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Abstract

The interface between two phases—for example, a liquid and a vapor phase—influences the

properties of the phases it separates. When the interface is flat, the phase properties of both

single- and multicomponent systems can be reliably predicted by applying well-established

thermodynamic principles. When the interface is curved, phase properties change according

to the extent of the curvature, and this curvature-dependent effect has been studied extensively

in single-component systems. This thesis investigates the intersection where multicomponent,

multiphase systems contain interfacial curvature. Contributions are made to three questions

at this intersection: (1) how does the surface tension of a multicomponent mixture vary as a

function of composition and temperature? (2) how does the vapor–liquid phase diagram of a

multicomponent system change when there is a curved interface between the vapor and liquid

phases? and (3) how does the contact angle of a liquid drop change when it is on a chemically

heterogeneous or physically rough solid phase compared to a homogeneous, smooth solid?

Considering the first question, a new equation is developed to predict the surface tension of

multicomponent liquid mixtures, and it is validated against experimental data for a wide range

of temperatures, pressures, and mixture types (those containing one supercritical compound

(e.g., carbon dioxide) and those containing two subcritical compounds (e.g. organic and aqueous

mixtures)). In pursuing the second and third questions, the postulates of Gibbsian composite-

system thermodynamics—a mathematical framework that describes relationships between

energy and the properties of matter—are applied to each studied system. For calculating the

phase diagrams of multicomponent systems with nanoscale interfacial curvature, an activity-

coefficient model is developed and applied to both ideal and nonideal systems; the newly-
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developed surface tension model is incorporated into this system of equations. For describing

contact angle, a rigorous mathematical approach is presented, which demonstrates that the

properties at the circumference of the liquid drop determine the contact angle—that is, a line

fraction for a chemically heterogeneous surface and a line roughness for a physically rough

surface. As a whole, this thesis develops fundamental mathematical equations to quantify the

effect of interfacial curvature on the properties of multicomponent, multiphase systems for

use in the multitude of applications where curved interfaces are present, such as atmospheric

physics, medicine, catalysis, and soft matter nanotechnology.
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Chapter 1

Introduction

I would like to start by emphasizing the importance of surfaces.

Walter Houser Brattain
Nobel Laureate in Physics

The physical world can be roughly categorized into macroscopic phases of matter: solids,
liquids, and gases. When, for example, a liquid and a vapor phase coexist, each phase is
described by a set of properties, such as pressure and density, and there is a region between these
phases with a density that varies as a function of location. This region can be conceptualized
as a two-dimensional mathematical entity that separates the two phases—an interface—with
a surface area (but no thickness or volume) and a characteristic property called interfacial
tension (analogous to the pressure that is associated with a phase). Around two centuries ago,
the significance of interfacial tension became apparent through the work of scientists such as
Thomas Young [321], Agnes Pockels [218], and Josiah Willard Gibbs [108]. The importance
of interfacial tension has not diminished in the intervening years, but rather it has grown,
particularly in light of (i) emerging technologies that rely on, or are governed by, interfacial
forces and (ii) our increased awareness of natural processes that are also dictated by interfacial
tension. Interfacial science is the study of any system or process where interfaces play an
important role.

One specific topic of interest within interfacial science is the effect of a curved interface
on the behavior and properties of the phases it separates. In many natural and industrial
environments, the interface between two phases is flat, and as a consequence of this, the pressure
in one phase is equal to the pressure in the other. However, when a curved interface is present—
such as for a bubble of vapor or a droplet of liquid—the pressures in each phase are no longer
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equal. As described by the Young–Laplace equation, the difference in pressures is proportional
to the interfacial tension and inversely proportional to the radius of curvature (e.g., the radius
of a spherical bubble), so that the effect of curvature becomes increasingly relevant as the
curvature of the interface becomes more extreme. That is, as the radius of curvature approaches
the nanoscale, the behavior and properties of the phases in the system will deviate from those
expected if a flat interface were instead present. For example, the boiling temperature of water
is 100◦C at a pressure of 101 kPa when there is a flat interface between the vapor and liquid
phases. If a droplet of water has a radius of 10 nm, its boiling point is lower—96◦C—when
it is in a surrounding vapor phase at the same pressure of 101 kPa [70]. For the same reason,
a vapor bubble with a highly curved interface will condense at a temperature higher than the
condensation temperature of a flat vapor phase. Solid porous structures such as capillaries
facilitate the creation of a curved liquid–vapor interface, leading to a phenomenon known
as capillary condensation. With the addition of a solid phase, solid–liquid and solid–vapor
interfaces are created, and the curvature of the liquid–vapor interface is influenced by the
magnitudes of the interfacial tensions associated with these new interfaces.

Another area of interest in interfacial science is the interaction between fluids and solids and
its impact on interfacial curvature. For instance, will a liquid spread out on and completely wet
a particular solid, or will it adopt a spherical shape and not wet the surface at all? The wetting
behavior of a liquid on a certain solid phase is characterized by a contact angle measured through
the liquid at the location where the liquid–vapor interface touches the solid, where a contact
angle of 0◦ corresponds to a perfectly wetting liquid and a contact angle of 180◦ corresponds to
a perfectly non-wetting liquid for that solid. Generally, the chemical and physical properties
of each phase influence the resultant contact angle, and by manipulating these properties,
desired contact angles can be attained. A common method of controlling wetting behavior is
to introduce roughness to the solid substrate. By doing so, the liquid may either rest on top of
the rough features with trapped pockets of air or it may completely fill the surface with no air
entrapment. The level of roughness can be tuned to achieve the preferred state of wetting and
corresponding contact angle. For example, a liquid-repellent material with high contact angles
is desirable for waterproof food packaging [296], nonstick coatings, and concrete with anti-icing
and anti-corrosion properties [267]. In other circumstances, the liquid should preferentially wet
a surface, such as in painting, ink-jet printing, and cosmetics.

Specific fields where interfacial curvature between two or three phases is pertinent include
atmospheric science [164, 246], hydrocarbon extraction [88, 97, 295], and catalysis [24, 209,
308], among others. Cloud microphysics aims to describe how cloud droplets form, followed
by growth mechanisms such as condensation and coalescence. Condensation generally occurs
on atmospheric nuclei with highly curved surfaces. Depending on the chemistry and size of
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these nuclei, water condensation or evaporation may occur. On a slightly larger scale, the
concentration of nuclei influences the equilibrium number of water droplets and the size of
these droplets, which in turn, determine the size and lifetime of clouds. The size of these
clouds can affect both local and global weather patterns. In the subsurface of the Earth, porous
media span the micro- and mesoporous scale (0.2–2 nm and 2–50 nm) [232], and hydrocarbon
recovery operations are dependent on the accurate prediction of vapor–liquid equilibrium in these
underground formations [88, 97, 295]. With average pore throat diameters down to 10 nm [178],
shale reservoirs significantly alter the phase behavior of the fluids they contain (e.g., whether the
fluid is a gas, a liquid, or split into one liquid and one vapor phase). In catalysis, certain pore
sizes and structures can induce capillary condensation within the catalyst, leading to changes in
the reaction rate and conversion [24, 209, 308]. Capillary condensation may also affect the rate
of catalyst deactivation [14, 39, 40]. Emerging technologies such as micro- and nanofluidics
have been used to probe the nanoscale, together with established tools such as atomic force
microscopy [29] and the surface forces apparatus [149]. At these nanoscale dimensions, surface
forces arising from interfacial tension dominate the behavior of fluids compared to gravitational
or inertial forces. It is vital to understand and control nanoscale processes so that these tools can
be designed to achieve desirable effects—such as encapsulating one medium in another medium
or separating these media—for application in medicine (diagnosis [162] and drug delivery [75]),
molecular biology [125], water filtration [261], and nanoreactor chemistry [309].

In each of these environments and applications from atmospheric science to nanofluidics,
multiple phases coexist, and often, one or more of the phases contain multiple components. A
theoretical framework for understanding the behavior of multicomponent, multiphase systems is
well-established in chemical engineering, and numerous mathematical tools for prediction and
design have been developed, but this fundamental knowledge has been developed extensively
for systems with flat interfaces. On the other hand, our theoretical understanding of interfacial
tension on phase behavior has often focused on single-component systems. In recent decades,
research has begun to bridge these theoretical descriptions, motivated by the variety of systems
and processes consisting of several components separated by curved interfaces that often require
interdisciplinary understanding.

How can we understand, predict, and control processes and systems that contain multiple
phases, multiple components, and curved interfaces? Thermodynamics provides such a frame-
work. It is a set of mathematical relationships that describes the properties of matter and how
energy can be transformed. Through these relationships, thermodynamics can be used to predict
whether a process can occur, and if it does occur, how the properties of matter will change when
subjected to the defined constraints of the process. This thesis applies thermodynamics—more
specifically, Gibbsian composite-system thermodynamics—to two types of multiphase, mul-
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ticomponent systems with interfacial curvature: (i) two-phase vapor–liquid systems and (ii)
three-phase solid–liquid–vapor systems. This thesis lies at the intersection of multicomponent,
multiphase thermodynamics and interfacial thermodynamics, and it will bring researchers in
both fields to a more complete understanding of thermodynamics as a whole.

1.1 Gibbsian Composite-System Thermodynamics

Over the 19th century, the field of thermodynamics materialized into a set of laws that govern
matter and energy. Near the end of the century, Gibbs pioneered a comprehensive mathematical
blueprint for thermodynamics and how it relates a system’s thermal, mechanical, and chemical
properties with transfers of energy, while also placing limitations on spontaneous processes [108].
Out of the Gibbsian blueprint presented in On the Equilibrium of Heterogeneous Substances

[108], Callen [46] communicated a postulatory approach for thermodynamics as an alternative
to the historical presentation of the 1st, 2nd, and 3rd laws of thermodynamics.

In thermodynamics, a system is any collection of matter that is being investigated, and it
is contained within a defined system boundary. Usually, the system interacts with a reservoir,
which is a collection of matter that is located outside the system boundary. An open system

can exchange matter and energy with the surrounding reservoir, while a closed system can only
exchange energy. An isolated system is one whose boundary does not permit mass or energy
transfer with the reservoir. The state of a system can be defined as the unique aggregate of its
properties, including—but not limited to—temperature, pressure, and volume. If a property
does not change with the amount of matter in the system, then that property is intensive (e.g.,
temperature and pressure). A property that changes with the amount of matter in the system
is extensive (e.g., volume, internal energy, and number of moles). If an isolated system is in a
state where its macroscopic properties do not change over a prolonged period of time, then it is
in a stable equilibrium state—one goal of thermodynamics is determining the properties of
systems in their stable equilibrium state(s).

Gibbs established several additional concepts. First, a simple system is a collection of
matter that is homogeneous, isotropic, uncharged, and not under the influence of external fields,
such as gravity or electromagnetism [46, 108]. A composite system is a group of simple
systems. If each simple system in a composite system is in an equilibrium state and there is no
net transfer of matter or energy between the simple systems, then the composite system is in
an equilibrium state. This concept of a composite system is particularly useful for analyzing
systems with multiple phases and interfaces that can each be a simple system.

Next, to include the interfacial region in the mathematical framework of thermodynamics,
Gibbs accounted for the variation in density and composition between phases by describing
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such a system as two phases with constant properties (e.g., density, composition, and internal
energy) and an interface with its own set of properties (e.g., surface area, composition, and
internal energy). For a flat interface, the mathematical interface is placed in such a way that the
number of moles of one of the constituent components are completely accounted for by the bulk
phases. All other components in the system are assigned some number of moles that belong to
a “surface excess” in the interface, which may be a positive or negative value. This choice of
interfacial placement where one component has a surface excess of zero is known as the Gibbs
dividing surface approach. For a curved interface, the mathematical interface is placed so that
the interfacial tension does not depend on the curvature of the interface, and as a result, each
component is present in the interface with a nonzero surface excess. This approach for curved
interfaces where all components have a nonzero number of moles in the interface is known as
the Gibbs surface of tension approach.

The postulates of thermodynamics, as described by Callen are [46]:

I. A simple system in an equilibrium state is completely defined by the internal energy U ,
volume V for a bulk phase or area A for an interface, and mole numbers N1, N2, . . . , Nn,
where n is the number of components.

II. A quantity called entropy S is a function of the extensive properties of any composite
system. Entropy is defined for all equilibrium states. In the absence of internal constraints,
a stable equilibrium state is one where entropy is maximized compared to all other
equilibrium states.

III. The entropy of a composite system is additive over its subsystems. Entropy is a continuous,
differentiable, and monotonically increasing function of internal energy.

IV. At a temperature of 0 K, the entropy of a system is zero (if the system is a pure crystal
[121]).

As a consequence of postulates I–III, the following fundamental thermodynamic equation
applies to every bulk simple system j:

dU j = T j dS j −P j dV j +
n

∑
i=1

µ
j

i dN j
i , (1.1)

where T is absolute temperature and µi is the chemical potential of component i. Each of T , P,
and µi are intensive properties, while U , S, V , and Ni are extensive.

For the interface between simple bulk systems j and k, the fundamental equation has the
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following form for a flat interface according to the Gibbs dividing surface approach:

dU jk = T jk dS jk +σ
jk dA jk +

n

∑
i=2

µ
jk

i dN jk
i , (1.2)

and the following form for a curved interface according to the Gibbs surface of tension approach:

dU jk = T jk dS jk +σ
jk dA jk +

n

∑
i=1

µ
jk

i dN jk
i , (1.3)

where σ jk is the interfacial tension of the jk interface and A jk is the area of the interface. The
term surface tension is commonly used to refer to the interfacial tension of a liquid–vapor
interface. For a pure liquid in equilibrium with its vapor, surface tension generally decreases
with temperature. In systems with multiple components, surface tension varies as a function of
both composition and temperature.

To identify and categorize stable equilibrium states, postulate II indicates that the entropy
of a composite system must be at a maximum subject to the physical constraint that energy
is constant. Given postulate III, this requirement is mathematically equivalent to minimizing
energy subject to constant entropy. A state that has the global minimum in energy at constant
entropy is categorized as a stable equilibrium state. If the state is in a local minimum in
energy, it is a metastable equilibrium state. The third possibility is an unstable equilibrium
state, which has a local or global maximum in energy. Depending on the trend in energy as
a function of a variable of interest (such as volume), there may be an energy barrier between
metastable/stable equilibrium states that the system will need to overcome before reaching
a different metastable/stable equilibrium state. By virtue of Legendre transformations, the
identification of equilibrium states can be done by defining a free energy that eliminates entropy
from being an independent variable, and this free energy will also be extremized at an equilibrium
state [46]. Thus, a recipe for thermodynamic analysis consists of the following steps: (i) defining
the system, (ii) defining the constraints (physical or geometric), (iii) extremizing entropy subject
to the defined constraints to solve for the equilibrium conditions, (iv) determining the free energy
of the system, and (v) using the free energy, evaluating the stability of the equilibrium states.

1.1.1 Vapor–Liquid Phase Diagrams of Multicomponent Systems

Using the Gibbsian framework of thermodynamics, the equilibrium conditions for multicompo-
nent systems can be determined. Phase diagrams summarize the expected composition, quantity,
and state of matter for a given system at a certain temperature and pressure. For a pure substance,
a phase diagram delineates the expected phase as a function of both temperature and pressure.
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Another commonly varied system property is volume, and this extends the pure substance’s
phase diagram into three dimensions. For a binary mixture, a three-dimensional plot is needed
to show the phase as a function of composition in addition to the temperature and pressure axes.
Slices of such a 3D plot are typically taken at a specific temperature or pressure to illustrate the
equilibrium phase as a function of mixture composition.

Given a constant system temperature, a qualitative phase diagram for an ideal binary liquid
mixture is illustrated in Figure 1.1. Here, the system pressure is plotted as a function of
composition where x1 is the mole fraction of component 1 in the liquid phase and y1 is the
mole fraction of component 1 in the vapor phase. The overall composition of the mixture is
denoted by z1. Generally, the composition is in terms of the more volatile compound so that the
vapor pressure at x1 = 1 will be greater than the vapor pressure at x1 = 0. For given z1 values,
the bubble line is the pressure at which the first bubble of vapor forms from a single liquid
phase. The dew line is the pressure at which the first droplet of liquid forms from a single vapor
phase. The shaded area enclosed by the bubble line and dew line is the two-phase region where
a liquid phase and a vapor phase are in equilibrium. At any point within this phase envelope
(for example, the ‘×’ at an overall composition of z1 in Figure 1.1), a horizontal tie line can
be drawn to determine the composition in each phase and the quantity of each phase using the
lever rule based on the relative lengths of the line segments, as illustrated in Figure 1.1.
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Figure 1.1: A qualitative isothermal phase diagram for an ideal binary mixture.

Figure 1.2 illustrates the phase diagram for an ethanol + water system and corresponding
isothermal and isobaric slices. Figure 1.2(a) shows a surface plot with the complete dataset
as a function of pressure, temperature, and composition (data taken from Ohe [208]). The
shaded volume is the 3D depiction of the phase envelope where liquid and vapor phases coexist.
Outside this region, there will be a single liquid phase at high pressures and low temperatures,
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and there will be a single vapor phase at low pressures and high temperatures. Figure 1.2(b)
shows five isothermal slices from the 3D phase envelope, and Figure 1.2(c) shows two isobaric
slices. These isothermal and isobaric phase diagrams are most familiar to chemical engineers.
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Figure 1.2: Phase diagram of ethanol + water. (a) The complete phase diagram as a function of
temperature, pressure, and composition (data taken from Ohe [208]); (b) isothermal slices of the
3D phase envelope; and (c) isobaric slices of the 3D phase envelope.

The shape of the phase envelope is dictated by how different the strengths of the inter-
molecular bonds are between dissimilar molecules compared to similar molecules. The more
similar these bonds are, the closer the mixture is to ideality. In Figure 1.2, it can be seen
that the ethanol + water system exhibits nonideal behavior. An ideal system follows Raoult’s
Law, which states that the total vapor pressure in equilibrium with a liquid mixture is a simple
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linear combination of mole fraction and saturation vapor pressure for each pure component in
the mixture, as illustrated by the straight bubble line in Figure 1.1. This would give a planar
shape for the upper surface of the 3D phase envelope, but the ethanol + water system shows a
highly nonlinear shape due to the differences between water–water bonding, ethanol–ethanol
bonding, and water–ethanol bonding. In fact, there is a certain mixture composition at which the
ethanol + water system has a higher equilibrium bubble pressure than either of the individual
components, or alternatively, it has a lower equilibrium bubble temperature. At this point, the
composition in the liquid phase is equal to the composition in the vapor phase. This composition
is termed the azeotrope, and conventional distillation past this point is not possible.

The illustrated data in Figure 1.2 were collected under the condition that there is a flat
interface between the vapor and liquid phases. As a result, the pressure in the vapor phase is
equal to that in the liquid phase, and this single pressure defines the system, as plotted along the
vertical axis. When a curved interface is present, this convention cannot be followed because of
the difference in pressure between the phases. For a flat interface at a constant temperature, the
following established equations are used to calculate the bubble and dew pressures, PV

b and PV
d

respectively, as given in thermodynamics textbooks [78, 266]:

PV
b = ∑

i
xiγiPsat

i exp

⎛⎜⎝vL
i

(︂
PV

b −Psat
i

)︂
RT

⎞⎟⎠ (1.4)

PV
d =

⎛⎜⎜⎜⎝∑
i

yi

γiPsat
i exp

(︃
vL

i (PV
d −Psat

i )
RT

)︃
⎞⎟⎟⎟⎠

−1

, (1.5)

where xi and yi are the liquid mole fraction and vapor mole fraction of component i, γi is the
activity coefficient of each component, Psat

i is the saturation vapor pressure of each component,
vL

i is the liquid molar volume of pure component i, R is the universal gas constant, and T is
the absolute temperature. Equations (1.4) and (1.5) can be derived from the conditions for
equilibrium obtained via Gibbsian composite-system thermodynamics for a flat vapor–liquid
interface, including the equality of chemical potential for each component and the equality of
temperature and pressure between all phases. The exponential factor in Equations (1.4) and (1.5)
is known as the Poynting correction [222, 305], and at low pressures and high temperatures, this
factor becomes unity. For an ideal system, the activity coefficients will be equal to 1, whereas
for a nonideal binary system, they can be modeled by, for example, the following Margules
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equations [266]

ln(γ1) = x2
2
[︁
A12 +2(A21 −A12)x1

]︁
(1.6a)

ln(γ2) = x2
1
[︁
A21 +2(A12 −A21)x2

]︁
, (1.6b)

where A12 and A21 are empirical constants for a given system under either isothermal or isobaric
conditions at a specific temperature or pressure, respectively.

1.1.2 Single-Component Systems with Interfacial Curvature: The Kelvin

Equation

When there is a curved interface between a vapor and a liquid phase, the Young–Laplace
equation describes the relationship between pressure and the radius of curvature

PL −PV = σ

(︃
1

R1
+

1
R2

)︃
, (1.7)

where σ is the surface tension, and R1 and R2 are the two principal radii of curvature. For
Equation (1.7) as written the radii of curvature are defined as positive when they are in the liquid
(e.g., for a droplet). Equation (1.7) can be derived from a mechanical force balance [26, p. 53],
or it can be obtained as an equilibrium condition through the extremization of entropy using the
Gibbsian approach [87].

For a pure liquid in equilibrium with its vapor, the Kelvin equation describes how a spherical
vapor–liquid interface alters the vapor phase pressure [283]; it was later corrected by Gibbs to
the following thermodynamically consistent form for a spherical interface via the equality of
chemical potential in each phase combined with the Young–Laplace equation [77, 108]:

RT
vL ln

(︄
PV

Psat

)︄
=

2σ

r
+
(︂

PV −Psat
)︂
, (1.8)

where PV is the pressure in the vapor phase for a given interfacial radius of curvature r, Psat is
the saturated vapor pressure for a flat interface, and σ is the surface tension. The Kelvin equation
(Equation (1.8)) is valid when the vapor phase can be treated as an ideal gas and the liquid phase
is incompressible. Equation (1.8) is written such that in the case of a drop of liquid in a bulk
vapor phase, the radius is a positive value, and thus the vapor pressure is greater than the vapor
pressure in equilibrium with a flat interface. In contrast, for a bubble of vapor, the radius of
curvature is negative, which means that the vapor pressure is lower than the flat-interface vapor
pressure. Equation (1.8) has been experimentally verified by several researchers in a variety of
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systems. Some highlights include verification for a cyclohexane system and an n-hexane system
for radii as small as 4 nm between crossed mica cylinders [101], with a slight discrepancy for
water between silica surfaces down to a 9-nm radius [99]. La Mer and Gruen studied solutions
made up of one non-volatile and one volatile compound (dioctyl phthalate + toluene and oleic
acid + chloroform) and also achieved close agreement with the Kelvin equation [154].

1.1.3 Wetting of Liquids on Smooth, Chemically Homogeneous Solids

While the previous section discussed two-phase systems with interfacial curvature, curved
interfaces can also be found in three-phase systems, such as a solid–liquid–vapor system. The
term wetting describes how the liquid phase interacts with the solid, and the angle that the
liquid–vapor interface makes with a solid phase is defined to be the contact angle (θ ). When the
solid surface is physically smooth and chemically homogeneous and the liquid is in the shape
of a spherical cap (in the absence of any external forces, including pinning and gravity), the
contact angle is dictated by the Young equation [321]:

cosθY =
σSV −σSL

σLV , (1.9)

where θY is the Young contact angle and σ is the interfacial tension of the solid–vapor (SV),
solid–liquid (SL), or liquid–vapor (LV) interfaces. Equation (1.9) has been derived by balancing
mechanical forces [321], minimizing free energy under a constraint of constant liquid volume
[43, pp. 144–147], and maximizing entropy subject to physical and geometric constraints using
Gibbsian composite-system thermodynamics [87]. Each of these approaches concludes with
Equation (1.9) being the condition for mechanical equilibrium.

1.2 Literature Review on Multicomponent Systems with

Interfacial Curvature

In this thesis, three main topics are investigated. The subsequent sections provide an overview
of the prior literature for each of these areas.

1.2.1 Surface Tension of Multicomponent Systems

Any model of vapor–liquid equilibrium that accounts for interfacial curvature between liquid and
vapor phases must necessarily involve an accurate estimation of surface tension for substitution
into the Young–Laplace equation. Models for the surface tension of multicomponent systems
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can be broadly categorized into algebraic equations and differential equations. In the first
category are the parachor model (Weinaug–Katz equation [302]) and a range of models derived
out of thermodynamics (e.g., the Shereshefsky model [257] and the Connors–Wright model
[63]). In the second category, distributions of molecules through the interfacial region are
calculated using statistical mechanics via, for example, density gradient theory [35, 64, 66] or
density functional theory [144, 167, 175]. The parachor model and the statistical mechanics
models require inputs of the density of each phase (vapor and liquid) and pure-component fitting
parameters for predicting surface tension as a function of composition and temperature.

While the parachor model is straightforward to use, it is often inaccurate for mixtures over
a wide range of temperatures and compositions [7, 170, 191, 216]. Although the statistical
mechanics models are more accurate than the parachor model, they are limited by their time-
consuming computational intensity [157] and occasional issues with convergence [167]. The
algebraic thermodynamic models are both accurate and computationally simple, but they are
only applicable for mixtures where all constituent compounds are below their individual critical
points.

There is thus a need for the development of mathematical tools to describe multicomponent
surface tension for a wide array of mixture types, compositions, and temperatures. This thesis
proposes a new algebraic equation for the surface tension of multicomponent systems as a
function of composition and temperature based on a minimal amount of experimental data. This
new equation avoids the drawbacks of other approaches in the literature, namely inaccuracy,
computational intensity, or requirement for subcriticality. It also does not require knowledge of
liquid phase density at the composition and temperature of interest, an important benefit given
the difficulty in accurately calculating this density.

1.2.2 Phase Diagrams of Multicomponent Systems with Interfacial

Curvature

To describe the effect of interfacial curvature on a multicomponent system’s pressure in the
vapor phase, Defay and Prigogine [70] and Vehkmäki [292] derived a multicomponent version
of the Kelvin equation assuming that the vapor phase is an ideal gas and the liquid phase is an
ideal, incompressible mixture. Moving beyond the restrictions of ideality and incompressibility,
recent approaches have combined equations of state with the Young–Laplace equation and the
equality of chemical potential condition required at equilibrium using, for example, the Peng–
Robinson equation of state [204] and the perturbed chain-statistical associating fluid theory
(PC-SAFT) equation of state [278, 279]. In the model developed by Tan and Piri [278, 279], an
adsorption layer was considered to be present for multicomponent vapor–liquid equilibrium in
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porous media. To obtain the extent of this adsorption layer, their model was fit to experimental
data of pure components, and the adsorption layer was fit to be a function of pore radius and
temperature. An alternative method for modeling vapor–liquid equilibrium in pores is with a
version of the Peng–Robinson equation of state modified to account for fluid–solid interactions
by Travalloni et al. [285], also requiring fitting coefficients obtained from pure-component data.

However, the equations of state combined with the Young–Laplace equation may not always
correctly predict the change in liquid-phase and vapor-phase composition, such as for the
isothermal vapor–liquid equilibrium measurements of cyclohexane + fluorobenzene mixtures
conducted by Brown [37]. When the Tan–Piri approach was applied with the Peng–Robinson
equation of state, predictions indicated that compositions in the vapor and liquid phases were
identical, but experimental measurements showed otherwise [37]. As also identified by Brown
[37], there does not appear to be any model for predicting the effect of interfacial curvature
for mixtures whose bulk vapor–liquid equilibrium behavior cannot be described by the Peng–
Robinson or PC-SAFT equations of state.

In other words, there is an unmet need for an activity-coefficient phase equilibrium model
for multicomponent systems with interfacial curvature. In this thesis, such a model is developed.

1.2.3 Contact Angles on Heterogeneous and Rough Surfaces

In Section 1.1.3, the Young equation was presented to describe the contact angle of a liquid on a
smooth, chemically homogeneous solid, as shown in Figure 1.3(a). In reality, the solid surface
can be any combination of (i) physically smooth or rough and (ii) chemically homogeneous or
heterogeneous.

θY
(a)

(b)
(c)

(d)

Figure 1.3: Illustration of the Young, Wenzel, and Cassie–Baxter wetting states. (a) Schematic
diagram of a liquid droplet on a smooth surface with a contact angle θY as illustrated in (b).
Droplets on rough surfaces are shown in the (c) Wenzel and (d) Cassie–Baxter states of wetting.
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When the solid is rough and chemically homogeneous, a fluid can either fill the space be-
tween the surface asperities or the fluid can rest on top of the asperities, as shown in Figure 1.3(c)
and 1.3(d), respectively. Wenzel [303] first investigated the state where the fluid completely fills
the rough surface features and proposed the following equation to predict the contact angle of a
liquid drop in such a state:

cosθW = rf cosθY, (1.10)

where θW is the Wenzel contact angle, θY is the Young contact angle of a drop on a smooth
surface of the same material, and rf is the roughness factor—the actual area (A) of the solid–
liquid interface divided by the projected area of the solid–liquid interface (rf = ASL/Aprojected >

1). Equation (1.10) states that as the solid–liquid area increases, the contact angle will (i)
decrease until it reaches 0◦ if θY < 90◦ or (ii) increase if θY > 90◦. The Wenzel equation
(Equation (1.10)) has been derived from a free energy minimization approach by Johnson and
Dettre [133], who showed that it is the condition for mechanical equilibrium because the free
energy is at an extremum (a global minimum in free energy) under the constraint of constant
volume.

Based on the work of Wenzel [303], Cassie and Baxter [49] studied the state where the
liquid rests on top of the rough surface features, and they derived the following equation to
predict the contact angle of a liquid in such a state

cosθCB = fsl cosθY − flv, (1.11)

where θCB is the Cassie–Baxter contact angle, fsl is the ratio between the solid–liquid interfacial
area and the projected bottom area of the spherical cap (that is, fsl = ASL/Aprojected), and flv is
the ratio between bottom liquid–vapor interfacial area and the projected area. In the special case
that the bottom of the spherical cap is completely flat, fsl + flv = 1. Physically, Equation (1.11)
is a cosine average of contact angle over the solid–liquid and liquid–vapor fractions, where
θlv = 180◦. As mentioned by Cassie and Baxter [49], the Wenzel equation (Equation (1.10)) is
obtained in the limiting case when fsl = rf and flv = 0.

When the solid is physically smooth and chemically heterogeneous, a general form of the
Cassie–Baxter equation (Equation (1.11)) has been used to predict the contact angle of a liquid
on such a surface [188]:

cosθCB =
n

∑
i=1

fi cosθY,i, (1.12)

where n is the number of components in the solid phase, fi is the ratio between the liquid–ith
solid interfacial area and the projected area of the spherical cap’s bottom ( fi = ASiL/Aprojected),
and θY,i is the Young contact angle for the liquid on a smooth surface composed entirely of
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component i.
However, the applicability of the Wenzel and Cassie–Baxter equations (Equations (1.10)

and (1.12)) to all surfaces has been questioned, and a debate has emerged on which portion
of the contact region dictates the contact angle [82]. Does the whole solid–liquid contact area
determine the value of the contact angle, or is it only the solid–liquid region close to or at the
three-phase contact line that is important?

To test the Cassie–Baxter equation (Equation (1.12)), Gao and McCarthy [103] and Extrand
[90] measured the contact angles of drops on surfaces with a central island of one component,
where the volume of the drop exceeded the size of the central island. They showed that the
area fraction under the drop clearly does not determine the contact angle of such a large liquid
drop, because the inner heterogeneity does not affect the state at the contact line. In response,
theoreticians suggested that the area fractions in Equation (1.12) should be determined in the
region close to the drop’s contact line [185, 206, 248]. Others proposed that line fractions at the
contact line should be used instead [120, 212, 275, 314], and this approach predicted contact
angles that were in close agreement with those measured experimentally [65, 158]. The Wenzel
equation has been similarly questioned with experiments [103], and theoretical responses have
been limited to suggesting the use of an area roughness in the region close to the three-phase
line [32, 185, 206, 248]. Recently, the concept of a line roughness been suggested by Xu and
Wang [312, 313].

Thus, there is an opportunity to address the debate and misconceptions that persist in the
literature on the Cassie–Baxter and Wenzel states of wetting. This thesis proposes the use of
fundamental Gibbsian composite-system thermodynamics to do so.

1.3 Thesis Scope

The focus of this thesis is in deriving fundamental mathematical relationships that can predict
the properties or behavior of multicomponent systems with interfacial curvature. It is divided
into three parts.

Part I investigates the surface tension of liquid mixtures as a simultaneous function of
composition and temperature. Chapter 2 outlines a model to predict the surface tension as a
function of liquid-phase composition and temperature for mixtures with two components that
are below their individual critical points. The developed model is tested against 15 aqueous
mixtures. Chapter 3 extends the model from Chapter 2 to multicomponent mixtures where one
component may be above its critical point. The considered systems in this chapter include binary
methane + n-alkane mixtures, carbon dioxide + n-alkane mixtures, other organic subcritical
mixtures, as well as a ternary methanol + ethanol + water mixture. Part I of this thesis thus
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proposes a new equation for calculating surface tension as a function of composition and
temperature over a wide range of mixture types with a high level of accuracy, and this equation
uses parameters that can be considered composition- and temperature-independent.

Part II investigates the effect of curvature on the phase diagrams of multicomponent mixtures
from fundamental Gibbsian composite-system thermodynamics. Chapter 4 proposes an activity-
coefficient model for determining the bubble and dew pressures of a multicomponent system
as a function of composition and radius of curvature. Predictions are made for two systems,
one ideal (methanol + ethanol) and the other nonideal (ethanol + water). The azeotrope (equal
volatility point) of the nonideal mixture is shown to shift as a function of interfacial curvature.
Chapter 5 extends the activity-coefficient model to determine the bubble and dew temperatures
of a multicomponent system with the inclusion of the surface tension model developed in
Chapter 2. In this chapter, the activity-coefficient model with interfacial curvature is used to
make accurate predictions of dew temperature for a nitrogen + argon mixture as a function of
composition and radius of curvature (down to a radius of 2 nm). Additionally, further predictions
are made for methanol + ethanol and ethanol + water. Part II of this thesis thus provides a
framework for predicting the vapor–liquid equilibrium behavior of mixtures with interfacial
curvature using activity coefficients.

Part III is a theoretical investigation into the contact angle of liquid drops on rough or
heterogeneous surfaces. Chapter 6 puts forward a new derivation of the Cassie–Baxter equation
within the framework of Gibbsian composite-system thermodynamics, confirming the use of
a line fraction in place of an area fraction. The applicability of the area- and line-fraction
Cassie–Baxter equations is assessed for a variety of surface designs. Chapter 7 proposes a
new derivation of the Wenzel equation using the same Gibbsian framework, concluding with
a version that uses a line roughness instead of an area roughness. A dimensionless number
is introduced to quantify how large the radius of curvature of the liquid phase needs to be for
a simplified version of the equation to be valid, and a thermodynamic free energy analysis is
completed. Part III is a mathematical proof that the properties of the solid–liquid–vapor contact
line dictate the contact angle for both the Cassie–Baxter and Wenzel states of wetting.

The last chapter of this thesis, Chapter 8, highlights the main outcomes of this work.
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SURFACE TENSION
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Chapter 2

Model for the Surface Tension of Dilute and

Concentrated Binary Aqueous Mixtures as a

Function of Composition and Temperature1

Abstract

Surface tension dictates fluid behavior, and predicting its magnitude is vital in many appli-
cations. Equations have previously been derived to describe how the surface tension of pure
liquids changes with temperature, and other models have been derived to describe how the
surface tension of mixtures changes with liquid-phase composition. However, the simultaneous
dependence of surface tension on temperature and composition for liquid mixtures has been
less studied. Past approaches have required extensive experimental data to which models have
been fit, yielding a distinct set of fitting parameters at each temperature or composition. Herein,
we propose a model that requires only three fitting procedures to predict surface tension as
a function of temperature and composition. We achieve this by analyzing and extending the
Shereshefsky (J. Colloid Interface Sci. 24.3 (1967), pp. 317–322), Li et al. (Fluid Phase Equilib.

175 (2000), pp. 185–196), and Connors–Wright (Anal. Chem. 61.3 (1989), pp. 194–198),
models to high temperatures for 15 aqueous systems. The best extensions of the Shereshefsky,
Li et al., and Connors–Wright models achieve average relative deviations of 2.11%, 1.20%,
and 0.62%, respectively, over all systems. We thus recommend the extended Connors–Wright
model for predicting the surface tension of aqueous mixtures at different temperatures with the
tabulated coefficients herein. An additional outcome of this chapter is the previously-unreported
equivalence of the Li et al. and Connors–Wright models in describing experimental data of
surface tension as a function of composition at a single temperature.

1Reproduced, with minor modifications, with permission from N. Shardt and J. A. W. Elliott. “A Model for the Surface
Tension of Dilute and Concentrated Binary Aqueous Mixtures as a Function of Composition and Temperature”. Langmuir
33 (2017), pp. 11077–11085. http://pubs.acs.org/articlesonrequest/AOR-NkAqpDtYAHIVUiaXdP6d Copyright 2017 American
Chemical Society.
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CHAPTER 2. SURFACE TENSION FOR BINARY AQUEOUS MIXTURES

2.1 Introduction

Surface tension plays a key role in both static and dynamic phenomena such as the contact
angle of a liquid on a solid and the separation of a liquid stream into droplets [106]. It is a
significant factor in studies of atmospheric physics [17, 184, 224, 288], pharmacy [62], liquid
chromatography [52], ink-jet printing [270], microfluidics [84–86, 195], emulsions [27], wetting
[145–147], nucleation [87, 323, 324], and phase diagrams that include the effects of interfacial
curvature [254, 278, 279]. For pure liquids, it is known that surface tension is a linear function
of temperature for low temperatures, as first described by the Eötvös equation [81]. Guggenheim
and Katayama later developed other empirical equations that are more accurate for temperatures
approaching the liquid’s critical temperature [114].

For liquid mixtures, the prediction of surface tension as a function of composition is crucial.
Many empirical models have been proposed to achieve this, such as the Shereshefsky (S) model
[257], the Li et al. (LWW) model [56], and the Connors–Wright (CW) model [63]. However,
the temperature dependence of surface tension for liquid mixtures has been studied less than for
pure liquids. In the work that has been completed, there have been two common approaches.
The first approach for a liquid mixture is to fit a linear temperature dependence separately at
each mole fraction [9, 11, 180, 229, 289–291]. As an illustrative example, for the formic acid +
water system, a total of 28 fitting parameters are needed to describe the complete experimental
dataset using this approach [9]. The second approach is to choose a model that describes the
composition-dependence of surface tension for a mixture and then apply this model separately
to experimental data at each considered temperature [9, 11, 229, 289]; for the same dataset of
formic acid + water, 14 fitting parameters are needed when using the CW model [9]. A linear fit
can then be performed on the model parameters as a function of temperature [122, 123, 278].
This second approach reduces the number of fitting parameters needed to describe the data, but it
still relies on experimental knowledge of surface tension at all combinations of composition and
temperature. It would thus be beneficial to avoid such extensive data collection and numerous
iterations of fitting and instead have a model that can accurately predict surface tension at any
composition and temperature from a minimal number of experimental data points.

In this chapter, the S, LWW, and CW models are compared for aqueous binary mixtures as a
function of composition at room temperature. Through this analysis, we discover that the LWW
and CW models are mathematically identical when describing composition dependence at a
single temperature. Next, using solely the model parameters obtained at room temperature and
the temperature dependence of the pure components’ surface tension, we propose extensions of
each model to predict each mixture’s surface tension for temperatures up to 373 K for propylene
glycol(1) + water(2) and up to 323 K for all other mixtures, and the accuracy of each extended
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model is assessed. We consider two different extensions of the S and LWW models and one
extension of the CW model in our analysis for a total of five extended models. We propose that
the temperature dependence of a mixture’s surface tension arises primarily from the temperature
dependence of its pure components’ surface tensions for the majority of the studied aqueous
systems, as supported by the extended CW model.

2.2 Governing Equations

2.2.1 Surface Tension as a Function of Composition

The model proposed by Shereshefsky (S model) is given by [257, 276]

σS = σ2 −
exp
(︂

∆Fs
RT

)︂
1+ x1

[︃
exp
(︂

∆Fs
RT

)︂
−1
]︃x1 (σ2 −σ1) , (2.1)

where σS is the predicted mixture surface tension, σ1 and σ2 are the surface tensions of the pure
components (in this chapter, σ2 is the surface tension of pure water), x1 is the mole fraction
of the nonaqueous compound, ∆Fs is the free energy change associated with the exchange of
one mole of water with one mole of the second compound at the surface, R is the universal gas
constant, and T is the absolute temperature.

The model proposed by Li et al. (LWW model) is given by [56]

σLWW = x1σ1 + x2σ2 −
x1x2RT

x2 + x1Λ21

(︃
∂Λ21

∂A

)︃(︃
1− 1

Λ21

)︃
, (2.2)

where Λ21 is a dimensionless parameter for the system and A is surface area per mole. Substitut-
ing expressions for Λ21 and its partial derivative into Equation (2.2) and redefining the fitting
parameters gives the following form of the LWW model

σLWW = x1σ1 + x2σ2 +
x1x2

x2 + exp
(︁
− α

RT

)︁
x1

β exp
(︃
− α

RT

)︃[︄
1− exp

(︃
α

RT

)︃]︄
, (2.3)

where α and β are re-defined fitting parameters related to the original parameters by the
following expressions

Λ21 = exp
(︃
− α

RT

)︃
(2.4)

∂α

∂A
= β . (2.5)

20



CHAPTER 2. SURFACE TENSION FOR BINARY AQUEOUS MIXTURES

The LWW model has been used successfully to describe the surface tension of both binary
and multicomponent systems as a function of composition [56, 241]. It was initially considered
to have approximately temperature-independent parameters, but in the reported results [56], it
can be seen that the percent deviation between predictions and experimental data increases as
the temperature increases, and for mixtures of organic acids with water, the parameters have
been shown to be functions of temperature [18].

The model proposed by Connors and Wright (CW model) is given by [63]

σCW = σ2 −
(︃

1+
b(1− x1)

1−a(1− x1)

)︃
x1(σ2 −σ1), (2.6)

where a and b are fitting parameters. The CW model can be simplified to the S model by setting
b = a and rearranging.

Each of the above three models (Equations (2.1), (2.3), and (2.6)) is fit to literature data
at the lowest reported temperature (Tref). To compare the accuracy of each model at Tref, the
standard deviation (SD) is calculated in MATLAB (R2016b Natick, USA) using [18, 255]

SD =

√︄
∑

n
i=1 (σ̂ i −σi)

2

n− p
, (2.7)

where σ̂ i is the predicted value of surface tension, σi is the experimental value of surface tension,
n is the number of experimental data points used in the fitting, and p is the number of fitting
parameters in the model. The lower the standard deviation the better the model agrees with
experimental values.

2.2.2 Surface Tension as a Function of Composition and Temperature

The temperature dependence of each pure component’s surface tension is chosen for this chapter
to be a linear fit of experimental data from each literature source:

σi = θ0,i +θ1,iT, (2.8)

where θ0,i and θ1,i are fitting parameters for component i. For ordinary least squares regression,
the coefficient of determination R2 can be used to evaluate the goodness of fit, and it is given by

R2 = 1− SSE
TSS

= 1− ∑
n
i=1 (σ̂ i −σi)

2

∑
n
i=1 (σi − σ̄ i)

2 , (2.9)
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where SSE is the sum of squared errors and TSS is the total sum of squared deviations from the
mean, where the mean is given by

σ̄ i =
1
n

n

∑
i=1

σi. (2.10)

We propose to extend the S, LWW, and CW models by combining Equation (2.8) for each
pure component with the original models (Equations (2.1), (2.3), and (2.6)) to create new
models that can predict the surface tension of a mixture as a function of both composition and
temperature. Each original model is fit to literature data at the lowest reported temperature (Tref),
and then only the pure component surface tensions are allowed to vary with temperature in the
extended models. In total, five extended models to higher temperatures are considered, and the
accuracy of their predictions is assessed.

First, we extend the S and LWW models (Equations (2.1) and (2.3), respectively) by
assuming that the fitting parameters ∆Fs, α , and β are constant with temperature. The models
obtained using this assumption will be referred to as the ex1-S and ex1-LWW models.

Next, we extend the S and LWW models by nondimensionalizing two of the parameters
(∆Fs/RT and α/RT ) and assuming that these dimensionless parameters are constant with
temperature. The models obtained using this assumption will be referred to as the ex2-S and
ex2-LWW models. The motivation behind using dimensionless parameters comes from previous
studies of mixtures’ surface tension as a function of temperature. Tahery et al. [276] showed
that while ∆Fs in the S model depends on temperature, ∆Fs/RT can be temperature independent
for many aqueous systems. Since the value of ∆Fs for each system is determined at Tref, the
dimensionless counterpart of ∆Fs is ∆Fs/RTref, and the ex2-S model is calculated using the
following equation

σex2−S = σ2 −
exp
(︂

∆Fs
RTref

)︂
1+ x1

[︃
exp
(︂

∆Fs
RTref

)︂
−1
]︃x1 (σ2 −σ1) . (2.11)

In the LWW model, Bagheri et al. [18] showed that the fitting parameters are functions of
temperature for organic acid + water systems, but the functional forms of these relationships
were not investigated. Based on the success of a dimensionless parameter in the S model, we
investigate whether a dimensionless LWW parameter α/RT is constant with temperature. For
the ex2-LWW model, the dimensionless counterpart of α is α/RTref, yielding

σex2−LWW = x1σ1 + x2σ2 +
x1x2

x2 + exp
(︂
− α

RTref

)︂
x1

β exp
(︃
− α

RTref

)︃[︄
1− exp

(︃
α

RTref

)︃]︄
.

(2.12)
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In Equations (2.11) and (2.12), the pure component surface tensions (σi) are calculated as a
function of temperature using Equation (2.8).

The final extended model combines Equation (2.8) with the original CW model (Equa-
tion (2.6)), and this extended model will be referred to as the ex-CW model.

To compare the accuracy of each extended model, the relative percent deviation (di) between
a prediction at a specific composition and temperature and the experimental value at the same
composition and temperature can be calculated using

di =
|σ̂ i −σi|

σi
×100%, (2.13)

and the average relative deviation for a system or group of systems can be calculated using

ds =
1
j

j

∑
i=1

di, (2.14)

where j is the number of experimental points over all compositions and/or temperatures for
that system or group of systems. All experimental data were taken from the tables reported
in each literature source for a total of 1315 data points over all considered aqueous systems.
Two experimental data points were identified as outliers and were not used for comparison
to predictions: for monoethanolamine(1) + water(2), the measurement [289] at x1 = 0.069
and T = 308 K, and for methanol(1) + water(2), the measurement [290] at x1 = 0.090 and
T = 313 K. These outliers were identified because at those compositions and temperatures the
surface tensions do not follow the otherwise monotonically decreasing trend as a function of
temperature.

2.3 Results and Discussion

2.3.1 Pure-Component Surface Tension as a Function of Temperature

Table 2.1 summarizes the fitting coefficients for each pure substance used in this chapter
to describe how surface tension changes as a function of temperature (Equation (2.8)). For
propylene glycol(1) + water(2), the equation for water is taken from Hoke and Patton [122], but
the goodness of fit for this equation is not given in the reference; the listed coefficients for this
equation have been converted for use with temperatures in Kelvin. For all other compounds, the
coefficients were determined by fitting Equation (2.8) to the tabulated experimental data in each
listed reference using the built-in MATLAB fit() function that uses QR factorization for a linear
polynomial curve.
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Table 2.1: Coefficients ± their 95% confidence intervals to describe the effect of temperature on the surface tension of pure compounds
for T in K and σi in mN/m obtained from a linear fit (σi = θ0,i +θ1,iT ) to the experimental data reported in the listed reference. n is the
number of data points.

Compound n θ0,i [mN/m] θ1,i [mN/m/K] R2 Reference

Monoethanolamine (MEA) 6 98.1±2.0 −0.165±0.006 0.9992 Vázquez et al. [289]
Diethanolamine (DEA) 6 96.0±2.4 −0.163±0.008 0.9989 Vázquez et al. [291]
Triethanolamine (TEA) 6 94.2±2.2 −0.162±0.007 0.9990 Vázquez et al. [291]
2-Amino-2-methyl-1-propanol (AMP) 6 66.3±0.5 −0.117±0.002 0.9999 Vázquez et al. [289]
Formic acid 7 69.2±0.4 −0.108±0.001 0.9999 Álvarez et al. [9]
Acetic acid 7 56.5±0.4 −0.099±0.001 0.9999 Álvarez et al. [9]
Propionic acid 7 55.8±0.2 −0.099±0.001 1.0000 Álvarez et al. [9]
Methanol 7 50.0±1.0 −0.092±0.003 0.9991 Vázquez et al. [290]
Ethanol 7 46.3±0.9 −0.082±0.003 0.9990 Vázquez et al. [290]
1-Propanol 7 46.9±0.3 −0.079±0.001 0.9999 Vázquez et al. [290]
2-Propanol 7 51.4±0.3 −0.101±0.001 0.9999 Vázquez et al. [290]
Propylene glycol 8 56.4±1.5 −0.068±0.004 0.9960 Hoke and Patton [122]
N-Methyl diethanolamine (MDEA) 6 61.1±9.5 −0.076±0.031 0.9214 Álvarez et al. [11]
1-Amino-2-propanol (1-AP) 6 109.4±2.1 −0.242±0.007 0.9996 Álvarez et al. [10]
3-Amino-1-propanol (3-AP) 6 112.3±0.5 −0.229±0.002 1.0000 Álvarez et al. [10]

Water 6 120.5±2.2 −0.163±0.007 0.9991
Álvarez et al. [10, 11];
Vázquez et al. [289, 291]

Water 7 119.9±1.6 −0.161±0.005 0.9992
Álvarez et al. [9];
Vázquez et al. [290]

Water N/A 116.2 −0.148 N/A Hoke and Patton [122]
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2.3.2 Surface Tension as a Function of Composition

To describe how a mixture’s surface tension depends on composition at a single temperature,
the S, LWW, and CW models (Equations (2.1), (2.3), and (2.6)) are fit to reported experimental
data. Table 2.2 lists the fitting parameters, their 95% confidence intervals, and the standard
deviation (SD) for the S, LWW, and CW models for each binary mixture at the lowest reported
temperature (Tref). The pure component surface tensions (σi in Equations (2.1), (2.3), and (2.6))
were evaluated at Tref using Equation (2.8), and then each model’s fitting parameters were
determined using the built-in MATLAB fit() function with the Levenberg–Marquardt algorithm
for nonlinear regression.
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Table 2.2: Parameters ± their 95% confidence intervals for the S, LWW, and CW models (Equations (2.1), (2.3), and (2.6), respectively)
fit to the surface tension of the listed systems at the lowest reported temperature (Tref) using n experimental points. Equation (2.8) was
used to calculate the surface tension of each pure component at Tref using the fit coefficients in Table 2.1. The standard deviation (SD;
Equation (2.7)) of each model is listed in brackets. Compound 1 refers to the first component of the binary aqueous mixture.

S model LWW model CW model

Temp. ∆Fs [J/mol] α [J/mol] β [J/m2] a [unitless] b [unitless]
Compound 1 n Tref [K] (SD [mN/m]) (SD [mN/m]) (SD [mN/m])

MEA [289] 13 298 4940±520 −7260±40 −15.28±0.08 0.9466±0.0008 0.6274±0.0028
(1.32) (0.03) (0.03)

DEA [291] 11 298 5520±550 −7680±30 −17.36±0.07 0.9550±0.0006 0.6694±0.0023
(1.40) (0.02) (0.02)

TEA [291] 11 298 7790±20 −7840±20 −25.87±0.06 0.9576±0.0003 0.9510±0.0020
(0.05) (0.02) (0.02)

AMP [289] 14 298 8460±430 −9740±40 −34.47±0.15 0.9803±0.0004 0.8315±0.0035
(1.94) (0.09) (0.09)

Formic acid [9] 14 293 4130±130 −4780±120 −29.93±0.81 0.8595±0.0070 0.7302±0.0144
(0.55) (0.16) (0.16)

Acetic acid [9] 14 293 6460±330 −7680±30 −37.17±0.16 0.9571±0.0006 0.7873±0.0029
(1.77) (0.07) (0.07)

Propionic acid [9] 14 293 9500±280 −10210±40 −42.67±0.16 0.9848±0.0003 0.9109±0.0032
(1.26) (0.10) (0.10)

Methanol [290] 14 293 4780±60 −4990±110 −47.59±1.02 0.8709±0.0056 0.8314±0.0130
(0.34) (0.21) (0.21)

Ethanol [290] 14 293 7440±100 −7740±80 −48.39±0.46 0.9583±0.0013 0.9176±0.0076
(0.56) (0.19) (0.19)

1-Propanol [290] 14 293 11360±140 −11230±190 −49.66±0.59 0.9900±0.0008 1.0011±0.0113
(0.46) (0.41) (0.41)

2-Propanol [290] 14 293 9650±130 −9500±200 −51.87±0.95 0.9798±0.0017 0.9954±0.0169
(0.60) (0.55) (0.55)

Propylene glycol [122] 9 303 6230±520 −7520±480 −29.70±1.61 0.9495±0.0096 0.7885±0.0362
(1.33) (0.45) (0.45)

MDEA [11] 14 298 7280±580 −9360±520 −24.71±1.47 0.9771±0.0048 0.7227±0.0401
(2.33) (0.78) (0.78)

1-AP [10] 12 298 5660±560 −7800±40 −24.87±0.13 0.9571±0.0007 0.6858±0.0030
(1.97) (0.05) (0.05)

3-AP [10] 12 298 4530±200 −5430±10 −23.06±0.06 0.8884±0.0007 0.7287±0.0015
(0.58) (0.01) (0.01)
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Figure 2.1 shows some representative examples of the model fits to experimental surface
tension data as a function of composition. The S model performs well when a and b in the CW
model are close to the same value, such as in the TEA(1) + water(2) system; this is expected
because the CW model simplifies to the S model when a = b. As the values of a and b become
more different, the S model cannot mathematically describe the curvature of the experimental
data with a single fitting parameter. The S model becomes less and less accurate, as seen by the
larger standard deviation for systems such as acetic acid(1) + water(2) and MDEA(1) + water(2)
compared to the standard deviation for TEA(1) + water(2). This means that it is better to use
a 2-parameter model to more accurately capture how surface tension changes as a function of
composition for a wider variety of systems. The 2-parameter CW and LWW models have the
same standard deviation for the studied systems, and therefore, either model can be selected
for the fitting of experimental data of surface tension as a function of liquid mole fraction at
constant temperature.
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Figure 2.1: Fits of the S, LWW, and CW models (Equations (2.1), (2.3), and (2.6), respectively)
to experimental data of surface tension as a function of liquid mole fraction for aqueous mixtures:
(a) TEA, (b) acetic acid, and (c) MDEA. Equation (2.8) was used to calculate the surface tension
of each pure component at Tref with the fit coefficients in Table 2.1. The best-fit parameters of
the S, LWW, and CW models at Tref are listed in Table 2.2.

The fact that the LWW and CW models yield the same predictions of surface tension
as a function of liquid mole fraction at a single temperature suggests that these models are
mathematically identical. After some algebraic manipulation, the following relationships
between the LWW and CW fitting coefficients can be derived:

α =−RT ln
(︃

a
1−a

+1
)︃
=−RT ln

(︃
1

1−a

)︃
(2.15a)

β =
b
a
(σ1 −σ2) . (2.15b)

Even though the CW model was derived based on Langmuir adsorption and the LWW model
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was derived from a free energy analysis, the final models are of the same mathematical form to
describe the dependence of surface tension on liquid-phase composition.

2.3.3 Surface Tension as a Function of Composition and Temperature

We propose to extend the original S, LWW, and CW models to predict the surface tension of
mixtures at higher temperatures by combining Equation (2.8) for each pure component with each
of the original models (Equations (2.1), (2.3), and (2.6), respectively). A total of five extended
models are considered, depending on whether the fitting parameters or their dimensionless
versions are assumed constant with temperature.

The best-fit parameters in Table 2.2 were determined at the lowest reported temperature
(Tref), so all surface tension values calculated above this temperature for the mixtures are true
predictions based solely on the temperature-dependent pure component surface tension and the
single fit to data as a function of composition at Tref. Using the parameters in Table 2.1 and
Table 2.2, surface tension can then be calculated as a function of composition and temperature for
each extended model and compared to experimental data. Table 2.3 summarizes the maximum
and average relative percent deviations of the predictions over all compositions and temperatures
for each extended model applied to each system. Over all the systems, the ex-CW model has the
lowest average percent deviation of 0.62% between predictions and experimental measurements,
and such a high level of accuracy is comparable to the reported average deviation of 0.54%
for the LWW model fit to data at a single temperature over 124 systems [56]. The maximum
relative deviation is also lowest for the ex-CW model compared to the other extended models.
For propylene glycol, the highest temperature considered is 373 K, and for all other systems,
the highest temperature is 323 K.

28



C
H

A
PT

E
R

2.
SU

R
FA

C
E

T
E

N
SIO

N
FO

R
B

IN
A

RY
A

Q
U

E
O

U
S

M
IX

T
U

R
E

S

Table 2.3: Maximum and average relative percent deviation are listed for predictions calculated using the ex1-S, ex2-S, ex1-LWW,
ex2-LWW, and ex-CW models compared to experimental data for each aqueous system over all compositions and temperatures. The last
row considers the performance of each extended model over all systems. The number of points ( j) used in each calculation of average
relative deviation is also listed. The gradient in background colors for average relative deviation is a scale from blue (0%) to white to red
(4%). White text on a blue background indicates that the average relative deviation is less than 0.5%.

ex1-S model ex2-S model ex1-LWW model ex2-LWW model ex-CW model

Compound 1 j

Max
deviation

di,max
(%)

Average
deviation

ds
(%)

Max
deviation

di,max
(%)

Average
deviation

ds
(%)

Max
deviation

di,max
(%)

Average
deviation

ds
(%)

Max
deviation

di,max
(%)

Average
deviation

ds
(%)

Max
deviation

di,max
(%)

Average
deviation

ds
(%)

MEA 77 3.74 1.95 3.89 1.95 1.45 0.36 0.25 0.07 0.27 0.08
DEA 66 4.49 2.11 4.42 2.07 1.98 0.49 0.20 0.08 0.19 0.08
TEA 66 3.12 0.85 0.27 0.10 3.04 0.85 0.20 0.08 0.18 0.08
AMP 84 8.01 3.98 8.32 3.81 3.40 0.66 2.46 0.90 1.50 0.29
Formic acid 98 3.15 1.03 2.10 0.87 1.70 0.46 1.69 0.47 0.74 0.21
Acetic acid 98 8.93 4.03 8.54 3.72 4.49 1.00 2.86 0.83 0.66 0.13
Propionic acid 98 13.84 3.99 6.41 3.10 8.80 1.73 4.43 1.27 3.17 0.37
Methanol 97 5.77 1.58 1.95 0.78 3.95 1.02 3.59 0.91 0.96 0.40
Ethanol 98 10.04 2.57 3.23 1.37 6.04 1.40 5.69 1.54 1.26 0.36
1-Propanol 98 12.99 3.21 3.58 1.16 10.16 2.89 9.88 3.10 2.98 1.30
2-Propanol 98 15.68 3.72 4.42 1.43 11.39 3.36 8.91 2.48 3.66 1.64
Propylene glycol 109 12.58 3.56 6.08 2.81 7.15 1.63 6.65 2.10 2.94 0.96
MDEA 84 8.68 3.24 6.83 2.97 4.59 1.43 3.62 1.27 6.09 1.49
1-AP 72 12.28 4.12 9.33 3.91 9.14 2.59 6.14 1.85 4.64 1.20
3-AP 72 5.75 1.73 4.35 1.56 5.42 1.29 3.74 0.82 3.04 0.68
Over all systems 1315 15.68 2.80 9.33 2.11 11.39 1.42 9.88 1.20 6.09 0.62
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Figure 2.2 illustrates the trends in surface tension as a function of composition at 323 K as
predicted by each extended model for systems of TEA(1) + water(2), acetic acid(1) + water(2),
and MDEA(1) + water(2). Compared to Figure 2.1, the surface tensions of the mixtures are
lower at 323 K for all system compositions. This is expected since the surface tension of
each pure component decreases with temperature, and therefore the mixture’s surface tension
also decreases. In Figure 2.1, the LWW and CW models give identical predictions, but as
the temperature reaches 323 K in Figure 2.2, the ex-CW model agrees more closely with
experimental data than the ex1-LWW or ex2-LWW model for the illustrated TEA(1) + water(2)
and acetic acid(1) + water(2) systems.
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Figure 2.2: Predictions of five extended models for surface tension as a function of liquid
mole fraction for aqueous mixtures: (a) TEA, (b) acetic acid, and (c) MDEA compared to
experimental data at 323 K. For each extended model, the best-fit parameters listed in Table 2.2
were used for the composition dependence of surface tension at Tref, and the coefficients listed
in Table 2.1 were used to determine the pure components’ surface tension at 323 K with
Equation (2.8).

Figure 2.1 and Figure 2.2 show snapshots of fits of each original model at the lowest reported
temperature and of predictions of each extended model at the highest reported temperature,
respectively. To gain insight into how each extended model performs in the intermediate
temperatures, the average relative deviation can be calculated at every temperature for each
aqueous system. Three main patterns emerge when these average relative deviations are plotted
as a function of temperature.

All systems exhibiting Pattern I are shown in Figure 2.3. Here, the ex1-LWW model’s
deviation increases with temperature, but the ex2-LWW model’s deviation is constant with
temperature. Considering extensions of the S model, the ex1-S model’s deviation is either
constant or increasing with temperature, but the ex2-S deviation is constant with temperature
for all systems. The ex-CW model yields constant relative deviation with temperature. For
these systems, it can thus be concluded that ∆Fs/RTref, α/RTref, β , a, and b are constant.
Equation (2.15a) supports the fact that α/RTref is constant for systems for which a from the CW
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model is also constant with temperature. By considering α/RTref as a constant, the magnitude
of the temperature dependence of β can be isolated and assessed. For systems in Pattern I,
the average percent deviation of the ex2-LWW model matches that of the ex-CW model at all
temperatures, and therefore β is essentially temperature independent. This can be explained
with Equation (2.15b), which shows that the value of β will only change if the difference in
surface tension between the two components changes as a function of temperature. That is,
when the pure component surface tension is represented by a linear polynomial, β will not
change very much if the slopes (θ1,i) of each pure component are similar; if the slopes are very
different, β will change with temperature. The systems exhibiting Pattern I have slopes closer
to that of water than those systems in Pattern II.
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Figure 2.3: Average relative percent deviation between model predictions and experimental
data as a function of temperature for aqueous mixtures exemplifying Pattern I: (a) MEA, (b)
DEA, and (c) TEA. For each extended model, the best-fit parameters listed in Table 2.2 were
used for the composition dependence of surface tension at Tref, and the coefficients listed in
Table 2.1 were used to determine the pure components’ surface tension at each temperature.

Pattern II, as shown in Figure 2.4, is characterized by increasing relative deviation with
increasing temperature for the ex1-LWW model and ex2-LWW model, increasing relative
deviation for the ex1-S model, and constant relative deviation for the ex2-S and ex-CW models.
For these systems, therefore, ∆Fs/RTref, α/RTref, a, and b are constant. The observation that
α and β are not constant is in agreement with Bagheri et al. [18], who previously studied the
original LWW model and concluded that its fitting parameters are functions of temperature for
organic acid + water systems. The temperature dependence of β worsens the accuracy of the
extended LWW models for systems in Pattern II. The pure components in each system exhibiting
this pattern have significantly different θ1,i compared to θ1,water, and thus the ex2-LWW model
shows increasing relative deviation with increasing temperature, as given by Equation (2.15b).

Pattern III shows varying relative deviation as a function of temperature for all five of the
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Figure 2.4: Average relative percent deviation between model predictions and experimental data
as a function of temperature for aqueous mixtures exemplifying Pattern II: (a) AMP, (b) formic
acid, (c) acetic acid, (d) propionic acid, (e) methanol, (f) ethanol, (g) 1-propanol, (h) 2-propanol,
and (i) propylene glycol. For each extended model, the best-fit parameters listed in Table 2.2
were used for the composition dependence of surface tension at Tref, and the coefficients listed
in Table 2.1 were used to determine the pure components’ surface tension at each temperature.

extended models, as illustrated in Figure 2.5. None of the models describe the temperature
dependence of MDEA(1) + water(2) very well, although the ex2-LWW and ex-CW models are
both within approximately 2% of experimental data at all temperatures. The model predictions
for the MDEA(1) + water(2) system may be compromised by the relatively worse fit for the
temperature dependence of the surface tension of pure MDEA compared to the other systems
(R2 of 0.9214 for MDEA compared to R2 > 0.99 for all other systems in Table 2.1). For
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aqueous mixtures of 1-AP and 3-AP, all extended models have increasing relative deviation as
the temperature increases. This suggests that there is an additional temperature dependence that
is not captured by the proposed extended models for these mixtures.
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Figure 2.5: Average relative percent deviation between model predictions and experimental
data as a function of temperature for aqueous mixtures exemplifying Pattern III: (a) MDEA,
(b) 1-AP, and (c) 3-AP—where all extended models show varying deviation as a function of
temperature. For each extended model, the best-fit parameters listed in Table 2.2 were used for
the composition dependence of surface tension at Tref, and the coefficients listed in Table 2.1
were used to determine the pure components’ surface tension at each temperature.

Depending on the extended model and system, the predictions of surface tension can
maintain the same level of accuracy seen at the lowest temperature. In order to achieve the
same level of accuracy as the ex-CW model, the ex1-LWW and ex2-LWW model parameters
need to be recalculated at different temperatures, as dictated by Equations (2.15a) and (2.15b).
To eliminate any temperature-dependence of the fitting parameters, it would thus be easier to
initially select the ex-CW model form for fitting to experimental data and then for extrapolating
to higher temperatures. The ex-CW model performs best in terms of describing the curvature
of the composition dependence of surface tension and in terms of describing the temperature
dependence.

Thus, we propose the use of the following ex-CW model for prediction of surface tension as
a function of composition and temperature:

σex−CW (x1,T ) = σ2 (T )−
(︃

1+
b(1− x1)

1−a(1− x1)

)︃
x1
[︁
σ2 (T )−σ1 (T )

]︁
, (2.16)

where the parameters a and b can be fit to data collected as a function of composition at one
reference temperature. For the systems considered herein, these parameters can be found in
Table 2.2, and the pure component surface tension can be calculated using Equation (2.8) with
the coefficients listed in Table 2.1 at any temperature between Tref and 373 K for propylene
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glycol or 323 K for all other systems.

2.4 Conclusions

For experimental data at a single temperature, the Connors–Wright (CW) model and the Li
et al. (LWW) model perform equally well to describe the dependence of surface tension on
composition for the studied aqueous systems. We have shown that the CW and LWW models
are mathematically equivalent, and we have derived the equations for converting the fitting
parameters of one model to the other. The Shereshefsky (S) model has only one fitting parameter,
and it is generally not as accurate as the other two studied models in describing the surface
tension as a function of composition.

Our proposed extension of the CW model is superior for extrapolating experimental data
as a function of mixture composition from a single temperature to higher temperatures for the
studied aqueous systems compared to our proposed extensions of the S and LWW models. Thus,
when there is limited experimental data as a function of temperature, the extended CW model
should preferentially be selected for predicting the surface tension of binary mixtures. While
the CW model and the LWW model are mathematically identical when describing the effect of
composition at a fixed temperature, the LWW parameters are temperature-dependent, and thus
the LWW model should not be used for extrapolation to other temperatures.

Previous studies have used extensive experimental data to determine empirical correlations
that cover a wide range of temperatures and compositions. In this chapter, we show that the
only experimental measurements of surface tension needed for many aqueous systems are,
in fact, (i) the pure components’ surface tensions as a function of temperature and (ii) the
mixture’s surface tension as a function of composition at a single temperature. Since the effect
of temperature on many pure substances is usually tabulated in databases, the only additional
experimental data needed is the composition dependence for the mixture of interest at a single
reference temperature. Once this experimental data is collected, a single fitting procedure can
be completed to determine the parameters a and b, and our proposed extended CW equation
(Equation (2.16)) can be used to calculate the surface tension of a mixture at any composition
and any temperature (as long as this temperature is not outside the range of validity for the pure
component surface tension equations).
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Chapter 3

Surface Tension as a Function of Tempera-

ture and Composition for a Broad Range of

Mixtures1

Abstract

It is desirable to predict the surface tension of liquid mixtures for a wide range of compositions,
temperatures, and pressures, but current state-of-the-art calculations (e.g., density gradient theory
or density functional theory) are computationally expensive. We propose a computationally
simple—but accurate—semi-empirical mathematical model of surface tension for a wide variety
of multicomponent mixtures. Previously, we showed excellent accuracy for subcritical aqueous
systems across mole fractions x1 between 0 and 1 (an average deviation of 0.62% relative to
experimental data for 15 mixtures). In this chapter, we show that our approach can be used for
various nonaqueous systems, including those with a supercritical compound when coupled with
an equation of state (by introducing a reduced mole fraction x1,r = x1/x1,cr that varies between
0 and 1, where x1,cr is the critical composition of compound 1). Our predictions for binary
systems with one supercritical component (methane + n-alkanes for temperatures of 173–442 K
and pressures of 0.1–35.9 MPa; carbon dioxide + n-alkanes for temperatures of 323–378 K
and pressures of 0.1–11.2 MPa) are an average absolute deviation of 0.22 mN/m away from
experimental data (466 data points) in the literature, and those for systems with two subcritical
components (293–333 K) are within 0.10 mN/m (236 data points). We make predictions for
methanol + ethanol + water using binary coefficients, each obtained at one temperature, within
an average of 0.71 mN/m away from 196 data points. Given its computational simplicity and
wide applicability, the model proposed herein will be useful for many applications.

1This chapter and Appendix A have been submitted for publication as N. Shardt, Y. Wang, Z. Jin, and J. A. W. Elliott.
“Surface Tension as a Function of Temperature and Composition for a Broad Range of Mixtures”. I performed all research and
composed the first draft of this chapter under the direction and supervision of JAWE. YW and ZJ provided motivation for this
work and gave assistance with Peng–Robinson equation of state calculations for hydrocarbon mixtures. All authors contributed
to the version of the chapter presented in this thesis. In performing this research, I received advice from Dr. J. M. Shaw on the
critical composition of multicomponent mixtures and assistance from Dr. A. Komrakova in translating Kharin et al. [140].
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3.1 Introduction

The way a fluid behaves—how it flows, how it rests, and how it nucleates—is influenced by
the magnitude of its surface tension. The importance of an equation that describes the surface
tension of multicomponent systems as a function of composition and temperature is far-reaching.
A vast array of applications and fundamental phenomena involve liquid mixtures whose behavior
is driven by the magnitude of surface tension. For instance, the surface tension of fluid mixtures
influences how food packaging is designed [139, 173], how drugs are delivered [15, 62, 148,
160], and how shale gas can be extracted from porous media underground [98, 131, 278, 279,
295]. Technologies such as micro-/nanofluidic chips [84–86, 260, 310] and ink-jet printers
[69, 161] also handle multicomponent mixtures. More widely, researchers in the fields of
atmospheric physics [17, 34], catalysis [37], heat transfer [23], nucleation [20, 30, 153, 297],
and vapor–liquid phase equilibrium [240, 253, 254, 278, 279] or phase change [74, 142, 210,
322] all examine mixtures at varying temperatures. Thus, surface tension must be accurately
quantified so that diverse phenomena can be better understood, predicted, and controlled when,
for example, temperatures, pressures, and/or compositions vary.

For a pure compound’s surface tension, accurate theoretical descriptions have been obtained
by fitting to experimental data. The mathematical form of fitted equations in the literature ranges
from a linear equation (the Eötvös equation [81]) or other algebraic forms (e.g., the principle of
corresponding states [36, 114] and the parachor model (Macleod–Sugden equation [179]) to a
differential equation that describes the distribution of molecules through the interfacial region
(e.g., density gradient theory [35, 45, 64, 170, 190, 287] or density functional theory [109, 167,
280] combined with a Helmholtz free energy approximation to calculate interfacial properties).

A similarly broad range of approaches has been investigated to describe how surface tension
varies as a function of composition. Simpler models include the parachor model (Weinaug–Katz
equation [302]) and those derived from a thermodynamic approach (e.g., the Shereshefsky
model [257], the Connors–Wright (CW) model [63], the Fu et al. model [135], and the Li et

al. model [56]). More computationally intensive models of mixture surface tension employ
principles of statistical mechanics, and this group of approaches includes density gradient theory
[35, 64, 66, 80, 104, 168, 170, 189, 202, 216, 239, 327], linear gradient theory [168, 216, 328],
density functional theory [144, 167, 175, 242, 277], and Monte Carlo or molecular dynamics
simulations [47, 192, 200].

The parachor model for mixtures relates the quartic-root of surface tension to phase com-
positions, densities, and pure-component parachor values. It has been used extensively in the
petroleum industry for predicting the surface tension of hydrocarbon mixtures [94, 131, 216,
244, 256]. Although the parachor model may be easy to use, its inconsistent predictive power
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over a wide range of compositions has been reported [7, 170, 191, 216], and numerous variations
have been proposed where the quartic root is modified or the pure-component parachor values
are adjusted [7, 83, 244] to improve its accuracy.

The thermodynamic models have been used for liquid mixtures where all components are in
a subcritical state with respect to their critical temperatures and pressures, including aqueous
and nonaqueous solutions. Each of these models—Shereshefsky [257], Connors–Wright (CW)
[63], Fu et al. [135], and Li et al. [56]—require semi-empirical parameters that are obtained
from fitting to experimental data of surface tension as a function of liquid-phase composition.
The CW [63], Fu et al. [135], and Li et al. [56] models have two adjustable parameters in
a mathematical form that can accurately capture the trend of surface tension as a function of
composition, including for nonideal aqueous mixtures. The Shereshefsky model [257] uses only
one fitting parameter and can be used to accurately predict surface tension for a narrower range
of mixtures than the models with more parameters.

For the statistical mechanics models that calculate molecular distributions through the
interface, the presence of each additional compound in a mixture expands the system of
differential equations, which are usually solved via time-consuming iterations, bringing the
required number of calculations to the millions [157]. These density-theory models need to
be coupled with a series of judiciously-chosen Helmholtz free energy functionals which are
dependent on density distributions to predict the interfacial properties. Importantly, the accuracy
of surface tension predictions made by the density-theory models depends directly on whether
the selected Helmholtz free energy functionals accurately predict the liquid-phase density at
each composition of interest [327].

The parachor model and the statistical mechanics approaches are capable of predicting the
surface tension of mixtures as a function of both composition and temperature (vs., for example,
the Li et al. [56] and Shereshefsky [257] composition models that must be fit to experimental
data separately at each temperature, because their coefficients vary with temperature [251]).
However, the accuracy of the parachor model for temperature-dependence is limited by its
deficiencies for capturing composition-dependence. The primary drawbacks of the statistical
mechanics models are their computational complexity and dependence on the Helmholtz free
energy approximations whose accuracy must span wide ranges of temperature and pressure
(often, temperature-dependent parameters are used). Thus, there remains a gap in the literature
for an easy-to-use, accurate model that reliably describes the surface tension of a broad range
of mixtures as a function of both composition and temperature with parameters that can be
assumed composition and temperature independent.

In Chapter 2, we proposed an extension of the Connors–Wright model for predicting the
surface tension of binary aqueous mixtures (σmix; N/m) as a function of liquid-phase composition
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and temperature, and the equation had the following form:

σmix(x1,T ) = σ2 (T )−
(︃

1+
b(1− x1)

1−a(1− x1)

)︃
x1
(︁
σ2 (T )−σ1 (T )

)︁
, (3.1)

where x1 is the liquid mole fraction of the nonaqueous compound varying between 0 and 1 (that
is, both components are below their pure species critical points), T is the absolute temperature,
σ2 is the surface tension of water, and σ1 is the surface tension of the nonaqueous compound.
The unitless coefficients a and b were obtained by fitting to surface tension data as a function of
composition at a reference temperature (any temperature for which there is a sufficient number
of experimental data points to adequately capture the trend in surface tension) and then used
predictively at other temperatures (the coefficients could be assumed temperature independent).
To make predictions of surface tension, our method needs accurate experimental data as inputs,
including: (i) each pure component’s surface tension as a function of temperature, and (ii) the
mixture’s surface tension as a function of composition at one temperature.

To briefly summarize the results of Chapter 2, when we tested predictions from Equation (3.1)
against experimental surface tension data for 15 aqueous mixtures, we obtained an average
relative deviation from experimental measurements of 0.62% (where the relative deviation is
given by |σ̂ i −σi|/σi given σ̂ i is the prediction and σi is the measurement) over all available
temperatures (a minimum temperature of 293 K or 298 K with a maximum temperature of 323 K
for all systems except for one that spanned 303 K to 373 K) [251]. Importantly, in Chapter 5, we
use Equation (3.1) to make predictions of surface tension for nitrogen(1) + argon(2) mixtures at
temperatures for which experimental data is lacking [253]; this equation enables us to accurately
predict the experimentally-determined vapor–liquid equilibrium behavior (dew temperatures) of
this mixture in nanopores [5]. (See Appendix A, Section A.8 for a more detailed discussion on
the importance of surface tension in these predictions.)

In this chapter, we further extend Equation (3.1) to apply to nonaqueous systems that
may contain a supercritical component by introducing a reduced mole fraction. Empirical
parameters are assumed constant (independent of temperature) so that predictions can be made
at temperatures other than the one used for determining the fitting coefficients. In addition to the
two inputs listed for Equation (3.1), we need one additional input: (iii) the critical composition
of the binary mixture obtained from an equation of state. For this input, we develop a numerical
method to calculate the value of the critical composition at a given temperature. An important
benefit of our approach is that the molar volumes of the liquid and vapor phases are not needed
for predictions, whereas the parachor model and the statistical mechanics models (density
gradient theory and density functional theory) all require accurate values for the molar volumes
over all compositions and temperatures of interest.
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If experimentally measured surface tensions as a function of composition at even a single
temperature are unavailable for a specific mixture of interest, a statistical mechanics model
could instead be used to obtain these values, which could be used as an input to our model
for predictions at any composition and temperature. In this way, a hybrid approach that uses
our equation together with inputs from a statistical mechanics model would reduce the overall
computational cost required to calculate surface tension as a function of all compositions and
temperatures.

We note that throughout this chapter, the use of “supercritical” to describe a mixture does
not indicate that it is in a state above the critical point of the mixture; rather, we use this term to
denote that one of the components is in a supercritical state with respect to its pure-component
critical point, while the mixture is still within the two-phase vapor–liquid phase envelope. The
use of “subcritical” refers to a mixture where each pure component is below its individual
critical point.

3.2 Results

Based on Equation (3.1), we propose the following equation for the surface tension of a binary
mixture as a function of liquid mole fraction and temperature:

σmix(x1,r,T ) = σ2 (T )−

(︄
1+

b
(︁
1− x1,r (T )

)︁
1−a

(︁
1− x1,r (T )

)︁)︄x1,r (T )
(︁
σ2 (T )−σ1 (T )

)︁
, (3.2)

where σmix is the surface tension of the mixture at an absolute temperature T , σi is the surface
tension of pure component i (where σ2 > σ1), the reduced mole fraction of component 1
is x1,r(T ) = x1/x1,cr(T ) where x1,cr is the critical composition of component 1 at the given
temperature (i.e., the maximum liquid-phase composition on the isothermal phase diagram of
the binary mixture). Although there are numerous approaches in the literature for calculating the
critical temperature and pressure of a multicomponent system given its composition [98, 214,
274], the reverse calculation—determining the critical composition at a given temperature—is
less studied. We develop a numerical method for calculating the critical composition of a
mixture, and in implementing this method, we choose the Peng–Robinson equation of state (PR-
EOS) [213, 230] (see Appendix A, Section A.2 for details on our iterative numerical method).
The values of a and b are specific to each binary mixture, and they are determined by fitting to
experimental data as a function of mole fraction at one temperature. Note that when T > Tcr,1

(or equivalently, x1,cr < 1), σ1 = 0. Equation (3.2) can also be used for subcritical mixtures in
the limiting case where x1,cr = 1, in which case the equation reduces to Equation (3.1).
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To apply our approach beyond binary mixtures, we develop a multicomponent form of
Equation (3.2). To do so, we start with the multicomponent equation for surface tension
proposed by Li et al. [56] and convert the proposed coefficients to those proposed by Connors
and Wright (CW) [63] (see Chapter 2 [251] for equations to convert between the Li et al.
and CW models). Then, we introduce a reduced mole fraction for each component of the
multicomponent mixture to yield the following equation:

σmix(x1,r,T ) =
n

∑
i=1

σi(T )xi,r(T )+
n

∑
i=1

⎡⎣ xi,r(T )

∑
n
j=1

x j,r(T )
1−a ji

n

∑
j=1

b ji

a ji

(︄
1

1−a ji

)︄(︁
σi(T )−σ j(T )

)︁
x j,r (T )

⎤⎦ , (3.3)

where the reduced mole fractions for all components i > 1 are xi>1,r =
xi

∑
n
j=2 x j

(1− x1,r), n is the
number of components, and a ji and b ji are fitting coefficients obtained from fitting to surface
tension data of a binary mixture made up of components j and i where σ j > σi at a single
temperature for each mixture. Note that the following relationships apply to the coefficients in
Equation (3.3):

aii = 0 (3.4a)

bii = 0 (3.4b)
aii

bii
= 1 (3.4c)

bi j = b ji (3.5a)(︁
1−ai j

)︁
=
(︁
1−a ji

)︁−1
. (3.5b)

While Equations (3.2) and (3.3) show the dependence of surface tension on liquid mole
fraction, the surface tension of supercritical mixtures is instead commonly reported in the
experimental literature as a function of pressure at a given temperature. Pressure only affects
the surface tension of the supercritical mixtures in an indirect way, as it directly changes the
liquid-phase composition through a shift in the equilibrium state of the vapor–liquid system;
it is because of this change in composition that the surface tension changes. To obtain the
composition-dependence of experimental surface tension in the literature, we use the PR-EOS
with appropriate binary interaction parameters to calculate the liquid-phase compositions of
supercritical binary mixtures at the reported temperatures and pressures. (See Appendix A,
Section A.1 for all governing equations and validation of our calculations against experimental
vapor–liquid equilibrium data from the literature.)

We make predictions of surface tension for six methane(1) + n-alkane(2) systems and two
carbon dioxide(1) + n-alkane(2) systems for a total of 466 experimental points over a wide range
of temperatures (173–442 K) and pressures (0.1–35.9 MPa), obtaining an average absolute
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difference between experiments and predictions of 0.22 mN/m over all systems. In addition,
we use our equation for seven subcritical mixtures (236 data points), obtaining predictions
that are an average absolute difference of 0.10 mN/m away from experimental measurements.
For the ternary mixture methanol(1) + ethanol(2) + water(3), surface tension predictions using
Equation (3.3) are an average absolute deviation of 0.71 mN/m away from 196 experimental
measurements at various concentrations (both dilute and concentrated) and at temperatures
between 278 K and 333 K. Because our equation is computationally simple, it can be easily
implemented in any application of interest and in any process simulation software for liquid
mixtures. Significantly, our equation achieves an accuracy that is comparable to that achieved
by the density gradient and density functional theories (reported average absolute deviations
obtained with these theories include: 0.05 mN/m for carbon dioxide(1) + n-decane(2) at 344.3 K
[144]; 0.23 mN/m for a variety of binary hydrocarbon mixtures (403 data points for T between
278.28 K and 442.55 K) [327]; and 0.23 mN/m for a variety of binary halogenated hydrocarbon
mixtures (885 points for T between 223.15 K and 343.16 K) [170]).

Our first set of results is the fitting coefficients for the composition dependence of surface
tension at a single temperature for a range of supercritical and subcritical mixtures available in
the literature. First, we calculate pure component surface tensions at the temperature of interest
where we use either: (i) the Mulero et al. correlation [196] for the supercritical mixtures (those
containing methane or carbon dioxide):

σi =
mi

∑
j=0

σ j,i

(︄
1− T

Tcr,i

)︄p j,i

, (3.6)

where Tcr,i is the critical temperature (K) and the values of σ j,i, p j,i and mi are specific to each
compound (see Appendix A, Table A.4); or (ii) a linear equation fit to the reported data for each
pure component comprising the subcritical mixtures (all coefficients used are summarized in
Table 3.1). Substituting these pure component values into Equation (3.2), we fit Equation (3.2)
to experimental data of surface tension as a function of composition at a single temperature with
critical composition xcr,1 to obtain the coefficients a and b listed in Table 3.2. Given that the fit
of surface tension vs. liquid mole fraction is a nonlinear equation (Equation (3.2)), the goodness

of fit is indicated by the standard deviation (SD), which is calculated by SD =

√︃
∑(σ̂ i−σi)

2

n−p ,

where n is the number of points used in the fit, p = 2 is the number of fitting coefficients, σ̂ i is
predicted surface tension, and σi is experimental surface tension. A list of systems available
in the literature is included in Appendix A, Section A.5.1 with detailed notes on the reliability
and suitability of data for fitting (briefly, some datasets are in disagreement with other literature
sources and others report insufficient data points for fitting purposes).
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Table 3.1: For mixtures with both components below their critical point, fitting coefficients with 95% confidence intervals (CI) are listed
for each pure component for T in K and σi in mN/m with a linear fit (σi = θ0,i +θ1,iT ) to n experimental data points from each reference.
Note, for some datasets, all experimental data lies exactly on the linear fit, the standard deviation (SD) is zero, and the confidence interval
cannot be calculated.

Component n Temperatures [K] θ0,i ±95% CI θ1,i ±95% CI SD [mN/m] Data Reference

dodecane(1) 4
298–313

50.23±3.09 −0.086±0.010 0.026
Schmidt et al. [245]

benzene(2) 4 68.10 −0.134 0

n-hexane(1) 4
298–313

49.01±0.70 −0.104±0.002 0.006
Schmidt et al. [245]

benzene(2) 4 68.10 −0.134 0

cyclohexane(1) 4
293–313

57.35±11.70 −0.111±0.039 0.133
Wohlfarth [119, 306]

benzene(2) 4 64.85±4.90 −0.123±4.898 0.056

carbon tetrachloride(1) 5
288–308

66.26 −0.134 0
Teixiera et al. [281]

methyl iodide(2) 5 67.13±0.19 −0.123±0.190 0.003

carbon tetrachloride(1) 5
298–318

66.26 −0.134 0
Teixiera et al. [281]

acetonitrile(2) 5 66.41±0.20 −0.127±0.196 0.003

carbon tetrachloride(1) 6
293–318

62.92±0.18 −0.122±0.001 0.004
Luengo et al. [176]

carbon disulfide(2) 6 73.48±1.42 −0.140±1.418 0.035

dichloromethane(1) 4
293–308

65.54±0.45 −0.129±0.002 0.004
Aracil et al. [13]

carbon disulfide(2) 4 75.71 −0.148 0
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Table 3.2: Fitting coefficients (a and b) with 95% confidence intervals for Equation (3.2) for binary organic systems with corresponding
fitting temperature (Tfit), critical composition of component 1 (xcr,1), number of points used (n), and standard deviation of the fit (SD). The
literature source for experimental data is listed under the heading “Data Reference”.

Component 1 Component 2 n Tfit [K] xcr,1(Tfit) a±95% CI b±95% CI SD [mN/m] Data Reference

methane

ethane 6 133 1.000 0.52±0.89 0.50±0.44 0.49 [19]
propane 6 258 0.776 −1.42±0.81 1.53±0.34 0.07 [302]
n-butane 6 311 0.730 −2.43±0.54 2.06±0.22 0.01 [201, 215]
n-hexane 8 298 0.846 −1.49±0.77 2.08±0.55 0.05 [183]
n-heptane 16 311 0.860 −1.44±0.26 1.53±0.09 0.11 [12]
n-decane 23 311 0.902 −2.01±0.21 1.49±0.05 0.09 [271]

carbon dioxide
n-butane 18 319 0.871 0.70±0.13 0.41±0.06 0.12 [127]
n-heptane 6 323 0.957 −1.91±2.69 0.91±0.59 0.21 [202]

dodecane benzene 5 298 1.000 0.86±0.07 1.06±0.13 0.04 [245]

n-hexane benzene 7 298 1.000 0.80±0.04 0.51±0.03 0.05 [245]

cyclohexane benzene 11 293 1.000 0.43±0.20 0.84±0.13 0.07 [119, 306]

carbon tetrachloride
methyl iodide 5 288 1.000 0.66±0.08 1.00±0.10 0.03 [281]
acetonitrile 9 298 1.000 0.82±0.06 0.69±0.07 0.03 [281]
carbon disulfide 10 293 1.000 0.56±0.18 0.77±0.15 0.11 [176]

dichloromethane carbon disulfide 8 293 1.000 0.45±0.22 1.05±0.20 0.09 [13]
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Having obtained fitting coefficients at one temperature, we assume that these coefficients
(a and b) are temperature-independent, and we make predictions of surface tension as a func-
tion of liquid-phase composition using Equation (3.2) for all elevated temperatures studied
experimentally. At each considered temperature, the critical composition is calculated, with
values summarized in Table 3.3 and Table 3.4. For the pure-component surface tensions in
Equation (3.2), we use the Mulero et al. correlation [196] for pure components comprising
supercritical mixtures or the linear equation in Table 3.1 for those comprising subcritical mix-
tures. For comparison, we also make surface tension predictions using the parachor model [302]
with volume-shifted PR-EOS phase densities of the mixture [3] and pure-component parachor
values obtained from fitting pure-component PR-EOS phase densities (also volume-shifted)
to temperature-dependent surface tension data retrieved from the DIPPR database ([72]; see
Appendix A, Section A.4.1). We compile the performance of our new model and the parachor
model in Table 3.5 with a list of the average absolute deviation

(︂
AAD = 1

j ∑
j
i=1 |σ̂ i −σi|

)︂
and

maximum absolute deviation for each studied mixture. Over the broad range of supercritical hy-
drocarbon mixtures and subcritical organic mixtures, our new model has an AAD of 0.17 mN/m
compared to the parachor model’s AAD of 0.44 mN/m.

Table 3.3: Our calculated critical composition of carbon dioxide as a function of temperature
for carbon dioxide(1) + n-alkane(2) mixtures.

carbon dioxide(1)
+ Temperature [K] Critical Composition x1,cr Data Reference

n-butane(2)
319.30
344.30
377.60

0.871
0.725
0.517

Hsu et al. [127]

n-heptane(2)
323.15
353.15

0.957
0.885 Niño-Amézquita et al. [202]

323.00
353.00

0.958
0.885 Jaeger et al. [130]
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Table 3.4: Our calculated critical composition of methane as a function of the temperatures
listed in each literature source for methane(1) + n-alkane(2) mixtures.

methane(1) + Temperature [K] Critical Composition x1,cr Data Reference

ethane(2)

133.15
173.15
193.15
213.15
233.15
253.15
263.15
273.15
283.15

1.000
1.000
0.985
0.869
0.737
0.589
0.505
0.412
0.305

Baidakov et al. [19]

propane(2)

258.15
283.15
303.15
318.15
338.15

0.776
0.685
0.596
0.513
0.370

Weinaug and Katz [302]

272.20
285.50
303.34

0.727
0.675
0.595

Seneviratne et al. [247]

n-butane(2)

310.93
327.59
335.93
344.26

0.730
0.685
0.660
0.631

Pennington and Hough [201, 215]

n-hexane(2)
298.15 0.846 Massoudi and King [183]
300.00
350.00

0.845
0.796

Niño–Amézquita et al. [203]

n-heptane(2)

310.93
327.59
344.26
360.93
377.59
394.26
410.93
427.59

0.860
0.850
0.838
0.823
0.806
0.787
0.763
0.734

Warren and Hough [301]

310.93
338.71
366.48
394.26

0.860
0.842
0.818
0.787

Amin and Smith [12]

n-decane(2)

310.93
327.59
344.26
360.93

0.902
0.898
0.893
0.887

Stegemeier et al. [271]

310.93
366.48
410.93

0.902
0.884
0.862

Amin and Smith [12]

313.30
343.20
392.60
442.30

0.901
0.893
0.873
0.841

Pereira et al. [216]
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Table 3.5: Average absolute deviations from experimental data
(︂

1
j ∑

j
i=1 |σ̂ i −σi|

)︂
and maximum absolute deviations (|σ̂ i −σi|) of surface

tension predictions obtained using either our new model (Equation (3.2)) or the parachor model (see Appendix A, Section A.5.2) for
each considered binary mixture over a range of temperatures and pressures with j points from each listed literature source. The last row
considers all studied systems. The columns for average absolute deviation are shaded with a color gradient from dark blue (0 mN/m) to
white (0.6 mN/m) to dark red (1.2 mN/m). White text on a blue background indicates that the value is less than 0.2 mN/m.

Parachor model
absolute deviation

New model
absolute deviation

Component 1 Component 2
Temperatures

[K]
Pressures

[MPa]
j

Average
[mN/m]

Max
[mN/m]

Average
[mN/m]

Max
[mN/m]

Data
Reference

methane

ethane 173–283 0.1–3.9 58 0.56 1.26 0.16 0.45 [19]

propane 283–338 1.4–8.5 36 0.33 0.48 0.17 0.27 [302]
272–303 1.0–8.7 24 0.26 0.32 0.22 0.26 [247]

n-butane 328–344 9–10 9 0.23 0.32 0.08 0.11 [201, 215]
n-hexane 300–350 2–10 9 0.26 0.36 0.34 0.49 [203]

n-heptane 311–428 2.8–24.8 101 0.44 0.62 0.16 0.24 [301]
339–394 2.8–24.1 37 0.28 0.41 0.08 0.13 [12]

n-decane
328–361 10.3–35.9 52 0.27 0.51 0.06 0.12 [271]
311–411 2.8–34.5 55 1.24 1.58 0.46 0.76 [12]
313–442 0.5–30.5 39 0.69 0.89 0.59 0.82 [216]

carbon dioxide
n-butane 344–378 2.9–8.0 24 0.26 0.40 0.12 0.21 [127]

n-heptane 353 0.1–11.2 8 0.21 0.42 0.15 0.29 [202]
323–353 0.1–11.2 14 0.53 0.55 0.26 0.29 [130]

dodecane benzene 303–313 – 12 0.27 0.40 0.10 0.20 [245]
n-hexane benzene 303–313 – 10 0.61 0.87 0.14 0.22 [245]

cyclohexane benzene
293–303 – 28 0.43 0.44 0.09 0.13 [156]
293–333 – 33 0.66 0.94 0.10 0.18 [151, 306]
298–313 – 27 0.37 0.55 0.08 0.14 [119, 306]

carbon tetrachloride
methyl iodide 293–308 – 34 0.47 0.61 0.05 0.09 [281]
acetonitrile 303–318 – 29 0.42 0.56 0.04 0.08 [281]
carbon disulfide 298–318 – 40 0.14 0.31 0.10 0.19 [176]

dichloromethane carbon disulfide 298–308 – 23 0.83 1.15 0.18 0.29 [13]
all systems 173–442 702 0.44 1.58 0.17 0.82
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(a) (b)methane(1) + ethane(2) carbon dioxide(1) + n-butane(2)
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Figure 3.1: Fits (dashed black lines using Equation (3.2) and predictions of surface tension
(solid lines using Equation (3.2); dotted lines using the parachor model (Appendix A, Equa-
tion (A.22))) as a function of liquid-phase composition for (a) methane(1) + ethane(2) and (b)
carbon dioxide(1) + n-butane(2). Experimental data points (◦) that are used in fits are shown in
black; all other symbol colors serve as comparisons to theoretical predictions in the same color
at the listed temperatures. Data in (a) are from Baidakov et al. [19] and in (b) are from Hsu et
al. [127].

As representative systems of the supercritical set of studied mixtures, we show detailed
results for methane(1) + ethane(2) and carbon dioxide(1) + n-butane(2) in Figure 3.1, where
the dashed black lines show the fit of Equation (3.2) to experimental data (black circles) at the
lowest available temperature. All solid lines are predictions using Equation (3.2) at elevated
temperatures with critical compositions calculated from the PR-EOS and with pure-component
surface tensions evaluated using Equation (3.6) (coefficients in Appendix A, Table A.4); these
predictions closely agree with experimental trends of surface tension. Dotted lines are predic-
tions calculated using the parachor model for mixtures ([302]; Appendix A, Equation (A.22)),
which performs with mixed accuracy.

Figure 3.2 shows detailed results for two representative systems from the group of studied
subcritical organic mixtures: dodecane(1) + benzene(2) and dichloromethane(1) + carbon
disulfide(2). The fit of Equation (3.2) to experimental data of surface tension is shown at
the lowest temperature (dashed black line), along with predictions using Equation (3.2) at all
elevated temperatures (see Table 3.1 for the linear equation used for each pure component’s
surface tension vs. temperature). The parachor model predictions are shown with dotted lines.
Our model predictions consistently outperform the parachor model over the available range of
experimental temperatures and compositions.

Figure 3.3 graphically summarizes the accuracy of predictions for all binary systems to
which we have applied our model: methane(1) + n-alkane(2), carbon dioxide(1) + n-alkane(2),
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(a) (b)dodecane(1) + benzene(2) dichloromethane(1) + carbon disulfide(2)
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Figure 3.2: Fits (dashed black lines using Equation (3.2) and predictions of surface tension
(solid lines using Equation (3.2); dotted lines using the parachor model (Appendix A, Equa-
tion (A.22))) as a function of liquid-phase composition for (a) dodecane(1) + benzene(2) and (b)
dichloromethane(1) + carbon disulfide(2). Experimental data points are shown by open circles
(◦; black symbols are used in fits: both pure components vs. temperature and mixture data at
one temperature; all other symbol colors serve as comparisons to theoretical predictions in the
same color at the listed temperatures). Data in (a) are from Schmidt et al. [245] and in (b) are
from Aracil et al. [13].

various subcritical organic mixtures, and aqueous mixtures. Fitting coefficients to describe the
composition-dependence of surface tension for all nonaqueous systems are listed in Table 3.2,
and the temperature-dependence of each pure component is obtained using the Mulero et al.

correlation (Equation (3.6)) [196] or the linear equation using the coefficients in Table 3.1.
For the coefficients obtained for aqueous systems, refer to Chapter 2. All points used for
fitting purposes are excluded from this figure (any at Tfit listed in Table 3.2 and any pure
component values). Figure 3.3 highlights that our model accurately predicts the surface tension
of a wide variety of nonideal mixtures (nonideal in the sense that σmix ̸= σ1x1 +σ2x2) over
a range of temperatures and pressures, and this accuracy is of the same order of magnitude
as predictions obtained using density gradient theory or density functional theory [144, 170,
327]. Such close agreement is the result of fitting coefficients that can be assumed to be
independent of temperature. As previously noted by Li and Firoozabadi [167, 216] and Pereira
et al. [216], we likewise note the unexpectedly high surface tension measurements at low
pressures for methane(1) + n-decane(2) from Amin and Smith [12] that are within the dashed
oval in Figure 3.3. For details of each individual system in Table 3.5, refer to Appendix A,
Section A.5.2 for plots of vapor–liquid equilibrium, critical composition, surface tension as a
function of composition (and pressure for supercritical systems), and the difference between
predictions and experimental data.
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Figure 3.3: Predicted surface tension vs. experimental surface tension for all methane(1) + n-
alkane(2) and carbon dioxide(1) + n-alkane(2) mixtures (hydrocarbon, △), as well as all binary
mixtures where both components are below their pure critical points (organic, ◦). We also
include all aqueous mixtures (□) from Chapter 2 [251], highlighting the applicability of our
approach to a broad range of systems, temperatures, and pressures. This figure contains the
702 points from the 15 supercritical and subcritical systems in Table 3.5 and 961 points from
the 15 aqueous mixtures in Chapter 2 [251]. The four points within the dashed circle from the
methane(1) + n-decane(2) system at low pressures are likely experimental outliers [12].

Finally, we make predictions for the surface tension of the ternary mixture methanol(1) +
ethanol(2) + water(3) as a function of composition and temperature using Equation (3.3),
as illustrated in Figure 3.4. The inputs to these predictions are (i) coefficients to describe
surface tension as a function of temperature for each pure component and (ii) coefficients
to describe surface tension for each binary mixture as a function of composition at a single
temperature (obtained from fitting Equation (3.1)). All coefficients used in the predictions
illustrated in Figure 3.4 are taken from Chapter 2 [251] for binary aqueous systems and are
summarized in Appendix A, Tables A.14 and A.15, and all illustrated experimental data are
from Kharin et al. [140]. Surface tension predictions using Equation (3.3) are an average
absolute deviation of 0.71 mN/m and 2.54% away from experimental measurements of the
methanol(1) + ethanol(2) + water(3) mixture for 196 data points at various concentrations (both
dilute and concentrated) and at temperatures between 278 K and 333 K. We additionally present
ternary predictions for the supercritical ternary mixture carbon dioxide(1) + n-butane(2) + n-
decane(3) in comparison to experimental data obtained by Nagarajan et al. [198] in Appendix
A, Section A.7.2.
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Figure 3.4: Surface tension as a function of temperature for mixtures containing
methanol(1) + ethanol(2) + water(3), as measured experimentally (symbols) by Kharin et
al. [140] and as predicted by Equation (3.3) (lines) with coefficients for each pure component
and each aqueous binary mixture at a single temperature from Chapter 2 [251], as summarized
in Appendix A, Tables A.14 and A.15. The mixture compositions (mole fractions of each
component computed from the reported weight fractions) are shown in the legend of each graph.
No fitting coefficients need to be extracted from surface tension data of the ternary mixture to
make predictions.
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3.3 Discussion

Our new model (Equation (3.2)) can be used to predict the surface tension of a wide spectrum
of mixtures: those containing supercritical hydrocarbons, subcritical organic compounds, or
water. A key benefit of these predictions is that they bypass the calculation of molar volumes
for each phase at every temperature, unlike both the parachor model and density gradient theory
predictions. This is significant because the estimation of liquid molar volumes in particular can
be a challenge depending on which equation of state is selected (e.g., for the PR-EOS, a volume
shift obtained from fitting to experimental data is needed). In contrast to the parachor model and
density gradient theory, we constrain our use of the PR-EOS to only determining vapor–liquid
phase equilibrium states (compositions of the liquid phase) and the critical compositions of each
mixture as a function of temperature. We also demonstrated that our model can be applied to
multicomponent mixtures through Equation (3.3) for predicting surface tension as a function
of composition and temperature. The coefficients used to make these predictions are obtained
from each binary mixture that constitutes the ternary one, and these coefficients can be assumed
composition- and temperature-independent. No coefficients need to be extracted from the
ternary data.

We note that Equation (3.2) may predict an unphysical negative surface tension as the
critical composition of a supercritical mixture is approached, and we attribute this partly to
the empirical nature and functional form of the equation, but also to our use of the PR-EOS in
calculating the critical composition of the mixture, which may be different from the true critical
composition. Nevertheless, for the wide range of systems, temperatures, and compositions
considered, Equation (3.2) and its multicomponent form Equation (3.3) provide a straightforward
approach for accurately predicting surface tension in the diverse applications that are governed
by surface effects.

Most importantly, the practical utility of such an equation is in its application to systems
for which no experimental data is available. For example, in Chapter 5 [253], we predict the
dew temperatures of a mixture containing nitrogen(1) + argon(2) in nanopores within 0.45% of
experimental measurements [5]; surface tension is the key variable in the system of equations
that is used to make these predictions. Since experimental measurements of the surface tension
for nitrogen(1) + argon(2) mixtures over a wide range of compositions were available at only
a single temperature, we use Equation (3.1) to extrapolate to higher temperatures around the
dew point of the mixture. If the surface tension is instead assumed to be constant with either
temperature or composition, predictions of dew point become increasingly inaccurate (see
Appendix A, Section A.8).
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3.4 Conclusions

Experimentally, it is feasible to perform surface tension measurements for a pure component
at multiple temperatures or for various mixture compositions at a single temperature, but the
shear number of experimental measurements required for mixtures over many compositions and
temperatures is both time-consuming and costly. Therefore, accurate theoretical predictions of
surface tension as a function of both composition and temperature are advantageous for the wide
range of mixtures present across various applications and fields of study. The computational
simplicity of a theoretical approach is particularly important when surface tension is one piece
of a larger system of equations that describe, for example, phase equilibrium [253, 254].

We present a model of surface tension as a function of composition and temperature appli-
cable to a wide range of supercritical hydrocarbon mixtures, subcritical organic systems, and
subcritical aqueous solutions. As a case study, we additionally extend the model to a mixture of
cryogenic gases (nitrogen(1) + argon(2)) and investigate the importance of an accurate repre-
sentation of surface tension for the phase equilibrium of the system in nanopores. Because the
coefficients in our model can be assumed composition- and temperature-independent, accurate
predictions can be made for conditions where experimental data is unavailable. The development
of a simple equation for σ(x1,T ) should prove to be useful in understanding, designing, and
controlling both natural and industrial processes. For example, concentration and temperature
can both be treated as design parameters instead of being limited to either a pure component at
any temperature or a mixture at a single temperature.

The only experimental data needed for using our surface tension model for multicomponent
systems are: (i) surface tension vs. temperature for each pure component (e.g., from DIPPR
[72]) and (ii) surface tension vs. composition for each constituent binary mixture of interest at
one temperature, which may be found in the literature (e.g., Wohlfarth and Wohlfarth [306]).
Alternatively, if experimental data of surface tension is lacking, predictions obtained from
a statistical mechanics model for each binary mixture as a function of composition at one
temperature could be used as inputs instead. Our model lowers the overall computational cost
required to make predictions of surface tension for each binary mixture at other temperatures
and compositions. Additionally, our model can predict the surface tension of mixtures with
more than two components via Equation (3.3) using coefficients obtained from every constituent
binary mixture, each at a single temperature (no fitting coefficients need to be extracted from
surface tension data of the multicomponent mixture).

If the mixture contains a supercritical compound, the critical composition of this compound
needs to be calculated as a function of temperature using an appropriate equation of state. For
any of the studied systems, pure-component surface tension vs. temperature can be substituted
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into Equation (3.2), the critical composition can be calculated (see Appendix A, Section A.2
for a flowchart of our numerical method), and the tabulated coefficients a and b can be used
to predict surface tension. Our model is advantageous compared to those in the literature that
rely on accurate phase density predictions from equations of state (e.g., the parachor model and
density gradient theory predictions), because density predictions are unnecessary as inputs to
Equation (3.2) or Equation (3.3).

Finally, we note a vital need for ensuring the accuracy of experimental measurements for
the surface tension of mixtures, particularly those containing supercritical compounds (e.g.,
methane and carbon dioxide), and a need for a larger database of experimental systems with
which predictions can be compared.
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Chapter 4

Isothermal Vapor–Liquid Phase Diagrams for

Multicomponent Systems with Nanoscale Radii

of Curvature1
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Abstract

The effect of interface curvature on phase equilibrium has been much more studied for single-
component than multicomponent systems. We isolate the effect of curvature on multicomponent
vapor–liquid equilibrium (VLE) phase envelopes and phase composition diagrams using the
ideal system methanol + ethanol and the nonideal system ethanol + water as illustrative examples.
An important finding is how nanoscale interface curvature shifts the azeotrope (equal volatility
point) of nonideal systems. Understanding of the effect of curvature on VLE can be exploited in
future nanoscale prediction and design.

1Reproduced, with minor modifications, with permission from N. Shardt and J. A. W. Elliott. “Thermodynamic Study
of the Role of Interface Curvature on Multicomponent Vapor–Liquid Phase Equilibrium”. Journal of Physical Chemistry A
120.14 (2016), pp. 2194–2200. http://pubs.acs.org/articlesonrequest/AOR-Kgv8I2tpBEfqdH9e5aKX Copyright 2016 American
Chemical Society. J. A. W. Elliott conceived the original idea.
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4.1 Introduction

Vapor–liquid equilibrium (VLE) drives chemical processes that occur under conditions yielding
two phases. A phase diagram outlines the temperature or pressure at which a liquid, vapor, or
mixture of phases will exist. Curvature of the vapor–liquid interface alters equilibrium pressure
in the vapor phase, as described first by the Kelvin equation [283] and later corrected by Gibbs
[77, 108, 138]. This equation is valid for a pure component assuming an incompressible liquid
and an ideal gas. The Kelvin equation and its liquid–liquid and liquid–solid analogs describe
capillary condensation, adsorption hysteresis [41, 42, 55, 60, 67, 126, 186, 193], nucleation [79,
84–87, 205, 292, 297, 323, 324], and emulsion stability [136]. Single component systems have
been extensively examined theoretically [38, 87, 155, 186, 297, 323, 324]. Early experimental
work [113, 265, 282] and more recent work [100, 101, 150, 154] verified the Kelvin equation,
with discrepancies observed for systems containing water [99, 258]. Using certain capillary
plates results in deviations from the Kelvin equation [61, 234–237, 307, 318, 319] due to
molecular interactions between the liquid and the capillary walls [236], adsorption, or surface
contamination [99]. Closer experimental agreement was achieved by Shin and Simandl [249,
250, 262, 263] for multicomponent mixtures.

In this chapter, we apply Gibbsian thermodynamics to multicomponent mixtures to calculate
phase envelopes as a function of curvature. We gain an understanding of how an azeotrope
shifts with curvature. The thermodynamics of curved interfaces can be applied in atmospheric
science [164, 246], hydrocarbon recovery [88, 97], distillation [143, 233, 318], and catalyst
design [24, 209, 308].

4.2 Governing Equations

Gibbsian composite-system thermodynamics [108] provides a framework to determine the
equilibrium states of a given composite system—a system that is made up of simple systems,
but that itself is not a simple system, such as a multicomponent multiphase system. A stable
equilibrium state occurs when the entropy of the composite system is at a maximum [46]. That
is, for an isolated system consisting of a vapor and a liquid phase separated by an interface, the
following equation determines equilibrium states:

dSL +dSV +dSLV = 0, (4.1)

where S is entropy and the superscripts L, V, and LV denote the liquid phase, the vapor phase,
and the liquid–vapor interface, respectively. Substituting the physical constraints of an isolated
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multicomponent system into Equation (4.1) yields equations for thermal, mechanical, and
chemical equilibrium. For an isolated n-component liquid–vapor system with a flat liquid–vapor
interface, the conditions for equilibrium (in accordance with Gibbs’ dividing surface approach)
are found to be:

T V = T L = T LV (4.2)

PV = PL (4.3)

µ
L
i = µ

V
i for i = 1 (4.4)

µ
L
i = µ

V
i = µ

LV
i for i = 2,3, ...,n, (4.5)

where T is absolute temperature, P is pressure, µ is chemical potential, and the subscript i refers
to the ith component.

For a spherical liquid–vapor interface, the conditions for equilibrium (in accordance with
Gibbs’ surface of tension approach) are:

T V = T L = T LV (4.6)

PL −PV = 2σ/r (4.7)

µ
L
i = µ

V
i = µ

LV
i for i = 1,2,3, ...,n. (4.8)

Equation (4.7) is the Young–Laplace equation for a spherical interface [194], where σ is the
surface tension of the liquid mixture and r is the radius of curvature of the interface. As
illustrated in Figure 4.1, the radius of curvature appearing in Equation (4.7) is defined here to be
positive for a convex liquid surface in a capillary or for a droplet of liquid in vapor, and to be
negative for a concave liquid surface in a capillary or for a bubble of vapor in liquid.

Figure 4.1: System configurations of positive and negative radii of curvature.

57



CHAPTER 4. ISOTHERMAL VLE PHASE DIAGRAMS

The equations for equilibrium can be solved by inserting the equilibrium pressures and
temperatures of the phases into the equality of chemical potentials of the liquid and vapor phases
(Equation (4.4) and the first equivalence of Equations (4.5) and (4.8)) and used to determine
the composition and quantity of vapor and liquid phases. Equations of state are used to write
chemical potentials as functions of temperature, pressure, and composition.

For a multicomponent system with assumptions of an ideal gas and an incompressible liquid,
the chemical potentials of the vapor and liquid phases for each component are given by [78,
298]

µ
V
i (T,P

V) = µ
V
i (T,P

sat
i )+RT ln

(︂
yiPV/Psat

i

)︂
(4.9)

and
µ

L
i (T,P

L) = µ
L
i (T,P

sat
i )+ vL

i (P
L −Psat

i )+RT ln(γixi), (4.10)

respectively. Here, yi is the mole fraction of component i in the vapor phase, xi is the mole
fraction in the liquid phase, Psat

i is the saturation pressure at a given temperature, vL
i is the

liquid molar volume of pure component i [78], R is the universal gas constant, and γi is the
species-dependent activity coefficient. The activity coefficient γi can be modeled, for example,
by the Margules equations for a two-component system as follows [266]

ln(γ1) = x2
2
[︁
A12 +2(A21 −A12)x1

]︁
(4.11)

and
ln(γ2) = x2

1
[︁
A21 +2(A12 −A21)x2

]︁
, (4.12)

where A12 and A21 are species-dependent empirical constants at a given temperature. The
activity coefficient captures the nonideality of liquid mixtures (e.g., ethanol + water) where the
magnitudes of intermolecular interactions are unequal between the components of the mixture.

Substituting Equations (4.9) and (4.10) into the equality of chemical potentials between
the vapor and liquid phases (Equations (4.4), (4.5), and (4.8)) results in a generalized modified
Raoult’s Law [78]:

yiPV = γixiPsat
i exp

[︂
vL

i (P
L −Psat

i )/(RT )
]︂
. (4.13)

If the liquid phase is an ideal mixture (γi = 1), Equation (4.13) becomes generalized Raoult’s
Law:

yiPV = xiPsat
i exp

[︂
vL

i (P
L −Psat

i )/(RT )
]︂
. (4.14)

The exponential term in Equation (4.13) or Equation (4.14) is known as the Poynting correction
[78, 222, 305], and at low pressures and high temperatures, this term becomes unity. Setting the
Poynting correction to 1 in Equation (4.14) results in Raoult’s Law, which is commonly used in
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designing equipment that operates at such moderate conditions.

4.2.1 Flat Interface Vapor–Liquid Equilibrium

Vapor–liquid equilibrium calculation procedures for flat interfaces are described in textbooks
[78, 266]. For example, Raoult’s Law given by

yiPV = xiPsat
i (4.15)

is used under conditions for which the Poynting correction can be neglected, and it is valid
when assuming an ideal gas in the vapor phase and an ideal incompressible solution in the
liquid phase. The bubble pressure is the pressure at which the first bubble of vapor appears, i.e.

the equilibrium pressure in the vapor phase for known xi. For a flat interface, the equilibrium
pressure in the vapor phase is equal to the pressure in the liquid phase. The bubble pressure can
be calculated by combining Equation (4.15) for i components with ∑i yi = 1:

PV
b = ∑

i
xiPsat

i , (4.16)

where the subscript ‘b’ stands for bubble.
The dew pressure is the pressure at which the first drop of liquid appears for known yi, i.e.

the equilibrium pressure in the vapor phase. Rearranging Equation (4.15) in terms of xi for each
component and using ∑i xi = 1 gives the following equation to calculate the dew pressure:

PV
d =

(︄
∑

i
yi/Psat

i

)︄−1

, (4.17)

where the subscript ‘d’ stands for dew.
A more general expression of Raoult’s Law should be used in cases of high liquid phase

pressure. For a flat interface between an ideal liquid mixture and an ideal vapor phase, the
pressure in the vapor equals the pressure in the liquid (PV = PL), and an expression for bubble
pressure can be obtained by combining Equation (4.14) and ∑i yi = 1, as shown in Equation
(4.18):

PV
b = ∑

i
xiPsat

i exp
[︂
vL

i (P
V
b −Psat

i )/(RT )
]︂
. (4.18)

To obtain an expression for the dew pressure, Equation (4.14) is rearranged to the form

xi =
yiPV

Psat
i exp

[︁
vL

i (PV −Psat
i )/(RT )

]︁ , (4.19)
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where again the fact that PV = PL for a flat interface is used. Equation (4.19) is then combined
with ∑i xi = 1 to obtain the following dew pressure expression:

PV
d =

⎛⎜⎝∑
i

yi

Psat
i exp

[︂
vL

i (P
V
d −Psat

i )/(RT )
]︂
⎞⎟⎠

−1

. (4.20)

Iteration is used to solve Equation (4.18) and Equation (4.20) with an initial guess of PV
d

calculated from Equation (4.16) and Equation (4.17), respectively, until the value for pressure
in the vapor phase converges.

For a flat interface between a nonideal liquid mixture and an ideal vapor phase, PV = PL

and using ∑i yi = 1 and Equation (4.13), the bubble pressure is

PV
b = ∑

i
γixiPsat

i exp
[︂
vL

i (P
V
b −Psat

i )/(RT )
]︂
. (4.21)

By first assuming a Poynting correction value of 1, the bubble pressure can be calculated
iteratively using Equation (4.21) together with Equations (4.11) and (4.12). Then this calculated
value for bubble pressure is used in the exponential term of Equation (4.21) for the next iteration,
and this is repeated until the bubble pressure value converges.

The dew pressure expression is derived similarly to that of Equation (4.20), where Equation
(4.13) is now rearranged and combined with ∑i xi = 1 and PV = PL, to obtain

PV
d =

⎛⎜⎝∑
i

yi

γiPsat
i exp

[︂
vL

i (P
V
d −Psat

i )/(RT )
]︂
⎞⎟⎠

−1

. (4.22)

Iteration can also be used to calculate the dew pressure from Equations (4.11), (4.12), and (4.22).
An initial guess of γi = 1 and a Poynting correction of 1 are used to estimate the dew pressure in
Equation (4.22). For a flat interface, an expression for liquid mole fraction is obtained by using
PV = PL and rearranging Equation (4.13) for components 1 and 2, followed by equating these
expressions to yield

γ1x1Psat
1 exp

[︂
vL

1 (P
V
d −Psat

1 )/(RT )
]︂

y1
=

γ2x2Psat
2 exp

[︂
vL

2 (P
V
d −Psat

1 )/(RT )
]︂

y2
. (4.23)
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Rearranging for x1 gives

x1 =

⎛⎜⎝γ1Psat
1 exp

[︂
vL

1 (P
V
d −Psat

1 )/(RT )
]︂

y2

γ2Psat
2 exp

[︂
vL

2 (P
V
d −Psat

2 )/(RT )
]︂

y1

+1

⎞⎟⎠
−1

. (4.24)

The values of the Margules activity coefficients and the exponential Poynting correction are
updated in the next iteration of evaluating Equation (4.22), followed again by Equation (4.24),
until the values of dew pressure and liquid mole fraction converge.

4.2.2 Curved Interface Vapor–Liquid Equilibrium

Whereas the equations and calculation procedures for flat interfaces summarized in the pre-
ceding section are well known to chemical engineers, the analogous equations and calculation
procedures for curved interfaces have not been developed previously. For a flat interface, the
pressures in the liquid and vapor phases are equal, but as the curvature of the interface varies,
the pressure changes in the vapor phase according to Equation (4.7), where the surface tension
of the liquid mixture, σ , must be evaluated as a function of liquid mole fraction (x1).

For the ideal multicomponent VLE of curved interfaces, Equation (4.14) is used with

∑i yi = 1, and Equation (4.7) is substituted for PL to give the expression

PV
b = ∑

i
xiPsat

i exp
[︂
vL

i (P
V
b +2σ/r−Psat

i )/(RT )
]︂

(4.25)

to calculate the vapor phase pressure at the bubble point of a multicomponent system with
curvature.

The vapor phase pressure at the dew point is determined by using Equation (4.14) with

∑i xi = 1 and the relationship in Equation (4.7) to obtain

PV
d =

⎛⎜⎝∑
i

yi

Psat
i exp

[︂
vL

i (P
V
d +2σ/r−Psat

i )/(RT )
]︂
⎞⎟⎠

−1

. (4.26)

Equations (4.25) and (4.26) are both solved iteratively with an initial guess of 1 for the Poynting
correction.

For a nonideal liquid mixture, Equation (4.13) is used with ∑i yi = 1 and Equation (4.7) to
create an expression for the pressure in the vapor phase of a curved interface at the bubble point:
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PV
b = ∑

i
xiγiPsat

i exp
[︂
vL

i (P
V
b +2σ/r−Psat

i )/(RT )
]︂
. (4.27)

Equation (4.13) and Equation (4.7), along with ∑i xi = 1, are combined to obtain the following
expression for the pressure in the vapor phase of a curved interface at the dew point:

PV
d =

⎛⎜⎝∑
i

yi

γiPsat
i exp

[︂
vL

i (P
V
d +2σ/r−Psat

i )/(RT )
]︂
⎞⎟⎠

−1

. (4.28)

In Equation (4.28), the values of γi and the exponential Poynting correction are functions
of liquid mole fraction, which is initially unknown. Therefore, an iterative method is used to
calculate the dew pressure and the composition in the liquid and vapor phases. To determine
the value of the liquid mole fraction for the dew pressure calculation, Equation (4.13) can be
written for each of the two components, each rearranged to form an expression for pressure, and
equated. Then, combining this result with Equation (4.7) and simplifying gives

x1 =

⎛⎜⎝γ1Psat
1 exp

[︂
vL

1 (P
V
d +2σ/r−Psat

1 )/(RT )
]︂

y2

γ2Psat
2 exp

[︂
vL

2 (P
V
d +2σ/r−Psat

2 )/(RT )
]︂

y1

+1

⎞⎟⎠
−1

. (4.29)

First, initial guesses of 1 are used for the Poynting correction and Margules activity coefficients
in Equations (4.28) and (4.29) to estimate the dew pressure and liquid mole fraction values.
These estimated dew pressure and liquid mole fraction values are then substituted into Equation
(4.28) to update the value for dew pressure, followed by Equation (4.29) to update the liquid
mole fraction value. Iteration is repeated until the values of PV

d and x1 converge.
Each pair of liquid mole fraction and vapor mole fraction values can be plotted to form an

x-y composition diagram, a useful tool in the design of chemical processes. It gives a qualitative
indication of the ease of separation based on the distance of the x-y curve from a 45◦ line
that indicates equal composition in the two phases—the smaller the distance, the harder the
separation. If the x-y curve intersects the 45◦ line, an azeotrope exists at this composition and
indicates that conventional distillation past this point is not possible.
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4.2.3 Composition of the Azeotrope

A defining property of an azeotrope is exactly that the mole fraction of each species is the same
in the vapor phase as in the liquid phase. That is, xi = yi, so that for a two-component mixture

y1/x1

y2/x2
= 1. (4.30)

Rearranging and substituting generalized modified Raoult’s Law (Equation (4.13)) for each
component into the numerator and denominator of Equation (4.30) and combining with Equation
(4.7) gives

γ1Psat
1 exp

[︂
vL

1 (P
V +2σ/r−Psat

1 )/(RT )
]︂

γ2Psat
2 exp

[︁
vL

2 (P
V +2σ/r−Psat

2 )/(RT )
]︁ = 1. (4.31)

The pressure in the vapor phase at the azeotropic composition can be calculated from the bubble
pressure equation (Equation (4.27)). First, the built-in MATLAB (Natick, USA) function fsolve()

is used to solve Equation (4.31) with an initial guess of 1 for the exponential Poynting correction
factor. Then the calculated x1 is used to determine the value of PV from Equation (4.27).
This pressure in the vapor is then substituted back into Equation (4.31), and an updated x1 is
calculated. Such an iterative procedure is repeated until the values of azeotropic composition
and vapor phase pressure converge.

4.2.4 Surface Tension

The surface tension of a liquid becomes a function of curvature when the radius of curvature
approaches the atomic scale [284], with notable deviations for radii less than 10 nm [4]. However,
in Gibbsian composite system thermodynamics, the convention of placing the dividing surface
according to Gibbs’ surface of tension removes this dependence and allows a constant interfacial
tension to be used down to the nanometer scale [108]. In the current chapter, for lack of
experimental data or theoretical approximations to the contrary for binary systems containing
methanol, ethanol, and water, we assume that the surface tension is independent of curvature.

Surface tension varies with liquid mole fraction. For the ideal system of methanol(1) +
ethanol(2), a linear combination of each component’s surface tension and its liquid mole fraction
can be used. The pure liquid surface tension values of methanol and ethanol differ from each
other by less than 1 mN/m. For nonaqueous liquid mixtures with such close values of surface
tension, a linear composition dependence accurately describes the mixture’s surface tension [70,
219]:

σ = x1σ1 + x2σ2. (4.32)
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Table 4.1: Flat surface saturation pressure in the vapor phase, molar liquid volume, and surface
tension values for pure methanol, ethanol, and water [116, 169, 290].

Flat surface saturation pressure
in the vapor,

Psat
i @ 298 K [kPa]

Molar liquid volume,
vL

i @ 298 K [cm3/mol]
Surface tension,

σi @ 298 K [mN/m]

Methanol 16.94 40.73 22.07
Ethanol 7.87 58.69 21.97
Water 3.17 18.07 72.01

However, for the nonideal system of ethanol(1) + water(2), surface tension is not a linear
combination of the two components’ surface tension values [31, 107, 141, 194]. We therefore
fit a function to the experimental data from Vázquez et al. [290] as seen in Figure 4.2 to obtain

σ (in mN/m) =
2.46±0.14

x1 +(0.048±0.003)
+(20.1±0.5). (4.33)

Liquid mole fraction of ethanol, xethanol
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Figure 4.2: Surface tension as a function of ethanol composition in the ethanol(1) + water(2)
system, as measured experimentally by Vázquez et al. [290] and as given by the model fit to
this data.

Table 4.1 includes the values of flat surface saturation pressures, molar liquid volumes, and
surface tensions of pure methanol, ethanol, and water all at 298 K [116, 169, 290]. For the
ethanol(1) + water(2) system, the two-parameter Margules equation is used to calculate activity
coefficients with constants A12 = 1.4473 and A21 = 0.9395 at 298 K [110].
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4.3 Results and Discussion

In the above theoretical framework, the Poynting correction accounts for the change in chemical
potential of a liquid component with pressure assuming incompressibility. Modified Raoult’s
Law takes into account nonideality in the liquid phase with activity coefficients. In this chapter,
we use the Margules form of the activity coefficients for the ethanol(1) + water(2) system.
Limitations of our analysis include assuming an ideal gas in the vapor phase and neglecting
the effect of any external forces, such as gravity. The hydrogen-bonding in water may alter
vapor–liquid phase equilibrium at higher pressures in the vapor phase, but at the low pressures
considered in the vapor phase, we treat the vapor ideally.

The effect of curvature on VLE can be seen for the ideal methanol(1) + ethanol(2) phase
envelopes presented in Figure 4.3, where pressure in the vapor phase is plotted as a function of
methanol liquid mole fraction. The solid and dashed thick black lines show the bubble and dew
pressures, respectively, for a methanol(1) + ethanol(2) system with a flat interface. It can be seen
that, as expected, the pressures in the vapor phase increase for positive radii of curvature (liquid
inside the curvature), and decrease for negative radii of curvature (vapor inside the curvature).
Visually, it appears that the phase envelope is simply translated vertically as a function of radius
of curvature, but Figure 4.4 shows that composition is slightly altered by curvature. As a result,
it is more difficult to separate the methanol(1) + ethanol(2) system when the interface has a
positive radius of curvature since the x-y curve lies closer to the 45◦ line, and separation is easier
when the interface has a negative radius of curvature.
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Figure 4.3: Phase envelopes of the methanol(1) + ethanol(2) system for a flat interface and for
interfaces with radii of curvature of ±3 nm and ±10 nm.

Figure 4.5 illustrates the nonideal ethanol(1) + water(2) phase envelopes for flat and curved
vapor–liquid interfaces. As seen for the methanol(1) + ethanol(2) system, a positive radius of
curvature increases the pressure in the vapor phase, and a negative radius of curvature decreases
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Figure 4.4: Vapor mole fraction as a function of liquid mole fraction for methanol(1) +
ethanol(2) phase equilibrium for a flat interface and for interfaces with radii of curvature
of ±3 nm. The 45◦ line for the plot is the thin dashed line.

pressure in the vapor phase. Most importantly, for the flat interface at a constant temperature of
298 K, the azeotrope lies at 97.75 mol% ethanol, whereas for positive radii of curvature, the
azeotrope shifts towards a liquid composition of ethanol closer to 100 mol%. This is highlighted
by Figure 4.6, where the x-y curve for positive radii of curvature intersects the 45◦ line at values
closer to x1 = 1. In contrast, negative radii of curvature result in azeotropic compositions less
than that observed for a flat interface in the ethanol(1) + water(2) system.
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Figure 4.5: Phase envelopes of the ethanol(1) + water(2) system for a flat interface and for
interfaces with radii of curvature of ±3 nm and ±10 nm.

In Figure 4.7, as the radius of curvature approaches infinity, the limit of the composition is
that of a flat interface (97.75 mol% ethanol), shown by the dashed black line. To achieve an
azeotropic composition >99 mol% ethanol, a radius of curvature smaller than 66 nm would be
desired. Figure 4.8 shows azeotropic composition plotted as a function of the inverse radius of

66



CHAPTER 4. ISOTHERMAL VLE PHASE DIAGRAMS

Liquid mole fraction of ethanol, x1V
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Figure 4.6: Vapor mole fraction as a function of liquid mole fraction for ethanol(1) + water(2)
phase equilibrium for a flat interface and for interfaces with radii of curvature of ±3 nm. The
45◦ line for the plot is the thin dashed line.

curvature. This variable transformation highlights that a flat interface (1/r = 0) has an azeotropic
composition of 97.75 mol% ethanol and that the azeotropic composition increases or decreases
for positive or negative radii of curvature, respectively.
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Figure 4.7: Azeotropic composition as a function of radius of curvature. The dashed line
indicates the azeotropic composition for a flat interface between phases.

It may be surprising that the azeotropic composition at a curvature of ±100 nm has not yet
reached that of a flat interface. Observable departures from flat interface equilibrium values can
in fact occur at radii of curvature less than 1000 nm; for a 100 nm pure water droplet in air, the
Kelvin equation predicts a vapor pressure 12% higher than the vapor pressure for a flat interface
between air and water [26]. Also at a radius of curvature of 100 nm, Defay et al. predict a
decrease in azeotropic composition from 0.40 to 0.395 for a mixture of n-hexane + ethyl iodide,
where the value of surface tension and its dependence on composition were arbitrarily chosen
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Inverse radius of curvature, r-1 (nm-1)
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Figure 4.8: Azeotropic composition of an ethanol(1) + water(2) system as a function of the
inverse radius of curvature.

[70]. In addition to illustrating curvature-dependent phase diagrams, this chapter lends insight
into the predicted change in azeotropic composition with the use of an actual function fit to
experimentally measured values of surface tension for ethanol(1) + water(2).

4.4 Conclusions

We ultimately investigated the effect of curvature on VLE in methanol(1) + ethanol(2) and
ethanol(1) + water(2) mixtures, as well as its effect on the location of the azeotrope for the
nonideal mixture. This analysis can be applied to capillaries whose solid–liquid interactions with
the binary mixtures are negligible and to droplets or bubbles contained in their respective vapor
or liquid phase. For a positive radius of curvature (liquid inside the curvature), the azeotropic
composition approaches 100 mol% ethanol, whereas for a negative radius of curvature (vapor
inside the curvature), the azeotropic composition shifts in the opposite direction. This chapter
provides new fundamental understanding and calculation procedures for multicomponent phase
equilibrium across curved interfaces, and it introduces curved-interface phase envelope and
phase composition diagrams based on Gibbsian thermodynamics. The insight gained can be
used to describe a variety of phenomena and provides the foundation needed for accurate
prediction and design. For example, the results of this chapter indicate that curvature could be
used to distill past the azeotrope of nonideal liquid mixtures. Additionally, phase composition
in multicomponent systems with curved phase boundaries can be predicted, which is vital in
atmospheric physics, material processing, and soft matter nanotechnology.
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Chapter 5

Isobaric Vapor–Liquid Phase Diagrams for Mul-

ticomponent Systems with Nanoscale Radii

of Curvature1
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Abstract

At any given temperature, pressure, and composition, a compound or a mixture of compounds
will exist either in a single phase, whether solid, liquid, or vapor, or in a combination of these
phases coexisting in equilibrium. For multiphase systems, it is known that the geometry of the
interface impacts the equilibrium state; this effect has been well-studied in single component
systems with spherical interfaces. However, multicomponent phase diagrams are usually calcu-
lated assuming a planar interface between phases. Recent experimental and theoretical work
has started to investigate the effect of curved interfaces on multicomponent phase equilibrium,
but these analyses have been limited to isothermal conditions or to a portion of the isobaric
phase diagram. Herein, we consider complete vapor–liquid phase diagrams (both bubble and

1Reproduced, with minor modifications, with permission from N. Shardt and J. A. W. Elliott. “Isobaric Vapor–Liquid Phase
Diagrams for Multicomponent Systems with Nanoscale Radii of Curvature”. Journal of Physical Chemistry B 122.8 (2018), pp.
2434–2447. https://pubs.acs.org/articlesonrequest/AOR-TvK85VGmsbiNcqZRPZrx Copyright 2018 American Chemical Society.
In performing this research, some recent literature was brought to our attention by Dr. William R. Smith of the University of
Guelph.
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dew lines) under isobaric conditions. We use Gibbsian composite-system thermodynamics to
derive the equations governing vapor–liquid equilibrium for systems with a spherical interface
separating the phases. We validate our approach by comparing the predicted nitrogen + argon
dew points with reported literature data. We then predict complete isobaric phase diagrams
as a function of radius of curvature for an ideal methanol + ethanol system and for a nonideal
ethanol + water system. We also determine how the azeotropic composition of ethanol + water
changes. The effect of curvature on isobaric phase diagrams is similar to that seen on isothermal
phase diagrams. This chapter extends the study of curved-interface multicomponent phase
equilibrium to isobaric systems, expanding the conditions under which nanoscale systems, such
as nanofluidic systems, shale gas reservoirs, and cloud condensation nuclei, can be understood.

5.1 Introduction

Just 31 articles were published on nanofluidics in 2006; in 2016, researchers around the world
published 1392 articles in this field (articles with “nanofluidics” in the title, abstract, or keywords,
Scopus, Dec. 19, 2017). Such a rapid increase in publications over the decade underscores
the growing interest in fluid phenomena that occur at the nanoscale. One common feature
of many nanoscale systems is the presence of curved interfaces in the form of nanobubbles,
nanodroplets, or nanopores. As a result of the nanoscale curvature, the phase behavior of
fluids in these nanoscale systems differs drastically from that of bulk systems without curved
interfaces. The phase behavior of nanoscale systems is particularly important to understand
because fluid properties are governed by which phase or phases are present, and predicting fluid
properties accurately is important for the design and control of nanoscale systems. Interfacial
thermodynamics has been previously used to study the phase behavior of single-component
systems with interfaces that have nanoscale radii of curvature. There still lies much opportunity
for research in extending the framework of interfacial thermodynamics to multicomponent,
multiphase systems.

In the natural environment, multicomponent systems with highly curved interfaces can be
found from 4 km below the Earth’s crust in hydrocarbon reservoirs [57] up to 15 km above
the surface in the troposphere [227, 246]. In the subsurface, porous structures can have pore
throat diameters in the nanometer range [6, 97, 197, 295]. These nanopores influence phase
equilibrium, and if their effect is unaccounted for, predictions for unconventional hydrocarbon
recovery operations may be inaccurate [8, 21, 174, 177, 204]. Phase diagrams are vital tools
in recovering oil and natural gas from shale formations, and the effect of nanoscale curvature
on phase diagrams has been calculated for specific compositions of hydrocarbons as a function
of temperature and pressure [6, 73, 199, 204, 217, 240]. In the atmosphere, clouds can form
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when water condenses on highly curved nuclei with diameters in the nanometer range [246,
326]. The number, size, and composition of these nuclei determine the number and size of water
droplets, which dictate the size and lifetime of clouds [272]. Thus, nanoscale processes can
have a significant role in macroscopic properties and phenomena.

In industry, catalysts may deactivate if liquid condenses in pores with nanoscale diameters,
altering the rate and extent of reaction [24, 39, 40, 308]. The atomic force microscope (AFM)
and surface forces apparatus (SFA) can be affected by condensation between the probe tip and
the surface, and the radii of curvature of the condensed phase can reach nanometer scales [29,
149]. The manufacturing of cosmetics, food, and paint can also be described by multicomponent,
multiphase thermodynamics with interfacial curvature [44, 105]. In medicine, nanoscale drug
delivery systems show potential for targeting tumors [115, 124, 211, 259]. The effect of
nanoscale curvature is also pertinent in fluid flow through nanochannels [117, 195] and in phase
changes occurring in porous media [105, 320]. Such phase changes can occur in molecular
sieves such as MCM-41 and SBA-15, which are commonly used adsorbents that have pores
with diameters less than 10 nm [21, 53, 105, 126, 152].

Extensive theoretical analyses have been carried out for single-component systems with
interfacial curvature [87, 155, 187, 297, 323, 324], and the effect of curvature on single com-
ponent systems is outlined in detail by Defay and Prigogine for both constant temperature and
constant pressure conditions [70]. Single-component phase equilibrium has been investigated
for water [207, 286] and carbon dioxide [273] with nanoscale curvature between phases. Recent
molecular simulations suggest that the Kelvin equation that describes the increase in vapor-phase
pressure as a function of radius of curvature is accurate for water droplets down to a radius of
0.6 nm [92].

Defay and Prigogine [70] and Vehkmäki [292] derived a multicomponent Kelvin equation
assuming ideal behavior in the vapor and liquid phases. Another multicomponent form of
the Kelvin equation was derived by Shapiro and Stenby [249, 250] but it is only valid in the
region close to the dew point. It was extended to the bubble point region by Sandoval et al.
[240]. The derivation of the proposed multicomponent form of the Kelvin equation uses a linear
approximation in both the dew and bubble point regions. Using the Shapiro–Stenby approach,
Chen et al. [51] studied the shift in the dew point, and Sandoval et al. [240] calculated the
shift in the phase envelope for hydrocarbon mixtures. Gelb et al. [105] have summarized
theoretical and experimental work on phase equilibria in nanoporous material, while Barsotti et

al. [21] have reviewed research dealing specifically with the phase behavior of hydrocarbon
mixtures. Curvature also affects the equilibrium between solid and liquid phases of single and
multicomponent systems [2, 105, 221] and the effect of confinement in nanoscale capillaries on
the phase diagram and the eutectic point of glycerol + water has been studied [171].
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To predict the phase diagrams of multicomponent systems with interfacial curvature, Tan
and Piri [279] proposed an empirical model that combines an equation of state with a modified
capillary pressure expression that accounts for an adsorbed layer at the capillary wall. However,
the model can only be implemented when vast experimental datasets are available, because it
relies on a fitting parameter for each pure component that is a function of pore radius and tem-
perature. Using this empirical model, dew temperatures for a binary mixture of nitrogen + argon
and bubble temperatures for krypton + argon were predicted and compared to experimental data.
Predictions of the complete phase diagrams for nitrogen + argon under isothermal conditions
were also made [279]. The model was then extended to associating fluids under isothermal
conditions [278].

Molecular simulations have been used to predict the effect of confinement on both single
and multicomponent phase diagrams [105] through approaches including density functional
theory, Monte Carlo [16, 59, 68, 93, 118, 217, 293, 294], and molecular dynamics [105] for
cylindrical pores [89, 118] and slit pores [58, 59, 68, 89, 293]. Many of these simulations have
been limited to simpler fluids such as nitrogen [16], argon and krypton [59, 93, 118], methane
[16, 58, 217], and ethane [217] because of the computational intensity that would be required
for more complex fluids. Considering confinement in a slit pore, Coasne et al. [58] simulated
the solid–liquid phase diagram for a Lennard–Jones azeotropic mixture of Ar + CH4, and Li et

al. [166] studied how the azeotrope shifts for a Lennard–Jones mixture.
For nonideal systems with an azeotrope, Defay and Prigogine [70] outline the effect of

curvature on the location of the azeotrope under isothermal conditions. Experimental work
indicates that the azeotrope of nonideal multicomponent mixtures can be altered by introducing
curvature between the vapor and liquid phases [234, 316, 317]. Several binary mixtures
have been distilled with porous plates, and in the theoretical analysis, solid–liquid interactions
between the solution and pore walls were identified to significantly alter vapor–liquid equilibrium
[1, 234, 236, 316–318].

The previous chapter examined the effect of interfacial curvature on the isothermal phase
diagrams of both ideal and nonideal multicomponent systems [254]. Through the framework
of Gibbsian thermodynamics, we determined that the pressure in the vapor phase increases
for a liquid droplet in a bulk vapor phase and decreases for a vapor bubble in a bulk liquid
phase, similar to the trends seen for pure components. Significant effects on the phase envelope
were only observed at nanoscale radii of curvature. We also calculated the shift in azeotropic
composition as a function of radius of curvature for the nonideal ethanol(1) + water(2) system
and determined that the azeotrope can vanish for some radii under isothermal conditions.
Conventional separation processes have limited applicability for nonideal systems that exhibit
an azeotrope, but new processes could shift the azeotrope by exploiting the effects of nanoscale
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curvature.
The past literature on multicomponent systems with curvature has been limited to isothermal

phase diagrams or to a portion of the isobaric phase diagram; in this chapter, we now extend
the scope of study to complete vapor–liquid phase diagrams under isobaric conditions. Under
isothermal conditions, liquid properties are generally invariant as a function of pressure and are
commonly treated as constant parameters. Isobaric phase diagrams are more challenging to
compute, because the liquid properties that govern vapor–liquid phase equilibrium are nonlinear
functions of temperature. In other words, the bubble and dew temperatures of a system are more
difficult to calculate than the bubble and dew pressures [78]. It is important to note that for
systems with interfacial curvature, the meaning of the term isobaric may be unclear because
each phase has a different pressure; in the current chapter, the term isobaric will refer to systems
that have constant pressure in the vapor phase.

In this chapter, we derive the equations governing vapor–liquid equilibrium of multicompo-
nent, nonideal systems with interfacial curvature using Gibbsian composite-system thermody-
namics, and we choose models that accurately describe the relevant parameters of the system
components. We predict the dew temperatures of a nitrogen(1) + argon(2) system and compare
the results to experimental measurements as a function of composition. Then, we predict
the complete isobaric phase diagrams for an ideal system (methanol(1) + ethanol(2)) and a
nonideal system (ethanol(1) + water(2)). Finally, the azeotropic composition of ethanol + water
is calculated as a function of radius of curvature under isobaric conditions.

5.2 Governing Equations

The equilibrium states of a composite system can be determined from Gibbsian thermodynamics.
Consider a system consisting of one phase in contact with a second phase separated by a
spherical interface. This two-phase system is in a piston–cylinder device, forming a closed
system within a surrounding reservoir. Figure 5.1 illustrates two examples of vapor–liquid
systems with curved interfaces that will be analyzed in this chapter. Figure 5.1(a) shows a liquid
droplet within a bulk vapor phase (radius of curvature in the liquid phase), and Figure 5.1(b)
shows a cylindrical capillary tube containing a liquid phase in contact with a bulk vapor phase,
but with a different direction of interfacial concavity compared to Figure 5.1(a) (radius of
curvature in the vapor phase). In both cases, the piston–cylinder device imposes the pressure of
the reservoir on the vapor phase.

An equilibrium state occurs when the entropy (S) of the system is at an extremum; mathe-
matically, this means that

dSL +dSV +dSLV +dSR = 0, (5.1)
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Figure 5.1: Schematic diagrams of vapor(V)–liquid(L) systems contained in a reservoir that
has pressure PR and temperature T R. The piston–cylinder device imposes the reservoir pressure
on the vapor phase. Diagram (a) shows a system with a convex liquid surface and (b) illustrates
a system with a concave liquid surface.

where superscripts L and V denote the liquid and vapor phases, respectively, LV denotes the
vapor–liquid interface, and R denotes the reservoir surrounding the vapor–liquid system. The
entropies are functions of internal energy (U), volume (V ), and number of moles (N).

The differential changes of these variables in the bulk vapor and liquid phases are related by
the following equations, respectively, [46, 87, 108, 323]

dUV = T V dSV −PV dV V +
k

∑
i=1

µ
V
i dNV

i (5.2)

dUL = T L dSL −PL dV L +
k

∑
i=1

µ
L
i dNL

i , (5.3)

where T is the absolute temperature, P is the pressure, µi is the chemical potential of component
i, and k is the number of components. The differential change in internal energy for a curved
vapor–liquid interface is [87, 108, 323]

dULV = T LV dSLV +σ
LV dALV +

k

∑
i=1

µ
LV
i dNLV

i , (5.4)

where σ is the surface tension and A is the area of the vapor–liquid interface. Using Gibbs’
surface of tension approach for a curved interface ensures that the surface tension is independent
of radius of curvature [108, 292], and this means that each component is present at the interface.

The differential change in the internal energy of the reservoir is

dUR = T R dSR −PR dV R +
m

∑
i=1

µ
R
i dNR

i , (5.5)
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where m is the number of components in the reservoir.
Rearranging Equations (5.2)–(5.5) in terms of dS and substituting into Equation (5.1) gives

1
T L dUL +

PL

T L dV L −
k

∑
i=1

µL
i

T L dNL
i +

1
T V dUV +

PV

T V dV V −
k

∑
i=1

µV
i

T V dNV
i

+
1

T LV dULV − σLV

T LV dALV −
k

∑
i=1

µLV
i

T LV dNLV
i +

1
T R dUR +

PR

T R dV R −
m

∑
i=1

µR
i

T R dNR
i = 0. (5.6)

Equation (5.6) will yield equilibrium conditions for a system once appropriate constraints are
defined.

5.2.1 Equilibrium Conditions for a Droplet of Liquid within a Vapor Phase

First, applying the law of conservation of energy to the vapor–liquid system and reservoir gives
the following mathematical constraint:

dUV =−dUL −dULV −dUR. (5.7)

Next, there is no mass transfer between the system and the reservoir, so for each component in
the reservoir,

dNR
i = 0, (5.8)

and for each component in the vapor–liquid system,

dNV
i =−dNL

i −dNLV
i . (5.9)

There is a movable piston between the system and the reservoir, as illustrated in Figure 5.1(a),
which permits changes in volume of each phase and of the reservoir. The final constraint is that
the total volume of the system and reservoir together is constant:

dV V =−dV L −dV R. (5.10)

For a spherical liquid drop, the following relationships hold for differential area and volume:

dALV = 8πrL drL (5.11)

dV L = 4π

(︂
rL
)︂2

drL, (5.12)

where rL is the radius of the spherical liquid droplet.
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Substituting Equations (5.7)–(5.12) into Equation (5.6) and collecting like terms gives(︃
1

T LV − 1
T V

)︃
dULV +

(︃
1

T L − 1
T V

)︃
dUL +

(︃
1

T R − 1
T V

)︃
dUR

+

⎡⎣4π

(︂
rL
)︂2
(︄

PL

T L − PV

T V

)︄
− σLV

T LV 8πrL

⎤⎦drL +
k

∑
i=1

(︄
µV

i
T V − µL

i
T L

)︄
dNL

i

+
k

∑
i=1

(︄
µV

i
T V −

µLV
i

T LV

)︄
dNLV

i +

(︄
PR

T R − PV

T V

)︄
dV R = 0. (5.13)

For Equation (5.13) to be satisfied for all possible displacements from equilibrium, each of the
coefficients multiplying the differentials must be equal to zero. When these coefficients are set
to zero, the following equalities can be derived:

T V = T L = T LV = T R (5.14)

PL −PV =
2σLV

rL (5.15)

µ
V
i = µ

L
i = µ

LV
i (5.16)

PR = PV. (5.17)

Equations (5.14)–(5.16) are the thermodynamic equations defining the equilibrium condi-
tions for a multicomponent system consisting of a liquid-phase spherical droplet in a vapor
phase with temperature and vapor-phase pressure imposed by the surrounding reservoir.

5.2.2 Equilibrium Conditions for a Liquid in a Capillary

Following a procedure similar to the one outlined for a droplet of liquid, the equilibrium
conditions for a liquid phase confined in a capillary with a concave hemispherical interface are:

T V = T L = T LV = T R (5.18)

PV −PL =
2σ

LV

rV (5.19)

µ
L
i = µ

V
i = µ

LV
i (5.20)

PR = PV, (5.21)

where rV is the radius of curvature in the vapor phase.

76



CHAPTER 5. ISOBARIC VLE PHASE DIAGRAMS

5.2.3 Equilibrium Conditions for Two Phases Separated by a Spherical

Interface

The thermal and chemical equilibrium conditions are identical for the liquid droplet and for
the liquid in a capillary. The only difference between these systems is the sign of the pressure
difference (Equation (5.15) vs. Equation (5.19)). A common convention is to define a spherical
liquid phase as having a positive radius of curvature and a spherical (or hemispherical) vapor
phase as having a negative radius of curvature. This convention gives the following equations
for equilibrium in the liquid and vapor phases for any multicomponent mixture with a spherical
or hemispherical interface between phases:

T V = T L = T LV (5.22)

PL −PV =
2σ

r
(5.23)

µ
L
i = µ

V
i = µ

LV
i . (5.24)

The superscript LV on surface tension is dropped for simplicity. The factor 2/r in Equation (5.23)
is the curvature of a spherical surface [26] which is twice the mean curvature [268, 323].

5.2.4 Governing Equations for Vapor–Liquid Phase Diagrams

5.2.4.1 Curved Interface

From this point forward, the temperature of the system will be denoted by T based on Equa-
tion (5.22). The chemical potential for each component i of an ideal-gas vapor phase is [78,
297]

µ
V
i

(︂
yi,T,PV

)︂
= µ

V
i
(︁
T,Psat

i
)︁
+RT ln

(︄
yiPV

Psat
i

)︄
. (5.25)

The chemical potential for each component i of a nonideal, incompressible liquid phase is [78,
223]

µ
L
i

(︂
xi,T,PL

)︂
= µ

L
i
(︁
T,Psat

i
)︁
+ vL

i

(︂
PL −Psat

i

)︂
+RT ln(γixi) , (5.26)

where yi and xi are vapor and liquid mole fractions, respectively, R is the universal gas constant,
vL

i is the liquid molar volume of pure component i, and γi is the activity coefficient for component
i. The terms µV

i
(︁
T,Psat

i
)︁

and µL
i
(︁
T,Psat

i
)︁

are the chemical potentials at the reference states,
taken to be the chemical potential of the vapor phase and the liquid phase, respectively, at the
flat-interface saturation vapor pressure of component i (Psat

i ) at a temperature T ; at equilibrium,
these terms are equal. Equating Equations (5.25) and (5.26) as indicated by Equation (5.24)
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gives

RT ln

(︄
yiPV

Psat
i

)︄
= vL

i

(︂
PL −Psat

i

)︂
+RT ln(γixi) . (5.27)

Rearranging Equation (5.27) gives a modified version of Raoult’s Law for a nonideal liquid
mixture [266]:

yiPV = γixiPsat
i exp

⎡⎢⎣vL
i

(︂
PL −Psat

i

)︂
RT

⎤⎥⎦ . (5.28)

Substituting Equation (5.23) into Equation (5.28) gives [254]

yiPV = γixiPsat
i exp

⎡⎢⎣vL
i

(︂
PV +2σ/r−Psat

i

)︂
RT

⎤⎥⎦ . (5.29)

The exponential factor in Equations (5.28) and (5.29) is known as the Poynting factor. Equations
for the bubble temperature and dew temperature can be determined by combining Equation (5.29)
for each component with ∑i yi = 1 or ∑i xi = 1, respectively. For a given overall mole fraction
of the mixture (zi), pressure in the vapor phase, and radius of curvature, the bubble temperature
(Tb) and dew temperature (Td) can be calculated with the following equations, given that Psat

i ,
vL

i , and σ are functions of temperature:

PV =
k

∑
i=1

γixiPsat
i (Tb)exp

⎡⎢⎣vL
i (Tb)

(︂
PV +2σ (Tb,x1, . . . ,xk−1)/r−Psat

i (Tb)
)︂

RTb

⎤⎥⎦ (5.30)

PV =

⎛⎜⎜⎜⎜⎜⎝
k

∑
i=1

yi

γiPsat
i (Td)exp

[︄
vL

i (Td)
(︂

PV+2σ(Td,x1,...,xk−1)/r−Psat
i (Td)

)︂
RTd

]︄
⎞⎟⎟⎟⎟⎟⎠

−1

. (5.31)

Equations (5.30) and (5.31) describe the bubble and dew temperatures for a multicomponent
system with k components. In this chapter, we consider the phase diagrams of binary mixtures,
so the summations in these equations will only contain two terms, one for each component. The
surface tension of a binary mixture simplifies to being a function of only temperature and x1.

To solve for the bubble temperature of a binary mixture, the liquid-phase composition is set
to the overall composition (x1 = z1), and Equation (5.30) is solved for Tb. The bubble line of
the vapor–liquid phase envelope can be calculated for a given radius of curvature by solving
Equation (5.30) for all z1 between 0 and 1.
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Equation (5.31) can be used to solve for the dew temperature by setting the vapor-phase
composition to the overall composition (y1 = z1). Because the liquid-phase activity coefficient
and vapor–liquid interfacial tension depend on the liquid-phase composition, another equation is
needed to determine this composition. Both sides of Equation (5.29) can be divided by the vapor
mole fraction, and then this equation can be written for each component of a binary mixture; the
two resulting equations can be equated and then rearranged to give the following expression for
liquid phase mole fraction [254]

x1 =

⎛⎜⎝ y2γ1Psat
1 exp

[︂
vL

1 (P
V +2σ/r−Psat

1 )/(RTd)
]︂

y1γ2Psat
2 exp

[︁
vL

2 (P
V +2σ/r −Psat

2 )/(RTd)
]︁ +1

⎞⎟⎠
−1

. (5.32)

Among the possible activity coefficient models for binary mixtures, we select the Margules
equations, given by [110, 266]

ln(γ1) = x2
2
[︁
A12 +2(A21 −A12)x1

]︁
(5.33)

ln(γ2) = x2
1
[︁
A21 +2(A12 −A21)x2

]︁
, (5.34)

where A12 and A21 are system-dependent empirical constants at a given pressure. The activity
coefficients for an ideal system are unity.

5.2.4.2 Composition of the Azeotrope for Curved Interfaces

At the azeotropic composition, the mole fraction in the vapor phase is equal to the mole fraction
in the liquid phase. Using this property, the following equation can be used to determine the
azeotropic composition for a binary system with a curved interface [254]:

γ1Psat
1 exp

[︂
vL

1 (P
V +2σ/r−Psat

1 )/(RT )
]︂

γ2Psat
2 exp

[︁
vL

2 (P
V +2σ/r−Psat

2 )/(RT )
]︁ = 1. (5.35)

An initial estimate of the azeotropic composition can be determined by setting the exponential
Poynting correction factor to 1. At the azeotrope, the bubble and dew temperatures are equal,
so Equation (5.30) is chosen to solve for temperature, and this temperature can be substituted
into Equation (5.35) for the next iteration. This procedure of solving Equation (5.35) followed
by solving Equation (5.30) can be repeated until the values of composition and temperature
converge.

79



CHAPTER 5. ISOBARIC VLE PHASE DIAGRAMS

5.2.4.3 Flat Interface

The governing equations for a system with a flat interface can be derived by using the same
Gibbsian composite-system approach that was used for the derivation of bubble and dew
temperature equations for a system with curvature. The resulting equations for the flat-interface
bubble temperature (Tbf) and dew temperature (Tdf) are outlined in thermodynamics textbooks
and are given by, with the addition of the Poynting correction [78]

PV =
k

∑
i=1

γixiPsat
i (Tbf)exp

⎡⎢⎣vL
i (Tbf)

(︂
PV −Psat

i (Tbf)
)︂

RTbf

⎤⎥⎦ (5.36)

PV =

⎛⎜⎜⎜⎝ k

∑
i=1

yi

γiPsat
i (Tdf)exp

[︃
vL

i (Tdf)(PV−Psat
i (Tdf))

RTdf

]︃
⎞⎟⎟⎟⎠

−1

. (5.37)

When the Poynting correction is unity, Equation (5.36) simplifies to

PV =
k

∑
i=1

γixiPsat
i (Tbf), (5.38)

and when the activity coefficients are also unity, Equation (5.37) simplifies to

PV =

(︄
k

∑
i=1

yi

Psat
i (Tdf)

)︄−1

. (5.39)

When Equations (5.36) and (5.37) are solved using an iterative method, the solutions to
Equations (5.38) and (5.39) can be used as the initial estimates of bubble and dew temperatures
substituted into the Poynting correction. When solving Equation (5.37), another equation is
needed to determine the liquid phase composition for evaluating the activity coefficient. For a
binary mixture, an equation for the liquid mole fraction at the dew temperature can be derived
by using Equation (5.28) for both components and PL = PV for a flat interface, and it is given
by

x1f =

⎛⎜⎝y2γ1Psat
1 exp

[︂
vL

1 (P
V −Psat

1 )/(RTdf)
]︂

y1γ2Psat
2 exp

[︁
vL

2 (P
V −Psat

2 )/(RTdf)
]︁ +1

⎞⎟⎠
−1

. (5.40)

The flat-interface azeotropic composition can be calculated by setting 2σ/r = 0 in Equa-
tion (5.35).
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5.2.4.4 Temperature-dependent Properties of Pure Components

One of the challenges of computing isobaric phase diagrams is accurately accounting for the
temperature dependence of liquid properties, including flat-interface saturation vapor pressure,
liquid molar volume, and surface tension. The saturation vapor pressure of each component with
a planar vapor–liquid interface can be calculated as a function of temperature with an extended
Antoine equation [71]

lnPsat
i = Ai +

Bi

T
+Ci ln(T )+DiT Ei, (5.41)

where the empirical parameters Ai, Bi, Ci, Di, and Ei are component-specific. The liquid molar
volume of each component can be described by the Rackett equation [169, 225], but because
the Rackett equation is not valid for alcohols [225], the following more generalized form can be
used instead [315]

vL
i = ai ×b

(︂
1− T

ci

)︂ni

i , (5.42)

where ai, bi, ci and ni are component-specific empirical parameters.
The surface tension of a pure component is also a function of temperature, and for pure com-

ponents, a multiple linear regression can be performed on experimental data with a polynomial
equation:

σi =
pi

∑
j=0

θ j,iT j, (5.43)

where pi is the degree of the polynomial used for component i and θ j,i are the empirically
determined jth order coefficients for component i. Higher order terms can extend the accuracy
of the equation to temperatures up to the component’s critical point. Another common equation
used to describe the surface tension of pure components is of the following form [96, 114, 163]

σi = αi

(︄
1− T

Tcr,i

)︄βi

, (5.44)

where αi and βi are fitting coefficients and Tcr,i is the liquid’s critical temperature.
In this chapter, a nitrogen(1) + argon(2) system is first selected to compare dew-point pre-

dictions with previously published experimental work. Then, an ideal methanol(1) + ethanol(2)
system and a nonideal ethanol(1) + water(2) system are selected and their phase behavior is
modelled. The parameters for flat-interface saturation vapor pressure, liquid molar volume, and
surface tension are summarized in Tables 5.1 to 5.4 for pure nitrogen, argon, methanol, ethanol,
and water. These parameters can be used for temperatures between the listed Tmin and Tmax

values.
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Table 5.1: Extended Antoine equation parameters (Equation (5.41)) for flat-interface vapor
pressure [Pa] and the range of validity for all pure components considered in this chapter [71].

Ai Bi Ci Di Ei Tmin [K] Tmax [K]

Nitrogen 58.282 −1084.1 −8.3144 0.044127 1 63.15 126.2
Argon 42.127 −1093.1 −4.1425 5.7254×10−5 2 83.78 150.86
Methanol 82.718 −6904.5 −8.8622 7.4664×10−6 2 175.47 512.50
Ethanol 73.304 −7122.3 −7.1424 2.8853×10−6 2 159.05 514.00
Water 73.649 −7258.2 −7.3037 4.1653×10−6 2 273.16 647.10

Table 5.2: Rackett equation parameters (Equation (5.42)) for liquid molar volume [mL/mol]
and the range of validity for all pure components considered in this chapter [315].

ai bi ci ni Tmin [K] Tmax [K]

Nitrogen 89.1527 0.2861 126.2 0.2966 63.15 126.20
Argon 75.2038 0.286 150.86 0.2984 83.78 150.86
Methanol 117.802 0.27206 512.58 0.2331 175.47 512.58
Ethanol 166.917 0.27668 516.25 0.2367 159.05 516.25
Water 55.432 0.27 647.13 0.23 290.00 647.13

Table 5.3: Polynomial coefficients (Equation (5.43)) for surface tension [N/m] and the range of
validity for pure methanol [71], ethanol [71], and water [315].

θ0,i θ1,i θ2,i θ3,i θ4,i θ5,i Tmin [K] Tmax [K]

Methanol 0.03513 −7.04×10−6 −1.216×10−7 0 0 0 273.10 503.15
Ethanol 0.03764 −2.157×10−5 −1.025×10−7 0 0 0 273.15 503.15
Water −0.01073 1.299×10−3 −6.544×10−6 1.504×10−8 −1.793×10−11 8.635×10−15 273.16 647.10

Table 5.4: Coefficients (Equation (5.44)) for surface tension [mN/m] and the range of validity
for pure nitrogen, argon, and krypton [163].

αi Tcr,i [K] βi Tmin [K] Tmax [K]

Nitrogen 29.324108 126.2 1.259 65 120
Argon 37.898063 150.66 1.278 84 145
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5.2.4.5 Liquid Mixture Properties

For the nonideal liquid mixture of ethanol(1) + water(2), the constants used in the Margules
activity coefficient model are A12 = 1.6252 and A21 = 0.8610 for a pressure of 101 325 Pa
[110].

In Equations (5.30), (5.31), (5.32), and (5.35), the surface tension is a function of liquid
phase composition and temperature. For an ideal liquid mixture, surface tension can be calcu-
lated using a linear combination of mole fraction and pure component surface tension [70, 219]:

σ = σ1x1 +σ2x2. (5.45)

Of interest in this chapter, the methanol + ethanol system has been confirmed to behave
ideally from experimental measurements [25], and therefore Equation (5.45) can be used
to calculate this mixture’s surface tension as a function of composition. Substituting Equa-
tion (5.43) into Equation (5.45) for each component gives the following equation that captures
the dependence of surface tension on liquid-phase composition and temperature:

σ =

⎛⎝ p1

∑
j=0

θ j,1T j

⎞⎠x1 +

⎛⎝ p2

∑
j=0

θ j,2T j

⎞⎠x2. (5.46)

The surface tension of a nonideal mixture such as ethanol + water has been described
as a function of liquid-phase composition by numerous models, such as those proposed by
Shereshefsky [257], Connors and Wright [63], and Li et al. [56]. In this chapter, an equation is
needed that additionally incorporates the influence of temperature on the nonideal mixture’s
surface tension. As shown in Chapter 2 [251], an extension of the Connors–Wright model
[63] is best for calculating the temperature dependence of surface tension for aqueous binary
mixtures. The original Connors–Wright model is given by [63]

σ = σ2 −
(︃

1+
b(1− x1)

1−a(1− x1)

)︃
x1(σ2 −σ1), (5.47)

where a and b are system-specific parameters fit to surface tension data as a function of x1 at a
single temperature, σ2 is the surface tension of pure water, and σ1 is the surface tension of the
second component.

Substituting the temperature-dependent pure component surface tension (Equation (5.43))
into Equation (5.47) gives the following expression that describes the dependence of surface
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tension on composition and temperature [251]:

σ =

⎛⎝ p2

∑
j=0

θ j,2T j

⎞⎠−
(︃

1+
b(1− x1)

1−a(1− x1)

)︃
x1

⎡⎢⎣
⎛⎝ p2

∑
j=0

θ j,2T j

⎞⎠−

⎛⎝ p1

∑
j=0

θ j,1T j

⎞⎠
⎤⎥⎦ . (5.48)

Figure 5.2 compares Equation (5.48) to experimental data for the surface tension of
ethanol(1) + water(2) as a function of liquid composition and temperature. For ethanol + water at
293 K, the parameters and 95% confidence intervals for Equation (5.48) are a = 0.958±0.002
and b = 0.926±0.009 for the data reported in Vázquez et al. [290] when using Equation (5.43)
at 293 K with the coefficients for ethanol and water listed in Table 5.3. When these parameters
are used in Equation (5.48) to predict the surface tension at higher temperatures, the average
absolute percent error between model values and experimental points is 0.49%, with a maximum
percent error of 1.38%. The parameters are not the same as those reported for ethanol + water
in Chapter 2 [251], because higher-order polynomials are used in the current chapter to predict
surface tension at temperatures greater than previously considered.

283
10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

Temperature, T (K)Liquid mole fraction of ethanol, x1

Vázquez et al. (1995)

Equation (5.48)

Liquid mole fraction of ethanol, x1

Temperature, T (K)

32310

20

0.0

30

40

50

3130.2

60

70

80

0.4
3030.6

0.8
2931.0

293 303 313 323 333

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

Figure 5.2: Surface tension of ethanol(1) + water(2) as a function of composition and tempera-
ture, as measured experimentally by Vázquez et al. [290] and as calculated by Equation (5.48).

For nitrogen(1) + argon(2), available surface tension data as a function of concentration
is limited to a single temperature. The surface tension equation from Chapter 2 can be used
to extrapolate to higher temperatures, since it was shown that the parameters are temperature-
independent for the majority of systems previously studied [251]. For nitrogen(1) + argon(2),
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Equation (5.44) can be substituted into Equation (5.47) for each pure component to give

σ = α2

(︄
1− T

Tcr,2

)︄β2

−
(︃

1+
b(1− x1)

1−a(1− x1)

)︃
x1

⎡⎣α2

(︄
1− T

Tcr,2

)︄β2

−α1

(︄
1− T

Tcr,1

)︄β1
⎤⎦ . (5.49)

At 83.82 K, the parameters and 95% confidence intervals for nitrogen + argon in Equation (5.49)
are a = 0.6295±0.0457 and b = 0.3244±0.0161 for the data reported in Sprow and Prausnitz
[269], and the fit is shown in Figure 5.3.
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Figure 5.3: Surface tension as a function of composition at 83.82 K for nitrogen(1) + argon(2)
measured experimentally by Sprow and Prausnitz [269] and the fit of Equation (5.49).

5.2.5 Numerical Methods

For a given pressure, overall composition, and radius of interfacial curvature, solving Equa-
tions (5.30) and (5.31) with Equation (5.32) yields the bubble and dew temperatures. Fixed-point
iteration methods are outlined in Figure 5.4 and Figure 5.5 for calculating the bubble temperature
and dew temperature, respectively, at a given composition. The tolerance ε for relative error
between iteration steps is calculated using [50, 243]

ε = 0.5×10−n, (5.50)

where n is the minimum desired number of accurate significant figures. Once the relative error
reaches a value less than the tolerance, iteration is stopped. In this chapter, the tolerance for
relative error is chosen for accuracy to five significant figures. MATLAB R2016b (Natick, USA)
was used for calculations.
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Figure 5.4: Flowchart for calculating the bubble temperature of a binary system with a flat
interface and with a curved interface for a given composition in the liquid phase.
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Figure 5.5: Flowchart for calculating the dew temperature of a binary system with a flat
interface and with a curved interface for a given composition in the vapor phase.
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5.3 Results and Discussion

5.3.1 Comparison with Experimental Data

Alam et al. [5] reported experimental results for the temperature at which phase transitions
occur during adsorption and desorption for mixtures of nitrogen(1) + argon(2) in Vycor glass
with an average cylindrical pore diameter of 4 nm [5, 134] at a constant vapor-phase pressure
of 300 kPa, as shown by the symbols in Figure 5.6. The symbols indicate the midpoints of
the phase transition and the error bars on each symbol show the start and end of the transition;
the values were digitized from the figure published by Alam et al. [5]. According to the
classical model of adsorption and desorption, only desorption has a geometry resembling
the hemispherical interface between the liquid and vapor phases seen in Figure 5.1(b) for a
cylindrical pore. Adsorption (and capillary condensation) is hypothesized to occur first on the
walls of the cylindrical pore, creating a thin cylindrical layer of liquid. The curvature of an
adsorbed cylinder of liquid is equal to half the curvature of a hemisphere in the same pore
(curvature is 1/rp for a cylinder and 2/rp for a sphere with radius rp) [26, 60, 112]. That is, r

in the governing equations derived herein equals −2 nm for desorption and r equals −4 nm
for adsorption. The predictions of dew point using these radii are plotted in Figure 5.6 as a
function of nitrogen mole fraction. In the context of the adsorption and desorption experiments,
the dew point corresponds to the first appearance of liquid during the adsorption process, and it
corresponds to the last disappearance of liquid during the desorption process. The dew point
predictions agree closely with the experimental data points (the average absolute percent error
between predictions and data is 0.45%), and most importantly, the theoretical predictions are
completely independent of the experiments. The governing equations only require the bulk
properties of the pure liquids and the pore radius of the experimental porous medium. This is in
contrast to the model proposed by Tan and Piri [279] that relies on additional fitting parameters
for the behavior of pure nitrogen and pure argon in pores; their fitting parameters are functions
of temperature and pore radius.

Jones and Fretwell [134] reported experimental phase-transition temperatures as a function
of mole fraction for argon(1) + krypton(2), but the reported trends are not consistent with those
reported by Alam et al. [5] for nitrogen(1) + argon(2) using the same experimental technique;
thus the argon(1) + krypton(2) data cannot be interpreted within the thermodynamic framework
proposed in this chapter. That is, the adsorption curve for argon(1) + krypton(2) is concave
up and is proposed to correspond to the bubble point [134], whereas the adsorption curve for
nitrogen(1) + argon(2) is concave down and corresponds to the dew point for each vapor-phase
composition.
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Figure 5.6: Prediction (not a fit) of adsorption and desorption dew temperatures as functions
of nitrogen mole fraction for nitrogen(1) + argon(2) in a capillary with a radius of 2 nm and
experimental measurements of adsorption and desorption at a vapor-phase pressure of 300 kPa
from Alam et al. [5]. The schematic of the classical model of adsorption and desorption is
adapted from Donohue and Aranovich [76].

5.3.2 Predictions for Methanol(1) + Ethanol(2) and Ethanol(1) + Water(2)

Given the success of Gibbsian composite-system thermodynamics in predicting the phase
behavior of nitrogen(1) + argon(2) in porous media, systems of methanol(1) + ethanol(2) and
ethanol(1) + water(2) are now considered, and predictions are made for a pressure of 101 325 Pa
in the vapor phase. Isobaric phase diagrams and x-y plots are illustrated in Figure 5.7 and
Figure 5.8 for these systems, respectively, at various positive and negative radii of curvature.
The phase envelope outlined in black is for a system with a flat interface between the liquid and
vapor phases. For both systems, the bubble and dew temperatures decrease for positive radii of
curvature, whereas for negative radii of curvature, the bubble and dew temperatures increase.
As the absolute value of the radius of curvature decreases, the temperatures move farther away
from the flat-interface phase envelope. If the flat-interface phase envelope were to be used for
phase predictions of systems with significant curvature, it would yield increasingly inaccurate
results.

What is the physical meaning behind the shift of the phase envelope in the presence of
interfacial curvature? For a given vapor-phase pressure, it is easier to evaporate a liquid droplet
(positive radius of curvature) because of the elevated pressure in the liquid phase; a temperature
lower than the bubble temperature of a planar liquid interface is therefore needed to evaporate a
spherical liquid droplet. Similarly, a temperature lower than the dew temperature for a planar in-
terface is needed to start the condensation of a vapor phase into a spherical liquid droplet because
of the higher liquid-phase pressure. The multicomponent vapor phase is supercooled below its
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Figure 5.7: Predictions of (a) the phase diagram and (b) the x-y plot for methanol(1) + ethanol(2)
as a function of interfacial radius of curvature for PV = 101 325 Pa.
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Figure 5.8: Predictions of (a) the phase diagram and (b) the x-y plot for ethanol(1) + water(2)
as a function of interfacial radius of curvature for PV = 101 325 Pa.

planar dew temperature until a phase change occurs to form a highly curved multicomponent
liquid phase, as described by Defay and Prigogine for a single component [70].

Considering a negative radius of curvature, a hemispherical vapor phase condenses at a
temperature higher than the dew temperature of a planar liquid–vapor interface, because the
bubble is at an elevated pressure as compared to the liquid phase in the capillary. For the bubble
point of a system with interfacial curvature, a temperature higher than the bubble temperature
of a planar interface is needed to evaporate a liquid phase with a hemispherical interface in a
capillary, also because of the elevated pressure in the vapor phase. As a result, a bulk liquid can
become superheated until a vapor bubble forms [70].

The isobaric x-y curves show trends as a function of radius of curvature similar to those
seen for the isothermal x-y plots of each system [254]. That is, for methanol(1) + ethanol(2),
the curve moves closer to the 45◦ line for positive radii and away from the line for negative
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radii. For ethanol(1) + water(2), the x-y curve moves farther away from the 45◦ line for positive
radii and closer for negative radii. For a given vapor-phase composition in either system, a
positive radius of curvature decreases the equilibrium liquid mole fraction of ethanol compared
to the flat-interface value, and a negative radius increases the equilibrium liquid mole fraction of
ethanol.

Although the trends are similar, the magnitude of the x-y curve shift differs between isother-
mal and isobaric conditions. To compare the magnitude of this shift, the isothermal liquid
composition for each vapor mole fraction can be calculated as outlined in Chapter 4 [254] using
the equations for flat-interface saturation pressure, liquid molar volume, and surface tension
as described in this chapter evaluated at 298 K. Figure 5.9 compares the difference between
curved-interface liquid composition and flat-interface liquid composition at the dew point as a
function of vapor phase composition for methanol(1) + ethanol(2) and ethanol(1) + water(2) for
a radius of curvature of r = 3 nm at constant temperature and at constant PV. Under isother-
mal conditions, the maximum difference in liquid composition relative to the flat-interface
liquid composition, |x1c − x1f|, is 0.02658, while the maximum difference is just 0.01532 under
isobaric conditions for methanol(1) + ethanol(2) at the dew point. For ethanol(1) + water(2),
the maximum isothermal and isobaric differences are 0.1960 and 0.1886, respectively, for
r = 3 nm. Therefore, the presence of a nanocurved interface has a greater impact on vapor–liquid
equilibrium at a constant temperature of 298 K than it does at a constant PV of 101 325 Pa.

0.000
 

0.005
 

0.010
 

0.015
 

0.020
 

0.025
 

0.030
 

0 0.2 0.4 0.6 0.8 1

Vapor mole fraction of methanol, y1

T = 298 K
PV = 101 325 Pa

|x
1

c
  
− 

x
1

f |

(a)

r  = 3 nm

0.00
 

0.05
 

0.10
 

0.15
 

0.20
 

0 0.2 0.4 0.6 0.8 1

Vapor mole fraction of ethanol, y1

|x
1

c
 −

 x
1

f |

r  = 3 nm

(b)

T = 298 K
PV = 101 325 Pa

Figure 5.9: Difference between the 3-nm curved-interface liquid-phase composition and the
flat-interface liquid-phase composition at the dew point as a function of vapor-phase composition
for (a) methanol(1) + ethanol(2) and (b) ethanol(1) + water(2) at a constant PV of 101 325 Pa
(solid line) and at a constant temperature of 298 K (dashed line).

For the ethanol(1) + water(2) system, the isobaric azeotropic composition can be calculated
as a function of radius of curvature, as illustrated in Figure 5.10; azeotropic composition is
plotted as a function of the inverse radius in Figure 5.11. The dashed black line in Figure 5.10
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is the azeotropic composition for a system with a flat interface between the vapor and liquid
phases. For positive radii of curvature, the azeotrope shifts toward 100 mol% ethanol, whereas
for negative radii of curvature, the azeotrope shifts in the opposite direction. Such a trend was
also seen under isothermal conditions [254] but, as observed for the x-y curves, the magnitude of
the shift differs under constant vapor-phase pressure conditions. The isobaric (PV = 101 325 Pa)
azeotrope vanishes for positive radii of curvature less than 17 nm, while the isothermal (298 K)
azeotrope vanishes for positive radii of curvature less than 31 nm. It takes a smaller radius of
curvature to remove the azeotrope at a constant vapor-phase pressure of 101 325 Pa than it does
at a constant temperature of 298 K.
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Figure 5.10: Predictions of the azeotropic composition as a function of radius of curvature for
ethanol(1) + water(2) (a) at a pressure of 101 325 Pa in the vapor phase and (b) at a temperature
of 298 K.
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Figure 5.11: Predictions of the azeotropic composition as a function of inverse radius of
curvature for ethanol(1) + water(2) at a pressure of 101 325 Pa in the vapor phase (solid line)
and at a temperature of 298 K (dashed line).
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5.4 Conclusions

From Gibbsian composite-system thermodynamics, the equilibrium conditions for a multicom-
ponent system with interfacial curvature between the vapor and liquid phases were derived.
Based on these conditions, the partial phase diagram of nitrogen + argon and the complete phase
diagrams of methanol + ethanol and ethanol + water systems were calculated. Predictions of
dew point for nitrogen + argon agreed with experimental data of adsorption and desorption
reported in the literature with an average percent difference of 0.45%. Over all systems, the
phase envelopes shifted to lower bubble and dew temperatures for positive radii of curvature and
shifted to higher temperatures for negative radii of curvature, with a greater shift for radii closer
to zero. For the nonideal ethanol + water system, the azeotropic composition moved toward
100 mol% ethanol for positive radii, as seen for isothermal conditions, but the magnitude of the
change differed.

The outlined thermodynamic approach can be applied to spherical phases within bulk phases
and to phases confined in capillaries. While any solid–liquid interactions that would be present
in capillaries are neglected in the present analysis, by doing so, the effect of curvature alone is
isolated. It is indeed valuable to ascertain the magnitude of the curvature effect in comparison
to other forces so that the relative importance of each contribution can be determined, and a
more complete understanding of nanoscale phase equilibrium can be reached in applications
ranging from hydrocarbon recovery and atmospheric physics to catalysis and drug delivery.
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Chapter 6

Gibbsian Thermodynamics of Cassie–Baxter

Wetting (Were Cassie and Baxter Wrong? Re-

visited)1

line fraction =

Abstract

Over the past decade, there has been a debate over the correct form of the Cassie–Baxter
equation that describes the expected contact angle of a liquid drop on a heterogeneous surface.
The original Cassie–Baxter equation uses an area fraction of each solid phase calculated over the
entirety of the surface, and its derivation is based on an assumption not all surfaces necessarily
satisfy. Herein, we introduce fundamental Gibbsian composite-system thermodynamics as a
new approach for deriving the complete set of equilibrium conditions for a liquid drop resting
on a heterogeneous multiphase solid substrate. One of the equilibrium conditions is a form of
the Cassie–Baxter equation that uses a line fraction determined at the contact line outlining the
perimeter of the solid–liquid contact area. We elucidate the practical implications of using the
line fraction for common patterns of heterogeneities.

1Reproduced, with minor modifications, with permission from N. Shardt and J. A. W. Elliott. “Gibbsian Thermodynam-
ics of Cassie–Baxter Wetting (Were Cassie and Baxter Wrong? Revisited)”. Langmuir 34.40 (2018), pp. 12191–12198.
https://pubs.acs.org/articlesonrequest/AOR-tif5N8X82K2tVuR94pTk Copyright 2018 American Chemical Society. J. A. W. Elliott
conceived the original idea. In performing this research, I had valuable discussions with Leila Zargarzadeh, who shared
pertinent literature, and the anonymous reviewers brought additional literature to our attention.
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CHAPTER 6. CASSIE–BAXTER WETTING

6.1 Introduction

The term wetting describes the behavior of a liquid drop when placed on a solid substrate
in terms of the equilibrium shape that the drop attains. Understanding wetting behavior is
critical in the preparation of food, non-stick and waterproof surfaces, chemical products, and
pharmaceutical drugs [26, 62, 106], as well as in the design of nanofluidic technologies [228].
Many natural structures and processes also depend on the ability of the liquid phase to wet or
not wet the surface it touches [106, 159], and the roughness of the surface plays an important
role in determining the behavior of the liquid.

The term Cassie–Baxter (CB) wetting refers to a wetting state where a liquid drop sits on top
of a surface’s rough features and traps pockets of gas between these features. The macroscopic
angle that the liquid–vapor interface makes with respect to the solid in this state has been
described by the CB equation [49]. The CB equation has also been used to predict the contact
angle of a liquid on smooth surfaces made up of patches of different components, as given by
[188]

cosθCB = ∑
i

fi cosθi, (6.1)

where θCB is the predicted contact angle, fi is the area fraction of component i on the solid
surface (Ai/Aprojected) and θi is the contact angle of the liquid drop on a smooth homogeneous
surface made up of only component i. Considering a drop of water resting on a rough surface,
Cassie and Baxter’s analysis assumes “that for an increase in area δA of the porous surface–
water interface there is formed an area of solid–water interface, f1δA, and of water–air interface,
f2δA, for any infinitesimal value of δA” [49], but this statement is not necessarily satisfied for
any arbitrary distribution of rough protrusions or heterogeneities on a surface.

Researchers have questioned the validity of the Cassie–Baxter equation (see a detailed review
by Erbil [82]). Extrand [90] and Gao and McCarthy [103] designed heterogeneous surfaces
for which Equation (6.1) does not predict the experimentally observed contact angle. However,
as explained by McHale [185], these surfaces had single-point defects and did not satisfy the
assumption regarding differential areas that was used in the derivation of the Cassie–Baxter
equation. The Cassie–Baxter equation should not be expected to accurately predict the contact
angles of liquids on such surfaces. Nevertheless, Gao and McCarthy’s work motivated the
rederivation of the Cassie–Baxter equation, and a local area fraction in the vicinity of the contact
line was proposed by McHale [185], Nosonovsky [206], and later by Seo et al. [248] to extend
the Cassie–Baxter equation to surfaces with single-point defects.

Cubaud and Fermigier [65] and Larsen and Taboryski [158] reported that their experimental
measurements of contact angle agreed more closely with predictions when line fractions at the
contact line were used in place of area fractions in the Cassie–Baxter equation. The use of a
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line fraction was first suggested by Pease in 1945 [212], but it was not adopted by researchers at
the time. Later, in 1998, Swain and Lipowsky [275] used a statistical mechanical definition to
theoretically justify the use of a line fraction in the Cassie–Baxter equation. Another theoretical
justification for using a line fraction was proposed by Xu and Wang [314] using a mathematical
technique called homogenization, and they determined that the macroscopic contact angle is
the integral average of local contact angles along the contact line. Hey and Kingston [120]
minimized the energy of a spherical drop on a heterogeneous surface with the assumptions that
the area fraction of the liquid–solid interface changes as a function of drop radius and that the
drop volume is constant, and the condition for equilibrium was a line-fraction Cassie–Baxter
equation.

To summarize, three versions of the Cassie–Baxter equation are present in the literature.
The first uses an area fraction based on the whole solid–liquid interface (a global area fraction),
the second uses an area fraction based on the area in the vicinity of the contact line (a local area
fraction), and the third uses a line fraction. The line-fraction Cassie–Baxter equation is the most
general form, because it is valid for any distribution of heterogeneities in the solid surface, as
will be discussed in this chapter.

The goal of this chapter is to introduce Gibbsian composite-system thermodynamics [46,
108] as a new tool for determining the equilibrium contact angle of a liquid drop on a hetero-
geneous surface. A composite system is one that is not a simple system itself but is made up
of simple systems. In general, Gibbsian composite-system thermodynamics is a framework
for determining the equilibrium conditions of a composite system by extremizing entropy,
subject to the constraints of the system, simultaneously yielding equations for thermal, chemical,
and mechanical equilibrium. With such a systematic approach, Gibbsian composite-system
thermodynamics can be applied to systems that may be difficult to analyze by other methods,
such as systems with a multicomponent liquid phase or those with more complex geometries.
Recent work in Gibbsian composite-system thermodynamics has examined the effect of curved
interfaces on phase diagrams describing vapor–liquid equilibrium [253, 254] and solid–liquid
equilibrium [171]. Past work in Gibbsian composite-system thermodynamics in the field of
wetting phenomena has studied smooth, homogeneous surfaces with and without the influence
of gravity [79, 87, 298, 299, 323, 324]. Eslami and Elliott derived the equilibrium conditions
for a liquid drop on a smooth homogeneous surface that is either rigid or fluid by extremizing
entropy subject to system constraints [87], and Zargarzadeh and Elliott derived the equilibrium
conditions for a liquid phase located between a sphere and a flat plate [323].

Herein, we outline a new derivation of equilibrium contact angle for a liquid phase in
equilibrium with its vapor on smooth heterogeneous surfaces, or rough surfaces, upon which
CB wetting is observed. This new theory addresses experimentalists’ concerns regarding the
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original area-fraction CB equation, and it reinforces the use of the line fraction for the prediction
of CB contact angles. Compared to past theoretical work on the line-fraction CB equation,
the novelty of this chapter lies in the use of Gibbsian composite-system thermodynamics to
simultaneously derive all equations for equilibrium, not solely the one governing the contact
angle. Through this derivation, the utility of Gibbsian thermodynamics is highlighted, and it is
anticipated that this framework can be extended to derive the equilibrium conditions of more
complex systems and modes of wetting.

We emphasize that the present chapter only deals with an equilibrium/static wetting state
under no external forces, and therefore the contact angle hysteresis observed between advancing
and receding contact lines is not within the scope of our treatment. Interestingly, the original
paper by Cassie and Baxter [49] was in fact a model proposed for advancing and receding
contact angles, but Equation (6.1) was later shown to describe the equilibrium contact angle
instead [133]. The difference between the advancing/receding contact angles and the equilibrium
contact angle has been attributed to changes in the local geometry of the contact line [54, 91,
172, 226, 264, 311] and pinning/depinning forces [132, 145, 311].

6.2 Derivation of the Conditions for Equilibrium

Figure 6.1 illustrates the multiphase system of interest. We consider a simplified geometry
where the liquid phase is in the shape of a spherical cap and the solid–liquid interface is an
undistorted circle. Thus, the final equation derived in this chapter is only valid if the liquid shape
satisfies these constraints; physically, this occurs when the sizes of the surface heterogeneities
are much smaller than the drop (note that the sizes of heterogeneities have been enlarged in the
diagram for illustrative purposes). We also assume that there are no external forces, such as
pinning/depinning forces at the three-phase (solid–liquid–vapor) contact line or gravity. The
entire solid–liquid–vapor system is contained within a piston–cylinder device that interacts
with a surrounding reservoir at temperature T R and pressure PR. Energy can cross the system
boundary, and the volume of the system can vary. Following Gibbsian composite-system
thermodynamics, a system with an interface is modeled as two homogeneous bulk phases
separated by a dividing surface that has no volume but has all other thermodynamic quantities
(internal energy, entropy, and moles). The moles attributed to this dividing surface, i.e., “in
the interface”, are the “excess” moles that account for the gradient in molar concentration in
the bulk phases caused by the two phases being in contact, and depending on the location of
the interface, the number of excess moles may be positive, zero, or negative. Only component
1 is present in the liquid phase, the vapor phase, the vapor–liquid interface, the vapor–solid
interfaces, and the solid–liquid interfaces. There are multiple solid phases (n of them), each

98



CHAPTER 6. CASSIE–BAXTER WETTING

made up of a different component (components 2, 3, . . . , n+1).

(b) top view(a)

P
R 
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R

vapor

liquid

solid 2 4 ...22 3

1

1

(c) side view

θ
a

R

a

Figure 6.1: System definition and geometry for a drop in the Cassie–Baxter state. (a) Schematic
of a piston–cylinder device in a reservoir containing a liquid drop (with only component 1) in
equilibrium with its vapor and a multiphase solid surface (with each solid phase containing only
one of component 2, 3, . . . ). (b) Top view of the liquid drop shape. The dashed line shows the
plane across which the illustrated cross-section in (a) is taken. (c) Geometry of the liquid drop
in the shape of a spherical cap with contact angle θ , radius of curvature R, and radius of the
solid–liquid area a (adapted from Ref. [26]).

The equilibrium conditions of the illustrated system can be derived given that entropy (S) is
extremized at equilibrium. At an extremum, the differential of entropy (dS) is equal to zero

dSL +dSV +
n+1

∑
i=2

dSSi +dSLV +
n+1

∑
i=2

dSSiL +
n+1

∑
i=2

dSSiV +dSR = 0, (6.2)

where the superscripts L, V, and S denote the liquid, vapor, and solid phases, respectively, LV,
SiL, and SiV denote the liquid–vapor, solid–liquid, and solid–vapor interfaces, and R denotes
the reservoir.

Expressions for the differential entropy of each bulk phase can be written as [46, 108, 129]

dSL =
1

T L dUL +
PL

T L dV L −
µL

1
T L dNL

1 (6.3)

dSV =
1

T V dUV +
PV

T V dV V −
µV

1
T V dNV

1 (6.4)

dSSi =
1

T Si
dUSi +

PSi

T Si
dV Si −

µ
Si
i

T Si
dNSi

i , (6.5)

where U is internal energy, T is absolute temperature, P is pressure, V is volume, µ is chemical
potential, and N is number of moles.
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We use the Gibbs surface of tension approach for the curved liquid–vapor interface [108],
which means that component 1 is present in the interface and the surface tension is independent
of the radius of curvature. The expression for differential entropy of the liquid–vapor interface
is

dSLV =
1

T LV dULV − σLV

T LV dALV −
µLV

1
T LV dNLV

1 , (6.6)

where A is the interfacial area.
We use the Gibbs dividing surface approach for the flat solid–liquid interfaces [108], where

the dividing surface is placed such that one of the components is not present in the interfaces. In
this case, we choose that the solid-phase component i of solid Si is not present, leaving only
component 1 in the solid–liquid interfaces. The expression for the differential entropy of each
solid–liquid interface is

dSSiL =
1

T SiL
dUSiL − σSiL

T SiL
dASiL −

µ
SiL
1

T SiL
dNSiL

1 . (6.7)

Similar to the solid–liquid interfaces, we use the Gibbs dividing surface for the solid–vapor
interfaces so that the solid-phase component i is not present in the solid–vapor interfaces. The
expression for the differential entropy of each solid–vapor interface is

dSSiV =
1

T SiV
dUSiV − σSiV

T SiV
dASiV −

µ
SiV
1

T SiV
dNSiV

1 . (6.8)

The expression for the differential entropy of the reservoir is

dSR =
1

T R dUR +
PR

T R dV R −∑
j

µR
j

T R dNR
j , (6.9)

where the index j covers all components in the reservoir.
Equations (6.3)–(6.9) can be substituted into Equation (6.2), and further simplifications

to the resulting expression can be made once certain constraints are defined, including the
conservation of mass, the conservation of energy, and geometric constraints.

There is no mass transfer between the piston–cylinder device and the reservoir. The solid
phases are non-volatile, and component 1 does not solidify nor absorb/dissolve into the solid
phases. Therefore, the following mathematical relationships are true for the components in the
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reservoir, for component 1, and for the components in the solid phases, respectively,

dNR
j = 0 (6.10)

dNV
1 =−dNL

1 −dNLV
1 −

n+1

∑
i=2

dNSiL
1 −

n+1

∑
i=2

dNSiV
1 (6.11)

dNSi
i ̸=1 = 0. (6.12)

The law of conservation of energy can be applied to the piston–cylinder device within the
reservoir (together they make up an isolated system), giving the following relationship between
the internal energies of each phase, interface, and reservoir

dUV =−dUL −
n+1

∑
i=2

dUSi −dULV −
n+1

∑
i=2

dUSiL −
n+1

∑
i=2

dUSiV −dUR. (6.13)

The volume of the piston–cylinder device can change, but the total volume of the piston–
cylinder device and the reservoir together remains constant. Given that the solid phases are
incompressible (dV S

i = 0), the volumetric constraint is

dV V =−dV L −dV R. (6.14)

The sum of the solid–liquid interfacial area and the solid–vapor interfacial area is constant
for each solid phase, giving the following mathematical relationship for the differential changes
in interfacial area

dASiV =−dASiL. (6.15)

The volume of the spherical cap of liquid illustrated in Figure 6.1 can be written in terms of
the radius of curvature, R , and the contact angle, θ [26, 87, 220]

V L =
πR3

3

(︂
2−3cosθ + cos3

θ

)︂
. (6.16)

The area of the liquid–vapor curved interface is [26, 87, 220]

ALV = 2πR2 (1− cosθ) . (6.17)

The solid–liquid interface is in the shape of a circle, as illustrated in Figure 6.1(b) and
Figure 6.2(a), and the interfacial area between the liquid and each of the i solid phases can be
determined by integrating

ASiL =
∫︂ a

0
2πr λi(r)dr, (6.18)
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where λi(r) is the line fraction of solid i at radius r [∑n+1
i=2 λi(r) = 1] and a is the radius of

the solid–liquid contact area (a = Rsinθ ). The concept of the line fraction is illustrated in
Figure 6.2.

a

(a) top view

(b) angular view at r = a

(c) line fraction at r =	a

Figure 6.2: Definition of line fraction. (a) Top view of a liquid drop (represented by the
transparent blue circle) on a heterogeneous surface. Different shades of green represent different
solid phases. (b) Pattern of heterogeneities along the contact line as a function of the angular
coordinate. In (c), the pattern shown in (b) is rearranged so that like solids are grouped together.
From this rearrangement, the line fraction at a given radius can be defined.

Expressions for differential volume and area are needed for substitution into the equations
for differential entropy. The total derivatives of liquid-phase volume (Equation (6.16)) and
liquid–vapor interfacial area (Equation (6.17)) are

dV L = πR2
(︂

2−3cosθ + cos3
θ

)︂
dR+πR3

(︂
sinθ − cos2

θ sinθ

)︂
dθ (6.19)

dALV = 4πR(1− cosθ)dR+2πR2 sinθ dθ . (6.20)

The total derivative of each solid–liquid interfacial area (Equation (6.18)) is given by

dASiL =

(︄
∂ASiL

∂R

)︄
θ

dR+

(︄
∂ASiL

∂θ

)︄
R

dθ , (6.21)

where the partial derivatives of Equation (6.18) are determined by using the chain rule (or a
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simplified form of the Leibniz integral rule—see the next section for details) and are given by(︄
∂ASiL

∂R

)︄
θ

=
∂

∂R

(︄∫︂ Rsinθ

0
2πrλi (r)dr

)︄

=
[︁

λi|r=Rsinθ
(2πRsinθ)

]︁ ∂ (Rsinθ)

∂R
=
[︁

λi|r=Rsinθ
(2πRsinθ)

]︁
sinθ

(6.22)

(︄
∂ASiL

∂θ

)︄
R

=
∂

∂θ

(︄∫︂ Rsinθ

0
2πrλi (r)dr

)︄

=
[︁

λi|r=Rsinθ
(2πRsinθ)

]︁ ∂ (Rsinθ)

∂θ

=
[︁

λi|r=Rsinθ
(2πRsinθ)

]︁
Rcosθ .

(6.23)

Substituting Equations (6.22) and (6.23) into Equation (6.21) gives

dASiL =

[︃
λi|r=Rsinθ

(︂
2πRsin2

θ

)︂]︃
dR+

[︃
λi|r=Rsinθ

(︂
2πR2 sinθ cosθ

)︂]︃
dθ . (6.24)

To get the equilibrium conditions for the defined system, Equations (6.3)–(6.9) are substituted
into Equation (6.2), and Equations (6.10)–(6.15), (6.19), (6.20), and (6.24) are substituted into
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the resulting expression. Like terms are collected, giving the following equation(︃
1

T L − 1
T V

)︃
dUL +

n+1

∑
i=2

(︃
1

T Si
− 1

T V

)︃
dUSi +

(︃
1

T LV − 1
T V

)︃
dULV

+
n+1

∑
i=2

(︃
1

T SiL
− 1

T V

)︃
dUSiL +

n+1

∑
i=2

(︃
1

T SiV
− 1

T V

)︃
dUSiV

+

(︃
1

T R − 1
T V

)︃
dUR

+

(︄
PL

T L − PV

T V

)︄[︃
πR2

(︂
2−3cosθ + cos3

θ

)︂
dR

+πR3
(︂

sinθ − cos2
θ sinθ

)︂
dθ

]︃
+

(︄
PR

T R − PV

T V

)︄
dV R +

(︄
µV

1
T V −

µL
1

T L

)︄
dNL

1 +

(︄
µV

1
T V −

µLV
1

T LV

)︄
dNLV

1

+
n+1

∑
i=2

(︄
µV

1
T V −

µ
SiL
1

T SiL

)︄
dNSiL

1 +
n+1

∑
i=2

(︄
µV

1
T V −

µ
SiV
1

T SiV

)︄
dNSiV

1

− σLV

T LV

[︂
4πR(1− cosθ)dR+2πR2 sinθ dθ

]︂
+

n+1

∑
i=2

(︄
σSiV

T SiV
− σSiL

T SiL

)︄{︄[︃
λi|r=Rsinθ

(︂
2πRsin2

θ

)︂]︃
dR

+

[︃
λi|r=Rsinθ

(︂
2πR2 sinθ cosθ

)︂]︃
dθ

}︄
= 0.

(6.25)

For dS to equal zero for any arbitrary and independent values of the differentials, the
coefficients in front of each differential must be set to zero. Setting the coefficients in front of
the differential internal energies, differential moles of component 1, and differential reservoir
volume equal to zero yields the following equilibrium conditions

T L = T V = T Si = T LV = T SiL = T SiV = T R (6.26)

µ
V
1 = µ

L
1 = µ

LV
1 = µ

SiL
1 = µ

SiV
1 (6.27)

PR = PV. (6.28)

Two additional equilibrium conditions can be derived from the coefficients in front of dR and
dθ in Equation (6.25). Given the equality of temperatures (Equation (6.26)), the coefficients in

104



CHAPTER 6. CASSIE–BAXTER WETTING

front of dR in Equation (6.25) can be collected, set to zero, and simplified to

(︂
PL −PV

)︂[︃
πR2

(︂
2−3cosθ + cos3

θ

)︂]︃
−σ

LV [︁4πR(1− cosθ)
]︁

+
n+1

∑
i=2

(︂
σ

SiV −σ
SiL
)︂[︃

λi|r=Rsinθ

(︂
2πRsin2

θ

)︂]︃
= 0.

(6.29)

The coefficient in front of dθ in Equation (6.25) is set to zero and simplified to

(︂
PL −PV

)︂[︃
πR3

(︂
sinθ − cos2

θ sinθ

)︂]︃
−σ

LV
(︂

2πR2 sinθ

)︂
+

n+1

∑
i=2

(︂
σ

SiV −σ
SiL
)︂[︃

λi|r=Rsinθ

(︂
2πR2 sinθ cosθ

)︂]︃
= 0.

(6.30)

Rearranging Equation (6.30), substituting it into Equation (6.29), and simplifying yields

σ
LV cosθ =

n+1

∑
i=2

(︂
σ

SiV −σ
SiL
)︂

λi|r=Rsinθ
. (6.31)

A fourth equilibrium condition can be derived by substituting Equation (6.31) into Equa-
tion (6.29) and simplifying to get the Young–Laplace equation

PL −PV =
2σLV

R
. (6.32)

For a liquid drop on a solid surface composed of a single component i, the Young equa-
tion can be derived from Gibbsian composite system thermodynamics for a liquid drop on a
homogeneous substrate [87], and it can be written as

σ
SiV −σ

SiL = σ
LV cosθi. (6.33)

Substituting Equation (6.33) into Equation (6.31) gives the last equilibrium condition that
relates the contact angle of a liquid drop on a heterogeneous solid surface to the contact angles
of the liquid drop on each homogeneous solid phase

cosθ =
n+1

∑
i=2

λi|r=Rsinθ
cosθi. (6.34)

Equation (6.34) is the most general form of the CB equation that applies to any surface.
Equations (6.26), (6.27), (6.28), (6.32), and (6.34) are a complete set of equilibrium conditions
for a liquid drop on a heterogeneous solid surface located in a piston–cylinder device that
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interacts with an external reservoir. These equations are valid subject to the assumptions outlined
at the outset of our derivation. That is, they are valid when the contact line is undistorted, the
shape of the drop is a spherical cap, and there are no external forces present (gravity or pinning).

6.3 Application of the Leibniz Integral Rule

The Leibniz integral rule states [137]

∂

∂ t

∫︂ b(t)

a(t)
f (x, t)dx =

∫︂ b(t)

a(t)

∂ f (x, t)
∂ t

dx+ f (b(t), t)
∂b
∂ t

− f (a(t), t)
∂a
∂ t

. (6.35)

To find the partial derivative of Equation (6.18) with respect to R, we define

t = R

a(t) = 0

b(t) = b(R) = Rsinθ

x = r

f (x, t) = f (x) = f (r) = 2πrλi(r).

Substituting these relationships into Equation (6.35) yields:(︄
∂

∂R

∫︂ Rsinθ

0
2πrλi(r)dr

)︄
θ

=
∫︂ Rsinθ

0

∂ (2πrλi(r))
∂R

dr+2πRsinθ λi|r=Rsinθ

∂ (Rsinθ)

∂R

−2π(0) λi|r=0
∂ (0)
∂R

= 0+2πRsinθ λi|r=Rsinθ
(sinθ)−0.

(6.36)

To find the partial derivative with respect to θ , we define

t = θ

a(t) = 0

b(t) = b(θ) = Rsinθ ,
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and substituting these relationships into Equation (6.35) yields:(︄
∂

∂θ

∫︂ Rsinθ

0
2πrλi(r)dr

)︄
R

=
∫︂ Rsinθ

0

∂ (2πrλi(r)
∂θ

dr+2πRsinθ λi|r=Rsinθ

∂ (Rsinθ)

∂θ

−2π(0) λi|r=0
∂ (0)
∂θ

= 0+2πRsinθ λi|r=Rsinθ
(Rcosθ)−0.

(6.37)

We note that the Leibniz rule simplifies to an application of the chain rule (as used in the
previous section for Equations (6.22) and (6.23)) because the integrand is neither a function of
R nor θ .

6.4 Discussion

It is important to emphasize that Equation (6.34) contains a line fraction of each solid component
at the perimeter of the circular solid–liquid interfacial area instead of the area fraction in
Equation (6.1). This conclusion follows from Equation (6.18), which is one of the most
important steps in the derivation. In past derivations, the area fraction of solid i is assumed to be
a constant parameter independent of drop radius, which would mean that

ASiL = πa2 fi, (6.38)

where fi is the area fraction of solid phase i. When free energy minimization has been carried
out using this assumption, fi is treated as a constant parameter [28, 33, 248, 304], and this
yields the area-fraction Cassie–Baxter equation. In reality, however, the area fraction of solid
in contact with the liquid may change when the size of the drop changes, and this fact was
also noted by Hey and Kingston [120]. Based on Equation (6.18), Equation (6.34) then arises
directly from Equation (6.22) and (6.23)), which is the point in the derivation at which the total
derivative of each 2D solid–liquid interfacial area is mathematically transformed to contain a
1D line fraction evaluated at the contact line. This transformation physically means that only
interactions at the contact line determine the macroscopic contact angle and interactions over
the complete solid–liquid interfacial area are irrelevant. This physical insight is not immediately
obvious when the area fraction is assumed to be a constant parameter (Equation (6.38)) and the
area-fraction version of the Cassie–Baxter equation (Equation (6.1)) is derived.

In comparison to Equation (6.34), it can be seen that the original CB equation (Equa-
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tion (6.1)) is a special case for surfaces where the area fractions and line fractions are equal.
The equality of area and line fractions is satisfied when the line fraction is independent of r

(i.e., λi(r) = const = fi) or equivalently, when the area fraction is independent of r ( fi(r) =

const = fi). Equation (6.1) is valid when λi|r=Rsinθ
= fi, but this criterion is not necessarily

true for all surfaces and all drop sizes. Using the line fraction will yield the most accurate
prediction of contact angle, but depending on the spatial distribution of heterogeneities, the
local or global area fraction may also be used. As the area considered “local” to the contact
line approaches a thickness of zero, the local area fraction model proposed by McHale [185]
and Nosonovsky [206] limits to the line fraction model. As the area considered “local” to the
contact line increases in thickness, the local area fraction model limits to the global area fraction
model. In other words, the contact angle of a liquid on all surfaces can be described by using
the line fraction, on a subset of these surfaces by using the local area fraction, and a smaller
subset of these surfaces by using the global area fraction.

Figure 6.3 illustrates some common spatial distributions of solid-phase heterogeneities
and the applicability of each version of the CB model. The light and dark green areas are
two different solid phases; on each of the solid surfaces, a blue liquid drop is placed, and the
resulting solid–liquid contact areas are depicted by semi-transparent blue circles. The placement
of the drop is important in determining which CB model is valid. For surfaces (i) and (iii), the
placement of the drop ensures that the area fraction of the surface and the line fraction at the
contact line are equal and independent of liquid drop radius; therefore, all three versions of
the CB equation may be used. The validity of the CB equation for surfaces (i) and (iii) is only
limited by the scale of the heterogeneities, which must be small enough relative to the size of
the liquid drop (see Carmeliet et al. [48] for a detailed analysis of surface (iii)). Surface (ii)
has the same pattern of heterogeneities as surface (i), and surface (iv) has the same pattern as
surface (iii), but the location of the liquid droplet on these patterns differs. With the change in
droplet placement, the global area and local area fractions become dependent on drop radius.
For surface (v), which has a single heterogeneity in the center, the global area fraction may
not be used, but the local area fraction is still valid because it ignores the central heterogeneity.
Surface (vi) also has a heterogeneity in the center, but in the surrounding surface, the fraction
of each component in the solid–liquid interface changes as a function of drop radius, and the
local area fraction model can no longer be used. Surface (vii) is an example of a surface that is
“everywhere similar and isotropic” [185], but the local area fraction model cannot be used for
the same reason as surface (vi). Only the line-fraction CB equation, Equation (6.34), is valid
for describing the equilibrium contact angle of a drop on all surfaces where pinning/depinning
forces are negligible and the contact line is circular.
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Figure 6.3: Qualitative comparison of spatial distributions of heterogeneities on solid surfaces
(top view) and validity of each version of the Cassie–Baxter equation. The light green and
dark green areas are two different solid phases, and the semi-transparent blue circles are liquid
drops (the locations of the drops with respect to the patterns beneath are very important). The
sizes of heterogeneities have been enlarged in the diagram for the purposes of explanation. The
equations in this chapter are only valid when the sizes of heterogeneities are much smaller than
the drops. Distortions of the contact line shape, although expected for the heterogeneity size in
the illustrations, are neither depicted in this diagram nor included in the analysis. The global
area fraction label refers to Equation (6.1) where the total liquid–solid area is considered; the
local area fraction label refers to the case where only the liquid–solid area in the vicinity of the
contact line is considered (Refs. [185] and [206]); and the line fraction label refers to the use of
Equation (6.34).

6.5 Summary and Conclusions

Using fundamental Gibbsian composite-system thermodynamics, the equilibrium conditions
for a liquid drop on a smooth, multiphase solid surface were derived, two of which were
thermal equilibrium and chemical equilibrium. The well-known Young–Laplace equation was
found to be a condition for mechanical equilibrium. Finally, a line-fraction CB equation was
derived, in agreement with other rigorous theoretical approaches (statistical mechanics [275],
homogenization [314], and energy minimization [120]). These equilibrium conditions are
also valid for a rough surface where the liquid drop traps gas pockets in between the surface
protrusions (CB mode of wetting). For such a rough surface, there would be two line fractions:
the fraction of the liquid contact line that is in contact with the solid surface and the fraction that
is in contact with the gas phase, where the contact angle of a liquid–air system would be 180◦.
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The area-fraction CB equation is only valid for surfaces where the area fraction and line
fraction are equal (e.g., for a liquid droplet centered on a dartboard pattern (Figure 6.3(i)),
whereas the line-fraction CB equation may be used to describe the expected contact angle
regardless of the spatial distribution of heterogeneities. Further modifications could be made
to the derivation outlined herein to account for: (i) any distortions of the contact line that
modifies its shape from that of a perfect circle [165, 172, 311] (mathematical expressions for a
non-spherical liquid volume and non-circular interfacial areas would be needed) or (ii) pinning
forces that are encountered experimentally as the contact line advances or recedes across a
heterogeneous surface [145–147, 172] (e.g., as proposed in detail by Koch et al. [145] an
additional term, F/σLV, may be added to the right-hand side of Equation (6.34), where F is an
empirical “pinning” force per unit length of contact line). The success of Gibbsian composite-
system thermodynamics in describing wetting on heterogeneous surfaces was illustrated, and
applying such a framework to systems under more complicated constraints may uncover new
insights into their wetting behavior.
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Chapter 7

Gibbsian Thermodynamics of Wenzel Wetting

(Was Wenzel Wrong? Revisited)1

roughness at the

contact line 

Abstract

When a drop is in contact with a rough surface, it can rest on top of the rough features (the
Cassie–Baxter state) or it can completely fill the rough structure (the Wenzel state). The contact
angle (θ ) of a drop in these states is commonly predicted by the Cassie–Baxter or Wenzel
equations, respectively, but the accuracy of these equations has been debated. Previously, we
used fundamental Gibbsian composite-system thermodynamics to rigorously derive the Cassie–
Baxter equation, and we found that the contact line determined the macroscopic contact angle,
not the contact area that was originally proposed. Herein, to address the various perspectives
on the Wenzel equation, we apply Gibbsian composite-system thermodynamics to derive the
complete set of equilibrium conditions (thermal, chemical, and mechanical) for a liquid drop
resting on a homogeneous rough solid substrate in the Wenzel mode of wetting. Through
this derivation, we show that the roughness must be evaluated at the contact line, not over the
whole interfacial area, and we propose a new Wenzel equation for a surface with pillars of
equal height. We define a new dimensionless number H = h(1−λsolid)/R to quantify when the

1This chapter has been submitted for publication as N. Shardt and J. A. W. Elliott. “Gibbsian Thermodynamics of Wenzel
Wetting (Was Wenzel Wrong? Revisited)”. In performing this research, I had a valuable discussion with Dr. Orest Shardt on
the expression for solid–liquid interfacial area.
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drop’s radius of curvature (R) is large enough compared to the size of the pillars for the new
Wenzel equation to be simplified (h is pillar height; λsolid is the line fraction of the spherical
cap’s circumference that is on the pillars). Our new line-roughness Wenzel equation can be
simplified to cosθW = ρ cosθY when H ≪ 1, where ρ is the line roughness. We also perform a
thermodynamic free energy analysis to determine the stability of the equilibrium states that are
predicted by our new Wenzel equation.

7.1 Introduction

The shape that a liquid drop forms on a substrate depends on the properties of the liquid and
solid phases, as well as the geometry of the solid surface. If the solid surface is smooth, the
angle that the liquid–vapor interface of the drop forms with respect to the solid surface—the
contact angle—is described by the Young equation. If the solid surface is rough, the contact
angle may be predicted by the Cassie–Baxter equation [49] when air is trapped under the liquid
or by the Wenzel equation [303] when there is no air entrapment. Depending on the application,
surfaces can be designed so that a liquid preferentially wets in the Cassie–Baxter state or in the
Wenzel state. In dental implants, for example, rough surfaces are used to promote hydrophilicity
[231, 238], while food packaging should be hydrophobic so that food does not stick to it [296].
In other applications, the surface needs to be designed so that the Wenzel state is avoided, such
as for flow in rough microfluidic channels [95] and for the design of materials with anti-icing or
anti-corrosion properties (e.g., concrete [267]).

The Cassie–Baxter equation has been used to predict the contact angle of a liquid drop on (i)
rough, chemically homogeneous surfaces when air is present in the grooves of the rough pattern
and on (ii) smooth, chemically heterogeneous surfaces. The original Cassie–Baxter equation
[49] considers the area fraction of each heterogeneous portion in contact with the bottom of
a liquid drop, but the validity of the area-fraction Cassie–Baxter equation for all patterns of
surface heterogeneities has been questioned by experimentalists [90, 103]. A line-fraction
Cassie–Baxter equation has been derived rigorously via free energy minimization coupled with
(i) statistical mechanics (Swain and Lipowsky [275]), (ii) differential calculus (Hey and Kingston
[120]), and (iii) homogenization (Xu and Wang [314]). Previously, we used a Gibbsian entropy
extremization approach to derive the line-fraction Cassie–Baxter equation, and we showed
that the most general form of the equilibrium Cassie–Baxter equation uses line fractions at the
contact line in place of area fractions [252]. Area fractions can be used in the Cassie–Baxter
equation for certain surfaces where the line fraction at the contact line is independent of drop
radius. That is, the area fraction Cassie–Baxter equation is valid when the line fraction is equal
to the area fraction [252].
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The Wenzel equation has been used to predict the contact angle of a liquid on rough surfaces
when there is no air entrapment, and it is given by [303]

cosθW = rf cosθY, (7.1)

where θW is the predicted Wenzel contact angle, rf is the roughness factor of the solid surface
(ratio between the solid (S)–liquid (L) interfacial area and the projected area: ASL/Aprojected) and
θY is the contact angle of the liquid drop on a smooth surface made up of the same material (the
Young contact angle). As noted by Cassie and Baxter [49], the Wenzel equation is a limiting case
of the Cassie–Baxter equation for a single-component solid substrate where the Cassie fraction
is equal to the roughness factor. Although the validity of the Wenzel equation has been under
question in the same way as the Cassie–Baxter equation (e.g., see Gao and McCarthy [103] and
the extensive review by Erbil [82] on this topic), there are fewer rigorous theoretical analyses
of Wenzel wetting. Ever since the early studies of wetting on rough surfaces, researchers have
noted the importance of drop volume for determining how close the measured contact angle is to
the one predicted by the Wenzel equation (Equation (7.1)) [22, 128, 182]. Marmur and Bittoun
[181] suggested that insufficiently large drop volumes were studied by Gao and McCarthy [103],
and this was the reason why their results disagreed with Equation (7.1).

The Wenzel equation (Equation (7.1)) has commonly been derived using an energy mini-
mization approach [111, 133, 304], but in these derivations, it is assumed that every differential
change in projected area yields a proportional change in the actual solid–liquid interfacial area
(dASL = rf dAprojected). Such an assumption may not always be satisfied by a real surface, such
as one with a central defect [103]. One approach that addresses experimentalists’ concerns about
the area roughness proposes the use of a local area roughness factor evaluated in the vicinity of
the contact line [32, 185, 206, 248], but such an approach still assumes that dASL = rf dAprojected,
and this assumption may not necessarily be valid even in the region close to the contact line. The
last variant of the Wenzel equation is one that uses a roughness determined at the three-phase
contact line. Using mathematical homogenization, Xu and Wang [312, 313] showed that the
Wenzel equation is valid solely for certain patterns of roughness that satisfy a specific mathe-
matical constraint. Xu analyzed a surface with a roughness that is orthogonal to the contact line,
and instead of an area ratio, suggested that the roughness factor should be a ratio of line lengths:
the length of the rough contact line divided by the length of the projected smooth contact
line [312]. There are thus three versions of the Wenzel equation (Equation (7.1)): (i) where
rf = ASL/Aprojected is evaluated over the whole base of the drop; (ii) where rf = ASL/Aprojected is
evaluated in a region close to the contact line, and (iii) where rf = ℓSLV/ℓprojected is evaluated at
the contact line.
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To clarify the various perspectives that persist in the literature on the Wenzel equation, we
propose the use of Gibbsian composite-system thermodynamics [46, 108]. This framework of
thermodynamics has previously been used to examine the behavior of fluids in contact with
smooth, homogeneous surfaces, such as: bubble formation [298]; contact angle in the presence
of gravity [299]; capillary bridges [79, 323]; fluid behavior on rigid and nonrigid substrates
[87]; the behavior of confined liquids [323, 324]; and interfacial nanobubbles [325]. In addition,
Gibbsian thermodynamics has been used to calculate the phase diagrams of vapor–liquid [253,
254], and solid–liquid [171] systems with interfacial curvature. In Chapter 6, we applied
Gibbsian thermodynamics to Cassie–Baxter wetting, arriving at the line-fraction Cassie–Baxter
equation [252].

Herein, we apply the Gibbsian framework to derive all the equilibrium conditions for a
liquid drop in equilibrium with its vapor resting in the Wenzel state on a solid, rough, chemically
homogeneous solid with pillars. Through our Gibbsian derivation, we find that the roughness
ratio must be evaluated at the contact line, and we define an expression for this ratio. This
roughness ratio is influenced by two factors: (i) how many pillars heights are at the three-phase
contact line and (ii) the orientation of the solid–liquid interface at the pillar heights with respect
to the contact line. We also define a new dimensionless number to quantify how small the
surface roughness must be (or how large the liquid drop must be) for a simplified form of
the line-roughness Wenzel equation to be valid. For many surfaces, the line-roughness will
be a function of drop radius, and the area-roughness ratio should not be used to predict the
equilibrium contact angle when Wenzel wetting is observed.

We note that the following analysis only considers the equilibrium state of a liquid drop on
a surface, and we do not consider the hysteresis between advancing and receding contact angles.
Researchers have proposed that this hysteresis can be due to the geometry of the surface [264],
due to pinning forces that distort the local contact angle [91, 102, 132], or a combination of both
and perhaps other sources [145, 146, 325].

7.2 Derivation of the Equilibrium Conditions for Wenzel

Wetting

The first step for deriving equilibrium conditions is to explicitly define the system—the geometry,
phases present, components in each phase, and how the system interacts with the surrounding
reservoir. Figure 7.1 illustrates an example of the system of interest: a liquid drop resting
on a surface in the Wenzel mode of wetting. Component 1 is present in the bulk liquid
and vapor phases as well as in the liquid–vapor interface (according to the Gibbs surface of
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tension approach for a curved interface [108]), solid–vapor interface, and solid–liquid interface.
Component 2 is only present in the solid phase, and it is not present at the solid–vapor or
solid–liquid interfaces according to the Gibbs dividing surface approach [108, 129]. The solid–
liquid–vapor system is contained in a piston–cylinder device that imposes the temperature and
pressure of a surrounding reservoir on the system, and there is no mass transfer into or out of
the piston–cylinder device.

a
R

h

(b) top view(a)

P
R 

T
R

vapor

liquid

1

1

(c) side view

solid 2

θ

a

Figure 7.1: Schematic of a liquid drop in equilibrium with its vapor on a rough solid phase in
the Wenzel state of wetting. (a) The three-phase system is contained in a piston–cylinder device
surrounded by a reservoir with a defined pressure (PR) and temperature (T R). (b) A top view of
the liquid drop, where the black circles outline the tops of each pillar and a is the radius of the
spherical cap’s base. (c) A side view of the liquid phase defining the geometry of the drop and
the rough texture, where θ is the contact angle, h is the height of the pillars, and R is the radius
of curvature of the spherical cap. The extent of the roughness is exaggerated in the illustration.

The second step for deriving equilibrium conditions is to extremize entropy subject to
physical constraints. At equilibrium, the entropy (S) of the system is at a maximum, and this
condition is expressed mathematically as:

dSL +dSV +dSS +dSLV +dSSL +dSSV +dSR = 0, (7.2)

where the superscripts L, V, and S denote the bulk liquid, vapor, and solid phases, respec-
tively, the superscripts LV, SL, and SV denote the liquid–vapor, solid–liquid, and solid–vapor
interfaces, respectively, and R denotes the reservoir.

For bulk phases, differential changes in entropy are related to differential changes in internal
energy (U), volume (V ), and number of moles (N). For the liquid and vapor phases that contain
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only component 1, the following equations apply, respectively:

dSL =
1

T L dUL +
PL

T L dV L −
µL

1
T L dNL

1 (7.3)

dSV =
1

T V dUV +
PV

T V dV V −
µV

1
T V dNV

1 , (7.4)

where T is absolute temperature, P is pressure, and µ1 is the chemical potential of component 1.
For the solid phase containing component 2, the following is true:

dSS =
1

T S dUS +
PS

T S dV S −
µS

2
T S dNS

2 . (7.5)

Differential changes in the reservoir’s entropy are described by

dSR =
1

T R dUR +
PR

T R dV R −∑
j

µR
j

T R dNR
j , (7.6)

where the summation index j covers all components present in the reservoir.
For the interfaces present in the system, differential changes in entropy are related to internal

energy and mole number as they are for bulk phases, but the term containing differential volume
is replaced by one with differential area (A). For each of the liquid–vapor, solid–liquid, and
solid–vapor interfaces, differential changes in entropy are governed by the following equations,
respectively:

dSLV =
1

T LV dULV − σLV

T LV dALV −
µLV

1
T LV dNLV

1 (7.7)

dSSL =
1

T SL dUSL − σSL

T SL dASL −
µSL

1
T SL dNSL

1 (7.8)

dSSV =
1

T SV dUSV − σSV

T SV dASV −
µSV

1
T SV dNSV

1 , (7.9)

where σ is interfacial tension.

7.2.1 System Constraints

Not all differential quantities in Equations (7.3)–(7.9) vary independently of each other, while
other variables never vary. The constraints on the system are defined as follows. The numbers
of moles of each component in the reservoir do not change:

dNR
j = 0. (7.10)
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The conservation of mass states that the total number of moles of component 1 must be constant,
giving the following relationship between the moles present in the vapor phase, liquid phase,
liquid–vapor interface, solid–liquid interface, and solid–vapor interface:

dNV
1 =−dNL

1 −dNLV
1 −dNSL

1 −dNSV
1 . (7.11)

Component 2 in the solid phase is non-volatile:

dNS
2 = 0. (7.12)

The conservation of energy is applied to the system and reservoir together:

dUV =−dUL −dUS −dULV −dUSL −dUSV −dUR. (7.13)

The solid phase is considered to be incompressible (dV S = 0), so that the volumetric constraint
on the system is:

dV V =−dV L −dV R. (7.14)

Any increase/decrease in the solid–vapor interfacial area yields a corresponding decrease/increase
in the solid–liquid interfacial area:

dASV =−dASL. (7.15)

To determine further expressions for the differential quantities of volume and area, we first
derive equations for liquid volume and all interfacial areas. The volume of the liquid phase is
split into two parts: the volume of the spherical cap and the volume of a partially-filled cylinder
within the surface asperities, as illustrated in Figure 7.2. The total volume can be calculated by:

V L =
πR3

3

(︂
2−3cosθ + cos3

θ

)︂
+h

∫︂ a

0
2πrλliquid (r)dr, (7.16)

where a is the radius of the spherical cap’s base (a = Rsinθ where R is the radius of curvature of
the spherical cap) and λliquid pertains to the liquid cylinder within the surface asperities, defined
as the fraction of the spherical cap’s circumference at radius r that is liquid (λliquid +λsolid = 1;
see Figure 7.3(c)). The first term of Equation (7.16) is the volume of the spherical cap [26, 87,
220], and the second term is the volume of the partially-filled cylinder.

The surface area of the liquid–vapor interface is equal to the top of the spherical cap along
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spherical cap

part of a cylinder

+

h

Ra

θ

a

Figure 7.2: Illustration of a liquid drop in the Wenzel state and how its volume is divided into
two parts: a spherical cap and a cylinder of liquid with holes missing (the holes are filled by the
solid pillars).

with a contribution from the side of the partially-filled cylinder:

ALV = 2πR2 (1− cosθ)+h
(︂

2πa λliquid
⃓⃓
r=a

)︂
. (7.17)

The following expression can be used to calculate the solid–liquid interfacial area

ASL = πa2 +h

∫︂ a

0

⎡⎣ζ (r)

∑
i=1

dsi

dr

⎤⎦dr, (7.18)

where the first term is the projected area of the liquid drop’s bottom surface. The second term
contains an integral over all radii that determines the total perimeter of all pillars, and when
this perimeter is multiplied by the height of each pillar, the additional solid–liquid area from
contact with the sides of the cylindrical pillars is obtained. In the second term, ζ (r) is the
integral number of pillar sides with height h that are located along the contact line at a radius
of r. Each pillar side has a unique orientation with respect to the drop radius that is captured
by the value of dsi/dr, where dsi is the differential arc length on the side of the pillar at the ith
intersection (described in more geometric detail later in this section). Defining mi (r) = dsi/dr

and m(r) = ∑
ζ (r)
i=1 mi (r) yields

ASL = πa2 +h
∫︂ a

0
m(r)dr. (7.19)

To illustrate the physical meanings of λliquid and ζ , we show a sample surface with pillars of
equal height in Figure 7.3. For a liquid drop on such a surface in the Wenzel state with r = a,
there are 14 intersections with pillar edges at a radius of a; that is, ζ (a) = 14 (Figure 7.3(b)).
In Figure 7.3(c), we show the line fraction of liquid at the base of the spherical cap along the

118



CHAPTER 7. WENZEL WETTING

radius r = a. Each of the 14 intersections in Figure 7.3 has a corresponding orientation factor
mi, an expression for which can be derived geometrically.

×

×

×

×

×
×

×
×

×

×

×
×
× ×

a

(a) top view

× ×× ×× ×× ×× ×× ×× ×

(b) angular view at r = a

(c) line fraction at r =	a

Figure 7.3: An example of a surface with pillars and how to determine the values of ζ and
λliquid. (a) A top view of a liquid drop on the surface; (b) a profile of the rough surface features
along the contact line (at r = a = Rsinθ ) as a function of the angular coordinate; and (c) a
rearrangement of the pillars in (b) for the calculation of the defined line fraction of liquid at
the spherical cap’s circumference, where LL is the length of the contact line that is liquid at
the spherical cap’s base and LS is the length of the contact line that is touching the tops of the
pillars.

As illustrated in Figure 7.4(a), for a given intersection between the edge of a liquid drop
and the edge of a pillar, two characteristic angles for that intersection can be defined. Using the
polar coordinate system, the intersection point is on the edge of the liquid drop at an angle of
ϕi relative to the x-axis. When a tangent line to the solid is drawn at the intersection point, it
makes an angle of ψi relative to the x-axis. In Figure 7.4(b), a differential increase in r is shown,
yielding a corresponding increase in solid–liquid arc length of dsi. A relationship between these
differential quantities can be derived based on the angle between them, which is equal to ψi−ϕi

(Figure 7.4(c)). As shown in Figure 7.4(d), the orientation factor is given by the following
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expression

mi (r) =
dsi

dr
=

1
cos(ψi −ϕi)

. (7.20)

By examining Equation (7.20), we see that dsi/dr = 1 when ψi = ϕi, which is when the tangent
line at pillar side i goes through the origin and is coincident with the ray going from the origin
to the intersection point.

(a) tangent line to solid (b) differential arc length

(c) angle difference (d) orientation factor

Figure 7.4: Derivation of the orientation factor mi for each intersection with the side of a pillar.
(a) An example of an intersection between the edge of a liquid drop (shaded in blue with center
at the origin) and the edge of a pillar (circle outlined in green). A ray from the origin to the
intersection point makes an angle of ϕi with respect to the x-axis, and the line tangent to the
solid pillar makes an angle of ψi. (b) The result of a differential increase in radius (dr), yielding
a corresponding dsi, where s is the perimeter of the pillar. (c) How to obtain the angle between
dsi and dr. (d) Definition of the orientation factor mi.

Having found equations for the volume and interfacial areas, we now find the total derivatives
of these equations. The total derivative of any function f dependent on R and θ is given by

d f =
(︃

∂ f
∂R

)︃
θ

dR+

(︃
∂ f
∂θ

)︃
R

dθ . (7.21)

The partial derivatives of Equation (7.16) for the liquid volume are, using the Leibniz integral
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rule [137, 252]:

∂

∂R

[︄
πR3

3

(︂
2−3cosθ + cos3

θ

)︂
+h

∫︂ Rsinθ

0
2πrλliquid (r)dr

]︄

= πR2(2−3cosθ + cos3
θ)+2πh(Rsinθ)

(︂
λliquid

⃓⃓
r=Rsinθ

)︂
∂ (Rsinθ)

∂R

= πR2(2−3cosθ + cos3
θ)+2πh(Rsin2

θ)
(︂

λliquid
⃓⃓
r=Rsinθ

)︂ (7.22)

∂

∂θ

[︄
πR3

3

(︂
2−3cosθ + cos3

θ

)︂
+h

∫︂ Rsinθ

0
2πrλliquid (r)dr

]︄

= πR3
(︂

sinθ − cos2
θ sinθ

)︂
+2πh(Rsinθ)

(︂
λliquid

⃓⃓
r=Rsinθ

)︂
∂ (Rsinθ)

∂θ

= πR3
(︂

sinθ − cos2
θ sinθ

)︂
+2πh

(︂
R2 sinθ cosθ

)︂(︂
λliquid

⃓⃓
r=Rsinθ

)︂
.

(7.23)

Substituting Equations (7.22) and (7.23) into Equation (7.21), the total derivative of liquid
volume (Equation (7.16)) is

dV L =

[︃
πR2(2−3cosθ + cos3

θ)+2πh(Rsin2
θ)
(︂

λliquid
⃓⃓
r=Rsinθ

)︂]︃
dR

+

[︃
πR3(sinθ − cos2

θ sinθ)+2πh
(︂

R2 sinθ cosθ

)︂(︂
λliquid

⃓⃓
r=Rsinθ

)︂]︃
dθ .

(7.24)

The partial derivatives of the liquid–vapor interfacial area (Equation (7.17)) are:

∂

∂R

[︂
2πR2 (1− cosθ)+2πRhsinθ λliquid

⃓⃓
r=Rsinθ

]︂
= 4πR(1− cosθ)+2πRhsinθ

∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

∂a
∂R

+2πhsinθ λliquid
⃓⃓
r=Rsinθ

(7.25)

∂

∂θ

[︂
2πR2 (1− cosθ)+2πRhsinθ λliquid

⃓⃓
r=Rsinθ

]︂
= 2πR2 (sinθ)+2πRhsinθ

∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

∂a
∂θ

+2πRhcosθ λliquid
⃓⃓
r=Rsinθ

,

(7.26)
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and the total derivative of Equation (7.17) is

dALV =

[︄
4πR(1− cosθ)+2πRhsin2

θ
∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

+2πhsinθ λliquid
⃓⃓
r=Rsinθ

]︄
dR

+

[︄
2πR2(sinθ)+2πR2hsinθ cosθ

∂ (λliquid)

∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

+2πRhcosθ λliquid
⃓⃓
r=Rsinθ

]︄
dθ .

(7.27)

The partial derivatives of the solid–liquid interfacial area (Equation (7.19)) are

∂

∂R

[︄
π(Rsinθ)2 +h

∫︂ Rsinθ

0
m(r)dr

]︄

= 2πRsin2
θ +h

(︁
m|r=Rsinθ

)︁ ∂ (Rsinθ)

∂R
= 2πRsin2

θ +h
(︁

m|r=Rsinθ

)︁
sinθ

(7.28)

∂

∂θ

[︄
π(Rsinθ)2 +h

∫︂ Rsinθ

0
m(r)dr

]︄

= 2πR2 sinθ cosθ +h
(︁

m|r=Rsinθ

)︁ ∂ (Rsinθ)

∂θ

= 2πR2 sinθ cosθ +h
(︁

m|r=Rsinθ

)︁
Rcosθ ,

(7.29)

and the total derivative of Equation (7.19) is

dASL =
[︂
2πRsin2

θ +h
(︁

m|r=Rsinθ

)︁
sinθ

]︂
dR

+
[︂
2πR2 sinθ cosθ +h

(︁
m|r=Rsinθ

)︁
Rcosθ

]︂
dθ .

(7.30)

7.2.2 Equilibrium Conditions

Equations (7.3)–(7.9) are substituted into Equation (7.2), and the constraints given by Equations
(7.10)–(7.15), (7.24), (7.27), and (7.30) are substituted into the resulting expression to give,
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after collection of some like terms:(︃
1

T L − 1
T V

)︃
dUL +

(︃
1

T S − 1
T V

)︃
dUS +

(︃
1

T LV − 1
T V

)︃
dULV

+

(︃
1

T SL − 1
T V

)︃
dUSL +

(︃
1

T SV − 1
T V

)︃
dUSV +

(︃
1

T R − 1
T V

)︃
dUR

+

(︄
PL

T L − PV

T V

)︄{︄[︃
πR2(2−3cosθ + cos3

θ)+2πh(Rsin2
θ)
(︂

λliquid
⃓⃓
r=Rsinθ

)︂]︃
dR

+

[︃
πR3(sinθ − cos2

θ sinθ)+2πh(R2 sinθ cosθ)
(︂

λliquid
⃓⃓
r=Rsinθ

)︂]︃
dθ

}︄

+

(︄
PR

T R − PV

T V

)︄
dV R +

(︄
µV

1
T V −

µL
1

T L

)︄
dNL

1 +

(︄
µV

1
T V −

µLV
1

T LV

)︄
dNLV

1

+

(︄
µV

1
T V −

µSL
1

T SL

)︄
dNSL

1 +

(︄
µV

1
T V −

µSV
1

T SV

)︄
dNSV

1

− σLV

T LV

{︄[︄
4πR(1− cosθ)+2πRhsin2

θ
∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

+2πhsinθ λliquid
⃓⃓
r=Rsinθ

]︄
dR

+

[︄
2πR2 (sinθ)+2πR2hsinθ cosθ

∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

+2πRhcosθ λliquid
⃓⃓
r=Rsinθ

]︄
dθ

}︄

+

(︄
σSV

T SV − σSL

T SL

)︄{︃[︂
2πRsin2

θ +h
(︁

m|r=Rsinθ

)︁
sinθ

]︂
dR

+
[︂
2πR2 sinθ cosθ +h

(︁
m|r=Rsinθ

)︁
Rcosθ

]︂
dθ

}︃
= 0.

(7.31)

To solve Equation (7.31) for any arbitrary values of the differential quantities, each coefficient
in front of the differentials (made independent by use of all constraints) must be set to zero.
Setting all coefficients of differential internal energies, moles of component 1, and reservoir
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volume to zero yields the following three equilibrium conditions:

T L = T V = T S = T LV = T SL = T SV = T R (7.32)

µ
V
1 = µ

L
1 = µ

LV
1 = µ

SL
1 = µ

SV
1 (7.33)

PR = PV. (7.34)

Using the equality of temperatures (Equation (7.32)), the coefficients in front of dR in Equation
(7.31) are collected and set to zero, giving

(︂
PL −PV

)︂[︃
πR2

(︂
2−3cosθ + cos3

θ

)︂
+2πh

(︂
Rsin2

θ

)︂(︂
λliquid

⃓⃓
r=Rsinθ

)︂]︃
−σ

LV

[︄
4πR(1− cosθ)+2πRhsin2

θ
∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

+2πhsinθ λliquid
⃓⃓
r=Rsinθ

]︄
+
(︂

σ
SV −σ

SL
)︂(︂

2πRsin2
θ +h

(︁
m|r=Rsinθ

)︁
sinθ

)︂
= 0.

(7.35)

The coefficients in front of dθ are collected and set to zero, giving

(︂
PL −PV

)︂[︃
πR3

(︂
sinθ − cos2

θ sinθ

)︂
+2πh

(︂
R2 sinθ cosθ

)︂(︂
λliquid

⃓⃓
r=Rsinθ

)︂]︃
−σ

LV

[︄
2πR2 (sinθ)+2πR2hsinθ cosθ

∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

+2πRhcosθ λliquid
⃓⃓
r=Rsinθ

]︄
+
(︂

σ
SV −σ

SL
)︂(︂

2πR2 sinθ cosθ +h
(︁

m|r=Rsinθ

)︁
Rcosθ

)︂
= 0.

(7.36)

Equation (7.35) can be rearranged to form an expression for
(︂

PL −PV
)︂

and substituted
into Equation (7.36) to give the fourth equilibrium condition (when a common factor of
sinθ (1− cosθ)2 is removed from every term of the equation):

cosθ −
2h λliquid

⃓⃓
r=Rsinθ

R
+

h λliquid
⃓⃓
r=Rsinθ

Rsinθ
+h

∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

=

(︄
1+

h
(︁

m|r=Rsinθ

)︁
2πRsinθ

)︄ (︂
σSV −σSL

)︂
σLV .

(7.37)
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Substituting Equation (7.37) into Equation (7.35) and simplifying gives the Young–Laplace
equation as the last equilibrium condition:

PL −PV =
2σLV

R
. (7.38)

The Young equation for the contact angle of a liquid drop on a smooth surface can be derived by
minimizing energy [26, 304] or maximizing entropy subject to constraints [87], and it is given
by

σ
SV −σ

SL = σ
LV cosθY . (7.39)

The Young equation (Equation (7.39)) can be substituted into Equation (7.37) to give a simplified
form of the equilibrium condition for contact angle:

cosθ −
2h λliquid

⃓⃓
r=Rsinθ

R
+

h λliquid
⃓⃓
r=Rsinθ

Rsinθ
+h

∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

=

(︄
1+

h
(︁

m|r=Rsinθ

)︁
2πRsinθ

)︄
cosθY .

(7.40)

Defining a line roughness ρ at the contact line as

ρ|r=Rsinθ
= 1+

h
(︁

m|r=Rsinθ

)︁
2πRsinθ

(7.41)

further simplifies Equation (7.40) to

cosθ −
2h λliquid

⃓⃓
r=Rsinθ

R
+

h λliquid
⃓⃓
r=Rsinθ

Rsinθ
+h

∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

= ρ|r=Rsinθ
cosθY,

(7.42)
which is our newly-derived version of the Wenzel equation.

7.3 Discussion of Equilibrium Conditions

Comparing our new equation (Equation (7.42)) to the area-roughness Wenzel equation (Equation
(7.1)) and the orthogonal line-roughness Wenzel equation derived by Xu [312], we note two
differences: (i) three additional terms on the left-hand side of Equation (7.42) and (ii) the
prefactor to cosθY. In the sections that follow, we investigate the additional terms, perform a
thermodynamic free energy analysis, and discuss what conditions must be met for the prefactor
to limit to the orthogonal line-roughness and area-roughness Wenzel equations.
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7.3.1 On the Magnitudes of the Terms in Equation (7.42)

What are the magnitudes of the three additional terms on the left-hand side of Equation (7.42),
and under what conditions are they, if ever, negligible? By negligible, we mean that these terms
should be orders of magnitude smaller than cosθ . We first isolate the three terms of interest in
Equation (7.42):

k =−
2h λliquid

⃓⃓
r=Rsinθ

R
+

h λliquid
⃓⃓
r=Rsinθ

Rsinθ
+h

∂
(︁
λliquid

)︁
∂a

⃓⃓⃓⃓
⃓
r=Rsinθ

. (7.43)

The first term in Equation (7.43) arises from the differential of liquid volume within the pillars
(Equation (7.24)), while the last two terms originate from the differential of liquid–vapor
interfacial area that is between the pillars at the contact line (Equation (7.27)). Therefore, the
contribution of these terms becomes negligible when the volume of liquid between the pillars is
insignificant compared to the volume of liquid that forms the spherical cap. Next, we develop
a quantitative criterion to describe how much smaller the liquid volume and area between the
pillars need to be.

For the purpose of further exploring when these terms can or cannot be neglected, if we
assume that a surface has a constant liquid line fraction (∂λ liquid/∂a

⃓⃓
r=Rsinθ

= 0), Equation
(7.43) simplifies to, after factoring,

k =
h λliquid

⃓⃓
r=Rsinθ

R

(︃
1

sinθ
−2
)︃
. (7.44)

The factor 1
sinθ

−2 varies from −1 at θ = 90◦ to approaching infinity as θ approaches 0◦ or
180◦. Thus, by inspection, a ratio hλliquid/R ≪ 1 is required for k to be considered negligible,
and how much less than unity this ratio has to be is dependent on contact angle. We define this
dimensionless quantity as H and use the relationship between λliquid and the solid line fraction
at the contact line (λsolid, the line fraction of the spherical cap’s circumference that is on the
pillars) to replace the liquid fraction (λliquid

⃓⃓
r=Rsinθ

= 1−λsolid) to give the following criterion:

H =
h λliquid

⃓⃓
r=Rsinθ

R
=

h(1−λsolid)

R
≪ 1. (7.45)

Using this definition of H, assuming λliquid is constant, and substituting Equation (7.44) into
Equation (7.42) yields

cosθ +H
(︃

1
sinθ

−2
)︃
= ρ cosθY, (7.46)

where ρ is evaluated at the three-phase contact line (r = Rsinθ ). To determine the effect of H
on the equilibrium contact angle, we solve Equation (7.46) for cosθ at various values of H for
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all ρ cosθY between −1 and 1.
Figure 7.5 illustrates the contact angles calculated using Equation (7.46) for H values ranging

over several orders of magnitude, showing that the number and magnitude of equilibrium contact
angles varies with H and ρ cosθY. From Figure 7.5(a), it can be seen that for H > 0.5, there
are two equilibrium contact angles for a given value of ρ cosθY for all ρ cosθY that satisfy
−1 ≤ ρ cosθY ≤ 1. For H = 0.5, there is one equilibrium contact angle for ρ cosθY = −1,
and there are two equilibrium contact angles for −1 < ρ cosθY ≤ 1. For H between 0.5 and
0.144, there are two equilibrium contact angles for a given value of ρ cosθY when ρ cosθY is
between some threshold value and 1, one equilibrium contact angle at the threshold value, and
no equilibrium contact angles for ρ cosθY between −1 and the threshold value. The size of
the no-equilibrium-contact-angle region grows as H decreases below 0.5, reaching a maximum
size at H = 0.144 where there is no equilibrium contact angle for −1 ≤ ρ cosθY < −

√
3/2

(equivalently, for acos(ρ cosθY) between 150◦ and 180◦, as seen in Figure 7.5(b)). When H
decreases below 0.144, there continues to be two equilibrium contact angles for a given value
of ρ cosθY when ρ cosθY is between some threshold value and 1, one equilibrium contact
angle at the threshold value, and no equilibrium contact angles for ρ cosθY between −1 and
the threshold value. However, for H < 0.144, the size of the no-equilibrium region shrinks as
H approaches 0 (vs. when H decreased from 0.5 to 0.144, the no-equilibrium region grew).
Overall, the number of equilibrium contact angles for a given value of ρ cosθY depends on both
H and ρ cosθY. For a given ρ cosθY, what effect does H have on the value(s) of the equilibrium
contact angle(s)? When there are two equilibrium contact angles at a given ρ cosθY, the smaller
equilibrium contact angle approaches the 45◦ line in Figure 7.5 (where cosθ = ρ cosθY) as H
approaches 0. At the same time, the larger equilibrium contact angle approaches 180◦ when H
decreases past 0.144 and approaches 0.

Often in applications, the dimensionless variable H is much smaller than 1 (e.g., for a
drop with a radius of curvature R = 2.5 mm on a surface with λsolid = 0.5 and h = 5 µm,
h(1−λsolid)/R = 0.001). When H ≪ 1 and ρ cosθY is not near −1 or 1, Equation (7.46)
simplifies to

cosθ = ρ cosθY. (7.47)

For a liquid drop in the Wenzel state, Equation (7.47) predicts that a hydrophobic smooth surface
(θY > 90◦) will become more hydrophobic when it is rough (θ > θY), and a hydrophilic smooth
surface (θY < 90◦) will become more hydrophilic when it is rough (θ < θY). This enhancement
of hydrophobicity/hydrophilicity is also predicted by the area-roughness Wenzel equation [303],
but Equation (7.47) reveals that only the roughness at the three-phase contact line affects the
macroscopic contact angle. Therefore, for experimental systems where the line roughness varies
significantly over the solid–liquid contact area (e.g., for a drop on a surface with a central island
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Figure 7.5: Effect of the dimensionless variable H = h(1−λsolid)/R on (a) the cosine of the
contact angle as a function of ρ cosθY and (b) the contact angle as a function of acos(ρ cosθY)
as determined by Equation (7.46), where ρ is line roughness and θY is the Young contact angle.
From panel (b), it can be seen that where there are two equilibrium contact angles for a given
value of ρ cosθY, as H decreases below 0.144, the smaller equilibrium contact angle that is a
solution to Equation (7.46) approaches the 45° line where θ = acos(ρ cosθY). Simultaneously,
the larger equilibrium contact angle approaches 180◦ as H approaches zero. This trend can also
be seen in panel (a), where the cosine of the smaller equilibrium contact angle approaches the 45°
line where cosθ = ρ cosθY and the cosine of the larger equilibrium contact angle approaches
−1.

of one material surrounded by rough features [103]), the area-roughness Wenzel equation will
be incorrect. In fact, if a drop is in contact with a rough surface that has varying degrees of
roughness at the contact line as the drop spreads (e.g., a surface with pillars arranged in a square
or hexagonal array), the equilibrium contact angle will change according to the local roughness
at the three-phase line.

7.3.2 Thermodynamic Free Energy Analysis

To understand the thermodynamic stability of the equilibrium contact angles obtained from
Equation (7.46), we perform a free energy analysis next. The free energy (B) of a liquid drop
in equilibrium with its vapor and in contact with an incompressible solid surface where the
temperature and vapor-phase pressure are imposed by a reservoir is [79, 87, 323]

B =
(︂

PV −PL
)︂

V L −
(︂

σ
SV −σ

SL
)︂

ASL +σ
LVALV +∑

j
µ

jN j. (7.48)
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For calculating the free energy of a given equilibrium state, we choose a reference equilibrium
state with free energy B0 where there is no liquid phase (V L = 0, ALV = 0, and ASL = 0) to give

B0 = ∑
j

µ
jN j. (7.49)

Because both the state of interest and the reference state are equilibrium states, Equation (7.33)
for chemical potential applies, so that subtracting Equation (7.49) from (7.48) yields:

B−B0 =
(︂

PV −PL
)︂

V L −
(︂

σ
SV −σ

SL
)︂

ASL +σ
LVALV. (7.50)

Because we are interested in the free energy of equilibrium states, the equilibrium conditions
dictated by Equations (7.38) and (7.46) apply to each equilibrium state. At every equilibrium
state, the Young–Laplace equation (Equation (7.38)) has the following form

PL −PV =
2σLV

Req
, (7.51)

where Req is the equilibrium radius of curvature of the liquid phase, the numerical value of
which is dictated by the equality of chemical potential of the compound in the liquid phase and
the vapor phase at equilibrium combined with the Young–Laplace equation [79, 87, 323].

We proceed as we did when examining the magnitude of H and consider a drop on a solid
surface with λliquid and line roughness (ρ) that are constant with the drop’s spherical cap bottom
radius. Substituting (7.39) into (7.46) gives (after rearranging for (σSV −σSL)):

σ
SV −σ

SL =
σLV

ρ

⎡⎣cosθeq +
hλliquid

Req

(︄
1

sinθeq
−2

)︄⎤⎦ , (7.52)

where θeq is the contact angle at equilibrium. We substitute the equilibrium conditions as stated
by Equations (7.51) and (7.52) into Equation (7.50) to yield

B−B0 =−2σLV

Req
V L −

(︄
σLV

ρ

[︄
cosθeq +

hλliquid

Req

(︄
1

sinθeq
−2

)︄]︄)︄
ASL +σ

LVALV. (7.53)

Substituting Equation (7.16) for V L, Equation (7.17) for ALV, and Equation (7.19) for ASL

(assuming m(r) =Cr, which is true when line roughness is constant; see Equation (7.62) below)
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into Equation (7.53) yields

B−B0 =−2σLV

Req

⎡⎣πR3

3

(︄
2−3cosθ + cos3

θ +3
hλliquid

R
sin2

θ

)︄⎤⎦
−σ

LV

⎡⎣cosθeq +
hλliquid

Req

(︄
1

sinθeq
−2

)︄⎤⎦(︂πR2 sin2
θ

)︂

+σ
LV

[︄
2πR2 (1− cosθ)+2π

hλliquid

R
R2 sinθ

]︄
.

(7.54)

Note that a geometric radius of curvature and a geometric contact angle are used in the substituted
expressions governing the geometric volume and areas, and not the equilibrium radius of
curvature or equilibrium contact angle. To evaluate Equation (7.54), we consider a system where
water is component 1 (in the liquid phase and in the vapor phase). We choose a temperature and
a vapor-phase pressure such that σLV = 0.072 N/m and Req = 5×10−8 m [87]. We also choose
three representative values for Heq = hλliquid/Req of 0.5, 0.1, and 0 and a representative value
for ρ cosθY =−0.5, which means that in the second term of Equation (7.54),⎡⎣cosθeq +

hλliquid

Req

(︄
1

sinθeq
−2

)︄⎤⎦= ρ cosθY =−0.5, (7.55)

as dictated by the equilibrium condition of Equation (7.46). Thus, the number and magnitude of
equilibrium contact angles (θeq) will change according to Equation (7.55) when Heq changes,
while ρ cosθY remains constant. Using Equation (7.55) and evaluating Equation (7.54) as a
function of geometric radius of curvature R and geometric contact angle θ yields the 3D free
energy surfaces in Figure 7.6 for each considered Heq. For each free energy surface, we trace
the trend in free energy as a function of geometric contact angle at R = Req, shown with a solid
black curve on each surface. We also trace the trend in free energy as a function of geometric
radius of curvature at each equilibrium contact angle θ = θeq that is a solution to Equation (7.55)
for every value of Heq, as shown with yellow curves.

Thermodynamically, an equilibrium state at a global minimum in free energy is stable; an
equilibrium state at a local minimum in free energy is metastable; and an equilibrium state at a
maximum or inflection point in free energy is unstable [79, 87, 300, 323]. The presence of a
local maximum also indicates that a free energy barrier needs to be overcome to pass through
this equilibrium state. For the free energy surface illustrated in Figure 7.6(a) for Heq = 0.5, the
smaller equilibrium contact angle is at 90◦ (from Equation (7.55)), and this equilibrium state is
at an inflection point in free energy with respect to geometric contact angle and at a maximum in
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Figure 7.6: Free energy surfaces calculated using Equation (7.54) as a function of geometric
radius of curvature R and geometric contact angle θ with σLV = 0.072 N/m, Req = 5×10−8 m,
and ρ cosθY =−0.5. Free energy surface for (a) Heq = 0.5, (b) Heq = 0.1, and (c) Heq = 0. In
each plot, yellow curves trace the trend in free energy at each θ = θeq as governed by Equation
(7.55), and one black curve traces the free energy at R = Req.

free energy with respect to geometric radius of curvature—it is therefore an unstable equilibrium
state. The larger equilibrium contact angle is at 160◦ with a free energy that is at a maximum
with respect to both changes in geometric contact angle and radius of curvature, so it is also
an unstable equilibrium state. The same conclusion about stability of the equilibrium states
is reached in Figure 7.6(b) for Heq = 0.1: the smaller equilibrium contact angle is at a local
minimum in free energy with respect to changes in geometric contact angle, but at a maximum
with respect to changes in geometric radius of curvature; the larger equilibrium contact angle
is at a maximum in free energy with respect to both geometric variables. Figure 7.6(c) shows
the free energy surface for Heq = 0, where there is one equilibrium state (at θ = θeq = 120◦

and R = Req = 5×10−8 m) that is unstable because it is a maximum with respect to changes in
geometric radius of curvature.

The instability of the equilibrium state for a single-component liquid drop in equilibrium
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with its vapor where the vapor-phase pressure is held constant was also previously seen when
the liquid was on a smooth, homogeneous solid phase [87]. More generally, as Gibbs stated,
for the case where a two-phase system contains a single component with a curved interface
between phases (e.g., a liquid drop in a vapor), there is an unstable equilibrium state when a
pressure is imposed on the system, and this unstable equilibrium state is at a radius of curvature
that is dictated by the equality of chemical potential [108, p. 406]. The number and stability of
equilibrium states have been shown to change when the constraints of the system change (e.g.,
geometry or chemical composition). For example, if the liquid and vapor phases contain two
components (e.g., water with carbon dioxide), there may be zero or more equilibrium states
that can be unstable, stable, or metastable—depending on the imposition of constraints such as
constant system volume, degree of saturation in the liquid phase, or number of bubbles present
[298, 325].

As a result, we emphasize that the trends in free energy illustrated in Figure 7.6 are for
a single-component system where the liquid drop is in thermodynamic equilibrium (that is,
it is in mechanical, chemical, and thermal equilibrium) with the vapor phase, and the vapor
phase has its pressure imposed. For such a system where the liquid phase is a single component
that is in equilibrium with its vapor, the mechanical equilibrium condition dictated by Young–
Laplace equation determines the equilibrium radius of curvature of the liquid drop and is also a
component of the free energy of the system. This assumption of vapor–liquid equilibrium is in
contrast to the free energy used by Johnson and Dettre [133] to investigate the thermodynamic
stability of the area-roughness Wenzel equation, where they analyzed a liquid drop under
the constraint of constant volume. Johnson and Dettre [133] showed that there is one global
minimum in energy (a stable equilibrium state) at a contact angle of θW when (i) V L = const,
(ii) the liquid–vapor interfacial area is approximately that of a spherical cap: ALV ≈ Acap =

2πR2(1− cosθ), and (iii) Equation (7.1) (cosθW = rf cosθY) describes the equilibrium contact
angle. Under the constraint of constant volume, the liquid drop will not need to satisfy the
Young–Laplace equation, and together with assuming that ALV = Acap, the trend in free energy
and the stability of the equilibrium state obtained by Johnson and Dettre [133] is different from
the trends shown in Figure 7.6.

If we were to assume that liquid drop volume were constant within the framework of
Gibbsian composite-system thermodynamics, then the equilibrium conditions would be obtained
by substituting the constraint dV L = 0 into Equation (7.3) and (7.14) and accounting for the fact
that dR and dθ are no longer independent (Equation (7.24) governs their dependent relationship).
After applying these constraints to the expression obtained once Equations (7.3)–(7.13), (7.15),
(7.27) and (7.30) are substituted into Equation (7.2), the resulting equilibrium conditions are
Equations (7.32), (7.33), (7.34), and (7.42). Importantly, the Young–Laplace equation is not an
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equilibrium condition for a liquid drop with a constant volume. The free energy of a drop under
constant volume is [133]

B−B0 = σ
LV

(︄
ALV − σSV −σSL

σLV ASL −4πR2
0

)︄
, (7.56)

where we choose a reference state of a liquid drop in the shape of a sphere with radius R0. Using
our specified geometry for each interfacial area shown in Figure 7.2 and assuming λliquid and ρ

are constant with drop radius, we substitute Equation (7.17) for ALV, Equation (7.19) for ASL,
and Equation (7.52) for

(︂
σSV −σSL

)︂
into Equation (7.56) to yield:

B−B0 = σ
LV

{︄
2πR2 (1− cosθ)+2πhλliquidRsinθ

−

⎡⎣cosθeq +
hλliquid

Req

(︄
1

sinθeq
−2

)︄⎤⎦πR2 sin2
θ −4πR2

0

}︄
.

(7.57)

Here, in contrast to setting a value for Req that is dictated by combining the Young–Laplace
equation with the equality of chemical potential of a pure component in the liquid and vapor
phases, the values of Req and R are both governed by the constraint of constant volume (Equation
(7.16)) and are a function of V L, hλliquid, and θ . The value of Req also needs to satisfy the
equilibrium condition in Equation (7.46). Therefore, when calculating free energy with Equation
(7.57) we set a value for V L and hλliquid instead of Heq as we did previously because Req varies
with hλliquid and ρ cosθY. Next, we set a representative value for ρ cosθY = −0.5 for our
analysis, which can be substituted into Equation (7.57) using the relationship in Equation (7.55).

After setting values for V L and hλliquid, the drop’s radius of curvature R is calculated via

Equation (7.16) at each θ . Then, Equation (7.57) is evaluated as a function of θ to calcu-
late the free energy, as shown in Figure 7.7 when ρ cosθY = −0.5, σLV = 0.072 N/m, and
V L = 1×10−12 m3 for two values of hλliquid = 1×10−5 m and hλliquid = 0 m. Under the con-
straint of constant liquid volume and hλliquid = 1×10−5 m, one equilibrium contact angle is at
a maximum in free energy (an unstable equilibrium state with θeq = 168◦, Req = 6.2×10−5 m,
and Heq = 0.16) and another equilibrium contact angle is at a global minimum in free energy
(a stable equilibrium state with θeq = 111◦, Req = 6.5×10−5 m, and Heq = 0.15), where the
values of these equilibrium contact angles are dictated by Equation (7.55). The maximum in
free energy at the larger equilibrium contact angle is an energy barrier that the liquid drop must
overcome to reach the stable equilibrium state at the smaller contact angle. When hλliquid = 0 m
so that ALV = Acap, there is only one equilibrium contact angle where cosθ = ρ cosθY that
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corresponds to a stable equilibrium state, in agreement with the results presented by Johnson
and Dettre [133].
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Figure 7.7: Free energy with respect to the chosen reference state (the liquid in a spherical shape)
as a function of geometric contact angle calculated using Equation (7.57) for σLV = 0.072 N/m,
V L = 1 × 10−12 m3 and ρ cosθY = −0.5 for two values of hλliquid = 1 × 10−5 m and
hλliquid = 0 m. This free energy was obtained assuming that the liquid phase has a constant vol-
ume. The graph on the right-hand side is a magnification of the region where 150◦ < θ < 180◦.

7.3.3 On the Prefactor to cosθY

The original area-roughness Wenzel equation is restricted to surfaces where every change in
projected area yields a proportional change in the solid–liquid interfacial area. This condition is
explicitly stated by Johnson and Dettre [133] in their derivation of the Wenzel equation (dASL =

rf dAprojected). In the derivation of the Wenzel equation presented by Xu [312], the surface
roughness was assumed to be orthogonal to the contact line, and the resulting macroscopic
contact angle was found to be a function of the roughness at the contact line, which was a ratio
between the actual contact line length and the projected contact line length (ℓSLV/2πa).

The version of the Wenzel equation derived in this chapter has neither the restriction that
dASL = rf dAprojected nor that the roughness must be orthogonal to the contact line. Our derived
equation (Equation (7.42), or Equation (7.47) if H ≪ 1 and ρ cosθY is not approaching −1 or
1) can be applied to any surface as long as (i) the shape of the drop can be separated into a
spherical cap and a partially-filled cylinder and (ii) Equation (7.18) describes the solid–liquid
interfacial area (that is, for a surface with flat-topped, vertical pillars of equal height). Starting
from Equation (7.47) (which requires H ≪ 1 and ρ cosθY not be approaching −1 or 1), each
of the Xu [312] and Johnson and Dettre [133] results can be obtained when their respective
assumptions are applied.
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First, in the case where the roughness is orthogonal to the contact line, each intersection
point at the edge of the liquid drop will have an orientation factor mi equal to 1:

m |r=Rsinθ
=

ζ (r)

∑
i=1

1 = ζ |r=Rsinθ
, (7.58)

which gives a line roughness from Equation (7.41) of

ρ|r=Rsinθ
= 1+

h
(︂

ζ
⃓⃓
r=Rsinθ

)︂
2πRsinθ

. (7.59)

Physically, Equation (7.59) is equal to the total length of the three-phase contact line divided by
the circumference of the liquid drop’s spherical cap (ℓSLV/2πa), which is the result obtained by
Xu [312].

If the line roughness in Equation (7.47) does not change with radius r, then the assumption
dASL = rf dAprojected made by Johnson and Dettre [133] will be satisfied. Mathematically,
a constant line roughness means that the derivative of line roughness with respect to radius
must equal zero. For a surface with vertical pillars of uniform height, setting the derivative of
Equation (7.41) with respect to radius equal to zero yields

dρ

dr
=

d
dr

(︃
1+

hm(r)
2πr

)︃
=

h
2πr

dm
dr

−m
h

2πr2 = 0. (7.60)

Rearranging Equation (7.60) gives
dm
dr

=
m
r
. (7.61)

Rearranging, integrating, and raising each side to an exponent with base e gives the following
solution to this differential equation

m =Cr, (7.62)

where C is a proportionality factor. When m increases proportionally with radius, the line
roughness defined by Equation (7.41) becomes

ρ = 1+
hm
2πr

= 1+
hC
2π

.

(7.63)
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Substituting Equation (7.62) into the expression for ASL in Equation (7.19) yields

ASL = πa2 +h
∫︂ a

0
Cr dr

=

(︃
1+

hC
2π

)︃
πa2.

(7.64)

Substituting Equation (7.63) into (7.64) and using Aprojected = πa2 gives, after rearranging,

ρ =
ASL

Aprojected ≡ rf, (7.65)

which means that ρ = rf when the line roughness is constant with radius r and therefore,
dASL = rf dAprojected so that cosθ = rf cosθY.

7.4 Conclusions

Herein, we approached the derivation of the Wenzel equation with a rigorous entropy extremiza-
tion subject to constraints from the framework of Gibbsian composite-system thermodynamics.
We derived a Wenzel equation (Equation (7.42)) that uses a roughness factor evaluated at the
contact line instead of the original ratio of areas (rf = ASL/Aprojected), together with additional
terms that arise from the volume and liquid–vapor interfacial area within the surface asperities.
Our roughness factor is a function of two variables: (i) the number of pillar heights at the three-
phase contact line and (ii) the orientation of these pillar heights with respect to the contact line.
Supposing there are no forces due to gravity or pinning, our line-roughness Wenzel equation
may be used for a drop whose shape can be divided into a spherical cap and a partially-filled
cylinder on a surface with vertical pillars of equal height. If there are any changes to the physical
geometry of the liquid drop from that assumed in this chapter, the principal conclusion that the
three-phase line dictates the contact angle will remain. This is due to the Leibniz rule being
applied to any integral expression that calculates the surface area of the solid–liquid interface
during the entropy extremization.

We highlight that our Gibbsian thermodynamic approach ensures that all equilibrium con-
ditions are derived given explicitly defined constraints. For example, when vapor–liquid
equilibrium is imposed on the system, the Young–Laplace equation and the line-roughness
Wenzel equations need to both be satisfied for mechanical equilibrium. On the other hand,
when the liquid volume is constrained to be constant, the Young–Laplace equation is not an
equilibrium condition, but the line-roughness Wenzel equation is. To gain an understanding of
the thermodynamic stability of systems satisfying our new Wenzel equation, we also performed
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a free energy analysis. Under the constraint of satisfying the equality of chemical potential
and the Young–Laplace equation for the considered single-component system (i.e., in a state of
vapor–liquid equilibrium) with a pressure imposed on the vapor phase, the obtained equilibrium
state is unstable for each equilibrium contact angle. Under the constraint of constant liquid-phase
volume, one stable and one unstable equilibrium state are obtained when hλliquid > 0, and one
stable equilibrium state is obtained when hλliquid = 0. Physically, a constant liquid volume may
arise, for example, when the liquid is non-volatile.

In our analysis, we also explicitly defined the assumptions required for our line-roughness
Wenzel equation to limit to other forms of the Wenzel equation in the literature. When the
contribution of the liquid between surface asperities is negligible (quantified by the dimension-
less quantity H = h(1−λsolid)/R ≪ 1 and ρ cosθY not approaching −1 or 1), our equation has
the form cosθ = ρ |r=Rcosθ

cosθY. When the roughness is orthogonal at all intersection points
along the contact line, our equation limits to the line-ratio Wenzel equation derived by Xu [312].
When ρ = rf = ASL/Aprojected, the original area-roughness Wenzel equation is obtained. Thus,
the equation derived herein is the most general form of the Wenzel equation for the equilibrium
contact angle of a three-phase system, where one of the phases is rough, rigid, and inert (a rough
solid), subject to the defined constraints.

The derived line-roughness Wenzel equation has significant consequences for understanding
natural substrates and for designing surfaces with desirable wetting properties, illustrating in
a rigorous manner that properties at the three-phase contact line (orientation and number of
pillar intersections) determine the contact angle instead of the solid–liquid interfacial area.
The importance of the properties at the contact line is in agreement with our derived line-
fraction Cassie–Baxter equation (Chapter 6), where we emphasized that an area mathematically
transforms to a line when a differential change in area is considered under the extremization
of entropy subject to defined constraints. Thus, in the limiting case that the line-fraction
Cassie–Baxter equation is applied to a drop on a single-component solid phase and the line
fraction is replaced by the line roughness, the line-roughness Wenzel equation is obtained
(the same connection that was observed by Cassie and Baxter for the area versions of the
equations). To design surfaces that will preferentially wet in either the Cassie–Baxter or Wenzel
states, therefore, the properties at the contact line must be quantified and used in predicting the
equilibrium contact angle.
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Conclusions

This work developed mathematical tools for predicting and controlling a broad range of mul-
ticomponent systems with interfacial curvature. More specifically, Part I proposed a new
semi-empirical equation for calculating the surface tension of mixtures as a function of both
composition and temperature. To implement this new equation, three steps were needed:

i. fitting coefficients were obtained to describe each pure component’s surface tension as
a function of temperature, whether retrieved from a database or determined by a fit to
available experimental data;

ii. the critical composition of the mixture was calculated (a method for this calculation was
developed using the Peng–Robinson equation of state); and

iii. semi-empirical parameters were obtained by fitting to experimental data of surface tension
as a function of composition at one temperature.

The parameters obtained in step (iii) could be considered composition- and temperature-
independent, and the predictions obtained using the proposed equation were compared to
experimental measurements of surface tension for 31 systems, including subcritical aqueous
mixtures, subcritical organic mixtures, and supercritical hydrocarbon mixtures (containing
methane or carbon dioxide). Importantly, the predictions for the studied aqueous mixtures were
the best out of five tested models over a wide range of compositions and temperatures, and
the predictions for supercritical hydrocarbon mixtures had an accuracy comparable to those
reported for computationally-intensive models based on statistical mechanics. The proposed
model was also able to accurately predict the surface tension of a ternary mixture (methanol(1)
+ ethanol(2) + water(3) using only pure component data and coefficients obtained from binary
mixtures each at a single temperature—no coefficients needed to be obtained from ternary data),
illustrating its applicability to systems with more than two components.
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Part II presented an activity-coefficient model for predicting the bubble and dew points
of multicomponent systems with interfacial curvature for two cases: (i) given an imposed
temperature and (ii) given an imposed vapor-phase pressure. Both ideal (methanol + ethanol)
and nonideal (ethanol + water) mixtures were studied, and phase diagrams were calculated as
a function of composition and radius of curvature. To produce substantial deviation in phase
behavior, the radius of curvature needed to approach the nanoscale. When the curvature was
toward the vapor phase (a bubble in a bulk liquid), bubble and dew pressures decreased, while
bubble and dew temperatures increased. The opposite trend was observed when the curvature
was toward the liquid phase (a droplet in a bulk vapor): the bubble and dew pressures increased,
while bubble and dew temperatures decreased. In addition, a shift in liquid- and vapor-phase
compositions was observed for both ideal and nonideal mixtures. In fact, in the studied nonideal
mixture (ethanol + water), the composition of the azeotrope shifted with a change in interfacial
curvature, and the azeotrope was predicted to no longer be present at high curvatures (a radius of
curvature on the order of 10 nm for T = 298 K or PV = 101 kPa). In investigating case (ii), the
surface tension model in Part I was used for calculating the surface tension of nitrogen + argon
mixtures at temperatures beyond those available experimentally. The resulting vapor–liquid
equilibrium calculations of dew temperature in pores with 2-nm radii were in agreement with
independent experimental measurements when the geometries of adsorption and desorption in
pores were accounted for and the surface tension model in Part I was used. These predictions for
nitrogen + argon mixtures were made without any fitting parameters to pure-component vapor–
liquid behavior in pores, and the accuracy of the predictions was sensitive to the magnitude of
surface tension as a function of both composition and temperature.

In Part III, the wetting of liquids on rough or heterogeneous surfaces was investigated using
Gibbsian composite-system thermodynamics. Equilibrium conditions for both the Cassie–Baxter
and Wenzel states were derived by extremizing entropy while explicitly defining all physical and
geometric constraints. By mathematically allowing the properties of the solid–liquid interface
to vary, the derived mechanical equilibrium conditions for contact angle contained information
from the contact line (due to the application of the Leibniz rule for differentiating integrals whose
limits vary during the entropy extremization). This result is in contrast to previous derivations
of the Cassie–Baxter and Wenzel equations that assume the properties at the solid–liquid–vapor
contact line are the same as the properties of the whole solid–liquid interfacial area, and as a
result, these area-based equations cannot be applied to drops on surfaces that do not satisfy this
assumption. Part III of this thesis showed that a line-fraction Cassie–Baxter equation and a
line-roughness Wenzel equation avoid the need for such an assumption, and these line-based
equations should instead be used to describe equilibrium contact angles. Additionally, for the
line-roughness Wenzel equation, a dimensionless parameter was proposed to quantify how large
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a liquid drop must be compared to the liquid imbibed between asperities for the equilibrium
equation that governs contact angle to be simplified.

The intertwining of the studied parts was demonstrated in a preliminary manner when the
surface tension model developed in Part I was incorporated into phase diagram calculations
in Part II. In many applications, all three parts would be relevant. For example, vapor–liquid
equilibrium predictions of a system containing a nonideal multicomponent mixture in the
presence of a porous medium with chemical heterogeneities or physical roughness may be
needed for the design of nano- or microfluidic technologies. For making such predictions, the
theoretical model might incorporate: the surface tension model from Part I, the interfacial-
curvature activity coefficient model from Part II, and either the line-Wenzel or line-Cassie–
Baxter equations from Part III. Taken together, the three parts presented in this thesis provided
fundamental theoretical understanding of phenomena at the intersection of multicomponent,
multiphase thermodynamics and interfacial thermodynamics.
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A.1 Governing Equations for Vapor–Liquid Equilibrium (VLE)

and Molar Volume

We use the Peng–Robinson equation of state (PR-EOS) with volume translation for all calcula-
tions of vapor–liquid equilibrium and molar volume. The volume-translated Peng–Robinson
equation of state is [1, 41]

P =
RT

vPR + c−bPR − aPR (T )(︁
vPR + c

)︁(︁
vPR + c+bPR

)︁
+bPR

(︁
vPR + c−bPR

)︁ , (A.1)

where P is pressure, R is the universal gas constant, T is absolute temperature, and vPR is molar
volume that is corrected by a shift of c. A cubic polynomial can be obtained by rearranging
Equation (A.1) in terms of the compressibility factor Z [41]:

Z3 − (1−B)Z2 +
(︂

A−3B2 −2B
)︂

Z −
(︂

AB−B2 −B3
)︂
= 0, (A.2)

and defining the following quantities [41, 51]:

A =
aPRP
R2T 2 (A.3)

B =
bPRP
RT

(A.4)

Z =
P(vPR + c)

RT
, (A.5)

where aPR depends on temperature through the following expressions

aPR (T ) = 0.45724
R2T 2

cr
Pcr

[︃
1+κ

(︂
1−
√︁

T/Tcr

)︂]︃2

(A.6)

κ =

⎧⎨⎩0.37464+1.54226ω −0.26992ω2 for ω < 0.5

0.3796+1.4850ω −0.1644ω2 +0.01667ω3 for ω > 0.5
(A.7)

and bPR is calculated by

bPR = 0.07780
RTcr

Pcr
. (A.8)

In the above equations, Tcr is the critical temperature, Pcr is the critical pressure, and ω is the
acentric factor.
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For mixtures, the coefficients are obtained via mixing rules:

aPR = ∑
i

∑
j

xix jaPR
i j (A.9)

aPR
i j =

(︁
1− ki j

)︁√︂
aPR

i

√︂
aPR

j (A.10)

bPR = ∑
i

xibPR
i , (A.11)

where aPR
i and bPR

i are calculated using Equations (A.6) and (A.8) for each pure component
and xi can denote the mole fraction of either the liquid or vapor phase. The binary interaction
parameter ki j is specific to each pair of compounds i and j.

At a state of vapor–liquid equilibrium (VLE), the fugacity of the liquid phase is equal to the
fugacity of the vapor phase, where the fugacity of each phase is calculated with [41]

lnφi = ln
fi

xiP

=
bPR

i
bPR (Z −1)− ln(Z −B)− A

2
√

2B

(︄
2∑k xkaPR

ki
aPR − bPR

i
bPR

)︄
ln
(︃

Z +2.414B
Z −0.414B

)︃
,

(A.12)

where fi is the fugacity of component i and a fugacity coefficient is defined as φi = fi/xiP. To
perform a flash calculation of a mixture with overall composition zi at a pressure P, we use the
Wilson correlation [12, 68] for an initial guess of the equilibrium ratio Ki = yi/xi, where yi is
the vapor mole fraction and xi is the liquid mole fraction:

Ki =
Pcr,i

P
exp

[︄
5.37(1+ωi)

(︃
1−

Tcr,i

T

)︃]︄
. (A.13)

Then we use the Rachford–Rice equation [12, 46]:

∑
i

(Ki −1)zi

1+β (Ki −1)
= 0 (A.14)

to iterate for the vapor fraction β using the Newton method [12] and updating the equilibrium
ratio with Equation (A.12) where Ki = φ L

i /φV
i . Following the convergence of β and Ki, the

liquid composition is computed with [12]:

xi =
zi

1 +β (Ki − 1)
. (A.15)

To calculate the bubble point of a mixture given its liquid-phase composition, we evaluate
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Equation (A.12) for the liquid and vapor phases at two initial guesses of pressure and use the
bisection method to converge to the bubble pressure, where the sum of mole fractions in the
vapor phase sum to unity.

Once phase equilibrium is calculated via a flash or bubble point calculation, volume transla-
tion is applied to the molar volume of each phase calculated via the PR-EOS to obtain the molar
volume v, and it is defined by [1, 39]

v = vPR + c, (A.16)

where for a pure component, c can be calculated using the correlation developed by Ahlers and
Gmehling [1]

c = 0.252
RTcr

Pcr
(χ −Zcr) , (A.17)

where χ is an empirical parameter obtained from fitting and Zcr is the compressibility factor at
the critical point, or more generally by

c = 0.252
RTcr

Pcr
(1.5448Zcr −0.4024) , (A.18)

and for a mixture [39],
c = ∑

i
xici. (A.19)

We use Equation (A.17) for all supercritical mixtures for which χ has been reported by Ahlers
and Gmehling [1], while we use Equation (A.18) for all subcritical mixture compounds.

A.1.1 Pure Component Properties Used for Calculations of VLE and Molar

Volume

Table A.1 lists critical properties of each pure component considered in our study (temperature,
pressure, and compressibility), along with acentric factor, a parameter χ for volume translation
used in Ahlers and Gmehling [1], and molar mass. Critical temperatures, pressures, acentric
factor, and molar mass are all obtained from Perry’s Handbook [16]; only the acentric factor
for methyl iodide was calculated based on its vapor pressure at a reduced temperature of 0.7
from NIST [28] according to the equation developed by Pitzer et al. [45]. Values for critical
compressibility and χ are taken from Ahlers and Gmehling [1] for the listed alkanes and carbon
dioxide. The remaining critical compressibility values are obtained from Perry’s Handbook
[16].
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Table A.1: Critical temperature Tcr, critical pressure Pcr, critical compressibility factor Zcr,
acentric factor ω , volume translation parameter χ , and molar weight MW [g/mol] for each pure
component.

Component Tcr [K] Pcr [MPa] Zcr ω χ MW [g/mol]

methane 190.564 4.599 0.2874 0.0115 0.336 16.042
ethane 305.32 4.872 0.2847 0.0995 0.3195 30.069
propane 369.83 4.248 0.2803 0.1523 0.306 44.096
n-butane 425.12 3.796 0.2741 0.2002 0.2945 58.122
n-pentane 469.7 3.37 0.2623 0.2515 0.274 72.149
n-hexane 507.6 3.025 0.2644 0.3013 0.2667 86.175
n-heptane 540.2 2.74 0.2629 0.3495 0.2606 100.202
n-octane 568.7 2.49 0.2595 0.3996 0.2525 114.229
n-nonane 594.6 2.29 0.2527 0.4435 0.2378 128.255
n-decane 617.7 2.11 0.2462 0.4923 0.2275 142.282
n-dodecane 658 1.82 0.2356 0.5764 0.205
carbon dioxide 304.21 7.383 0.2741 0.2236 0.2921
benzene 562.05 4.895 0.268 0.2103
cyclohexane 553.8 4.08 0.273 0.2081
carbon tetrachloride 556.35 4.56 0.272 0.1926
methyl iodide 527.8 6.35 0.2648 0.1577
acetonitrile 545.5 4.83 0.184 0.3379
carbon disulfide 552 7.9 0.275 0.1107
dichloromethane 510 6.08 0.265 0.1986

A.1.2 Validating VLE Calculations against Experimental Data

Using the governing equations outlined above for the PR-EOS, we calculate the pressure vs.

composition diagrams for those mixtures with one supercritical compound (i.e., containing
methane or carbon dioxide) for comparison to experimental data. For all subcritical mixtures,
we use a binary interaction parameter of zero (this choice is supported by the correlation
developed by Gao et al. [13] for the PR-EOS, which is a function of the critical temperature and
compressibility factor of each component—when the critical temperatures of two components
are similar (as seen in Table A.1, this is true for all subcritical compounds), the binary interaction
parameter is very close to zero).

A.1.2.1 Methane(1) + n-Alkane(2) Systems

For the binary interaction coefficients of methane(1) + n-alkane(2) systems, we use the correla-
tion given by Arbabi and Firoozabadi [5, 12]

ki j = 0.0289+1.633×10−4MW, (A.20)
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where MW is the molar weight of the second component in units of g/mol. We compare our
VLE calculations to the experimentally-measured phase diagrams of each system containing
methane listed in Table A.2, as illustrated in Figure A.1.

Table A.2: Literature sources for experimental measurements of vapor–liquid equilibrium
compositions for methane(1) + n-alkane (2) systems with corresponding ranges of temperature
and pressure.

methane(1)
+ Temperatures [K] Pressures [MPa] Data Reference

ethane(2)
130.37–199.92 0.19–5.10 Wichterle and Kobayashi [67]
260.00–280.00 1.80–6.60 Gupta et al. [17]

propane(2) 277.59–344.26 0.69–10.00 Reamer et al. [49]
n-butane(2) 294.26–327.59 0.28–13.10 Sage et al. [52]
n-pentane(2) 310.89–410.97 0.69–16.10 Reiff et al. [50]
n-hexane(2) 298.15–348.15 1.01–10.1 Shim and Kohn [57]
n-heptane(2) 310.93–444.26 1.38–24.88 Reamer et al. [48]
n-octane(2) 248.15–323.15 1.01–7.09 Kohn and Bradish [23]
n-nonane(2) 223.15–298.15 1.01–32.32 Shipman and Kohn [58]

n-decane(2)
310.90–377.60 1.08–8.52 Srivastan et al. [59]

423.15 3.04–7.09 Lin et al. [27]
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Figure A.1: Pressure–composition diagrams for methane(1) + n-alkane(2) systems, as calculated with the Peng–Robinson equation of
state (Equations (A.2)–(A.12), where solid lines are for liquid-phase compositions and dashed lines are for vapor-phase compositions)
and as measured experimentally (symbols).
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A.1.2.2 Carbon Dioxide(1) + n-Alkane(2) Systems

For the binary interaction coefficients of carbon dioxide(1) + n-alkane(2) systems, we use values
reported in Vitu et al. [64]:

• ki j = 0.12 for carbon dioxide(1) + n-butane(2)

• ki j = 0.11 for carbon dioxide(1) + n-heptane(2)

• ki j = 0.10 for carbon dioxide(1) + n-decane(2)

We compare our VLE calculations to the experimentally-measured phase diagrams of each
system listed in Table A.3, as illustrated in Figure A.2.

Table A.3: Literature sources for experimental measurements of vapor–liquid equilibrium
compositions for carbon dioxide(1) + n-alkane (2) systems with corresponding ranges of
temperature and pressure.

carbon dioxide(1)
+ Temperatures (K) Pressures (MPa) Data Reference

n-butane(2) 319.30–377.60 2.18–8.08 Hsu et al. [19]
n-heptane(2) 310.65–394.26 0.42–13.31 Kalra et al. [21]
n-decane(2) 277.59–444.26 0.34–17.24 Reamer and Sage [47]
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Figure A.2: Pressure–composition diagrams for carbon dioxide(1) + n-alkane(2) systems, as calculated with the Peng–Robinson equation
of state (Equations (A.2)–(A.12), where solid lines are for liquid-phase compositions and dashed lines are for vapor-phase compositions)
and as measured experimentally (symbols).
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A.2 Numerical Method for Calculating the Critical Composition

We develop a method for calculating the critical composition of methane or carbon dioxide in
a mixture, as outlined in the schematic in Figure A.3 and the flowchart in Figure A.4. It is a
numerical iteration scheme that, given an initial guess for liquid composition, calculates the
pressure and vapor-phase composition of the bubble point at progressively increasing liquid
compositions until the critical composition is reached (that is, the maximum liquid-phase
composition where vapor–liquid equilibrium is possible). Each bubble point is determined
by iterating on pressure using the bisection method until (i) each component’s fugacity in
the liquid phase equals its fugacity in the vapor phase (Equation (A.12)) and (ii) the sum of
vapor-phase mole fractions equals unity. Critical compositions were calculated for all mixtures
at the temperatures reported in each literature source, as summarized in Table 3.3 and Table 3.4
in Chapter 3, as well as in Tables A.10 to A.13.
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s
u
re

, 
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 (
M

P
a
)

x1,0 x1,1 y1,1 y1,0

ε1= y1,1 − x1,1

Pmin,0

Pmax,0

m1=

Δx

Pb,0

Pb,1

Pb,1 − Pb,0

Δx

Figure A.3: Graphical illustration of the initialization of our numerical method used to calculate
the critical composition at a given temperature, as described by the boxes outlined in blue at the
top of Figure A.4.
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Figure A.4: Flowchart for calculating the critical composition of a mixture at a temperature T .
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A.3 Our Model for Surface Tension

All equations and data needed for the implementation of our new model of surface tension as
a function of composition and temperature are given in Chapter 3, except for the coefficients
for the Mulero et al. [33] correlation used for pure-species surface tension as a function of
temperature for supercritical mixtures. These coefficients previously published by Mulero et al.

[33] are given below.

A.3.1 Pure Component Surface Tension

For all mixtures containing methane or carbon dioxide, we use the Mulero et al. [33] correlation
to calculate pure component surface tension, which uses the coefficients in Table A.4 substituted
into Equation (3.6) in Chapter 3.

Table A.4: Coefficients from Mulero et al. [33] for use in Equation (3.6) in Chapter 3[︃
σi = ∑

mi
j=0 σ j,i

(︂
1− T

Tcr,i

)︂p j,i
]︃

for pure components.

Component Temperatures
[K] σ0 p0 σ1 p1 σ2 p2

methane 90.67–188.84 0.03825 1.191 −0.00602 5.422 −0.00071 0.6161
ethane 89.87–304.93 0.07602 1.32 −0.02912 1.676
propane 193.15–366.48 0.05334 1.235 −0.01748 4.404
n-butane 134.84–420.00 0.05138 1.209
n-pentane 144.18–469.67 0.08015 1.408 0.004384 1.031 −0.03437 1.818
n-hexane 173.15–507.39 0.210952 1.0962 −0.15849 1.05893
n-heptane 183.00–540.08 0.07765 1.319 −0.02599 1.6
n-octane 218.00–568.56 0.34338 1.6607 −0.50634 1.9632 0.2238 2.3547
n-nonane 223.00–393.15 0.05388 1.262
n-decane 243.00–443.15 0.05473 1.29
carbon dioxide 216.55–304.11 0.07863 1.254

A.4 Parachor Model for Surface Tension

For comparison with our work, we also calculated surface tension using the previously available
and commonly used parachor model. In this section, we outline the governing equations for
this model, and we summarize the coefficients that we use when making calculations with this
model for both pure components and mixtures.
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A.4.1 Pure Component Surface Tension

The parachor model for a pure compound is given by [30, 61]:

σi =

[︄
Pi

(︃
1
vL − 1

vV

)︃]︄4

, (A.21)

where liquid and vapor molar volumes (vL and vV, respectively) are calculated using the Peng–
Robinson equation of state with volume translation at the condition where the chemical potential
of the liquid phase equals the chemical potential of the vapor phase.

For mixtures containing methane or carbon dioxide, we fit the parachor model to experi-
mental data of surface tension as a function of temperature retrieved from the DIPPR database
[9], with fitting results for the parachor, Pi, summarized in Table A.5. For mixtures containing
both compounds below their critical points, the parachor model is fit separately to data from
each literature source, yielding the coefficients listed in Table A.6. Note that some compounds
appear more than once because of overlap between binary mixtures; the parachor values for any
individual compound are statistically the same based on the listed 95% confidence intervals.

Table A.5: Parachor values with 95% confidence intervals determined from a fit of Equa-
tion (A.21) to experimental data of surface tension vs. temperature from the DIPPR database
[9] for each pure component making up mixtures containing either methane or carbon dioxide,
where molar volumes are determined using the PR-EOS with volume shift. The number of
data points used in the fit (n), the temperature range of the experimental data, and the standard
deviation (SD) are also listed.

Component n Temperatures
[K]

Parachor Pi
[(mN·m-1)1⁄4 cm3·mol-1] SD [mN/m]

methane 16 93.15–173.15 72.9±0.5 0.646
ethane 27 117.8–296.1 112.8±0.3 0.524
propane 19 193.15–360.93 151.7±1.4 0.662
n-butane 22 203.15–313.15 191.4±0.4 0.321
n-pentane 11 253.15–313.15 231.4±0.4 0.194
n-hexane 29 273.15–493.15 269.7±0.6 0.304
n-heptane 31 283.15–503.15 311.1±0.9 0.427
n-octane 43 233.15–503.15 355.2±1.2 0.728
n-nonane 12 283.15–393.15 391.8±2.3 0.689
n-decane 12 283.15–393.15 435.3±2.8 0.811
carbon dioxide 70 216.55–301.06 77.6±0.5 0.650
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Table A.6: Parachor values with 95% confidence intervals determined from a fit of Equa-
tion (A.21) to experimental data of surface tension vs. temperature for each pure component
in mixtures at states below both components’ critical point obtained from the listed references,
where molar volumes are determined using the PR-EOS with volume shift. The number of data
points used in the fit (n), the temperature range of the experimental data, the standard deviation
(SD), and the literature source are also listed.

Component n Temperatures
[K]

Parachor Pi
[(mN·m-1)1⁄4 cm3·mol-1]

SD
[mN/m] Data Reference

dodecane(1) 4
298–313

519.0±1.4 0.160 Schmidt et al.
benzene(2) 4 207.2±0.5 0.152 [53]

n-hexane(1) 4
298–313

269.8±0.5 0.077 Schmidt et al.
benzene(2) 4 207.2±0.5 0.152 [53]

cyclohexane(1) 4
293–313

242.3±0.6 0.156 Herrmann
benzene(2) 4 207.2±0.4 0.121 [18, 69]

carbon tetrachloride(1) 5
288–308

221.6±0.6 0.229 Teixiera et al.
methyl iodide(2) 5 155.4±0.3 0.192 [63]

carbon tetrachloride(1) 5
298–318

221.0±0.6 0.156 Teixiera et al.
acetonitrile(2) 5 133.1±0.6 0.121 [63]

carbon tetrachloride(1) 6
293–318

221.6±0.3 0.229 Luengo et al.
carbon disulfide(2) 6 136.5±0.1 0.192 [29]

dichloromethane(1) 4
293–308

153.8±0.2 0.223 Aracil et al.
carbon disulfide(2) 4 136.4±0.1 0.366 [4]
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A.4.2 Mixture Surface Tension

The parachor model for mixtures is, for a binary mixture, [66]

σmix =

[︄
P1

(︃
x1

vL − y1

vV

)︃
+P2

(︃
x2

vL − y2

vV

)︃]︄4

. (A.22)

For making predictions using Equation (A.22), we use parachor values taken from Table A.5
or Table A.6, vapor and liquid mole fractions from vapor–liquid equilibrium calculations
using the PR-EOS, and molar volumes of the vapor and liquid phases also from the PR-EOS
with volume translation for the mixture. For supercritical mixtures, vapor and liquid mole
fractions are determined via flash calculations given the experimental pressure and an overall
composition z1 that is inputted as an initial guess to the algorithm. For subcritical mixtures, the
compositions reported in the literature are assumed to be liquid-phase compositions, and bubble-
point calculations are carried out using the PR-EOS to determine the vapor-phase composition
that is in equilibrium with the liquid phase for substitution into Equation (A.22).

A.5 Mixture Surface Tension vs. Composition and

Temperature

In this section, we first provide an overview of the experimental literature available for binary
mixtures. Then, we show all predictions of surface tension for all mixtures.

A.5.1 Overview of Experimental Data

Tables A.7 and Table A.8 list all experimental datasets containing methane or carbon dioxide that
were assessed for agreement with other datasets and fitting suitability. Only those manuscripts
with more than one temperature are considered so that the predictive ability of our model can
be tested at higher temperatures (one exception is methane(1) + n-hexane(2) where fitting was
done to data in Massoudi and King [31] and predictions were made for data in Niño–Amézquita
et al. [38], because there were insufficient data points for fitting to the lowest temperature in
Niño–Amézquita et al. [38]).

The primary reason for excluding a dataset for mixtures containing methane or carbon
dioxide was a discrepancy between references in the low-pressure limit (i.e., as the mole fraction
of the more volatile component approaches zero). The second reason for exclusion was that the
available data yielded very large fitting confidence intervals on coefficients (> 10, reaching 108

for, e.g., carbon dioxide(1) + n-decane(2) from Pereira et al. [44]).
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Table A.7: Compilation of available experimental data of surface tension for methane(1) +
n-alkane(2) mixtures with more than one temperature reported (partially from the compilation
in Pereira [43]). An asterisk in the column “Included in Chapter 3?” indicates that data from
that reference was used for fitting; fitting coefficients thus obtained were then used to make
predictions for all listed references of that system.

methane(1)
+

Data
Reference

Included in
Chapter 3?

Reason for exclusion
or other notes

ethane(2) Baidakov et al. [6] ✓*
Note that data at 93.15 K were not included
because there are no mixture data reported at
this temperature—only pure component data.

propane(2)

Weinaug and Katz
[66]

✓*

Note that the liquid compositions reported in
Ref. [66] were not measured by the authors,
but rather, interpolated or extrapolated from
phase equilibrium data from another source.

Seneviratne et al.
[54]

✓
Note that 363.15 K only has one data point for
pure propane; no mixture data.

n-butane(2)
Pennington and
Hough [36, 42]

✓*
Note that this dataset has a limited range of
experimental compositions for fitting (only six
values of x1 ranging from 0.40 to 0.48).

n-pentane(2) Amin and Smith [3] ✗

Excluded because surface tension data for re-
ported temperatures above 311 K are much too
high, as noted previously by other researchers
[26]; see Section A.6.1 for further discussion.

n-hexane(2)

Massoudi and King
[31]

✓*

Note that this dataset was used for fitting at
298.15 K. Also note that this data was digi-
tized from a figure, and the point at the lowest
pressure of ∼0.02 MPa was excluded because
it was obscured by another data point.

Niño–Amézquita et
al. [38]

✓

Note that fitting at 300 K gave very large coef-
ficients, so this dataset was predicted at 300 K
and 350 K based on the fit to data in Massoudi
and King [31].

n-heptane(2)
Warren and Hough
[65]

✓ Note that the reported data is smoothed.

Amin and Smith [3] ✓*

n-octane(2) Peng et al. [40] ✗

Excluded because the limiting value of surface
tension for pure n-octane does not agree with
the Mulero correlation [33] (see Equation (3.6)
in Chapter 3), and this leads to extreme values
for fitting coefficients. See Section A.6.2 for
further discussion of this dataset.

n-nonane(2)
Deam and Maddox
[8]

✗

Excluded because this dataset has very few ex-
perimental compositions for fitting (only four
values of x1 ranging from 0.08 to 0.41) that,
when fit to, yield large confidence intervals.
See Section A.6.3 for further discussion.
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Table A.7 – continued from previous page
methane(1)

+
Data

Reference
Included in
Chapter 3?

Reason for exclusion
or other notes

n-decane(2)

Stegemeier et al.
[60]

✓*

Amin and Smith [3] ✓

Note that the low-pressure data is higher than
expected, an observation also noted by Li and
Firoozabadi [26] and Pereira et al. [44].

Pereira et al. [44] ✓

Note that the limit of surface tension for pure
n-decane is slightly lower than the Mulero cor-
relation [33] (see Equation (3.6)).

Table A.8: Compilation of available experimental data of surface tension for carbon dioxide(1)
+ n-alkane(2) mixtures with more than one temperature reported (partially from the compilation
in Pereira [43]). An asterisk in the column “Included in Chapter 3?” indicates that data from
that reference was used for fitting; fitting coefficients thus obtained were then used to make
predictions for all listed references of that system.

carbon
dioxide(1)

+

Data
Reference

Included in
Chapter 3?

Reason for exclusion
or other notes

n-butane(2) Hsu et al. [19] ✓*

n-heptane(2)

Niño-Amézquita et
al. [37]

✓*

Jaeger et al. [20] ✓

Zolghadr et al. [70] ✗

Excluded because the limiting value of surface
tension for pure n-heptane is up to 2 mN/m
lower than the Mulero correlation [33] (see
Equation (3.6) in Chapter 3), and data at 353 K
is consistently lower than reported in Niño-
Amézquita et al. [37] and Jaeger et al. [20]
for this system. See Section A.6.4 for further
discussion of this dataset.

n-decane(2)

Nagarajan and
Robinson [34]

✗ Excluded because the available datasets
yielded very large fitting coefficients. See
Section A.6.5 for further discussion of these
datasets.

Georgiadis et al.
[15]

✗

Pereira et al. [44] ✗

Table A.9 summarizes all considered subcritical mixtures with notes on agreement with
other datasets, details on fitting, and a corrected data point.
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Table A.9: Compilation of available experimental data of surface tension for subcritical mixtures
with more than one temperature reported (partially from a compilation by Escobedo and
Mansoori [11]). An asterisk in the column “Included in Chapter 3?” indicates that data from
that reference was used for fitting; fitting coefficients thus obtained were then used to make
predictions for all listed references of that system.

(1) (2) Data
Reference

Included in
Chapter 3?

Reason for exclusion
or other notes

dodecane benzene
Schmidt et al.
[53]

✓*

n-hexane benzene
Schmidt et al.
[53]

✓*

cyclohexane benzene

Suri and Ramakr-
ishna [62]

✗

Excluded because data at
303.15 K are too high when
compared to both Lam and
Benson [25] and Herrmann
[18, 69] at the same tempera-
ture. See Section A.6.6 for fur-
ther discussion of this dataset.

Lam and Benson
[25]

✓

Konobeev and
Lyapin [24, 69]

✓

Herrmann [18, 69] ✓*

Note that fitting coefficients
for both pure components and
the mixture were obtained
with data from this reference.

carbon tetra-
chloride

methyl
iodide

Teixeira et al. [63] ✓*

carbon tetra-
chloride

acetonitrile Teixeira et al. [63] ✓*

Note that Table II in this paper
lists a value of 24.45 mN/m
at xCH3CN = 0.5204 but Figure
2 therein shows a surface ten-
sion of 25.45 mN/m when dig-
itized; we use 25.45 mN/m as
the experimental value.

carbon tetra-
chloride

carbon disul-
fide

Luengo et al. [29] ✓*

dichloro-
methane

carbon disul-
fide

Aracil et al. [4] ✓*
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A.5.2 Predictions

For the nonaqueous binary mixtures included in Chapter 3, we plot predicted surface tension
vs. experimental surface tension for predictions from our model and for predictions from the
parachor model in Figure A.5. These plots highlight the closer agreement of our model along
the identity line (y = x) compared to the parachor model. In addition to a generally closer
agreement over all studied systems, our model does not require the use of an equation of state to
determine molar volumes at all temperatures of interest for prediction.
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Figure A.5: Predicted surface tension vs. experimental surface tension for mixtures containing
methane or carbon dioxide (△) and for other organic mixtures (◦) using (a) our new model
(Equation (3.2) in Chapter 3) and (b) the parachor model for mixtures (Equation (A.22)).

In the subsequent subsections, vapor–liquid equilibrium calculations and surface tension
fits/predictions are illustrated for all mixtures listed in Table A.7 to Table A.9. Vapor–liquid
equilibrium calculations for all mixtures are performed using the Peng–Robinson equation of
state (Equations (A.2)–(A.12)). When illustrating surface tension as a function of composition or
pressure, plots with lines labeled “New model fit” are obtained using Equation (3.2) in Chapter
3 as a function of composition, as fit to the experimental surface tension data depicted by black
open circles. For all subcritical mixtures, surface tension is only plotted as a function of liquid-
phase composition (and not as a function of pressure), because the properties of subcritical
mixtures with components that are both relatively non-volatile are generally independent
of pressure. Lines labeled “New model prediction” are calculated using Equation (3.2) in
Chapter 3 as a function of composition and temperature. Equation (3.2) in Chapter 3 uses
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fitting coefficients a and b, as summarized in Table 3.2 in Chapter 3, and the pure component
parameters listed in Table 3.1 in Chapter 3 and Table A.4. Dotted lines labeled “Parachor
prediction” are calculated using Equation (A.22) with the pure-component parachor values
listed in Table A.5 and Table A.6.

A.5.2.1 Methane(1) + Ethane(2)

Figure A.6(a) shows the calculated phase envelopes of methane(1) + ethane(2) at the tempera-
tures reported in Baidakov et al. [6]. At the pressures reported in Baidakov et al. [6], we depict
our calculated liquid-phase compositions and vapor-phase compositions with + and × symbols,
respectively. Using the algorithm presented in Figure A.4, the critical composition of the binary
mixture is calculated at each temperature, as shown by the □ symbols. In Figures A.6(b) and
(c), surface tension calculated using Equation (3.2) in Chapter 3 is compared to experimental
measurements from Baidakov et al. [6] as a function of liquid-phase composition and pressure,
respectively. Figures A.6(d) and (e) show the difference between predicted surface tension and
surface tension measured experimentally by Baidakov et al. [6] when using our new model
(Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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Figure A.6: Results for methane(1) + ethane(2) with data (◦) from Baidakov et al. [6].
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A.5.2.2 Methane(1) + Propane(2)

Figure A.7(a) shows the calculated phase envelopes of methane(1) + propane(2) at the tempera-
tures reported in Weinaug and Katz [66]. At the pressures reported in Weinaug and Katz [66],
we depict our calculated liquid-phase compositions and vapor-phase compositions with + and ×
symbols, respectively. Using the algorithm presented in Figure A.4, the critical composition
of the binary mixture is calculated at each temperature, as shown by the □ symbols. In Fig-
ures A.7(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 is compared to
experimental measurements from Weinaug and Katz [66] as a function of liquid-phase composi-
tion and pressure, respectively. Figures A.7(d) and (e) show the difference between predicted
surface tension and surface tension measured experimentally by Weinaug and Katz [66] when
using our new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)),
respectively.

Figure A.8(a) shows the calculated phase envelopes of methane(1) + propane(2) at the
temperatures reported in Seneviratne et al. [54]. At the pressures reported in Seneviratne et

al. [54], we depict our calculated liquid-phase compositions and vapor-phase compositions
with + and × symbols, respectively. Using the algorithm presented in Figure A.4, the critical
composition of the binary mixture is calculated at each temperature, as shown by the □ symbols.
In Figures A.8(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 with
fitting coefficients obtained from data in Weinaug and Katz [66] is compared to experimental
measurements from Seneviratne et al. [54] as a function of liquid-phase composition and
pressure, respectively. Figures A.8(d) and (e) show the difference between predicted surface
tension and surface tension measured experimentally by Seneviratne et al. [54] when using our
new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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Figure A.7: Results for methane(1) + propane(2) with data (◦) from Weinaug and Katz [66].
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Figure A.8: Results for methane(1) + propane(2) with data (◦) from Seneviratne et al. [54].
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A.5.2.3 Methane(1) + n-Butane(2)

Figure A.9(a) shows the calculated phase envelopes of methane(1) + n-butane(2) at the tempera-
tures reported by Pennington and Hough, as digitized from Nilssen [36, 42]. At the pressures
reported in Nilssen [36, 42], we depict our calculated liquid-phase compositions and vapor-phase
compositions with + and × symbols, respectively. Using the algorithm presented in Figure A.4,
the critical composition of the binary mixture is calculated at each temperature, as shown by the
□ symbols. In Figures A.9(b) and (c), surface tension calculated using Equation (3.2) in Chapter
3 is compared to experimental measurements from Nilssen [36, 42] as a function of liquid-phase
composition and pressure, respectively. Figures A.9(d) and (e) show the difference between
predicted surface tension and surface tension measured experimentally by Nilssen [36, 42] when
using our new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)),
respectively.
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Figure A.9: Results for methane(1) + n-butane(2) with data (◦) from Nilssen [36, 42].
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A.5.2.4 Methane(1) + n-Hexane(2)

Figure A.10(a) shows the calculated phase envelope of methane(1) + n-hexane(2) at the temper-
ature reported in Massoudi and King [31]. At the pressures reported in Massoudi and King [31],
we depict our calculated liquid-phase compositions and vapor-phase compositions with + and ×
symbols, respectively. Using the algorithm presented in Figure A.4, the critical composition
of the binary mixture is calculated at the relevant temperature, as shown by the □ symbol.
In Figures A.10(b) and (c), surface tension fit using Equation (3.2) in Chapter 3 is compared
to experimental measurements from Massoudi and King [31] as a function of liquid-phase
composition and pressure, respectively.
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Figure A.10: Results for methane(1) + n-hexane(2) with data (◦) from Massoudi and King [31].
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Figure A.11(a) shows the calculated phase envelopes of methane(1) + n-hexane(2) at the
temperatures reported in Niño–Amézquita et al. [38]. At the pressures reported in Niño–
Amézquita et al. [38], we depict our calculated liquid-phase compositions and vapor-phase
compositions with + and × symbols, respectively. Using the algorithm presented in Figure A.4,
the critical composition of the binary mixture is calculated at each temperature, as shown by
the □ symbols. In Figures A.11(b) and (c), surface tension calculated using Equation (3.2) in
Chapter 3 with fitting coefficients obtained from data in Massoudi and King [31] is compared to
experimental measurements from [38] as a function of liquid-phase composition and pressure,
respectively. Figures A.11(d) and (e) show the difference between predicted surface tension and
surface tension measured experimentally by Niño–Amézquita et al. [38] when using our new
model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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Figure A.11: Results for methane(1) + n-hexane(2) with data (◦) from Niño–Amézquita et al.
[38].
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A.5.2.5 Methane(1) + n-Heptane(2)

Figure A.12(a) shows the calculated phase envelopes of methane(1) + n-heptane(2) at the
temperatures reported in Warren and Hough [65]. At the pressures reported in Warren and
Hough [65], we depict our calculated liquid-phase compositions and vapor-phase compositions
with + and × symbols, respectively. Using the algorithm presented in Figure A.4, the critical
composition of the binary mixture is calculated at each temperature, as shown by the □ symbols.
In Figures A.12(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 with
fitting coefficients obtained from data in Amin and Smith [3] is compared to experimental
measurements from Warren and Hough [65] as a function of liquid-phase composition and
pressure, respectively. Figures A.12(d) and (e) show the difference between predicted surface
tension and surface tension measured experimentally by Warren and Hough [65] when using our
new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.

Figure A.13(a) shows the calculated phase envelopes of methane(1) + n-heptane(2) at
the temperatures reported in Amin and Smith [3]. At the pressures reported in Amin and
Smith [3], we depict our calculated liquid-phase compositions and vapor-phase compositions
with + and × symbols, respectively. Using the algorithm presented in Figure A.4, the critical
composition of the binary mixture is calculated at each temperature, as shown by the □ symbols.
In Figure A.13(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 is
compared to experimental measurements from Amin and Smith [3] as a function of liquid-
phase composition and pressure, respectively. Figures A.13(d) and (e) show the difference
between predicted surface tension and surface tension measured experimentally by Amin and
Smith [3] when using our new model (Equation (3.2) in Chapter 3) and the parachor model
(Equation (A.22)), respectively.
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Figure A.12: Results for methane(1) + n-heptane(2) with data (◦) from Warren and Hough
[65].
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Figure A.13: Results for methane(1) + n-heptane(2) with data (◦) from Amin and Smith [3].
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A.5.2.6 Methane(1) + n-Decane(2)

Figure A.14(a) shows the calculated phase envelopes of methane(1) + n-decane(2) at the
temperatures reported in Stegemeier et al. [60]. At the pressures reported in Stegemeier et

al. [60], we depict our calculated liquid-phase compositions and vapor-phase compositions
with + and × symbols, respectively. Using the algorithm presented in Figure A.4, the critical
composition of the binary mixture is calculated at each temperature, as shown by the □ symbols.
In Figures A.14(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 is
compared to experimental measurements from Stegemeier et al. [60] as a function of liquid-
phase composition and pressure, respectively. Figures A.14(d) and (e) show the difference
between predicted surface tension and surface tension measured experimentally by Stegemeier
et al. [60] when using our new model (Equation (3.2) in Chapter 3) and the parachor model
(Equation (A.22)), respectively.

Figure A.15(a) shows the calculated phase envelopes of methane(1) + n-decane(2) at the
temperatures reported in Amin and Smith [3]. At the pressures reported in Amin and Smith
[3], we depict our calculated liquid-phase compositions and vapor-phase compositions with
+ and × symbols, respectively. Using the algorithm presented in Figure A.4, the critical
composition of the binary mixture is calculated at each temperature, as shown by the □ symbols.
In Figures A.15(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 with
fitting coefficients obtained from data in Stegemeier et al. [60] is compared to experimental
measurements from Amin and Smith [3] as a function of liquid-phase composition and pressure,
respectively. Figures A.15(d) and (e) show the difference between predicted surface tension and
surface tension measured experimentally by Amin and Smith [3] when using our new model
(Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.

Figure A.16(a) shows the calculated phase envelopes of methane(1) + n-decane(2) at the
temperatures reported in Pereira et al. [44]. At the pressures reported in Pereira et al. [44], we
depict our calculated liquid-phase compositions and vapor-phase compositions with + and ×
symbols, respectively. Using the algorithm presented in Figure A.4, the critical composition
of the binary mixture is calculated at each temperature, as shown by the □ symbols. In
Figures A.16(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 with
fitting coefficients obtained from data in Stegemeier et al. [60] is compared to experimental
measurements from Pereira et al. [44] as a function of liquid-phase composition and pressure,
respectively. Figures A.16(d) and (e) show the difference between predicted surface tension
and surface tension measured experimentally by Pereira et al. [44] when using our new model
(Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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Figure A.14: Results for methane(1) + n-decane(2) with data (◦) from Stegemeier et al. [60].
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Figure A.15: Results for methane(1) + n-decane(2) with data (◦) from Amin and Smith [3].
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Figure A.16: Results for methane(1) + n-decane(2) with data (◦) from Pereira et al. [44].
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A.5.2.7 Carbon Dioxide(1) + n-Butane(2)

Figure A.17(a) shows the calculated phase envelopes of carbon dioxide(1) + n-butane(2) at the
temperatures reported in Hsu et al. [19]. At the pressures reported in Hsu et al. [19], we depict
our calculated liquid-phase compositions and vapor-phase compositions with + and × symbols,
respectively. Using the algorithm presented in Figure A.4, the critical composition of the binary
mixture is calculated at each temperature, as shown by the □ symbols. In Figures A.17(b) and
(c), surface tension calculated using Equation (3.2) in Chapter 3 is compared to experimental
measurements from Hsu et al. [19] as a function of liquid-phase composition and pressure,
respectively. Figures A.17(d) and (e) show the difference between predicted surface tension
and surface tension measured experimentally by Hsu et al. [19] when using our new model
(Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)).
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Figure A.17: Results for carbon dioxide(1) + n-butane(2) with data (◦) from Hsu et al. [19].
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A.5.2.8 Carbon Dioxide(1) + n-Heptane(2)

Figure A.18(a) shows the calculated phase envelopes of carbon dioxide(1) + n-heptane(2) at
the temperatures reported in Niño-Amézquita et al. [37]. At the pressures reported in Niño-
Amézquita et al. [37], we depict our calculated liquid-phase compositions and vapor-phase
compositions with + and × symbols, respectively. Using the algorithm presented in Figure A.4,
the critical composition of the binary mixture is calculated at each temperature, as shown by
the □ symbols. In Figures A.18(b) and (c), surface tension calculated using Equation (3.2)
in Chapter 3 is compared to experimental measurements from Niño-Amézquita et al. [37]
as a function of liquid-phase composition and pressure. Figures A.18(d) and (e) show the
difference between predicted surface tension and surface tension measured experimentally by
Niño-Amézquita et al. [37] when using our new model (Equation (3.2) in Chapter 3) and the
parachor model (Equation (A.22)), respectively.

Figure A.19(a) shows the calculated phase envelopes of carbon dioxide(1) + n-heptane(2)
at the temperatures reported in Jaeger et al. [20]. At the pressures reported in Jaeger et

al. [20], we depict our calculated liquid-phase compositions and vapor-phase compositions
with + and × symbols, respectively. Using the algorithm presented in Figure A.4, the critical
composition of the binary mixture is calculated at each temperature, as shown by the □ symbols.
In Figures A.19(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 with
fitting coefficients obtained from data in Niño-Amézquita et al. [37] is compared to experimental
measurements from Jaeger et al. [20] as a function of liquid-phase composition and pressure,
respectively. Figures A.19(d) and (e) show the difference between predicted surface tension
and surface tension measured experimentally by Jaeger et al. [20] when using our new model
(Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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Figure A.18: Results for carbon dioxide(1) + n-heptane(2) with data (◦) from Niño-Amézquita
et al. [37].
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Figure A.19: Results for carbon dioxide(1) + n-heptane(2) with data (◦) from Jaeger et al. [20].
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A.5.2.9 Dodecane(1) + Benzene(2)

Figure A.20(a) shows the calculated phase envelopes of dodecane(1) + benzene(2) at the
temperatures reported in Schmidt et al. [53]. At the liquid compositions reported in Schmidt et

al. [53], we depict our calculated bubble pressures and vapor-phase compositions with + and
× symbols, respectively. In Figure A.20(b), surface tension calculated using Equation (3.2) in
Chapter 3 is compared to experimental measurements from Schmidt et al. [53] as a function
of liquid-phase composition. Figures A.20(c) and (d) show the difference between predicted
surface tension and surface tension measured experimentally by Schmidt et al. [53] when
using our new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)),
respectively.
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Figure A.20: Results for dodecane(1) + benzene(2) with data (◦) from Schmidt et al. [53].
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A.5.2.10 n-Hexane(1) + Benzene(2)

Figure A.21(a) shows the calculated phase envelopes of n-hexane(1) + benzene(2) at the
temperatures reported in Schmidt et al. [53]. At the liquid compositions reported in Schmidt et

al. [53], we depict our calculated bubble pressures and vapor-phase compositions with + and
× symbols, respectively. In Figure A.21(b), surface tension calculated using Equation (3.2) in
Chapter 3 is compared to experimental measurements from Schmidt et al. [53] as a function
of liquid-phase composition. Figures A.21(c) and (d) show the difference between predicted
surface tension and surface tension measured experimentally by Schmidt et al. [53] when
using our new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)),
respectively.
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Figure A.21: Results for n-hexane(1) + benzene(2) with data (◦) from Schmidt et al. [53].
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A.5.2.11 Cyclohexane(1) + Benzene(2)

Figure A.22(a) shows the calculated phase envelopes of cyclohexane(1) + benzene(2) at the
temperatures reported in Lam and Benson [25]. At the liquid compositions reported in Lam
and Benson [25], we depict our calculated bubble pressures and vapor-phase compositions
with + and × symbols, respectively. In Figure A.22(b), surface tension calculated using
Equation (3.2) in Chapter 3 with fitting coefficients obtained from data in Herrmann [18, 69] is
compared to experimental measurements from Lam and Benson [25] as a function of liquid-
phase composition. Figures A.22(c) and (d) show the difference between predicted surface
tension and surface tension measured experimentally by Lam and Benson [25] when using our
new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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Figure A.22: Results for cyclohexane(1) + benzene(2) with data (◦) from Lam and Benson
[25].
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Figure A.23(a) shows the calculated phase envelopes of cyclohexane(1) + benzene(2) at the
temperatures reported in Konobeev and Lyapin [24, 69]. At the liquid compositions reported
in Konobeev and Lyapin [24, 69], we depict our calculated bubble pressures and vapor-phase
compositions with + and × symbols, respectively. In Figure A.23(b), surface tension calculated
using Equation (3.2) in Chapter 3 with fitting coefficients obtained from data in Herrmann
[18, 69] is compared to experimental measurements from Konobeev and Lyapin [24, 69] as a
function of liquid-phase composition. Figures A.23(c) and (d) show the difference between
predicted surface tension and surface tension measured experimentally by Konobeev and Lyapin
[24, 69] when using our new model (Equation (3.2) in Chapter 3) and the parachor model
(Equation (A.22)), respectively.
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Figure A.23: Results for cyclohexane(1) + benzene(2) with data (◦) from Konobeev and Lyapin
[24, 69].
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Figure A.24(a) shows the calculated phase envelopes of cyclohexane(1) + benzene(2) at the
temperatures reported in Herrmann [18, 69]. At the liquid compositions reported in Herrmann
[18, 69], we depict our calculated bubble pressures and vapor-phase compositions with + and
× symbols, respectively. In Figure A.24(b), surface tension calculated using Equation (3.2) in
Chapter 3 is compared to experimental measurements from Herrmann [18, 69] as a function
of liquid-phase composition. Figures A.24(c) and (d) show the difference between predicted
surface tension and surface tension measured experimentally by Herrmann [18, 69] when
using our new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)),
respectively.

0 0.2 0.4 0.6 0.8 1

x
1
 or y

1

0.01

0.015

0.02

0.025

P
re

s
s
u
re

, 
P

 (
M

P
a
)

293.15 K

298.15 K

303.15 K

313.15 K

(a) Calculated bubble pressures (+) and vapor (×)
compositions at the temperatures and liquid
compositions in Herrmann [18, 69].

0 0.2 0.4 0.6 0.8 1

Liquid mole fraction, x
1

22

23

24

25

26

27

28

29

S
u
rf

a
c
e
 t
e
n
s
io

n
, 

 (
m

N
/m

)

293.15 K

298.15 K

303.15 K

313.15 K

New model fit

New model prediction

Parachor prediction

(b) Surface tension fit (black dashed line) and
predictions (solid lines) vs. liquid composition at
elevated temperatures using our new model.
Parachor predictions are shown by dotted lines.

0 0.2 0.4 0.6 0.8 1

Liquid mole fraction, x
1

-1

-0.5

0

0.5

1

p
re

d
 -

 
e

x
p
 (

m
N

/m
)

298.15 K

303.15 K

313.15 K

(c) Difference between predicted and
experimental surface tension as a function of
composition using our new model (▽).

0 0.2 0.4 0.6 0.8 1

Liquid mole fraction, x
1

-1

-0.5

0

0.5

1

p
re

d
 -

 
e

x
p
 (

m
N

/m
)

298.15 K

303.15 K

313.15 K

(d) Difference between predicted and
experimental surface tension as a function of
composition using the parachor model (△).

Figure A.24: Results for cyclohexane(1) + benzene(2) with data (◦) from Herrmann [18, 69].
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A.5.2.12 Carbon Tetrachloride(1) + Methyl Iodide(2)

Figure A.25(a) shows the calculated phase envelopes of carbon tetrachloride(1) + methyl
iodide(2) at the temperatures reported in Teixeira et al. [63]. At the liquid compositions
reported in Teixeira et al. [63], we depict our calculated bubble pressures and vapor-phase
compositions with + and × symbols, respectively. In Figure A.25(b), surface tension calculated
using Equation (3.2) in Chapter 3 is compared to experimental measurements from Teixeira et

al. [63] as a function of liquid-phase composition. Figures A.25(c) and (d) show the difference
between predicted surface tension and surface tension measured experimentally by Teixeira
et al. [63] when using our new model (Equation (3.2) in Chapter 3) and the parachor model
(Equation (A.22)), respectively.
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Figure A.25: Results for carbon tetrachloride(1) + methyl iodide(2) with data (◦) from Teixeira
et al. [63].
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A.5.2.13 Carbon Tetrachloride(1) + Acetonitrile(2)

Figure A.26(a) shows the calculated phase envelopes of carbon tetrachloride(1) + acetonitrile(2)
at the temperatures reported in Teixeira et al. [63]. At the liquid compositions reported in
Teixeira et al. [63] we depict our calculated bubble pressures and vapor-phase compositions with
+ and × symbols, respectively. In Figure A.26(b), surface tension calculated using Equation (3.2)
in Chapter 3 is compared to experimental measurements from Teixeira et al. [63] as a function
of liquid-phase composition. Figures A.26(c) and (d) show the difference between predicted
surface tension and surface tension measured experimentally by Teixeira et al. [63] when
using our new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)),
respectively.
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Figure A.26: Results for carbon tetrachloride(1) + acetonitrile(2) with data (◦) from Teixeira et
al. [63].
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A.5.2.14 Carbon Tetrachloride(1) + Carbon Disulfide(2)

Figure A.27(a) shows the calculated phase envelopes of carbon tetrachloride(1) + carbon
disulfide(2) at the temperatures reported in Luengo et al. [29]. At the liquid compositions
reported in Luengo et al. [29] we depict our calculated bubble pressures and vapor-phase
compositions with + and × symbols, respectively. In Figure A.27(b), surface tension calculated
using Equation (3.2) in Chapter 3 is compared to experimental measurements from Luengo et

al. [29] as a function of liquid-phase composition. Figures A.27(c) and (d) show the difference
between predicted surface tension and surface tension measured experimentally by Luengo
et al. [29] when using our new model (Equation (3.2) in Chapter 3) and the parachor model
(Equation (A.22)), respectively.
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Figure A.27: Results for carbon tetrachloride(1) + carbon disulfide(2) with data (◦) from
Luengo et al. [29].
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A.5.2.15 Dichloromethane(1) + Carbon Disulfide(2)

Figure A.28(a) shows the calculated phase envelopes of dichloromethane(1) + carbon disulfide(2)
at the temperatures reported in Aracil et al. [4]. At the liquid compositions reported in Aracil
et al. [4], we depict our calculated bubble pressures and vapor-phase compositions with + and
× symbols, respectively. In Figure A.28(b), surface tension calculated using Equation (3.2)
in Chapter 3 is compared to experimental measurements from Aracil et al. [4] as a function
of liquid-phase composition. Figures A.28(c) and (d) show the difference between predicted
surface tension and surface tension measured experimentally by Aracil et al. [4] when using our
new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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Figure A.28: Results for dichloromethane(1) + carbon disulfide(2) with data (◦) from Aracil et
al. [4].
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A.6 Discussion of Excluded Datasets

A.6.1 Methane(1) + n-Pentane(2)

Li and Firoozabadi [26] and Garrido and Polishuk [14] noted that the surface tensions reported
in Amin and Smith [3] are too high for the listed temperatures of 366.48 K and 410.93 K. When
we perform flash calculations at these temperatures and reported pressures (Figure A.29(a)), we
observe that at pressures above ∼12 MPa, the system is expected to be in the single phase region
at 410.93 K, which suggests that experiments could not, in fact, be conducted at this temperature.
Thus, it appears that, instead, the reported temperatures were too high, rather than the surface
tension values being too high. Figure A.29(b) shows the fit of our new model to data at 310.93 K
with x1,cr = 0.799, yielding coefficients a =−1.74±1.72 and b = 1.77±0.74 with a standard
deviation of 0.43 mN/m, as well as showing predictions of surface tension at the reported
temperatures (solid lines) using our model (x1,cr (366.48 K) = 0.697 and x1,cr (410.98 K) =

0.546) and the parachor model (dotted lines).
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Figure A.29: Results for methane(1) + n-pentane(2) with data from Amin and Smith [3]
using the reported temperatures. (a) Calculated liquid (+) and vapor (×) compositions at the
pressures and temperatures in Amin and Smith [3] and calculated critical compositions (□). (b)
Experimental surface tension (◦), fit of our new model to experimental data (black dashed line),
predicted surface tension using our new model (solid lines), and predicted surface tension using
the parachor model (dotted lines) as a function of methane liquid mole fraction at the reported
temperatures.

The same paper that studies methane(1) + n-pentane(2) mixtures also reports surface tension
data for methane(1) + n-heptane(2) and methane(1) + n-decane(2) [3]. As printed, the tempera-
tures for methane(1) + n-pentane(2) are the same as those for the n-decane mixture (310.93 K,
366.48 K, and 410.93 K). We suggest that the temperatures for methane(1) + n-pentane(2)
should instead be the same as the lowest three listed for methane(1) + n-heptane(2) (310.93 K,
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338.71 K, and 366.48 K). By assuming so, flash calculations yield a two-phase state at the
reported pressures, and surface tension values are accurately predicted (x1,cr (338.71 K) = 0.756
and x1,cr (366.48 K) = 0.697), as illustrated in Figure A.30. Although they yield accurate
results, these temperatures are speculative, however, and thus we do not include this system in
our analysis in Chapter 3.
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Figure A.30: Results for methane(1) + n-pentane(2) with data from Amin and Smith [3] using
new temperatures. (a) Calculated liquid (+) and vapor (×) compositions at the pressures in
Amin and Smith [3] and calculated critical compositions (□) at 338.71 K and 366.48 K. (b)
Experimental surface tension (◦), fit of our new model to experimental data (black dashed line),
predicted surface tension using our new model (solid lines), and predicted surface tension using
the parachor model (dotted lines) as a function of methane liquid mole fraction, but at 338.71 K
and 366.48 K instead of 366.48 K and 410.93 K, respectively, reported in Amin and Smith [3].
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A.6.2 Methane(1) + n-Octane(2)

Figure A.31(a) shows the calculated phase envelopes of methane(1) + n-octane(2) at the tem-
peratures reported in Peng et al. [40]. At the pressures reported in Peng et al. [40], we depict
our calculated liquid-phase compositions and vapor-phase compositions with + and × symbols,
respectively. Using the algorithm presented in Figure A.4, the critical composition of the
binary mixture is calculated at each temperature, as shown by the □ symbol and summarized in
Table A.10.

Table A.10: Our calculated critical composition of methane as a function of the temperatures
listed in Peng et al. [40] for methane(1) + n-octane(2).

methane(1)
+

Temperature
[K]

Critical Composition
x1,cr

Data Reference

n-octane(2)

274.20
276.20
278.20
280.20
282.20

0.889
0.889
0.888
0.888
0.887

Peng et al. [40]

In Figures A.31(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 is
compared to experimental measurements from Peng et al. [40] as a function of liquid-phase
composition and pressure, respectively. It can be seen that the mixture surface tension data do
not limit to the pure component surface tension determined by the Mulero et al. correlation
[33] (Equation (3.6) in Chapter 3) as a function of temperature, and thus we exclude this dataset
from consideration in Chapter 3. Figures A.31(d) and (e) show the difference between predicted
surface tension and surface tension measured experimentally by Peng et al. [40] when using our
new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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(c) Same as (b), but vs. pressure.
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Figure A.31: Results for methane(1) + n-octane(2) with data (◦) from Peng et al. [40].
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A.6.3 Methane(1) + n-Nonane(2)

Figure A.32(a) shows the calculated phase envelopes of methane(1) + n-nonane(2) at the
temperatures reported in Deam and Maddox [8]. At the pressures reported in Deam and
Maddox [8], we depict our calculated liquid-phase compositions and vapor-phase compositions
with + and × symbols, respectively. Using the algorithm presented in Figure A.4, the critical
composition of the binary mixture is calculated at each temperature, as shown by the □ symbol
and listed in Table A.11.

Table A.11: Our calculated critical composition of methane as a function of the temperatures
listed in Deam and Maddox [8] for methane(1) + n-nonane(2).

methane(1)
+

Temperature
[K]

Critical Composition
x1,cr

Data Reference

n-nonane(2)

238.71
249.82
272.04
297.04

0.903
0.903
0.900
0.895

Deam and Maddox [8]

In Figures A.32(b) and (c), surface tension calculated using Equation (3.2) in Chapter
3 is compared to experimental measurements from Deam and Maddox [8] as a function of
liquid-phase composition and pressure, respectively. The fitting coefficients obtained from
the data at 238.71 K were a =−4.7±22.15 and b = 2.62±9.21. Although these coefficients
can accurately predict surface tension at higher temperatures, the obtained 95% confidence
intervals are at least an order of magnitude larger than those for the systems in Chapter 3
(Table 3.2 in Chapter 3). Such large confidence intervals are directly because large changes in
coefficients yield only small changes in the predicted surface tension (via the Jacobian). For this
dataset in particular, this result is likely due to the small number of data points over a narrow
range of compositions being insufficient to capture the functional form. As a result, the fitting
procedure iterates towards coefficients with larger magnitudes that result in larger confidence
intervals. Figures A.32(d) and (e) show the difference between predicted surface tension and
surface tension measured experimentally by Deam and Maddox [8] when using our new model
(Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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(c) Same as (b), but vs. pressure.

0 0.1 0.2 0.3 0.4

Liquid mole fraction, x
1

-3

-2

-1

0

1

2

3

p
re

d
 -

 
e

x
p
 (

m
N

/m
)

249.82 K

272.04 K

297.04 K

(d) Difference between predicted and
experimental surface tension as a function of
composition using our new model (▽).

0 0.1 0.2 0.3 0.4

Liquid mole fraction, x
1

-3

-2

-1

0

1

2

3

p
re

d
 -

 
e

x
p
 (

m
N

/m
)

249.82 K

272.04 K

297.04 K

(e) Difference between predicted and
experimental surface tension as a function of
composition using the parachor model (△).

Figure A.32: Results for methane(1) + n-nonane(2) with data (◦) from Deam and Maddox [8].
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A.6.4 Carbon Dioxide(1) + n-Heptane(2)

Figure A.33(a) shows the calculated phase envelopes of carbon dioxide(1) + n-heptane(2) at the
temperatures reported in Zolghadr et al. [70]. At the pressures reported in Zolghadr et al. [70],
we depict our calculated liquid-phase compositions and vapor-phase compositions with + and ×
symbols, respectively. Using the algorithm presented in Figure A.4, the critical composition of
the binary mixture is calculated at each temperature, as shown by the □ symbol and listed in
Table A.12.

Table A.12: Our calculated critical composition of carbon dioxide as a function of the tempera-
tures listed in Zolghadr et al. [70] for carbon dioxide(1) + n-heptane(2).

methane(1)
+

Temperature
[K]

Critical Composition
x1,cr

Data Reference

n-heptane(2)

313.15
333.15
353.15
373.15
393.15

0.980
0.931
0.885
0.848
0.813

Zolghadr et al. [70]

In Figures A.33(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 with
fitting coefficients obtained from data in Niño-Amézquita et al. [37] is compared to experimental
measurements from Zolghadr et al. [70] as a function of liquid-phase composition and pressure,
respectively. The limiting values of pure n-heptane surface tension are up to 2 mN/m lower
than the Mulero et al. correlation [33] (Equation (3.6) in Chapter 3), and the mixture data is
also consistently lower than reported in Niño-Amézquita et al. [37] and Jaeger et al. [20] at
353.15 K. Figures A.33(d) and (e) show the difference between predicted surface tension and
surface tension measured experimentally by Zolghadr et al. [70] when using our new model
(Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.
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Figure A.33: Results for carbon dioxide(1) + n-heptane(2) with data (◦) from Zolghadr et al.
[70].
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A.6.5 Carbon Dioxide(1) + n-Decane(2)

For this system, we calculate the critical compositions at each temperature from three literature
sources, as listed in Table A.13. All three fitting procedures completed on data from these
different literature sources yielded coefficients with very large 95% confidence intervals. As
discussed for the methane(1) + n-nonane(2) system, this is directly due to the Jacobian of our
model (Equation (3.2) in Chapter 3) with respect to the fitting coefficients.

In Nagarajan and Robinson [34] and Pereira et al. [44], we attribute the large confidence
intervals to the narrow range of liquid-phase compositions available at the lowest temperature.
For the dataset with the widest range of liquid-phase compositions (Georgiadis et al. [15]), both
the fitting coefficients and their confidence intervals are orders of magnitude smaller than those
obtained for the datasets with narrow ranges of composition.

Table A.13: Our calculated critical composition of carbon dioxide as a function of the tempera-
tures listed for carbon dioxide(1) + n-decane(2).

methane(1)
+

Temperature
[K]

Critical Composition
x1,cr

Data Reference

n-decane(2)

344.30
377.60

0.914
0.894 Nagarajan and Robinson [34]

297.95
323.35
343.55
373.45
403.05
443.05

1.000
0.969
0.915
0.897
0.876
0.841

Georgiadis et al. [15]

313.50
343.20
392.70
442.50

0.990
0.915
0.884
0.842

Pereira et al. [44]

Figure A.34(a) shows the calculated phase envelopes of carbon dioxide(1) + n-decane(2)
at the temperatures reported in Nagarajan and Robinson [34]. At the pressures reported in
Nagarajan and Robinson [34], we depict our calculated liquid-phase compositions and vapor-
phase compositions with + and × symbols, respectively. Using the algorithm presented in
Figure A.4, the critical composition of the binary mixture is calculated at each temperature,
as shown by the □ symbol. In Figures A.34(b) and (c), surface tension calculated using
Equation (3.2) in Chapter 3 is compared to experimental measurements from Nagarajan and
Robinson [34] as a function of liquid-phase composition and pressure, respectively. The
coefficients from fitting to data at 344.3 K were a =−41.24±50.80 and b = 4.84±5.04, and
these were used for making predictions at an elevated temperature. Figures A.34(d) and (e) show
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the difference between predicted surface tension and surface tension measured experimentally
by Nagarajan and Robinson [34] when using our new model (Equation (3.2) in Chapter 3) and
the parachor model (Equation (A.22)), respectively.

Figure A.35(a) shows the calculated phase envelopes of carbon dioxide(1) + n-decane(2)
at the temperatures reported in Georgiadis et al. [15]. At the pressures reported in Georgiadis
et al. [15], we depict our calculated liquid-phase compositions and vapor-phase compositions
with + and × symbols, respectively. Using the algorithm presented in Figure A.4, the critical
composition of the binary mixture is calculated at each temperature, as shown by the □ symbol.
In Figures A.35(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 is
compared to experimental measurements from Georgiadis et al. [15] as a function of liquid-
phase composition and pressure, respectively. The coefficients from fitting to data at 297.95 K
were a = −2.02±25.65 and b = 0.32±1.98, and these were used for making predictions at
elevated temperatures. Figures A.35(d) and (e) show the difference between predicted surface
tension and surface tension measured experimentally by Georgiadis et al. [15] when using our
new model (Equation (3.2) in Chapter 3) and the parachor model (Equation (A.22)), respectively.

Figure A.36(a) shows the calculated phase envelopes of carbon dioxide(1) + n-decane(2)
at the temperatures reported in Pereira et al. [44]. At the pressures reported in Pereira et

al. [44], we depict our calculated liquid-phase compositions and vapor-phase compositions
with + and × symbols, respectively. Using the algorithm presented in Figure A.4, the critical
composition of the binary mixture is calculated at each temperature, as shown by the □ symbol.
In Figures A.36(b) and (c), surface tension calculated using Equation (3.2) in Chapter 3 is
compared to experimental measurements from Pereira et al. [44] as a function of liquid-phase
composition and pressure, respectively. The coefficients from fitting to data at 313.50 K
were a = −3.3 × 104 ± 7.1 × 108 and b = 3.9 × 103 ± 8.5 × 107, and these were used for
making predictions at elevated temperatures. Figures A.36(d) and (e) shows the difference
between predicted surface tension and surface tension measured experimentally by Pereira
et al. [44] when using our new model (Equation (3.2) in Chapter 3) and the parachor model
(Equation (A.22)), respectively.
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Figure A.34: Results for carbon dioxide(1) + n-decane(2) with data (◦) from Nagarajan and
Robinson [34].
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Figure A.35: Results for carbon dioxide(1) + n-decane(2) with data (◦) from Georgiadis et al.
[15].
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Figure A.36: Results for carbon dioxide(1) + n-decane(2) with data (◦) from Pereira et al. [44].
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A.6.6 Cyclohexane(1) + Benzene(2)

Figure A.37(a) shows the calculated phase envelopes of cyclohexane(1) + benzene(2) at the
temperatures reported in Suri and Ramakrishna [62]. At the liquid compositions reported
in Suri and Ramakrishna [62], we depict our calculated bubble pressures and vapor-phase
compositions with + and × symbols, respectively. In Figure A.37(b), surface tension calculated
using Equation (3.2) in Chapter 3 with fitting coefficients obtained from data in Herrmann [18,
69] is compared to experimental measurements from Suri and Ramakrishna [62] as a function
of liquid-phase composition. When compared to the data from the three other literature sources
for this system [18, 24, 25], the surface tension measurements at 303.15 K are consistently
higher. We thus exclude this data source from consideration. Figures A.37(c) and (d) shows the
difference between predicted surface tension and surface tension measured experimentally by
Suri and Ramakrishna [62] when using our new model (Equation (3.2) in Chapter 3) and the
parachor model (Equation (A.22)), respectively.
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Figure A.37: Results for cyclohexane(1) + benzene(2) with data (◦) from Suri and Ramakrishna
[62].
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A.7 Discussion of Ternary Mixture Data and Predictions

For multicomponent mixtures, we developed Equation (3.3) in Chapter 3 where the coefficients
a ji and b ji are obtained from fitting to surface tension vs. composition data for each binary
system (component i + component j) that comprises the multicomponent mixture. In the next
two subsections, we use Equation (3.3) to predict the surface tension of two ternary mixtures:
methanol(1) + ethanol(2) + water(3) and carbon dioxide(1) + n-butane(2) + n-decane(3).

A.7.1 Methanol(1) + Ethanol(2) + Water(3)

For the ternary mixture of methanol(1) + ethanol(2) + water(3), we use a linear equation for
the temperature-dependence of each pure component’s surface tension (σi = θ0,i +θ1,iT with
coefficients listed in Table A.14; [55]). For the composition-dependence of each constituent
binary mixture’s surface tension, we use the coefficients obtained in our previous work for
methanol(1) + water(3) and ethanol(2) + water(3) [55] (Table A.15), while methanol(1) +
ethanol(2) can be considered an ideal mixture [24, 69] so that a21 = 0, b21 = 0, and b21/a21 = 1.

Table A.14: Coefficients from Chapter 2 [55] to describe the surface tension of pure methanol,
ethanol, and water as a function of temperature using the equation σi = θ0,i +θ1,iT where σi is
in mN/m and T is in K.

Component θ0 [mN/m] θ1 [mN/m/K]

methanol 50.0 −0.092
ethanol 46.3 −0.082
water 120.5 −0.163

Table A.15: Coefficients for use in Equation (3.3) (Chapter 3) to describe the
composition-dependence of surface tension for binary mixtures of methanol(1) + ethanol(2),
methanol(1) + water(3), and ethanol(2) + water(3). The coefficients for the aqueous mixtures
were obtained in Chapter 2 [55] by fitting to experimental data at 293 K.

Mixture a ji b ji

methanol(1) + ethanol(2) 0 0
methanol(1) + water(3) 0.8709 0.8314
ethanol(2) + water(3) 0.9583 0.9176

Figure A.38 shows all experimental measurements of surface tension as reported in Kharin
et al. [22] and all predictions using Equation (3.3) in Chapter 3. Overall, the agreement between
experimental measurements and predictions is good with an average absolute deviation of
0.71 mN/m and 2.54%.

237



A
PPE

N
D

IX
A

.
SU

PPL
E

M
E

N
TA

RY
IN

FO
R

M
A

T
IO

N
FO

R
C

H
A

PT
E

R
3

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.073; x
eth

= 0.152; x
water

= 0.776

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.154; x
eth

= 0.161; x
water

= 0.685

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.095; x
eth

= 0.397; x
water

= 0.508

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.132; x
eth

= 0.046; x
water

= 0.822

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.079; x
eth

= 0.220; x
water

= 0.702

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.086; x
eth

= 0.300; x
water

= 0.614

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.390; x
eth

= 0.054; x
water

= 0.555

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.209; x
eth

= 0.048; x
water

= 0.743

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.294; x
eth

= 0.051; x
water

= 0.654

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.063; x
eth

= 0.044; x
water

= 0.893

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u

rf
a

c
e

 t
e

n
s
io

n
,

(m
N

/m
)

x
meth

= 0.142; x
eth

= 0.099; x
water

= 0.759

238



A
PPE

N
D

IX
A

.
SU

PPL
E

M
E

N
TA

RY
IN

FO
R

M
A

T
IO

N
FO

R
C

H
A

PT
E

R
3

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

x
meth

= 0.350; x
eth

= 0.183; x
water

= 0.467

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

x
meth

= 0.270; x
eth

= 0.250; x
water

= 0.480

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

x
meth

= 0.185; x
eth

= 0.322; x
water

= 0.493

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

x
meth

= 0.299; x
eth

= 0.347; x
water

= 0.354

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

x
meth

= 0.206; x
eth

= 0.429; x
water

= 0.366

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

x
meth

= 0.622; x
eth

= 0.062; x
water

= 0.316

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

x
meth

= 0.548; x
eth

= 0.127; x
water

= 0.325

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

x
meth

= 0.470; x
eth

= 0.196; x
water

= 0.334

270 280 290 300 310 320 330 340

Temperature, T (K)

20

25

30

35

40

45

S
u
rf

a
c
e
 t
e
n
s
io

n
,

(m
N

/m
)

x
meth

= 0.387; x
eth

= 0.269; x
water

= 0.344

Figure A.38: Surface tension as a function of temperature for mixtures containing methanol(1) + ethanol(2) + water(3), as measured
experimentally (◦) by Kharin et al. [22] and as predicted by Equation (3.3) in Chapter 3 (lines). The mixture compositions (mole fractions
of each component computed from the reported weight fractions) are shown in the title of each graph. No fitting coefficients need to be
extracted from surface tension data of the ternary mixture.
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A.7.2 Carbon Dioxide(1) + n-Butane(2) + n-Decane(3)

We test the ability of Equation (3.3) in Chapter 3 to predict the surface tension of carbon
dioxide(1) + n-butane(2) + n-decane(3) measured experimentally by Nagarajan et al. [35], who
studied a mixture with an overall molar composition of 90.2% carbon dioxide, 5.9% n-butane,
and 3.9% n-decane at a temperature of 344.3 K and varying pressures. Four quantities need to
be known to evaluate Equation (3.3) in Chapter 3: (i) the pure component surface tensions, (ii)
the binary surface tension parameters a ji and b ji, (iii) the liquid-phase compositions, and (iv)
the critical composition.

For (i), the pure component surface tension temperature dependence in Equation (3.3), we
use the Mulero et al. correlation [33] (Equation (3.6)) with coefficients in Table A.4. For (ii),
we use the coefficients previously obtained for carbon dioxide(1) + n-butane(2) (see Table 3.2
in Chapter 3) and carbon dioxide(1) + n-decane(3) (see Section A.6.5, as summarized in
Table A.16, where we consider two sets of coefficients for carbon dioxide(1) + n-decane(3)).
We treat n-butane(2) + n-decane(3) as an ideal mixture that can be described by σmix = ∑σixi

based on data reported in Deam and Maddox [8] (after performing flash calculations with the
PR-EOS assuming a binary interaction coefficient of k23 = 0), as illustrated in Figure A.39.

Table A.16: Coefficients for use in Equation (3.3) in Chapter 3 to describe the composition-
dependence of surface tension for carbon dioxide(1) + n-decane(3) from Section A.6.5 and for
n-butane(2) + n-decane(3).

Mixture a ji b ji Data Reference

carbon dioxide(1) + n-decane(3)
−41.24 4.84 Nagarajan and Robinson [34]
−2.02 0.32 Georgiadis et al. [15]

n-butane(2) + n-decane(3) 0 0 Deam and Maddox [8]

For (iii), the liquid-phase compositions at the experimental conditions, we perform flash
calculations given the pressure and overall composition using Equations (A.2)–(A.15) in Sec-
tion A.1. For these vapor–liquid equilibrium calculations, we use binary interaction coefficients
of k12 = 0.12, k13 = 0.11, and k23 = 0.

For (iv), the critical composition of this ternary mixture, we adapt the algorithm developed in
Section A.2 for a binary mixture to perform flash calculations instead of bubble point calculations.
This is because the addition of a third component increases the degrees of freedom for vapor–
liquid equilibrium by one, and to meet this increase, we specify the overall composition of the
mixture at each step of the iterative scheme in addition to temperature and pressure. As our
initial guess to the iterative algorithm, we set the composition of carbon dioxide to 85% (around
the experimental molar composition), while keeping the ratio of the other two components the
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Figure A.39: Surface tension as a function of n-butane liquid mole fraction (x2) for the system
n-butane(2) + n-decane(3), as measured experimentally by Deam and Maddox [8] at 310.93 K
(◦) and as predicted by the linear equation σmix = ∑σixi where pure component values are
obtained from the Mulero et al. correlation [33] (Equation (3.6) in Chapter 3; shown by ×
symbols).

same as studied experimentally (a pseudo-binary mixture). That is, given this mole fraction of
carbon dioxide, we split the remaining mole fraction with 60% going to n-butane and 40% to
n-decane (based on the ratio of these components in the experimental molar composition of
5.9% n-butane and 3.9% n-decane). At this initial composition, we perform a flash calculation
at 9 MPa using the PR-EOS to determine the liquid and vapor-phase compositions. For the
next iteration, we take the average of the calculated liquid and vapor-phase carbon dioxide
composition as the new overall carbon dioxide composition, adjust the n-butane and n-decane
compositions [z2 = 0.6(1− z1) and z3 = 0.4(1− z1)], and perform a flash calculation at an
increased pressure at this new overall composition. Further flash calculations are performed until
the difference between vapor and liquid phase compositions is less than a threshold value. Using
this approach, we calculate a critical composition of carbon dioxide of x1,cr(344.3 K) = 0.867.

The above four quantities ((i) the pure component surface tensions, (ii) the binary surface
tension parameters a ji and b ji, (iii) the liquid-phase compositions, and (iv) the critical composi-
tion) are substituted into Equation (3.3) in Chapter 3 at each experimental pressure reported in
Nagarajan et al. [35] to yield predictions of surface tension. Figure A.40 shows predictions of
surface tension as a function of pressure when a31 =−41.24 and b31 = 4.84 (from a fit to surface
tension data in Nagarajan and Robinson [34]), while Figure A.41 shows predictions of surface
tension when a31 =−2.02 and b31 = 0.32 (from a fit to surface tension data in Georgiadis et

al. [15]. The accuracy of the predictions is better when the coefficients obtained from a fit
to data in Nagarajan and Robinson [34] are used, and this is likely because these coefficients
were obtained from data at pressures close to the critical point. On the other hand, the critical
region was not experimentally considered in Georgiadis et al. [15], and therefore the coefficients
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obtained from the data do not adequately describe this region when used for predictions of the
ternary mixture in Figure A.41. Regardless of the selected values of a31 and b31, the level of
accuracy obtained with Equation (3.3) in Chapter 3 is comparable to the predictions of Cárdenas
and Mejı́a [7] obtained using density gradient theory with the variable-range Mie statistical
associated fluid theory (SAFT–VR Mie) equation of state, but higher accuracy was obtained by
Miqueu et al. [32] using density gradient theory with the volume-shifted PR-EOS.
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Figure A.40: Surface tension vs. pressure for carbon dioxide(1) + n-butane(2) + n-decane(3),
as measured experimentally by Nagarajan et al. [35] (◦) and as predicted using Equation (3.3)
in Chapter 3 (line) with a31 =−41.24 and b31 = 4.84 as obtained by fitting to surface tension
data for carbon dioxide(1) + n-decane(3) in Nagarajan and Robinson [34].
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Figure A.41: Surface tension vs. pressure for carbon dioxide(1) + n-butane(2) + n-decane(3),
as measured experimentally by Nagarajan et al. [35] (◦) and as predicted using Equation (3.3)
in Chapter 3 (line) with a31 =−2.02 and b31 = 0.32 as obtained by fitting to surface tension
data for carbon dioxide(1) + n-decane(3) in Georgiadis et al. [15].

We briefly emphasize that the coefficients used for carbon dioxide(1) + n-decane(3) all have
very large confidence intervals, as discussed in Section A.6.5, and they are only used here as
a conceptual test of the functional form of Equation (3.3) in Chapter 3 for multicomponent
mixtures.
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A.8 Importance of Surface Tension in Vapor–Liquid

Equilibrium at the Nanoscale (Nitrogen(1) + Argon(2))

As a case study, we examine the effect of surface tension on the calculations of dew points
for nitrogen(1) + argon(2) mixtures in nanopores. Figure A.42(a) illustrates dew point pre-
dictions when Equation (3.1) in Chapter 3 is used to describe how surface tension changes
with composition and temperature (see the governing equations for dew point in Chapter 5
[56]), and it can be seen that the predicted dew points are in close agreement with experimental
measurements (symbols) for both geometries of adsorption and desorption. In contrast, Fig-
ure A.42(b) shows the resulting predictions of dew point if variations in surface tension due
to composition are included, but at a constant temperature of 84 K (the temperature for which
experimental surface tension is available)—the deviation becomes increasingly poor as the
importance of surface tension effects increases (i.e., for r =−2 nm compared to r =−4 nm).
Finally, in Figure A.42(c), we show dew point predictions obtained when surface tension is
fixed at one value irrespective of composition and temperature (here, we choose the average of
the pure component surface tension values at 84 K), where again, dew point predictions deviate
more from experimental measurements as surface tension effects become more significant. We
thus emphasize the importance of an accurate description of surface tension as a simultaneous
function of composition and temperature, especially where experimental data is unavailable.
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Figure A.42: Dew point predictions (not fits; governing equations are from Chapter 5; Ref.
[56]) for nitrogen(1) + argon(2) in Vycor glass with a pore radius of 2 nm at a vapor-phase
pressure of 300 kPa (experimental data is from Alam et al. [2], and the adsorption/desorption
model is adapted from Donohue and Aranovich [10]). We highlight the importance of surface
tension in dictating the accuracy of the prediction: (a) dew points calculated using surface
tension as a function of composition and temperature as described by Equation (3.1) in Chapter
3 with fitting coefficients from Chapter 5 [56] (a version of this plot was previously shown in
Chapter 5 [56]); (b) dew points calculated using surface tension as a function of composition,
but at a temperature of 84 K (the only temperature for which experimental data is available);
and (c) dew points calculated using the surface tension of an equimolar nitrogen(1) + argon(2)
mixture at 84 K. Dew point predictions are accurate when both composition and temperature
effects are accounted for—in (a).
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