 6.2: Model diagram for an HIV model including transmission, diagnosis, and
treatment.
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Figure 6.3: Model diagram for an HIV model including transmission, diagnosis, treat-
ment and treatment stoppage.

diagnosed. As some patients may stop and restart treatment for a variety of reasons,
the model allows those who have been treated to return to the diagnosed compartment
resuming transmission until the are once again effectively treated.

This model includes only a few additional parameters not included in the original
model (2.1). However, without some data on HIV treatment, these parameters are non-
identifiable. This model could be fit using data giving the number of patients currently
under effective treatment or data for the number of individuals starting or restarting a
treatment program.

If data was only available for the number of individuals beginning treatment for the
first time, it would probably be necessary to modify the model somewhat to utilize this
data. See, for example, Figure 6.3. In this model, those who stop treatment do not
return to the diagnosed compartment, but instead remain separate so that treatment
initiation for those who have never been treated can be distinguished from treatment
resumption for those whose treatment has been interrupted.

Another possible extension of the model would be to include multiple disease stages.
This may be done for two different reasons. The first possibility is that additional
stages may add detail about realistic disease stages such as acute infection or AIDS.
Alternatively, additional stages may be introduced in order to modify the survival time
or time to diagnosis distributions to more closely approximate those commonly used by
statisticians and epidemiologists such as the Weibull distribution. In either case, some
additional data or assumptions on disease progression are required to fit the additional

parameters introduced by the added compartments. A model with two disease stages is
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Figure 6.4: Model diagram for an HIV model including transmission, diagnosis, and two
disease stages.

illustrated in Figure 6.4

6.2.1.3 Economic analysis

A third possibility for extending the model is to include an economic analysis. Model
outcomes can be reinterpreted to incorporate the costs of testing and treatment. This
would allow the potential costs and benefits of various intervention programs to be

quantified allowing different possibilities to be directly compared.

6.2.2 Additional tools

In addition to extensions to the model itself, additional modelling tools may be useful.
In particular, tools for comparing models could assist in deciding which model to use
when several variants are available. Tools for parameter reduction may become vital as

the number of parameters increases since computational resources may be limited.

6.2.2.1 Comparing models

When multiple models can be fit using the same data, it is natural to ask how they
compare. Models may be compared using measures of how closely the model reproduces
the data, but this may not be immediately obvious. One model may fit better on some
of the data while another improves the fit on other data. Furthermore, goodness of
fit may not be the only factor that is relevant in choosing a model. The number of
parameters to be estimated, or the ease of computing particular model outcomes of
interest may also be relevant considerations. Developing tools for comparing models
will require determining what properties are desirable in a model and creating methods
of quantifying these properties.

It is possible that our Bayesian model validation techniques may be adapted to com-
pare models using either fitting or validation data. But this technique is generally quite
computationally intensive and as such may not be appropriate for a preliminary inves-

tigation used to select an appropriate model. Other possibilities should be considered.
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6.2.2.2 Parameter reduction

Another challenge raised by the potential expansion of the HIV model is the increasing
number of parameters. While we have already highlighted identifiability concerns that
may arise as the number of parameters increases, there is also the question of how many
parameters can be practically estimated computationally. In particular, our Bayesian
methods including MCMC sampling, hypothesis testing for validation, and uncertainty
analysis tend to be somewhat computationally intensive, especially when the number of
parameters is large. In order to draw a representative sample in a higher dimensional
parameter space, the sample size must be quite large and computing model outcomes
for every element of the sample can require significant computation time. Some of these
concerns may be alleviated by utilizing more efficient algorithms and more powerful
computers, however methods that reduce the number of parameters should also be
considered.

Reducing the number of parameters may involve using the singular value decom-
position and variance decomposition to identify not only those parameters which are
nonidentifiable, but also the parameter combinations that are least important to the
model fit while still remaining identifiable.

The number of parameters may be reduced by simply fixing the values of one or
more parameters, but other methods involving reparameterization of the model to write
some of the parameters in terms of the others may also be possible. Deciding how
many parameters can be removed without serious impact on the model performance

may require the use of tools to compare models as previously discussed.

119



Bibliography

1]

A. E. ADESs AND A. J. SUTTON, Multiparameter evidence synthesis in epidemi-
ology and medical decision-making: current approaches, Journal of the Royal Sta-
tistical Society A, 169 (2005), pp. 5-35.

R. M. ANDERSON AND R. M. MAY, Infectious Diseases of Humans: Dynamics
and Control, Oxford University Press, 1992.

C. G. AranDI, I. Lova, J. JACOBSON, F. ARANA, AND S. M. MIRANDA, PS.
398 sentinel surveillance and prevention of sexually transmitted infections among
female sex workers in Guatemala: first findings from VICITS, Sexually Transmit-
ted Infections, 89 (2013), pp. A273-A274.

J. AriNO, K. COOKE, P. VAN DEN DRIESSCHE, AND J. VELASCO-HERNANDEZ,
An epidemiology model that includes a leaky vaccine with a general waning func-

tion, Discrete and Continuous Dynamical Systems Series B, 4 (2004), pp. 479-495.

J. ArRINO AND C. C. McCLUSKEY, Effect of a sharp change of the incidence
function on the dynamics of a simple disease, Journal of Biological Dynamics, 4
(2010), pp. 490-505.

L. Bao, A new infectious disease model for estimating and projecting HIV/AIDS
epidemics, Sexually Transmitted Infections, 88 (2012), pp. i58-i64.

L. Bao, J. A. SaLomon, T. BRowN, A. E. RAFTERY, AND D. R. HOGAN,
Modelling national HIV/AIDS epidemics: revised approach in the UNAIDS Esti-
mation and Projection Package 2011, Sexually Transmitted Infections, 88 (2012),
pp- 13-i10.

T. BARNIGHAUSEN, J. BOR, S. WANDIRA-KAZIBWE, AND D. CANNING, Cor-
recting HIV prevalence estimates for survey nonparticipation using Heckman-type

selection models, Epidemiology, 22 (2011), pp. 27-35.

T. BARNIGHAUSEN, T. A. MCWALTER, Z. ROSNER, M.-L. NEWELL, AND
A. WELTE, HIV incidence estimation using the BED capture enzyme immunoas-
say: systematic review and sensitivity analysis, Epidemiology, 21 (2010), pp. 685
697.

120



BIBLIOGRAPHY

[10]

[11]

[12]

[16]

[17]

[18]

[19]

R. E. BARTH, M. F. S. VAN DER LOEFF, R. SCHUURMAN, A. I. HOEPELMAN,
AND A. M. WENSING, Virological follow-up of adult patients in antiretroviral
treatment programmes in sub-Saharan Africa: a systematic review, The Lancet
Infectious Diseases, 10 (2010), pp. 155-166.

N. G. BECKER, J. J. C. LEwis, Z. L1, AND A. MCDONALD, Age-specific back-
projection of HIV diagnosis data, Statistics in Medicine, 22 (2003), pp. 2177-2190.

D. A. BELsLEYy, E. KuH, AND R. E. WELSCH, Regression diagnostics: Iden-
tifying influential data and sources of collinearity, vol. 571, John Wiley & Sons,
2005.

E. BENDAVID, M. L. BRANDEAU, R. WooD, AND D. K. OWENS, Comparative

effectiveness of HIV testing and treatment in highly endemic regions, Archives of
Internal Medicine, 170 (2010), pp. 1347-1354.

D. BeEzemMER, F. pE Worr, M. C. BOERLIST, A. VAN SIGHEM, T. D.
HorLLINGSWORTH, M. PrINS, R. B. GEsKuUs, L. GrRAs, R. A. COUTINHO, AND
C. FRASER, A resurgent HIV-1 epidemic among men who have sex with men in
the era of potent antiretroviral therapy, AIDS, 22 (2008), pp. 1071-1077.

K. W. BLAYNEH, A. B. GUMEL, S. LENHART, AND T. CLAYTON, Backward

bifurcation and optimal control in transmission dynamics of West Nile virus, Bul-
letin of Mathematical Biology, 72 (2010), pp. 1006-1028.

S. M. BLOWER AND H. DOWLATABADI, Sensitivity and uncertainty analysis of
complex models of disease transmission: an HIV model, as an example, Interna-
tional Statistical Review, 62 (1994), pp. 229-243.

S. M. BLOWER, H. B. GERSHENGORN, AND R. M. GRANT, A tale of two futures:
HIV and antiretroviral therapy in San Francisco, Science, 287 (2000), pp. 650—654.

J. T. BOERMA, P. D. GHYS, AND N. WALKER, Estimates of HIV-1 prevalence

from national population-based surveys as a new gold standard, The Lancet, 362
(2003), pp. 1929-1931.

D. Bouros, P. YAN, D. SCHANZER, R. REMIS, AND C. ARCHIBALD, Estimates
of HIV prevalence and incidence in Canada, 2005, Canada Communicable Disease
Report, 32 (2006), p. 165.

F. BRAUER, Backward bifurcations in simple vaccination models, Journal of Math-
ematical Analysis and Applications, 298 (2004), pp. 418-431.

F. BRAUER AND C. CASTILLO-CHAAVEZ, Mathematical models in population bi-
ology and epidemiology, Springer, 2001.

121



BIBLIOGRAPHY

[22]

[23]

[24]

[27]

R. BROOKMEYER, Measuring the HIV/AIDS epidemic: approaches and chal-
lenges, Epidemiologic Reviews, 32 (2010), pp. 26-37.

T. BROowN, N. C. GrASSLY, G. GARNETT, AND K. STANECKI, Improving pro-
jections at the country level: the UNAIDS FEstimation and Projection Package
2005, Sexually Transmitted Infections, 82 (2006), pp. iii34-ii40.

T. BROwN, A. E. RAFTERY, J. A. SALOMON, R. F. BAGGALEY, J. STOVER,
AND P. GERLAND, Modelling HIV epidemics in the antiretroviral era: the UN-
AIDS FEstimation and Projection package 2009, Sexually Transmitted Infections,
86 (2010), pp. ii3-ii10.

T. BROWN, J. A. SALOMON, A. E. RAFTERY, AND E. GOUws, Progress and
challenges in modelling country-level HIV/AIDS epidemics: the UNAIDS FEsti-
mation and Projection Package 2007, Sexually Transmitted Infections, 84 (2008),
pp- 15-i10.

R. BUNNELL, J. P. EKWARU, P. SOLBERG, N. WAMAI, W. BIKAAKO-KAJURA,
W. WERE, A. CouTINHO, C. LIECHTY, E. MADRAA, G. RUTHERFORD, ET AL.,
Changes in sexual behavior and risk of HIV transmission after antiretroviral ther-

apy and prevention interventions in rural uganda, AIDS, 20 (2006), pp. 85-92.

M. P. BuscH, C. D. PiLCHER, T. D. MASTRO, J. KALDOR, G. VERCAUTEREN,
W. RoDRIGUEZ, C. RousseAu, T. M. REHLE, A. WELTE, M. D. AVERILL, AND
J. M. GARCIA-CALLEJA, Beyond detuning: 10 years of progress and new chal-

lenges in the development and application of assays for HIV incidence estimation,
AIDS, 24 (2010), pp. 2763-2771.

F. CANOVA AND L. SALA, Back to square one: identification issues in DSGE
models, Journal of Monetary Economics, 56 (2009), pp. 431-449.

B. P. CArLIN AND T. A. Louils, Bayes and empirical Bayes methods for data
analysis, Statistics and Computing, 7 (1997), pp. 153-154.

CENTRAL STATISTICAL OFFICE, 1971, 1981, 1991, 2001 census demographic in-

dicators: Botswana, tech. rep., Republic of Botswana, 2002.

CENTRE FOR COMMUNICABLE DISEASES AND INFECTION CONTROL, Summary:
estimates of HIV prevalence and incidence in Canada 2011, tech. rep., Public
Health Agency of Canada, 2012.

S. CHIB AND E. GREENBERG, Understanding the Metropolis-Hastings algorithm,
The American Statistician, 49 (1995), pp. 327-335.

M. S. CoHEN, Y. Q. CHEN, M. McCAULEY, T. GAMBLE, M. C. Hos-
SEINIPOUR, N. KuMARASAMY, J. G. HAkIM, J. KUMWENDA, B. GRINSZTEJN,

122



BIBLIOGRAPHY

[39]

[40]

[41]

[43]

J. H. PiLoTTO, ET AL., Prevention of HIV-1 infection with early antiretroviral
therapy, New England Journal of Medicine, 365 (2011), pp. 493-505.

S. CORVASCE, M. VIOLIN, L. RoMANO, F. RazzoLiNi, I. VICENTI, A. GALLI,
P. Duca, I. CaAraMMA, C. BALOTTA, AND M. ZAzz1, Evidence of differential
selection of HIV-1 variants carrying drug-resistant mutations in seroconverters,
Antiviral Therapy, 11 (2006), p. 329.

D. C. Cox AND P. BAYBUTT, Methods for uncertainty analysis: a comparative
survey, Risk Analysis, 1 (1981), pp. 251-258.

R. DE BOER AND M. L1, Density dependence in disease incidence and its impacts
on transmission dynamics, Canadian Applied Mathematics Quarterly, 19 (2011),
pp. 195-218.

C. DE MENDOZA, C. RODRIGUEZ, A. CORRAL, J. DEL ROMERO, O. GALLEGO,
AND V. SORIANO, Evidence for differences in the sexual transmission efficiency of
HIV strains with distinct drug resistance genotypes, Clinical Infectious Diseases,
39 (2004), pp. 1231-1238.

D. DE Pauw, K. STEPPE, AND B. DE BAETS, Identifiability analysis and im-
provement of a tree waler flow and storage model, Mathematical Biosciences, 211
(2008), pp. 314-332.

J. DusHOFF, W. HUANG, AND C. CASTILLO-CHAVEZ, Backwards bifurcations
and catastrophe in simple models of fatal diseases, Journal of Mathematical Biol-
ogy, 36 (1998), pp. 227-248.

J. W. EAaToN, L. F. JOHNSON, J. A. SALOMON, T. BARNIGHAUSEN, E. BEN-
DAVID, A. BERSHTEYN, D. E. BLoom, V. CAMBIANO, C. FRASER, J. A. HON-
TELEZ, ET AL., HIV treatment as prevention: systematic comparison of mathe-

matical models of the potential impact of antiretroviral therapy on HIV incidence
in South Africa, PLoS medicine, 9 (2012), p. e1001245.

L. E. EBERLY AND B. P. CARLIN, Identifiability and convergence issues for
Markov chain Monte Carlo fitting of spatial models, Statistics in Medicine, 19
(2000), pp. 2279-2294.

T. P. E1seLE, C. MATHEWS, M. CHOPRA, M. N. LURIE, L. BROWN, S. DEW-
ING, AND C. KENDALL, Changes in risk behavior among HIV-positive patients
during their first year of antiretroviral therapy in cape town south africa, AIDS
and Behavior, 13 (2009), pp. 1097-1105.

M. C. EI1SENBERG, S. L. ROBERTSON, AND J. H. TIEN, Identifiability and es-

timation of multiple transmission pathways in cholera and waterborne disease,
Journal of Theoretical Biology, (2013).

123



BIBLIOGRAPHY

[44]

[46]

[47]

[48]

[49]

[52]

W. M. EL-SADR, B. J. COBURN, AND S. BLOWER, Modeling the impact on
the HIV epidemic of treating discordant couples with antiretrovirals to prevent
transmission, AIDS, 25 (2011), pp. 2295-2299.

C.-T. FaNG, H.-M. Hsu, S.-J. Twu, M.-Y. CHEN, Y.-Y. CHANG, J.-S.
Hwang, J.-D. WaNG, C.-Y. CHUANG, ET AL., Decreased HIV transmission
after a policy of providing free access to highly active antiretroviral therapy in
Taiwan, Journal of Infectious Diseases, 190 (2004), pp. 879-885.

J. M. GARcCIA-CALLEGA, E. Gouws, AND P. D. GHYs, National population
based HIV prevalence surveys in sub-Saharan Africa: results and implications for
HIV and AIDS estimates, Sexually Transmitted Infection, 82 (2006), pp. iii64-
iii70.

G. GARNETT, S. CoUsENs, T. B. HALLETT, R. STEKETEE, AND N. WALKER,
Mathematical models in the evaluation of health programmes, The Lancet, 378
(2011), pp. 515-525.

A. E. GELFAND AND S. K. SAHU, Identifiability, improper priors, and Gibbs
sampling for generalized linear models, Journal of the American Statistical Asso-
ciation, 94 (1999), pp. 247-253.

P. D. Guys, N. C. GrassLy, G. GARNETT, K. A. STANECKI, J. STOVER,
AND N. WALKER, The UNAIDS Estimationg and Projection Package: a software
package to estimate and project national HIV epidemics, Sexually Transmitted
Infections, 80 (2004), pp. 15-9.

W. R. GILKS, S. RICHARDSON, AND D. J. SPIEGELHALTER, Markov chain Monte
Carlo in practice, vol. 2, CRC press, 1996.

R. M. GraNiICH, C. F. Giks, C. DYE, K. M. DE Cock, AND B. G. WILLIAMS,
Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy
for elimination of HIV transmission: a mathematical model, The Lancet, 373
(2009), pp. 48-57.

D. GREENHALGH, O. DIEKMANN, AND M. DE JONG, Subcritical endemic steady
states in mathematical models for animal infections with incomplete immunity,
Mathematical Biosciences, 165 (2000), pp. 1-25.

M. GREWAL AND K. GLOVER, Identifiability of linear and nonlinear dynamical
systems, Automatic Control, TEEE Transactions on, 21 (1976), pp. 833-837.

H. Guo AND M. Y. L1, Global dynamics of a staged progression model for infec-
tious diseases, Mathematical Biosciences and Engineering, 3 (2006), p. 513.

124



BIBLIOGRAPHY

[55]

[56]

[60]

[64]

——, Global dynamics of a staged-progression model with amelioration for infec-

tious diseases, Journal of Biological Dynamics, 2 (2008), pp. 154-168.

R. Gupta, A. Hi, A. W. SAWYER, AND D. PiLLAY, Emergence of drug
resistance in HIV type 1-infected patients after receipt of first-line highly active
antiretroviral therapy: a systematic review of clinical trials, Clinical Infectious
Diseases, 47 (2008), pp. 712-722.

K. HADELER AND P. VAN DEN DRIESSCHE, Backward bifurcation in epidemic
control, Mathematical Biosciences, 146 (1997), pp. 15-35.

K. P. HADELER AND C. CASTILLO-CHAVEZ, A core group model for disease
transmission, Mathematical Biosciences, 128 (1995), pp. 41-55.

H. I. HALL, R. SoNG, P. RHODES, J. PREJEAN, Q. AN, L. M. LEE, J. KARON,
R. BROOKMEYER, E. H. KAPLAN, M. T. MCcKENNA, AND J. R. S., Estimation
of HIV in the United States, Journal of the American Medical Association, 300
(2008), pp. 520-529.

I. H. Harr, T. A. GrEEN, R. J. WouLiTski, D. R. HOLTGRAVE, P. RHODES,
J. S. LEaMAN, T. DUrRDEN, K. A. FENTON, AND J. H. MERMIN, Estimated
future HIV prevalence, incidence, and potential infections averted in the United
States: a multiple scenario analysis, Journal of Acquired Immune Deficiency Syn-
dromes, 55 (2010), pp. 271-276.

T. B. HALLETT, Estimating the HIV incidence rate — recent and future develop-
ments, Current Opinion in HIV and AIDS, 6 (2011), pp. 102-107.

T. B. HALLETT, J. STOVER, V. MISHRA, P. D. GHYS, S. GREGSON, AND

T. BOERMA, Estimates of HIV incidence from household-based prevalence surveys,
AIDS, 24 (2010), pp. 147-152.

J. C. HELTON AND F. J. DAvIS, Latin hypercube sampling and the propagation
of uncertainty in analyses of complex systems, Reliability Engineering and System
Safety, 81 (2003), pp. 23-69.

J. C. HELTON, J. D. JOHNSON, C. J. SALLABERRY, AND C. B. STORLIE, Sur-
vey of sampling-based methods for uncertainty and sensitivity analysis, Reliability
Engineering and System Safety, 91 (2006), pp. 1175-1209.

H. W. HETHCOTE, The mathematics of infectious diseases, SIAM Review, 42
(2000), pp. 599-653.

H. W. HETHCOTE AND P. VAN DEN DRIESSCHE, Some epidemiological models
with nonlinear incidence, Journal of Mathematical Biology, 29 (1991), pp. 271-287.

125



BIBLIOGRAPHY

[67]

[69]

[70]

[72]

[73]

[74]

[75]

[76]

C. J. HorrMANN, S. CHARALAMBOUS, J. SiM, J. LEDWABA, G. SCHWIKKARD,
R. E. CHAI1ssON, K. L. FIELDING, G. J. CHURCHYARD, L. MORRIS, AND A. D.
GRANT, Viremia, resuppression, and time to resistance in human immunodefi-
ciency virus (hiv) subtype ¢ during first-line antiretroviral therapy, Clinical Infec-
tious Diseases, 49 (2009), pp. 1928-1935.

L. F. HounsonN, T. B. HALLETT, T. M. REHLE, AND R. E. DORRINGTON,
The effect of changes in condom usage and antiretroviral treatment coverage on
human immunodeficiency virus incidence in South Africa: a model-based analysis,
Journal of the Royal Society Interface, 9 (2012), pp. 1544-1554.

J. A. C. HonTELEZ, S. J. DE V0As, F. TANSER, R. BAKKER,
T. BARNIGHAUSEN, M.-L. NEWELL, R. BALTUSSEN, AND M. N. LURIE, The
impact of the new WHO antiretroviral treatment guildelines on HIV epidemic dy-
namics and cost in South Africa, PLoS One, 6 (2011), p. €21919.

S. HousToN, L. MASHINTER, B. ROWE, M. JOFFE, J. K. PREIKSAITIS, AND
G. JHANGRI, An anonymous unlinked seroprevalence study of HIV in urban Cana-

dian emergency departments (abstract), Canadian Journal of Infectious Diseases
& Medical Microbiology, 21 (2010), p. 62.

S. HoustoN, B. H. Rowge, L. MASHINTER, J. PREIKSAITIS, M. JOFFE,
D. MACKEY, J. GALBRAITH, AND N. WIEBE, Sentinel surveillance of HIV and
hepatitis C virus in two urban emergency departments., Canadian Journal of Emer-
gency Medicine, 6 (2004), p. 89.

W. Huang, K. L. COOKE, AND C. CASTILLO-CHAVEZ, Stability and bifurcation
for a multiple-group model for the dynamics of HIV/AIDS transmission, STAM
Journal on Applied Mathematics, 52 (1992), pp. 835-854.

J. M. HymAN, J. L1, AND E. A. STANLEY, The differential infectivity and staged
progression models for the transmission of HIV, Mathematical Biosciences, 155
(1999), pp. 77-109.

B. INGALLS, Sensitivity analysis: from model parameters to system behaviour,
Essays in Biochemistry, 45 (2008), pp. 177-194.

J. A. JAcQuEez, C. P. SIMON, J. KOOPMAN, L. SATTENSPIEL, AND T. PERRY,
Modeling and analyzing HIV transmission: the effect of contact patterns, Mathe-
matical Biosciences, 92 (1988), pp. 119-199.

J. A. JACQUEZ, C. P. SIMON, AND J. S. KOOPMAN, The reproduction number in
deterministic models of contagious diseases, Current Topics in Theoretical Biology,
2 (1991), pp. 159-209.

126



BIBLIOGRAPHY

[77]

[79]

[82]

[84]

[85]

[36]

B. R. JAYASANKAR, A. BEN-ZVI1, AND B. HUANG, Identifiability and estimability

study for a dynamic solid oxide fuel cell model, Computers & Chemical Engineer-
ing, 33 (2009), pp. 484-492.

R. JEwWKES, M. NDpuNa, J. LEVIN, N. JAMA, K. DUNKLE, A. PUREN, AND
N. Duvvury, Impact of stepping stones on incidence of HIV and HSV-2 and
sexual behaviour in rural South Africa: cluster randomized controlled trial, BMJ,
337 (2008), p. a506.

J. M. KARON, R. SONG, R. BROOKMEYER, H. KAPLAN, EDWARD, AND H. I.
HALL, Estimating HIV incidence in the united states from HIV/AIDS surveillance
data and biomarker HIV test results, Statistics in Medicine, 27 (2008), pp. 4617—
4633.

W. KERMACK AND A. McKENDRICK, Contributions to the mathematical theory
of epidemics—I, Bulletin of Mathematical Biology, 53 (1991), pp. 33-55.

A. A. Kivm, T. HALLET, J. STOVER, G. ELEANOR, J. MUuINGUZzI, P. K. MUREI-
THI, R. BUNNELL, J. HARGROVE, J. MERMIN, R. K. KAISER, A. BARSIGO, AND
P. D. GHyS, Estimating HIV incidence amoung adults in Kenya and Uganda: a
systematic comparison of multiple methods, PLoS One, 6 (2011), p. e17535.

C. M. KRIBS-ZALETA AND M. MARTCHEVA, Vaccination strategies and backward

bifurcation in an age-since-infection structured model, Mathematical Biosciences,
177 (2002), pp. 317-332.

Y. V. KruGgLov, Y. V. KOBYSHCHA, T. SALYUK, O. VARETSKA, A. SHAKAR-
ISHVILI, AND V. P. SALDANHA, The most severe HIV epidemic in FEurope:
Ukraine’s national HIV prevalence estimates for 2007, Sexually Transmitted In-
fection, 84 (2008), pp. 137-i41.

S. KumTa, M. LURIE, S. WEITZEN, H. JERAJANI, A. GOGATE, A. Row-
KAVI, V. ANAND, H. MAKADON, AND K. H. MAYER, Bisezuality, sexual risk
taking, and HIV prevalence among men who have sex with men accessing voluntary
counseling and testing services in Mumbai, India, Journal of Acquired Immune
Deficiency Syndromes, 53 (2010), p. 227.

T. LANE, H. F. RAYMOND, S. DLADLA, J. RASETHE, H. STRUTHERS, W. McC-
FARLAND, AND J. MCINTYRE, High HIV prevalence among men who have sex
with men in Soweto, South Africa: results from the Soweto men’s study, AIDS
and Behavior, 15 (2011), pp. 626—634.

A. J. LEicH BrowN, S. D. FrosT, W. C. MATHEWS, K. Dawson, N. S.
HELLMANN, E. S. DAAR, D. D. RICHMAN, AND S. J. LITTLE, Transmission

127



BIBLIOGRAPHY

[90]

[92]

[94]

fitness of drug-resistant human immunodeficiency virus and the prevalence of re-
sistance in the antiretroviral-treated population, Journal of Infectious Diseases, 187
(2003), pp. 683-686.

G. L1 aAND W. WANG, Bifurcation analysis of an epidemic model with nonlinear
incidence, Applied Mathematics and Computation, 214 (2009), pp. 411-423.

Y. LING AND S. MAHADEVAN, Quantitative model validation techniques: mew
insights, Reliability Engineering & System Safety, (2012).

W.-M. Liu, H. W. HETHCOTE, AND S. A. LEVIN, Dynamical behavior of epidemi-
ological models with nonlinear incidence rates, Journal of Mathematical Biology,
25 (1987), pp. 359-380.

W. Lu, G. Zeng, L. Jing, S. Dvo, G. XinG, D. GUO-WEI, Z. JIAN-PING,
H. WEN-SHENG, AND W. NING, HIV transmission risk among serodiscordant
couples: a retrospective study of former plasma donors in Henan, China, Journal

of Acquired Immune Deficiency Syndromes, 55 (2010), p. 232.

R. LyErLA, E. Gouws, J. M. GARCIA-CALLEJA, AND E. ZANIEWSKI, The
2005 workbook: an improved tool for estimating HIV prevalence in countries with
low level and concentrated epidemics, Sexually Transmitted Infection, 82 (2006),
pp. iii41-iii44.

K.-A. MarLitT, D. P. WILSON, AND H. WAND, Is back-projection methodology

still relevant for estimating incidence from national surveillance data, The Open
AIDS Journal, 6 (2012), pp. 108-111.

S. MARrINO, 1. B. BoGug, C. J. RAy, AND D. E. KIRSCHNER, A methodology for

performing global uncertainty and sensitivity analysis in systems biology, Journal
of Theoretical Biology, 254 (2008), pp. 178-196.

M. MARTCHEVA AND H. R. THIEME, Progression age enhanced backward bifurca-
tion in an epidemic model with super-infection, Journal of Mathematical Biology,
46 (2003), pp. 385-424.

MATLAB, wversion 7.7.0.471 (R2008b), The MathWorks Inc., Natick, Mas-
sachusetts, 2008.

C. C. McCLUSKEY, A model of HIV/AIDS with staged progression and amelio-
ration, Mathematical Biosciences, 181 (2003), pp. 1-16.

C. A. MCGARRIGLE, S. CLIFFE, A. J. Copras, C. H. MERCER, D. DEANGELIS,
K. A. FENTON, B. G. Evans, A. M. JOoHNSON, AND O. N. GILL, Estimating
adult HIV prevalence in the uk in 2003: the direct method of estimation, Sexually
Transmitted Infection, 82 (2006), pp. iii78-ii86.

128



BIBLIOGRAPHY

[98]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

V. MisHRA, M. VAESSEN, J. T. BOERMA, F. ARNOLD, A. WAY, B. BARRERE,
A. Cross, R. HoNG, AND J. SANGHA, HIV testing in national population-based
surveys: experience from the demographic and health surveys, Bulletin of the World
Heath Organisation, 84 (2006), pp. 537-545.

J. S. MONTANER, V. D. Lima, R. BArrios, B. Yip, E. Woon, T. KERR,
K. SHANNON, P. R. HARRIGAN, R. S. Hoca, P. DALY, ET AL., Association
of highly active antiretroviral therapy coverage, population viral load, and yearly
new HIV diagnoses in British Columbia, Canada: a population-based study, The
Lancet, 376 (2010), pp. 532-539.

D. MoRrRGAN, C. MAHE, B. MAyanJA, J. M. OKONGO, R. LUBEGA, AND J. A.
WHITWORTH, HIV-1 infection in rural Africa: is there a difference in median time

to AIDS and survival compared with that in industrialized countries?, AIDS, 16
(2002), pp. 597-603.

J. D. A. NDAwINZ, D. COSTAGLIOLA, AND V. SUPERVIE, New method for esti-

mating HIV incidence and time from infection to diagnosis using HIV surveillance
data, ATDS, 25 (2011), pp. 1905-1913.

T. Q. NGuven, C. R. GwyNN, S. E. KELLERMAN, E. BEGIER, R. K. GARG,
M. R. PrEIFFER, K. J. KONTY, L. ToRrIAN, T. R. FRIEDEN, AND L. E.
THORPE, Population prevalence of reported and unreported HIV and related be-
haviors amoung the household adult population in New York City, 2004, AIDS, 22
(2008), pp. 281-287.

L. M. Niccoral, V. Toussova OLGA, S. V. VEREVOCHKIN, R. BORBOUR,
R. HEIMER, AND A. P. KozLov, High HIV prevalence, suboptimal HIV testing
and low knowledge of HIV-positive serostatus among injection drug users in St.
Petersburg, Russia, AIDS Behavior, 14 (2010), pp. 932-941.

C. ORRELL, R. P. WALENSKY, E. LosiNa, J. PitT, K. A. FREEDBERG, AND
R. Woob, HIV-1 clade c resistance genotypes in naive patients and after first
virological failure in a large community art programme, Antiviral Therapy, 14
(2009), p. 523.

B. S. PARekH, D. L. HanNson, J. HARGROVE, B. BRANSON, T. GREEN,
T. DoBBS, N. CONSTANTINE, J. OVERBAUGH, AND S. MCDUGAL, Determi-
nation of mean recency period for estimation of HIV type 1 incidence with the
BED-Capture EIA in persons infected with diverse subtypes, AIDS Research and
Human Retroviruses, 27 (2011), pp. 265-273.

S. S. PuirT, A. E. SINGH, B. E. LEE, AND J. K. PREIKSAITIS, HIV seropreva-

lence among women opting out of prenatal HIV screening in Alberta, Canada:
2002-2004, Clinical Infectious Diseases, 45 (2007), pp. 1640-1643.

129



BIBLIOGRAPHY

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

J. PREJEAN, R. SONG, A. HERNANDEZ, R. Z1EBELL, T. GREEN, F. WALKER,
L. S. LiN, Q. AN, J. MERMIN, A. LaNSKY, AND H. I. HALL, Estimated HIV
incidence in the United States, 2006-2009, PLoS One, 6 (2011), p. e17502.

A. M. PrEsANIS, O. N. GILL, T. R. CHADBORN, C. HiLL, V. HOPE, L. LOCAN,
B. D. RIcE, V. C. DELPECH, A. E. ADES, AND D. DE ANGELIS, Insights into the

rise in HIV infections, 2001 to 2008: a Bayesian synthesis of prevalence evidence,
AIDS, 24 (2010), pp. 2849-2858.

R. QEsMmi, J. Wu, J. Wu, AND J. M. HEFFERNAN, Influence of backward bi-

furcation in a model of hepatitis B and C viruses, Mathematical Biosciences, 224
(2010), pp. 118-125.

T. C. QuinN, M. J. WAWER, N. SEWANKAMBO, D. SERwADDA, C. LI,
F. WABWIRE-MANGEN, M. O. MEEHAN, T. LUTALO, AND R. H. GRrAY, Viral
load and heterosexual transmission of human immunodeficiency virus type 1, New
England Journal of Medicine, 342 (2000), pp. 921-929.

B. M. RAMESH, S. MOsSES, R. WASHINGTON, S. IsAc, B. MOHAPATRA, S. B.
MAHAGAONKAR, R. ADHIKARY, G. N. BRAHMAM, R. S. PARANJAPE, T. SUB-
RAMANIAN, ET AL., Determinants of HIV prevalence among female sex workers

i four south Indian states: analysis of cross-sectional surveys in twenty-three
districts, AIDS, 22 (2008), pp. S35-S44.

R. REBBA AND S. MAHADEVAN, Computational methods for model reliability
assessment, Reliability Engineering & System Safety, 93 (2008), pp. 1197-1207.

T. REHLE, O. SHISANA, V. PirAy, K. Zuma, A. PUREN, AND W. PARKER,
National HIV incidence measures — new insights into the South African epidemic,
South African Medical Journal, 97 (2007), pp. 194-199.

T. M. REHLE, T. B. HALLETT, O. SHISANA, V. PILLAY-VAN WYK, K. ZUMA,
H. CARRARA, AND S. JOOSTE, A decline in new HIV infections in South Africa:
estimating HIV incidence from three national HIV surveys in 2002, 2005, and
2008, PLoS One, 5 (2010), p. e11094.

D. N. SHAFFER, I. K. NGeETICH, C. T. BAUTISTA, F. K. SAWE, P. O. REN-
zuLLo, P. T. ScorT, R. M. KiBAyA, K. O. IMBUKI, N. L. MICHAEL, D. L.
Birx, M. K. WASUNNA, AND M. L. RoBB, HIV-1 incidence rates and risk factors
i agricultural workers and dependents in rural Kenya: 36-month follow-up of the

Kericho HIV cohort study, Journal of Acquired Immune Deficiency Syndromes,
53 (2010), pp. 514-521.

130



BIBLIOGRAPHY

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

O. SHArROMI, C. PODDER, A. GUMEL, E. ELBASHA, AND J. WATMOUGH, Role
of incidence function in vaccine-induced backward bifurcation in some HIV models,
Mathematical Biosciences, 210 (2007), pp. 436—463.

B. W. SILVERMAN, Density estimation for statistics and data analysis, Chapman
and Hall, 1986.

S. SRINATH AND R. GUNAWAN, Parameter identifiability of power-law biochemical
system models, Journal of Biotechnology, 149 (2010), pp. 132-140.

STATISTICS CANADA, Table 051-0001 — estimates of population, by age group and
sex for July 1, Canada, provinces and territories. CANSIM (database). (accessed:
2013-06-27).

—, Table 051-0002 — estimates of deaths, by sex and age group, Canada,
provinces and territories, annual (persons). CANSIM (database). (accessed: 2013-
06-27).

J. STOVER, T. BROWN, AND M. MARSTON, Updates to the Spectrum/Estimation
and Projection Package (EPP) model to estimate HIV trends for adults and chil-
dren, Sexually Transmitted Infections, 88 (2012), pp. i11-i16.

J. STOVER, P. JOHNSON, T. HALLETT, M. MARSTON, R. BECQUET, AND I. M.
TIMAEUS, The Spectrum projection package: improvements to estimating inci-
dence by age and sex, mother-to-child transmission, HIV progression in children

and double orphans, Sexually Transmitted Infections, 86 (2010), pp. 116-ii21.

M. J. SWEETING, D. DE ANGELIS, AND O. O. AALEN, Bayesian back-calculation
using a multi-state model with application to HIV, Statistics in Medicine, 24 (2005),
pp- 3991-4007.

F. TANSER, T. BARNIGHAUSEN, L. HUND, G. P. GARNETT, N. MCGRATH, AND
M.-L. NEWELL, Effect of concurrent sexual partnerships on a rate of new HIV
infections in a high-prevalence, rural South African population: a cohort study,
The Lancet, 378 (2011), pp. 247-255.

H. R. THIEME, Mathematics in Population Biology, Princeton University Press,
2003.

H. R. THIEME AND Z. FENG, Endemic models with arbitrarily distributed periods
of infection i: fundamental properties of the model, SIAM Journal on Applied
Mathematics, 61 (2000), pp. 803-833.

L. Topp, C. A. Day, J. IVERSEN, H. WAND, L. MAHER, C. OF AUs-
TRALIAN NSPs, ET AL., Fifteen years of HIV surveillance among people who inject

131



BIBLIOGRAPHY

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

drugs: the Australian Needle and Syringe Program Survey 1995-2009, AIDS, 25
(2011), pp. 835-842.

D. TURNER, B. BRENNER, J.-P. RouTy, D. Moisi, Z. ROSBERGER, M. ROGER,
AND M. A. WAINBERG, Diminished representation of HIV-1 variants containing
select drug resistance-conferring mutations in primary HIV-1 infection, Journal of
Acquired Immune Deficiency Syndromes, 37 (2004), pp. 1627-1631.

UNAIDS REFERENCE GROUP ON ESTIMATES, MODELLING AND PROJECTIONS,
Improved methods and assumptions for estimation of the HIV/AIDS epidemic
and its impact: recommendations of the UNAIDS Reference Group on Estimates,
Modelling and Projections, AIDS, 16 (2002), pp. W1-W14.

P. VAN DEN DRIESSCHE, Time delay in epidemic models, IMA Volumes in Math-
ematics and its Applications, 125 (2002), pp. 119-128.

P. VAN DEN DRIESSCHE AND J. WATMOUGH, A simple SIS epidemic model with
a backward bifurcation, Journal of Mathematical Biology, 40 (2000), pp. 525-540.

P. VAN DEN DRIESSCHE AND J. WATMOUGH, Reproduction numbers and sub-
threshold endemic equilibria for compartmental models of disease transmission,
Mathematical Biosciences, 180 (2002), pp. 29-48.

M. G. vaN VEEN, A. M. PrEsANIS, S. CoNTI, M. XIRIDOU, A. R. STENGAARD,
M. C. DONOGHOE, A. I. VAN SIGHEM, M. A. VEN DER SANDE, AND D. DE AN-
GELIS, National estimate of HIV prevalence in the Netherlands: comparison and
applicability of different estimation tools, AIDS, 25 (2011), pp. 229-237.

P. VickermaAN, F. Npowa, N. O’FARRELL, R. STEEN, M. ALARY, AND
S. DELANY-MORETLWE, Using mathematical modelling to estimate the impact
of periodic presumptive treatment on the transmission of sexually transmitted in-

fections and HIV among female sex workers, Sexually Transmitted Infections, 86
(2010), pp. 163-168.

R. P. WALENSKY, A. D. PaLTiEL, E. LosiNA, B. L. Morris, C. A. ScoTT,
E. R. RHONE, G. R. SEAGE, AND K. A. FREEDBERG, Test and treat DC: fore-
casting the impact of a comprehensive HIV strategy in Washington DC, Clinical
Infectious Diseases, 51 (2010).

C. L. WaLLis, J. W. MELLORS, W. D. VENTER, [. SANNE, AND W. STEVENS,
Varied patterns of HIV-1 drug resistance on failing first-line antiretroviral therapy
in south africa, Journal of Acquired Immune Deficiency Syndromes, 53 (2010),
pp. 480-484.

E. WALTER, Identifiability of State Space Models, Springer-Verlag, 1982.

132



BIBLIOGRAPHY

138

[139)

[140]

[141]

[142]

[143]

[144]

[145)

[146]

[147)

[148]

H. WaAN anND H. Zuu, The backward bifurcation in compartmental models for
West Nile virus, Mathematical Biosciences, 227 (2010), pp. 20-28.

H. WAND, P. YAN, D. WiILsON, A. McDONALD, M. MIDDLETON, J. KALDOR,
AND M. LaAw, Increasing HIV transmission through male homosexual and het-

erosexual contact in Australia: results from an extended back-projection approach,
HIV Medicine, 11 (2010), pp. 395-403.

N. Wanag, L. Wang, Z. Wo, W. Gou, X. SuN, K. POUNDSTONE, AND
Y. WANG, Estimating the number of people living with HIV/AIDS in China: 2003-
2009, International Journal of Epidemiology, 39 (2010), pp. 1i21-i28.

A. WELTE, T. A. MCWALTER, O. LAEYENDECKER, AND T. B. HALLET, Using
tests for recent infection to estimate incidence: problems and prospects for HIV,
Euro Surveillance, 15 (2010).

D. P. WiLsoN, A. HOARE, D. G. REcAN, AND M. G. Law, Importance of
promoting HIV testing for preventing secondary transmissions: modelling the Aus-
tralian HIV epidemic among men who have sex with men, Sexual Health, 6 (2009),
pp- 19-33.

E. Woob, T. KERR, B. D. MARrsHALL, K. L1, R. ZHANG, R. S. Hoca, P. R.
HARRIGAN, AND J. S. MONTANER, Longitudinal community plasma HIV-1 RNA
concentrations and incidence of HIV-1 among injecting drug users: prospective
cohort study, BMJ, 338 (2009).

WORKING GROUP ON ESTIMATION OF HIV PREVALENCE IN EUROPE, HIV in

hiding: methods and data requirements for the estimation of the number of people
liwing with undiagnosed HIV, AIDS, 25 (2011), pp. 1017-1023.

WORLD HEALTH ORGANISATION, Guidelines for second generation HIV surveil-
lance: an update: know your epidemic., tech. rep., World Health Organisation,
2013.

H. Wu, H. Zuu, H. M1AOo, AND A. S. PERELSON, Parameter identifiability and
estimation of HIV/AIDS dynamic models, Bulletin of Mathematical Biology, 70
(2008), pp. 785-799.

D. X1a0 AND S. RUAN, Global analysis of an epidemic model with nonmonotone
incidence rate, Mathematical Biosciences, 208 (2007), pp. 419-429.

P. YAN, F. ZHANG, AND H. WAND, Using HIV diagnostic data to estimate HIV
incidence: method and simulation, Statistical Communications in Infectious Dis-
eases, 3 (2011).

133



BIBLIOGRAPHY

[149] Q. YangG, D. Bouros, F. ZHANG, R. S. REmis, D. SCHANZER, AND C. P.
ARCHIBALD, Estimates of the number of prevalent and incident human immun-
odeficiency virus (HIV) infections in Canada, 2008, Canadian Journal of Public
Health, 101 (2010), pp. 486-490.

134



Appendix A

Implementation Details

A.1 Tracking New Cases and Deaths

Computing the integrals in equation (2.4) numerically can be greatly simplified by
adding some additional compartments to the model. Recall that the observation func-

tion consists of three components:

ydiag(t) = /t aI(T)dT

-1
ydeath(t) = [il dDD(T) + dTT(T)dT
Ypop(t) = S(t) + I(t) + D(t) + T(¢).

As written, it would be necessary to perform a numerical integration to determine the
values of Ygiqg(t) and Ygeqrn(t). However, if quantities zgiqq(t) and Zgeqn (t) are defined
as: .
Zdiag(t) = / al(r)dr
o (A.2)
caeanl®) = [ dpD(r) + drT (e

0

The fundamental theorem of calculus gives

dzdiag(t) —
. dt o = ol (A.3)
—ns = dpD(b).

These equations can be included when the model is solved numerically, computing
Zdiag(t) and zgeqn(t) simultaneously with the other modelled compartments. The im-
plementation used for this project includes only the compartment for those who have
been removed from the diagnosed population through death, zgeq:n (t). Setting the ini-
tial condition zgeqsn(to) = 0, this quantity tracks the total number of people who have
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died while in compartment D since the initial time. Then zgiqy(t) = D(t) + Zdeatn(t)
is the total number of people who have ever been diagnosed since the initial time. Fi-
nally, Ydiag(t) = Zdiag(t) — Zdiag(t — 1) gives the number of diagnoses during year ¢ and
Ydeath(t) = Zdeath (t) — Zdeatn (t — 1) gives the number of deaths during year t as required.

A.2 Sampling

A.2.1 Metropolis - Hastings Sample

The Bayesian parameter estimation used in Chapter 2 of this thesis is implemented using
the Metropolis - Hastings method to draw a sample from the posterior distribution. The
routines used are included in MATLAB. In this section, we give a brief introduction to
the Metropolis-Hastings method.

The Metropolis - Hastings algorithm is a Markov chain Monte Carlo (MCMC)
method. Using a specified starting point py, a new sample point p; is selected from
a specified proposal distribution. This new sample point is either accepted or rejected
based on both the proposal distribution and the posterior distribution that is being
sampled. Subsequent sample points p; are selected using p;_1 as the starting point.

The acceptance ratio used to make the decision to accept or reject a new sample
P P(pily)/ (ol

P11y)J\Pol|P1
A(po,p1) = m (A.4)
where P(ply) is the posterior distribution to be sampled, and f(p1|po) is the proposal
distribution given the starting point pg. The point p; is accepted as an element of the

sample with probability
min (1, A(po, p1)) -

If the proposal distribution f(p1|po) is symmetric so that f(p1]|po) = f(po|p1), then
the acceptance ratio simplifies to

A(po,pl) = %~

In this case, if the point p; has a higher posterior density than the point py, it will always

be accepted. If it has a lower posterior density, it will be accepted with probability
P(pily)

P(poly) -
It is convenient that any factors in P(p|y) that do not depend on p will be cancelled

out in expression (A.4). This property allows computationally intensive normalizing
factors to be omitted from the expressions used for P(p|y).

Implementing the Metropolis - Hastings algorithm requires that the proposal distri-
bution f(p1|po) be specified. This distribution controls how the size of the jumps that
the algorithm will take between sample points. If the size of the jumps is very small,

most of the proposed sample points will be accepted, but it will take a long time for
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the algorithm to adequately sample the entire space. On the other hand, if the size of
the jumps is too large, points with very low posterior density will often be proposed
and very few of them will be accepted. The proposal distribution should be chosen to
balance these concerns.

To reduce the amount of correlation between subsequent points, a Metropolis - Hast-
ings sample is often ”thinned” by sampling T' times the number of points desired in the
final sample and retaining only every T'th point. Furthermore, the first sample points
chosen using an MCMC method may need to be discarded, as it may take some time

for the method to converge to the desired distribution.

A.2.2 Latin Hypercube Sample

Latin hypercube samples are useful for taking samples from relatively simple distribu-
tions. This type of sample is used in Section 5.1 where distributions for parameters are
specified using medical or public health literature. In this case, the specified distributions
are usually independent for each variable with relationships between the parameters en-
forced through reparameterization. Routines are included in the standard MATLAB
distribution to take Latin hypercube samples for independent normal and uniform dis-
tributions. To use other distributions, such as the triangular distribution often used in
this thesis, customized code must be written.

Latin hypercube sampling is usually less computationally intensive to produce than
the Metropolis-Hastings samples described in the previous section. Latin hypercube
samples often give good coverage of the distribution with relatively few sample points.
However, Latin hypercube sampling is not able to sample from distributions where
the relationships between the variables are complicated or not well understood such as
Bayesian posteriors for which a Metropolis-Hastings sample can be used.

A Latin hypercube sample is chosen by stratified random sampling without replace-
ment. A description of the method is given in [16]. The method to produce a sample of

size n is as follows
1. For each variable to be sampled

(a) Specify the distribution.

(b) Divide the distribution into n equiprobable intervals and sample one point

from each of the intervals.

(c) Randomly reorder the sample.
2. Join the samples for the individual variables into a single multidimensional sample.

When writing custom MATLAB code to create such a sample, integration is often
required in step 1(b). For a simple cases such as the triangular distribution this can
be done analytically. For more complicated distributions numerical integration may be

required.
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A.3 Stability of Endemic Equilibria

We consider the special case when the recovered class suffers no disease-related fatality

(full recovery), namely dg = dg.

Proposition 4. Assume that ds = dgp = d. Let P* = (S*,I*, R*) be an endemic
equilibrium of (5.2). Then P* is asymptotically stable if %g*) > 0, and unstable if

dg(57)
7)< .

Proof. The Jacobian matrix J at P* is given by

—BIf(N) —BSIf'(N)—d —BSf(N)—BSIf'(N) —BIS['(N)
BIf(N) + BSIf'(N) BSF(N)+ BSIf'(N) —(dr+~) BISf(N)
0 ¥ —d

with superscripts suppressed. Since 8S*f(N*) = d; +

—BLf(N) = BSIf'(N) —d —(dj+~) = BSLf'(N) —BISf'(N)

J = BIf(N)+ BSIf'(N) BSIf'(N) BISf'(N)
0 ¥ —d
Therefore
det(J — pl)

= (=d— p)[p? + (d+ BLF(N))u + BULF(N)(dr +7) + (dr — d)ISf'(N))].

One eigenvalue is 1 = —d < 0, while the remaining two eigenvalues are the solutions of

the quadratic equation
p? o+ (d+ BLF(N) )+ BLF(N)(dr +7) + (dr — d)BIST/(N) = 0.

Since d + BIf(N) > 0, a necessary and sufficient condition for both solutions to have

negative real parts is that
BIf(N)+o(dr —d)ISf(N) > 0.

Using the facts that o(d; — d) = (1 — pd) and

WE) _ () + 57/ (N(S)(1 - pa),

we obtain do(s
BIF(N) + o(d; — d)ISf'(N) = ﬁIZ—S).
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Therefore, if dgl(ss) > 0, then all the eigenvalues have negative real parts, and the endemic

equilibrium is stable. If %5) < 0, then one of the eigenvalues is positive, and the

endemic equilibrium is unstable.

O
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