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ABSTRACT

I. Multifactor Treasury Bend Pricing: The Empirical
Evidence

In this paper, a continuous time multiple state
variable bond valuation moudel is used to estimate the prices
of United States Treasury coupon bearing issues traded during
1988. State variables are constructed from the implied
yields of Treasury bills as well as highly liquid longer term
bond futures and are assumed to follow Ornstein-Uhlenbeck
processes. The parameters of the state variables' stochastic
processes are first estimated over their time series and then
used as inputs in a second least squares procedure over a
cross-section of bond prices to generate consistent and
asymptotically normal estimates of their associated market
prices of risk. Empirical results suggest that at least two
state variables are necessary to explain the observed term
structure.

II. Multifactor Callable Treasury Bond Pricing

Callable United States Treasury bonds have provisions
allowing the option to be exercised at any scheduled coupon
payment date during the last five years of their thirty year
maturities. A European stochastic interest rate call option
model is derived in a manner consistent with an underlying
multiple state variable coupon bond valuation model. The
value of the call feature allowing multiple discrete exercise

dates is approximated using Black's pseudo-American option



approach. Estimated prices of callable bonds trading during
1988 are subsequently calculated as the theoretical price of
an equivalent characteristic straight bond less the value of
the call provision.
IIX. The Term Structure of Futures Prices

The ratio of futures and spot prices is a function of
the cost of carry rate and time to maturity and converges to
one at contract expiration. Therefore, this variable can be
modelled in a manner similar to that of a Treasury bill. A
continuous time model to explain the relationship between
futures and spot prices is derived allowing the cost of carry
rate to be stochastic and a closed-form solution obtained.
The model is extended to a multivariate framework allowing
individual components of the cost of carry rate (domestic
interest rate, convenience yield, and holding costs) to each
be stochastic in nature. Empirical implementation of the
model is illustrated using British pound, Deutsche mark, and
Japanese yen foreign currency futures. Results are then
compared to those obtained using the standard non-stochastic

arbitrage model of futures prices.
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CHAPTER I: Multifactor Treasury Bond Pricing: The
Empirical Evidence

1. Introduction and Literature Review

The continuous time arbitrage pricing approach to the
term structure of interest rates assumes that the values of
default-free bonds may be expressed as functions of
underlying state variables following continuous time
diffusion processes. Provided that markets are perfect,
standard arbitrage arguments can be employed to derive a
partial differential equation governing the price movement of
bonds of all maturities. Various models are distinguished by
their choice and number of state variables, the way in which
the associated market prices of risk are determined, and
whether or not a closed form solution has been found. A
summary of the relevant literature is presented in Table I-1.

Models with a single state variable, the instantaneous

riskless rate of interest (r), have been suggested by Brennan

and Schwartz(1977), Vasicek(1977), Dothan(1978), Cox,
Ingersoll, and Ross (1985}, Longstaff(1989), and
Jamshidian(1989a). While these models generally allow closed

form solutions, their empirical success is limited by
implicitly requiring the returns on all bonds to be perfectly
positively correlated. Two state variable models appearing
in the literature mitigate this problem but encounter others.
Preference dependent models derived by Richard(1978) and Cox,

Ingersoll, and Ross(1985) incorporate the instantaneous real



race of interest and expected inflation as state'variables,
both of which are typically unobservable. The Cox,
Ingersoll, and Ross and Longstaff models are distinct from
all other work in the area by having been derived within a
general equilibrium context.

Brennan and Schwartz(1979,1980,1982,1983b) have
proposed a two state variable model using the instantaneous
nominal interest rate and the yield on a consol bond (1).
Although not necessarily observable, they can at least be
adequately proxied. However, because of the choice of
stochastic processes governing the state variables and the
desire to eliminate estimation of the market price of consol
yvield risk via the properties of consol bonds, the model's
solution must be obtained by numerical methods. This, in
turn, resulted in the empirical necessity of assuming
intertemporally <constant market prices of risk.
Nevertheless, the series of Brennan and Schwartz papers
represent a significant contributioen and include the first
attempts at empirically testing arbitrage term structure
models. In subsequent work, Schaefer and Schwartz(1984)
obtained an approximate analytical solution of a similar
model, this time based on the consol yield and the spread
between the consol rate and the short rate as orthogonal
state variables.

In the course of Brennan and Schwartz's early empirical



work, the possible need for more than two state variables was
demonstrated. Using a sample of Government of Canada bonds,
Brennan and Schwartz(1980) discovered by applying factor
analysis to the residuals of their two variable model that,
at most, there existed the need for one state variable in
addition to the short rate and the long rate. Subsequently,
this result was supported using United States Treasury bond
data in Brennan and Schwartz(1982). However, the appropriate
number and exact specification of relevant state variables
remains an open question.

A multivariate model of the term structure was
developed by Langetieg(1980). It can accommocdate an
arbitrary number of state variables. The model assumes that
the vector of state variables follows a joint elastic random
walk, the instantaneous riskless rate can be represented as a
linear combination of the state variables, and that the
corresponding market prices of risk are, at most, time
dependent. Langetieg(1980) shows that the model's closed
form solution can be simplified by further assuming that the
Ornstein-Uhlenbeck processes followed by the state variables
have mutually uncorrelated error terms. when this last
assumption is maintained, Oldfield and Rogalski(1987) find a
closed form solution when the underlying state variables
follow square root or arithmetic stochastic processes. As

yet, no attempt has been made in the literature to test



empirically the ability of the above multivariate models to
describe accurately bond prices or, indeed, any term
structure model with more than two state variables.

The aim of this paper is to develop and test an
operational bond pricing model which is straightforward to
implement and avoids several of the drawbacks encountered in
previous work. The model outlined in Section 2 possesses a
closed-form solution and is able to accommodate an arbitrary
number of state variables. Section 3 suggests three sensible
variables to describe the yield curve, which may be observed
directly in highly liquid T-bill and futures markets, from
which state variahles can be constructed. The model
estimation procedure which allows bond prices to be estimated
cross-sectionally at a single point in time is discussed in
Section 4. Prices of United States Treasury notes and bonds
are then estimated monthly for 1988 under one, two, and three
state variable scenarios. The predictive ability of the
model is then examined in each of the three cases, with the
result that two state variables are sufficient to describe
the term structure. Concluding remarks are contained in
Section 5.

2, Development of the Model

The model begins by assuming that the price at time t

of a default-free discount bond paying $1 at maturity time T

can be expressed as a function of a vector of n state



variables x=(x;,...,%Xp) and time to maturity Tt=T-t, denoted
Be=B(t,T,x). This function defines the entire term structure

of interest rates with particular values of B=B(t,T,x)

representing present value factors that can be used to price

any pattern of future payments. The n state variables

X=(Xy1,...,Xg) are assumed to follow a joint stochastic

process of the form:

dx; = a;(t,x)dt + o;(t,x)dz;, i=1,...,n (1)

where dz; (i=1,...,n) are standard Gauss-Wiener processes

with E[dz;]1=0, E[dZ;2]=dt, and E[dz;dZ;]=p; dt.

Provided B(t,T,x) 1is continuous in t and x with
continuous partial derivatives with respect to t and x and

with continuous partial second derivatives with respect to x,
Ito's lemma shows that B; follows the process:

dB,

where

dpdt + 2 PBiedz; (2)

B/t + X, | (8By/3x;) 0y

’

Ope
2 . OX. e 20s PO
s X X (32By/3x;9x) 6105p; 5
Bipr = (9By/9xj)0; , i=1,...,n.
Assuming frictionless markets, consider a portfolio

comprised of n+2 discount bonds of varying maturities denoted

by B; in the vector B=[Bj,...,Bp,2] with the associated

5



vectors of parameters oO=[Gg;,...,%py,] and

ﬂi=[Bial.....ﬂiBn+z]. for i=1,...,n. Using an arbitrage

argument similar to Ross(1977), suppose the vector of weights

w=[®;,...,0,,,] are chosen such that the portfolio is

riskless and zero wealth is invested. To prevent arbitrage

profits, the return on the portfolio must be zero. Because

the vector of weights ® is orthogonal to B (zero

investment), the n vectors Bi (zero risk), and a (zero

return), then o can be expressed as a linear combination of

B and P! as in:

o =TrB + ¢1B1 R N - (3)
where ¢;, i=1l,...,n are scalars and r is the instantaneous
nominal riskfree rate of interest. The weights ¢; are the

market prices of risk associated with the state variables x;,

which are in general functions of x; and t. When the

¢; (x;,t) are not tradable, they must be empirically estimated

or theoretically specified.
Substituting into equation (3) the expressions for Oy

6



and Pip; from (2) yields the partial differential equation

followed by any bond Bg=B(t,T,x) given by:

B,/ + XL _(3B¢/3x;) 0

’

+ (/)% . X
i=1

- rB - Zi=1 (3Bg/3x5)0; (x5)9; (x4,€) = 0, (4)

which is subject to the terminal boundary condition
B(T,T,x)=1. Equation (4) is the standard n state variable
partial differential equation derived by Langetieg(1980) and
0ldfield and Rogalski(1987). It is at this point that
explicit bond pricing models are developed by specifying
exact functional forms for both the stochastic processes
governing the state variables and the market prices of risk.

Consequently, the general model may be specialized by
invoking the following assumptions:

1) The state variables follow Ornstein-Uhlenbeck

processes (mean reverting with constant variance)

of the form:

dXi = Ki(el' Xl)dt + ‘YidZi i=l,...,n (5)
where x;>0 is the speed of adjustment, 6; is the

long-run mean of state variable x;, and y; is the

constant standard deviation of the process;



2) the state variables are mutually orthogonal

implying p;4=0 for all i#j;
3) the state variables will be constructed such that

they sum to the instantaneous riskfree rate interest,

r=Z, x;; and
i=1l,n

4) the market prices of risk, ¢;, i=1l,...,n are

constants.

Under these assumptions, the partial differentiai equation

(4) reduces to:

9B;/3t + X (3By/3x;)K; (8%5-x;)

’

s (/22X (3%By/3x;2) Y32 - Zizl'nxiaﬁ 0. (6)

’

subject to the terminal boundary condition B(T,T,x)=1, and

where

0%: = 0, + ¢;7;/K;.
Because of the simplifying assumptions and judicious
construction of state variables, the solution to (6) is the
product of the solutions of n one-variable problems (see

Carslaw and Jaeger(1959), Schaefer and Schwartz(1984)) as in:

B(t,T,x) = L1

1=1'nYi(trT1xi) (7)



where Y;(t,T,x;) is the solution to:

dY;/ot + (aYi/axi)Ki(e*i-xi)
+ (1/2) (32Yi/axi2) 'Yiz - X;Y; = 0, (8)

with boundary condition Y(T,T,xj)=1. Vasicek(1977) shows

that the solution to (8) is given by:
Y(t,T,x;) = EXP[(1/K;) (1-EXP(-K; (T-t))) (Xje~Xj3)

- (T-t)Xje0 - (Y;2/4%43) (1-EXP(-K; (T-t)))2] (9)

where Xj. = 0%i - 7v;2/2K;2 .

After substitution of (9) into (7) and rearrangement of

terms, a compact expression for the value of a discount bond
with maturity date T may then be written:
B(t,T,x) = EXP[?L(t,T)+Zi_1 L (E,T)x;)

where L; (£, T)=-(1/x;) (1-EXP(-Kk; (T-t)))
A, T) =2, [(1/K;) (1-EXP(-x; (T-t)))-(T~-t)]
i=l,n

[0~ (¥;2/2K;2) + (Y;0;/%;) ]

X, (7;2/4%;3) (1-EXP(-Kk; (T-£)))2. (10)

’

This formulation is a special case of the Langetieg(1980)
result, but was obtained via a much simpler separation of
variables technique by assuming orthogonal state variables.
As mentioned earlier, the function B(t,T,x) completely
describes the term structure of interest rates.
Consequently, the price of any coupon bearing default-free

note or bond can be expressed as the sum of its cash flows at



times Tj discounted by their associated present value factors
B(t,T5,x). Denoting both the remaining semi-annual coupon
payments and final principal payment at times Tj as cash

flows Cj, allows the current invoice price BP(t,T,x) of a

coupon bond with maturity at time T, to be written as the

quoted price QP(t,T,x) plus accrued interest AI(t):

BP(t,T,x) = QP(t,T,x)+AI(t) = Zt<TjSTCjB(t,Tj,x) (11)

where AI(t):(t+0.5—MIN(Tj))COUPON. The function AI(t)

represents the interest that has accrued on the security
since the last semi-annual coupon payment which is added to
the quoted price the buyer agrees to pay the seller. The
invoice or actual price paid for the bond equals the present
value of the coupon and principal cash flows.
3. Specification and Estimation of the Model

In order to operationalize the model in Section 2,
several further issues need to be considered. These include
the number and choice of state variables, the estimation of
the stochastic processes which they follow, and the method
and time frame for estimating their associated market prices

of risk.

3.1 Number and Choice of State Variables

It is necessary to select or construct state variables

which are likely to embody the information contained in the

10



term structure, be readily observable (unlike variables such
as the real rate of interest or the inflation rate), and are
such that the sum of the state variables will equal the
instantaneous nominal risk-free rate of interest. For these
reasons, state variables were constructed from an
instantaneous nominal rate, r, an intermediate term yield, m,
and a long term yield, 1. Following Brennan and Schwartz, I
took the annualized yield on the Treasury bill closest to 30
days to maturity as a proxy for the instantaneous riskless
rate r. The surrogates for m and 1 were more difficult to
choose. Treasury note and bond markets are not very liquid
and a time series of yields on a constant coupon rate and
constant maturity note or bond cannot be observed directly.
However, futures markets for Treasury notes and bonds are
highly liquid and uniformly assume delivery of a hypothetical
8% coupon security with 10 years and 20 years to maturity,
respectively. Consequently, the annualized yield as implied
by the futures prices of the nearest maturity treasury note
and bond futures contract should serve as ideal proxies for m
and 1. although data from futures markets has several
desirable properties, the markets themselves have not been in
operation for long. The Chicago Board of Trade (CBT)
initiated trading in United States Treasury bond futures
contracts in August of 1977, and United States Treasury note

contracts in March, 1982. The required T-bill and futures

11



data were collected monthly for the last trading day from the

wall Street Journal from December, 1982 through December,
1988.

Because the optimal number cf state variables necessary

to explain bond prices was uncertain, three cases were

considered:

Case 1l: One State Variable
With & single state variable, x;=r, the bond pricing

model reduces to the Vasicek(1977) model.

Case 2: Two State Variables

In this case, state variables x;=r-1, the spread between

the instantaneous rate and the long term yield, and xj3=1

were chosen.

Case 3: Three State Variables

Wwith three factors the spreads x;=r-m and x;=m-1, as

well as the long yield, x3=1, were employed.
For each of these model specifications, the stochastic
processes governing the state variables will require the same

estimation procedure.

3.2 Estimation Method for the Stochastic Processes

Recall that the state variables are assumed to follow

Ornstein-Uhlenbeck processes of the form:

dXi = Ki(ei‘ xl)dt + 'Yldzl i=l,...n

12



where Oi is the long run mean of the series, k; is the speed

of adjustment, and y; the (constant) standard deviation. A

difficulty in estimating the parameters of these equations
arises because the data is only sampled at discrete time
intervals, whereas the Ornstein-Uhlenbeck processes are
defined in continuous time. Simply substituting first
differences for the differentials above leads to estimation
bias as noted by Phillips(1972), Wymer(1972), and Marsh and
Rosenfeld(1983). It is possible to avoid this situation by
employing an exact differential equation (see 0Oldfield and
Rogalski(1987)) of the form:
Ellg, gdx;] = xj(t) (EXP(-K; (s-t))-1)
+ 0; (1-EXP(-K; (s-t)))

where
Var[ft,sdxil = ¥;2 (L-EXP(-2K; (s-t) ) ) /2K;.

The required parameters can then be obtained directly by

non-linear estimation or implied by the slope and intercept

coefficients of an ordinary least squares regression as in:
x;(s) = a + (l+b)x;(t) + u(s), (12)

where u(s) is an error term. In particular, the parameters

are then acquired by setting

-ln(l+b)/(s-t),

A
it

(2
[}

'a/br
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and v; = SQRT[Zln(1+b)ou2/((s-t)((l+b)2-1))], where 0,2 is

the error sample variance. The assumption of independent and

identically distributed (E[ugl=0,VAR[ug)=0,2) errors is

imposed in order to make inferences about the parameter
estimates. with estimates for non-linear models such as
this, the resulting test statistic will not be a t-statistic
but rather the square root of a Chi-square variable with one
degree of freedom. The distribution of this statistic is
virtually the same as a t-statistic based on more than 50
observations. Because monthly data is used, s-t will equal
1/12 when these processes are actually estimated.

3.3 Empirical Results of the Estimation of the Stochastic
Processes

In each of the one, two, and three state variable

cases, the appropriate stochastic processes were estimated
using monthly data beginning with the period December, 1982
through January, 1988. Another month of observations was
then added and the parameters reestimated. This procedure
was repeated until December, 1988 was reached.

The implied parameters of the stochastic processes
during each estimation period appear in Tables I-2a, I-2B,

and I-2C for the one, two, and three state variable models,

respectively. When only a single state variable (x;=r) is
employed, the long run mean, 8, of the short rate in each of

14



the periods is approximately 6.3% (t>7). The speed of

adjustment parameter, x, has a typical magnitude of 1.7 (t~2)

which implies that half of the adjustment occurs within five

months. Estimated values of the standard deviation

parameter, Y, associated with the Wiener component of the
process are on average 3%, It should be noted that
Ornstein-Uhlenbeck processes allow variables to take on
negative values. This property will be desirable for
modelling spread variables in multiple factor specifications,
but not when the only variable is the short rate of interest.
However, since the reported standard deviation is measured in
annual terms and mean reversion occurs quickly, it is not
unreasonable to assume that the short term rate is
sufficiently above zero such that it has a negligible

probability of becoming negative.
In the two state variable case (where x;=r-1 and x;=1),

the long run means of each factor are significantly different
from zero (t>5) in each period with the mean of the spread
variable being negative and that of the long term rate proxy
being positive as would be expected with an upward sloping
yield curve. 1In addition, the spread variable adjusts very
quickly to its long run mean haQ&ng a large speed of
adjustment coefficient of approximately 8 (t>3) on average,

implying that half of the adjustment occurs within one month.

15



Note that the standard deviation associated with this
variable has a magnitude similar to its long run mean,
allowing the possibility of x; temporarily taking on a
positive value and hence a downward sloping yield curve.
Conversely, the second state variable reverts more slowly to
its long run mean with a smaller standard deviation as would
be expected since long term yields tend to be less volatile

than the short end of the term structure. When three state
variables are used (x;=r-m, xz=m-1, and x3=1), similar

comments apply to parameter estimates for the two spread
variables and long term yield variable.
4. Estimation of the Bond Pricing Model

After the model of Section 2 has been operationalized
and all the required Ornstein-Uhlenbeck parameter inputs have
been estimated, the one, two, and three state variable
versions of the model (equation (11)) can now be used to
estimate the only remaining unknown parameters, the market
prices of risk. Coupon rate and maturity characteristics as
well as bid and ask prices for United States Treasury notes
and bonds with maturities up to twenty-five years were
obtained for the last trading day of each month during 1988
from the Wall Street Journal. On average, 159 bonds and
notes were collected for each of the twelve estimation time
periods. Callable bonds and “flower bonds" were omitted due

to their call feature and estate tax advantages,
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respectively.

After adding accrued interest, the average of the
dealers' bid and ask prices became the dependent variable
during an iterative single equation non-linear estimation
procedure which takes as its objective function the sum of
squared residual. of the model given by equation (11). The
assumption of independent and identically distributed errors
will be imposéd in order to make inferences regarding the

parameter estimates. It should be noted that this approach

estimates the market prices of risk ¢; at a single point in

time over a cross-section of bonds, precluding arbitrage

opportunities. In addition, the estimates of ¢; are

consistent and asymptotically normal despite the two stage
method employed. A proof demonstrating that, although
estimates of the stochastic process parameters are required
as inputs in the estimation of (11), the market price of risk
estimates are consistent and asymptotically normal appears in
Appendix 1.

Results of the non-linear estimation appear in Tables
I-3aA, I-3B, and I-3C in the cases of one, two, and three
state variables, respectively. With only one state variable,
an average root mean squared error (RMSE) of $0.77 and average
mean absolute error (MAE) of $0.61 were achieved for estimates

of bond prices based on a face value of $100. 1In addition,
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the market price of risk is significantly greater than zero,
a result which remains consistent across time periods. The
model implies that a positive market price of risk means that
its associated state variable reduires a positive risk
premium. In the two state variable case, an average RMSE of
$0.30 and MAE of $0.23 were obtained, an improvement on the
single factor model. Again, the estimates of the market
prices of risk associated with the state variables are
consistently significantly greater than zero. With three
state variables, only marginal improvement in RMSE ($0.27)
and MAE ($0.19) was observed. Also note that the market
prices of risk associated with the first two factors have
extremely large magnitudes of opposite sign and t-statistics
of equivalent size. This suggest a non-linear version of
multicollinearity in the three variable model, and that
little benefit is gained by including the third state
variable.

One of the few available benchmarks to which to compare
these results is the findings in Brennan and Schwartz(1982)
which consider United States Treasury bonds and notes with
maturities up to twenty years over the period 1958 through
1979. wWhen their bond pricing model is applied in sample
over the same period as the estimation of underlying
stochastic processes, it resulted in a RMSE of $1.58, and

$3.90 during out-of-sample pricing. Using Government of
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Canada bonds, Brennan and Schwartz(1979) found a similar RMSE
of $1.56, again during in-sample estimation. Consequently,
the results obtained here seem quite promising.

In order to examine more closely the three models®
pricing errors, actual bond prices were regressed on
estimated values with the resulting regression statistics
reported in Tables I-4A, I-4B, and I-4C, for each of the
three cases considered. For unbiased predictions, the
intercept term should be zero while the slope coefficier:
should be equal to one. As a result, t-ratios are calculated
based on these hypotheses, rather than presenting
t-statistics. These regression results should be treated
cautiously since there is no guarantee that pricing errors
are either independent or normally distributed. The single
variable model produced relatively biased bond price
estimates. During the first estimation period, for example,
a slope coefficient of 0.965 (t-ratio of 7.23) was observed
along with an intercept of $4.229 (t-ratio of 7.87). It is
encouraging, however, to see a closer correspondence between
actual and estimated bond prices in the two state variable
case. During the first estimation period, for example, a
slope coefficient of 0.997 (t-ratio of 2.20) was obtained
along with an intercept of only $0.335 (t-ratio of 1.99).
The results remain reasonably consistent over the remaining

subperiods. 1Interestingly, the three state variable model
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yielded intercept and slope coefficients that were further
away from hypothesized values in a majority of periods when
compared to the two state variable specification. This
provides added evidence that the addition of the third factor
is unnecessary. Note also that these results appear to be an
improvement upon the Brennan and Schwartz(1979) findings for
this test which report a slope coefficient of 0.930 (t-ratio
of approximately 10) and an intercept term of $7.28 (t-ratio
of 10.46), during estimation of a sample of 101 Government of
Canada bonds.

Further, to check whether the model's residuals were
systematically related to bond characteristics such as coupon
rate or time to maturity, bond price errors (actual minus
estimated) were regressed on these two variables. Tables
I-5A, I-5B, and I-S5C present these regression results for the
three cases with slope 1 being the coefficient for time to
maturity in years and slope 2 being the coefficient for
annual coupon rate in percent. The two variables explain on
average 27% of the residual variance for the single state
variable specification, but on average only 4% for either the
two or three factor model. Also note that the two variable
model's regression coefficients possess t-statistics which
are smaller than 2.5 in a majority of periods, suggesting
that this particular model version generates reasonably

accurate bond price estimates without large systematic
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errors.,
5. Concluding Remarks

In this paper a bond pricing model has been developed
based on the arbitrage approach to the term structure of
interest rates which assumed that the value of default-free
bonds may be expressed as functions of underlying state
variables following continuous time diffusion processes. A
partial differential equation could then be derived in
Section 3 governing the movement of bond prices of all
maturities. After assuming orthogonal Ornstein-Uhlenbeck
processes for the state variables, a closed form solution was
obtained. Sections 3 and 4 involved the testing of the bond
pricing model incorporating either one, two, or three state
variables whose values are directly observable in highly
liquid T-bill and futures markets. Due to the existence of a
closed form solution, the model allowed market prices of risk
to be exogenously estimated from a cross section of bond
prices at a single point in time. The advantages of this
approach resulted in an easily implementable model which
generated promising bond price estimates without large
systematic errors. In addition, two state variables appeared
to be sufficient to explain the observed term structure.
Given the empirical success of the model, further research
will concentrate on the natural extension to callable bonds

and options on bonds valuation.
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Table I-1:

Structure Models

Review of Continuous Time Term

Model Number State Solution Bond

of State Variables Technique Pricing

Variables Tests
Brennan and Schwartz(1977) 1 r Numerical Simulation
Vasicek(1977) 1 r Closed-Form None
Dothan(1978) 1 r Closed-Form Simulation
CIR(1985) 1 r Closed-Form None
Longstaff(1989) 1 r Closed-Form USA bills
Jamshidian (1989a) 1 r Closed-Form None
Richard(1978) 2 r(real) Closed-Form None

E[inflation]
CIR(1985) 2 r(real) Closed-Form None
E{inflation]
Brennan and Schwartz(1979) 2 r,l Numerical Canada
Brennan and Schwartz(1980) 2 r,l Numerical Canada
Brennan and Schwartz(1982) 2 r,l Numerical Usa
Brennan and Schwartz(1983b) 2 r,1 Numerical None
Schaefer and Schwartz(1984) 2 r-1,1 Approximate Simulation
Closed-Form

Langetieg(1980) N Unspecified Closed-Form None
Oldfield and Rogalski(1987) N Unspecified Closed-Form None
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Table I-2A: Case 1l: One State Variable
Implied Parameteras for the Stochastic
Processes
(t-statistics in parentheses)

Period Yariable & ) Y

1/88 X1 1.67212 0.06313 0.03098
(1.85) (7.46)

2/88 X1 1.64053 0.06275 0.03070
(1.84) (7.40)

3/88 X1 1.60992 0.06239 0.03047
(1.84) (7.33)

4/88 Xy 1.67100 0.06307 0.03032
(1.92) (7.86)

5/88 X1 1.67392 0.06312 0.03008
(1.95) (8.02)

6/88 X1 1.68320 0.06329 0.02986
(1.98) (8.23)

7/88 X1 1.69211 0.06351 0.02965
(2.01) (8.44)

8/88 X1 1.71571 0.06443 0.02967
(2.03) (8.78)

9/88 X1 1.72023 0.06429 0.02946
(2.05) (8.91)

10/88 X1 1.72495 0.06404 0.02926
(2.07) (9.02)

11/88 X1 1.72452 0.06385 0.02906
(2.09) (9.10)

12/88 X1 1.71740 0.06342 0.02889
(2.09) (9.10)
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Table I-2B: Case 2: Two State Variables
Implied Parameters for the Stochastic

Processes
(t-statistics in parentheses)

Period Variable X [*] : Y
1/88 X1 8.46337 -0.03303 0.03830
(3.06) (15.96)
Xp 0.39451 0.08648 0.01551
(0.88) (3.81)
2/88 Xq 8.46066 -0.03301 0.03797
(3.08) (16.22)
X, 0.38271 0.08564 0.01537
(0.87) (3.67)
3/88 X1 8.48561 -0.03317 0.03781
(3.10) (16.55)
Xy 0.44673 0.08958 0.01543
(1.01) (5.08)
4/88 X1 8.52186 -0.03312 0.03756
(3.14) (16.85)
Xy 0.46840 0.09094 0.01535
(1.07) (5.71)
5/88 Xq 8.51805 -0.03316 0.03726
(3.16) (17.13)
Xy 0.48576 0.09213 0.01527
(1.12) (6.26)
6/88 X, 8.55553 -0.03302 0.03711
(3.18) (17.33)
Xy 0.46769 0.09054 0.01521
(1.09) (5.78)
7/88 Xq 8.52991 -0.03298 0.03680
(3.21) (17.54)
X5 0.48999 0.09196 0.01512
(1.14) (6.46)
8/88 X, 8.38049 -0.03269 0.03677
(3.18) (17.22)
X5 0.49065 0.09201 0.01504
(1.56) (6.59)
9/88 Xq 8.04279 -0.03248 0.03629
(3.19) (16.80)
X5 0.47447 0.09064 0.01497
(1.13) (6.16)
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Table I-2B: Case 2: Two State Variables
Implied Parameters for the Stochastic
Processes (continued)
(t-statistics in parentheses)

10/88 X1 7.73513 -0.03230 0.03580
(3.20) (16.43)

X2 0.45211 0.08912 0.01490
(1.08) (5.63)

11/88 X1 7.71306 -0.03229 0.03551
(3.26) (16.63)

X2 0.48143 0.09075 0.01487
(1.16) (6.46)

12/88 X1 7.71278 -0.03229 0.03526
(3.30) (16.88)

X2 0.47586 0.09038 0.01476
(1.16) (6.41)
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Table I-2C: Case 3: Three State Variables
Implied Parameters for the Stochastic
Processes
(t-statistics in parentheses)

Period Variable X ) Y
1/88 Xy 8.82846 -0.02883 0.03822
(3.07) (14.55)
X2 8.16759 -0.00419 0.00574
(3.03) (13.08)
X3 0.39451 0.08648 0.01551
{0.88) (3.81)
2/88 X1 8.82837 -0.02882 0.03789
(3.09) (14.80)
X2 8.03347 -0.00418 0.00568
(3.05) (13.06)
X3 0.38271 0.08564 0.01537
(0.87) (3.67)
3/88 X1 8.82461 -0.02899 0.03770
(3.11) (15.07)
X3 8.02893 -0.00418 0.00563
(3.09) (13.28)
X3 0.44673 0.08958 0.01543
(1.01) (5.08)
4/88 X1 8.86455 -0.02894 0.03745
(3.14) (15.34)
X2 8.01816 -0.00417 0.00558
(3.12) (13.48)
X3 0.46840 0.09094 0.01535
(1.07) (5.71)
5/88 X1 8.85464 ~-0.02900 0.03715
(3.17) (15.60)
X 7.97471 -0.00416 0.00557
(3.14) (13.56)
X3 0.48576 0.09213 0.01527
(1.12) (6.26)
6/88 Xy 8.90429 -0.02888 0.03699
(3.19) (15.81)
X3 7.87728 -0.00413 0.00549
(3.15) (13.55)
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Table I-2C: Case 3: Three State Variables
Implied Parameters for the Stochastic
Procesises (continued)
(t-statistics in parentheses)

X3 0.46769 0.09054 0.01521
{1.09) (5.78)

7/88 X1 8.88337 -0.02884 0.03669
(3.22) (16.00)

X2 7.88954 -0.00414 0.00545
(3.19) (13.79)

X3 0.48999 0.09196 0.01512
(1.14) (6.46)

8/88 X1 8.75735 -0.02858 0.03664
(3.20) (15.78)

X3 7.81889 -0.00411 0.00541
(3.20) (13.78)

X3 0.49065 0.09201 0.01504
(1.56) (6.59)

9/88 X1 8.42858 -0.02839 0.03618
(3.20) (15.42)

X2 7.77734 -0.00411 0.00537
{3.25) (13.82)

X3 0.47447 0.09064 0.01497
(1.13) (6.16)

10/88 X1 8.15953 -0.02824 0.03571
(3.23) (15.17)

X2 7.63523 -0.00407 0.00533
(3.25) (13.65)

X3 0.45211 0.08912 0.01490
(1.08) (5.63)

11/88 X1 8.17885 -0.02825 0.03547
(3.29) (15.43)

X2 7.37313 -0.00404 0.00528
(3.23) (13.31)

X3 0.48143 0.09075 0.01487
(1.16) (6.46)

12/88 X1 8.23159 -0.02831 0.03530
(3.33) (15.75)

X2 6.64417 -0.00395 0.00527
(3.06) (11.83)

X3 0.47586 0.09038 0.01476
(1.16) (6.41)
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Table I-3A: Case 1l: One State Variable
Non-Linear Estimation of Bond Prices
(t-statistics in parentheses)

Period Obs RMSE MAE ME 61 R2

1/88 159 0.927 0.745 0.371 1.137 0.9937
(121.20)

2/88 159 1.089 0.860 0.437 1.104 0.9907
(101.84)

3/88 159 1.018 0.798 0.384 1.355 0.9910
(128.86)

4/88 159 1.066 0.851 0.449 1.490 0.9896
(127.07)

5/88 159 0.752 0.573 0.244 1.669 0.9935
(195.30)

6/88 159 0.747 0.565 0.253 1.464 0.9946
(174.39)

7/88 159 0.673 0.496 0.170 1.637 0.9954
(207.78)

8/88 160 0.455 0.328 0.105 1.621 0.9977
(299.59)

9/88 158 0.526 0.400 0.104 1.452 0.9973
(234.48)

10/88 159 0.525 0.419 0.067 1.345 0.9976
(219.11)

11/88 160 0.470 0.386 -0.244 1.652 0.9975
(288.60)

12/88 158 0.954 0.862 -0.584 1.772 0.9906
(149.33)
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Table I~-3B: Case 2: Two State Variables
Non-Linear Estimation of Bond Prices
(t-statistics in parentheses)

Period Obs RMSE MAE ME ¢y ¢, R2

1/88 159 0.228 0.177 -0.032 2.728 0.645 0.9996
(54.61) (75.79)

2/88 159 0.322 0.245 -~0.040 2.399 0.696 0.9992
(34.40) (59.67)

3/88 159 0.359 0.255 -0.039 1.649 0.906 0.9989
(18.83) (56.03)

4/88 159 0.331 0.248 -0.032 1.584 0.994 0.9990
(18.47) (60.88)

5/88 159 0.305 0.225 -0.029 2.624 0.885 0.9989
{31.91) (55.12)

6/88 159 0.309 0.245 ~0.034 3.183 0.705 0.9991
(39.44) (46.32)

7/88 159 0.359 0.273 -0.038 3.451 0.729 0.9987
(34.81) (37.60)

8/88 160 0.260 0.184 -0.023 4.650 0.510 0.9992
(65.55) (35.89)

9/88 158 0.329 0.254 -0.038 4.548 0.427 0.9990
(53.39) (24.97)

10/88 159 0.338 0.282 -0.051 4.689 0.340 0.9990
(57.19) (20.77)

11/88 160 0.248 0.189 -0.037 6.187 0.143 0.%993
(96.88) (10.73)

12/88 158 0.245 0.158 -0.023 8.268 0.210 0.9994

(129.54) (15.91)
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Table I-3C:

Case 3: Three State Variables
Non-Linear Estimation of Bond Prices
(c-statistics in parentheses)

Period Obs RMSE MAE ME o1 o 03 R2

1/88 159 0.195 0.141 0.007 101.994 -614.989 0.742 0.9997
(7.74) (7.52) (50.96)

2/88 159 0.283 0.198 0.011 107.995 -646.251 0.815 0.9994
(6.87) (6.71) (39.97)

3/88 159 0.322 0.211 0.011 117.617 -713.081 1.070 0.9991
(6.18) (6.09) (35.30)

4/88 159 0.299 0.218 0.012 103.488 -624.642 1.157 0.9992
(6.02) (5.92) (37.32)

5/88 159 0.274 0.193 0.012 95.532 -564.155 1.050 0.9991
(6.19) (6.02) (34.19)

6/86 159 0.273 0.208 0.011 88.187 -512.642 0.871 0.9993
(6.81) (6.56) (30.69)

7/88 159 0.321 0.230 0.010 103.975 -608.203 0.933 0.9989
(6.42) (6.19) (25.23)

g/88 160 0.239 0.166 0.008 70.891 -404.350 0.643 0.9994
(5.71) (5.31) (23.02)

9/88 158 0.289 0.214 0.010 139.134 -843.747 0.618 0.9992
(6.93) (6.69) (19.33)

10/88 159 0.274 0.211 0.010 197.539-1216.410 0.560 0.9994
(9.12) (8.89) (20.10)

11/88 160 0.210 0.146 0.003  89.479 -509.066 0.313 0.9995
(8.24) (7.64) (12.92)

12/88 158 0.240 0.143 -0.008 20.496 -65.370 -0.148 0.9994
(3.53) (2.03) (5.29)
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Table I-4A: Case 1: One State Variable
Regression of Actual Prices on Estimated
Prices
(t-ratios in parentheses)

Period Intercept  Slope R?

1/88 4.229 0.965 0.9960
(7.87) (7.23)

2/88 5.132 0.957 0.9942
(8.03) (7.39)

3/88 4.885 0.958 0.9941
(7.64) (7.08)

4/88 5.390 0.954 0.9937
(8.23) (7.59)

5/88 3.969 0.965 0.9955
(7.26) (6.84)

6/88 3.627 0.968 0.9963
(7.15) (6.69)

7/88 2.974 0.974 0.9964
(5.98) (5.66)

8/88 2.331 0.979 0.9983
(6.78) (6.50)

9/88 2.379 0.979 0.9979
(6.19) (5.95)

10/88 1.992 0.982 0.9980
(5.25) (5.10)

11/88 -0.996 1.007 0.9982
(2.80) (2.12)

12/88 -5.127 1.043 0.9958
(8.93) (7.95)
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Table I-4B: Case 2: Two State Variables
Regression of Actual Prices on Estimated

Prices
(t-ratios in parentheses)

Period Intercept  Slope R?

1/88 0.335 0.997 0.9996
(1.99) (2.20)

2/88 0.550 0.995 0.9992
(2.26) (2.44)

3/88 0.825 0.992 0.9990
(2.95) (3.11)

4/88 0.832 0.992 0.9991
(3.17) (3.30)

5/88 0.924 0.991 0.9990
(3.52) (3.65)

6/88 0.597 0.994 0.9991
(2.36) (2.51)

7/88 0.557 0.994 0.9987
(1.84) (1.98)

8/88 0.737 0.993 0.9993
(3.32) (3.44)

9/88 0.724 0.993 0.9990
{(2.71) (2.87)

10/88 0.516 0.995 0.9991
(1.97) (2.17)

11/88 0.289 0.997 0.9993
{(1.34) (1.52)

12/88 -0.643 1.006 0.9994
(3.15) (3.05)
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Table I-4C: Case 3: Three State Variables
Regression of Actual Prices on Estimated
Prices
(t-ratios in parentheses)

Period Intercept  Slope R?

1/88 0.498 0.996 0.9997
(3.53) (3.50)

2/88 0.748 0.993 0.9994
(3.55) (3.52)

3/88 0.981 0.991 0.9992
(3.97) (3.42)

4/88 0.925 0.992 0.9993
(3.94) (3.87)

5/88 0.936 0.991 0.999%
(3.99) (3.95)

6/88 0.687 0.994 0.9993
(3.09) (3.06)

7/88 0.599 0.994 0.9990
(2.21) (2.18)

8/88 0.718 0.993 0.9994
(3.51) (3.49)

9/88 0.793 0.993 0.9992
(3.39) (3.36)

10/88 0.644 0.994 0.9994
(3.04) {(3.01)

11/88 0.274 0.997 0.9995
(1.49) (1.48)

12/88 -0.648 1.006 0.9994
(3.24) (3.21)
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Table I-~5A: Case 1l: One State Variable
Regression of Pricing Errors on Time to
Maturity(slope 1) and Coupon Rate(slope 2)
(t-statistics in parentheses)

Period Intercept Slopel Slope2 R?

1/88 1.089 -0.098 -0.029 0.286
(4.63) (7.20) (1.18)

2/88 1.288 -0.117 -0.034 0.287
(4.70) (7.24) (1.19)

3/88 1.281 -0.104 -0.045 0.274
(4.92) (6.75) (1.65)

4/88 1.319 -0.126 -0.032 0.345
(5.17) (8.30) (1.22)

5/88 0.885 -0.073 -0.032 0.235
(4.37) (6.07) (1.53)

6/88 0.826 -0.075 -0.025 0.233
(4.10) (6.17) (1.20)

7/88 0.604 -0.055 -0.020 0.147
(3.03) (4.60) (0.96)

8/88 0.479 -0.032 -0.024 0.133
(3.49) (3.93) (1.67)

9/88 0.537 -0.0031 -0.031 0.105
(3.28) (3.21) (1.78)

10/88 0.410 -0.022 -0.026 0.055
(2.36) (2.12) (1.41)

11/88 -0.393 0.064 -0.014 0.412
(3.71) (10.31) (1.22)

12/88 -1.424 0.158 0.016 0.776
(11.45) (21.69) (1.22)
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Table I-5B: Case 2: Two State Variables
Regression of Pricing Brrors on Time to
Maturity(slope 1) and Coupon Rate(slope 2)
(t-statistics in parentheses)

Period Intercept  Slopel Slope2 R

1/88 0.138 0.010 -0.022 0.072
(1.94) (2.50) (3.02)

2/88 0.150 0.012 -0.025 0.047
(1.48) (1.98) (2.38)

3/88 0.270 0.013 -0.038 0.070
(2.42) (1.93) (3.25)

4/88 0.191 0.009 -0.027 0.041
(1.81) (1.43) (2.47)

5/88 0.174 0.008 -0.025 0.042
(1.80) (1.46) (2.47)

6/88 0.113 0.008 -0.019 0.026
(1.13) (1.37) (1.82)

7/88 0.067 0.008 -0.015 0.014
(0.57) (1.21) (1.20)

8/88 0.129 0.008 -0.019 0.035
(1.52) (1.55) (2.17)

9/88 0.158 0.011 -0.026 0.041
(1.47) (1.80) (2.26)

10/88 0.083 0.014 -0.020 0.037
(0.74) (2.18) (1.72)

11/88 -0.018 0.009 -0.006 0.021
(0.22) (1.84) (0.69)

12/88 -0.243 0.001 0.022 0.047
(2.94) (0.23) (2.56)
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Table I-5C: Case 3: Three State Variables
Regression of Pricing Errors on Time to
Maturity(slope 1) and Coupon Rate(slope 2)
(t-statistics in parentheses)

Period Intercept  Slopel Slope2 K?

1/88 0.172 0.002 -0.018 0.047
(2.77) (0.48) (2.76)

2/88 0.194 0.001 -0.019 0.027
(2.14) (0.05) (2.01)

3/88 0.311 0.002 -0.032 0.057
(3.08) (0.31) (3.02)

4/88 0.222 -0.001 -0.021 0.032
(2.32) (0.11) (2.14)

5/88 0.207 -0.001 -0.020 0.033
(2.36) (0.09) (2.19)

6/88 0.150 -0.002 -0.013 0.017
(1.69) (0.386) (1.45)

7/88 0.102 -0.003 -0.008 0.006
(0.96) (0.40) (0.75)

8/88 0.152 0.001 -0.015 0.022
(1.94) (0.13) (1.84)

9/88 0.200 0.001 -0.020 0.026
(2.09) (0.06) (1.97)

10/88 0.125 -0.001 -0.012 0.010
(1.34) (0.086) (1.19)

11/88 0.007 -0.001 -0.000 0.000
(0.09) (0.18) (0.01)

12/88 -0.233 -0.003 0.025 0.051
(2.87) (0.53) (2.85)
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CHAPTER II: Multifactor Callable Treasury Bond
Pricing
1. Introduction

Some United States Treasury bond issues have provisions
which allow them to be called during a specified period,
usually beginning five years prior to maturity and ending at
the maturity date. This means that at any scheduled coupon
payment date during this period, the Treasury has the right
to force the investor to sell the bonds back to the
government at par provided four months notice was given. 1In
order to accurately price these securities, a call option
model consistent with an underlying bond pricing model is
required. In Chapter I, successful replication of observed
yield curves via the multiple state variable bond pricing
model derived by Langetieg(1980) was demonstrated. This
suggests the need for a compatible multiple factor option
formula which is capable of valuing the call feature on
coupon bearing Treasury bonds.

The most common approach to pricing debt options
derives from equilibrium theories of the term structure.
Whether based on one or two state variables, early option
models such as those of Courtadon(1982), Brennan and
Schwartz (1983c), and Dietrich-Campbell and Schwartz(1986)
relied on numerical methods in order to obtain price

estimates for options on coupon paying bonds. In cases where
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a closed form solution has been found, the models encounter
one of two problems. Jamshidian(1989b) developed an exact
coupon bond option formula which is based on the
vasicek(1977) single state variable term structure model.
Single state variable models possess the undesirable property
that returns on bonds of all maturities are perfectly
correlated. In addition, the Vasicek(1977) model performed
poorly relative to multiple state variable models in
empirical tests as reported in Chapter TI. Other debt option
models such as that of Heath, Jarrow, and Morton(1987) allow
for multiple state variables but are restrictive in the sense
that only options on discount bonds may be priced.

This paper proposes to value callable bonds by deriving
a multiple state variable formula for a European call on a
coupon bond using the Langetieg(1980) model as the underlying
term structure theory. The option pricing model relies on a
result by Merton(1973) who extended the Black-Scholes model
to accommodate a stochastic term structure where the price of
a default-free discount bond follows a diffusion process such
that the bond's price is unity at maturity, the instantaneous
volatility of the bond‘'s return is at most a deterministic
function of time, and that this volatility is zero at
maturity. Within this framework, a closed-form solution for
a European call option on a stock was obtained. However, the

optioned asset could itself be another bond. Although the
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application of Merton's model in the case of a discount bond
is relatively straightforward, the valuation of options on
coupon bonds introduces added complexity.

Section 2 will briefly outline the underlying bond
pricing model and related estimation issues. The multiple
state variable European call option formula for coupon bonds
is proposed in section 3. The fourth section discusses the
specific application of the option and bond models to price
callable Treasury bonds, while empirical results are
presented in section 5. Concluding remarks appear in section
6.

2, The Underlying Bond Pricing Model

The model assumes that the price at time t of a

default-free discount bond paying $1 at maturity time T can

be expressed as a function of a vector of n state variables
Xx=(xX1,...,%X,) and time to maturity, denoted B(t,T,x). This

function defines the entire term structure of interest rates
with particular values of B(t,T,X) representing present value
factors that can be used to price any pattern of future
payments. Using standard arbitrage arguments, a partial
differential equation governing the price movement of
discount bonds of all maturities can be der.ved. In the
companion paper, a solution to this differential equation was
obtained under the following assumptions:

1) The state variables follow stationary
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Ornstein-Uhlenbeck processes (mean reverting with

constant variance) of the form:

dx; = Ki(ei- xi)dt + 'YidZi i=1l,...,n
where k;>0 is the speed of adjustment, 6; is the

long-run mean of state variable xj, ¥; is the constant

standard deviation of the stochastic process, E[dZ;]=0,

dZiZ=dt , and dzide=pijdt ;

2) the state variables are mutually orthogonal implying

p;4=0 for all i#j;
3) the state variables are constructed such that they sum

to the instantaneous riskfree rate of interest,

r=z, x;; and
i=1

D
4) the market prices of risk, ¢;, i=l,...,n are constants.

The value of a discount bond with maturity date Ty may then

be written:

B(t,Ty,%) = EXPIA(E,Tj)+X, _ L;i(t,T5)%;] (1)

where L; (£, T4)=-(1/%;) (1-EXP(-K; (T3-t)))
AMe,T5)=2,  (1/%;) [1-EXP(-K; (T5-t) ) - (T5-t) ]

’

[ei- ('Yiz/ZKiz) + (Yiq)i/xi) ]
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X (132/4K;3) (1-EXP (- (T4-t)) 2.

This formulation 1is a special <case of the
Langetieg(1980) result, but was obtained via a much simpler
separation of variables technique by assuming orthogonal
state variables. As mentioned earlier, the function B(t,T.x)
completely describes the term structure of interest rates.
Consequently, the price of any coupon bearing default-free

note or bond can be expressed as the sum of its cash flows at

times T discounted by their associated present value factors
B(t,Tj,x). Denoting both the remaining semi-annual coupon
payments and final principal payment at times Ty as cash

flows Cj, allows the current invoice price BP(t,T,X) of a

coupon bond with maturity at time T, to be written as the

quoted price QP(t,T,x) plus accrued interest AI(t):

BR(L,T.%) = QP(t,T.x) + AL(t) = X . CiB(t,Ty.x) (2)

where AI(t):(t+0.5—MIN(Tj))COUPON. The function AI(t)

represents the interest that has accrued on the security
since the last semi-annual coupon payment which is added to
the quoted price the buyer agrees to pay the seller. The
invoice or actual price paid for the bond equals the present
value of the coupon and principal cash flows.

In Chapter I, successful replication of observed bond

prices using a two state variable specification of the bond
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pricing model outlined above was demonstrated. The two state
variables used were constructed from an instantaneous
riskfree rate (r) and a long term yield(l), proxied by the
yield on the Treasury bill with maturity closest to one month
and the yield implied by the nearest maturity 8% coupon
twenty year Treasury bond futures price, respectively. Both
proxies are directly observable in highly liquid T-bill and
T-bond futures markets. Specifically, the state variables

were the spread between the instantaneous riskless rate and

the long term yield (x;=r-1) and the long term yield itself

(x2=1). Parameter estimates for the Ornstein-Uhlenbeck

processes governing the state variables appear in Table I-2B
of Chapter I based on a time series of observations collected
monthly from December, 1982 through December, 1988 from the
Wall Street Journal. Further, using data for Treasury notes
and bonds of all maturities collected on the last trading day
of each month during 1988, estimates of the market prices of
risk associated with the two state variables were obtained
and appear in Table I-3B of Chapter I. Due to the existence
of a closed form solution, the model allows the market pFices
of risk to be estimated from a cross section of bond prices
at a single point in time without the need to specify their
functional forms. These parameter estimates are needed as
inputs for the calculation of both the straight bond and

option components of callable Treasury bonds.
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3. A Multifactor Coupon Bond Option Formulation
Along with standard frictionless market assumptions,

the Merton stochastic term structure option model requires a

discount bond (representing the present value of the exercise

price) whose instantaneous return may be described by:

dB/B = 0gdt + Ogdzg. (3)

The instantaneous expected return g may be stochastic

through dependence on the level of bond prices and different
for different maturities. However, Op is assumed to be
non-stochastic, independent of the bond price, and of a form

such that it takes on a value of zero at its maturity time <.

Applying Ito's lemma to the expression for a discount bond

with maturity T (to match the call option maturity),

B(t,T,x), yields the following parameters

Op= lt(tlt) +Zi=l,n [Lit (£, T)xi+L; (£, T)K; (Bi-xi) +L;2 (C,T)'Yiz]

and

Oy =SQRT [Zhl’n [Li(t,t)vi] 2] '

which satisfy the requirements of the model.

Similarly, the stock or optioned asset (in this case a
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coupon bond) must have instantaneous return dynamics given by
dBP/BP = Ogpdt + Oppdzpp (4)

where oOgp may be a stochastic variable of quite general type

including being dependent on the level of the asset's price

or the returns of other assets. The standard deviation Ogp,

however, is restricted to be non-stochastic and, at most, a
known function of time. Applying Ito's lemma to the coupon

bond price after first adjusting for accrued interest,

BP(t,T,x) = Zj C4B(E, T4, %),

yields the following parameters:

+Li(t,Tj)Ki(9i-Xi)+Liz(t,Tj)'Yiz ] ] ]/BP(C,T,J{)

and
opp-SorT (2, [ [ZjLi(t.Tj)CjB(t,Tj,X)/BP(t,Tj,X)]'Yi]z] .

Also note that the covariance between the processes dB/B and

dBP/BP is:

Ogp,p = 2, Ui (6. [Z L; (£, T5)CsB(E, T3 %) /BR(E, T5,%) 19,2

Requirements for the drift term app are directly satisfied in

the case of a coupon bearing bond. Although expressions for
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the total bond price and individual cash flow prices appear
in the standard deviation formula, this should not be
considered a violation of Merton's assumptions. A

justification can be made by considering the precise

formulation of Opp. Deterministic functions of time L;(t,Ty)

associated with each cash flow are weighted by the proportion
of that cash flow's value to the total bond price. Because
both the numerator and denominator of the weights will have

highly correlated stochastic behaviour through similar

dependence on the n stochastic variables x;, the weights

themselves and hence Gpp should be stochastic only to a

second order degree. Otherwise, the weights themselves are

also functions of time. Note also that the variable og,

possesses the desirable property of decreasing to zero at the
bond's maturity as well as behaving in a manner resembling

duration.
Finally, direct substitution into Merton's framework

results in the following specification for a European call

option at time t, with strike price K, maturity time 1, and

written on a coupon bond BP(t,T,x), given by:

c(BP(t,T,x),B(t,T.x),t;T,K,v2)
= BP(t,T,X)N(hl)—KB(t.t,X)N(hz) (5)
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[1n(BP(t,T.x)/KB(t,T,x))+(v2/2) (T-t)]1/v(t-t)1/2

where hy =
h2 = hl"V(T-t)l/z
N(e) = the cumulative normal distribution
function.

4. An Application to Callable Treasury Bonds

In general, the price of a callable bond will equal the
value of a straight bond with equivalent coupon and maturity
characteristics less the value of the call feature. While
the price of the straight bond portion can be obtained using
the bond model outlined in section 2, the specific nature of
the Treasury bond call feature requires further discussion.
In particular, the appropriate optioned asset under
consideration and the method of handling multiple discrete
call dates must be determined.

Because analysis is within a European option framework,
the present value of intermediate coupon payments prior to
the call maturity can be disregarded and not considered when
pricing the option. This is because the optioned asset
consists of only the remaining coupons and principal that may
be exchanged at par on a particular exercise date. A direct
analogy is the use of a stock price series adjusted by the
prosent value of known dividends when valuing a European
option on a dividend paying stock.

Recall that a Treasury bond may be called at any

scheduled coupon payment date during the last five years of
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its thirty year maturity. Consequently, the option component
involves multiple discrete call dates. The pseudo-American
call option approach, first proposed by Black(1975), will
serve as a first approximation for modelling the call value
component in the above situation. This approach involves
calculating the European option value at each possible
exercise date and selecting the largest of these values as
the approximation for the Treasury bond call feature.
Intuitively, the pseudo-American call method is particularly
appropriate for modelling callable bonds. Consider a high
coupon callable bond selling at a premium. As coupons are
paid over time, the bonds price will decline, approaching its
face value from above. One would expect that the bond would
most likely be called at the first available exercise date
and that this option value will tend to dominate the value of
the call feature. Alternatively, the price of a low coupon
callable bond currently selling at a discount will appreciate
over time, approaching the face value from below. The call
feature on these bonds will typically be of small or
negligible value. 1In fact, such a dichotomy in coupon rates
can be observed in currently outstanding callable issues,
providing an empirical as well as theoretical justification
for the pseudo-American approximation. Consequently, with
the closed form bond and European bond option models outlined

above, the wvaluation of callable Treasury bonds becomes

47



straightforward.
5. Empirical Results

Coupon rate and maturity characteristics as well as bid
and ask prices for callable United States Treasury bonds were
obtained for the last trading day of each month during 1988
from the Wall Street Journal. After o itting callable bonds
with estate tax privileges, twenty-two bond observations with
an average maturity of twenty years were collected in each of
the twelve estimation periods. Using parameter estimates
obtained in the companion paper, callable bond price
estimates were calculated based on the estimate of the
straight bond component (equation (2)) less the estimate of
the pseudo-American call value (equation (5)). The resulting
callable bond price estimates could then be compared to the
average of dealers' bid and ask prices after adjusting for
accrued interest. Summary statistics for this estimation
procedure are reported in Table II-1 for each of the twelve
estimation periods during 1988. An average root mean squared
error (RMSE) of $0.54 and average mean absolute error (MAE)
of $0.43 were achieved for bond prices based on a'face value
of $100. It is interesting to note that the Brennan and
Schwartz(1982) two state variable model when applied to
Treasury securities yielded a RMSE of $1.58 in sample. When
the same framework was applied to just short term call

options on bonds in Dietrich-Campbell and Schwartz (1986), a
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RMSE of $0.67 was reported.

In order to examine more closely the pricing errors,
actual callable bond prices were regressed on estimated
values with the resulting regression statistics appearing in
Table II-2, For unbiased predictions, the intercept term
should be zero while the slope coefficient should be equal to
one. As a result, t-ratios are calculated based on these
hypotheses rather than presenting t-statistics. Although the
actual pricing errors are small in magnitude, the callable
bond price estimates typically reject these hypotheses at a
1% level of significance. During the first estimation
period, for example, a slope coefficient of 0.988 (t-ratio of
3.10) was obtained along with an intercept of $1.85 (t-ratio
of 3.85). Unfortunately, there are no benchmark results in
the literature against which to compare the callable bond
price estimates. However, to check whether the residuals
were systematically related to bond characteristics such as
coupon rate or time to maturity, bond price errors (actual
minus estimated) were regressed on these two variables.
Table II-3 presents these regression results with slope 1
being the coefficient for time to maturity in years and slope
2 being the coefficient for annual coupon rate in percent.
The regressions explain, on average, 50% of the residual
variance. However, only the intercept term is significantly

greater than zero at a 1% level in most periods while the
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slope coefficients have small negative values.

Finally, to get an impression of how the callable bond
pricing errors appear relative to the straight note and bond
errors, these are plotted simultaneously in Figures II-1
through II-12 for each of the 12 monthly estimation periods
during 1988. Callable bond pricing errors are small in
magnitude and appear indistinguishable from note and bond
pricing errors suggesting that the that the pseudo-American
call approach gives a suitable approximation of the call
feature.

6. Concluding Remarks

The pricing of callable Treasury bonds requires a
unified and consistent approach to valuing the straight bond
and call option components of the security. An accurate bond
pricing model is particularly important since errors in this
portion will tend to dominate those of the option. Given the
empirical success of the multiple state variable bond pricing
model of section 2, a compatible multiple state variable
coupon bond option formula was proposed. A simultaneous
application of the two models allowed the prices of callable
Treasury bonds to be estimated with promising results.
Because a joint test of this type has not yet appeared in the

literature, the results obtained should be of some interest.
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Table II-1: Callable Treasury Bond Pricing:
Errcr Analysis

Period Obs ME MAE RMSE
1/88 22 0.380 0.439 0.593
2/88 22 0.199 0.407 0.572
3/88 22 -0.065 0.390 0.460
4/88 22 -0.157 0.450 0.542
5/88 22 -0.247 0.488 0.603
6/88 22 -0.129 0.595 0.743
7/88 22 -0.272 0.485 0.570
8/88 22 -0.129 0.347 0.411
9/88 22 0.003 0.513 0.623
10/88 22 0.051 0.435 0.613
11/88 22 0.008 0.249 0.320
12/88 22 0.164 0.323 0.388
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Table I1I-2: Callable Treasury Bond Pricing
Regression of Actual Prices on Estimated

Prices
(t-ratios in parentheses)

Period Intercept  Slope R2

1/88 1.847 0.988 0.9997
(3.85) (3.10)

2/88 2.090 0.984 0.9996
(4.00) (3.68)

3/88 1.704 0.985 0.9997
(4.10) (4.32)

4/88 1.961 0.981 0.9997
(4.35) (4.77)

5/88 2.222 0.977 0.9996
{4.90) (5.52)

6/88 2.587 0.976 0.9991
(3.53) (3.76)

7/88 1.626 0.983 0.9996
(3.12) (3.69)

8/88 1.379 0.986 0.9998
(3.77) (4.19)

9/88 2.743 0.976 0.9996
(5.51) (5.62)

10/88 2.172 0.982 0.9994
(3.57) (3.53)

11/88 0.629 0.994 0.9997
(1.58) (1.59)

12/88 0.111 1.001 0.9997
(0.24) (0.12)
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Table II-3: Callable Treasury Bond Pricing
Regression of Pricing Errors on Time to
Maturity(slope 1) and Coupon Rate(slope 2)
(t-statistics in parentheses)

Period  Intercept Slopel Slope2 R?

1/88 1.576 -0.030 -0.058 0.3548
(4.05) (1.20) (0.98)

2/88 1.872 -0.063 -0.040 0.5614
(4.95) (2.57) (0.69)

3/88 1.481 -0.036 -0.081 0.5878
(4.76) (1.80) (1.72)

4/88 1.694 -0.033 -0.118 0.6317
(5.06) (1.51) (2.34)

5/88 1.699 -0.005 -0.182 0.6152
(4.69) (0.23) (3.33)

6/88 2.237 -0.082 -0.073 0.5950
{4.52) (2.55) (0.98)

7/88 1.313 -0.044 -0.071 0.5901
(3.82) (2.31) (1.44)

8/88 1.142 -0.019 -0.089 0.5271
(4.01) {1.03) (2.06)

9/88 2.309 -0.049 -0.133 0.7046
{6.43) (2.11) (2.44)

10/88 1.885 -0.083 -0.021 0.5946
(4.57) (3.09) (0.34)

11/88 0.438 -0.019 -0.007 0.1162
(1.37) (0.89) (0.15)

12/88 0.108 -0.036 0.074 0.1177
(0.31) (1.57) (1.40)
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FIGURE II-1 Plot of Pricing Errors Versus Maturity
H for Straight Bonds(+) and Callable
Bonds (*) for the Last Trading Day of
January, 1988
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FIGURE II-2 Plot of Pricing Errors Versus Maturity
for Straight Bonds(+) and Callable
Bonds (*) for the Last Trading Day of
February, 1988
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FIGURE II-5

for Straight Bonds(+) and Caliable
Bonds (*) for the Last Trading Day of
May, 1988
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FIGURE II-10

Plot of Pricing Errors Versus Maturity
for Straight Bonds(+) and Callable
Bonds (*) for the Last Trading Day of
Cctober, 1983
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CHAPTER III: The Term Structure of Futures Prices

1. Introduction

Futures contracts and forward contracts are similar but
rot identical. The fundamental difference between them is
the daily resettlemgnt or "warking-to-market" i.quirement of
futures but nal forward contracts. Jarrow and Oldfield(1981)
clarified this distinction by showing that when the daily
interest rate is constant, forward and futures prices are the
same. Several studies such as Cox, Ingersoll, and
Ross(198la), Richard and Sundaresan(1981), and French(1983)
have sought to explain the theoretical implications of the
daily resettlement process on the relative prices of the two
contracts by allowing stochastic interest rates in one form
or another. By doing so, they were able to obtain various
testable propositions.

Only Cox, Ingersoll, and Ross(198la), however, obtained
an explicit formula for futures prices. In a special case,
CIR were able to value bond futures within their well known
general equilibrium framework. The purpose of my paper is to
model the relationship between futures and spot prices
allowing not only sto:hastic interest rates, but more
generally a stochastic cost o¢f carry rate. In the
multivariate case, each individual component of the cost of
carry rate, whether the interest rate, convenience yield, or

storage cost is allowed to be stochastic depending on the
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particular underlying asset characteristics. Section 2
illustrates how the relationship between futures and spot
prices resembles that of a Treasu~y bill and how mathematical
results from the term structure literature can be modified to
derive a closed-form expression for this relationship. The
model is then operationalized in section 3 and tested using
British pound, Deutsche mark, and Japanese yen foreign
currency futures. Results are then compared to estimates
obtained using the traditional non-stochastic cost of carry
model of futures and forward prices. Section 4 concludes the
paper.
2. Arbitrage Models of Futures and Forward Prices

Under frictionless markets and continuous trading,
simple arbitrage arguments can be invoked to value futures
and forward contracts. Define f(t,T) as the forward price of
some commodity at time t for a contract that matures at time
T and define r(t,T) as the yield to maturity on a
default-free discount bill that pays one dollar 2t time T.
The current price of the bond is consequently

B(t,T,r) = EXP[-(T-t)r(t,T)]. (1)
An investor will be indifferent between £(t,T)B(t,T.r)
dollars today and one unit of the commodity at time T.
Equivalently, by defining S(T) as the unknown price of the
commodity at time T, then the forward price must equal the

present value of the maturity spot price multiplied by the
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inverse of the bond price:

£(t,T) = EXP((T-t)xr(t,T)]PVy, p(S(T)] (2)

where PVy p[] denotes the present value at time t of a

payment received at time T. If the commodity in question did
not provide a convenience yield nor regwire storage costs,
then the current commodity price, S(t), must egqual the
present value of the future commodity price. Alternatively,
if the asset provided a continuous convenience yield, q(t,T),
and incurred storage costs, c(t,T), the present value of the
commodity would equal S(t)EXP[(T-t) (-q(t,T)+c(t,T)}] and so

the forward price may be expressed more generally as:

£(t,T) = S(t)EXP[(T-t)b(t,T)] (3)
where b(t,T)=r(t,T)-qgl{t,T)+c(t,T) is the cost of ¢ ¥rry rate
associated with the commodity. The forward price i- simply
the deferred value of the current commodity price.

Cox, Ingersoll, and Ross(198la) and French(1983)
develop a similar expression for futures prices. They
demonstrate that the futures price must equal the present
value of the product of the maturity spot price¢ and the gross

return from rolling over one day bonds,
F(t,T) = Pvt,T{EXP[2;=t,T_1r(t,t+1)]S(T)} (4)
where F(t,T) is the futures price at time t for a contract

that matures at time T and r(t,tT+l) is the wunknown

continuously compounded interest rate on a one day bond from
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time T to time T+l. In the more general case where the asset
provides a daily convenience yield, q(t,t+l), and storage

costs, c(t,T+1l), the futures price may be expressed

F(t,T) = S(£)EXP(Z . o ,D(T,T+1)] (5)

where b(T,T+1)=r(t,1+1)~-q(T,T+1l)+c(T,t+1). Assuming continuous

trading and continuous marking-to-market, (S) becomes

F(t,T) = S(t)EXP(J. tb(u)du]. (6)

When subsequent cost of carry rates are stochastic, the
futures price may be expressed as the solution to

F(t,T) = E¢{S(t)EXP(J. rb(u)du]) (7)
subject to F(T,T)=S(T), such that the futures and spot prices
converge at contract expiration.

The problem can be simplified by considering, instead,
the evolution over time of the variable F(t,T)/S(t).
Normalizing the futures price by the spot price for every
time t results in a variable which no longer has a cost of
carry rate of zero, unlike a futures contract itself which

requires no initial investment. As a result (7) becomes

F(t,T)/S(t) = E.{EXP(; rb(u)dul) (8)

subject to F(r,T)/S(T)=1. By focusing on the normalized
futures price instead of the futures price itself, several

modified results from the theory of the term structure of
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interest rates can be applied. The solution to equation (8)
when the cost of carry b is stochastic will have a similar
form to that of a discount bond when interest rates are
stochastic and allowed to take on either positive or negative
values.

2.1 Univariate Case
Let B(t,T,b) denote the wvalue at time t of the

normalized futures price which 1is analogous to an
accumulation/discount factor associated with a futures
contract maturing at time T with t<T. This factor will have
a value of one at maturity, i.e. B(T,T,b)=1. It will be
assumed that b(t) is a continuous function of time described

by the stochastic differential equation
db = a(b,t)dt + o(b,t)dz (9)

where a(b,t) is an instantaneous drift parameter, o(b.t)

represents an instantaneous standard deviation parameter, and
Z(t) is a Wiener process with unit variance. Standard

arbitrage arguments as in Vasicek(1977) imply (i) that the

market price of risk associated with b, ¢(b,t), is the same

for normalized futures prices of all maturities, and (ii)
that the value of B(t,T,b) must satisfy the fundamental

partial differential equation given by:

9B/t + (9B/db)a(b.t) + (1/2) (32B/9b2)6? (b, t)
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+ (dB/db)o(b,t)d(b,t) = -DbB, (10)
subject to the terminal boundary condition B(T,T,b)=1.

It is important to recognize the difference between the
right hand side of this p.d.e. and those found in the term
structure literature. Whereas a riskless portfolio of
discount bonds would require an instantaneous return equal to
the risk free rate, a riskless portfolio of normalized
futures contracts will require an instantaneous return of
minus the cost of carry rate. Consider an asset which has a
positive cost of carry. The normalized futures price
F(t,T)/S(t) will be larger than one and approach unity from
above, decreasing instantaneously at a rate -b. Conversely,
an asset with a negative cost of carry will have a normalized
futures price approaching unity from below, increasing
instantaneously at a rate -b which assumes a positive
numerical value.

Techniques presented in Richard(1978) allow the

solution to (10) to be given by
B(t,T,b) = E.[EXP(A(T))] (11)

where

A(T) = +Jp, gb(u)du + Ji £(1/2)¢2(b(u),u)du

+ Jo o0 (b(u),u)dz(u), tsT.

The solution to B(t,T,b) may be obtained once the stochastic
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process for b(t) and functional forms for the market price of

risk ¢(b,t) are specified.
It will be assumed that the cost of carry rate follows

an Ornstein-Uhlenbeck process of the form:
db = x(0-b)dt + ydz, (12)
where 6 is the long run mean of b, X represents the speed of

mean reversion parameter, and Y is the constant standard
deviation associated with the Wiener component of the
process. The Ornstein-Uhlenbeck process is particularly well
suited for the model since it possesses the desirable
property of allowing variables to take on either positive or

negative values. when the additional assumption of a

constant market price of risk (¢(b,t)=¢) is invoked, the

solution to (11) is:

B(t,T,b) = EXP[A(t,T)+ L(t,T)b]

where L(t,T) = (1/K) (1-EXP(-K(T-t)))
Ale,T)= ~ [(1/x) (1-EXP(-x(T-t)))~-(T-t)]
[0+ (Y2/2K2) + (Y9/%) ]
- (¥2/4x3) (1-EXP(-x(T-t)))2. (13)

Note that if the cost of carry rate b is non-stochastic and
constant, equation (13) reduces to (3) and hence forward and
futures prices are equal, a conclusion which is consistent

with the literature. The solution given by (13) has a
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similar form to the Vasicek(1977) term structure model. The
differences between the two formulae are illustrated in
Appendix 2, along with a proof demonstrating that (13)
satisfies the fundamental partial differential equation given
by (10).

2.2 The Multivariate Case

This subsection will briefly extend the previous
univariate results to the multivariate case where the
individual components, r, q., and c which comprise the cost of
carry rate, b, each follow individual stochastic processes.
The necessary mathematical restriction is that the total cost
of carry rate be a linear combination of the individual
variables, which, by definition, they are. Each of the three

components will be expressed in vector/matrix form where
x1l:[r,q,c] is a vector of state variables x;, i=1,2,3 which
follow a joint stochastic process of the form

dxi = ai(x,t)dt + oi(Xpt)dZi (14)

where dx; are standard Gauss-Wiener processes with E[d2z;]=0,

E[dZ;2]=dt, and E[(dZ;dZj]=p;jdt. B(x,t,T) must then satisfy

the partial differential equation:

dB/dt + }Ei=1'3(aB/axi)ai(x,t)

s /2B X (3%B/3xi9%5)0; (x,£) 05 (x,t)py

3 j=1,
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+ X (3B/3x;)03(x, )03 (x;,t) = -bB, (15)

which is subject to the terminal boundary condition

B(T,T,x)=1.
Following Richard(1978), the solution to (15) has the

form:
B(t,T,x) = E¢[EXP(A(T))] (16)

where

A(T) = +f¢ gb(wdu +J¢,(1/2)¢0TE"1¢odu

+fe 700TZ"1¢dz (u), t<T

and where
06T = (0,07 9,0, ¢303]
¢dz = [0,dZ; 0,dZ; 63dZ;]

2 = [Glojpljl i=1,2,3 and j=1,2,3.

wWhen the market prices of risk associated with the variables
are constant and the state variables follow
Ornstein-Uhlenbeck processes, the solution to (16) becomes
straightforward. Specifically, the 3joint stochastic

processes is of the form:
dxj = Kj(0;-xj)dt + v; dzZj, i=1,2,3 (17)

such that E[dZz;jdz4] = 0 for every i#j. Because the

disturbances are &ssumed uncorrelated, a separation of
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variables technique employed by Langetieg(1980) and Cox,
Ingersoll, and Ross(1985a) allows the multivariate solution
to (16) to be expressed as the product of three single

variable solutions:
B(t,T,x) = IIj.7,3B(t,T,x;) (18)

where B(t,T,x;) = EXP[A(t,T)+ Lj(t,.T)x;]
Lij (€, T)= (1/%;) (1-EXP(-K; (T-t)))
Ae,T)=-1(1/x;) (1-EXP(-K; (T-t)))-(T-t)]
[0;+(Y;2/2K;2) + (v;0;/Kx;) ]

- (Y;2/4x3) (1-EXP(~K; (T-t)))2.
Note that if one or more of the variables is non-stochastij™

and constant, its Aassociated single variable solution wili

reduce to the simple exponential form:

B(t,T,x;) = EXP[(T-t)x;] (19)
which would be used in lieu of the more complex expression.
3. An 2application to Foreign Currency Futures

The empirical implementation of the previous framework
can be illustrated by modelling foreign currency futures for
the British pound, Deutsche mark, and Japanese yen traded at
the International Monetary Market of the Chicago Mercantile
Exchange. Several issues such as the number and choice of
state variables, the estimation of the stochastic processes
which they follow, and the method and time frame for
estimating their associated market prices of risk, need to be

further examined.
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3.1 Number and Choice of State Variables

It is necessary to select or construct state variables
which are likely to explain the difference between futures
and spot prices, are readily observable, and are such that
the sum of the state variables will equal the instantaneous
cost of carry rate for foreign currency. Any sensible choice
of state variables for foreign currency futures will involve
short term domestic and foreign interest rates. Move
specifically, it will be the difference between these two
rates which drive futures prices, and this difference can be
reasonably expected to follow a mean reverting process over
short periods of time since central banks tend to align their
interest rates in the absence of major policy shifts. In
addition, only the Ornstein-Uhlenbeck process can be used to
model the cost of carry rate in this example since it allows
variables to take on negative values. Of course, cost of
carry rates for premium currencies will be positive while
those of discount currencies will be negative.
Alternatively, a two variable version of the model could have
been used where the foreign interest rate constitutes the
convenience yield.

Closing Wednesday one month rates for the four
countries involved were collected weekly for calendar years
1986 through 1988 from the Financial Times of London. The

specific instantaneous annualized interest rate proxies were
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the United States and British T-bill rates, and the near
equivalent Frankfurt and Tokyo money rates. The United
States will be treated as the domestic economy and the United
Kingdom, West Germany, and Japan each as foreign economies.
In each of the three cases, the stochastic processes
governing the cost of carry state variable will require the
same estimation procedure.
3.2 Esti . Methoil £ he Stocl .

Recall that the state variables in the general case are

assumed to follow Ornstein-Uhlenbeck processes of the form:
dxj = K;(0; - x3)dt + ¥; dz;
where € is the long run mean of the series, x; is the speed

of adjustment, and Y; the (constant) standard deviation. A

difficulty in estimating the parameters of these equations
arises because the data is only sampled at discrete time
intervals, whereas the Ornstein-Uhlenbeck processes are
defined in continuous time. Simply substituting first
differences for the differentials above leads to estimation
bias as noted by Phillips(1972), Wymer(1972), and Marsh and
Rosenfeld(1983). It is possible to avoid this situation by
employing an exact differential equation (see 0Oldfield and

Rogalski(1987)) of the form:

El)e, gdxi] = x;j(t) (EXP(-x; (s-t))-1)
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+ 8, (1-EXP (-K; (s-t)))

where
var(l, gdxj] = ¥;2(1-EXP(-2K; (s-t)))/2K;.

The required parameters can then be obtained directly by
non-linear estimation or implied by the slope and intercept
coefficients of an ordinary least squares regression as in:
x;(s) = a + (l+b)x;(t) + u(s) (20)
where u(s) is an error term. In particular, the parameters

are then acquired by setting

Kl = -ln(l+b)/(S-t),
ei = "a/br
and y; = SORT[21ln(1l+b)c,2/((s-t)((1+b)2-1))], where 0,2 is

the error sample variance. The assumption of independent and

identically distributed errors (E[ugl=0, VAR[ugl=0,2) is

imposed in order to make inferences concerning the parameter
estimates. With estimates from non-linear models of this
type, the resulting test statistic will not be a t-statistic
but rather the square root of a Chi-squared variable with one
degree of frezedom. The distribution of this statistic is
virtually the same as a t-statistic based on more than 50
observations. Because weekly data is used, s-t will equal

1/52 when these processes are actually estimated.

3.3 Empirical ] £ ¢} . ion of tI ] .

2rocesses
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In each of the three cases, stochastic processes were
estimated using weekly data beginning with the period
January, 1986 through December, 1987. The two year window
was then moved up by weekly intervals and the parameters were
reestimated. This procedure was repeated uncil t"~ last
Wednesday in December of 1988 was reached. Partial results
for the implied parameters at six month increments of the

estimation window appear in Table III-1. The long run mean,

0, of the difference in interest rates is negati: - for the
United Kingdom case, implying tha*t pound sterling was a
discount currency relative to the United States doliur during
the estimation periods. Conversely, the Deutsche mark nd
Japanese yen were typically premium currencies since th.ir

long run mean costs of carry rates were positive. In each of

the three cases, the parameter 8 was significantly different

from zero at the 1% level The speed »f adjustment

parameter, K, took on necessary positive values in all three

cases at the 1% level of significarce in all but one
sub-period although with relatively 1large changes in
magnitude as the two year estimation window was moved. This
paramater measures the speed of mean reversicn of the process
and a value of 10, for example, implies that half of the
adjustment is expected to take place within approximately

three and a half weeks. Estimated values of the standard
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deviation parameter, Y, associated with the Wiener component
of the processes . "re on average of similar magnitude to the
long run means i-. ° = case of the United Kingdom and triple
the magnitudes of t'' long run means in the cases of West
Germany and Janan.

1.4 . . : lized :

After the model of Section 7 has been operationalized
and all of the required Ornstein-Uhlenheck parameter inputs
have been astimated, the single state variable version of rhe
model (equation (13)) can now b2 used to estimate the only
remaining unknown parameters, the market prices of risk. For
cach of the three currencies, futures prices of all available
contract maturities traded at the IMM of the CME were
employed. Closing prices at 2:00pm Central time were
collected weekly for =ach Wednesday iin 1988 as reported in
the Wall Street Journal. Spot exchange rates as guoted by
Bankers Trust Co. at 3:00pm Eastern time and reported in the
Wall Street Journal were also collected for each Wednesday ir
1988. The resulting futures prices normalized by theix
associated spot prices became the dependent variable during
the iterative single equaticon non-linear procedure to
estimate (13) which takes as its cbjective function the sum
cof squared residuals from the model. The assumption of
independent and identically distributed errors wi.l be

imposed in order to make inferences regarding the parameter

74



estimates. A proof demonstrating that, although estimates of
the stochastic process parameters are required as inputs in
the estimation of (13), the market price of risk estimates
are consistent and asymptotically normal appears in Appendix
3.

Table TIII-2 «contains empirical results of the

estimation of the market price of risk, ¢, over the entire
period and quarterly sub-periods f : *‘ * normalized futures
prices of the British pound, Deutsche mark, and Japanese yer

In addition to Lhe estimares of t'e stochastic cost of carry
model (ermvationr (13) and denoted "S*), the +traditional
non-stochastic model represented by equation (3) was tested
using the difference in annualized one month rates and time
to contract espiration as inputs (denoted "NS"). The root
mean squared error (RMSE), mean absolut« error (MAE), and
mean er.or (ME! criteria are provided for each of the
estimati>n per: -I. 2s a further error analysis, actual
noxrmalized futures prices are regressed on estimates
generated by both models, with these results appearing in
Table III-3.

In the case of British pound futures, the market price
of risk is significantly different from zero at a 1% level
during each estimation period. Positive risk prices imply
that cost of carry risk is rewarded by the market. Under

. "*her the RMSE or MAE criterion, the stochastic model yields
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pricing errors which are 1less than half those of the
non-~-stochastic bhenchmark in each of the qua:iterly sub-periods
although slightly more than one-half over the entire
estimation period. Regressing actual on estiimated model
prices should result in an intercept term of zero and a slope
of one if the estimates are unbiased. Table III-3 reports
regression parameters and t-ratios based on this null
hypothesis. The stochastic model resulted in rejection of
the hypothesis at the 1% level of significance only in the
fourth quarter sub-period, while the non-stocl astic model led
to rejection in every estimation period.

Results for both the Deutsche mark and Japanese yen
normalized futures were more favourable. Again, highly
significant vositive market prices of risk were obtained. 1In
botl cases and over every estimation period, the RM3E and MAE
criteria show that mispricing by thne stochastic model is only
approximately one quarter that of the non-stochastic model.
Intercept and slope coefficients generated by the regression
of actual futures prices on the stochastic model's estimates
were significantly different from hypothesized values at the
1% level only during the last two quarterly estimation
periods in the Deutsche mark case. By contrast, the
non-stochastic model given by (3) resulted in the null
hypothesis of unbiased errors being rejected at the 1% level

consistently during every estimation period for both the
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Deutsche mark and Japanese yen cases.

In fairness to the non-stochastic benchmark model, the
use of the difference between annualized one month interest
rates as an input parameter to generate futures price
estimates for contract lengths up to and including nine
months does not allow it to perform optimally. If it were
possible, matching interest rates to contract expiration
shwuld yield better estimates. Presumably, one would expect
the absolute difference in interest rates to increase, on
average, for longer maturities. The use of one month rates
ins+»a4d pf matching rates would then cause the non-stochastic
model to result in underp:.cing -7 longer maturity futures
for premiumm currencies such as the Deuts:lie mark and Japanese
ven while overpricing the futures of discount currencies such
as the British pound. However, this was not the case. The
non-stochastic model consistently underpriced the normalized
futures of all three currencies as shown by the large
positive mean errors in Table III-2. This sugagests that
there may be an additional risk premium required by the
market and it is this premium which the stochastic cost of
carry model 1is designed to explicitly incorporate into
futures pricing.

4. Copnnliudiag Remarks
Taking advantage of the simple observation that the

ratio of futures and spot prices is a function of the cost of
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carry rate and time to maturity, as well as converging to one
at contract expiration, allows this variable to be modelled
in a manner similar to that of a Treasury bill. As a result,
a closed-form solution was derived to represent explicitly
the relationship between futures and spot prices when the
cost of carry rate or any c¢f its components is stochastic in
nature. Implementation of the model was illustrated using
British pound, Deutsche mark, and Japanese yen foreign
currency futures with favourable results. However, a more
precise test of the alternative non-stochastic model with
interest rates moru closelv resembling the time to contract
expiration may be needed to clearly demonstrate the empirical

advantages of the proposed stochastic model.
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Table III-1:

Processes
(t-statistics in parentheses)
1 A: ired Kingd
Period X 9
01/86-12/87 9.6630 -0.0431
(2.81) (17.84)
04/86-03/88 10.2424 -0.0406
(2.82) (16.07)
07/86-06/8%8 5.2650 -0.0381
(2.11) (8.07)
10/86-09/88 6.5893 -0.0378
(2.43) (9.26)
01/°7 *7/88 10.6621 -0.0372
(3.05) (12.57)
«_Nest Germanv.
r X 7}
01/86-12/87 8.7009 0.0109
(2.54" (4.38)
04/86-03/88 15.6165 N.0109
(3.32) (6.72)
07/86-06/88 10.7241 0.0122
(2.90) (5.46)
10/86-09/88 13.2634 0.0137
(3.18) (6.95)
01/87-12/88 23.0115 0.0153
(4.01) (11.84)
Panel C: Japan
Perjod X 7]
01/86-12/87 12.3192 0.0094
(3.55) (5.43)
04/86-03/88 13.6752 0.0099
(3.18) (5.707)
07/86-06/88 10.2362 0.0109
(2.80) (5.03)
10/86-09/88 10.9998 0.0136
(2.995) (6.21)
01/87-12/88 15.2900 0.0156
(3.43) (8.44)
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Implied Parameters for the Stochastic

0.0335
0.0363
0.0350
0.0379

0.0445

0.0310
0.0358
0.0339
0.0306

0.0417

0.0297
0.0324
0.0314
0.0337

0.0396



Table III-2:

Non-Linear Zstimation of Normalized

Futures Prices
(t-statistics in parentheses)

Period Model Obs RMSE MAE ME () RZ
01/88-03/88 S 31 0.001629 0.001313 0.000657 7.649 0.871
(31.18)
NS 31 0.006206 0.005400 0.005400
04/88-06/88 S 36 0.002456 0.001851 0.000503 6.000 0.508
(25.06)
NS 36 0.004964 0.004349 .004349
07/88-09/88 S 29 0.001571 0.001264 .000488 3.099 .913
(14.32)
NS 29 0.004869 0.004081 0.004801
10/88-12/88 S 30 0.001488 0.001245 0.000439 2.747 0.942
(12.86)
NS 30 0.006603 {.f05525 0.005516
Whole Period S 126 0.00319% 0 092619 0.000461 5.040 0.572
(24.97)
NS 126 0.005669 0..34826 0.004824
Panel B: Deutsche Mark
01/88-03/88 S 43 0.001327 0.000976 0.000047 10.711 0.979
(57.32)
NS 43 0.009440 0.007627 0.007602
04/88-06/88 S 36 0.001578 0.001119 0.000153 10.454 0.963
(39.27)
NS 36 0.006868 0.005786 .005786
07/88-09/83 S 39 0.001415 0.001045 .000375 7.363 .968
(35.74)
NS 39 0.007645 0.006406 0.006370
10/88-12/88 S 37 0.001437 0.001055 0.000428 9.870 0.973
© (38.01)
NS 37 0.007922 0.006741 0.006721
Whole Period S 155 0.002034 0.001541 .000284 9.527 .939
(59.85)
NS 155 0.008061 0.006681 0.006660
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Table III-2:

Non-Linear Estimation of Normalized
Futures Prices (continued)
(t-statistics in parentheses)

Period Model Obs RMSE MAE ME (] R
01/88-03/88 s 37 0.001917 0.001462 -0.000339 8.072 .939
(25.64)
NS 37 0.007805 0.005944 0.005900
04/88-06/88 S 49 0.001608 0.001298 -0.000087 8.528 .971
(52.54)
NS 49 0.008650 0.007094 0.007064
07/8£-09/88 S 48 0.002008 0.001516 -0.000046 7.819 0.961
(41.56)
NS 48 0.008523 0.006488 0.006353
10/88-12/88 S 50 0.002192 0.001713 0.000221 9.711 0.969
(48.97)
NS 50 0.011420 0.009448 0.009393
Whole Period S 184 0.002232 0.001669 -0.000085 8.653 . 957
(74.72)
NS 184 0.009277 0.007344 0.007279

NS - non-stochastic *"standard* model {(equation (3))

S - stochastic "proposed” model (equation (13);
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Tablo TII-3:

Perind

01/88-05/88'
04/8&-06/88
07/68-09/88
10/88-12/88

Whole Period

01/88-03/88
04/88-06/88
07/88-09/88
10/38-12/88

wWhole Period

Regression of Actual on Estimated

Normalized Futures Prices
(t-ratios in parentheses)

Model Intercept Slope
S -0.159 1.161
(1.92) (1.93)

NS 0.432 0.569
(12.40) (12.23)

S 0.234 0.765
(1.82) (1.82)

NS 0.375 0.627
(5.64) (5.56)

s -0.148 1.150
(2.19) 2.20)

NS 0.335 0.665
(8.18) (8.09)

S -0.134 1.136
(2.55) (2.56)

NS 0.:91 0 98
(11.2o° (1. "2)

S 0.7 0.947
(0.%a: (0.72)

NS 0.3¢3 0.648
(16.51) (1l6.26)

S 0.008 0.992
(0.36) 0.35)

NS -0.651 1.654
(4.23) (4.27)

S 0.029 0.972
(0.87) (C.%6)

NS -0.694 1.694
(10.38) (10.46)

S 0.076 0.925
(2.71) (2.70)

NS -0.342 1.347
(3.20) (3.24)

S 0.070 0.932
+2.65) (2.62)

NS -0.673 1.676
(5.38) (5.44)

S 0.048 0.953
(2.29) (2.29)

NS -0.572 1.575
(8.49) (8.58)
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BZ

.871
.900
.508
.720
.913
.905
.942
.915
.572

.878

L9772
.740
.963
.950
.968
.672
.973
.839
.939

.783



Table III-3: Regression of Actual on Estimated

Normalized Futures Prices (continued)
(t-ratios in parentheses)

Period Model Intercept Slope
Panzl C: Japanese Yen

01/88-03/88 [ -0.079 1.078

(1.68) (1.68)

NS -0.758 1.761

(3.33) (3.36)

04/88-06/88 S -0.015 1.015

(0.58) (0.59)

NS -0.810 1.810

(9.21) (9.29)

07/88-09/88 S 0.001 0.999

(0.03) (0.03)

NS -0.431 1.432

(3.56) (3.61!

10/88-12/88 S 0.026 0.97¢%

(1.0} (0.99;

NS -0.589 1.591

(5.64) (5.72}

Whole Period S -0.019 1.019

(1.18) (1.18)

NS -0.558 1.561

(9.99) (10.12)

BZ

0.939
0.633
0.971
0.902
0.961

NS - non-stochastic “standard” model (equation (3))
S - stochastic "proposed" model (equation (13))
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Appendix 1

(For simplicity, results presented here are expressed in
terms of the one state variable discount bond model. The

conclusions, however, are easily extendible to the multiple

state variable coupon bond model.)

Estimates of the market price of risk, ¢, are consistent
and asymptotically normal. The single variable version of
equation (10) can be rewritten as:

B(t,T,x)=EXP(A,(t,T,X, K, 0,7 +Ay (€, T,X,0,7)0]+e;

where e; are independent and identically distributed errors

(Ele;1=0, VAR[e;l=0;2) for observations i=1,...,N associated

with N bonds of different maturities. True values of K, 0,

LY N [
and Yy are unknown, but their consistent estimates K, 0, and ¥

can be obtained during the first non-linear least squares

estimation of the stochastic processes. Consequently,

"
plimﬁ:x, plimB=8, and plinﬁ=¥, where plim is the probability

limit as the number of observations, N, increases to
infinity. The market price of risk, ¢, is estimated from:

B(t,T,x)=EXP[A; (t,T,x,X,0,7) By (£, T, R, 0, M01+v;

where
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vi = e;+{EXP[A;(t,T,x,X,0,y) +Az(t,T,X,0,7)¢]
EXP[Aq (£, T.x, K, 0,9 +A2 (£, T, %, 8,761} .

Because this equation is non-linear in ¢. the non-linear

least squares procedure will give an estimate of ¢ such that

S(¢)=2%f1 ﬁviZ is minimized. Care must be taken since v; may

be correlated with A;(e) and Aj(e).

[N
Suppose that ¢ is the value of ¢ which minimizes

[,

ARhA A A LN
S(¢,%,0,y). Consequently, 0S/d¢=0 where ¢=0(x,0,Y). Then, it

will be the case that:

A A
plimds (6,K,0,Y) /30| ¢-4= plimdS(9,K,0,7) /9ple=§= 0.

LN
This means that ¢ also minimizes S(¢,x,0,Y) in which the true

values of k, 8, and y are substituted for estimated values in

this expression.

Ultimately, because consistent estimates of K, 0, and Y

are used, it can also be shown that the proof given by
amemiya (1985, Theorems 4.3.1 (page 129) and 4.3.2 (page 133)
can be extended to the present case assuming that the
conditions of the theorems hold. The two stage method will

yield market price of risk estimates such that:

I [N
(1) ¢ is consistent (plim$=9),
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»
and (2) ¢ is asymptotically normal such that:
SORT (N) (-0} — N(0,0,2¢"1)

'S
where 6,2 = N"1s(¢)

- 1i -1 2
C = liMysew N Zi___l’N(BB(t,T,x)/aq))

= liMyew N1X | (A2(A1+A20]EXP[A+A20] )2
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Appendix 2

PART 1: Proof that the solution (13) satisfies (10)
The solution

B(t,T,b) = EXP[A(t,T)+ L(t,T)Db]
where L(t,T) = (1/x) (1-EXP(-K(T-t)))

Ale,T)= - [(1/x) (1-EXP(-x(T-t)))-(T-t)]
[0+ (Y2/2K2) + (Y9/ &) ]

- (Y?/4%3) (1-EXP(-k(T-t)))?2
can be seen to satisfy

3B/t + (9B/3b)k(0-b) + (1/2) (92B/3b2) ¥
+ (dB/db) Y = -bB

by substituting in for the partial derivatives:
i) 9B/db = L(t,T)B(t,T,b)

ii) 92B/db2 = L2(t,T)B(t,T,b)
iii) oB/dt = [OA/dt + (dL/dt)blB(t,T,b)

iv) 9A/dt = -xOL(t,T) - POL(t,T) - (1/2)¥y2L2(t,T)

v) oL/dt = -EXP(-x(T-t))
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PART 2:_Ihg_yasigekilﬂllL_Lgxm_szxngnnng_mgdgl

In the notation of this paper if b equals
of interest, the solution to:

3B/ot + (9B/db)K(0-b) + (1/2) (92B/3b2) 2
+ (9B/3db) Y¢ = bB

is given by:

B(t,T,b) = EXP[A(t,T)+ L(t,T)bl

where L(t,T) = - (1/x) (1-EXP(-x(T-t)))

-+ u» riskless rate

A(t,T)= [(1/x) (1-EXP(-k(T-t)))-(T-t)]

[0- (Y2/2K2) + (W/%) ]
- (¥3/4%3) (1-EXP(-k(T-t)))2
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Appendix 3

Estimates of the market price of risk, ¢, are consistent
and asymptotically normal. Equation (13) can be rewritten

as:

B(tlle)=EXP[A1(tlleIKIBI‘Y) +A2(tITIKlelY)¢]+ei

where e; are independent and identically distributed errors

(E[e;1=0, VAR{e;]=0;2) for observations i=1,...,N associated

with N futures of different maturities. True values of x, 0,

AN [N
and Y are unknown, but their consistent estimates X, 0, and Y

can be obtained during the first non-linear least squares

estimation of the stochastic processes. Consequently,
- A 3 “ . “ - . . .

plimk=x, plim6=0, and plimy=y, where plim is the probability

limit as the number of observations, N, 1increases toO

infinity. The market price of risk, ¢, is estimated from:

ANN AAA
B(t,T,b)=EXP[A, (t,T.b.%,0,7) +2,(t,T,X,0,7)0]+v;

where
vy = ej+{EXP[A1(t,T, b,x 9 v +A5 (t, T,K 0.v)¢]
-EXP[A1 (t,T,Db, Q 0, ‘Y)+A2(t T, nc 6 y)tb])

Because this equation is non-linear in ¢, the non-linear

least squares procedure will give an estimate of ¢ such that
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s(¢).—=zi_1 NV12 is minimized. Care must be taken since vj may

be correlated with A;(e) and Az(e).

[N
Ssuppose that ¢ is the value of ¢ which minimizes

AAN NANNMNDK
S(6,x,0,Y). Consequently, 9S/90=0 where ¢=0(x,6,y). Then, it

will be the case that:
. A N .
plimds ($,%,8,Y) /0914 4= Plimds(9,x.6,7) /901 gRy= 0.
"N
This means that ¢ also minimizes S(¢,%x,0,Y) in which the true

values of k, 6, and y are substituted for estimated values in

this expression.

Ultimately, because consistent estimates of x, 6, and ¥
are used, it can also be shown that the proof given by
Amemiya (1985, Theorems 4.3.1 (page 129) and 4.3.2 (page 133)
can be extended to the present case assuming that the
conditions of the theorems hold. The two stage method will

yield market price of risk estimates such that:
L ) TN
(1) ¢ is consistent (plim¢=¢),

[N
and (2) ¢ is asymptotically normal such that:
A
SORT (N) {¢-¢} N(0,6,2C"1)

[ Y
where 0.2 = N-1s(¢)
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3 -1 2
limyypo N Ziﬂ'N(BB(t,T,x)/aq:)

BT N-lzi_l (B2 [A1+A20] EXP (A1 +A20])2
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