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Abstract 

I present a non-orthogonal and overcomplete set of states that spans the        Hilbert 

subspace for a fermionic system with four possible spin configurations per site, on a half-

filled lattice with an even number of sites.  This set consists of possible pairing of the 

spins into three bond types:  singlet bonds and positive and negative charge bonds.  

Although I present the specific case for the half-filled Hubbard model in one-dimension, 

these sets of states can be trivially extended to higher dimensions.  The overlap of these 

generalized valence bond states form closed loops with properties that are related to 

operator expectation values in this basis.  I verify the correctness of this basis by solving 

the model via exact diagonalization and comparing with known results.  There is 

evidence of structure in the ground state that may be useful to simulations using 

variational wave functions. 
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Chapter 1 

Introduction 

In the simplest models of electrons in a solid, the regular arrangement of constituent 

atoms is represented by a lattice of sites, and each site is endowed with a single orbital 

that can accommodate up to two electrons.  For example, the three low-dimensional 

lattices shown in Figure 1 may be realized in layered or highly anisotropic materials. 

 
Figure 1 – These are examples of common lattices in one and two spatial 

dimensions:  (a) the linear chain, (b) the square lattice, and (c) the triangular lattice. 

The Hubbard, Heisenberg, and Ising models are the simplest, nontrivial lattice models.  

The Heisenberg [1] and Ising [2] models are used to describe ferromagnetic (Figure 2a) 

and antiferromagnetic (Figure 2b) ordering.  Both models require a set of states that have 

exactly one spin per site (corresponding to the situation where one electron is localized at 

each site and charge fluctuations are quenched) and each spin assigned as an “up” or 

“down” (these spin assignments are also seen in Figure 2).  Physically, each spin 

represents a lone valence electron of the atom with that particular spin configuration.  The 

main and crucial difference between the two models is that the Ising model is a classical 

spin model (or a quantum one in the limit of strong spin anisotropy along an easy axis) 

and the Heisenberg model is a quantum spin model. 
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Figure 2 – (a) Classical 1D ferromagnet with all spins 

aligned and (b) classical 1D antiferromagnet with spins 

anti-aligned.  Spins are either “up” (red) or “down” (blue). 

The Hubbard model describes the electronic and magnetic properties of a lattice of 

interest.  The Hubbard Hamiltonian consists of a tight-binding term augmented by local 

Coulomb repulsion and requires one to work with a more general set of states than was 

needed in the case of the Heisenberg and Ising models.  The Hubbard model relaxes the 

condition of exactly one electron per site, allowing from zero up to two electrons on a 

single site with the condition that these two electrons must have opposite spin (i.e. one 

electron is spin “up” and other is spin “down”).  This is a requirement of the Pauli 

exclusion principle, which states that electrons with the same spin may not be in the same 

quantum state.  As a result there are four possible spin configurations for a given site 

(Figure 3). 

 
Figure 3 – Assignments of (a) vacancy, (b) spin “up”, (c) 

spin “down”, and (d) double occupancy for a given site. 

The pure tight-binding model is a free electron model in the sense that it does not include 

Coulomb interactions between electrons.  It does include Pauli exclusion principle, which 

is arguably a fundamental electron-electron interaction; in this sense, the electron is not 

completely free.  Nevertheless, this model describes freely-wandering (i.e. itinerant) 

electrons as is the case with simple metals.  This model describes electron motion by 

invoking the idea of electrons “hopping” between atoms.  Physically, electrons can “hop” 

between atoms because of quantum tunnelling [3][4].  And the probability that an 

electron will “hop” from its atomic orbital to an atomic orbital of another atom is a 

consequence of the overlap between the two atomic orbitals.  As a result, hopping 

between nearest-neighbour lattice sites dominates (as the atomic orbitals between these 

two atoms usually have the largest overlap).  Sometimes nearest-neighbour and next-

nearest-neighbour hopping are allowed if the overlap between atomic orbitals between 

next-nearest-neighbours is large enough to consider.  Usually, there is no need to add 

hopping between lattice sites that are separated any more than next-nearest-neighbours, 

since the hopping amplitudes drop off exponentially with distance.  The following figure 

illustrates the concept of hopping. 
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Figure 4 – (a) Electron may hop from one site to another.  (b) The 

likelihood that an electron will hop depends on the overlap between the 

orbitals. 

The Hubbard model is the tight-binding model with an additional term that captures the 

Coulomb repulsion between electrons.  As a result of this electron-electron interaction 

term, the Hubbard model is what we call a strongly correlated electron model. 

In the simplest case, the Coulomb repulsion term has an associated energy cost of U for 

every doubly occupied site (i.e. spin up and down electrons on same site) in a state.  The 

bare Coulomb interaction is long ranged and inversely proportional to the distance 

between charged particles (in our case electrons).  However, because of screening effects 

from all other charges in the system, valence electrons on different atoms effectively do 

not “see” each other [1][5].  Hence, we may keep only the on-site Coulomb term as an 

appropriate approximation. 

The on-site Coulomb term favours localized electronic states and competes directly with 

the kinetic energy term in the Hamiltonian.  This is seen most clearly at large U for a 

half-filled system.  A system that is half-filled has an equal number of electrons and 

lattice sites.  Recall that there can be a maximum of two electrons per site (of opposite 

spin); so a system that is fully filled has 2N electrons (where N is defined as the number 

of lattice sites).  At large U, this on-site term favours systems with one electron per site.  

If an electron wished to hop to another site, it would create a double occupancy, which is 

energetically unfavourable because of the large energy cost U. 

In the limit when U is the largest energy scale by far, the half-filled Hubbard model has 

the Heisenberg model as its low-energy effective theory [1][5]; the electrons behave as 

fixed local magnetic moments, interacting with their neighbour via exchange-interactions.  

These exchange interactions are viewed as electrons “virtually” hopping from its site to 

another, which is already occupied by an electron of opposite spin (recall that the 

Heisenberg model requires the set of states with exactly one electron per site); then one of 

the two electrons on this doubly occupied site will hop back to the vacant site.  The 

process is considered “virtual” since the electron in motion will never linger at another 
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site because of the infinite energy cost of creating a double occupancy.  Figure 5 

illustrates the concept of virtual hopping. 

 
Figure 5 – The virtual hopping process.  The end 

configuration may be the same as original (top right) or 

the two spins may be switched (bottom right). 

So far, we have been working implicitly in the so-called occupation basis—representing 

each state as an assignment of “vacant”, spin “up” or “down”, or “doubly occupied” to a 

given lattice site (Figure 3).  There is another way of representing a state, which is with 

bonds between lattice sites.  In the 1930s, Rumer and Pauling [6][7] proposed a bond 

basis (see next paragraph for more information about the definition of a basis; for now, 

consider it as a set of states) that was named the valence bond basis.  This basis was 

applied to the Heisenberg model, which only uses the assignments of spin “up” or 

“down”.  The valence bond (VB) basis required one to work in a system with an even 

number of sites and consisted of “pairing” a spin “up” with a spin “down” into a singlet; 

hence, requires one to also work with a system that has an equal number of “up” spins as 

“down” spins.  A singlet is a special linear superposition (Figure 6) of the spin “up” and 

“down” electrons. 

 
Figure 6 – A singlet connecting sites i and j is defined 

as a linear superposition of a spins “up” and “down” 

on sites i and j (respectively) and spins “down” and 

“up” on sites i and j (respectively).  As a convention, 

singlet bonds are represented by a solid blue line. 

For our purposes, a basis is a set of states that, together, contain all possible 

configurations.  Hence, the assignment of a “vacancy”, spin “up” or “down”, or “double 

occupancy” to each lattice site is a state.  If we consider all possible configurations, these 

states form a basis that is called the occupation basis.  The subset of states in the 

occupation basis that contain a spin “up” or a spin “down” but no vacancies or double 

occupancies is a suitable basis for the Heisenberg model.  This basis, containing all 

possible configurations of spin “up” and “down”, is referred to as the    basis, since | 〉 

and | 〉 are the eigenstates of the    operator. 

There are two main properties that a basis can have that we are interested in:  

orthogonality and completeness.  A basis that is orthogonal has the convenient property 
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that the overlap between distinct states in the basis is zero; otherwise the basis is 

considered non-orthogonal.  A complete basis is one in which each state in the basis is 

linearly independent of all other states in the basis, and the number of states is equal to 

the dimension of the Hilbert space.  A state that is linearly independent of other states 

cannot be written as a linear superposition of those states.  If a basis spans the Hilbert 

space but has states that are linearly dependent (opposite of linearly independent) on 

other states, then this basis is referred to as overcomplete.  The occupation basis and the 

   basis are both orthogonal and complete.  The valence bond basis is non-orthogonal 

(with the special property that every two states in the basis have a non-zero overlap) and 

overcomplete.  Fortunately, a subset of the VB basis that is complete can be formed if we 

choose to keep only the “non-crossing” VB states [6] (“non-crossing” is defined and 

explained in detail in Chapter 2).  Figure 7 shows an arbitrary state in the    basis and a 

similar state in the VB basis. 

 
Figure 7 – The VB state (b) is a linear superposition of many states in the    

basis; the    state shown (a) is one of these states. 

The occupation basis without any restrictions spans the full Hilbert space of the system.  

The Hubbard model is block diagonal in this representation with respect to the z 

component of the total spin (See Figure 8).  Spin is an angular momentum-like quantity; 

and therefore, is a vector with x-, y-, and z-components, represented by  

 ⃗     ̂     ̂     ̂  

The “hat” over the x, y, and z indicates that they are unit vectors.  Spins are, by 

convention, represented by the z-component of their spin    as “up,” if       ⁄ , or 

“down,” if       ⁄  (for simplicity,   is usually set to one).  Thus, the total spin in the 

z-direction (denoted     
 ), when there are multiple spins, can be written as a sum over 

every spin in a state, 

    
  ∑  

 

 

 

where i represents an index for the lattice sites.  Commonly (especially when working 

with the occupation or    basis), the spin sectors are divided into the possible values of 

    
 .  An example of a common spin sector is when we choose the set of states with an 

equal number of spins “up” and “down;” these states have a total spin     
   .  If we 
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select one of these states and flip any spin from down to up, then the new state would 

have a total spin of     
   .  The various spin sectors (having quantum numbers 

    
              where N is the even number of lattice sites) are independent for the 

Hubbard model, as there is no possible way that a state in one spin sector can change into 

a state in another spin sector via the hopping term (the on-site interaction term does not 

ever change the state, so we do not need to consider it).  As a result, one can solve the 

Hubbard model in each spin sector independently. 

 
Figure 8 – Illustration of the block diagonal nature of the Hubbard 

model Hilbert space with respect to spin sector. 

There are other spin sectors that one could consider; specifically, sectors with different 

values of total spin (denoted     ) may also be independently solved.  The occupation 

basis and    basis cannot be trivially restricted to span these sectors.  In fact, to restrict 

the    basis so that it may span the        sector is to transform this basis into the VB 

basis.  The valence bond basis does not span the full Hilbert space, only the        

sector of the Hilbert space.  The        spin sector contains the ground state of the 

Heisenberg model [8][9], the ground state being the lowest energy state that the system 

prefers to be in.  This, in turn, implies that the ground state is also in the     
    spin 

sector.  The main advantage of working in the        (or singlet) sector is that the size 

of this sector is smaller than the     
    sector. 

The main advantage of using the VB basis comes from introducing the notion of a “bond” 

between lattice sites, as a bond has spatial extent (e.g. a length) associated with it.  

Physically, the notion of a bond is useful as long bonds imply long-range correlations 

between the two electrons (one on each of the sites that the bond connects), and short 

bonds imply short-range correlations.  In 1988, a variational method was proposed by 

Liang, Doucot, and Anderson [10] that uses a singlet product wave function for the 

square lattice Heisenberg model, in which the weights associated with each valence bond 
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configuration depend only on the bond lengths.  In 2009, Beach [11] developed a master 

equation technique for computing the bond amplitudes.  The schemes developed by [10] 

and [11] began to break down in the presence of frustrating interactions (the concept of 

frustration is explained later in this chapter and is illustrated in Figure 12).  They operate 

in a domain only slightly less restricted than quantum Monte Carlo. 

Since the Heisenberg model is a special case of the Hubbard model (infinite-U limit at 

half-filling), one would suspect that the valence bond basis used with the Heisenberg 

model may be extended or generalized in some way to span the        sector of the 

Hubbard model.  The generalization of the valence bond basis to create a new bond basis 

for the half-filled Hubbard model is the core of what this thesis is about.  Singlet bonds in 

the VB basis connect singly occupied sites and fully span the        sector (for the 

Heisenberg model).  A natural extension to include doubly occupied and vacant sites 

would be to include a new bond type that connects a double occupancy with a vacancy.  

This new bond type is called a charge bond.  Upon examining how the hopping term 

affects singlet and charge bonds in a state (see Chapter 4.1), it turns out that we will 

need to have two species of charge bonds:  labelled positive and negative charge bonds, 

PCBs and NCBs respectively (see Figure 9); these correspond to symmetric and 

antisymmetric linear combinations. 

 
Figure 9 – A charge bond (represented by a double solid 

line) connecting sites i and j is defined as a linear 

superposition of a double occupancy and a vacancy on sites i 

and j (respectively) and a vacancy and a double occupancy 

on sites i and j (respectively).  A PCB is the addition of the 

two states and a NCB is the subtraction between the two 

states.  As a convention, I use a double solid line to 

represent a charge bond, distinguishing the two types of 

charge bonds by an arrow on the NCB (red) (as these bonds 

have a sense of “direction,” see Chapter 3) and no arrow no 

the PCB (green). 

With these three bond types (singlet, positive and negative charge bonds), I constructed a 

basis that spans the singlet (      ) sector of the Hilbert space for the Hubbard model 

(see Table 1 for a comparison of the sizes of the        and     
    sectors).  I call 

this basis the generalized valence bond (GVB) basis, and it consists of states with all 

possible bond configurations and all bond varieties (see Figure 10 for a comparison 

between an occupation basis state and a GVB basis state).  Like the valence bond basis, 

the GVB basis is overcomplete and non-orthogonal, but a subset can be chosen that is 
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complete (see Chapter 3.1).  Also, upon analyzing the ground state of the Hubbard 

model (see Chapter 7.2), there appears to be a dependence on bond lengths, similar to 

what is seen with the VB basis and the Heisenberg model.  This dependence is, however, 

non-trivial and likely depends on other factors, such as bond type, number of charge 

bonds, and crossing states (as the complete GVB basis may have singlets crossing with 

charge bonds).  Nevertheless, the dependence is not well understood and requires more 

research to determine if trial wave functions could be constructed that take advantage of 

this dependence. 

 
Figure 10 – The GVB state (b) is a linear superposition of many states in the 

occupation basis; the state shown in (a) is one of these states. 

Table 1 – Sizes of the     
    and        subsectors for an even number of sites between 2 and 16. 

N D1      
     D2          D2/D1 

   (
 

   
)
 

 
     

(      )
  

 

   
      (      )

 

      (       )
  

 

 
  

  
 

      

      
 
 

 
               

2 4 3 0.7500 

4 36 20 0.5556 

6 400 175 0.4375 

8 4900 1764 0.3600 

10 63504 19404 0.3056 

12 853776 226512 0.2653 

14 11778624 2760615 0.2344 

16 165636900 34763300 0.2099 

The size of the     
    sector (D1) for the half-filled Hubbard model can be determined 

by counting the number of total possible combinations of assigning vacancies, spins “up” 

and “down”, and double occupancies on each lattice site, with the constraint that the 

system is half-filled and there is an equal number of spin “up” and spin “down” electrons. 

The size of the        sector (D2) can be determined in a series of steps.  First is to 

count the total number of possible configurations of N/2 double occupancies and N/2 

vacancies.  Then replace a double occupancy and a vacancy with a singlet bond and count 

the total number of possible configurations.  Then replace another double occupancy and 

vacancy with a singlet bond (there are now two singlet bonds) and count the number of 

possible configurations with the added constraint that singlet bonds cannot cross.  

Continue to remove one double occupancy and one vacancy and add a singlet in its place 

and count the number of possible configurations (remembering that singlet bonds cannot 

cross each other) until there are only singlet bonds in the state.  Add each number of 
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possible configurations to obtain D2.  Note that it is not necessary to define charge bonds 

in order to span the        sector; it is the singlet bonds that are necessary. 

As our basis is non-orthogonal, we need to be able to construct a set of rules that allow us 

to be able to determine the value of the overlap between states.  Also, in order to solve the 

model, we need to be able to construct a set of rules that tells us how the Hubbard 

Hamiltonian affects a GVB state.  I successfully constructed rules for these two important 

cases as well as many other rules for other cases. 

In order to verify and test the rules of the GVB basis, I used exact diagonalization to 

determine all the eigenvalues (physically, these are the quantized energy levels of the 

system) and the eigenvectors for the system.  I compared the ground state energies, as 

well as ground state staggered magnetization with results obtained using the occupation 

basis with exact diagonalization.  Exact diagonalization requires generating the 

Hamiltonian and overlap matrices (these matrices store all possible overlap values 

between states in our complete basis) that, in turn, are numerically diagonalized using 

LAPACK via a generalized eigenvalue solver (see Chapter 4 for more details on exact 

diagonalization).  Unfortunately, exact diagonalization scales as       [12], where D is 

the size of the working Hilbert space (this is a good reason why one would want to use a 

basis that spans the smaller        over the     
   ).  This, along with the exponential 

increase in D with system size N (as the number of states is a combinatorial problem), 

limits us to small lattice sizes of approximately 8 or 10 sites.  For this reason, I restrict 

myself to one-dimension, despite the fact that our basis may be used in arbitrary 

dimensions (as any higher dimensional system is mapped onto a non-trivial one-

dimensional system).  I considered the frustrated Hubbard model with hopping between 

nearest- and next-nearest-neighbours (this model is referred to in literature as the t1-t2 

Hubbard model).  Unlike the model with nearest-neighbour hopping only (which is 

amenable to a Bethe Ansatz treatment), this model cannot be solved analytically.  

Figure 11 shows a typical one-dimensional chain, along with the definition for nearest- 

and next-nearest-neighbours, my lattice labelling scheme and periodic boundary 

conditions. 

 
Figure 11 – I solved the Hubbard model on the 1D chain with periodic 

boundary conditions and nearest- and next-nearest-neighbour hopping.  

Also, I used the zero-based numbering convention with the rightmost 

lattice site as my starting site. 

There are two types of frustration that can occur in models of this kind:  frustration 

introduced by the natural geometry of the lattice, or frustration introduced by a 
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competition between interactions (normally between nearest- and next-nearest-neighbour 

interactions).  Figure 12 provides an illustration of the two types of frustration. 

 
Figure 12 – The triangular lattice (a) is a common 

example of geometric frustration.  Spins prefer to 

be anti-aligned with nearest-neighbours, but with 

the triangular lattice not all nearest neighbours can 

be anti-aligned.  When one considers next-nearest-

neighbour interactions along with nearest-

neighbours (b), not all nearest- and next-nearest-

neighbours can be anti-aligned. 

Since the size of the Hilbert space limits exact diagonalization to small system sizes, 

there has been considerable effort in developing approximate methods in order to treat 

larger lattices (and, in turn, consider higher dimensional systems).   

A considerably powerful method to solve one-dimensional Heisenberg and Hubbard 

models is the density matrix renormalization group (DMRG).  This method was 

developed in the 1990s by White [13][14] and was originally tested using the Heisenberg 

model.  The construction is recursive but was later shown to be variational within the 

class of matrix product states.  The method was later extended to 2D in 2001 by Xiang et 

al. [15] and tested with the Heisenberg model, where they were able to go up to a lattice 

size of 12x12.  Nonetheless, it is only well-behaved in 1D, or close to, as DMRG has also 

been shown to work well for ladder lattices [16].  Exact diagonalization has no such 

restriction. 

As DMRG is exact in one dimension, dynamical mean-field theory (DMFT) is exact in 

infinite spatial dimensions, or infinite lattice coordination
1
 [17] because it is a local 

impurity solver.  Many lattices in three-dimensions have a large coordination number, 

such as the face-centred cubic, which has 12 (the simple cubic has 6, and the body-

centred cubic has 8).  For this reason, DMFT’s most practical applications are 3D crystals 

with large coordination numbers [18].  DMFT provides the most insight into the 

electronic structure of a material [19], such as a Mott metal-insulator transition [20]. 

A common method to obtain a good approximation for the lowest-lying eigenvalues and 

eigenvectors of a real symmetric matrix is the method developed by Lanczos in 1950 [21].  

                                                      
1
 The coordination number of a Bravais lattice is the number of nearest-neighbours of each site.  

The regularity of a Bravais lattice ensures that each site has the same number of nearest-

neighbours. 
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This method tridiagonalizes
2
 the matrix and is particularly useful for sparse matrices 

[22][23].  Once tridiagonalized, the matrix is then diagonalized using the appropriate 

routine in LAPACK, which, today, can scale up to       [12].  The Lanczos method has 

been found to be more useful when determining the ground state of the Heisenberg and 

Hubbard models than using exact diagonalization with the traditional occupation bases 

[24][25], as Lanczos can handle a few more lattice sites. 

The goal of this thesis is to show that my new generalized valence bond basis, which 

spans the singlet sector of the Hilbert space, gives the correct ground state through the use 

of exact diagonalization.  In doing this, I show that the overlap and update rules are 

correct and can then be used in methods other than exact diagonalization; perhaps some 

variational techniques that take advantage of the ground state’s dependence on bond 

length.  I determined that our ground state was correct by successfully comparing my 

results with results from the following three models:  the Hubbard model, solved through 

exact diagonalization using the occupation basis, the Heisenberg model, solved through 

exact diagonalization using the valence bond basis, and the tight-binding model, solved 

analytically in the micro-canonical ensemble.  A phase diagram for the Hubbard model, 

for 8 sites, is shown, determined from calculating the staggered magnetization on the 

ground state.  I also show the existence of a correlation of ground state weights and bond 

length (and bond type). 

This thesis is organized as follows.  In Chapter 2 I discuss the properties of the valence 

bond basis and the Heisenberg model.  Then I introduce my new generalized valence 

bond basis for the half-filled Hubbard model in Chapter 3.  I explain how to deal with 

the overcomplete nature of the GVB basis and how to determine the overlaps between 

two GVB states.  In Chapter 4 I go into detail about how to solve the Hubbard model 

using the GVB basis, including the update rules needed to determine the Hamiltonian 

matrix element overlaps.  In this chapter I also provide details about the numerical 

aspects to solving the Hubbard model through exact diagonalization.  The following 

chapter (Chapter 5) I present details about computing observable expectation values 

(such as structure factor, dimer order, and charge-density-wave order) on the ground state.  

In doing this I provide the update rules needed to compute these observables.  In 

Chapter 6 I present my results with the purpose of comparing them with results of other 

models.  First I compare it to the Hubbard model results obtained using the traditional 

occupation basis.  Next I compare my results in the limit of large U with results from the 

Heisenberg model using the VB basis.  Finally, in this chapter, I compare my results 

when U = 0 with the tight-binding model analytically solved in the micro-canonical 

ensemble.  In Chapter 7 I present results for 8 sites, such as the phase diagram and how I 

obtained the phase diagram.  I also present results demonstrating the existence of a 

correlation between the ground state weights and the bond lengths and bond type.  We 

then conclude in Chapter 8.  

                                                      
2
 A tridiagonal matrix is one with non-zero values along the main diagonal and the first diagonals 

above and below the main diagonal. 
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Chapter 2 

Valence Bond Basis and the Heisenberg 

Model 

As described in the first chapter, the VB basis consists of all possible pairings (forming 

bonds) of a spin up electron (on one site) and a spin down electron (on another site) into a 

singlet.  Singlet creation (   
 

) and annihilation (   ) operators are defined such that, when 

acting on a state, they create or annihilate a singlet on sites i and j [26].  Due to the nature 

of the Heisenberg problem and the concept of the bond basis, these singlet creation and 

annihilation operators may be defined in terms of boson creation (   
 

) or annihilation 

(   ) operators (i represents the lattice site, and   represents the spin), despite the 

problem inherently dealing with fermions (i.e. electrons) [26], which would normally 

require the use of fermion creation (   
 

) and annihilation (   ) operators.  At a physical 

level, fermions differ from bosons because fermions have half-integer spin (i.e.  
 

 
 
 

 
 
 

 
 ) 

and are required to obey Pauli exclusion principle [27]; whereas, bosons have integer spin 

(i.e. 1, 2, 3…) and are not required to obey Pauli exclusion principle [27].  At a 

mathematical level, fermion operators anticommute ({   
      }         ) , whereas 

bosons commute ([   
      ]         )  [27].  In the valence bond basis, the singlet 

operators are usually defined in terms of boson operators for simplicity; in doing so, the 

electrons are treated as pseudo-bosons that carry spin-1/2 and obey Pauli exclusion 

principle.  In general, it is easier to deal with operators that commute than those that 

anticommute.  The singlet creation and annihilation operators of the valence bond basis 

are defined as 

   
    

 

√ 
(   

    
     

    
 ) 

   
   

 

√ 
(             ) 

Note that the VB singlet has a sense of “direction” associated with it, as a negative sign is 

introduced when the lattice indices are swapped (i.e.    
        

   
). 
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A VB state is defined as the product of all the singlet bonds that make up the state, 

|  〉  (∏   
   

  ⁄

  

) |   〉 

with each site label       appearing only once (as a single site cannot have multiple bonds 

connecting to it), and where |   〉 is the quantum vacuum state with no electrons. 

With the VB basis being overcomplete (i.e. too many states), some states in the basis are 

linearly dependent on others [28].  It is often desirable, and sometimes necessary, to work 

with a set of states that is complete.  For example, exact diagonalization cannot be carried 

out unless the working basis is complete.  VB states that contain a singlet bond crossing 

another singlet bond are eliminated to obtain a subset that holds no linear dependencies 

[26].  At the level of two bonds, the crossing state can be written as a linear superposition 

of two non-crossing states (Figure 13). 

 
Figure 13 – The crossing state (left-hand-side) is related to the 

sum of the non-crossing states (right-hand-side).  Note the 

arrows on the singlet bonds; these arrows come from the sense 

of direction that VB singlet have (in contrast the GVB singlets 

do not share this sense of direction, as they are defined using 

fermion operators). 

As every two states in the VB basis has a non-zero overlap, it is useful to develop a set of 

rules to determine the value of the overlap.  The concept of a bond basis introduces an 

alternate way of looking at the overlaps that is not obvious in a basis that uses 

representations of spin up and down like the occupation basis.  If we pictorially overlay 

two bond states (Figure 14), their bonds join together to form loops. 
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Figure 14 – Example visually showing the overlap between two VB states 

| 〉 and | 〉, that form a total of  five loops (1 – 5). 

As shown in Figure 14, when two arbitrary VB states | 〉 and | 〉 are overlaid, they form 

loops (the number of loops formed can range from 1 to N/2).  In our example, the overlap 

forms five loops (labelled 1 – 5).  It is important to note that the directions of the singlet 

bonds in state | 〉  switch when the transformation | 〉  〈 |  is applied in order to 

determine the overlap 〈 | 〉. 

The magnitude of an overlap is related to the size of each loop. The size of a loop 

depends on the number of bonds that make up the loop.  In our example, loops 1, 4, and 5 

are of size two, since each contain four bonds (                        ) and loops 

2 and 3 are of size one.  Each loop contributes a magnitude of        , these factors of ½ 

come from the normalization factors   √  for every singlet.  When considering the loops 

collectively, the magnitude of the overlap |〈 | 〉| is related to the total number of loops 

(  ) and total number of bonds (N/2) [26] and is expressed as 

|〈 | 〉|        ⁄   

The overall sign of the overlap depends on the directional alignment of the VB singlet 

bonds in a particular loop.  A negative sign is obtained every time the direction of a 

singlet bond is switched so that it may be aligned with the direction of the other singlet 

bonds in the loop [26].  Our example in Figure 14 shows loops 1, 2, and 4 already 

aligned; therefore, there is an overall positive sign contributed by these loops.  Loops 3 

and 5 have unaligned bonds: loop 3 has one unaligned bond, and loop 5 has two 

unaligned bonds.  As a result, loop 3 contributes an overall negative sign (odd number of 

unaligned bonds) and loop 5 contributes an overall positive sign (even number of 
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unaligned bonds).  Considering all five loops in the overlap, there is an overall negative 

sign for the overlap; thus for our example, 

〈 | 〉         ⁄         
 

 
  

Since a VB state is written as a product of singlets (   
   

), the overlap 〈 | 〉 is written as 

〈 | 〉  〈   |       
          

         
         

          
            

   |   〉  

In order to determine the overlap, it is useful to know the commutation relations for the 

singlet creation and annihilation operators.  For VB singlets, the following commutation 

rules, 

[   
      

  ]    

[   
       

   ]    

[   
      

   ]                                          

allow singlet creation and annihilation operators to be shuffled past one another, so long 

as they do not share any indices in common.  When indices are shared between creation 

and annihilation operators, the following commutation rules are used [26] (note that these 

rules act on a vacuum state). 

[   
      

   ]|   〉  |   〉 

[   
      

      
   ]|   〉  

 

 
   
   |   〉 

A decimation scheme can be used to show that the overlap depends on the number of 

loops [26]. 

For an example, consider the two states | 〉 and | 〉 from Figure 14.  These states written 

in terms of VB singlet creation operators are (a snake-like numbering scheme is used and 

talked about in Chapter 3.1 and Figure 17): 

| 〉      
       

       
        

       
        

         
         

   |   〉 

| 〉       
       

       
       

       
        

         
         

   |   〉  

The overlap 〈 | 〉 is then written as, 

〈 | 〉

 〈   |(      
        

       
      

      
      

      
       

  )(    
       

       
        

       
        

         
         

   )|   〉  
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We can always shuffle the singlet operators around (since operators that do not share 

indices commute) so that the singlet operators are grouped into groups corresponding to 

the loops (we organize it so that the loop labelled 1 is on the far right, then 2, 3, 4 and 

loop 5 on the far left). 

〈 | 〉

 〈   |(    
      

      
       

   )(     
      

       
       

   )(      
        

   )(      
        

   )(    
       

      
        

   )|   〉 

 〈   |(    
      

      
       

   )(     
      

       
       

   )(      
        

   )(      
        

   ) (    
  (

 

 
    
   )) |   〉 

 〈   |(    
      

      
       

   )(     
      

       
       

   )(      
        

   )(      
        

   ) (
 

 
  ) |   〉 

 〈   |(    
      

      
       

   )(     
      

       
       

   )(      
        

   )   (
 

 
  ) |   〉 

 〈   |(    
      

      
       

   )(     
      

       
       

   )       (
 

 
  ) |   〉 

 〈   |(    
      

      
       

   ) (     
  (

 

 
     
   ))        (

 

 
  ) |   〉 

 〈   |(    
      

      
       

   ) (
 

 
  )        (

 

 
  ) |   〉 

 〈   | (    
  ( 

 

 
    
   )) (

 

 
  )        (

 

 
  ) |   〉 

 〈   | (( 
 

 
)     ) (

 

 
  )        (

 

 
  ) |   〉   

 

 
 

We can see the negative signs arising from switching the direction of the singlets (or 

switching the indices of the singlet operators).  Also, we begin to see how larger loops 

affect the magnitude of the overlap. 

The sign of the overlap may be eliminated altogether when working with the “non-

crossing” set of states and directing all singlet bonds in a particular manner.  A bipartite 

lattice (such as the 1D chain and square lattice) can be separated into two sublattices, 

namely sublattice A and sublattice B, such that a lattice site in A always has nearest 

neighbours in B, and vice versa (this is related to the concept of frustration).  If all singlet 

bonds in a non-crossing state are directed from A to B (or equivalently B to A), then the 

overlap will always be positive [26]. 
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It is useful to understand how VB states behave when acted upon by the antiferro-

magnetic Heisenberg Hamiltonian, as we see similar characteristic displayed by our GVB 

basis used to solve the Hubbard model in Chapter 4.  This Hamiltonian is expressed as 

 ̂  ∑    ⃗   ⃗ 
  

 

where, 

    denotes the antiferromagnetic exchange coupling amplitude between sites i and j, and 

 ⃗  is a vector consisting of the three spin operators   
 ,   

 
, and   

  as its x-, y-, and z-

components. 

The spin operator   
 , when acting on a spin state | 〉 (a state in the    basis), will be 

 
 

 
| 〉 if there is a spin up at site i, or  

 

 
| 〉 if there is a spin down at site i [27].    

  and 

  
 

 are usually, and more conveniently, written in terms of the raising and lowering spin 

operators   
  and   

  [27] as   
  

 

 
   

    
   and   

 
 

 

  
   

    
  .  The raising 

operator   
  converts a spin down at site i to a spin up; however, if there is a spin up at 

site i, then it is zero.  The lowering operator   
  converts a spin up at site i to a spin down, 

unless, there is a spin down there, in which case, it is zero.  Therefore, the exchange 

interaction  ⃗   ⃗  may be written  

 ⃗   ⃗    
   

  
 

 
(  

   
    

   
 )  

which is useful to use in the    basis. 

However, for the VB basis (which is closely related to our proposed GVB basis), it is 

more favourable to write the exchange interaction in terms of the VB singlet creation 

   
   

 and annihilation    
   operators as [26] 

 ⃗   ⃗  
 

 
        

      
    

   is the number operator and counts the number of electrons at site i.  Since the 

Heisenberg model only deals with the case of exactly one electron per site,      for any 

site i. 

In the VB language, the exchange interaction  ⃗   ⃗  involves annihilating, then creating, a 

singlet between sites i and j.  When    
      

   acts between two singlets (i.e. site i belongs 

to one singlet bond and site j another), this term rearranges the bond configuration such 

that the new configuration contains a singlet connecting sites i and j [26].  The following 

update rules listed in Table 2 show this. 
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Table 2 – List of the update rules involving    
      

   acting upon states in the VB basis. 

(   
      

  )   
   |   〉 

 

(   
      

  )   
      

   |   〉 
 

This rearrangement of bonds is also seen in our GVB basis (Chapter 4.1) when an 

operator acts between bonds.  As well, the exchange interaction  ⃗   ⃗  is a useful operator 

to consider when calculating observables, such as the staggered magnetization. 

Consider matrix elements of the form 〈 |   
      

  | 〉 and how the loop configurations 

change after    
      

   act on state | 〉.  If    
      

   acts within a loop (i.e. both i and j 

belong to the same loop), then the bonds in that loop are rearranged or that loop is split 

into two loops.  If i and j belong to the same sublattice, then the bonds in the loop will be 

rearranged.  If i and j are on different sublattices, then the loop will split into two loops.  

However, if    
      

   acts between two loops (i.e. i and j belong to different loops), then 

the two loops always join together to form a single loop.  This rearrangement, splitting, 

and joining of loops is seen with our GVB basis as well and plays an important role in 

determining the matrix elements (Chapter 4.2). 

The matrix elements of the type 〈 | ⃗   ⃗ | 〉 have rules based on the overlay of both 

states bond configuration.  The rules can be expressed in mathematical form as [26] 

〈 | ⃗   ⃗ | 〉

〈 | 〉
 

 

 
    

     

where, 

   is the loop that contains lattice site i and 

    {
                                                
                      

 

Thus, lattice sites i and j must belong to the same loop. 

 

  

 i       j  i        j 

 
  k       j       i        l   k       j       i        l 
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Chapter 3 

Generalized Valence Bond Basis 

In this chapter, I go into detail about my newly proposed basis to solve the half-filled 

Hubbard model.  As the name suggests, the GVB basis is a generalization of the valence 

bond basis used to solve the Heisenberg model.  Keeping the singlet bonds that connect 

two single occupancies (of opposite spin), the GVB basis introduces two types of charge 

bonds that connect a double occupancy and a vacancy, namely the positive and negative 

charge bonds (PCB and NCB respectively).  In turn, the GVB basis spans the singlet 

         sector of the Hilbert space.  Creation and annihilation operators for each bond 

type are defined in terms of fermion creation (   
 

) and annihilation (   ) operators that 

create (or annihilate) an electron of spin   on site i.  Formally, I define the bond creation 

and annihilation operators as, 

   
  

 

√ 
(   

    
     

    
 ) 

    
 

√ 
(             ) 

For GVB singlets and 

   
   

 

√ 
(   

    
      

    
 ) 

   
  

 

√ 
(              ) 

for charge bonds of type u (u = +1 for PCBs and u = -1 for NCBs).  The NCBs are 

interpreted to have “direction” as there is an introduction of a negative sign when the 

indices are swapped (   
       

  
).  The singlets and the PCBs do not share this sense of 

direction as    
     

 
 and    

      
  

 (recall that VB singlets    
   

 do have a sense of 

direction since they are defined in terms of boson operators). 
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A single GVB state is defined as the product of all bonds that make up the state, 

|   〉  (∏   
 

   

  

)(∏   
  

   

  

)(∏   
  

   

  

)|   〉 

with each site label       appearing only once and where, 

     total number of singlet bonds, 

     total number of PCBs, and 

     total number of NCBs in the GVB state, with 

|   〉 is defined as the quantum vacuum state with no electrons. 

It must be true that the total number of bonds (N/2, with N defined as the number of 

lattice sites) is equal to            . 

3.1 – GVB overcompleteness 

As the VB basis is overcomplete, so is the GVB basis.  To obtain the correct number of 

states, I have worked out a set of rules to restrict certain states, to ensure that we are left 

with a set of states without any linear dependencies.  Consider the four-site (two-bond) 

case.  The following figure shows an exhaustive list of all the states that are linearly 

dependent on other states when N = 4 (see Appendix A2 for detailed work). 

 
Figure 15 – Single solid (blue) lines represent singlet bonds, double solid (green) lines represent PCBs, and 

double solid (red) lines represent NCBs.  We can clearly see that “crossing” bonds (of similar type, these are 

the states in the middle) are linearly dependent on states without crossings.  Also, note that the charge bond 

crossings have two linear dependence relations for each crossing.  This suggests that restricting ourselves to 

“non-crossing” states is not enough, we will need one or more rules to further restrict the number of states to 

obtain the correct counting. 

Using the four-site linear dependence relations, I extrapolated rules that would provide 

the correct counting of states for 6, 8, and 10 sites (above this I was unable to test).  The 

rules to obtain a complete set of states are as follows, 

-  - =   

+  + = = + -  

-  + = = + +  

+  - = = - -  

-  - = = - +  
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1. Singlet bonds may not cross another single bond 

2. Charge bonds may not cross another charge bond (regardless the type) 

3. PCBs may not be enclosed by another charge bond (regardless the type) 

The VB basis, which contains only singlet bonds, also have the “non-crossing” rule for 

singlet bonds (as discussed in Chapter 2).  For this reason, and as Figure 15 suggests, I 

expected the complete set of states to exclude states with “crossing” charge bonds.  The 

third rule, which states that PCBs may not be enclosed by another charge bond, is not 

intuitive.  Through testing of which set of rules gave the correct counting, only the set of 

rules listed above (with one exception) worked.  The exception occurs as a result of 

symmetry; we could equivalently state the third rule as ‘NCBs may not be enclosed by 

another charge bond.’  The concept of “crossing” or “enclosed” (see Figure 16) does not 

change as we increase the dimensionality of our system. 

 
Figure 16 – An example of a six-site state with two bonds that cross and a bond 

being enclosed by another bond.  I only use singlet bonds for the example since 

the concept of crossing and enclosing does not change with bond type. 

Any higher dimensional system is mapped onto a 1D system via an arbitrary numbering 

scheme.  Consider the 4x4 square lattice in which we number the lattice in a “snake-like” 

pattern (see Figure 17). The advantage of using the snake-like numbering scheme is that 

the nearest-neighbours of even-labelled sites are always odd-labelled sites; and as a result, 

non-crossing bonds connect an even site to an odd site.  In principle, one may solve the 

system regardless of the numbering scheme used.  In numbering the lattice sites, the 

system is effectively reduced to a 1D system with non-trivial boundary conditions and 

definitions of nearest- and next-nearest-neighbours.  It is in this effective 1D system 

where the concept of crossing and enclosing is applicable. 

 
Figure 17 – Illustration showing how a 4x4 square lattice is reduced to a 1D problem via 

choosing a numbering scheme.  Our example shows a snake-like numbering scheme. 

 

 

This bond is enclosed 

Crossing 

0 1 2 3 

7 6 5 4 

8 9 10 11 

12 13 14 15 

… 

0     1     2     3…             …12   13   14   15 
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3.2 – GVB overlaps 

Not only is the GVB basis overcomplete, but it is also inconveniently non-orthogonal.  

As a result, we need to know when two states have non-zero overlap and, for non-zero 

overlap, what that value is.  Like the VB states, overlaps involving GVB states form 

loops and the magnitude of the overlap may be expressed in terms of the number of loops.  

In fact, when a GVB overlap is non-zero, it has the same magnitude as its VB equivalent 

(replacing all charge bonds with singlets).  First, let us consider our example in 

Chapter 2 (Figure 14); however, the singlets will be defined in terms of fermions (GVB 

singlets) instead of bosons (VB singlets) (Figure 18). 

 
Figure 18 - Same example as Figure 14; however, singlets are defined in 

terms of fermions instead of bosons, and as a result, the bonds no longer 

have direction.  We expect both methods to be equivalent. 

The magnitude is the same as before (      ⁄     ).  We expect the overlaps obtained 

using either method to be equivalent; since using boson operators is considered 

appropriate in defining VB singlets.  Since GVB singlets do not have direction; the sign 

change must come from elsewhere.  In fact, the sign associated with GVB singlets 

depends on the size of the singlet loops (just as the magnitude did).  Recall the example 

worked out in Chapter 2—in particular, the commutation rule 

[   
      

      
   ]|   〉  

 

 
   
   |   〉 

for VB singlets.  The equivalent commutation rule for GVB singlets is 

[       
    

 ]   
 

 
   
   

 

 

Overlay State |𝑃〉 State |𝑄〉 

Overlap 〈𝑄|𝑃〉 
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2 

3 

4 

5 
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Thus, there is an alternating sign depending on the size of each singlet loop. 

Of course, our GVB basis consists of more than just singlet bonds, let us now add our two 

types of charge bonds and consider the overlap.  Replacing some of the singlet bonds in 

example states with charge bonds, we obtain two new states in our GVB basis 

(Figure 19). 

 

Figure 19 – Same bond orientations as Figures 14 and 18, but now some 

singlet bonds are replaced by PCBs and NCBs and we wish to determine 

when the overlap is non-zero, and what that non-zero value might be. 

As the bond orientations did not change (only the bond types changed), there are still five 

loops labelled in the same fashion as before.  To introduce some terminology, I define a 

“pure” loop as one that exclusively contains either singlets or charge bonds.  Thus, loops 

1, 2, 3, and 5 are all pure loops, with loops 1 and 3 being pure singlet loops, and 2 and 5 

pure charge bond loops.  Loop 5 is classified as a “mixed” loop, as it contains both 

singlets and charge bonds.  Mixed loops always contain an even number of “transition 

points;” these are locations of the lattice sites where, in a loop, there is a transition from a 

singlet to a charge bond.  Loop 4 has two transition points, one on the bottom left corner 

and the other on the top left corner of the loop itself.  A loop with two transition points 

has a special name, a “half-pure” loop; this distinguishing feature becomes important in 

the next chapter when we discuss the hopping term matrix elements. 

The overlap 〈 | 〉 shown in Figure 19 is zero because it contains a mixed loop.  To show 

how mixed loops force a zero overlap, we will look at how states | 〉 and | 〉 are defined 

using the GVB creation and annihilation operators, the appropriate commutation rules for 

our operators, and the snake-like numbering scheme. 

 

 

Overlay State |𝑃〉 State |𝑄〉 

Overlap 〈𝑄|𝑃〉 

1 
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| 〉      
     

      
       

     
       

       
       

  |   〉 

| 〉       
     

      
      

     
      

        
       

  |   〉 

Therefore, the overlap is expressed as, 

〈 | 〉

 〈   |      
            

             
     

           
     

      
       

     
       

       
       

  |   〉 

Since singlet operators  , PCB operators    and NCB operators    all commute with 

each other (as long as they do not share indices), these operators may be shuffled such 

that they may be grouped according to the loop to which they belong.  For an exhaustive 

list of all the appropriate commutation rules regarding these three operators, see 

Appendix A1.1. 

〈 | 〉  〈   |(    
     

     
      

  )(     
          

     
  )(            

 )(      
       

  )(             
      

 )|   〉 

Again the loops are ordered with loop 5 on the left, then 4, 3, 2, and 1 on the right.  Using 

the commutation rule [       
    

  ]|   〉   
 

 
   
 |   〉 on loop 4, we obtain 

〈 | 〉  〈   |(    
     

     
      

  ) (     
 ( 

 

 
     
 )) (            

 )(      
       

  )(             
      

 )|   〉  

It is also true that singlet operators   commute with charge bond operators    even if 

they share one or both indices in common according to the commutation rule 

[       
  ]|   〉   .  Therefore, the annihilation operator      

  may be shuffled to the 

right-hand-side to force the overlap to zero. 

Let us fix the mixed loop issue by replacing both singlets in loop 4 with a PCB and a 

NCB as shown in Figure 20. 
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Figure 20 – As mixed loops gave zero overlap, we replaced the mixed 

loop (loop 4) with a pure charge bond loop.  Now we would like to 

know if this overlap is non-zero and, if so, what that value might be. 

It turns out that this overlap is also zero, because there is an odd number of NCBs in the 

pure charge bond loop 5.  Let us consider the new states and the resulting overlap 〈 | 〉 

(organized according the loops again) and focus on loop 5. 

| 〉      
     

      
       

      
       

       
       

  |   〉 

| 〉       
     

      
      

      
      

        
       

  |   〉 

〈 | 〉  〈   |(    
     

     
      

  )(     
     

      
      

  )(            
 )(      

       
  )(             

      
 )|   〉 

Using the commutation rule [   
     

     
  ]|   〉  

 

 
(    

        
  )|   〉, 

〈 | 〉  〈   | (    
 

 

 
(     

       
  ))

 (     
     

      
      

  )(            
 )(      

       
  )(             

      
 )|   〉 

along with the commutation rules [   
     

  ]|   〉  
 

 
|   〉 and [   

     
  ]  

 

 
|   〉, the 

overlap now becomes 

〈 | 〉  〈   | (
 

 
( 

 

 
 
 

 
))

 (     
     

      
      

  )(            
 )(      

       
  )(             

      
 )|   〉    
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which is zero, because the terms cancel.  When there is an even number of NCBs in a 

loop, there will not be any cancellation. 

Let us change the diagonal PCB of loop 5 in state | 〉 to a NCB (directed to the left), so 

that there are an even number of NCBs in each pure charge bond loop. 

| 〉      
     

      
       

      
       

       
       

  |   〉 

| 〉       
     

      
      

      
      

        
       

  |   〉 

The overlap is non-zero with a magnitude equal to |〈 | 〉|        ⁄     .  This is 

shown below using various commutation rules found in Appendix A1.1. 
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  )(            
 )(      
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 〈   | ( 
 

 
) (

 

 
)       ( 

 

 
) |   〉  

 

 
 

The sign of the overlap 〈 | 〉 comes from the size of the pure singlet loops, and the 

realignment of the directional NCBs.  The sign (  ) from the singlets can be written in 

closed form as 

         
    

 
 

where,   
  is the number of pure singlet loops and   

  is the number of singlet bonds in 

state | 〉, which, for non-zero overlap, is equal to the   
 , the number of singlet bonds in 

state | 〉.  I could not determine a way write the sign from the realignment of NCBs in 

closed form.  However, if we work in our complete basis, using the rule that ‘PCBs may 

not be enclosed by another charge bond’ (enclosed NCBs does not work) and with the 

additional constraint that we direct all NCBs in a state towards the lower numbered lattice 

site, then we can write the overlap in a simple, closed form (recall that we define a 

numbering scheme to the lattice, and if a NCB connects two lattice sites, say 7 and 2 
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(    
  

), then the bond would be directed from 7 to 2).  Under these conditions the overlap 

〈 | 〉 may be rewritten as 

〈 | 〉           ⁄   

However, the expression that must be used for an arbitrary state in the overcomplete 

GVB basis is 

〈 | 〉            
    

 
       ⁄  

defining      to be the sign associated with the realignment of the NCBs.  This, of 

course, is the value of the overlap when it is non-zero.  As suggested by the examples I 

presented above, the following rules must be satisfied for non-zero overlap: 

1. All loops must of pure and 

2. All pure charge bond loops must have an even number of NCBs in each loop. 
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Chapter 4 

Solving the Hubbard Model 

The Hubbard Hamiltonian, with hopping between arbitrary sites i and j, is given by 

 ̂   ∑   (   
        

    )   ∑      

     

 

where, 

     is the hopping amplitude (between sites i and j), 

  is the spin (either up   or down  ), 

   
 

 and     are fermion creation and annihilation operators respectively, 

       
     counts the number of electrons on site i with spin   and, 

U is the energy cost associated with a double occupancy. 

Two terms are clearly seen in the Hamiltonian, with 

 ̂   ∑   (   
        

    )

    

 

as the tight-binding, hopping (kinetic energy) term and 

 ̂   ∑      

 

 

as the on-site Coulomb repulsion (potential energy) term. 

In the hopping term the combination of creation and annihilation operators,    
     and 

   
    , allow an electron of spin   to hop from sites j to i and i to j, respectively.  Both 

number operators        in the on-site interaction term, together, count the number of 

spin up electrons and spin down electrons on a single site.  Of course, Pauli exclusion 

principle prohibits more than one electron of the same spin.  When we sum over the 

lattice sites, the term ∑         counts total number of double occupancies in a state.  This 

description is provided with respect to the occupation basis and is expected to change 

with the use the GVB basis. 
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4.1 – Update rules 

Update rules describe how each term in the Hamiltonian affects a basis state.  Let us first 

consider the on-site Coulomb term  ̂ and how this term affects the GVB states.  A charge 

bond connects a double occupancy with a vacancy and a singlet connects two single 

occupancies.  Therefore, our expectation is that, in a GVB state,  ̂ will count the number 

of charge bonds and apply an energy cost of U for each charge bond.  Our expectations 

were verified when I worked out the update rules for this term (see Appendix B1.2).  

Defining   ̂        , the following table shows the update rules involving the on-site 

interaction term. 

Table 3 – This table summarizes the update rules when the Hubbard-U term acts on 

each type of bond of the GVB basis. 

 ̂    
 |   〉    

 

( ̂   ̂ )   
  |   〉     

  |   〉 

 

The Hubbard-U term is the simplest term in the Hamiltonian to deal with as it does not 

alter the state on which it acts.  The hopping term, however, does alter the state.  Consider 

the example of two sites, i and j, site i with a spin up and site j with a spin down (this is 

similar to a singlet).  If the spin up electron in site i hops to site j, it creates a vacancy on 

site i and a double occupancy on site j (this is similar to a charge bond).  In this way, 

when the hopping term  ̂   ∑ (   
        

    )  acts on each end of a singlet bond 

   
 |   〉, we expect the term to change the bond from a singlet to a particular charge 

bond    
  |   〉.  Our reasoning turns out to be correct when I worked out the update rules 

for  ̂   acting on each end of the three bonds (see Appendix B1.2) and Table 4 shows the 

corresponding update rules. 

Table 4 – This table summarizes all update rules when the hopping term acts on a 

single bond.  Under this condition, the hopping term effectively changes the bond type. 

 ̂     
 |   〉      

  |   〉 
 

 ̂     
  |   〉          

 |   〉 

 

From the update rules in Table 4, we see that the hopping term  ̂   changes a singlet bond 

into a positive charge bond (and vice versa), when i and j are lattice sites at either end of 

the bonds and destroys the negative charge bond under the same conditions. 

  

i       j 
0 

i       j 

i       j 

i       j 

i       j 

2 
 i        j  i        j 

2 

0 

 i        j  i        j 

 i        j 
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When the hopping term  ̂   acts between two bonds it rearranges the bonds (similar to 

what was seen in Chapter 2 with the VB basis and the Heisenberg Hamiltonian update 

rules) and changes the bond type (the change is not always from a singlet to a charge 

bond or vice versa; sometimes, only the charge bond type changes).  This is seen in 

Table 5 showing all possible update rules for when  ̂   acts between two bonds (the work 

is shown in Appendix B1.2). 

Table 5 – This table summarizes all update rules when the hopping term acts between bonds.  Under this 

condition, the hopping term rearranges the bonds and changes the bond types. 

 ̂     
    

 |   〉      
     

 |   〉 
 

 ̂     
     

  |   〉      
    

  |   〉 
 

 ̂     
     

  |   〉      
    

  |   〉 

If head-to-tail, then + 
 

 ̂     
     

  |   〉      
    

  |   〉 

If head-to-head (or tail-to-tail), then - 
 

 ̂     
     

  |   〉         
  |   〉 

The resulting NCB maintains the same head or 

tail as it started with.  

 ̂     
    

  |   〉      
    

  |   〉 

The resulting NCB always points towards 

lattice site in the subscript of  ̂  .  

 ̂     
    

  |   〉      
    

  |   〉 

If singlet-to-tail of NCB, then - 
 

 ̂     
    

  |   〉      
    

  |   〉 

If singlet-to-head of NCB, then +  
 

4.2 – Matrix elements 

Combining the update rules from the previous sub-chapter and the overlap rules (for 

〈 | 〉) from Chapter 3.2, I determined the necessary rules for the matrix elements (of the 

type 〈 |  ̂| 〉).  The matrix element 〈 | ̂| 〉 may be written 

〈 |( ̂   ̂)| 〉  〈 | ̂| 〉  〈 | ̂| 〉  

As a result we may consider the overlaps for each term independently. 

Since number operators (   ) do not change the state on which they act,  ̂| 〉  

   
  | 〉 associates an energy cost U with each charge bond in state | 〉 (  

    number 

of charge bonds in state | 〉) and the state | 〉 is left unaltered.  Thus, the matrix elements 

 - 
 k       j       i        l  k       j       i        l 

 + 
 k       j       i        l  k       j       i        l 

 + 
 k       j       i        l  k       j       i        l 

  -  
 k       j       i        l  k       j       i        l 

 + 
 k       j       i        l  k       j       i        l 

  + 
 k       j       i        l  k       j       i        l 

  - 
 k       j       i        l  k       j       i        l 

 +  
 k       j       i        l  k       j       i        l 
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〈 | ̂| 〉     
  〈 | 〉 

have the same conditions for when the overlap 〈 | 〉 is non-zero. 

The hopping term matrix elements 〈 | ̂| 〉 are not as trivially determined.  Consider 

〈 | ̂  | 〉 and how hopping affects the loop configuration.  If  ̂   acts within a loop, then 

it either rearranges the bonds in the loop or splits the loop into two loops.  If  ̂   acts 

between two loops, then it will join the loops and form a single loop.  Since  ̂   changes 

the bond types of the bonds involved, according to the update rules, any loop 

rearrangement or joining of two loops will always result in a mixed loop.  Thus, the 

matrix elements 〈 | ̂  | 〉 involving lattice sites i and j that rearrange the bonds in a loop 

or join two loops together will be zero.  In fact, there is only one circumstance in which 

〈 | ̂  | 〉 will be non-zero.  Consider a half-pure loop (a loop with two transition points, 

see Chapter 2), if  ̂   act on the two transition points of the half-pure loop, then, in this 

case (and this case only),  ̂   will split the half-pure loop into two pure loops (a pure 

singlet loop and a pure charge bond loop).  Since there is only one possible pair of indices 

that can possibly give a non-zero overlap, the conclusion that 

〈 | ̂| 〉  〈 | ̂  
 | 〉 

is made; where * indicates that the indices i and j act on the two transition points of the 

half-pure loop (if one exists).  Also, because of the condition of the half-pure loop, the 

hopping term matrix element 〈 | ̂| 〉 is zero when 〈 | ̂| 〉 is non-zero and vice versa. 

All loops, other than the half-pure loop, must be pure, with pure charge bond loops 

containing an even number of NCBs, for the matrix element 〈 | ̂  
 | 〉 to possibly be non-

zero.  To establish a set of rules in which matrix elements of the form 〈 | ̂| 〉 are non-

zero, we need to add one more rule to ensure that the resulting pure charge bond loop 

(from the splitting of the half-pure loop) has an even number of NCBs.  This condition is 

ensured when there is an odd number of PCBs in the half-pure loop.  The rules to ensure 

non-zero 〈 | ̂| 〉 overlap are summarized as 

1. All loops must be pure, except for one half-pure loop 

2. Each pure charge bond loop must contain an even number of NCBs 

3. The half-pure loop must contain an odd number of PCBs 

4. The hopping term must act on the two transition points of the half-pure loop. 

The magnitude of the non-zero matrix element |〈 | ̂  
 | 〉| is 

|〈 | ̂  
 | 〉|          ⁄  

since the number of loops increases by one.  The sign associated with the pure singlet 

loops   
  is expressed as 
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       (  
    

 )  

The number of pure singlet loops increases by one (  
   ) and    (  

    
 ) will give 

the correct number of singlets after we act with the hopping term  ̂  
 .  Like the overlap 

〈 | 〉, the sign from the realignment of NCBs     
  cannot be expressed in closed form.  

The non-zero matrix element 〈 | ̂  
 | 〉 is written as 

〈 | ̂  
 | 〉      

       
       (  

    
 )        ⁄   

An interesting feature of the Hubbard Hamiltonian matrix elements is that it is naturally 

block tridiagonalized (see Figure 21) with each block along the diagonal representing a 

charge sector (similarly, the overlap matrix is block diagonal). 

 

Figure 21 – The block tridiagonal nature of the Hubbard Hamiltonian matrix elements is apparent when the 

basis states are grouped with respect to the number of charge bonds in the state (i.e. charge sector).  The 

hopping term can either change the number of charge bonds by one or zero.  In the figure, I label each block 

as ‘0’ if all elements in block are zero, ‘U’ if the Hubbard-U term can be non-zero, ‘T’ if the hopping term 

can be non-zero, or ‘UT’ if both terms can be non-zero. 
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Note that each charge sector is not of equal size, so the block matrices are not square.  

Potentially, one could take advantage of this structure and block diagonalize the matrix 

and perform an exact diagonalization procedure on each of the resulting block diagonal 

matrices individually. However, block diagonalizing a block tridiagonal matrix has only 

been done when the matrix blocks are square [29]. 

4.3 – Exact diagonalization 

Since the GVB basis is non-orthogonal we need to solve the generalized eigenvalue 

problem       , where H and S are matrices of the overlap values ⟨ | ̂| ⟩ and 

〈 | 〉 respectively, E is the eigenvalue and   is the eigenvector.  For an orthonormal 

basis (such as the occupation basis), the overlap matrix S would be the identity matrix, 

and we would have the regular eigenvalue problem      .   

Until recently, there were two routines that LAPACK provided to solve and obtain the 

eigenvalues and eigenvectors of the real symmetric matrix H; the traditional method 

using QR and LQ factorization [30] and Cuppen’s divide-and-conquer (CDC) method 

[31].  The divide-and-conquer method is faster than QR (especially for larger matrices), 

but uses more workspace [12].  In each case, LAPACK solves the regular eigenproblem 

for a real symmetric matrix H in two steps; the reduction of H to a tridiagonal matrix T, 

then the diagonalization of T to obtain all the eigenvalues and, optionally, the 

eigenvectors of H.  LAPACK has only one routine to reduce H (of size D) to a tridiagonal 

matrix and the number of operations needed to do so is       [12].  The two routines 

mentioned above differ in the second step of obtaining the eigenvalues and eigenvectors 

of T.  Using QR factorization, the number of operations needed to obtain the eigenvalues 

and eigenvectors of T is       and       respectively [12].  With the CDC method, the 

number of operations needed to obtain the eigenvectors is also       [12] (though it is 

still faster than QR factorization). I use the divide-and-conquer routine in all of my exact 

diagonalization programs. 

As of June 2010, with the release of version 3.2.2, LAPACK included a new routine to 

solve the regular eigenvalue problem of a real symmetric matrix.  This routine included a 

method, called the relatively robust representation (RRR), used for obtaining the 

eigenvalues/eigenvectors of a symmetric tridiagonal matrix.  It was first presented in the 

Ph.D. dissertation of Dhillon in 1997 [32] and LAPACK added it (as a prototype) to its 

routine list in 1999 when version 3.0 was released.  This method scales as       and, in 

most cases, is the fastest routine LAPACK provides to eigensolve a symmetric 

tridiagonal matrix and it requires the least amount of space [12].  However, at the 

moment, this routine is not available to solve the generalized eigenproblem.  Also, with 

RRR, one can choose to solve for a subset of eigenvalues/eigenvectors, which will also 

speed up the diagonalization process. 
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4.4 – Construction and storage of GVB states 

Let’s consider the VB basis, which deals with only one bond type (singlets).  A single VB 

state can be stored as a 32-bit integer, with each bit representing a lattice site (so with a 

32-bit integer we are limited to a maximum of 32 sites, but it is trivial to go beyond 32 

sites by concatenating multiple 32-bit integers).  However, this bit representation is only 

unique when we restrict ourselves to the complete VB basis of “non-crossing” states.  

Each bond is represented by a pair of bits (not necessarily adjacent bits), with one bit set 

and the other cleared (1 and 0, respectively).  By convention, the 1 is always more 

significant
3
 than its partnered 0.  Also, for any given cleared bit (in our range of N bits) 

there must never be more 1’s than 0’s in the bits that are less significant than itself.  The 

opposite is true for any given set bit; there can never be more 0’s than 1’s in the bits that 

are more significant that itself. 

A helpful picture that I use to determine whether or not a given integer is a “well-formed” 

state is the concept of elevation.  First, we start with an elevation of zero.  Then we 

traverse the bits of the integer, starting from the least significant bit (LSB) and ending 

with the most significant bit (MSB).  As we traverse the bits, we add one to the elevation 

when a 0 is encountered and we subtract one when a 1 is encountered.  If the elevation 

ever is negative or is not zero when we pass the MSB, then the state is not “well-formed.”  

The following figure illustrates the concept of elevation and provides an example of a 

well-formed state. 

 
Figure 22 – This diagram illustrates the concept of elevation, how I determined whether a state is “well-

formed” or not, and how I determined the location of the bond partner. 

The problem of counting the number of “non-crossing” states is well known.  The 

number of non-crossing states (which correspond to so-called Catalan objects) is given by 

the Catalan number [33].  This number is the solution to many different counting 

problems (of similar nature as ours) in combinatorics. 

                                                      
3
 More significant in the sense that the most significant bit (MSB) is the leftmost set bit of the 

integer, and the least significant bit (LSB) is the rightmost bit of the integer.  Therefore, a bit 

which is more significant than another means it is relatively closer to the MSB.  Example of an 

integer in bit representation: (MSB   101100100   LSB). 
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A GVB state can be stored in a similar manner as the VB state, but now require three bits 

in order to represent a single lattice site.  A GVB state can have up to three bond types, 

which means we need six distinguishable elements to represent the bonds.  A single bit 

can only represent two distinguishable elements; three bits can represent up to      

distinguishable elements.  We use the bit representation of integers 0-5 to make up our 

six elements (Table 6). 

Table 6 – Bond types are represented 

by integers in the range 0-5. 

Singlets 
000 0 

001 1 

PCBs 
010 2 

011 3 

NCBs 
100 4 

101 5 

With this representation, we can uniquely construct states with the restriction that bonds 

of the same type may not cross.  The pairing works in the same way as in the VB basis; 

but a “well-formed” state requires three elevations (one for each bond type) in order to 

test the validity.  However, unlike VB states, a “well-formed” GVB state is not 

necessarily a state in the complete GVB basis.  As a result, further pruning of these “well-

formed” GVB states is needed in order to obtain the subset of GVB states which form the 

complete basis.  Although this pruning process is not trivial, it was done during the 

elevation test stage with some modifications. 

4.5 – Test for loop purity 

There is a simple method to test these three possible cases: 

1. All loops in an overlap are pure 

2. All loops in an overlap are pure except for one half-pure loop 

3. Neither of the above two.   

This method involves comparing the bond types associated with a given lattice site of the 

two states which are being overlapped; if the two bond types are different, then we have a 

transition point.  So, this test actually reveals the locations of all the transition points in a 

set of loops.  However, we do not care if there is a transition between the two charge 

bond types, so from now on we will consider transition points between singlets and 

charge bonds.  If all loops are pure, then there will be no transition points.  If there are 

exactly two transition points (note:  there cannot be an odd number of transitions in a 

loop) in the overlap, then those two transition points must belong to the same loop and 

this loop is half-pure (the rest will be pure).  If there are more than two transition points 

then the overlap must be zero and so must the hopping term matrix elements. 

Consider the following example, let 
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| 〉     
    

    
     

     
  |   〉 and 

| 〉     
    

    
     

     
  |   〉. 

These states represented as integers are,  

 

| 〉                                                                                

 

| 〉                                                                                

To test for purity, we compare bond types for each lattice site. 

| 〉                                                                     

| 〉                                                                     

 

There are no transition points; therefore, all loops are pure and the overlap may exist.  Let 

us switch the non-crossing singlet in state P into a charge bond (say a PCB).  

| 〉                                                                     

| 〉                                                                     

 

Now we have two transitions and the overlap has a half-pure loop with the rest remaining 

pure. 
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Chapter 5 

Determining Expectation Values 

After we solve the Hubbard model and obtain its eigenenergies    and eigenstates |  〉 

(n is the index for all the eigenstates, ordered according to energy levels, with n = 0 

associated with the lowest energy state) we can then determine expectation values from 

each eigenstate.  According to linear algebra, an eigenstate is written as a linear 

superposition of the basis states that make up the system.  For our system, the an arbitrary 

eigenstate is written as 

|  〉  ∑  
 | 〉

 

 

where,   
  is the weight associated to each basis state | 〉 and energy level n.  From this 

the expectation value of an operator  ̂ may be expressed as 

〈 ̂〉  
〈  | ̂|  〉

〈  |  〉
 

∑   
   

 〈 | ̂| 〉   

∑   
   

 〈 | 〉   
  

So far, I have covered rules for the overlap 〈 | 〉  and the matrix elements for the 

Hubbard Hamiltonian 〈 | ̂| 〉; it is necessary to determine overlap rules 〈 | ̂| 〉 for a 

particular operator  ̂. 

A particularly important operator is the structure factor, which contains the spin exchange 

term  ⃗   ⃗  seen in the Heisenberg Hamiltonian in Chapter 2.  The structure factor 

depends on a vector  ⃗ defined in k-space.  The structure factor    ⃗  is expressed as 

   ⃗  〈 |∑    ⃗⃗  ⃗   ⃗   ⃗ 
  

| 〉  

The vector  ⃗   is the “distance” between sites i and j and is equal to  ⃗    ⃗   ⃗  where,  ⃗  

is the vector location of lattice site i.  It is similar to how matrix elements are labelled 

with column as the “x-component” and row as the “y-component.” 

The structure factor      is the one-dimensional staggered magnetization and it is one of 

the measurements that I make on the ground state of the 1D Hubbard model.  The 

analogous structure factor for the charge-density-wave order is 
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      ⃗  〈 |∑   ⃗⃗  ⃗        (    )

  

| 〉  

We also make measurements for the expectation value of the dimer order operator 〈 ̂ 〉 

〈 ̂ 〉  ∑      
    

 

〈 |( ⃗ ⃗   ⃗ ⃗   ̂)   ⃗ ⃗   ⃗ ⃗   ̂ | 〉

  

  

5.1 – Structure factor 

The structure factor measures the magnetic order of a state.  Classically, the staggered 

magnetization (      in 1D) measures the antiferromagnetic ordering of nearest-

neighbour anti-aligned spins                        measures the one-dimensional 

ferromagnetic ordering of aligned spins                   ⁄   measures the one-

dimensional antiferromagnetic ordering of next-nearest-neighbour anti-aligned spins 

                 

To make measurements using the structure factor, we need to be able to develop rules the 

matrix elements 〈 | ⃗   ⃗ | 〉.  To do so, we need to first determine the update rules 

 ⃗   ⃗ | 〉.  Since the spin operator  ⃗  operates on lone spin up or spin down electrons only, 

we expect  ⃗   ⃗ | 〉 to be non-zero only when it acts on the singlets in state | 〉.  This is 

verified algebraically in Appendix B2.2 and the following table summarizes these update 

rules. 

Table 7 – This table lists the update rules for  ⃗   ⃗  acting on and between the different bond 

types of our GVB basis. 

( ⃗   ⃗ )   
 |   〉   

 

 
   
 |   〉 

 

( ⃗   ⃗ )   
  |   〉    

 
 

( ⃗   ⃗ )   
    

 |   〉  
 

 
   
    

 |   〉  
 

 
   
    

 |   〉 

                                    

( ⃗   ⃗ )   
    

  |   〉    
 

( ⃗   ⃗ )   
     

  |   〉    
 

According to the update rules listed in Table 7,  ⃗   ⃗  only acts on singlet bonds and the 

bond types do not change.  This suggests that, when considering the loop structure of the 

overlap 〈 | ⃗   ⃗ | 〉,  ⃗   ⃗  must act within a pure singlet loop.  The overlap rules are 

very similar to those of the VB basis and the Heisenberg model and are: 

 
 

 
 

i       j i       j 

0 
i       j 

 
 

 
    

 

 
 

 k       j       i        l  k       j       i        l  k       j       i        l 

0 
 k       j       i        l 

0 
 k       j       i        l 
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1. The overlap 〈 | 〉 must be non-zero with at least one singlet loop 

2.  ⃗   ⃗  must act within the same loop 

The matrix elements 〈 | ⃗   ⃗ | 〉 is summarized in the mathematical expression 

〈 | ⃗   ⃗ | 〉  
 

 
    

    〈 | 〉  

   is the loop identifier for the loop that contains lattice site i and     is defined as 

    {
                                               
                                              

 

    is similar to the sign term     defined in Chapter 2 for the same matrix elements 

using the VB basis; however,     introduces a concept of loop sublattice, which I define 

as an ABAB… alternating pattern (see Figure 23) as the loop is traversed (“A” labels one 

sublattice and “B” labels the other sublattice).  This loop sublattice is not necessarily 

coincident with the sublattice labelling of the underlying lattice. 

 

Figure 23 – This figure shows a singlet loop 

with labelling of the loop sublattice (ABAB…) 

along with the traditional sublattice labelling 

of the underlying lattice (closed and open 

circles). 

5.2 – Charge-density-wave order 

The charge-density-wave (CDW) order is similar, in concept, to the structure factor 

involving spins up and down, except the CDW ordering involves double occupancies and 

vacancies.  Classically,         measures the                  type ordering of the 

system,         measures the               ordering and        ⁄   measures the 

                      ordering. 

A 

A 
A 

A 

A B B 

B 
B 

B 
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The CDW structure factor involves       (    )  operators; in order to perform 

measurements on a state we need to be able to determine the corresponding update rules 

and matrix elements. 

First we will consider the update rules for the operator        acting on each type of 

bond in our GVB basis.  I worked these rules out in Appendix B3 and they are 

summarized in Table 8 below.         is zero if it acts on a singlet and it changes the 

charge bond type (   ̅) if it acts on a charge bond.  In our ensemble, which imposes 

half-filling strictly and not just on average, the Hubbard-U term  ∑         may 

rewritten as 
 

 
∑         .  So the latter also counts the number of charge bonds in a 

given state.  By compounding the rules for        I determined update rules for 

      (    ) (worked out in Appendix B3 and summarized in Table 8). 

Table 8 – This table summarizes the update rules for        and       (    ). 

         
 |   〉    

 
  

         
  |   〉     

 ̅ |   〉 

 
  

(    )   
  |   〉      

 ̅ |   〉 

 
  

      (    )   
  |   〉      

  |   〉 

 
  

      (    )   
     

  |   〉

     
 ̅    

 ̅ |   〉 

 

 

  

i       j 
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i       j 

i       j 

i       j 

i       j 
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i       j 

i       j 

i       j 

  

  

  
i       j 

  

i       j 

i       j i       j 
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 k       j       i        l 

 k       j       i        l 

 k       j       i        l  k       j       i        l 

 k       j       i        l 
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Using these update rules, I determined a possible (I have not verified these rules) set of 

rules to determine when the matrix elements 〈 |      (    )| 〉  are non-zero.  

These matrix elements are non-zero when the following rules are satisfied. 

1. All loops must be pure. 

2. If sites     act within the same pure charge bond loop, then that loop must have 

an even number of NCBs. 

3. If sites     act between two pure charge bond loops, then each of those two loops 

must have an odd number of NCBs. 

5.3 – Dimer operator 

Unlike the previous two structure factors, dimer ordering is not best described using the 

spins up and down.  It is more natural to use singlets to describe the ordering, as a 

dimerized state (also known as a valence bond crystal or VBC [34][35][36]) is one with 

nearest-neighbour singlets (Figure 24a).  〈 ̂ 〉 written at the beginning of the chapter 

describes as specific type of VBC in which the singlets are preferred to align horizontally 

in 2D (Figure 24b) (this is a result of the       
    

 

 term in 〈 ̂ 〉), but can be trivially 

made to prefer vertical alignment (by changing the sign term to     
  
 
   

 

).  In one 

dimension, this dimerized state is called the Majumdar-Ghosh chain [37][38] and consists 

of a chain of nearest-neighbour singlets (Figure 24c). 

 

Figure 24 – An arbitrary VBC state in 2D with both horizontal and vertical 

nearest-neighbour singlets is shown in (a).  The horizontally-aligned VBC 

state that is preferred by our dimer order operator 〈 ̂ 〉 is shown in (b).  The 

Majumdar-Ghosh chain, shown in (c), is the 1D VBC. 

The dimer order is seen largely in frustrated regimes where there is competition between 

nearest- and next-nearest-neighbour antiferromagnetic interactions.  In fact, the 

Majumdar-Ghosh chain is known to be the exact solution for the ground state of the 

Heisenberg model with the special condition that the next-nearest-neighbour exchange 

a) b) 

c) 
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amplitude (traditionally labelled   ) is half the strength as the nearest-neighbour exchange 

amplitude (traditionally labelled   ) [37][38], or alternately written     ⁄    ⁄ . 

Consider the following example for insight of how a VBC in 1D is a natural way of 

representing a system with frustration from nearest- and next-nearest-neighbour 

interactions.  Let  

| 〉     
    

 |   〉 

  
 

 
 |    〉  |    〉  |    〉  |    〉  

  
 

 
 |        〉  |        〉  |        〉  |        〉  

The two nearest-neighbour singlets is actually a linear superposition of nearest-neighbour 

antiferromagnetic ordering (      ) and next-nearest-neighbour antiferromagnetic 

ordering (     ).  One would expect that, in the frustrated regime, the ground state 

would be some non-trivial superposition of the two types of antiferromagnetic ordering; 

and the VB basis does this naturally. 

To obtain measurements of the dimer order to an eigenstate described using our GVB 

basis, we need to develop update rules for ( ⃗   ⃗ )( ⃗   ⃗ ).  These update rules can be 

thought out by applying  ⃗   ⃗  twice; however, there are many combinations so I will not 

write them down.  The matrix elements 〈 |( ⃗   ⃗ )( ⃗   ⃗ )| 〉 have been determined 

using the VB basis [26], so the rules for our basis are very similar.  For these matrix 

elements to be non-zero: 

1. The overlap 〈 | 〉 must be non-zero with at least one pure singlet loop. 

2. Two of the four indices need to belong to one singlet loop with the other two 

indices belonging to either the same loop or a different singlet loop. 

If the matrix elements are non-zero, their values are given by (see Figure 25 as well), 

a) 
 

  
      , if indices         belong to the same loop and the “virtual” bond 

connecting sites i and j does not cross the “virtual” bond connecting sites k and l. 

b) 
 

  
      , if indices         belong to the same loop and the “virtual” bond 

connecting sites i and j does cross the “virtual” bond connecting sites k and l. 

c) 
 

  
      , if indices     belong to one loop and indices     belong to another loop. 

d) 
 

  
       (or 

 

  
      ), if indices     (or    ) belong to one loop and indices     

(or    ) belong to another loop. 
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Figure 25 – Diagram showing the four cases (a-d) 

when 〈 |( ⃗   ⃗ )( ⃗   ⃗ )| 〉 is non-zero.  All loops in 

the diagram (represented by circles) are pure singlet 

loops.  By nature of the problem, indices i and j are 

linked via  ⃗   ⃗  and k and l are linked via  ⃗   ⃗ .  I 

consider these links as “virtual” bonds and these bonds 

are drawn as dotted grey lines in the figure. 
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Chapter 6 

Comparison to Known Models/Methods 

Since we are limited to only a small number of lattice sites, due to the size of the singlet 

sector of the Hilbert space, I limited myself to a 1D chain with periodic boundary 

conditions.  I solved the half-filled Hubbard model using our GVB basis via exact 

diagonalization with nearest- and next-nearest-neighbour hopping, 

 ̂     ∑(   
        

    )
〈   〉
 

   ∑ (   
        

    )
〈〈   〉〉
 

  ∑      

 

  

   and    are the nearest- and next-nearest-neighbour hopping amplitudes respectively, 

and I adopt the traditional notation for the representation of nearest- and next-nearest-

neighbour lattice sites as 〈   〉  and 〈〈   〉〉  (as seen in the summations), respectively.  

When I solve the model, I divide through by   , such that everything is measured in units 

of    (this can also be effectively thought as setting     ), 

 ̂

  
  ∑(   

        
    )

〈   〉
 

 
  
  

∑ (   
        

    )
〈〈   〉〉
 

 
 

  
∑      

 

  

The parameters that I varied are       ⁄    and      ⁄     ; each set of values 

     ⁄     ⁄   comprises a data point. 

Once solved and I obtain the eigenenergies and eigenstates, for various data points, I 

measured the staggered magnetization      (labelled M2 in the plots), the doubly 

staggered magnetization     ⁄   (labelled M2D in the plots) and the dimer order 〈 ̂ 〉 

(labelled D2 in the plots) for each data point. 

I compared my ground state energies and staggered magnetizations (for various values of 

    ⁄  and    ⁄ ) with those I obtained using the traditional occupation basis (solving the 

Hubbard model via exact diagonalization still, though restricting the occupation basis to 

the      sector of the Hilbert space).  This comparison is done in order to verify that 

my basis (and all the rules I developed) are correct. 

Then I compare my ground state energies at    ⁄      (for various values of     ⁄ ) 

with those I obtained solving the Heisenberg model via exact diagonalization using the 

VB basis.  This comparison was, in part, to further verify my basis, and to establish that, 
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in the limit of large U, the Heisenberg model and the half-filled Hubbard model are 

equivalent. 

In the opposite limit, when    ⁄   , the Hubbard model becomes the tight-binding 

model, and I compare my ground state energies (for various values of     ⁄ ) with those 

obtained from the tight-binding model solved analytically in the micro-canonical 

ensemble.  This comparison was also done, in part, to verify my basis, but also to ensure 

that the tight-binding model and the Hubbard model (using the GVB basis) are equivalent. 

6.1 – Hubbard model and the occupation basis 

When I compared the ground state energies using the GVB basis with those using the 

occupation basis, there was complete agreement for N = 4 and N = 8 (See Figures 27 – 

30).  However, for N = 6, there is disagreement for large     ⁄  (>1) and small U (~2) 

(Figures 27 – 30).  This disagreement is due to the natural next-nearest-neighbour 

frustration that occurs for one dimensional, N/2 odd, lattices through periodic boundary 

conditions.  This frustration forces the ground state outside the S = 0 sector of the Hilbert 

space (into the S = 1 spin sector).  The GVB basis, restricted to the S = 0 sector, cannot 

detect this; whereas, the occupation basis can.  Consider of the following figure to see 

how this frustration occurs. 

 
Figure 26 – This figure shows that for 6 sites (or any odd N/2), the next-

nearest-neighbour antiferromagnetic ordering is disrupted through 

periodic boundary conditions.  This is not true for 8 sites (or any even 

N/2). 

The following four figures (Figures 27 – 30) show the ground state energy per site 

      ⁄   for four values of      (0, 2, 20, and 200) and       ⁄    (“Occ” denotes 

the occupation basis). 

 Next-nearest-neighbours 

are anti-aligned through 

periodic boundary 

conditions 

 

  

Next-nearest-neighbours 

are not anti-aligned 

through periodic boundary 

conditions 
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Figure 27 – For each case (N = 4, 6, and 8) there is one cusp where the ground state transitions from the 

      antiferromagnetic ordered state (left of cusp, independent on      ) to the       antiferromagnetic 

ordered state (right of cusp, depends linearly on      ). 

 
Figure 28 – The cusps are still visible and we begin to see the transition between the two antiferromagnetic 

states becoming smoother as N and U are increased.  We clearly see the discrepancy for N = 6 when using the 

occupation basis (spanning the     
    spin sector) and the GVB basis (spanning the        spin sector). 
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Figure 29 – As      is large now, the ground state energies obtained with either basis are now equal for 

N = 6. 

 
Figure 30 – With     = 200, it is significantly large enough to be considered as the large-U limit and we 

have complete agreement between the ground state energies using the occupation basis and the GVB basis.  

Not obvious in this particular plot, there are actually three unique states for N = 8 and     = 200 instead of 

the two seen at small U (it is seen much more clearly in the staggered magnetization plots). 
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Disregarding the N = 6, large     ⁄  discrepancy, due to frustration through periodic 

boundary conditions, there is complete agreement between the ground state energies 

obtained (via exact diagonalization) using the traditional occupation basis and our newly 

proposed GVB basis.  This supports the conclusion that the GVB basis and the update 

rules used to obtain the overlaps 〈 | 〉 and matrix elements 〈 | ̂| 〉 are correct.  The N 

= 6 discrepancy (or I believe odd N/2 discrepancy) forces the ground state out of the S = 0 

spin sector into the S = 1 spin sector for large       and small U, which means, by 

construction, that our GVB basis cannot capture this S = 1 ground state as the GVB basis 

only spans the S = 0 spin sector. 

The next set of plots (Figures 31 – 33) show that staggered magnetization      

calculated on the occupation basis ground state and the GVB basis ground state for 

   ⁄    for N = 4, 6, and 8.  Recall that the staggered magnetization measures the 

nearest-neighbour antiferromagnetic ordering       so we expect it to be large for small 

values of      .  Figures 31 and 33 (N = 4 and 8 respectively) show a clear instability, 

seen using either basis, for values of       left of the cusp.  When these instabilities occur 

is related to a degeneracy seen at    ⁄    and we will look at this in more detail with 

the tight-binding model in Chapter 6.3.  Nevertheless, since these instabilities occur with 

either basis, I do not consider it an issue with the GVB basis or the appropriate update 

and overlap rules; but I expect it to be a numerical issue with LAPACK that occurs 

whenever there is this “degeneracy” as described in Chapter 6.3. 

 
Figure 31 – For     ⁄   , there is a clear instability issue when using either the occupation or the GVB 

basis; although, the GVB basis appears to be less affected by this instability.  For     ⁄   , there is no issue 

whatsoever.   
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Figure 32 – There is no instability issue for any value of       and N = 6.  Notice that      is larger for 

    ⁄   , which corresponds the expectation of       antiferromagnetic ordering in this region.  For 

    ⁄   ,  we expect       antiferromagnetic ordering; but even with this ordering, half the nearest-

neighbours are anti-aligned as well, which is why      is non-zero in this region. 

 
Figure 33 – Similar to N = 4, we see an instability again using either basis, but this time for     ⁄    ⁄ ; 

after which, the instability disappears. 
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The cusps seen in the ground state energy plots (Figures 27 – 30) are seen as 

discontinuities in the staggered magnetization plots.  As we will see when we look at the 

staggered magnetization for      = 20 and 200 (Figures 35 and 36), there are actually 

three states (two cusps) other than the apparent two (one cusp) seen in the ground state 

energies for the same values of     . 

For     = 2, 20, and 200 and N = 4 and 8, there is complete agreement between the 

staggered magnetization calculated using occupation states as the basis and GVB states as 

the basis.  The instability seen at     = 0 disappears (using either basis) when we 

increase     ; in fact, the instability disappears for    ⁄       (see Chapter 6.3).  The 

discrepancy seen for N = 6,     ⁄       , and    ⁄    is because of same reason as 

the discrepancy seen in the ground state energies at the same point. 

 
Figure 34 – As we saw in the ground state energies for      = 2 (Figure 28), there is complete agreement 

for N = 4 and 8 and the same discrepancy for N = 6. 
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Figure 35 – There is complete agreement seen in the range       ⁄    (above which I did not make any 

measurements) for N = 4, 6, and 8 sites.  Notice that, for N = 8, there are clearly three different states. 

 
Figure 36 – There is complete agreement again for N = 4, 6, and 8.  The middle state seen for N = 8 is 

actually the 1D VBC as we will see in Chapters 6.2 and 7. 
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From these comparisons of the ground state energies and staggered magnetizations 

between the GVB basis and the occupation basis, there does not appear to be any issue 

with the update rules or the overlap rules themselves.  The discrepancy seen at N = 6, 

large      , and small      seen is because of frustration, through periodic boundary 

condition, for next-nearest-neighbour interactions .  The instabilities at      = 0 exactly 

are seen when using either basis and localized to a particular region of       as well.  As 

a result, it is unlikely that these instabilities would be caused by inappropriate update or 

overlap rules.  

6.2 – Heisenberg model and the VB basis 

As mentioned in previous chapters, the Heisenberg model can be derived from the 

Hubbard model in the limit as     [1].  As an additional check to make sure that the 

GVB basis is correct and works according to the update and overlap rules that I 

developed, I will compare my results from solving the Hubbard model at      = 200 via 

exact diagonalization using the GVB basis with results I obtained from solving the 

Heisenberg model via exact diagonalization using the VB basis.  As Figures 40 – 42  

show us, the ground state energies for the Hubbard model (at      = 200) and the 

Heisenberg model are the same; the Hubbard model ground state energies require scaling 

(according to the expression in the graphs) and plotting with respect to      ⁄   .  This 

comes from the fact that the exchange amplitude     of the Heisenberg model is related to 

the square of the hopping amplitude     of the Hubbard model at large U [1], 

    
    

 

 
  

This can be shown using the occupation basis or the GVB basis.  First consider the 

occupation basis and the hopping term     acting between two spins (see Figure 37).  If 

sites i and j contain a spin up (or down) each, then, because of Pauli exclusion principle, 

there can be no hopping between the two sites.  If one site contains a spin up and the 

other a spin down, than an electron can from one site to the other creating a double 

occupancy and a vacancy (it actually creates a charge bond) with an energy cost of U 

because of the double occupancy.  Since a double occupancy is energetically 

unfavourable (since U is considered to be large), an electron in the doubly occupied site 

will hop to the vacant site, creating a singlet.  This process, called virtual hopping, 

involves two hops, hence    
 , with one energy cost U. 
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Figure 37 – This is an illustration of how the hopping term     affects a pair of singly occupied sites. 

Now consider the same spin states, except using the exchange term     to operate on them 

(Figure 38).  We obtain, in the end, the same states, except off by a factor of 4. 

 

Figure 38 – This is an illustration of how the exchange term     affects a pair of singly occupied sites.  The 

exchange term     is conceptually equivalent to acting with the hopping term     twice with an energy cost U 

for creating a doubly occupied site in the process. 

Notice that despite starting with a state that is just a spin up on one site and spin down on 

the other, whenever that state is acted on with the exchange term     or hopping term     a 

singlet or charge bond is created.  This implies that singlets and charge bonds are perhaps 
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a more natural language to use to describe a state.  We can also describe virtual hopping 

in terms of the GVB basis (Figure 39) as changing the bond from a singlet to a PCB and 

then back to a singlet. 

 

Figure 39 – The process of virtual hopping can be described with the GVB basis as well. 

The following three plots (Figures 40 – 42) compare the ground state energies obtained 

through solving the Heisenberg model and the Hubbard model with      = 200 and 

nearest- and next-nearest-neighbour interactions; such that the Heisenberg Hamiltonian 

can be written in terms of the nearest- (    and next-nearest-neighbour (  ) exchange 

terms. 
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Figure 40 – The ground state energy for 4 sites has one cusp at       = 1 (or      ⁄    = 1) separating the 

nearest-neighbour antiferromagneticly ordered       state and the next-nearest-neighbour 

antiferromagneticly ordered       state (see Figure 43).  The “1/2” coefficient in front of the      ⁄    term 

compensates for double counting the next-nearest-neighbours in the N = 4 case.  With scaling (according to 

the expression in the figure) the Hubbard ground state energies agree completely with the Heisenberg ground 

state energies. 
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Figure 41 – For N = 6, there is one cusp at       = 0.5 where there is a level crossing and there is complete 

agreement between the Heisenberg and Hubbard ground state energies. 

 
Figure 42 – This figure has two cusps, one at       = 0.5 and the other at       = 0.75.   For       ⁄      

the ground state has       antiferromatic ordering and for     ⁄      , the ground state has       

antiferromagnetic ordering.  Between the two cusps is when the ground state has the frustrated 1D VBC 

ordering (see Figure 45). 
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There are no discrepancies between the ground state energies of the Heisenberg and 

Hubbard models; thus, further supporting that my GVB basis rules are correct. 

The three figures (Figures 43 – 45) show three spin correlation functions: staggered 

magnetization      (or M2), doubly staggered magnetization     ⁄   (or M2D), and 

dimer order 〈 ̂ 〉 (or D2).  We expect      ordering (     ) to dominate for small 

     ,     ⁄   ordering (     ) to dominate for large      , and 〈 ̂ 〉 to dominate in the 

frustrated regime in between (see Figure 45). 

We nearly see complete agreement between the spin correlation functions calculated on 

the Heisenberg ground state and the Hubbard ground state at      = 200.  The only 

discrepancies occur around the cusp points because the exact diagonalization process is 

unstable at these level crossings where there are, often, many degenerate states.  Also, 

some disagreement is seen because of resolution.  The data points are equally space apart 

with respect to       (       = 0.02) and       (       = 0.02).  However, I am plotting 

the Hubbard results with respect to      ⁄    and as a result the resolution is higher for 

small       and lower for large      . 

Note the y-axis label “    ,” where O is the corresponding operator (    ,     ⁄  , or 

〈 ̂ 〉). 

 
Figure 43 – Other than at the cusp points, there is complete agreement between the spin correlation functions 

calculated on the ground state of the Heisenberg model and the Hubbard model at      = 200. 
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Figure 44 – Oddly enough dimer order is dominant for     ⁄      (with M2D close behind).  This is most 

likely the cause of the increased frustration due to the periodic boundary conditions when next-nearest-

neighbour antiferromagnetic interactions are large on odd     1D lattices. 

 
Figure 45 – There are three regions in which each of the spin correlation functions dominate.  For small      , 

M2 (     ) order dominates, for large      , M2D (     ) order dominates, and in the frustrated regime 

in between, the dimer order dominates. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

O
/N

2
 

J2/J1 or (t2/t1)
2 

Spin Correlation Functions for 6 Sites 

M2 Hs

M2D Hs

D2 Hs

M2 Hb (U = 200)

M2D Hb (U = 200)

D2 Hb (U = 200)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

O
/N

2
 

J2/J1 or (t2/t1)
2 

Spin Correlation Functions for 8 Sites 
M2 Hs

M2D Hs

D2 Hs

M2 Hb (U = 200)

M2D Hb (U = 200)

D2 Hb (U = 200)



59 

 

6.3 – Tight-binding model (analytical) 

If we set U = 0 in our Hubbard Hamiltonian we obtain the following, so-called, tight-

binding Hamiltonian 

 ̂   ∑   (   
        

    )

    

  

Restricting ourselves to nearest- and next-nearest-neighbour hopping only, we obtain 

 ̂     ∑(   
        

    )
〈   〉
 

   ∑ (   
        

    )
〈〈   〉〉
 

  

The tight-binding model can be solved analytically via taking the Fourier transform of 

each creation (   
 

) and annihilation (   
 

) operator. 

   
  

 

√ 
∑    ⃗⃗  ⃗    

 

 ⃗⃗

 

    
 

√ 
∑   ⃗⃗  ⃗ 

 ⃗⃗

    

After some work (shown in Appendix C), the tight-binding model is expressed in k-

space and in diagonal form as 

 ̂  ∑     
    

  

 

with  

                           

as the tight-binding energy spectrum and where ‘a’ is the distance between nearest-

neighbour atoms.  The energy spectrum is plotted with respect to ‘ka’ in Figure 46 for 

five different values of the parameter      . 
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Figure 46 – The tight-binding energy spectrum is plotted with respect to ‘ka’ for five different values of the 

parameter      . 

The ground state energy for a half-filled N-site system is determined by assigning N 

electrons (N/2 spin up electrons and N/2 spin down electrons) to the lowest energy levels.  

Since we are dealing with a discrete lattice of N sites, the energy spectrum    is divided 

equally into N divisions.  For example, when N = 8 the energy spectrum is divided up into 

the 8 possible k-states       
 

 
  

 

 
  

  

 
  , and the states with the lowest energy 

levels are filled with the 8 electrons.  It is easier to see the states of lowest energy when 

we plot these particular states as a function of       (see Figure 47). 
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Figure 47 – This figure plots the energy levels for the 8 possible k-states when N = 8 with respect to      .  

Each state can hold two electrons (one spin up and one spin down). 

From Figure 47 we can clearly see a level crossing at       = 0.5 where the states 

        cross the      state (there are other level crossings, but this one is 

particularly important to the ground state).  For     ⁄      the lowest energy states are 

    ,    ⁄ , and    ⁄ ; however, there are a total of ten possible locations where the 

8 electrons may be placed.  Nevertheless, this does not affect the ground state energy; we 

just fill up the      state with 2 electrons, the       ⁄  states with 4 electrons, and 

place the remaining 2 electrons in any of the four possible locations in states       ⁄ .  

The ground state energy is obtained by summing the energies of the occupied states.  

Thus for 8 sites, the ground state energy is 

  
  

  (    
  
  
)
    

  ( √ )
    

 
 
  ( 

  
  
)
    

 
 

 

   (√   )            

The ground state energy written as energy per site is 
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and as seen in Figure 48, this is equivalent to my results obtained with the GVB basis 

and the Hubbard model (for     ⁄     ).  For 
  

  
    , the lowest energy states are 

    ,     , and  , and there are eight possible locations for the 8 electrons.  All the 

ground state energies per site that I obtained using the GVB basis agree with the 

analytical ground state energies obtained from solving the tight-binding model for 4, 6, 

and 8 sites. 

 
Figure 48 – This figure is a plot of the ground state energies per site for the tight-binding-model (TBM) and 

the Hubbard model (using the GVB basis). 

All the cusps seen in Figure 48 are a result of level crossings as seen with our N = 8 

example.  Note that, for 4 sites, the level crossing is at 1.0, not 0.5 like the N = 8 case.  

This is because there is a slight change in the energy spectrum function to account for 

double counting next-nearest-neighbours (    ⁄  
 

 
    ⁄ ). 

Since the tight-binding-model has an analytical solution, we are not limited by the 

number of sites.  Consider the ground state energy for large N (N = 100) in Figure 49. 
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Figure 49 – The ground state energy of the tight-binding model for N = 8 and N = 100.  The energy is 

constant with respect to       for     ⁄      in the large-N limit, just as it was for N = 8.  However, for 

large N and large      , the slope of the energy is steeper.  This suggests 8 sites is a decent approximation (in 

terms of capturing the ground state properties) for small      , but not for larger      . 

Interestingly enough, the point       = 0.5 is an important transition point even in the 

large-N limit and before this point the ground state is independent of      . 

As I mentioned in the N = 8 example, the case when     ⁄      and we need to place 

two electrons into the four locations provided by the states         was not an issue 

with the ground state energy (as any arrangement has the same energy).  However, this is 

not the case with the staggered magnetization     .  The 1D structure factor      can be 

determined by taking the Fourier transform of the creation and annihilation operators (see 

Appendix C2) and at the end can be expressed as  
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where, s and t are spin indices (just like  ), k and l are k-state indices, and  
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The structure factor then depends on the arrangement of the electrons; thus, it is 

important to consider the possible arrangements.  There is a degeneracy issue whenever 

there are more locations than electrons to fill them at the Fermi level.  The next three 

figures (Figures 50 – 52) plotting      show that the arrangement of a double occupancy 

and a vacancy is possibly the correct arrangement for the ground state.  However, since 

there is a stability issue with exact diagonalization at U = 0 exactly (see Chapter 6.1), I 

cannot say for certain. 

 
Figure 50 – Like the 8-site case, when N = 4, there is the degeneracy between states      at the Fermi level 

for     ⁄   .  It appears that the        arrangement (TBM 1) in states     ⁄     ⁄   agrees with the 

GVB results (TBM 2 is the staggered magnetization for the arrangement      ).  Unfortunately, because there 

definitely is an instability issue with the GVB results (recall that this instability issue is seen with the 

occupation basis results as well) I cannot state this conclusively.  Note that the two degenerate states at the 

Fermi level is separated by   and I am measuring     ; I believe this relation to be important. 
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Figure 51 – For N = 6, there is no instability issue; however, there is a degeneracy between states      for 

    ⁄    (see Figure 53) but this does not alter the staggered magnetization     .  Note that in this case the 

degenerate states are separated by     , not  . 

 
Figure 52 – We see the instabiliy issue again, but only in the region where we have the      and      

degeneracy at the Fermi level.  And again, it appears that the        arrangement (TBM 1) is the preferred 

arrangement. 
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I suspect that this instability, at U = 0 exactly, only occurs when we have this degeneracy 

issue at the Fermi level and the degenerate states are separated by   for measurements 

with     .  The 6-site case does have this degeneracy issue for     ⁄   , but it involves 

two electrons filling the four locations provided by states         (see Figure 53). 

 
Figure 53 – For     ⁄   , states      and         are filled completely with the six available 

electrons.  For     ⁄   , states      and      are filled completely, and states       ⁄  are half-

filled with only two electrons. 

I mentioned in Chapter 6.1 that the GVB and occupation basis results stabilize for small 

U.  Figures 54 – 56 show that the GVB results is stabilized for U =     , but the values 

are shifted from the tight-binding values.  This shift is only seen with the      and 

     degeneracy.  Unfortunately, I do not know why this shift occurs, but it is also seen 

with the occupation basis results; so I do not believe this to be an issue with the GVB 

basis. 
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Figure 54 – For          , there is a clear difference between the GVB results and the TBM results 

(TBM 1 is the        electron arrangement for the degerate    ⁄     ⁄  states). 

 
Figure 55 – No change with respect to Figure 51 (U = 0 exactly) for N = 6. 
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Figure 56 – Like the 4-site case, there is a clear shift in the    ⁄     ⁄  degenerate region, otherwise the 

plot remains unchanged.  The occupation basis shows the same shift as well. 
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Chapter 7 

Results 

In this chapter, I will present my results for an 8-site, one-dimensional chain and discuss 

the ground state magnetic order (Chapter 7.1) and structure (Chapter 7.2). 

7.1 – Phase diagram 

As discussed in previous chapters, the classical antiferromagnet has anti-aligned spins.  

With nearest-neighbour interactions only, we expect the antiferromagnetic ground state of 

the half-filled Hubbard model to favour anti-aligned neighbouring spins (     ).  With 

next-nearest-neighbouring interactions, we expect the antiferromagnetic ground state to 

favour anti-aligned next-nearest-neighbouring spins (     ).  In the frustrated regime 

there is a competition between the two types of antiferromagnetic ordering and the 

ground state is expected to be more of a valence bond crystal [34][37][38] (Majumdar-

Ghosh chain in 1D). 

Figure 57 is the phase diagram of the ground state of the half-filled Hubbard model and 

shows the various magnetic phases which are dominant in each of the regions of the 

phase diagram.  The phase diagram is plotted with respect to       and      and the solid 

lines represent the level crossings. 
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Figure 57 – Phase diagram for the ground state of the half-filled Hubbard model when N = 8.  I divide the 

phase diagram into three main regions:  I, II, and III. 

In order to measure the nearest- and next-nearest-neighbour antiferromagnetic ordering of 

the ground state, I measured the structure factors      and     ⁄   respectively (see 

Chapter 5.1).  I also measured the dimer order 〈 ̂ 〉 (see Chapter 5.3) to capture VBC 

ordering in the frustrated regime.  These three spin correlation functions,      (labelled 

M2S in the following Figures),     ⁄   (labelled M2D), and 〈 ̂ 〉  (labelled D2), are 

plotted for six values of    ⁄  (10
-4

, 2, 5, 8.8, 20, and 200) over the range       ⁄    

(Figures 58 – 63).  From these figures we observe that the staggered magnetization     , 

in region I, increases as      increases. This is a natural result of the suppression of GVB 

states with charge bonds when      is increased (as a result, singlet states contribute 

more).  In this region, the staggered magnetization is always dominant; thus supporting 

our expectations that region I has nearest-neighbour antiferromagnetic ordering (     ).  

When region III appears at    ⁄      , it is dominated by next-nearest-neighbour 

antiferromagnetic ordering (     ).  In the frustrated regime of region II (between 

region I and III) and at large enough     , the dimer order, favouring VBC states, is the 

dominant order of the ground state. 
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Figure 58 – The       ordering (M2S) is clearly dominant in region I when    ⁄      , with non-zero 

      (M2D) and dimer ordering (D2).  In region II,       is the dominant ordering, but there is still a 

significant amount of M2S order.  This suggests that for small U there are other types of order that the ground 

state has in region II—in particular I suspect some sort of order pertaining to charge bonds, since U is small 

(also see Figures 64 – 66). 

 
Figure 59 – This figure is similar to Figure 58 (     = 10-4), but D2 begins to surpass M2D in region I. 
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Figure 60 – We begin to see D2 contributing more in the frustrated regime of region II (next to region I). 

 
Figure 61 – Region III clearly has       as its dominant ordering, with little to no M2S and D2 ordering.  

Region II, between region I and III, clearly has the competing order between M2S and M2D, but now with 

the dimer order as well. 
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Figure 62 – With      = 20, we are very near the large-U limit where we see       order in region I, 

      in region III, and dimer order in region II. 

 
Figure 63 – Very similar behaviour to Figure 62 (     = 20). 
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antiferromagnetic order (     ) in region III (large      ), and dimer order (Majumdar-

Ghosh chain) in the frustrated regime of region II.  For small      (before region III 

appears), there is still nearest-neighbour antiferromagnetic order (     ) in region I; 

however, region II does not appear to be completely dominated by next-nearest-

neighbour antiferromagnetic order (     ).  I believe there is also some sort of order in 

region II associated with double occupancies and vacancies (or charge bonds).  Consider 

the following three figures (Figures 64 – 66) that show the fraction of bond types that 

make up the ground state for small values of      (before the appearance of region III).  

For      = 0 (Figure 64) and in region II, half of the bonds are singlets and the other half 

are charge bonds.  And we can see that charge bonds contribute more to the ground state 

in region II than in region I for any value of     .  In fact, we can see that the charge 

bond contribution in region II always increases (for finite    ⁄   ) as       increases.  

This is important, as in the region of very large      , charge bonds are not as easily 

suppressed (e.g. Figure 91, shows that there is still a significant charge bond contribution 

to the ground state when       = 200 and      = 200). 

The following three figures (Figures 67 – 69), show the fraction of bond types for values 

of     , after region III first appears.  In region III, charge bond contribution is clearly 

less for values of      shortly after region III first appears (~8.67 to ~10).  When      is 

too large, the fraction of charge bonds is continuous between regions and increases as 

      increases.  It is clear that      suppresses charge bond contribution as expected.  

Also note that NCBs always contribute less than PCBs. 

 
Figure 64 – Singlet bonds always contribute the most to the ground state, expect in region II at      = 10-4, 

where the contribution from singlets and charge bonds (both PCBs and NCBs) are equal. 
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Figure 65 – For      = 2, we begin to see an increase in charge bond contribution in region II as       

increases (however, singlet bonds always have over 50% contribution). 

 
Figure 66 – With      = 5, we see a more prominent increase in charge bond contribution with      . 
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Figure 67 – Oddly enough, with the introduction of region III, the concavity of the charge bond contribution 

changes (though I believe the concavity changes back for large enough      , suggesting that at some value 

of       there is an inflection point).  In region I, we see almost complete supression of NCB contribution. 

 
Figure 68 – There are no discontinuities in the fraction of bond type plots between regions. 
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Figure 69 – At      = 200, the charge bonds are completely suppressed in the range       ⁄   .  As I 

show in Chapter 7.2, the contribution does increase for larger values of       (see Figure 91). 

7.2 – Ground state structure 

In this subchapter, I present results to show that structure exists in the ground state 

represented using the GVB basis—in particular, the ground state weights    (as in 

| 〉    | 〉) depend (albeit non-trivially) on the bond lengths and bond types.  The VB 

basis displayed this bond-length dependence of the ground state for the non-frustrated 

Heisenberg model and was used to construct trial wave functions to variational determine 

the ground state of larger systems [11]. 

The 1D non-frustrated (      = 0) Heisenberg ground state represented using VB states 

shows a clear dependence on the product of the bond lengths for 16 sites (see Figure 70).  

On the y-axis, I plotted the relative magnitudes of the ground state weights   .  The 

magnitude of each weight is divided by the magnitude of the weight of the state with the 

maximum number for the product of bond lengths (i.e. the state with the longest possible 

bonds).  On the x-axis, I plotted the product of all the bond lengths in each state (so each 

point represents one state in our basis | 〉 with ground state weight   ).  The length of a 

bond is defined as the number of lattice sites in between the bond endpoints (including 

one of the end points).  For a 1D chain, a bond connecting nearest-neighbours has length 

1, a bond connecting next-nearest-neighbours  has length 2, and etc. 
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Figure 70 – With each axis with a logarithmic scale, the Heisenberg ground state is nearly linearly dependent 

on the product of bond lengths.  This, in turn, implies that the ground state weights depend on the product of 

bond lengths according to some power law. 

The following four figures (Figures 71 – 74) are similar plots as Figure 70; however, 

these figures plot the magnitude of the ground state weights (non-relative) of the Hubbard 

model at      = 10
-4

 (also only the x-axis has a logarithmic scale).  Some of the GVB 

states with charge bonds do not display translational symmetry as we would expect (i.e. 

the ground state weights are not equal for translationally equivalent states).  This issue 

remains unsolved, but once resolved we could effectively reduce the size of the basis by 

N. 
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Figure 71 – The pure singlet states decay with the product of bond lengths.  Note the asymmetry with 

translation of the most contributing state with only nearest-neighbour bonds (upper-left-most labelled state).  

Also note the translational symmetry of the pure NCB state indicated in the figure, as Figures 73 and 74 

show translational asymmetry in region II. 

 
Figure 72 – Since we know the ground state does not change (in each region) in the tight-binding limit, this 

figure is exacly the same as Figure 71. 
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Figure 73 – In region II, we see the translational asymmetry between the pure NCB state indicated.  Also, the 

pure PCB state indicated contributes significantly to the ground state, whereas, in region I, it did not 

contribute at all.  Note the change in the pure singlet state weights, the two longer bond states have the same 

magnitude, with the nearest-neighbour pure singlet state having exactly twcie that magnitude. 

 
Figure 74 – The ground state weights are exactly the same as Figure 73, since we are in the same region and 

in the tight-binding limit. 
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The next set of four figures (Figures 75 – 78) show the ground state weights for      = 2 

and       = (0, 0.25, 0.75, and 1.5).  The following figures after show the ground state 

weights for larger values of      and       (Figures 79 – 91). 

 
Figure 75 – Even with a small value of     , the pure singlet states contribute more (and there is still a 

similar decay with bond length) than most of the mixed states.  Many of the states that have many charge 

bonds do not contribute nearly as much as when      = 0. 
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Figure 76 – This state is very similar to the one in the previous figure.  This is because we are in the same 

region (region I). 

 
Figure 77 – Notice that the pure charge bond states indicated still significantly contribute to the ground state.  

This supports Figure 65 where the charge bond contribution increases in region II. 
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Figure 78 – Despite being in the same region as the previous figure, this state appears quite different than 

when       = 0.75.  For example, the nearest-neighbour pure singlet state no longer has the largest 

contribution.  This also supports the fact that charge bonds are not as easily supressed for large      . 

 
Figure 79 – The contribution of the states with charge bonds are further supressed as      is increased from 

2 to 5.  We still see, however, that the state with one PCB indicated still contributes a significant amount. 
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Figure 80 – Almost the same as the previous figure (the charge bond states are supressed a little more, as the 

pure singlet states contribute a little more).  

 
Figure 81 – With      = 5, we now see more supression of charge bond states in region II. 
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Figure 82 – As       is increased from 0.75 to 1.5, the charge bond states contribute more to the ground state. 

 
Figure 83 – With      = 20, we expect almost all the charge bond states to be supressed by this large on-site 

interaction. 
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Figure 84 – Again, in region I, we do not much change to the ground state (the charge bond states are a little 

more supressed again when changing       from 0 to 0.25). 

 
Figure 85 – This is the first time we take a look at region II in between regions I and III.  There is a 

significant change to the ground state.  The Majumdar-Ghosh chain (nearest-neighbour singlets) is nearly the 

only state that contributes to the ground state. 
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Figure 86 – In region III and at      = 20, many of the charge bond states are supressed.  Also, the pure 

singlet states do not decay in the same fashion as region I. 

 
Figure 87 – We are now in the Heisenberg limit.  We clearly see the full supression of states with charge 

bonds as only the pure singlet states contribute to the ground state. 
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Figure 88 – Very similar, in shape to the previous figure. 

 
Figure 89 – In the frustrated regime of region II, we see that the Majumdar-Ghosh chain is nearly the only 

contributing state. 
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Figure 90 – In region III and at       = 1.5, we see that most of the charge bond states are sufficiently 

supressed. 

 
Figure 91 – This figure suggests that even at a large value of      = 200, it is still very hard to supress states 

with charge bonds for very large values of      . 
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As Figures 71 – 91 have shown us, the GVB states with charge bonds contribute less to 

the ground state as      is increased (as expected), but they also contribute more as       

is increased. 

The following two figures (Figures 92 and 93) show the ground state weights plotted 

with respect to the product of the bond lengths for 10 sites at       = 0 and      = 10
-4

. 

 
Figure 92 – With 10 sites, there are 19404 states in the GVB basis, and we can see a nice decay envelope as 

the product of bond lengths increases. 
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Figure 93 – Both this figure and the last, plotted the ground state weights on the y-axis relative to the ground 

state weight of the pure singlet state with the longest possible bonds (indicated in the figure).  In the tight-

binding limit, the pure singlet state with the longest possible bonds always has the lowest, non-zero 

contribution to the ground state.  This can also be seen in Figures 71 – 74 for N = 8 in the same limit. 

 
Figure 94 – This is a plot of only the pure singlet state weights.  Notice that the pure singlet states follow the 

nice power law decay even in the tight-binding limit (we already know it will in the Heisenberg limit). 
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The ground state weights generally decrease with bond length for 8 sites; this is clearer 

for 10 sites.  Pure singlet states in region I appear to have a similar weight distribution for 

small and large     .  For large      and in region II, the ground state changes into the 

Majumdar-Ghosh chain. 

Charge bond states (mixed or pure) do not always display this decay in as clear a fashion.  

However, consider the large      and       limit and pure singlet states.  For these states, 

the weights when the product of the bond lengths P(L) are 3 and 9 (N = 8), their weights 

are equal despite the differences in bond length.  This happens to be seen in many cases 

with charge bond states.  For example, consider the same limit, the two states in 

Figure 91 that have three singlet bonds and one PCB with that PCB crossing one of the 

singlets, also have equal weights despite their bond lengths P(L) = 4 and 12.  Another 

example, although not obvious from the above figures, is with states that have at least two 

NCBs.  There are multiple circumstances in which these two NCB bonds configured in a 

P(L) = 1 for one state and a P(L) = 3 in another, with the rest of the state remaining 

unchanged between them, will have the same weights as well.  There are many other 

circumstances with different bond configurations that display this type of behaviour 

(though not always; sometimes it depends on which region we are in, much like the pure 

singlet states).  The following figure provides a few examples of states that are equivalent 

in all tested cases. 

 

 

 
Figure 95 – Three examples of states with equivalent 

weights, but with different bond lengths. States are 

equivalent for all tested data points. 

A commonly seen issue is with applying translational symmetries to reduce the size of 

the matrices that are to be diagonalized by LAPACK by a factor of N (approximately).  

By applying translational symmetry we can diagonalize each momentum block 

individually, such as k = 0 and k =  .  With our GVB basis, applying translational 

symmetry to pure singlet states works as expected (there is an alternating negative sign 

since we use fermion operators in defining the singlet states and not boson operators, as 

in the VB basis).  This is not always true when we add charge bonds.  States with only 

one charge bond (the rest singlets) display translational symmetry as expected (their 

weights are always equal).  However, as shown in Figures 71 and 73, some states 

display translational symmetry as expected in one region but not another.  The example 

these two figures show is with the nearest neighbour pure NCB states; where (at U = 10
-4

) 
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it displays “proper” translational symmetry in region I, but not in region II.  The reason 

for this is unknown to me at this point, but it would certainly be helpful to solve this 

translational symmetry issue. 

An interesting feature is seen when U = 10
-4

:  all non-zero bond weights are equal to or 

larger than the weight of the pure singlet state with the longest possible bonds.  For N = 8, 

it is the pure singlet state with P(L) = 9, and for 10 sites it is the pure singlet state with 

P(L) = 45.  This is visible in Figures 71 – 74 (U = 10
-4

) for 8 sites and Figure 93 for 10 

sites.  When      is increased this is no longer the case as the weights split apart as the 

charge bond states are suppressed. 

What is not obvious from these diagrams is that there is a set of states which never 

contribute (weight       ) to the 8 site ground state for all test cases (as listed above as 

well as some other points).  These states do have one thing in common, which is they all 

have an odd number of negative charge bonds.  Although, not all states with an odd 

number of NCBs have zero weight.  There also are a set of states which never contribute 

in one region of the phase diagram, but do contribute (usually significantly) in other 

regions.  The state with nearest neighbour positive charge bonds is such a state.  It has 

zero weight for regions I and III, but non-zero weight in region II.  Figure 73, which is in 

region II, shows that the nearest neighbour PCB state is the second-most contributing 

state.  
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Chapter 8 

Conclusion 

In this thesis I presented a new basis to solve the half-filled Hubbard model.  This new 

basis, the generalized valence bond (GVB) basis, is an extension of the non-orthogonal 

and overcomplete valence bond (VB) basis commonly used when solving the Heisenberg 

model in the singlet (      ) sector.  The Heisenberg model is a special case of the 

half-filled Hubbard model; when there is exactly one electron per site and double 

occupancies are disallowed.  Hence one would expect that the VB basis could be 

extended to span the singlet sector of the Hilbert space for the Hubbard model.  As shown 

in this thesis, this is indeed true. 

The VB basis introduced two main advantages when working with the Heisenberg model.  

First, it spans the singlet sector of the Hilbert space, which is smaller than the     
  = 0 

sector that the orthogonal and complete    basis can trivially be reduced to span.  This is 

useful when studying the ground state, as it is well known that the ground state lies in the 

singlet sector (and     
  = 0) [9].  Since the        spin sector is smaller, it is more 

useful for exact diagonalization techniques; as long as the VB basis is restricted to the 

subset of only “non-crossing” states as to ensure we are working with a complete basis 

(but still non-orthogonal).  Since exact diagonalization techniques scale as       

reducing the size D of the basis will improve the performance, even if we have to work 

with the inconvenience of a non-orthogonal basis.  Second, the VB basis displays 

structure in the ground state that the    basis does not.  The weights associated with each 

valence bond configuration depend only on the bond lengths, for the non-frustrated 

Heisenberg model [10].  One can use a master equation technique [11] for computing the 

bond amplitudes and a trial wave function approach to solve the model with little 

frustrating interactions. 

The GVB basis, non-orthogonal and overcomplete as well, spans the singlet sector of the 

Hilbert space for the Hubbard model, by adding positive and negative charge bonds to the 

singlet bonds use in the VB basis.  Whereas, the traditional occupation basis can only be 

trivially made to span the larger     
    sector (see Table 1 in Chapter 1 for a 

comparison of the sizes for small lattices).  A subset of the GVB states can be selected to 

form a complete basis that we can use to solve the Hubbard model via exact 

diagonalization.  This complete basis is made up of states with the following three 

conditions:  1) singlets may not cross one another, 2) charge bonds may not cross one 

another, and 3) positive (or negative) charge bonds may not be enclosed by another 

charge bond. 
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Our results, obtained using the GVB basis to solve the Hubbard model, agreed with 

results of the Hubbard model solved using the occupation basis, with results of the 

Heisenberg model solved using the VB basis (in the large-U limit), and with results of the 

tight-binding model solved analytically in the micro-canonical ensemble (for      = 0).  

Any discrepancies seen could be reasonably explained, thus we conclude that our results 

are correct.  Furthermore, we conclude by this fact that our overlap rules and update rules 

are correct. 

Without applying translational symmetry, solving the Hubbard model with the GVB basis 

outperforms the occupation basis (exact diagonalization) since the        sector is 

smaller than the     
    sector.  With our GVB basis we could solve for the 10 site case, 

but with over 60 000 states spanning the     
    sector, there is no hope of solving this 

model using the occupation basis (on any decent computer today), unless one applies 

translational symmetry.  Translational symmetry can be trivially applied to the occupation 

basis to reduce the size of the basis by the number of lattice sites N.  From our analysis of 

the ground state structure using GVB states, it appears that translational symmetry 

becomes non-trivial to implement with the introduction of charge bonds, as pure singlet 

states still display translational symmetry.  Also, as shown by our plots of the ground 

state weights versus the product of the bond lengths, it is evident that there is some 

correlation between the weights and bond lengths.  From this, perhaps a trial wave 

function approach could be used to solve the Hubbard model. 
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Appendix A 

A1 – Commutation Relations 

I define the singlet ( ) and charge bond ( ) creation and annihilation operators as 
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Where      for a positive charge bond (PCB) and      for a negative charge bond 

(NCB).     
 

 is a fermion operator satisfying the anticommutation relation {        
 }  

       . 

There are commutation relations [ ̂  ̂] and anticommutation relations { ̂  ̂} and each 

are defined as 
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A1.1 – Summary of commutation relations 

The following is a comprehensive list of useful commutation relations involving 

operators    
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 (|   〉 is the vacuum state with no electrons). 
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A1.2 – Work for commutation relations 
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A2 – Linear dependence 
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Appendix B 

B1 – Update rules for Hubbard Hamiltonian 

The Hubbard Hamiltonian is given by, 
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B1.1 – Summary of update rules 
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B1.2 – Work for update rules 
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B2 – Update rules for  ⃗⃗⃗   ⃗⃗⃗  

Update Rules for  ⃗   ⃗  acting on our basis states.   ⃗   ⃗  can be rewritten as  
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B2.1 – Summary of update rules 
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B3 – Other update rules 
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Appendix C 
The tight-binding model is the Hubbard model with no on site interaction term (U = 0).  

Hence, the tight-binding Hamiltonian for nearest and next-nearest neighbour interactions 

is given by, 
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We can diagonalize this expression by taking the Fourier transform of each operator. 
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In 1D, nearest neighbours of   are given by     and next-nearest neighbours are    . 

Also,  ⃗         and  ⃗         , where   is the lattice spacing.  Hence, 
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Where,                            is the tight-binding energy spectrum. 

C1 – Ground state energy 

To obtain the ground state energy, equivalent to the one we obtain from solving the 

Hubbard model, we must work in the micro-canonical ensemble.  That is, for a system of 

N sites, the possible values of    between –  and   are discretized uniformly into N 

values.  For example, if N = 4, then the possible values of    are     
 

 
   .  To obtain 

the ground state energy, we assign the N electrons (half-filling) into the states which have 

the lowest energy   , provided that there are a maximum of two electrons per state with 

opposite spin (Pauli exclusion principle).  The ground state energy is then the sum of the 

energies    of the occupied states. 

For example, when N = 4, the available states are     
 

 
    and the occupied (or 

partially occupied) states are     
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need to correct    to eliminate double counting in the next-nearest neighbour term.  We 

do this by dividing    by 2; hence,                           .  For 
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see that there is a degeneracy in states     
 

 
, so we can have an electron in each state 

or both electrons in one of the states.  Either configuration will give the same energy.  

The ground state energy per site can then be expressed as, 
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Where      is the Heaviside step function. 

C2 – Structure factor 

The structure factor is given by the following expression, 
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