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, A ABSTRACT
. ‘ \b \
2
N Several concepts of information cah be definéd on algebras of f%‘
"/\\ events, and c;n be related to probabilitles. Two very‘useful conceptéﬂ e
“ | }.ﬂre entropy and'discrimination information, with applications to-éommu§¥§

N,
Cquitional'iﬂ?or—

cation theory and statistical inference, respectivgly:

\

mation can also be defined, given Aan event, or sub~a1§ébra of events,
. . . N ,;i')
-

T . . .

. . o - .
A historical summary of informatlion theory fb gilven in Chapter

Ilibwhich'includes several generalizations of the information coqdep%y

The properties of conditional information are employed in
' \

reaching a general result concerning tfje information in a Markov process.
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INTRODUCTION

)

. \ .
In this dissertation, we will be examining concepts of informa-

tion dand probability, and some appiications. Working from anLintuitive
basis, we wiil consider how the two concepts_are'related;xand will look at

how concepts of information can be utilized in communication theory, stat-
s

istical inference, and Markov processes. (

\

In chapter 1, we introduce measures of probability and informa-

tion on an algebra of events. Some properties of functions defined on a

Ls

family of probability algebras are examined. Two such functions are
entropy and discrimination information and their characteristics are listed

The contents of this chapter is a reformulation and unifieation of diverse

\

results.

2

The chapter II various ideas concerning informatien are collected
. \
together from several soﬁrces. Applications in communication theory and

statistical 1nference are considered. .

i
e, ., ~

. In. final chapter, we are concerned with the information for
) discriminatin between two Markov processes. After some preliminaries, a
general result is proved for processes of the jump kin\: We define a .

concept of infiniteaimal information, and relate it to the discrimination

<y “

1n£ormation contaiped in an interval of time via an operator equation. The

contents (except  for some expository preliminaries) is original.

. . N

Two theorems, which could not be found in the literature in the

K desired form, but which digress from the main path of the dissertation, are

N

included as appendices. The proofs are our own.

[y
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CHAPTER 1

THE CONCEPT OF INFORMATION
i /

1 '
'

1. , Probability and Information.

-

,D,'u

Information is concerned with knowledge and knowledge is derived

from observations. 1In real 1ife, all our observations are limited in pre-

| [y

cision, and 'our actions are finite in number. Mathdmatics has invented real

numbers, which greatly simplify‘gnalﬁéis, but no empirical scientist has

ever observed "a real number". Rather he observes sohetWing in an interval ¥

whose size is determined by the precision of his insterents. But we tcan

-

consider the real numbers as being "limits of precision”, in a sense defined

so as to "complete" the number system, either via Dedekind cuts, ?r Cauchy

.

sequences.
. o . -

Similarly, féw Borel sets can be "meﬁsured". Rather we can only
measure unions of a finite grmber of intervals. The "events'" of classical
probability theory are again-limits (in some senge) of empirical events, -
.invented  for both aesthetic and utilitarian reasons. In the limiting
proéessiwe give birth fo the orphans called 'sets of measure zero"; which
are bagh possible an& 1mpossible. But the fact is that these sets are net
‘in fact observable, so it is a probabilistic enigma to call them events.-.
}ather they are reminders offthe f;;t that we put no uéper limit on our
possible precision. We can accomplish the same pe talking abou; a meagure
ngebga withgut agoms. S | . |

H : ’ . '
‘ We will adopt the philosophy that any concept is the limit, ;n <

some sense, of that concept defined on finite systems. As much as possiblg
-2-" : b

* . o I »
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wve will consider an algebra of events, rather than aﬁ"point ser", as primi-
tive. This "algebraic" approach to measure theorybcan fe traceu.back’to
Carathébdory [4]. 1t has‘ﬁeen appiied to pronability theory by Halnos [19];
Birkhoff [2] and Kappos [25,26]. A fuller bibliography can be'fpund in
Kappos [26!. Information 1is defined on events and aigebras of events, so
that the "points" would for the most part be unnecessary baggage. ] However,
there are times (particularly jn the final chapter) where we would like to
make use of standard regplts in analysis, and then we will represent our '

’

measure algebra in (Q,A,u) style. . S

1.1 There are several interpretations of the eoncent "probebility" (31,
but for the monent we will adopt the subjeptivrst oneﬁthat probability is
a measure of beiief or expectation. Mathematically, we can corsider ;
class of events, orfobservations; the "more likely" obseruatidns having a
higher probability than the "less likely" ones. lFbr an§ two euents; we
can conceive of their logical conjunction and logical disjunction; and if

,we adopt the converttion of a edke-even: 1. and an impossible event o,

then our class has the structure of a Boolean algebra.

A
L)

.Let us call our class of events - Ei. Our prubabiltty,can be
expressed as a function P :_E +> [6,1] such that p(2)~= 0, p(1)7=11 ,
p{E - {O,I}j c (0,1) and AAB = Q => p(AvB) = p(A) + p(B) » and hence the
““couple (E,p) defines a measure algebraﬁ Denoting by "' the symmetric‘

- difference on E E ve find thatm~04A,B) = p(A+B) is a metric, and to make
things neater we usually talk about E' the completion of E p. éafi be

extended to p on E by continuity, and it follows that p 13 continuous

1n both the metric and tbe stronger, order t0pplogy [26 chapter 2]



-

Note that we have required the probability to be strictly posi-
. »
tive, i.e.,’ there is only one event of measure zero,,the impossible event.
, V
(Such a conVention is analogous to the situation in set theory, where

there is only'one empty" set.) 1In relating this epproach to the classical

theory, igimust be borne in mind that our events are modulo the 0 - ideal
of pull sets - i.e.; we identify sets which differ only by a set of measure

zerqQ.

A "probability" which 1is not strictly positive we will call
. | (,l
improper, A/"probability" for which p(L) <1 we will call defective.

// ) .'
/The completed algebra T .is'al\o —‘nlgebra, and the probability
—_ / . 3 . ' ) Bl
''p. is O - additive. All probability algebras in this digsertation will be
C s -
assuméd to be complete in.the above sense, and hence 0 - algebras,

SN

i
/
!

represents a tautology, {Q ‘a contradiction, and the other elements are con-

If the elements of E are thought of as propositions, then 1

; ; , . ‘ .
" tingent proposjtions. Ele&ents which are "smaller" (in the lattice sense)

poo T
represent more specific propositions, :and people are often interested in

' \ :".‘ ‘ . ) . l
making their étﬁtements‘mote.specific.

' SRR .

N L . . ‘ \
A, qj; ‘ oA N . . '
-1.2‘ Probability is, of course,':?honotone function on E', and itfis

reasonable to éx&éct that any function on E measuring information to be

i y .

[
monotone decreesing, as one would think that more specific statements

!‘ a e
' convey more infdrmation. We can dra&ia closer 1ink between-theeconcept of

-

e

'f“probabilicy and information if we makx§: vague appeel to psychology, and
’

maintain that th qccurrence of an unexpected ‘event (or equivalently, the
8 )
confirmation ot dubious proposition) appears to convey more "information

©



. ! * ‘ “
~ Y
than the occurrence of an event we were ‘expecting. \

¥

One can thus postulate that -a measure of information should be a
. .

decreasing function of the probability. It is reasonable to expect that
the information provided by independent events should be additive, hence a

feasonable;meaSufe of thainformatiOn of an epent-would be

u%j
\J(A') = -log p(A) . - (1.2.1)

1.3 One can deduce (l.Zlf) axiomatically [241: Let J be a non~
negative, decreasing function on F?, such that 3(93 = ® I(V) . Let
us also postulate the existence of a finite or countable fami{y of subalge- .’

bras {F } which is such that for any family of events {Ah} such that

Q‘ G o | ,‘ . )

] . o ]
AALEO . , (1.3.1)
a . .

n .

o -

Such a family 1s called M - independent. Intuitively, this means that
'elementsiof different F 's are mutually compatible, 80 that presumably

information about the one gives no information about. the othefL

Suppose now that J satisfies the following axioms:

N

R . . y } . .‘ . -.“’_.,;.‘
For = A e f@ , J(z Aa) - g‘l(Aa)g . T(1.3.2)

>

There is 7» operation T on the positive extended real axis,"

such t:hat for any A, B e E such that AAB = 0
.Dr\? s

'J(AVB) = J(A) T J(B). . (1.313)
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PR ey c
J(Ar) -F\[’J(ASAAI‘:) T J(ASAAt) TJ(ASTAb) o |

-'[inr) + I(AMA )] T [J(Ar)+J(ASAA$)] T,[J(Af)+J(A;§A )] . \(1.3.4)

N
~ \

Axiom (1.3.4) is somewhat teeﬁnical and represents a limited distributive
law. "
¢
R ! )
Not all operations T“make the axioms consistent 1, we also

require that we can assign information vAlues within any sub- algebra Fd f

PR

with no regard to the values in the‘others, then T can only take on two |

forms. ’ f', «'NI o L C
- .o
: x Ty = inf(x,y) - . (Acs.p)
L xTy=-clog (X T (1*%6)
'< ‘ ‘ 'R - , ' <1
If J# is of the form (1.3, 5), then there exists no probability g'|

—

measure P oh E such that J. can be represented as L strictly decreas-

1ng left-continsous function of p. If T .is of the form (1. 3 6), theh'
N there exista a probability measure p on E such that . i |
7. i . o i ) L .
. “ J = -c.log P . “ h‘,ii ;(1'327)

LY

?‘

1.4 ciquation (1 2. 1) defines the information gained by the confirmation ‘

‘ of an uncertain event. We can generalize this formula if we say that aftér

'our experiment, the pr bability of A is now q(A) . (This generalization [

‘makes sense in either the subchtivist or logical interpretations of prob- R
: \1,..'_ A S
Pt D R

T . \
PN R :'1



ability, but 1t has no frequentist Interpreotatifon.) Then we can say that
‘ -
the information transmitted by this change of probability s

J(A) =~ log q(A) - log p(A) . (1.4.1)

‘This quantity 1s properly deacribed aa fnformatfon in favour ot A, tor

i AY e confirmed, and hence q(A) = 0 , we have J(A) =~ =~ 1 but we
have not }oag information about A , we have merely lost information In

favour of A .

In (1.4.1) q(A)- is different from unity only 1f we do not
directly observe A . We observe some other event B , and we know the
stochastlc link between A and B » and hence we can calculate q(A) ;

i.e., 1f we observe B , then q(A) 1s the conditional probability

p(AIB) = p(AaB)/p(B)

Formula (1.4.1) also has another interpretatfon (which can be

reduted to the formét ynder a Bayesean model). Note that it is in the

form of a log likelihood ratio, and ﬁence we can interpret {t as the infor-

mation in favour of q against p , provided;by the observation A % The

~

- connection between these two interprgtations is formal more than conceptual,

but we will see a closer connection in the sequel. We will call the second

interpretation discrimination information [28,29].

[

2. Sub-algebras and Conditioning.

So far we have been concerning ourselves with individual events.

.Let us now extend our horizons.



~

2.1 It B ts a tamily ot cvents in A such that “i A ll’ -0 |t

{4 ) and v B= A and such that O ¢ B, we wtll call B a partition
Be B

"

fn A . 1t follows that B g at most countable. If B s finite we

-
will ‘speak about a finite partition.

Every partitfon generates a sub-algebra conalsting ot the join of

Y

{ts atoms; and (:onverﬂ‘el.y, every atomle sub-algebra defines n l:nrtltlnn.

-

We will often use the terms pattitiom and atomic sub-algebra ‘ambiguously.

~ .

L

Of course, every finite sub-algebra 1s automatically atomic.

~ -
‘We can intuitively think of a partition as representing an exper-~

iment to determine which of the atomic propositions B (n B {s true.

2.2 We can define a (simple) random va;iable on‘a finite probability
algebra as a function on the set of its atoms. We can also define elemen~
tary random variables as functions on the atoms of a countable partition.
Note that the Boolean algebra generated by a countably infinite partition
1s, except in trivial cases, uncountable. We can define the usual
function space operations (sum, product, scalar multiplication,’positive,
negative part) on the set of all elementary ran&om variables, where if f

and g a}ebdefined on B and C respectively, then f w g 1s defined on

BvC for any operation w . -

With these definitions, the set E(A) of all elementary random

variables on A becomes a vector lattice, and we obtain the set of all |,

)
random variables |/(A) as the order-completion of E(A) . It is well

known that a non-negatfve measurable function (in the classical sense) is



. ST
q .
l
the monotone limit of simple functions [37, p. 224], so that Kappos'

approach 1s equivalent to the standard analytical approach.

,
-

) Again, we can define expectation in the obvious way on IQ(A)
4
and extend it to L(A) < V(A) by continuity, following the Daniell

approach (26, chapter VJ}. v
> \ :
2.3 A Boolean algebra 1ls, of course, a4 Boolean ring. If B {s a sub-

ring of A , 1t may be a Boolean algebra per se, although {t is not a sub~

algebra of A . This is true in particular 1f B 1s finite, or {f B s

.
- -

. a principal ideal. Principal ideals of a4 Boolean algebra are of the form

B={A¢cA:AZXB} Yor some B . They will be denoted by BA

We will denote by E(A) and E(A) regpectively the.sets of all
sub-g-~algebras and sub-o-rings which are algebrés. vThey are both complete
attices [2, p. 49] with greatest element A , and least elements respect-
ively T = {0,1} and N = {0} .

\
3 N
If C 1s any class of Boolean g-algebrag which is a lattice

under the operations

AAB=AnSB

. A v B.= smallest 0 -algebra containing A and B
‘ . i
we will call it a lattice of g-algebras. It may not have a greatest, or a

least element.

-

We will say that ‘C' is a hereditary class if Ae(C => R(A)cC .

»



10.

' We will require the following condition for any Boolean o -

‘

algebra A we are studying:

»

A Y
N

There exists an lncfeusing sequence of finite sub-algebras bn

such that

voB = A ‘ (2.3.1)

[}

Such algebras will be called separable. It follows that for any probability
| .

measure p on A, A 1is also separable in the metric p(A,B) = p (A+B)

(20].

2.4 If 0# B¢ B, .then the principal 1dea1{mA = {AeA :A<B} {s
n

A 1induces a probability

N

also a Boolean algebra, and a probabilicy »p

.pB on BA defined by ;
Y
o -RE oy 2.4.1
Pp(©) = 2053 < (2.4.1)
/
.- //
We can extend this measure as an (improper) probebility on‘all of
. T ‘
A by

AAB ‘
py(A) = P—éml e

the so-called conditional probability given B . We can make it a proper |

probability by considering A modulo BSA +, which is isomorphic to BA .

In this way,\any finite partition B8 generatés a family of

probability algebras, one for each atom of the partitién.



If f 1is any function defined on a hereditary class of probab-
ility algebras, then given an algebra A and a finite partition B 1an A

we have a family of values

[y

f[A[B] = f(BA) (2.4.3)

A

indexed by the atoms B of B . The above expression in facc defiqes a

simple (B—measurable) random variable, which we can denote by fB[AI ., and
we will denote the expectation by
£(A|B) = ) p(B) f£(BA) (2.4.4)

~

the summation extending over all atoms B of B .
. .

If A and B are sub-algebras of an algebra, C , but we don't

have B < A, we can still define f£[A|B] via (2.4.3) and hence f£(A|B) ,
where by BA we still mean all events of the form BAA , AEA , although

it is no longer an ideal of A . It 1s easy to show that

.
£(A|B) = f(AvB|B) (2.4.5)

¥y .
and that - -, ‘

EAJA) = £(T). . .

} ’ /
. N f
If D 1s any separable sub-algebra of ( , and 1f.we have

[

finite Bn 4+ D , then we have a sequence of random variables

o fB (A]+) I (2.4.6)
. : n



and 1f this sequence has a uniqué limit (in some sense) then we can talk of

. b3 b
the random variable ”

‘fD(Alw) ) ‘ T (2.4.7)

D) v

and its expectation f(AID; . .

We will adopt the following terminology: The ri&dom variable

will be called f conditioned by D , its .expectation will be called f
L .
conditional on D . !

2.5 Conditional probability with respect, to a nen-atomic sub-algebra can
. A 2
be defined aaﬁk Radon-Nikodym derivative. -~

For any A , pA(B) = p(AAB) {s a measure on B , absolutely

" continuous with respect to p restricted to B , hence the Radon-Nikodym ©
derivative, ﬁ(A|B)' exists [26, p. 144]. ’
~—

4

Recall that we have only one impossible event, so that essen- i

LY

tia11§ we are identifying functions equal almost everywhere. Hence the

derivative is unique. ¢

-
I -~

Furthermore; if A= Al;;fﬁg 0= Ai A A2 then

E(Lp(P(418) + p(A)18))) = p(A)aB) + p(Ry[B) -

P((A vA;) A B)

p(AAB) v BeB. s



0

Hence, because of uniqueness,

N, \\
1

pA 1B 4 p(aylB) - paal®y . | - @

{

[
Also, 1f An 4 A, then p(AnIB) is fncreasing, and by monotone conver-

gence, for any B'e B

B

E(Ty sup p(A |B)) = sup EC1y p(A_|B))

n n

B

B

sup p(A_AB)
n n

p(AAB) . (2.5.2)
Hence, again because of uniqueness,

sup p(AnIB) = p(Als) . (2.5.3)
0 :

\

We can thus consider conditional probability as a continuous véctor-valued

-

measure.

‘\

Conditional expectation could be defined as expectatiop with
respect to conditional prbbability (see [21] for integration withvrespect

to vector measures), or directly in terms of kaaon—Nikodym derivatives C}

-~

(26, p. 228). _ | ey

R
[

2.6 Two events A and B are said to be 1ndependent'1f p(AAij: .

LY

p(A) p(B) . Two algebras A and B are independent if for all A e A,

BeB, A and B are independent. It follows that ANB =T .



Two algebras A and B are conditionally independent given a

-

third algebra .C , if for all Ae€A , BecB

- ' p(AAB|C) = p(A|C) p(BlC) . , (2.6.1)

s

If A and B are independent, and {inite, then the p, of
(2.4.2) are 1dentical to p for all B . It hence follows that for anv

function f of section 2.4.
f(A|B) = £(A) . (2.6.2)

If C {1s atomic, and A and B are Eonditionally independent given

then
£(A|BvC) = £(A|C) (2.6.3)

>

for the atoms of BvC are of the form BAC - and Peac = Pe

= 3. Entropy and Discrimination Information.

~

3.1 Let us suppose that we are in avsituation where we are :ldependently

R ' receiving information from a large number of algebras isomorph E .

Equivalently, we could imagine that after’ haVing an event inj E confirmed
ithe situation chauges and\our uncertalnty is restored. It is then reason-
able to ask about a measure of average or expected information. Jf F {is
a sub-algebra genetated by a finite partition, then the expected informa-

tion in F is naturally defined as
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© H() - - [ p) logpa) (3.1.1)

the summation extending over all .atoms A of F . This definition also
makes senseiin the case that F 1s generated by a countable partition, but

in this case H(F) may be infinite. ' The quantity H 1is usually called
’ ' -

Definition (3.1.1) can be derived axiomatically, either presup-

entropy.

posing a probability on & |, or defining the probability in terms of H .

’

We can define entropy axiomatically in terms of a probability.
Such axioms were first presgnted by Shannon [39]. Vérioug versio;s and
simplifications have been summarized by Aczel [l]. Since the entropy is a
function of the probability Aisgribution, the axioms are often expressed in
terms of n-tuples of éositive numbers summinghto unity. We will here ’

rephrase them in terms of Boolean algebras.

Let the entropy H be a function from the category of all finite
probability algebras to the real numbefs. For any finfte algebra A , and
a sub-algebra B , we can define the entropy of A conditional on B

according to (2.4.4).

1

It is reaéonable,to want,,

H(A) = H(B)' + H(A|B) for each B <A ©  (3.1.2)

9
' ' L}

It turns out that formula (3.1.2) along with the requireﬁent that
the entropy of a diatomic algebra be a Lebesgue méasurabie function of the -

pfobability is sufficient to characterize (3.1.1) up to a scale comnstant

0

(30]. . : . ..

L4



/ e

.

In fact, it is sufficient to require that (3.1.2) be true only
for sub-algebras B , one of whose atoms is a@mpal to the join to two atoms of

A, the  other atoms being identical to those of A .

3.2 We can also characterize (3.1.1) using a limited definition of

probabilities [23]. é&

Let F be the category of all finite Booleéhgalgebras.' F is a

*

héreditary lattice of algebras according to sectisn 2.3.
For any A € F let S(A) represent the sét of all sub-rings of
A. 1If ¢ 1is,any homomorphiém from ‘A 4into B , 1t induces a map ¢,
3 '
from S(A) into %§(B) - A syb-class f < F 18| designated as a class

containing homogeneous algebras. Within this sub-class, isomorphic algebras |

are . identified. . ) ' e
: 6'?f‘ ) .»,%, A
" ‘ g‘."f ) LI
For any H-€ H , we define a probability b%!f °
- . & -~ -
. o N A ': %? ;
N(AH bl ©oT
Ay = Maf) X 2.1
i . “
‘ , L
where N(A) represents the number of atoms of X . Let Qy: u- S(H) .
o < HeH .

We will first define H only on G .

(7»’

We require the properties that
\ e ‘ .

(a) If HelH and ¥ -18 an automorphism of H then

H(Y,(8)) = B(B) for all B e S(H) .  ~» . (3.2.2)

- .
4 r



(b) H 1is isotone on H. d.e., if G,H e H and G < H themr
HG) < H(H) . ca T (3.2.3)

(¢) If He H and G is a‘sub~algébra of H (not neceéségily in
" H) then . }

H(H) = H(G) + H(H|G) . (3.2.4)

H can be used to define a metric. If A and B .are isomorphic,

.-

let 4 '
Ch
)

8(A,B) = inf sup [H(C) - H($,(())] OV (3.2.5)
" o CeSA) o

where ¢ ranges over all isomorphisms from A to B . Now, if A,B are
’ >noc'isdmorph1c, letf p(A,B) = 1 , otherwise let

p(A,B) = I—;—%{%f%% . - - (3.2.6)

Then p 1s a metric'on G , and undég.this meprig, H is
. W .

continuous. If we form the completion of G with réspect to p, and

extend H by continuity, it can then be shown that we can define a prob-

ability p on each A€ F , and that ‘

.
.

H(A). = ~c ] pp(A) log py(a) =, . (3.2.7)
AcA ' u : T

. . . <
' 3
the summation extending over all atoms A of . Furthermore, these

‘ probabilities'are éonsistent;fin the sense t if :B 1$ a subsring of . A ;

14 . .
o

then
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pA‘B ' 3'28
RN (328

whetgﬁ/ is the maximal element of B and by pA|B we mean pAlB

(.
restﬁicted to" B .
"\

PR |
(T o

)y/ . .
3¢3 We can also talk about average information in the generalized sense

of (l 4.1). .
&
A and B, the first

" We can consider two finite sub-algebras

‘,'.
Fénsisting of events of interest, but not directly observable, the second

‘ d?nsisting of observable events. We want to express the average informa-

ébn in A, transmitted via B . »
~\“ , - '
.‘ o _ .
M 1f,."we observe B € B , the gain in information is;
?&Ci~ﬁ‘* S = ‘
L N L. L P
; “". \ . ‘. B( ) og P(A) s ‘ (3.3.
[ h '
PN
EP thad‘the average information 1n favour of A when A obtains 19
{v( \, {l_‘ N ' . b ¢!
i } . @ =] ham 1 UUR (3.3.2)
" RS | . o ) »p l . °8 p(a) T
N ‘ . '
Summing over all atoms@B of- B The average information In A via B
SN ; ‘ o ’ . . o :
is hen"ée: : - ' ' o . '
4 \.1\!». ) ' ' .
iy | | Copalm L
] et R(A,B) = Z p(A) | p(B|A> log —mx— * (3.3.3)
A J ;‘ T A B ( ) '
bov {¢5 : : i N
gsu_mnin& over all atoms A of A and B of B .
C PG C . k *
o R
' i"
< !
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L}

A typical application is communication theory, where A repre~

sents transmitted symbols, and 0§ represents received symbc‘. We know

the probability distribution M of the transmitted symbols, and we know

the noise characteristics .V of the channel. V 'is expressed as condi-

tional probabilities V(BIA) of reception given transmission. We rhen
: </ ‘ _

have

p(A) = u@) , ' 3
a ! . . N

-

P(B) = ] V(B|Aa) n(A)
Y ' ~

summing over'all atoms A of A » and p(B{A) can be determined from

Bayes'

"

rule, Expression (3.3.3);canmthen be rearranged as:
,RM&)W-ZMM1ﬁ¢m)+ZMmmeB>mgmﬂm‘
A . ‘li‘ B ‘ A

= H(A) - H(A|B) , SRR © (3.3.4)
N . N ) /

the summations extending over all atoms A of A and B of B , and.

we see that 1t 1s the difference of two entropies H(A]B) is called the

equiypcation of the channel", and R(A B) is the rate of transmission .

).

an experimenc in a Bayesean framework [310

3.4

as

I VPR o o |
R R« SO L .

i

R hgg also been used as a measure of the 1nformation yrovided by

|
) |

Similarly we can talk about the average discrimination information,:

(3.4.i)
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N
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. “ {; )
the summation extending over all atoms. A-of A. I -can be thonght of

as the average information in A in favour of P sgainst q ; when "the -

: !
.-actual probability is p .

"’. : It is easy to show that "rate of transmission" (3.3.3), (3.3.4)

‘can be expressed as a discrimination In fact

‘ .
A : ‘ .
R(A,B) = I(p,p ;AVB) ‘ R (3.4.2)
. -' ?
' * ! . R A
where p is the probability defined by taking ‘A and B to be stochas-

»
tically indpendent.

1
1
|
P

It may be possible that events possible under q are impossible
. « - ' K ‘ P “,‘
under p , so that q . may be defective considened as a probability on A .

If events are impossible under q but possible undétr —p , then total‘know—
ledge can be gained, and we say that I[p,q] = « .
‘ ‘ ; ' ' »
When the probabilities p and q are understood, we will write

simply I(A) . When the’ algebra is understood and we wish to indicate the

'probabilities, we will use square brackets I[p,q],. i
obbiicie, e SR

‘3,5 So far we ‘have confined ourselves to information - theoretic concepts

on finite algebras. Let us nQanttempt-to extend them to the”infinite case.
\

We will restrict ourself‘to'algebras. A which are;separable.‘

Lst us first consider the concept of conditional entropy H(A]B),
(

where for - now we require that K and B are finite sub—algebras of a

A

probabilitiy algebra B This concept includes. unconditional entropy since

';H(A) = H(AIT) s T being the . triviaI*sub-algebra.i

\



We have ulrondy notleed that H o s ducreantng o dts {{ent arpu-

\

¢
ment.  We will now show that 1t s fHecreasing fn (ts second.

Firat, observe that

" ll.,‘"\
,’\ ’-‘\”,
t log.,t t 0
g(t) -
A
0 t - 0
18 a conyex function and tence: . . k
. VOow sy 4 .
, . YOuA oo
- . . \ ‘ T (
! ) ¥ B
l p(B) g(p(AlB)ué@g( L p(B) p(a|B))
“ ‘»
. ' A
- glp(a)] (3.5.1)

the summations extending over all atoms B of B . Therefore,

HAIB) =~ ] | p(B) g(P(A|B)) /
. '\‘, -
=~ I s
. = H(A) , (3.5.2)
‘ fg_;,"‘f’*
the summations extending oyer/all gxoms A of A and B of B .
REDEAE

Further, we note that-if ‘C‘Sfﬂﬁﬂthen~

HIA[O) = T p(C) HicA)

"

‘and

\ ~ o



n-

HAIB) = ) p() n(A)
- ) p@) HEAleB) ¢ (3.5.3)
the summations extending over all at oms B oof B and ¢ ot ¢, Heneo,

H(A|C) > H(A|B) . ' (3.5.4)
F
We can thus define, for any algebra B ,
H(A|B) = {nf H(A|C) , where C 1s finite, (3.5.9)
C<8
* b

Also, we can define for any algebra A

H(A|B) = sup H(C|B) . (3.5.6)
C<A
) -
3.6 We now turn our attention to discrimination information. It can

readily be proved, again from the condeglty of t log t , that I(AIB)

4
is 1ncreasing in 1ts first argyment\\ \

\r! AN
¢ ' . ! ™

Hence we can define, for any algebra A |

’ I(A|B) = sup 1(C|B) . (3.6.1)
C<A :
However, 1 1{s not monotone in its second argument. It is
true that if A > B > C .that I(A|B) < I(A[C) , but 1f A and B are
incomparable it may be false. This is not surprising 1if one recalls that

I(A|B) = lI(AvBIB) . ) .



ple counter-example can be found:

.’:1 i
v .

N Y

:Vé&flﬂnd B be respectively AO , Al and

Let p and q be defined by the following

tables, dbn A v B .

p q
AO Alm AO Al
T T )
Bo 8 4 By 6 6

1 1 1 1
| 8 8 By 6 6

1 1 1 1 ‘
5 4 8 By 6 6

Then we find that I(A) = I(A|T) = 0 but

.

I(AIB) - %log 2 ~ % log 3

-~ .5425 . (3.6.2)
-

It is quite in keeping with intuition that ancillary information ;rom a
previous experiment could improve the informativeness of a present experi-
ment .

b '

However, in spite of lack of monotonicity, 1f Bn is an increas-

ing sequence of finite.aub—algebras such that v Bn = B, then the
’ e n=1

sequences of random variables 'IB (A[o) does converge, as does the
.on
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: N

sequence of thelr expectations, hence we (wu\xun¥nniguou§}y talk about
4 .

I(AIB) and ITB(AI') whenévcr B 1s separable (éou-[lB], proof of theorem

2.3).

}
<

The limit can in fact be represented as the discrimination infor-

mation for the conditional probabf{lities of section 2.5.

Properties of Entropy and Discrimination Information.

We will here 1ist some of the more significant aspects of these

two quantitieé.

4.1

(a)

(b)

Entropy is non-negative and isotone. It is zero 6n1y for the

-

trivial algebra
A < B => H(A) < H(B) . ' (4.1.1)

H(A) >0 H(A) =0 1ff Aa-T . (4.1.2)

Entropy is conditionally additive

N

H(AvB) = H(B) + H(A|B) . (4.1.3)

This can bR derived for the finite case from (3.1.2), substitu-
ting . AvB for A , and using (2.4.5). The property follows
in the separable case by taking monotone limits. It follows from

| J
(2&6.2) that:




(c)

(d)

(e)

Entropy 1s additive for independent subfields. A and B are

independent

=> H(AvB) = H(A) + H(B) . ‘ (4.1.4)
Conditional entropy 1s conditionally additive.
" H(AVB|€) = H(B|C) + H(A|BvC) . (4.1.5)

For atomic algebras the result follows from (4.1.3) for each

atom of 'C . It follows in general by monotome limits.

Both conditioned and conditional entropy are continuous in both

arguments. If

then

Hg (Al*) = Hg(A]-),H, (A]+) + Ho(A|+)
n n
H(AIBn) + H(Als),n(Alcn) + H(A|C)

H(B_|A) ¢ H(BIA), B(C_]A) + n(C[A) . (4.1.4)

For proofs see [34] where our conditional entropy is called

/

conditional information.

(f) Conditional entropy is: anti-isotone igfipe conditioning élgebré.'

L

s 4
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.2 (a) Discrimination information is non-negative and isotone. It is

equal to zero if andionly if the two measure algebras are iden-

tical;

[e)

1(p,q;A) > 0 1(p,q,A) = 0 <=> p(A) = q(A)

vV AeA . (4.2.1)
This follows from the convexity of t log t , see [(29].
(b) Conditional discrimination information is conditionally additive; .

I(AvB) = 1(B) + I1(A|B) . ‘ - (4.2.2)
/ ' o
‘This has been proved (for separable B) by Ghurye (18]. If A

and B are independent then T

I(AVB) = I(A) + I(B) . (4.2.3)

(c) Conditional discrimination information is discrimination informa-—

.

*
tion. i.e., 3 q such that
v LeaAlB) = 1(p,q*;A) (4.2.4)

see [7], equation 3.3.
. .
(d) 1f £ 1is the‘Radon-Nikbdymfderivgtiye of p with respect‘to

q , then *

.

1(p,q;A) = E(log £) . | ' %.2.5)"

e,
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This expression'is usually taken as a definition. This result

has been demonstrated by Kolmogorov, Gelfand 'and Yaglom [27) and

\

Ghuryev[18].

1

|

(e) Conditional information characterizes sufficiently, f.e., B < A

I(A|B) = 0 1ff B 1is a sufficient sub-fleld for the paid {p,q}
‘t

\ .
i

(f) Discrimination informafion.is continuous.
If An + A then I(An) r I(A) . . (4.2.6)

Proof follows from the convexity of t log t and appendix 1.

4.3 Discrimination information, in measuring the ease in differentiating

-

one probability distribution from another, in a sense measures a "distance"
LY .
.

between probability measures. It is however, not a metric on the space of

probability measures, for it 1is neither symmetric, not does it satisfy the

triangle inequality.

!

However;'on@ can define convergence ofvprobability in terms of
discrimination 1nfofmatien, and this convergence 1is stronger then conver-
gence in the total variationinorm [8]. 15 general,‘however, the conver-
‘gence structure is only a Frechet-V-gpace [16,17], and not even a topologi-
cal space. . . o ‘ st

v i

In classical statistical problems our set of possible probabil-
ities 1is paramettized by a convex set in Euclidean space and thus has not‘
only a metric, but aleo a differentiable etructure;a 1f we let 6 repre-

I

\seﬁt the parameter for the null hypothesis, then I[e 0] 1is a measure of‘
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-

how easy it is to reject the null hypothesis under the alternative 0 .

»
b

fhe local behaviour of I about 00 suggests how "secure" our statisti-
cal inferences regarding Oo are. Since I[GO,G] is inc¢reasing away from !
90 » 1t is easy to see that the to£al differential, if it exists, must be
zero. Hgnce the curvature would give an idea as to how quickly 1 moves
away from }ts tangent plane, i.e., how quickly does the d1scriminatioﬁ‘
1nformation(lﬁcrease. Let Déeo) be Lhe matrix of second derivativés of
1[60,6] at 60 . 'Then, provided that we assume suffi;ient regularity

conditions,)it is easily seen that D(eo) is Fisher's information matrix

[29].

-



CHAPTER 11

A BRIEF HISTORY | N
g

“

1. Infggmation and Communication.

A concept central to communication ‘theory is a communication

channel, consisting of a set of inputs X , a set of outputs Y , and| a

' 1ine between them Vv . For the moment we will leave these three components

further unspecified.

1.1 Our first problem is to define what we mean by the amount of infor-
mation which can be transmittgd, that is, the information which can be con-
veyed by X . If X contains n symbols, then we can.construct n
sequences (or "super-symbols") from k copies of X , and as we would
1ntuit1vely:;xpecg that k copies of X contaiq k times as much infor-
mation, it seems reasonable to use c log n as a measure of the informa-

tion potential of X .

However, let us suppose we have two chaqnels, and in both cases
X1 cqngﬁins 2 symbolé, 0 _ and fi . A message is sent along each channe}
once a seéoﬁd. However, in the first channél, 0 -and 1 ;re sent with
‘ébputlequal reguiarity, but in the second one, most messages are 1‘; énd a
0 occurs on the gve:age'ouly once a year. -We wouid intuitively think that
the second channel would be transmitting far less information. |

: It hence appea}s fhat the probabilities oé‘the symbols being
- P . < ]

A transmitted affect the amount of information, so that. X would be completely

L]

. - 29 -
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described as a probability space (X,X,p) .

l Claude Shannon in 1948 [39] gave axioms which an information .
measure should satisfy, and derived from them the formula for entropy (I{
3.1.1). Shannon's axioms were stronger than Ehé o‘ne'e gave i‘n (r, 3.1).
" He assumed, that H ; as a funétion of the 1nd€yiduai probaﬁilitie; for |
fixed n (the number d% symbols) was Sontinuous; dand was 1ncrqasiné in

. .
n , 1f the probabilities were uniform; and essentially (I, 3.1.2): 1t is

customary, to use logarithms to base 2.

Entropy is maximum when the probabilities are uniform, and any
Y
"averaging_process"~(essentially a convolution) tends to increase it. These
properties are what one would expect 1f enéroby is thought of as a measure
|

of disorder. The concept had been used in that context earlier in statis-

tical mechanics [40].

If we consider the product set X  with probability p" , as the

set of'n—symhol sequences sent indepéhdently, then we have:

Ye>r,Vvd>0 H‘n >Yn>m :3 cCcx® o

Pf‘(cc) <e and ¥ s.€C ° J
|10, P"(s} + nt| < 5 ’ (1.1.1)

i.e., Q-nﬂ is the épproximaté p;obability, for large n , of each "rea-

. sonably probable" sequence of n elements.
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A

1.2 If there is a one-to-one correspondenée between the input symbols and
output symbols,‘then we speak of a noise-less channel. In this case, no
information 1is lost in‘transmission.. Thevmore usual case 1s where the link
between the channels 1s stochastic. For each x ; X, Fhere 1s a probability
distribution v(x,*) on Y . The situétionAis now identical with (I, 3.3),

and we can define R(X,Y) as the rate of transmission. Note that the noise

characteristic v 1s assumed known.

n

The supremum of R(X,Y) over all probabilities p on X is
called the capacity of the channel. Coding theory is concerned with

choosing symbols so as to maximize capacity.

-
.

1.3 Many real-life communication channels transmit signals which are

1
contjinuous varying voltages, and hence are not expressible as one of a
finite number of symbols. It would.be useful to have an information mea-

sure for such channels as well. - Unfortunately, the obvious quantity (3.5.6)

is always infinite in this case, and hence is not very useful.

i

“Shannon afid Wiener' [40] independéntly proposed the measure

'~ EQlog £) : ' S (1.3.1)

1

(though with opposite signs,) f being the usual dénsity of the probability

distribution.

Discrimination information has been generalized by Ghurye {18]
whefé%&g is any finite measure,ﬁabsolutely continuous with respect to gq ;

which is 0 - finite, and (I, 4.2.5) holds. Hence, the 'entropy of a contin-

r



‘ ‘

32.

\

uous distfibution p can be written as Ifp,ql] , q being Lebesque measure,

« AR

in a sensé'the "most random" distribusion. s ,
: , ) .
o Continuous entropy may be infinite, so it has no “maximum'". How-

!
.

ever for all distributions concentrated on a bounded set, entfopy is maxi-

- ] ; o
mum 1f the distribution is uniform; for all distributions concentrated on

l v ' 0
the positive real axls with expectation A~ it is maximum if the distribu~

tion is exponential )\ ; and for all distributions with variance 02,, it

'is maximum 1€ the distributioh is normal 02 . Entropy is location inva:iA‘

~

ant but it depends on the scale. It may be negative. Like'discréte entropy,

continuous entropy 1is increased by an "averaging' process.
‘ a’ C ' B . .

P
~

" 1.4 The rate of transmission can be defined in the ¢ontiriuous éase éven‘ 
' ) ' ) o )
when the entropy is infinitey as.a discrimina;ion information. cf. (I,

{B.A.Z). Let f be Ehg density of the input signal;'lesg; o i P

p(x,y) = £(x) v_(¥) RN

- ) . 3
-

L]

. (v being the noise characteristic, see section 1.2) ‘ ..
w) = j £(x) v, () dy

- -

and . - . s
. % ' . ' . ‘
: - 1 _= f"p ’ : . »
i‘.g;‘ | & X , \ .
then g N .

R(X’Y) BWI(P_:q'] . ' ‘y/(fl.lhl)

. . : e
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2. Information and Inference.

\

v
»

2.1 The concept of information in the context of statistics was intro-
\

duced by R.A. Fisher {13, 14]. He defined a sufficient statistic" as one

which contains all the information in an experiment This intuitive idea

a
is tersely expressed by (I, 4. 2e)

/

The concept was also used in the theory of estimation, as corres--
ponding to reciprocal variance (of an eétimator). The more dispersed is our

estimator, the less efficient or informative 1t is.

‘If 0 Ais a maximum likelihood estimator, it is the solution of

1

. O

where .
|

2 log £, (x,) ' L (2.1.1)
1=1

f  being the density of eac¢h sample value X, - If ® 1is unbiased, and

normally distributed, then we have
‘ i

1
l

> .

2 ' .
y L . (2.1.2)
, 21 A 62
L] B=9» g’
. » aZL Y ) ot . - ' ’ ~
so' that we can yse - w2 35 a measure of the informativeness of 6 .
' ‘ ] - ‘ ‘ - ' '
We can also talk abouf-expected informatiéﬁ; ’ .
1(6) = E, [- 3351 =2 [ 22010 . 2.3
M AL L A L : s
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¢

o :
Fisher calls the quantity ' 1(0) 'the intrinsic accuracy of the density

f9 , and says it represents the maximum:amount of information provided
” !

by a single obsetvation [14, p. 709].

Under appropriate regularity conditions, we have the well-known

Rao-Cramer inequality [35; 5 p. 477ff) which gives for an unbiased estimator:

. A ' )
1
8) > ——u0u 1.
var(0) ATO) | (2.1.4)
Equality holds if and dniy if tke estimator is sufficient and
nofmally distributed, so that Fisher's ifea of maximum information is well

s founded. (2.1.4) can be extended to thé& ulti—parameter case [35]. Letting

‘I be the matrix )

3210g fe T e
- By G556 (2.1.5)
‘ S URAS I
then we have that N .
3 ’D(G)lz'n‘l 1t _ ' | &2.1.6)

/.

<

D, represehting the dispersion matrix, We have already seen the relation

) -between the mﬁtrix I and discrimination information (I, 4.3).
3 : -

'2.2, If’ e is ‘a sufficient estimator, then we .can write f (x) = ge(t)

”'h(xlt) , where g 'is the density of e . ,Then,
9" log fe(x) 9" log ge(x)

262 . a2

: (2;2.1)



V&

Bearing this {a mind, we can del fne, for any random vector 1 such that

. v ,
lts one-parameter density s twlce~different{able, the tnformat fon quantity:

32 log g)
[ (:l-) - (_ S, . . (Q‘.Q.ﬂ
)
¢ 0 302 '

)
This quantity has certain attractive propert ies, ['3.4, p. 5.

(a) l()(T) > 0 equality holding {ff T has the me diatribution for

all ©

(b) IO(T) < IO()() if T 1s a statistic from X , equallity holding

only in the case of sufficiency.

(c) Ie(Tl.Tz) - I()(Tl) + 10(T2) fif T and T

1 , are independent.

\

-

2.3 Fisher drew a parallel between his information and entropy [15, p.

47). Thermodynamic processes which are irreversible arq accompanied by an
4
increase in entropy. Statistical processes which are 1rd}versible (i.e.,

[ -

data processing) cannot increase information..

- .

2.4 A complete theory of inference based on discrimination information

has been developed by Kullback (29]. In 1it, the-discrimination information

18 used as a pseudo-distance. Central to his d,relopment 1s an exponential
)

family of distributions "closest" to a "null" distribution ef all distribu-

tions yielding the same expected.value for a statistlﬁ'

\
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»

2.5 The calculation of a statistic¢ can be conafdered as a communications
ghnnnel as in section 1 which 1s ambiguous but otherwise nolseless - {.e.,
the measures v(x,-) are degencrate. Cslszar [7] introduced the idea of
A noisy channel in statistics, which may be realized in the case where an

observation has an error in addition to the intrinsic error of the experi-

mental material. He calls {t the case of indirect observation.

Not surprisingly, .an indirect observation can only decrease the
discrimination 1nformhtionf 1f thé decrease is zero, the channel can be
called sufficient. If the decrease 1s less than ¢ , the channel can be
called € - sufficient. (However, 1f the information in both the direct and
indirect dbservations 1is {infinite, the "df;reaée” is undefined.) The same

applies a fortiori.go statistics and subfields. 1If a sufficient channel

Hoes not exist, or 1s expensive to construct, and € - sufficient one may be

adequate, - : %
. |
3. YVarious Tangents. ’
3. Renyi. [36]) has considered generalizations of entropy and discrimina-

-

tion information by relaxation of, the axioms.

v !

N
» S

By replacing the conditional additivity (I, 3.1.2) by independent

-
N

additivity (I, 4.1.4) he deduces that the quantities

’
4 * : 1 . .
HgW) = 1 log (1 Pawy1®)
_ 148>0 | (3.1.1)

the summation extending over all atoms A of A .

o
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also satisfy the axioms. It {s easily shown that

Lim B (A) = H(A) . (3.1.2)
g1

Renyl's treatment includes defective probabllities as well. In thia case

the quantity in (3.1.1) s divided by P(L)

Sim)iarly, Renyi geneéralized discrimination informat fon to

- A ‘ p(A) 8
Ly = gyles Loa@) (2317 L A1, @)

the summation extendthg over all atoms A of A . This quantity again

satisfies the independent additivity property (1, 4.2.3).

3.2 Discrimination information was seen, in the general case, to be the

LS
supremum of discrimination information over all finite sub~algebras.

An analoioua quant}ty was defined by Ghurye [18]) for any finite

measure p dominated by a O-finite measure q defined on A , and any

convex function f defined on [0,x] , as

= M .
Ig(A) = sup [ae) &0 ) (3.2.1)

where the sumhation extends over all atoms B of the atomic subalgebras

B of A.

If ¢ = %5 then we have the analogue of (I, 4.2.5)

LA - f fo¢ do 7 , (3.2.2)
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We have seen that continuous entropy {8 an example of this

generalization. We will need it again in chapter II1.

3.3 Two of the most significant properties of discrimination information
are that'it {s monotonically increasing: (B é»A => 1(B) < 1(A) ; but is
strictly increaéing only for non-ahfficient sub-algebras, 1.e., I1(B) = I(A)
if B 1s a sufficient sub-algebra). It tﬁrns out that convexity of t log t
is the only assumption needed to prove these two facts. Csiszar [7) has
hence defined for any convex function f » the f-divergence, between the
probaSility measures p and q , defined by (3.2.2). To take care of ché

situation where p 1s not dominated by q , he defined,

0 a
0 f(o) 0 and 0 f(a)

a
Um <£(3)

‘ f 0
- a lim £ . (3.3.1)
uso U '

\ '

Tpere'may be situations where some f-dfvergences are more mean-

ingful than'giscrimination information. It has already been mentioned that

[ . .
the neighboufpood systems defined by 1 on the space of measures need not

define a topofpgical space. However, 1f both f(0) and 1lim ESEL are
. e

\

\\ 4
finite and f %s strictly convex at 1 , then If, dogsf[efine a topology,
equivalent to the variation difference, the latter itsel

being an f-diver-

\ .
gence with f(t) * lt-ll [8}.
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If p 1is'dot dominated by q , then discrimination information
is infinite. Howevef, if an event is impossible under q , yet has a posi-

tive but very small probability under p , we may not want to think of this

\

"discrimination distance" as so large, as in fact the two distributions may

be very difficult to tell apart by experiment, By appropriate choice of

f , we can allow If to remain finéﬁe)in such a case.



CHAPTER I11

| N [/
INFORMATION IN MARKOV PROCESSES
1. Basics of Markov Theory.
1.1 Let us now suppose that we have a family of sub-algebras of a probab- '

111ty algebfa A , thch has a temporal atfuéture. Let T be a totallvy
ordered set (which 1is usually assumed to be either the non-negative integers,
or the noh—negative real line). For every t € T , we will suppoke we have
a sub-algebra Bt , called the algebra of events observed at ‘epoch t
"Also, for any closéd interval ([s,t] , we have an algébra of‘évents Cs,t s

called the algebra of events observed between epochs s and t . As we"

will be dealing ‘solely with sepérable algebras, we will assume that each

Bt and each C8 . 1s segarable. We will, in fact, assume a stronger sep-

arability condition:

(O8]

-

If D 4s a dense countable subset of (s,t) then

C = v.B . : (1.1.1)

I

f
This latter condition, of course, is trivial in the case that T 1is

©

countable.

If we have a continuous probability p defined on A , we will

,C  ,p) a separable'stochastic process. We will '

call the system (A,T,B 8.t

t
say that 1t has the Markov property if for any t and s > t , we have:

The algebras Co ¢ and Ct g are conditionally independent
] *
‘ "V
| - 40 - , .
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glven Bt .

We will say that 1s is temporally homogeneous if, for any s and

t and h (8 < t)

N -

p(EIBS) - p(FIBs+h) EeB FeB ., - (1.1.2)

We will concern ourselves exclusively with temporally homogeneoué

.

processes having the Markov property.

The quantities in 1.1.2 are called transition probabilities, and

our separability condition 1.1.1 ensures that any event in any Cs ¢ has‘
. 2

a unique probability defined in terms éf them, conditional on Bo .

!

L] o *

1.2 The preqeding was a brief introduction to stochastic procgssesiin
the language of Chapter I. Iﬁ order tormake usé of other reSu;tgl without
the nee& for lengthy reformulation,:wé will return to moré‘stanqgrd nota-

tion. We will assume that, the algebras’ Pt ’a;e all 1somorphic, and hence

v *

can be represented by a family of randoﬁ%variables with values in the same .
' M' . * )

-
4 'f’k

space. _
{ ' e

{" Let (Q,A,p) Bbe our basic probability spéce,‘and let (E,B)
, < } .

be another measurable space which we call the state space. For each t € T

]

‘ Lo : -
let X _ be a measurable function from 2 to E . 'Our algebras Bt then

1 () , and the values which Xt takes on are oﬁf observa-

4

are simply X;

/

A

" bles.

¥



Two processes xc and Yc on the same state space are said to

be equivalent if the finite-dimensional distributions are the same. i.e.

i
-

if ¥Yn, v cl,---,tn F TYF ---,Fn e t

1’

p, (X eF 54 = 1,n) =P, (Y eF ;3= 1,0) . (1.2.1)

tj ) j

b

We will be concerned exclusively with finite-dimensional distri-

butions ahd their limits, so that we will essentially identify equivalent
pProcesses. As eyery stochastic process is equivalent to a separablé pro-~
cess [32, IV, T29], our géparability condition 1is hence~no restriétion.
+(Although our definition of seéarability appears more restrictive than
Meyer's, I céonjecture they are equivdlent if one as;umes contiﬁuity in

probabflity. See [9, II, Theorem 2.2].)

I

1.3 Transition probabilit;es\are usually expressediin terms of Mafkovian‘

.

kernels [12, 10, 33] ' o
P (x,F) = P(Xgy EF | X, » x) . : , -

4 |
TR, T ® I-Bs)‘ . .. (.3

L
~

[

Given an initial disirﬁbution P, ,.we can defipe tﬂe disptibu*l '

[N
-

tion at any time t by

.
i
v

*

PX,EP) - ] p_(@x) B, (x,F)

(}.3.2)-

~
»

henqe we can sge that the Markov kernels act as oﬁetators onh the linear %
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space of measures on [ , which leave the subset of probability measures

invariant.

The also define operators on the dual space of functions on E ,

defined by

®, ") (x) = f P, (x,dy) d(y)

1.4 The operators (?t*} form a semi-group of transition operators.

That is, they satisfy the Chapman-Kolmogorov relation

P P '=P , (1.4.1)

they take positive functions into positive functions, and they leave
constant functions invariant. From (1.4.1) we can see that they commute

with each other. They are of norm\l.

i

ghe operétors can be embedded 1in a Banach algebra, in which
'analogpes 'of classical algebraic and analytic procedures can be developed

[gl] including iimits; differentiation and{integration. There are two
‘limits Fhat concern QB. We say tha; the operator sequence {Tn} converges

to T uniformly or strongly as, respectively

[ -7] | so e

[IT£- 1] +0 vfed L (1.4.3)

| D Being the~doma1n of the operators, Uniform convergence implies strong

.
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convergence.

*
Semi~groups of transition operators such that PO = I and

that Pt* ~ 1 strohgly as t + 0 are called the Feller semi~groups [33],

and are in fact (strongly) continuous everywhere. We will 8221 exclusively
’ . ‘% .

with such semi-groups, and in fact we will suppose that the transition \

probabilities are conservative, which 1is to say they are non-defective prob-

ability measures.

If the limit

.
P -1

x t :
A = lm ———— (1.4.4)
t+0
- ’

exists uniformly, then we say that the semi-group is (uniformly) differen~

tiable, and frdm this fact follows the Kolomogrov background equation:

dp_*
o BN (1.4.5)
dt t : oo
In fact, the seq;—group (Pt*)_ can be represented as: ‘ -
B N * \
p*e J AD _ At (1.4.6)
t k=0 k! ‘ ‘

»

" ' B
A 1s called the infinitesimal generator of the semi-group. -

If the limit in (1.4.4) does not exist wniformly, but 1f it

exists strongly in some subspace C dense in D (1.e.
o 4‘. ' . P*f"I
* t
A"f = 1im

- vEec , . Q.4.7) -
. t¥0 . ‘
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‘ . .
the limit being in the norm), we still say that A is the infinitesimal
‘ . .

‘ dp .
generator. (1.4.5) holds still {although dz is now only a strong

derivative] but (1.4.6) need not, since A* may be an unbounded operatgr,
so that the exponential function is not ddfined. However, the semi-group
can be approximated by semi-~groups of the form (1.4.6) [12]; We also have

the inverse of (1.4.5), viz. @

o .

This :elation is true on D 1if (1.4:4) exists uniférmly, and 1is

st111 true oMW C 1f only (1.4.7) holds [10,21].

1.5 An important class of Markov processes is that of the “step" kind.
That is, the process remains constant for a random length of time, and then
Jumps to another state, where it again remains for a random lengthiof time.

'Only a finite number of jumps occur in any finite interval.

There are three limit expressions which figure in the study of

processes of this kind. .

Y 2

11m P, (x,{x}) = 1 | | (1.5.1)
t+0 : C ' ]
Pt(x,{x})~— 1 ‘
lim — — = A (x, x ) o (1.5.2)
£+0 t o
P (x,F). U s
5‘3 —— = A&P Fg¢ {x}‘ E . - (1.5.3)

ds . (1.4.8)

-
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Co;Vergence in any of the three can be pointwisg or uniformly in

x , and in (1.5.3) the convergehce can be pointwise or uniform in F .

(1.5.1) expresses the fact that 1f‘\XS = x , then for t ‘suffi-
ciently small xs+t = x (almost surely). It is a necessary condition for

the sample functions to be step functions. ,

Uniform convergence of (1.5.1) is equivalent to the boundedness

-

of A0 "and implies uniform convergence of (1.5.2) and uniform convergence

| !

of (1.5.3) in F . Furthermore, Al is in fact a measure, so that

A =IA0 + Al can be considered a signed measure, for each x , with

A(x,E) = 0 ; and Al(x,F) is a measurable fudctiéﬁ’for.eachr;F {9, VI..Z].

”~

If in fact the convergence in (1.5.3) is also uniform in x , then

it follows that (1.4.4) exists uniformly, and

Ao - f A(x,dy) f(y) | (1.5.4)

’

(see appendix 2).

[N

-

! B ' - - *
s Even 1if (1.4.4) does not hold uniformly, the operator A will

1 R
' be bounded provided that the fuffttion A is.

rd T ! A4

_5:23 Two Simple Examples.

L
' .

We will now consider discrimination information 15 a temporally
i , ‘ _ _ -

' homogenous Markdv process.



v i‘ ,
Let N suppose that we have a separable stochastic process

(A,T,B‘\ﬁ ' ,p) ‘ If q is another probability on A , Wwe can consider
Ilp,q] , the discrimination information in favour of P against q
contained in varioua sub—algebras of A . 1In particular we will be inter~

ested in the information contained in the sub-algebras Bt and Co‘t

>

Csiszar has considered discrimination information between Eﬁo
Markov chains with different initial probabilities, and the eame transition
probabilities [6] Not surprisingly, I(Bt) deecreases with ‘t , in faet,
if the chfin is recurrent:\irreducible and aperioiic; it'converges to zero,

. ,
hence proving ergodicity. \ "\

\

, \
We will take the oppos}te approaeh. We will'@ssume that the
\

N

initial subfield B is given, and\will be}goncerned with the discrimina—

tion information between two familieS\of transition probabilities.

A

' - \ e .
First, we will calculate the disiiimination information directly,

for two simple. cases. ) \

oo | A
2.1 Suppoee we' haLe two Poisson processes s:\rting w%th x =0, with .
probabilities pl -and pAZ ,and with intensity parameters’ Al and Az
respectively. We want to find t,‘ladiscrimination information in favour of
'pxi against pk (1 e, in favour of the hypothesis\ A = A ‘againsttthe '
hypothesis A=, ) in the subfield’-C ot C
: Sy

[ A

For any‘integer n ; let skj(n) represent the measurablejset

e xgew - xdEL w2 g \ @y



" and let JACY be the 0-algebra generated by these sets.

‘this algebra are:

n . i
(n) (n) : ,
n S = s (2.1.2)
. | ™~
n
yhe;e '(jl’ ,jn) =ne NO
.Noy, because the process has ihdependent increments, we have
' () n A t A .t ji . g
Py (€,77) = T exp (————9(———? , T=1,2 (2.1.3)
r 3 i=1
-Hence, .
| . 9, (™)
() @, , [ 18 '
I(py »py 53 ) =] P €, 7) Tog| ——— (2.1.4)
1 72 C(n) 1 ~ Py (Cn ) . -
| n 2 1
/ . " B . Al Y
\ /«’ | | = (Az—)\l)t + Alt log Tz- i

. "

Note that n, does not figé;e in’ 62 1. 6), so that.m‘ing (1.1.1) and ’

/
(1,4.2. 6) ‘wer obtain /

A

2.2

the origin with dif ering diffusion rates a ‘and b .

discrimiuation inf rmation in favour of the. hypothesis foi

e

48.

‘ The atoms of

-

r

{

(2.1.5)

Again we want the_

= at agaihst‘
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\
Let ’(‘) represent the algebra
n
v Bk(
g k=1 -

n

The discrimination {nformat fon between two central normal distri-~

but fona with different variances can rcdadily be calculated aa

2 2
2 2. 1 19
o - S S 2.2.
ll 1»02] 2 (10h ()2 02 1) . ( 2 1)
2 2

hence we see that the information depends only on the ratio of the variances,

-

Thus, the informatfon in the sub-field Bt is equal to

o

1 a a l
3 (logb+b 1) (2.2.2) .
and in, J(n) it 1s -equal to (using the property of 1ﬁdepéndent {ncrements)
n a _ a
‘ 7 (log sty -V - (2.2.?)
' Letting n + © , we see that the informstion in C£ is fpfinite.
. ‘ B - Sy .’ *
N ' o
1
3. A General Formulation.
3 b
- 3,1 Let us first define some notation.
-For any t let ¢(t,x) be IB (Btlx) , the discrimination
. o .
information in Bt conditioned by Bo - It 18 the discrimination informa--
tion between the transition brobabiiities with lag t , and is for given t

.
. [ ) LI M
( . . ~ * : '



50.

»

a random varinble on Bo » lies a tunctfon on F .

-

By ¥(t,x) we will denote lB (¢ (lx) the information in
o,
o
CO conditioned by B) - It 1s nlso a function on E ., 1f we know the
[ ' ¢

inftial dimstribution m , then N

C = 3 + n ‘ '- -
1( O’t) 1(b0) J Ple,x) dn(x) . | B (3.1.1)

N

Obviously ¢ is increasing in {ts firat argument, and
~ N 2 ' ,(3.1.2)
An important case is that in which ¢ < ® and equality holds,

for then the observation at epoch t 1s as informative in discriminating

the two probabilities as all events occuring beforehand.
We noticed this case for the Poisson process.

b We will require the following regularity conditign on ¢ : For
, .
every\&

» ¢(t,*) € D, the dpmain of the transition operators. .
. \ , \

, In order to calculate ¢ directly, we must have explicit expres- .

sions for the two sets of transition probabilities Pt and ., Qe . For many
~ concrete processes o{ the step kind, the parameters are defined in gérms of -
the intenaitiéa-defgned in 1.5;. and expressions for the transition probab-
ilities can be.very cumbersome. We will derive :i‘ii}tator equation for

¥ , which does not involve ¢ . ¢

L4

i



We will malntain the following notation: Pt will be the transi-

tion probnbilitf of the process under atudy, its associated operator will be

A A
Pt y A the {nfinitesimal generator. If the intensities of 1.5 exisc,

they will be denoted by AO and Al , A = AO + Al - For the procesa against

x

which we ﬂre‘ﬂ}scrlmlnéting, we will use the respective symbols Q[ ,(%

n_"*\‘

»

3.2 Let us first consider the case where our temporal space consists of

the non-negative integdrs. *

”,

Theorem 1:

=1 |
$(e,x) = J B, ¥(L,x) . (3.2.1)
k=0

Proof: 1In this case ¢(1,x) = ¢(1,x) then

e . .
P(e,x) ~ 1 (v B | x)
Bo k=1 k
t-1 t-1
. -1, (Vv | x) + 1, B | v B ,x) . (3.2.2)
By kel % Bt e K
I . R -
By the Markov property, we have ‘ 0
t-1 ' «
Ig (B| v B,x) = 1o (B |B _y®=P _, v(1,x) . (3.2.3)
[ k=1 o

Thus
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S

£

A :
P(e,x) = ¢(t-1,x) + p(~l P(1,x) . (3.2.4)
(3.2.1) follows by induction.

" Corollary 1: I{ ¢(1,-) (is constahc, then we have sigply (since the

&

Pk are transition operators)
P(e,x) = t p(l,x) . (3.2.5)
”~
3.3 Now let us consider the continuous time case. Denote by Gt a the
n
algebra Vv Bkt - The process restricted to this algebra can be considered
k=1 —
, n

' *
a discrete-time process, with transition operator Pt/ . Hence we have,
g n

from (3.2.4)

n-1

* t
g G 0= 1 P oG, x . (3.3.1)
o k=0 —
n
We have that -V G ~ by our sepafability assumption, and hence
. nel  GoR t ~ .
Um 1z (G | x) = pe,x) . (3.3.2)
n?* o ’ : \, :
1 el ) .
Let us denote the operator '— Z p! by S . Then (3.3.1)
n k=0 kt n,t )
n
becomes
. t . )
l%(Gc,nl x)=nS 0, x (3.3.3)
» \ "
r
{



3.4 Betore we proceed, let us define a concept ot infinftesimal Informa-

E}gg) which we will denote by 1., by

L(x) = lim LACTE N . ‘ (3.4.1)
t40 t

wheﬁever the limit exists.

Now, the operator Sn ¢ converges, (since the semi-group is con-

tinuous) to

Hence, as all the operators are continuous, we find that

IBO(CO,tIK) = (P(E,X) = rlli: (Gt.,nl X) I i

' t
= ;im Sn,c n ¢(E" x) .
® i I
‘ t - . ] _
= J P ds L(x) . (N4.2)
s
0 SN

provided that L 1s defined as a uniform limit.

We enunciate the result as

Theorem 2: . If L., the infinitesimal‘informatidh, is defined as a uniform
limit, then : ¢
p(e,e) = Io P: ds L . . (3.4.3)
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)
‘,ﬂ

3.5 Suppose that we have that the function ¢(t,*) s constant for

every t . This will be true 1f the following condition is satisfied:

For ever t €T and ever x,x' £ E , there exists a (measurable)
y y >

permuation 7T of E such that ,

Pt(x;nE) = Pt(x',E)
' (3.5.1)

Q(x,TE) = Q (x',B) .

'

The aforementioned consequence of this condition is easily veri-
field from the fact that a.non-singular transformation leaves the informa-

tion invariant [29, Chapter 2, Corr. 4.1].

Condition (3.5.1) 1s satisfied in particular if the state space
.has a group St:fffﬁf9“ and the process has independent increments. In this

case (3.4.3) takes on a very simple form:

Corollary: If (3.5.1) is satisfiéd then

v(t,x) = Lt . | (3.5.2)

3.6 We now hqve a theorem which ensures the existence of the infinites-
imal' information. « .
- {b ' hd | ’
| | | - P(x,F)
Theorem 3: If 1lim Pt(x,{x})‘= lim Q (x,{x}) = 1 and if both ————
R —— t
t+0 t0
L 3

Qt(x:F) ’ - c & ) -
c converge uniformly in F € {x}  E for every x € E , then

and
AN ’ ‘ ' . ) ‘ B -



[

the infinitesimal information L(x) = lim QSE:EL exists and 1s equal to
\ t+0 )

i

SRCICHENIER ICHEN I 1[Al(x,.),ﬁ (x, )]

- Proof:’ We\havg that

. ' P (x,F)
P(L,x) = 2:2 z Pt(x,F) log Q—t—(m , A fini‘\te.

4

The summation extending over all atoms F of A .

Because of the separability of & , we.have in fact a sequence

An + £, such that .

¢(t;x) = lim I<Pt(x;.) » thx,.) ’ An)

n+re

Without loss of generality, we may assume that. {x} e An Yo.

-

‘Then we have

¢(t,x) - 1im I(Pt(x,°),Qt(x,');{x}c A+ I<Pt(x,°)5Qt(x,');{{x}}

E-‘KD
=, (%) +¢_(£,%) . '  (3.6.1)
Now !
’ lim ¢t I(Pc(x,f),Q;(x,’);{X}c A )
t¥0 ' ‘ n
. I”t(x:l:‘) . Pt(xaF) Qt(X,F)
s = lim ] ———— log ((~—)/ (———))
40 t t. t
t

the  summation extendingfover all atoms F of ‘{x}c An

’ A L]

4



= 1A (x,7),B (x,‘);f\n)

(3.0.2)

and because the convergence is uniform in the elements of {x}° E we may

f

interchange limits, so that

1im t~ ¢> (t,x) = lim I(Al,(x, ),B (x, )i A )

t*o n-He

-

= 1A (x,"),B) (x, ) ]
It follows readily from 1'Hospital's rule that

1im ¢} ¢ (t,x) = A(x,{x}) -~ B(x,{x})
tY0 © |

Hence our theorem is proved.

)

(3.6.3)

(3.6.4)

3.7 Equation (3.4.3), though interesz}ng, is not very useful , because

its right side could be rather cumbersome to evaluate.

-

senf another theorem.

We therefore pre-

Theorem 4: ' If (3.4.1) holds uniformly 1i x and if L ¢ C .

the domain of A* then

3 *
(52-— A)p =1L

Proof: From (3.4.3) and (1.4.8) we have

A" (e, - (p: -l .

(3.7.1)

(3.7,25
"

.
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: T
From (3.4.3) we also see that
L C(3.7.3)
dt t ’
' ) )
Combining (3.7.2) and (3.7.3) we obtain (3.7.1). )

- Corollary: 1f Ab and Bo are bounded and (1.5.3) holds uniformly in x ,

then (3.7.1) holds, where L 1s given bv Theorem 3.
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 Then 1~ i, and E(in)-*E(i)'. o ‘ '

b | APPENDIX 1

A convergence theorem:

Let (8,F,p) be a probability space. »

Let {An} be a family of O-algebras increasing to A <« F .

Let f be a function convex on [OﬁP)., and let "p be a non-negative
integrable function. .
‘Let ¢P = E(p'An) and ¢ = E(p|A) - Further, let 1 =f°¢ .

'
'

N ' R

: Proof: {¢n ;n=1,...,°} is a martingale, and hence On " Geo [28).

L)

As coyvexity implies continuity; in + 4., {1n ;n=1,2,...} forms

a sub-martingale. Hence n < m =>

E(L) < () < EQ)

) . - C ? ,
Thus E(in) 1s increasing and bounded.above, and converges to some
. . N ) - _/P
< - = . -— \ .
number __E(imz Now  EQin) E(fn)\~‘E‘1n?l. .

@

By Fatou's lemma,

1im E(1)) > E(t)
n . ' !

’

‘so it Gnly‘remains to prove that
- .. ’_-'v‘~l
o E(1) = E(L) | .
n . . .



Let  x be the largest number such that  {{x ) ~ 0 . 1f there s no such
0 ()]
number, .then { > 0 | l; ~*0 and the theorem {8 proved. Otherwise, let

ax + B be the line Qf mupport of  at x . 1L.e., -
! ' Y

-~ -

. ax + B8 ~0 anfl f(x) >ax + §
0 . -

-

. PO '

X < X
[} ]

X " XA
0

hence by bounded convergence t(ir:) st .

Case 2: Suppose a < 0 . Let g(x) =~ -ax - B for x > x

-0 for x < x

{ { e f o <ge¢ <¢ )

l’ n n — n— n

Hence, by dominated convergence .5(1;) - E(1) .

-



APPENDLX 2

A semi-group theorem:

o
Let (E,l) be a measurable space, . ‘

. § , *
Let {Pt} be a semi-group of Markovian kernela on (E,t) and let {Pt?

be the associated linear operators.

Suppose that

P (x, {x}) - 1
An(x; X )=~ lim -
t+0

t

and

P (x,F)
Al(x.F) = 1lim -~;-——
tt0

! &
N . .P- 1

exist uniformly in x and F ¢ {x}C E . Then the limit —£~E—-‘ - A

exlsts uniformly as t + 0 and,K A = ALt A1 1s the kernel of this infin-

T

itesimal operator.

Proof:

® -

Po-1 [P (x,dy) £(y)-£(x)

- A = gup sup C
=1 =

- j A(x,dy) f(y) | -

Let us separate the {ntegral into two parts: over {x} and over E - (x} .
ad .

of cﬁurqo .

)
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< Jp (xdy) £(y)-£(x)
‘ T T - [ A(x,dy) f(y)'
5] "
[P Gdy) () -£()
. t .
: R f A T |
.A(K} \
P (x,dy)f(y)
i + J e J A(x.dy)((y), -
JE~{x} - TE={x])
‘Now, the first quantity in | | 1s merely
14 ,
""X‘ Pt(’(1{x}) -1 : . \
: c - A, (xDY, [ £(x)
and as gre are taking the sup over functions for which llfH ~1,
[£(x) | <1 . Thus we can make the first quantity < € - The second
quantity in I I' is less than or equal to
P (x,dy)

t

I - A(x,dy)l lf(xil
E-{x}

and again as If(y)l <1 we have the integral <

Pt(x:E—{x})
sup — < - A(x,E-{x})| < €

;!FE{X}CE

/ ‘ .
because the convergence is uniform in both x and F . Thus the theorem
: { .

is proved.



