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Abstract

Self-play is a technique for machine learning in multi-agent systems where a

learning algorithm learns by interacting with copies of itself. Self-play is useful

for generating large quantities of data for learning, but has the drawback that

agents the learner will face post-training may have dramatically di↵erent be-

haviour than the learner came to expect by interacting with itself. For the case

of two-player constant-sum games, self-play that reaches Nash equilibrium is

guaranteed to produce strategies that cannot lose utility from their equilib-

rium value against any post-training opponent; however, no such guarantee

exists for multi-player games.

We show that in games that approximately decompose into a set of two-

player constant-sum games (called polymatrix games) where global ✏-Nash

equilibria are boundedly far from Nash-equilibria in each subgame (called sub-

game stability), any no-external-regret algorithm that learns by self-play will

produce a strategy with bounded loss of utility against new agents, which we

call vulnerability. In approximate subgame stable constant sum polymatrix

(SS-CSP) games, the strategies produced by self-play are also exchangeable

and have values that fall into a bounded range. We extend these results

to extensive-form games and give an e�cient representation and algorithm

for such a decomposition. We demonstrate our findings through experiments

on Kuhn and Leduc poker. Finally, we extend our results to games which

are strategically equivalent to SS-CSP games. For the first time, our results

identify a structural property of multi-player games that enable performance
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guarantees for the strategies produced by a broad class of self-play algorithms.
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Preface

Parts of this thesis are accepted for publication at NeurIPS 2023 [39]. This

includes the vulnerability bounds from Chapter 3 and Chapter 4 and the Leduc

Poker experiments in Chapter 5.
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In a game, for once in my life, I know exactly what it is that I’m supposed to

be doing.

– C. Thi Nguyen
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Chapter 1

Introduction

As intelligent decision makers, we act within the world to achieve our goals.

Along the way, we will interact with other agents in situations that are com-

petitive, cooperative, or anywhere in-between. Optimal behaviour depends on

the behaviour of these other agents; for example one should drive on the left

side of the road in England but not Canada. Since the world contains other

agents, we naturally want machine learning algorithms to perform well in in-

teractions with those agents. While we ideally want learning agents to adapt

to other agents quickly and continually, oftentimes this is di�cult in practice

since current machine learning requires an enormous amount of experience.

The solution is train these learning algorithms o✏ine first so they reach

a desired level of performance before interacting within the real world. How-

ever, o✏ine learning in multi-agent systems is an under-specified problem:

what should be used as the behaviour of other agents in the environment?

How should agents learn o✏ine to interact with other agents with unknown

behaviour?

Self-play is a common approach for machine learning in multi-agent systems

that addresses this problem. In self-play, a learner interacts with copies of itself

to produce data that will be used for training. Some of the most noteworthy

successes of AI in the past decade have been based on self-play; by employing

the procedure, algorithms have been able to achieve super-human abilities in

various games, including Poker [42, 9, 10], Starcraft [65], Diplomacy [48], and

Stratego [49], Go and Chess [56, 57].
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a b
a 1, 2 0, 0
b 0, 0 2, 1

Figure 1.1: A simple game, commonly called the battle of the sexes.

Self-play has the desirable property that unbounded quantities of train-

ing data can be generated, assuming access to a simulator. However, using

self-play necessarily involves a choice of agents for the learner to train with:

namely copies of itself. Strategies that perform well during training may per-

form poorly in deployment against new agents, whose behaviour may di↵er

dramatically from that of the agents that the learner trained against.

The problem of learning strategies during training that perform well against

new agents is a central challenge in algorithmic game theory and multi-agent

reinforcement learning (MARL) [41, 36]. In particular, even opponents from

an independent self-play instance, di↵ering only by random seed, can lead to

dramatically worse performance than the agent came to expect during training

[36].

There are special classes of environments where the strategies learned

through self-play generalize well to new agents. In two-player, constant-sum

games there exist strong theoretical results guaranteeing the performance of a

strategy learned through self-play. No-regret self-play will converge to a Nash

equilibrium, whose component strategies guarantee at least the value of that

equilibrium against any opponent. Equilibria are also exchangeable: a selec-

tion of equilibrium strategies from di↵erent equilibria for each agent is itself

an equilibrium. Finally, all equilibria yield the same amount of utility, called

the value of the game.

We lose these guarantees outside of two-player constant-sum games. Fun-

damentally, no-regret self-play algorithms are no longer guaranteed to produce

Nash equilibria. These algorithms instead converge to a mediated equilibrium,

where a mediator recommends actions to each player [67, 18, 17, 45]. The

mediator can represent an external entity that makes explicit recommenda-

tions, such as tra�c lights mediating tra�c flows. More commonly in machine
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learning, correlation can arise through the shared history of learning agents

interacting with each other [26]. In this second scenario, new agents may not

have access to the actions taken by other agents during training, so players

would no longer be able to correlate their actions. In fact, even if all agents

play a decorrelated strategy from the same mediated equilibrium, the result

may not be an equilibrium (please refer to Appendix A.3 for an example).

Even when algorithms find Nash equilibria, these equilibrium strategies are

not as desirable as in two-player constant-sum games, when deployed against

new players. For example, consider the simple two-player game of Figure 1.1.

The row player prefers pb, bq over pa, aq, while the column player prefers pa, aq
over pb, bq. However both players prefer to choose the same strategy over

miscoordinating.

Suppose the row player learned in self-play to choose a (which performs

well against another a-player). Similarly, column learned to play b. Upon the

introduction of a new agent who did not train with a learner, despite a and b

being optimal strategies during training, they fail to generalize to new agents.

As this example demonstrates, equilibrium strategies in general are vulnerable:

agents are not guaranteed the equilibrium’s utility against new agents.

Beyond a lack of vulnerability guarantees, equilibrium strategies, in gen-

eral, su↵er from the well-known equilibrium selection problem [25, 51, 59, 40].

Even if all agents chose equilibrium strategies, they may still nonetheless re-

gret their choices. For example, in Figure 1.1 a and b are both equilibrium

strategies, but pa, bq is not an equilibrium. Lastly, equilibria do not yield the

same amount of utility in general-sum and multi-player games. For example

pa, aq gives the row players a lower utility than pb, bq.
Put another way, two-player constant-sum games are a rare case where—in

addition to descriptive value—equilibrium strategies have prescriptive value.

It is a good idea to play an equilibrium strategy against new opponents [55].

The failure of equilibrium strategies has led some approaches to reject

the paradigm of playing equilibrium strategies altogether. Opponent model-

ing tailors play to maximize utility with respect to an agent’s internal model

of opponents. With a good model, the agent may outperform equilibrium
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strategies; however, an incorrect model can reduce performance [61, 60]. For

example, the maxn algorithm [38]—which is guaranteed to produce Nash equi-

libria in extensive-form games of perfect information [59]—is outperformed by

the opponent modeling-based prob-maxn in the game of Spades [61]. Alter-

natively, a learning agent could assume that other agents will choose actions

that will minimize their utility—regardless of what the other agents desires

are in actuality. These paranoid agents [62] learn robust strategies, but are

likely sub-optimal. Agents may also choose strategies using learning rules that

are maximally robust against symmetries present in the game [27]. This ap-

proach, however, still requires shared knowledge of the learning rule in order to

be e↵ective—essentially resulting in a “meta-equilibrium selection problem”.

Despite these problems, self-play has shown promising results outside of

two-player constant-sum games. For example, algorithms based on self-play

have outperformed professional poker players in multi-player Texas hold ’em,

despite the lack of theoretical guarantees [10]. This hints at the existence

of classes of games, somewhere between two-player constant-sum and multi-

player general sum, where self-play will perform well. Indeed, there has been

much work generalizing the strategic properties of two-player constant-sum

games to other two-player games [3, 46, 22, 28]; however, multi-player games

have received less attention [12, 11].

What structural properties of multi-player games allow for the strategies

learned in self-play to perform well (i.e. generalize) against novel post-training

agents? We identify a class of multi-player games—called subgame-stable

constant-sum polymatrix games (SS-CSP)—where self-play will converge to

a strategy that is not vulnerable to a loss of utility against arbitrary changes

in other agents from what the self-play agent came to expect during training.

These games bring into the n-player setting many of the nice properties of two

player constant-sum games. We show that any game can be approximately

decomposed into this class of games and the underperformance against new

agents is bounded by a function of the level of approximation. SS-CSP games

also have approximate exchangeability and bounded equilibrium values. We

decompose multi-player variants of Kuhn and Leduc poker into subgame-stable
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constant-sum polymatrix games with a low degree of approximation in the de-

composition, thereby elucidating why self-play performs well in multi-player

poker.

Throughout this work, we take an algorithm-agnostic approach by assum-

ing only that self-play is performed by a regret minimizing algorithm. This

is accomplished by analyzing directly the equilibria that no-regret algorithms

converge to—namely coarse correlated equilibria. As a result, our analysis

applies to a broad class of game-theoretically-inspired learning algorithms but

also to MARL algorithms that converge to coarse correlated equilibria [40, 37,

29], since any policy can be transformed into a mixed strategy with Kuhn’s

Theorem [33].

This thesis is outlined as follows. Chapter 2 defines two models of multi-

agent decision making, normal form and extensive-form games. Learning takes

place in the hindsight rationality framework. We describe two representative

learning algorithms called Regret-Matching and Counterfactual Regret Min-

imization (CFR). Chapter 3 defines two properties for normal-form games—

subgame stability and constant-sum polymatrix—that are su�cient to guaran-

tee that self-play will produce a desirable strategy in the normal-form setting.

We show that games that meet a relaxed version of these properties behave

in much the same way as two player constant-sum games. Chapter 4 extends

our definitions and theory to extensive form games via the poly-EFG repre-

sentation and provides an e�cient algorithm for computing these properties.

In Chapter 5, we apply our theory to multi-player Kuhn and Leduc poker to

elucidate why self-play performs well in multi-player poker. Our results sug-

gest that regret-minimization techniques converge to a subset of the game’s

strategy space that is approximately SS-CSP. We also show that a toy Hanabi

game where self-play performs poorly is not approximately SS-CSP for any

reasonable degree of approximation. In Chapter 6 we consider games that are

not themselves approximately SS-CSP, but are instead strategically equivalent

to SS-CSP games, thereby tightening our bounds for many games. Chapter 7

presents additional results that give a class of games that are subgame sta-

ble, called aligned games; and shows that SS-CSP games are an example of a
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broader class of games that generalize the minimax theorem to multi-player

games
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Chapter 2

Background

Games serve as models of multi-agent strategic situations. We use two for-

mulations of games in this thesis, namely normal-form and extensive-form.

In this chapter, we define normal-form and extensive-form games, their solu-

tion concepts, and the framework for learning we concentrate upon—hindsight

rationality/no-regret learning.

2.1 Normal Form Games

The simplest form of game is a normal-form game. Here, a set of agents simul-

taneously choose strategies and receive a payo↵ depending on this selection.

Definition 2.1.1 (Normal form game). A normal-form game G is a 3-tuple

G “ pN,P, uq where N is a set of players, P “ ë
iPN Pi is a joint pure strategy

space where Pi is a set of pure strategies for player i. u “ puiqiPN is a tuple of

utility functions where ui : P Ñ R.

Pure strategies are deterministic choices of actions in the game. In a

normal-form game, each agent simultaneously chooses their pure strategy

⇢i P Pi; we call a joint selection of pure strategies ⇢ P P a pure strategy

profile. The pure strategy profile determines the payo↵ (or utility) to player

via the utility function. For example, if the players jointly choose ⇢, then each

player i P N will receive utility uip⇢q. The dependence of the utility func-

tion on the strategies of other players is a fundamental aspect of multi-agent

strategic situations.
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c d
c 1, 1 �1, 2
d 2, �1 0, 0

Figure 2.1: The prisoner’s dilemma. We show one player’s pure strategies as
rows and the other’s as columns. Each entry of the matrix first lists the row
player’s utility followed by the column player’s utility.

Players may also randomize their actions through the use of a mixed strat-

egy : a probability distribution si over i’s pure strategies. Let Si “ �pPiq be

the set of player i’s mixed strategies (where �pXq denotes the set of probabil-
ity distributions over a domain X), and let S “ ë

iPN Si be the set of mixed

strategy profiles. We overload the definition of utility function to accept mixed

strategies as follows:

uipsq “
ÿ

⇢PP

˜
π

iPN
sip⇢iq

¸
uip⇢q,

where sip⇢iq denotes the probability mass placed on ⇢i by si.

Let ´i be a shorthand for the set Nztiu; if | ´ i| “ 1 then we overload ´i

to refer to the single agent in ´i. Let ⇢´i and s´i to denote a joint assignment

of pure (resp. mixed) strategies to all players except for i. Thus s “ psi, s´iq.
We distinguish the set of players N from the number of players n “ |N |.

An important category of games are zero-sum games.

Definition 2.1.2 (Zero-sum). A game G “ pN,P, uq is zero-sum if

ÿ

iPN
uip⇢q “ 0 @⇢ P P.

However, a strategically identical set of games are constant-sum games.

Definition 2.1.3 (Constant-sum). A game G “ pN,P, uq is constant-sum if

for c P R
ÿ

iPN
uip⇢q “ c @⇢ P P.

Thus, constant-sum and zero-sum games may be referred to interchange-

ably. General-sum games are games where the utility of players do not neces-

sarily add up to a constant. Multi-player games are games with any number of

players; this term is used to emphasize that there may be more than 2 players.
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2.1.1 Solution Concepts and Equilibria

Since an agent’s utility depends on the strategies of other players, we cannot

generally define a notion of “optimality”, which is present in single-agent de-

cision making scenarios. What is optimal for an agent will change depending

on what other agents do. Instead, solution concepts are criteria for specifying

interesting or desirable criteria in games.

First, let us define “optimally” for player i with respect to a selection of

strategies for the opponents ´i

Definition 2.1.4 (Best response). Given s´i, the best response for i is a

strategy s˚
i such that s˚

i P argmaxs1
iPSi

uips1
i, s´iq.

There is always a pure strategy best response to any s´i [54]. Thus

uips1
i, s´iq ´ uipsi, s´iq § 0 @s1

i P Si ñ uip⇢i, s´iq ´ uipsi, s´iq § 0 @⇢i P Pi.

The canonical solution concept in game theory is a Nash equilibrium. In

a Nash equilibrium, no agents wish to deviate from their equilibrium strategy

to a di↵erent strategy:

Definition 2.1.5 (Nash equilibrium). A strategy profile s is a Nash equilib-

rium if @i P N , we have that si is a best response to s´i, or equivalently,

uips1
i, s´iq ´ uipsi, s´iq § 0 @s1

i P Si.

An ✏-Nash is a relaxation where a player can gain at most ✏ by deviating

from their equilibrium strategy.

Definition 2.1.6 (✏-Nash equilibrium). A strategy profile s is an ✏-Nash equi-

librium if @i P N , we have

uips1
i, s´iq ´ uipsi, s´iq § ✏ @s1

i P Si

Mixed strategy Nash equilibria are guaranteed to exist for any game [47].

However, they are not the only solution concept we are interested in. Rather

than equilibrium, an agent might be interested in guaranteeing themselves

some amount of utility regardless of the strategies of other players. The strat-

egy that maximally accomplishes this objective is called a maxmin strategy.
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Definition 2.1.7 (Maxmin strategy). A strategy si is a maxmin strategy if:

si P argmax
s1
iPSi

min
s1

´iPS´i

uips1
i, s

1
´iq.

furthermore, the maxmin value for player i is maxs1
iPSi

mins1
´iPS´i

uips1
i, s

1
´iq.

The dual of a maxmin strategy is a minmax strategy, where agents seek to

minimize the utility of some other agent.

Definition 2.1.8 (Minmax strategy). A strategy si is a minmax strategy

against player j ‰ i if si is i’s component of s´j where

s´j P argmin
s1

´jPS´j

max
s1
jPSj

ujps1
j, s

1
´jq.

The minmax value for player j is mins1
´jPS´j

maxs1
jPSj

ujps1
j, s

1
´jq.

In two two-player zero-sum games, Nash equilibria are related to maxmin

and minmax strategies by the famous minimax theorem.

Theorem 2.1.9 (von Neumann [66]). In any finite two-player zero-sum game

in any Nash equilibrium, each player receives utility equal to their minmax and

maxmin values.

Thus, in two player zero-sum games, Nash equilibrium strategies have the

additional properties that they are both maxmin and minmax strategies. This

means an agent cannot lose any utility from their equilibrium utility. Moreover,

all equilibria yield the same utility, called the value of the game. Hence, Nash

equilibrium strategies have prescriptive value: they have guarantees against

other strategies—not just those from the same equilibrium. For ✏-Nash equi-

libria, a player can lose at most ✏ from the utility of an ✏-Nash equilibrium

against a worst-case opponent.

Proposition 2.1.10. In two-player constant-sum games, for any ✏-Nash equi-

librium s and player i, we have

uipsq ´ min
s1

´iPS´i

uipsi, s1
´iq § ✏.

10



In two-player constant-sum games the value of any ✏-Nash equilibrium is

bounded less than the value of the game.

Proposition 2.1.11. In a two-player constant sum game, let vi be the value

of the game for player i. Suppose that s is a ✏-Nash equilibrium. Then

vi ´ uipsq § ✏.

Proof. Let s˚ be any Nash equilibrium. Then

vi ´ uipsq “ uips˚q ´ uipsq § uips˚
i , s´iq ´ uipsq § ✏.

Equilibria in two-player constant-sum games are also exchangeable: two

equilibrium strategies from di↵erent equilibria still form an equilibrium them-

selves.

Definition 2.1.12 (Exchangeable). Let S 1 be some set of strategy profiles

where S 1
i is the set of i’s strategies in S 1. S 1 is ✏-exchangeable if @s P ë

iPN S 1
i,

s is an ✏-Nash equilibrium.

Proposition 2.1.13 (Fudenberg and Tirole [20]). In two-player zero-sum

games, the set of ✏-Nash equilibria are ✏-exchangeable.

However, in games in with more than 2 players, a zero-sum game does not

necessarily have the same interesting properties of two-player zero-sum games.

This is commonly shown via the dummy player argument. We can take any

general-sum n player game and produce a strategically identical zero-sum n`1

player game by adding a dummy player d which has only one pure strategy

and receives utility equal to the negative sum of all other players utilities:

udp⇢q “ ´
ÿ

i‰d

uip⇢q @⇢ P P.

For example, we can turn the coordination game in Figure 1.1 into the zero-sum

game in Figure 2.2. Note that this example also shows that in n-player zero-

sum games, Nash equilibrium strategies carry no prescriptive value. Playing

a Nash equilibrium strategy does not guarantee a player the same utility that

they had received in the equilibrium. pa, aq is an equilibrium in Figure 2.2,

but if the column player deviates to b, the row player may still lose utility.
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a b
a 1, 1, �2 0, 0, 0
b 0, 0, 0 1, 1, �2

Figure 2.2: A 3 player “zero-sum” game with a dummy player.

2.1.2 Dominated Strategies

If a strategy si is always worse than some other strategy s1
i regardless of what

the other players choose, then we say that si is dominated by s1
i

Definition 2.1.14 (Strict domination). Let si, s1
i P Si, if uipsi, s´iq † uips1

i, s´iq
@s´i, we say si is strictly dominated by s1

i

Consider a strictly dominated pure strategy ⇢i. No equilibrium in mixed

strategies would put any probability on ⇢i, thus, we can remove ⇢i from the set

of i’s pure strategies and still preserve the set of equilibria [54]. We may then

iteratively repeat this process for i and other players as well. This process

is called iterative removal of strictly dominated strategies, any pure strategy

removed along the way is an iteratively strictly dominated strategy.

2.1.3 Mediated Equilibria

Nash equilibria require that players’ strategies are uncorrelated; mediated equi-

libria are a generalization to settings where player’s strategies may be be cor-

related. In mediated equilibria, a mediator recommends strategies for each

player from some joint distribution over strategy profiles. Player’s decide to

either follow this recommendation, or instead deviate. A deviation � P � is

a mapping � : Si Ñ Si that transforms a learner’s strategy into some other

strategy. Regret measures the amount the learner would prefer to deviate to

�psiq:

Rip�, sq .“ uip�psiq, s´iq ´ uipsi, s´iq.

Let µ P �pPq be a distribution over pure strategy profiles and p�iqiPN be

a choice of deviation sets for each player.

12



Definition 2.1.15 (✏-Mediated Equilibrium [45]). We say m “ pµ, p�iqiPNq is
an ✏-mediated equilibrium if @i P N,� P �i we have

E⇢„µ rRip�, sqs § ✏.

A mediated equilibrium is a 0-mediated equilibrium.

Di↵erent sets of deviations determine the strength of a mediated equilib-

rium. For normal-form games, the set of swap deviations, �SW , are all possible

mappings � : Pi Ñ Pi. We may apply a swap deviation � to a mixed strategy

si by taking its pushforward measure:

r�psiqsp⇢iq “
ÿ

⇢1
iP�´1p⇢iq

sip�p⇢1
iqq,

where �´1p⇢iq “ t⇢1
i P Pi | �p⇢1

iq “ ⇢iu.
Internal deviations, which exchange a particular action recommended by

the mediator with another, o↵er the same strategic power as swap deviations

[19]. The set of external deviations �EX is even more restricted: � P �EX

maps all (mixed) strategies to some particular pure strategy; i.e. �EX “ t� P
�SW | D⇢i, @s1

i,�ps1
iq “ ⇢iu. Since each deviation only maps to a single pure

strategy, we write Rip⇢i, sq as a shorthand for Rip�, sq when � maps to ⇢i.

Note that a special case of mediated equilibria are Nash equilibria. If some

mediated equilibrium µ is a product distribution (i.e. µ “ Â
iPN si for si P Si)

and �i Ö �EX @i P N then m is a Nash equilibrium. Similarly an ✏-mediated

equilibrium is an ✏-Nash equilibrium if µ is a product distribution and all

players have no regret w.r.t. �EX . A coarse correlated equilibrium (CCE) [46]

is a mediated equilibrium where no agent wants to deviate according to any

�EX . When referring to CCE, we identify them by the distribution µ alone,

since p�qiPN is implicit. We may equivalently write the definition of an ✏-CCE

as follows

E⇢„µ ruip�p⇢iq, ⇢´iq ´ uip⇢qs § ✏ @i P N,� P �EX . (2.1)

Since elements in �EX only map to a single pure strategy, (2.1) is equivalent

to

E⇢„µ ruip⇢1
i, ⇢´iq ´ uip⇢qs § ✏ @i P N, ⇢1

i P Pi.
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b s
b 1, 2 0, 0
s 0, 0 2, 1

Figure 2.3: Battle of the Sexes

For example, Figure 2.3 shows a games called ”Battle of the Sexes”. A dis-

tribution µ where µpB,Bq “ 0.5 and µpS, Sq “ 0.5 is a CCE. The expected

utility under this distribution is E⇢„µ ruip⇢qs “ 0.5 ¨ 2 ` 0.5 ¨ 1 “ 1.5. How-

ever, any deviation would strictly decrease a player’s utility if the other player

continues to play according to µ’s recommendations. Without loss of gener-

ality, consider the row player. Deviating to B would give an expected utility

of E⇢„µ ruipB, ⇢´iqs “ 0.5 ¨ 2 ` 0.5 ¨ 0 “ 1 and deviating to S would give an

expected utility of E⇢„µ ruipS, ⇢´iqs “ 0.5 ¨ 0 ` 0.5 ¨ 1 “ 0.5. Hence, neither

player has an incentive to deviate from their recommendations.

The strategies in a mediated equilibrium are potentially correlated with

each other. This means that in order for a player to play a strategy from a

mediated equilibrium against agents with whom the player cannot correlate,

the player must first extract it by marginalizing out other agent’s strategies.

Definition 2.1.16 (Marginal strategy). Given some mediated equilibrium

pµ, p�iqNi“1q, let sµi be the marginal strategy for i, where

sµi p⇢iq .“
ÿ

⇢´iPP´i

µp⇢i, ⇢´iq.

Definition 2.1.17 (Marginal strategy profile). Given some mediated equi-

librium pµ, p�iqNi“1q, let sµ be a marginal strategy profile, where sµi p⇢iq .“
∞

⇢´iPP´i
µp⇢i, ⇢´iq@i P N .

In two-player constant-sum games, a well-known fact is that the marginal

strategy profiles of CCE are Nash equilibria. We show a proof of this fact

extending to CCE in Appendix A.2.

Proposition 2.1.18. If µ is an ✏-CCE of a two-player constant-sum game G,

then sµ is a 2✏-Nash equilibrium.
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2.2 Hindsight Rationality

Where does the recommendation distribution µ come from? Mediated equilib-

ria can be specified by some designer; for example, a tra�c light recommends

actions to be taken by drivers. Alternatively, mediated equilibria can arise

naturally via the behaviour of learning agents.

The hindsight rationality framework [45] conceptualizes the goal of an agent

as finding a strategy that minimizes regret with respect to a set of deviations

�i. An agent is hindsight rational with respect to a set of deviations �i if the

agent does not have positive regret with respect to any deviation in �i.

Learning takes place in an online learning environment. At each iteration t,

a learning agent i chooses a strategy sti while all other agents choose a strategy

profile st´i. The cumulative regret is the total amount of regret experienced

with respect to a deviation �, summed over iterations. This is expressed

formally as

RT
i p�q .“

Tÿ

t“1

Rip�, stq.

Let A be an algorithm that selects sti at each iterations. A is a no-�-regret

learning algorithm if the maximum average positive regret tends to 0.

lim
TÑ8

max
�P�

ˆ
1

T
RT

i p�q
˙

Ñ 0.

If each agent uses a no-�i-regret learning algorithm w.r.t. a set of deviations

�i, the empirical distribution of play µ̂ converges to a mediated equilibrium.

Formally, let µ̂ P �pPq where µ̂p⇢q .“ ∞T
t“1 p±

iPN stip⇢iqq be the empirical dis-

tribution of play. As T Ñ 8, µ̂ nears µ of a mediated equilibrium pµ, p�iqiPNq.
The choice of p�iqiPN determines the nature of the mediated equilibrium—

provided the learning algorithm for player i is no-�i-regret [24]. For example,

if all players are hindsight rational w.r.t. �EX , then µ̂ converges the set of

CCE and if all players are hindsight rational w.r.t. �I then µ̂ converges to a

correlated equilibrium [4]. Theorem 2.2.1 makes this connection.
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Theorem 2.2.1 (Greenwald and Jafari [23]). If all players play a no-�i-regret

learning algorithm, then the empirical distribution of play µ̂ converges to µ of

the mediated equilibrium pµ, p�iqiPNq.

Corollary 2.2.2. If all players play a no-�EX-regret learning algorithm, then

the empirical distribution of play µ̂ converges to a CCE µ. Moreover, in two

player zero-sum games, the marginal strategy profile sµ is a Nash equilibrium

and sµi is equal to the average strategy across iterations; i.e.

sµi p⇢iq “ s̄Ti p⇢iq .“
Tÿ

t“1

stip⇢iq @⇢i P Pi.

Suppose the utility of players to add up in a way that is boundedly close

to 0 [22]. We call this property �-zero-sum:

|uip⇢q ´ u´ip⇢q| § � @⇢ P P.

In two-player �-zero-sum games, regret-minimization produces approximate

Nash equilibrium.

Theorem 2.2.3 (Gibson [22]). Let s1, ..., sT be a sequence of strategy profiles

produced by a no–external-regret algorithm. If max�P�EX
1
TR

T
i p�q § ✏ for all

i P t1, 2u and the game is �-zero-sum, then the profile s̄ of average strategies

s̄i
.“ ∞T

t“1 s
t
i is a 2p� ` ✏q-Nash equilibrium.

2.2.1 Removal of Strictly Dominated Strategies by No-
Regret Algorithms

The empirical distribution of play of no-external-regret algorithms converges to

CCE. Additionally, the algorithm will prune out iteratively strictly dominated

strategies from the support of that CCE so long as the algorithm assigns zero

probability to actions with negative regret.

Theorem 2.2.4 (Gibson [22]). Let s1, ...sn be a sequence of strategy profiles

in a normal-form game where all players strategies are computed by a no-

external-regret algorithm where @i P N, ⇢i P Pi, T • 0 if RT
i p⇢iq † max⇢

and RT
i p⇢iq † max⇢1

iPPiRT
i p⇢1

iq then sT`1
i “ 0. If si is an iteratively strictly

dominated strategy, then there exists an integer T0 such that for all T • T0,

supppsiq Ü supppsTi q .
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Regret-Matching

One no-external-regret algorithm is called Regret-Matching [26]. Let ⇢�i be the

pure strategy that � P �EX maps all mixed strategies to (i.e. �psiq “ ⇢�i @si P
Si). We overload the cumulative regret function to accept a pure strategy as

argument: RT
i p⇢�i q “ RT

i p�q.
Regret-Matching works by maintaining a cumulative regret RT

i p⇢iq for each
⇢i P Pi. Upon completing iteration T , sT`1

i plays ⇢i with probability propor-

tional to the positive cumulative regret:

sT`1
i p⇢iq – maxpRT

i p⇢iq, 0q∞
⇢1
iPPi

maxpRT
i p⇢1

iq, 0q

By Theorem 2.2.1, if all players employ Regret-Matching, the empirical

distribution of play will converge to the set of CCE. However, we want to

note that while the empirical distribution will converge to the set of CCE, it

may not converge to a particular CCE, and may instead cycle amongst a set

of CCE. To illustrate this point, consider the modified version of the Shapley

Game in Figure 2.4.

l c r
t 1, 0 0, 1 0, 0

m 0, 0 1, 0 0, 2
b 0, 1 0, 0 1, 0

Figure 2.4: The modified Shapley Game

We ran Regret-Matching on this game and found that the empirical dis-

tribution of play follows in cycles with exponentially-increasing lengths; in

Figure 2.5a we show the probability of each pure strategy profile and see that

the probability cycles as the number of iterations increases. However, as shown

in Figure 2.5b, as the number of iterations increases, the empirical distribution

of play approaches being a CCE, since the maximum value of a deviation ✏

decreases with time. Thus, the empirical distribution of play does not neces-

sarily converge to a particular CCE, but cycles while at any iteration nearing

being a CCE.
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(a) (b)

Figure 2.5: (a) The empirical distribution of play over iterations. Each line
shows the probability of a di↵erent pure strategy profile under the empirical
distribution of play. (b) ✏-CCE convergence in the modified Shapley Game.
We show the maximum deviation incentive ✏ for each player.

2.3 Extensive-Form Games

Next we consider games where players take actions sequentially. We use the

imperfect information extensive-form game (EFG) as a model for sequen-

tial multi-agent strategic situations. An imperfect information extensive-form

game is a 10-tuple pN,A, H, Z,A, P, u, I, c, ⇡cq where N is a set of players; A

is a set of actions; H is a set of sequences of actions, called histories ; Z Ñ H

is a set of terminal histories; A : H Ñ A is a function that maps a history to

available actions; P : H Ñ N is the player function, which assigns a player to

choose an action at each non-terminal history; u = tuiuiPN is a set of utility

functions where ui : Z Ñ R is the utility function for player i; I “ tIiuiPN
where Ii is a partition of the set th P H : P phq “ iu such that if h, h1 P I P Ii

then Aphq “ Aph1q. We call an element I P Ii an information set. The chance

player c has a function ⇡cpa, hq @h : P phq “ c which returns the probability of

random nature events a P A. Let Nc “ N Y tcu be the set of players including

chance.

For some history h, the jth action in h is written hj. A sub-history of h

from the jth to kth actions is denoted hj:k and we use h:k as a short-hand for

h0:k. If a history h1 is a prefix of history h, we write h1 Ñ h and if h1 is a proper

prefix of h, we write h1 Ä h.
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A pure strategy in an EFG is a deterministic choice of actions for the player

at every decision point. We use ⇢i : Ii Ñ A to denote a pure strategy of player

i, and the set of all pure strategies as Pi. Likewise, si P �pPiq “ Si is a

mixed strategy, where �pXq denotes the set of probability distributions over a

domain X.

There are an exponential number of pure strategies in the number of infor-

mation sets. A behaviour strategy is a compact representation of the behaviour

of an agent that assigns a probability distribution over actions to each infor-

mation set. We use ⇡i P ⇧i “ p�pApIqqqIPIi to denote a behaviour strategy of

player i and ⇡ipa, Iq as the probability of playing action a at I. Let Iphq be

the unique information set such that h P I. We overload ⇡ipa, hq “ ⇡ipa, Iphqq.
We use ⇢ P P, s P S and ⇡ P ⇧ to denote pure, mixed and behaviour strategy

profiles, respectively. Note that P is a subset of both ⇧ and S.

Given a behaviour strategy profile, let

piph1, h2, ⇡iq .“
π

h1ÑhaÑh2,P phaq“i

⇡ipa, hq

pph1, h2, ⇡q .“
π

iPNc

piph1, h2, ⇡iq

p´iph1, h2, ⇡´iq .“
π

jPNcztiu
pjph1, h2, ⇡jq

be the probability of transitioning from history h1 to h2 according to ⇡i, ⇡

and ⇡´i, respectively. Let pipz, ⇡iq, p´ipz, ⇡iq and ppz, ⇡iq be short-hands for

pip?, z, ⇡iq, p´ip?, z, ⇡´iq and pp?, z, ⇡q, respectively, where ? is the empty

history.

We define the utility of a behaviour strategy as:

uip⇡q .“ Ez„⇡ ruipzqs “
ÿ

zPZ
ppz, ⇡quipzq “

ÿ

zPZ

˜
π

iPNc

pipz, ⇡iq
¸
uipzq.

Perfect recall is a common assumption made on the structure of informa-

tion sets in EFGs that prevents players from forgetting information they once

possessed. Formally, for any h P I let Xiphq denote the set of pI, aq s.t. I P Ii

and Dh1 P I and h1a Ñ h. Let X´iphq be defined analogously for ´i and Xphq
for all players.
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Definition 2.3.1 (Perfect recall). If @I P Ii, @h, h1 P I,Xiphq “ Xiph1q then i

has perfect recall. If all players possess perfect recall in some EFG G, we call

G a game of perfect recall.

In games of perfect recall, the set of behaviour strategies and mixed strate-

gies are equivalent: any behaviour strategy can be converted into a mixed

strategy which is outcome equivalent over the set of terminal histories (i.e.

has the same distribution over Z) and vice-versa.

Theorem 2.3.2 (Kuhn [33]). In games of perfect recall, any behaviour strategy

⇡i has an equivalent mixed strategy si (and vice versa), such that

pipz, ⇡iq “ E⇢i„si rpipz, ⇢iqs .

Theorem 2.3.2 establishes a connection between equilibria in behaviour

and mixed strategies: a Nash equilibrium behaviour strategy profile implies the

equivalent mixed strategy profile is also a Nash equilibrium in mixed strategies

and vice-versa.

We may also reduce any extensive-form game into an equivalent normal-

form game.

Definition 2.3.3 (Induced normal-form). The induced normal-form of an

extensive-form game G (with utility functions ui) is a normal-form game G1 “
pN,P, u1q such that u1

ip⇢q “ uip⇢q

The induced normal-form of an EFG has players making all decisions up-

front. It is not always practical to construct an induced normal-form, but the

concept is useful for proving things about EFGs.

2.4 Hindsight Rationality in Extensive-Form
Games

In sequential decision making scenarios, the set of deviations is even more rich

[45]. Figure 2.6 gives a sense of the deviation landscape in extensive-form

games. We refer the reader to [45] and [44] for an in-depth description. For
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our purposes, it su�ces to say that all of these deviation classes—with the

exception of action deviations [53]—are stronger than external deviations1.

This means that the equilibria of any algorithm that minimizes regret w.r.t.

a class of deviations that is at least as strong as external deviations still in-

herit all the properties of CCE. This includes internal counterfactual regret

minimization (ICFR) [14], extensive-form regret minimization (EFR) [44] (so

long as EFR is instantiated with a su�ciently strong deviation class) as well

as deep regret minimization approaches, such as deep counterfactual regret

minimization (Deep CFR) [8] and DREAM [58].

Figure 2.6: The deviation landscape for EFGs. Taken from Morrill [43] with
permission.

1Action deviations are so weak they do not even imply Nash equilibria in two-player
constant-sum games, see Appendix A.1.
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2.5 Regret Minimization in Extensive Form
Games

The size of extensive-form games makes regret minimization with algorithms

like Regret-Matching infeasible. A number of algorithms exploit the structure

of extensive-form games in order to minimize regret e�ciently. Central to all

of these approaches is CFR.

2.5.1 Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) is an algorithm that exploits the

structure of EFGs in order to e�ciently minimize regret with respect to ex-

ternal deviations [69]. CFR works by training instances of Regret-Matching

at each information set, but uses an alternate version of regret called coun-

terfactual regret. The counterfactual value function vI : ApIq ˆ ⇧ Ñ R is the

expected utility of player i “ P pIq given they played to reach I, take action

a, then continue to play ⇡i, all the while ´i play ⇡´i.

vIpa, ⇡q .“
ÿ

hPI

ÿ

zÅha

p´ipz, ⇡´iqpipha, z, ⇡iquipzq.

Additionally, we overload vI to allow randomization at I:

vI p⇡1
ipIq, ⇡q .“

ÿ

aPApIq
⇡1
ipa, IqvIpa, ⇡q.

and if ⇡1
i “ ⇡i, we simply write vI p⇡q The immediate counterfactual regret at

I is

RIpa, ⇡q “ vI pa, ⇡q ´ vI p⇡q .

At iteration T , CFR accumulates immediate counterfactual regret at each

information set I, and updates ⇡T`1
i pIq to be proportional to the positive part

of the cumulative immediate counterfactual regret RT
I paq “ ∞T

t“1 RIpa, ⇡tq:

⇡T`1
i pa, Iq – max

`
RT

I paq, 0
˘

∞
a1PApIq max pRT

I pa1q, 0q .
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The average strategy is a behaviour strategy averaged across all iterations,

defined as

⇡̄T
i pa, Iq “

Tÿ

t“1

⇡T
i pa, Iq.

CFR minimizes external regret [69], so the average strategy profile of CFR ⇡̄

approximates a Nash equilibrium in 2 player zero-sum games. However, note

that these average strategies do not necessarily converge to CCE themselves

in general; computing a CCE requires additional machinery. For example,

CFR-JR [13] uses the iterates of CFR to construct the empirical distribution

of play at each iteration by first converting these iterates into mixed strategies.

CFR-JR then averages across iterations to produce a distribution over pure

strategies that indeed converges to a CCE. This distribution can get very large

for moderately-sized EFGs.

2.5.2 Behaviour of CFR

Can we give any additional characterizations to CFR’s behaviour? Indeed

we can. The empirical distribution of play generated by CFR in self-play

implicitly converges to a class of mediated equilibrium called a counterfactual

coarse correlated equilibrium (CF-CCE). This is mediated equilibrium where

the recommendation distribution µ is hindsight rational with respect to blind

counterfactual deviations �CF . Given a strategy ⇡i, A blind counterfactual

deviation �Id
ad P �CF plays to reach a target information set Id, plays action

ad, then returns to playing ⇡i

”
�Id
adp⇡iq

ı
pIq “

$
’&

’%

ad if I “ Id

aÑId
if I † Id

⇡ipIq o.w.

Where aÑId
is the action at I † Id that plays to reach Id. aÑId

is well-defined

in games of perfect recall.

Corollary 2.5.1 (Morrill et al. [45]). CFR is no-regret/hindsight rational with

respect to �CF .
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Having no regret w.r.t. blind counterfactual deviations on its own is not

su�cient to guarantee having no regret w.r.t. external deviations (which are

su�cient for Nash equilibria in 2-player zero-sum games), as we show next.

Consider the 1-player game in Figure 2.7. The player’s strategy is shown in

blue; clearly, this strategy does not minimize external regret, since instead

playing R at I1 and l at both I2 and I3 would increases expected utility to 2.

However, no counterfactual deviation increases the agent’s utility, so it has no

regret with respect to this set.

I1

c

0.5 0.5

1

L R

1

L R
I2

2

l

´2

r

I3

2

l

´2

r

Figure 2.7: Hindsight Rational w.r.t. �CF does not imply Hindsight Rational
w.r.t. �EX

However, CFR is hindsight rational at each information set. CFR is ob-

servably sequentially rational w.r.t. �CF and this is su�cient to ensure CFR

is no-external regret [45] .

Additionally, CFR prunes strictly dominated actions.

Definition 2.5.2 (Strictly dominated action). An action a P ApIq of an EFG

is a strictly dominated action if there exists a strategy ⇡1
i such that @⇡ P ⇧

such that
∞

hPI p´iph, ⇡´iq ° 0 we have vIpa, ⇡q † vIp⇡1
i, ⇡´iq.

An iteratively strictly dominated action is an action that becomes a strictly

dominated action after the removal of other iteratively strictly dominated ac-

tions.

Theorem 2.5.3 (Gibson [22] (informal)). CFR will play iteratively strictly

dominated action with vanishing probability.
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2.5.3 Extensions of CFR

Regret minimization with CFR can become infeasible in very large extensive-

form games, hence many extensions of CFR have been proposed in order to

allow regret-minimization in these EFGs. We detail one extension, CFR` and

include a brief survey of other extensions.

CFR` [63, 64] is an algorithm that modifies CFR in three imporant ways.

First, CFR` only accumulates positive regret-like values. Formally, CFR`
tracks a value QT

I paq for each information set I and action a. At iteration

T , this quantity is updated by QT`1
I paq – maxpQT

I paq ` RIpa, ⇡T q, 0q. The

probability given to action a at the next iteration is

⇡T`1
i pa, Iq – QT`1

I paq∞
a1PApIq Q

T`1
I pa1q .

Second, CFR` alternates updates to player’s Q values, rather than perform-

ing them simultaneously; this speeds up convergence. Lastly, CFR` returns a

weighted average strategy, rather than the uniformly-weighted average strat-

egy of CFR. At iteration T , the weighted average strategy strategy is

⇡̄T
i

.“ 2

T 2 ` T

Tÿ

t“1

t ¨ ⇡T
i .

Taken together, these modifications greatly improve the e�ciency of CFR`—

to the point where CFR` was able to compute approximate Nash equilibria of

heads-up limit texas hold ’em [7], a game with approximately 1014 information

sets.

Other Extensions

Monte Carlo CFR [35] samples a subset of the full game tree when computing

updates, rather than performing full tree traversals as CFR does. A number of

variants of this algorithm have been proposed [21, 30, 52]. Regression CFR [68]

uses regression tree function approximation using features of of the information

sets to approximate the regret of CFR. Deep CFR [8] and DREAM [58] use

neural networks as the function approximator.
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A number of CFR-inspired algorithms have achieved expert-level perfor-

mance in the game of heads-up no-limit Texas hold’em (HUNL). Deepstack

was the first program to outplay human professionals at HUNL; it combines

continual resolving at each decision points with limited look ahead with neural

networks as function approximators. Libratus [9] reached superhuman levels

by instead constructing a blueprint strategy on an abstraction of HUNL—a

smaller game which is easier to compute strategies on. Based on play in HUNL,

these blueprint strategies are refined as needed. Pluribus [10] outperformed

professionals at 6 player no-limit Texas hold’em using a similar approach to

Libratus.
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Chapter 3

Self-Play and Polymatrix Games

Are there n-player games where self-play will compute a desirable strategy?

We show that in games that approximately decompose into a set of two-player

constant-sum games (called constant-sum polymatrix games) where global ✏-

Nash equilibria are boundedly far from Nash-equilibria in each subgame (called

subgame stability), any no-external-regret algorithm that learns by self-play

will produce a strategy with bounded vulnerability, exchangeability and value.

In this chapter, we interleave theoretical results with algorithmic results,

where for each property we give an algorithm showing how to compute the

relevant values on normal-form games.

3.1 Self-Play and Vulnerability

Given an environment containing agents with unknown behaviour, how can a

learning algorithm produce a strategy that will perform well in this environ-

ment? A learning algorithm could choose some behaviour of the other agents

during training, and then use data generated from these simulated agents to

train itself. However, the choice of other agents during learning a↵ects the

strategy that is learned.

Self-play has a learning algorithm train with copies of itself as the other

agents. If the algorithm is a no-�i-regret algorithm for each agent i, the

learned behaviour will converge to a mediated equilibrium; this gives a nice

characterization of the convergence behaviour of the algorithm. For the re-

mainder of this thesis when we say “self-play” we are referring to self-play
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using a no-�-regret algorithm.

However, the strategies in a mediated equilibrium are correlated with each

other. This means that in order to play a strategy learned in self-play, an

agent must first extract it by marginalizing out other agent’s strategies.1 This

new marginal strategy can then be played against new agents with whom the

agent did not train (and thus correlate).

Once a strategy has been extracted via marginalization, learning can either

continue with the new agents (and potentially re-correlate), or the strategy can

remain fixed. We focus on the case where the strategy remains fixed. In doing

so we can guarantee the performance of this strategy if learning stops, but also

show guarantees about the initial performance of a strategy that continues to

learn; this is especially important in safety-critical domains.

Given a marginal strategy sµi , we can bound its underperformance against

new agents that behave di↵erently from the (decorrelated) training opponents

by its vulnerability.

Definition 3.1.1 (Vulnerability). The vulnerability of a strategy profile s for

player i with respect to S 1
´i Ñ S´i is

Vuli
`
s, S1

´i

˘ .“ uipsq ´ min
s1

´iPS1
´i

uipsi, s1
´iq.

Vulnerability gives a measure of how much worse s will perform with new

agents compared to its training performance under pessimistic assumptions—

that ´i play the strategy profile in S 1
´i that is worst for i. We assume that ´i

are not able to correlate their strategies.

Thus, if a marginal strategy profile sµ is learned through self-play and

Vuli
`
sµ, S 1

´i

˘
is small, then sµi performs roughly as well against new agents

´i playing some strategy profile in S 1
´i. S 1

´i is used to encode assumptions

about the strategies of opponents. S 1
´i “ S´i means opponents could play

any strategy, but we could also set S 1
´i to be the set of strategies learnable

through self-play if we believe that opponents would also be using self-play as

a training procedure.

1Please refer to Definition 2.1.16 for the definition of a marginal strategy.
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Some games have properties that make the vulnerability of strategies learned

in self-play low with respect to S´i. For example, in two-player constant-sum

games the marginal strategies learned in self-play generalize well to new op-

ponents since any Nash equilibrium strategy is also a maxmin strategy [66].

We may also want to know how much an agent would prefer to deviate to

a di↵erent strategy when facing new opponents—i.e. how far are they from

the optimal strategy against these new opponents? Suppose that each agent

j P N learns in self-play, and computes the marginal strategy of a CCE µj.

Note that µj is not necessarily the same as µi for i ‰ j. Agents then jointly

select a strategy profile s “ psµi

i qiPN , where each plays a marginal strategy from

their CCE. We wish to determine maxiPN maxs˚
i PSi

uips˚
i , s´iq ´ uipsq. This is

equal to the exchangeability
2 of Sµ “ tsµ | µ is a CCEu, which we denote as

ExpSµq. In two-player constant-sum games, ExpSµq “ 0.

Summarizing this discussion and the background in Chapter 2, two-player

constant-sum games have the following desirable properties

1. The marginal strategies of a CCE are Nash equilibria. A corollary is that

no-external regret learning algorithms will converge to Nash equilibria.

2. There is a unique value of the game.

3. A Nash equilibrium strategy guarantees itself that value against any

opponent; i.e., the vulnerability with respect to S´i is 0.

4. The set of Nash equilibria are exchangeable.

We seek to identify classes of multi-player games that satisfy these prop-

erties.

3.2 Polymatrix Games

Multi-player games are fundamentally more complex than two-player constant-

sum games [16, 15]. However, certain multi-player games can be decomposed

into a graph of two-player games, where a player’s payo↵s depend only on their

2Please refer to Definition 2.1.12.
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strategy and the strategies of players who are neighbours in the graph [6]. In

these polymatrix games (a subset of graphical games [31]) Nash equilibria can

be computed e�ciently if player’s utilities sum to a constant [12, 11].

Definition 3.2.1 (Polymatrix game). A polymatrix game G “ pN,E,P, uq
consists of a set N of players, a set of edges E between players, a set of pure

strategy profiles P, and a set of utility functions u “ tuij, uji | @pi, jq P Eu
where uij, uji : Pi ˆ Pj Ñ R are utility functions associated with the edge

pi, jq. The global utility function ui : P Ñ R is a sum across subgames:

uip⇢q “ ∞
pi,jqPEi

uijp⇢i, ⇢jq for each player where we use Ei Ñ E to denote the

set of edges where i is a player.

We refer to the normal-form subgame between pi, jq as Gij “ pti, ju,Pi ˆ
Pj, puij, ujiqq. When denoting all players except for i and j, we write ´ij. We

write |Ei| to denote the number of subgames for which i is a player.

Definition 3.2.2 (Constant-sum polymatrix). We say a polymatrix game G

is constant-sum if for some constant c we have that @⇢ P P,
∞

iPN uip⇢q “ c.

Constant-sum polymatrix (CSP) games have the desirable property that

all CCE factor into a product distribution; i.e., are Nash equilibria [11]. We

give a relaxed version of this property. First, consider the following useful

proposition.

Proposition 3.2.3 (Cai et al. [11]). In CSP games, for any CCE µ, if i

deviates to si, then their expected utility if other players continue to play µ is

equal to their utility if other players were to play the marginal strategy profile

sµ´i:

E⇢„µruipsi, ⇢´iqs “ uipsi, sµ´iq @si P Si.

Proposition 3.2.4. If µ is an ✏-CCE of a CSP game G, sµ is an n✏-Nash of

G.

Proof. Since µ is an ✏-CCE, @i P N , we have

max
⇢1
iPPi

E⇢„µ ruip⇢1
i, ⇢´iqs ´ E⇢„µ ruip⇢qs § ✏
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which implies (by Proposition 3.2.3) that @i P N ,

max
⇢1
iPPi

uip⇢1
i, s

µ
´iq ´ E⇢„µ ruip⇢qs § ✏

ùñ max
⇢1
iPPi

uip⇢1
i, s

µ
´iq § ✏ ` E⇢„µ ruip⇢qs .

Summing over N , we get

ÿ

iPN
max
⇢1
iPPi

uip⇢1
i, s

µ
´iq §

ÿ

iPN
p✏ ` E⇢„µ ruip⇢qsq (3.1)

“
ÿ

iPN
✏ `

ÿ

iPN
E⇢„µ ruip⇢qs (3.2)

“
ÿ

iPN
✏ ` E⇢„µ

«
ÿ

iPN
uip⇢q

�
(3.3)

“ n✏ ` c (3.4)

“ n✏ `
ÿ

iPN
uipsµq. (3.5)

Where (3.4) and (3.5) use the fact that @⇢ P P,
∞

iPN uip⇢q “ c for some

constant. The above inequalities give us

ÿ

iPN
max
⇢1
iPPi

uip⇢1
i, s

µ
´iq § n✏ `

ÿ

iPN
uipsµq.

Rearranging, we get

ÿ

iPN
max
⇢1
iPPi

uip⇢1
i, s

µ
´iq ´ uipsµq

looooooooooooomooooooooooooon
•0

§ n✏.

All terms in the sum are are non-negative because ⇢1
i is a best-response to sµ´i.

Then any particular term in the summation is upper bounded by n✏.

This means no-external-regret learning algorithms will converge to Nash

equilibria, and thus do not require a mediator to enable the equilibrium. How-

ever, they do not necessarily have the property of two-player constant-sum

games that all (marginal) equilibrium strategies are maxmin strategies [11].

Thus Nash equilibrium strategies in CSP games have no vulnerability guaran-

tees (we provide an example in Figure 3.1). Moreover, Nash equilibria are not

exchangeable and they do not have a unique value [11].
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1 2

1
a0 a2

2
a0 0 ��
a1 � 0

2
a0 a1

0
d 0 0
r �� 0

1
a0 a2

0
d 0 0
r �� 0

Figure 3.1: O↵ense-Defense, a simple CSP game. We only show payo↵s for
the row player, the column player’s payo↵s are zero minus the row player’s
payo↵s.

Polymatrix games that are constant sum in each subgame are no more or

less general than polymatrix games that are constant sum globally, since there

exists a payo↵ preserving transformation between the two sets [11]. For this

reason we focus on polymatrix games that are constant sum in each subgame

without loss of generality. Note that the constant need not be the same in

each subgame.

3.2.1 Vulnerability on a Simple Polymatrix Game

We next demonstrate why constant-sum polymatrix games do not have bounded

vulnerability on their own without additional properties. Consider the simple

3-player constant-sum polyamtrix game called O↵ense-Defense (Figure 3.1).

There are 3 players: 0, 1 and 2. Players 1 and 2 have the option to either

attack 0 (a0) or attack the other (e.g. a1); player 0, on the other hand, may

either relax (r) or defend (d). If either 1 or 2 attacks the other while the other

is attacking 0, the attacker gets � and the other gets ´� in that subgame. If

both 1 and 2 attack 0, 1 and 2 get 0 in their subgame and if they attack each

other, their attacks cancel out and they both get 0. If 0 plays d, they defend

and will always get 0. If they relax, they get ´� if they are attacked and 0

otherwise. O↵ense-Defense is a CSP game, so any CCE is a Nash equilibrium.
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Note that ⇢ “ pr, a2, a1q is a Nash equilibrium. Each i P t1, 2u are attacking
the other j P t1, 2uztiu, so has expected utility of 0. Deviating to attacking 0

would leave them open against the other, so a0 is not a profitable deviation,

as it would also give utility 0. Additionally, 0 has no incentive to deviate to

d, since this would also give them a utility of 0.

However, ⇢ is not a Nash equilibrium of the subgames—all i P t1, 2u have

a profitable deviation in their subgame against 0, which leaves 0 vulnerable

in that subgame. If 1 and 2 were to both deviate to a0, and 0 continues to

play their Nash equilibrium strategy of r, 0 would lose 2� utility from their

equilibrium value; in other words, the vulnerability of player 0 is 2�.

3.3 Subgame Stability

However, some polymatrix games do have the aforementioned desirable prop-

erties of two-player constant-sum games; we call these subgame stable games.

In subgame stable games, global equilibria imply equilibria at each pairwise

subgame.

Definition 3.3.1 (Subgame stable profile). Let G be a polymatrix game with

global utility functions puiqiPN . We say a strategy profile s is �-subgame stable

if and only if @pi, jq P E, we have psi, sjq is a �-Nash of Gij; that is

uijp⇢i, sjq ´ uijpsi, sjq § � @⇢i P Pi,

ujip⇢j, siq ´ ujipsj, siq § � @⇢j P Pj.

For example, in O↵ense-Defense, pr, a2, a1q is �-subgame stable; it is a Nash

equilibrium but is a �-Nash of the subgame between 0 and 1 and the subgame

between 0 and 2.

Definition 3.3.2 (Subgame stable game). Let G be a polymatrix game. We

say G is p✏, �q-subgame stable if for any ✏-Nash equilibrium s of G, s is �-

subgame stable.

For example, O↵ense-Defense is p0, �q-subgame stable.
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Subgame stability connects the global behaviour of play (✏-Nash equilib-

rium in G) to local behaviour in a subgame (�-Nash in Gij). If a polymatrix

game is both constant-sum and is p0, �q-subgame stable then we can bound

the vulnerability of any marginal strategy.

Theorem 3.3.3. Let G be a CSP game. If G is p0, �q-subgame stable, then

the following hold for any player i P N :

1. For any CCE µ of G, we have Vuli psµ, S´iq § |Ei|�.

2. ExpSµq § |Ei|�.

Proof. First we show 1. Any marginal strategy sµ of a CCE µ is a Nash

equilibrium of G [11]. Then,

Vuli psµ, S´iq .“ uipsµq ´ min
s´iPS´i

uipsµi , s´iq

“
ÿ

pi,jqPEi

uijpsµi , sµj q ´ min
s´iPS´i

¨

˝
ÿ

pi,jqPEi

uijpsµi , sjq

˛

‚

“
ÿ

pi,jqPEi

uijpsµi , sµj q ´
ÿ

pi,jqPEi

min
sjPSj

uijpsµi , sjq.

Where the last line uses the fact that ´i minimize i1s utility, so can do so

without coordinating since G is polymatrix. Continuing,

“
ÿ

pi,jqPEi

ˆ
uijpsµi , sµj q ´ min

sjPSj

uipsµi , sjq
˙

§
ÿ

pi,jqPEi

�

§ |Ei|�,

where by p0, �q-subgame stability of each Gij, psµi , sµi q is a �-Nash of Gij. By

Proposition 2.1.10, we have uijpsµi , sµj q ´ minsjPSj uipsµi , sjq § �.

Next we show 2. Let s be a strategy profile such that @i P N , si is the

marginal strategy from some CCE µi. Then for any i P N ,

max
s˚
i PSi

uips˚
i , s´iq ´ uipsi, s´iq “ max

s˚
i

ÿ

pi,jqPEi

puijps˚
i , sjq ´ uijpsi, sjqq

§
ÿ

pi,jqPEi

max
s˚
i

uijps˚
i , sjq ´ uijpsi, sjq.
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Since G is p0, �q-subgame stable, si and sj are �-Nash-equilibrium strategies

of each subgame Gij, since all sµ are Nash equilibria. Note, however, they may

not have come from the same equilibrium. By Proposition 2.1.13, psi, sjq is a

�-Nash of Gij. Thus,

ÿ

pi,jqPEi

max
s˚
i

uijps˚
i , sjq ´ uijpsi, sjq §

ÿ

pi,jqPEi

� “ |Ei|�.

Theorem 3.3.3 tells us that using self-play to compute a marginal strat-

egy sµ on constant-sum polymatrix games will have low vulnerability against

worst-case opponents if � is low. Thus, these are a set of multi-player games

where self-play is an e↵ective training procedure. Moreover, if a player were

to play against agents who computed their strategies in a separate self-play

training instance, they are playing an approximate best response.

In 2 player constant-sum games, all Nash equilibria give a player the same

about of utility, that players value. An approximate version of this result

holds for subgame stable games, where the utility of all equilibria lie in a

neighbourhood defined by �.

Proposition 3.3.4. Let G be a p0, �q-subgame stable CSP game. Let vi
.“

∞
pi,jqPEi

vij where vij is the value of Gij for player i. Then for any Nash

equilibrium s, |vi ´ uipsq| § |Ei|�.

Proof.

|vi ´ uipsq| “

ˇ̌
ˇ̌
ˇ̌

ÿ

pi,jqPEi

vij ´
ÿ

pi,jqPEi

uijpsi, sjq

ˇ̌
ˇ̌
ˇ̌ (3.6)

“

ˇ̌
ˇ̌
ˇ̌

ÿ

pi,jqPEi

vij ´ uijpsi, sjq

ˇ̌
ˇ̌
ˇ̌ (3.7)

§
ÿ

pi,jqPEi

|vij ´ uijpsi, sjq| (3.8)

By subgame stability, we have si, sj is a �-Nash in Gij. In each Gij, if vij •
uijpsi, sjq then |vij ´ uijpsi, sjq| “ vij ´ uijpsi, sjq § � by Proposition 2.1.11.
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Otherwise, let cij be the constant for Gij. If vij † uijpsi, sjq, we have

0 “ cij ´ cij

“ vij ` vji ´ puijpsi, sjq ` ujipsi, sjqq
“ pvij ´ uijpsi, sjqqlooooooooomooooooooon

paq

` pvji ´ ujipsi, sjqqlooooooooomooooooooon
pbq

.

But paq † 0, so pbq ° 0. pbq is upper bounded by � by Proposition 2.1.11.

This implies |vij ´ uijpsi, sjq| § �. This means 3.8 is upper bounded by

§
ÿ

pi,jqPEi

� “ |Ei|�.

3.3.1 Computing Subgame Stability

Let � be the minimum � such that G is p0, �q-subgame stable. How do we

compute �? Does it involve computing all equilibria of G and checking their

subgame stability? The answer is no, it can be done in polynomial time in

the number of pure strategies. We next provide an algorithm for computing �.

The algorithm involves solving a linear program for each edge in the graph and

each pure strategy of those players. This linear program takes a pure strategy

⇢1
i, and finds a Nash equilibrium of G that maximizes i’s incentive to deviate

to ⇢1
i when only considering their utility in Gij; call this quantity �

⇢1
i

ij . If there

are no such Nash equilibria the solver returns “infeasible”. If the solver does

not return “infeasible”, we update � “ maxpi,jqPEi max⇢1
iPPi

�
⇢1
i

ij .

Let aip⇢1
i, µq be the advantage of deviating to ⇢1

i from a joint distribution

over pure strategies:

aip⇢1
i, µq .“

ÿ

pi,jqPEi

uijp⇢1
i, s

µ
j qloooomoooon

paq

´E⇢„µ

»

–
ÿ

pi,jqPEi

uijp⇢i, ⇢jq

fi

fl

loooooooooooooomoooooooooooooon
pbq

Note that paq is a linear function of µ, since sµj is a marginal strategy. pbq is

also a linear function of µ, and so aip⇢1
i, µq is a linear function of µ. Likewise,
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Algorithm 1 Compute �

Input: G “ pN,E,P, uq, a polymatrix game
� – ´8
for pi, jq P E do
for ⇢1

i P Pi do
if LP1pi, j, ⇢1

iq not infeasible then

�
⇢1
i

ij – LP1pi, j, ⇢1
iq

� – maxp�, �⇢1
i

ij q
end if

end for
for ⇢1

j P Pj do
if LP1pj, i, ⇢1

jq not infeasible then

�
⇢1
j

ji – LP1pj, i, ⇢1
jq

� – maxp�, �⇢
1
j

ji q
end if

end for
end for
return �

let

aijp⇢1
i, µq .“ uijp⇢1

i, s
µ
j q ´ E⇢„µ ruijp⇢i, ⇢jqs .

be the advantage of ⇢1
i in the subgame between i and j. LP1pi, j, ⇢1

iq is given

below. The decision variables are the weights of µ for each ⇢ P P and �
⇢1
i

ij .

LP 1

max �
⇢1
i

ij

s.t. aip⇢i, µq § 0 @i P N, ⇢i P Pi

aijp⇢1
i, µq • �

⇢1
i

ij
ÿ

⇢PP
µp⇢q “ 1

µp⇢q P r0, 1s @⇢ P P

We can get away with computing a CCE rather than targeting Nash equilibria

because the marginals of any CCE are Nash equilibria in CSP games [11].

The whole procedure runs in polynomial time in the size of the game.
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We need to solve an LP, which takes polynomial time, at most n2 maxiPN |Pi|
times.

3.4 Approximate Polymatrix Games

Most games are not factorizable into polymatrix games. Fortunately, we can

take any game G and project it into the space of CSP games. Games that are

near to the space of CSP games have relaxed versions of the desirable properties

of CSP games, where the degree of relaxation depends on this distance.

Definition 3.4.1 (�-constant sum polymatrix ). A game G is �-constant sum

polymatrix (�-CSP) if there exists a CSP game Ǧ with global utility function

ǔ such that @i P N, ⇢ P P, |uip⇢q ´ ǔip⇢q| § �. We denote the set of such CSP

games as CSP�pGq.

Throughout this thesis, we use the symbolˇ(“check”) for CSP games that

are the approximate decomposition of some game; i.e. Ǧ is an approximate

CSP decomposition of G.

Proposition 3.4.2. In a �-CSP game G the following hold.

1. Any CCE of G is a 2�-CCE of any Ǧ P CSP�pGq.

2. The marginal strategy profile of any CCE of G is a 2n�-Nash equilibrium

of any Ǧ P CSP�pGq.

3. The marginal strategy profile of any CCE of G is a 2pn` 1q�-Nash equi-

librium of G.

From (3) we have that the removal of the mediator impacts players utilities

by a bounded amount in �-CSP games. The proof is given in Section 3.6.1.

Projecting a game into the space of CSP games with minimum � can be

done with a linear program. Let � be the minimum � such that G is �-CSP.

We give a linear program that finds � and returns a CSP game Ǧ P CSP�pGq.
The decision variables are the values of ǔijp⇢q for all i ‰ j P N, ⇢ P P, � and

constants for each subgame cij, for all i ‰ j.
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LP 2

min �

s.t. uip⇢q ´
ÿ

jP´i

ǔijp⇢i, ⇢jq § � @i P N, ⇢ P P

uip⇢q ´
ÿ

jP´i

ǔijp⇢i, ⇢jq • ´� @i P N, ⇢ P P

ǔijp⇢i, ⇢jq ` ǔjip⇢i, ⇢jq “ cij @i ‰ j P N, p⇢i, ⇢jq P Pij,

Combining �-CSP with p✏, �q-subgame stability lets us bound vulnerability

and exchangeability in any game.

Theorem 3.4.3. If G is �-CSP and DǦ P CSP�pGq that is p2n�, �q-subgame

stable and µ is a CCE of G, then

Vuli psµ, S´iq § |Ei|� ` 2� § pn ´ 1q� ` 2�,

and

ExpSµq § |Ei|� ` 2� § pn ´ 1q� ` 2�.

We give the proof in Section 3.6.

Theorem 3.4.3 shows that games that are close to the space of subgame

stable CSP (SS-CSP) games are cases where the marginal strategies learned

through self-play have bounded worst-case performance. This makes these

games suitable for any no-external-regret learning algorithm. The exchange-

ability of Sµ is also bounded, which means i will boundedly regret their

marginal strategy sµi when faced with agents who also learned in self-play.

We can also show that all utility of any marginal strategy profile falls within

a bounded range. In contrast to Proposition 3.3.4, we have Ǧ is p2n�, �q-
subgame stable.

Proposition 3.4.4. If G is �-CSP and DǦ P CSP�pGq that is p2n�, �q-subgame

stable, let v̌i
.“ ∞

pi,jqPEi
v̌ij where v̌ij is the value of Ǧij for player i. Then for

any marginal strategy of a CCE of G, sµ, we have |v̌i ´ uipsµq| § |Ei|� ` �.

The proof is given in Section 3.6.3.
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3.5 Vulnerability Against Other Self-Taught
Agents

Theorem 3.4.3 bounds vulnerability in the worst-case scenarios, where ´i play

any strategy profile to minimize i’s utility. In reality, however, each player

j P ´i has their own interests and would only play a strategy that is reason-

able under these own interests. In particular, what if each agent were also

determining their own strategy via self-play in a separate training instance.

How much utility can i guarantee themselves in this setup?

While no-external-regret learning algorithms converge to the set of CCE,

other assumptions can be made with additional information about the type of

regret being minimized. For example, no-external-regret learning algorithms

will play strictly dominated strategies with vanishing probability and CFR will

play dominated actions with vanishing probability [22]. These refinements

can tighten our bounds, since the part of the game that no-regret learning

algorithms converge to might be closer to a CSP game than the game overall.
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Figure 3.2: Bad Card: a game that is not overall polymatrix, but the subset
of strategies learnable by self-play are. At the terminals, we show the dealers
utility first, followed by players 0, 1 and 2, respectively.

Consider the game shown in Figure 3.2, called “Bad Card”. The game

starts with each player except the dealer putting �{2 into the pot. A dealer

player d—who receives utility 0 regardless of the strategies of the other players—
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then selects a player from t0, 1, 2u to receive a “bad card”, while the other two

players receive a “good card”. The player who receives the bad card has an

option to fold, after which the game ends and all players receive their ante

back. Otherwise if this player calls, the other two players can either fold or

call. The pot of � is divided among the players with good cards who call. If

one player with a good card calls, they win the pot of �. If both good card

players call then they split the pot. If both players with good cards fold, then

the player with the bad card wins the pot.

As we shall soon show, Bad Card does not have a constant-sum polymatrix

decomposition—in fact it does not have any polymatrix decomposition. Since

Bad Card is an extensive-form game without chance, each pure strategy profile

leads to a single terminal history. Let Ppzq be the set of pure strategy profiles

that play to a terminal z. In order for Bad Card to be polymatrix, we would

need to find subgame utility functions such that @⇢ P P, u0p⇢q “ u0,dp⇢0, ⇢dq `
u0,1p⇢0, ⇢1q`u0,2p⇢0, ⇢2q. Equivalently, we could write @z P Z, ⇢ P Ppzq, u0pzq “
u0,dp⇢0, ⇢dq`u0,1p⇢0, ⇢1q`u0,2p⇢0, ⇢2q where Z is the set of terminals. A subset

of these constraints results in an infeasible system of equations.

Consider the terminals in the subtree shown in Figure 3.2: z1 “ p0, c, c, cq,
z2 “ p0, c, c, fq, z3 “ p0, c, f, cq and z4 “ p0, c, f, fq. Let ⇢ci be any pure

strategy that plays c in this subtree and ⇢fi be any strategy that plays f in

this subtree for player i. In order for Bad Card to decompose into a polymatrix

game we would need to solve the following infeasible system of linear equations:

u0pz1q “ u0,dp⇢c0, 0q ` u0,1p⇢c0, ⇢c1q ` u0,2p⇢c0, ⇢c2q “ ´�
u0pz2q “ u0,dp⇢c0, 0q ` u0,1p⇢c0, ⇢c1q ` u0,2p⇢c0, ⇢f1q “ ´�
u0pz3q “ u0,dp⇢c0, 0q ` u0,1p⇢c0, ⇢f1q ` u0,2p⇢c0, ⇢c2q “ ´�
u0pz4q “ u0,dp⇢c0, 0q ` u0,1p⇢c0, ⇢f1q ` u0,2p⇢c0, ⇢f2q “ �

Thus, Bad Card is not a constant-sum polymatrix game, although it is

a �-CSP game. However, if we prune out dominated actions (i.e., those in

which a player folds after receiving a good card), the resulting game is indeed

a 0-CSP game.
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Let MpAq be the set of mediated equilibria than an algorithm A converges

to in self-play. For example, if A is a no-external-regret algorithm, MpAq is

the set of CCE without strictly dominated strategies in their support. Let

SpAiq “ tsµ | pµ, p�iqiPNq P MpAiqu be the set of marginal strategy profiles

of MpAiq, and let SipAiq “ tsi | s P SpAiqu be the set of i’s marginal strategies

from SpAiq.
Now, consider if each player i learns with their own self-play algorithm Ai.

Let AN “ pA1, ...Anq be the profile of learning algorithms, then SˆpANq “
ë

iPN SipAiq. Summarizing, if each player learns with a no-�i-regret learning

algorithm Ai, they will converge to the set of MpAiq equilibria. The set of

marginal strategies from this set of equilibria is SipAiq and the set of marginal

strategy profiles is SpAiq. If each player plays a (potentially) di↵erent learning

algorithm, SˆpANq is the set of possible joint match-ups if each player plays

a marginal strategy from their own algorithm’s set of equilibria.

Definition 3.5.1. We say a game G is �-CSP in the neighbourhood of S 1 Ñ S

if there exists a CSP game Ǧ such that @s P S 1 we have |uipsq ´ ǔipsq| § �.

We denote the set of such CSP games as CSP�pG,S1q.

Definition 3.5.2. We say a CSP game G is �-subgame stable in the neigh-

bourhood of S 1 if @s P S 1, @pi, jq P E we have that psi, sjq is a �-Nash of Gij.

These definitions allow us to prove the following generalization of Theo-

rem 3.4.3. The proof is given in Section 3.6.4.

Theorem 3.5.3. For any i P N , if G is �-CSP in the neighbourhood of

SˆpANq and DǦ P CSP�pG,SˆpANqq that is �-subgame stable in the the neigh-

bourhood of SpAiq , then for any s P SpAiq

Vuli
`
s, Sˆ

´ipANq
˘

§ |Ei|� ` 2� § pn ´ 1q� ` 2�.

An implication of Theorem 3.5.3 is that if agents use self-play to compute

a marginal strategy from some mediated equilibrium and there is a subgame

stable CSP game that is close to the original game for these strategies, then

this is su�cient to bound vulnerability against strategies learned in self-play.
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Given a finite set SpAiq@i P N , we can compute a CSP game Ǧ that

is �-CSP in the neighbourhood of SˆpANq and �-subgame stable in the the

neighbourhood of SpAiq @i P N so that our bounds are minimized using the

following LP.

LP 3 The decision variables are the values of ǔijp⇢q for all i ‰ j P N, ⇢ P P,

�, �, and constants for each subgame cij for all i ‰ j:

min pn ´ 1q� ` 2�

s.t. ǔijp⇢i, sjq ´ uijpsi, sjq § � @i P N, ⇢i P Pi, s P SpAiq
uipsq ´

ÿ

jP´i

ǔijpsi, sjq § � @i P N, s P SˆpANq

uipsq ´
ÿ

jP´i

ǔijpsi, sjq • ´� @i P N, s P SˆpANq

ǔijp⇢i, ⇢jq ` ǔjip⇢i, ⇢jq “ cij @i ‰ j P N, p⇢i, ⇢jq P Pij

� • 0

� • 0

3.6 Omitted Proofs

Here we give omitted proofs for this chapter.

3.6.1 Proof of Proposition 3.4.2

Proposition 3.4.2. In a �-CSP game G the following hold

1. Any CCE of G is a 2�-CCE of any Ǧ P CSP�pGq.

2. The marginalized strategy profile of any CCE of G is a 2n�-Nash equi-

librium of any Ǧ P CSP�pGq.

3. The marginalized strategy profile of any CCE is a 2pn ` 1q�-Nash equi-

librium of G

Proof. First we prove claim 1. Let ǔi denote the utility function of i in Ǧ.

Note that @⇢ P P we have |ǔip⇢q ´ uip⇢q| § � @i P N . Let µ be any CCE of G.
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The definition of CCE states

E⇢„µ ruip⇢1
i, ⇢´iq ´ uip⇢qs § 0 @i P N, ⇢1

i P Pi.

It is su�cient to consider only player i. We can preserve the inequality by

substituting ǔip⇢1
i, ⇢´iq ´� in place of uip⇢1

i, ⇢´iq and ǔip⇢q `� in place of uip⇢q.
This gives us

E⇢„µ rǔip⇢1
i, ⇢´iq ´ � ´ pǔip⇢q ` �qs § 0 @⇢1

i P Pi

ùñ E⇢„µ rǔip⇢1
i, ⇢´iq ´ ǔip⇢qs § 2� @⇢1

i P Pi.

Thus claim 1 is shown. Claim 2 is an immediate corollary of claim 1 and

Proposition 3.2.4. Lastly, we show claim 3. By claim 2, we have the marginal-

ized strategy of µ, sµ, is a 2n�-Nash equilibrium of Ǧ P CSP�pGq. That is for
any i P N ,

ǔip⇢1
i, s

µ
´iq ´ ǔipsµi , sµ´iq § 2n� @⇢1

i P Pi.

However, since G is �-CSP, we may substitute uip⇢1
i, s

µ
´iq ´ � in place of

ǔip⇢1
i, s

µ
´iq and uipsµi , sµ´iq ` � in place of ǔipsµi , sµ´iq as preserve the inequal-

ity.

`
uip⇢1

i, s
µ
´iq ´ �

˘
´

`
uipsµi , sµ´iq ` �q

˘
§ 2n� @⇢1

i P Pi.

Rearranging, this gives us

uip⇢1
i, s

µ
´iq ´ uipsµi , sµ´iq § 2n� ` 2� “ 2pn ` 1q� @⇢1

i P Pi.

3.6.2 Proof of Theorem 3.4.3

Theorem 3.4.3. If G is �-CSP and DǦ P CSP�pGq that is p2n�, �q-subgame

stable and µ is a CCE of G, then

Vuli psµ, S´iq § |Ei|� ` 2� § pn ´ 1q� ` 2�,

and

ExpSµq § |Ei|� ` 2� § pn ´ 1q� ` 2�.
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The proof is largely the same as Theorem 3.3.3, with added approximation

since G is no longer CSP.

Proof. Let Ǧ be a polymatrix game that is p2n�, �q-subgame stable such that

Ǧ P CSP�pGq. Let ǔi denote the utility function of i in Ǧ. By Proposi-

tion 3.4.2, µ is a 2n�-Nash equilibrium of Ǧ. Then,

Vuli psµ, S´iq .“ uipsµq ´ min
s1

´iPS´i

uipsµi , s1
´iq

§ ǔipsµq ´ min
s1

´iPS´i

ǔipsµi , s1
´iq ` 2�,

since G is �-CSP. Then expanding ǔi across i’s subgames we have

ÿ

pi,jqPEi

ǔijpsµi , sµj q ´ min
s1

´iPS´i

ÿ

pi,jqPEi

ǔipsµi , sjq ` 2�

“
ÿ

pi,jqPEi

ǔijpsµi , sµj q ´
ÿ

pi,jqPEi

min
s1
jPSj

ǔipsµi , s1
jq ` 2�.

Where, as in Theorem 3.3.3, the last line uses the fact that Ǧ is polymatrix,

Gij is constant-sum and ´i minimize i1s utility and can do so by without

coordinating. Continuing, we have

ÿ

pi,jqPEi

ǔijpsµi , sµj q ´
ÿ

pi,jqPEi

min
s1
jPSj

ǔipsµi , s1
jq ` 2�

“
ÿ

pi,jqPEi

˜
ǔijpsµi , sµj q ´ min

s1
jPSj

ǔipsµi , s1
jq

¸
` 2�

§
ÿ

pi,jqPEi

� ` 2�

“ |Ei|� ` 2�

§ pn ´ 1q� ` 2�.

Where by p2n�, �q-subgame stability of each Gij, psµi , sµi q is a �-Nash of Gij.

By Proposition 2.1.10, sµi can lose at most � to a worst case opponent s1
j in

each subgame, since Ǧij is two-player constant-sum.

Next we show

ExpSµq § |Ei|� ` 2� § pn ´ 1q� ` 2�.
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Let s be a strategy profile such that @i P N , si is the marginal strategy from

some CCE µi. We bound the incentive that any player has to deviate from s

in G, given by

uip⇢1
i, s´iq ´ uipsi, s´iq @⇢1

i P Pi.

Then we have

uip⇢1
i, s´iq ´ uipsi, s´iq § ǔip⇢1

i, s´iq ´ ǔipsi, s´iq ` 2� @⇢1
i P Pi (3.9)

§
ÿ

pi,jqPEi

pǔijp⇢1
i, sjq ´ ǔijpsi, sjqq ` 2� @⇢1

i P Pi.

(3.10)

For any ⇢1
i, (3.10) is less than

§
ÿ

pi,jqPEi

ˆ
max
⇢˚
i PPi

ǔijp⇢˚
i , sjq ´ ǔijpsi, sjq

˙
` 2�. (3.11)

By p2n�, �q-subgame stability, si and sj are �-Nash-equilibrium strategies of

Ǧij. By Proposition 2.1.13 psi, sjq is also a �-Nash of Ǧij. Thus,

(3.11) §
ÿ

pi,jqPEi

� ` 2� “ |Ei|� ` 2� § pn ´ 1q� ` 2�.

3.6.3 Proof of Proposition 3.4.4

Proposition 3.4.4. If G is �-CSP and DǦ P CSP�pGq that is p2n�, �q-subgame

stable, let v̌i
.“ ∞

pi,jqPEi
v̌ij where v̌ij is the value of Ǧij for player i. Then for

any marginal strategy of a CCE of G, sµ, we have |v̌i ´ uipsµq| § |Ei|� ` �.

Proof. The proof is largely the same as Proposition 3.3.4. By �-CSP we have

|v̌i ´ uipsµq| §

ˇ̌
ˇ̌
ˇ̌

ÿ

pi,jqPEi

v̌ij ´ ǔijpsµi , sµj q

ˇ̌
ˇ̌
ˇ̌

looooooooooooomooooooooooooon
paq

`�.

By p2n�, �q-subgame stability, each psµi , sµj q is a �-Nash equilibrium of Ǧij.

From here, we can upper bound paq by following the steps of Proposition 3.3.4.

This gives us

|v̌i ´ uipsµq| § |Ei|� ` �.

46



3.6.4 Proof of Theorem 3.5.3

Theorem 3.5.3. If G is �-CSP in the neighbourhood of SˆpANq and DǦ P
CSP�pG,SˆpANqq that is �-subgame stable in the the neighbourhood of SpAiq,
then for any s P SpAiq

Vuli
`
s, Sˆ

´ipANq
˘

§ |Ei|� ` 2� § pn ´ 1q� ` 2�.

Proof. The proof is very similar to Theorem 3.4.3. Writing the definition of

vulnerability we have

Vuli ps, SpAqq .“ uipsq ´ min
s1

´iPSˆ
´ipAN q

uips, s1
´iq, (3.12)

since G is �-CSP in the neighbourhood of SˆpANq. Swapping out the utility

of ui for ǔ, we have

(3.12) § ǔipsq ´ min
s1

´iPSˆ
´ipAN q

ǔipsi, s1
´iq ` 2�

Since Ǧ is a polymatrix game,

ǔipsq ´ min
s1

´iPSˆ
´ipAN q

ǔipsi, s1
´iq ` 2� (3.13)

“
ÿ

pi,jqPEi

ǔijpsi, sjq ´ min
s1

´iPSˆ
´ipAN q

ÿ

pi,jqPEi

ǔijpsi, sjq ` 2� (3.14)

“

¨

˝
ÿ

pi,jqPEi

ǔijpsi, sjq ´ min
s1
jPSjpAjq

ǔijpsi, s1
jq

˛

‚` 2�. (3.15)

Where, as in Theorem 3.3.3 and Theorem 3.4.3, the last line uses the fact that

Ǧ is polymatrix, Gij is constant-sum and ´i minimize i1s utility and can do

so by without coordinating.

Since Ǧ is �-subgame stable in the neighbourhood of SpAiq and s P SpAiq,
then means psi, sjq is a �-Nash for each subgame Ǧij, so has bounded vulner-

ability within that subgame.

(3.15) §

¨

˝
ÿ

pi,jqPEi

�

˛

‚` 2�

§|Ei|� ` 2�

§pn ´ 1q� ` 2�

47



Chapter 4

Guarantees for Self-Play in
Extensive-Form Games

The previous chapter developed notions of approximately CSP and subgame

stable in the context of normal-form games. In this chapter, we apply these

concepts to extensive-form games. While any extensive-form game has an

equivalent induced normal-form game, analysing properties of an EFG through

its induced normal is intractable for moderately-sized EFGs, since the size the

normal-form representation is exponentially larger.

We begin by introducing a novel “extensive-form version” of normal-form

polymatrix games, which we call poly-EFGs. The major benefit of poly-EFGs

over normal-form polymatrix games is their e�ciently: poly-EFGs are ex-

ponentially more compact than an equivalent normal-form polymatrix game.

The results of this chapter extend the theory of the previous chapter using

this more e�cient representation.

We give a proof-of-concept showing that poly-EFGs can be used to e�-

ciently decompose extensive-form games by giving an algorithm for decompos-

ing a perfect information EFG into a poly-EFG. Finally, we give an algorithm

for finding a subgame stable poly-EFG decomposition in a neighbourhood that

uses stochastic gradient descent. We will use this algorithm in the next chapter

to find poly-EFG decompositions of Kuhn and Leduc Poker.
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4.1 Poly-EFGs

What is the appropriate extension of polymatrix games to EFGs? Given some

n-player EFG G, what should the subgame between i and j be in the graph?

Unlike in normal form games, players act sequentially, and i and j may ei-

ther observe actions or have their utility impacted by other players. There is

additional structure present in EFGs beyond the players’ pure strategies.

The approach we take is to have an EFG for each pair of players i and j.

For simplicity, we assume that each subgame G1
ij shares the same structure as

some n-player game G, but information sets where P pIq R ti, ju now belong

to the chance player c.

Definition 4.1.1 (Subgame). Let G “ pN,A, H, Z,A, P, u, I, c, ⇡cq be some

EFG. We define a subgame G1
ij “ pti, ju,A, H, Z,A, P 1, pu1

ij, u
1
jiq, I, c, ⇡1

cq as a

structurally identical game to G between i and j with player function P 1 and

utility functions pu1
ij, u

1
jiq, then

P 1phq .“
#
P phq if P phq P ti, ju
c o.w.

and let ⇡1
c be the strategy of the chance player in G1

ij. We put no restrictions

on ⇡1
c.

Note that u1
ij, u

1
ji are not necessarily defined in the above definition. They

may take any values. We merely want the subgame G1
ij to share the structure

of G. In G1
ij, i and j’s utility only depends on their strategies ⇡i, ⇡j and

chance’s actions ⇡1
c:

u1
ijp⇡i, ⇡jq .“ Ez„p⇡i,⇡j ,⇡jq

“
u1
ijpzq

‰

“
ÿ

zPZ
pipz, ⇡iqpjpz, ⇡jqpcpz, ⇡1

cqu1
ijpzq.

What should ⇡1
c be defined as? This turns out to not matter very much.

Given any subgame G1
ij with chance strategy ⇡1

c and utility functions u1
ij, u

1
ji,

for any G2
ij with chance strategy ⇡2

c , we can find u2
ij, u

2
ji so that the utility of

players between the two games will always be equal for any strategy profile

p⇡i, ⇡jq.
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Definition 4.1.2. We say ⇡c is fully mixed if ⇡1
cpa, hq ° 0 @h P th P H |

P phq “ cu, a P Aphq

Proposition 4.1.3. Let G be an EFG and G1
ij a subgame between i and j

with utility functions u1
ij, u

1
ji and fully mixed chance strategy ⇡1

c. Given G2
ij,

a subgame between i and j with fully mixed chance strategy ⇡2
c , we may find

u2
ij, u

2
ji such that @⇡i, ⇡j we have u1

ijp⇡i, ⇡jq “ u2
ijp⇡i, ⇡jq and u1

jip⇡i, ⇡jq “
u2
jip⇡i, ⇡jq.

Proof. Note that pcpz, ⇡1
cq, pcpz, ⇡2

c q ‰ 0. Then @z P Z, define u2
ijpzq “

pcpz,⇡1
cq

pcpz,⇡2
c qu

1
ijpzq and u2

jipzq “ pcpz,⇡1
cq

pcpz,⇡2
c qu

1
jipzq. Then

u2
ijp⇡i, ⇡jq “

ÿ

zPZ
pipz, ⇡iqpjpz, ⇡jqpcpz, ⇡2

c qu2
ijpzq

“
ÿ

zPZ
pipz, ⇡iqpjpz, ⇡jqpcpz, ⇡2

c qpcpz, ⇡
1
cq

pcpz, ⇡2
c qu

1
ijpzq

“
ÿ

zPZ
pipz, ⇡iqpjpz, ⇡jqpcpz, ⇡1

cqu1
ijpzq

“ u1
ijp⇡i, ⇡jq.

For the remainder of this thesis, when defining a subgame between i and j

given an EFG G, we define the subgame chance player’s strategy to be equal

to ⇡c in G at information sets I where P pIq “ c in G and uniform randomly

otherwise.

Having defined subgames, we may now define our representation of extensive-

form polymatrix games.

Definition 4.1.4 (Poly-EFG). A poly-EFG pN,E,Gq is defined by a graph

with nodes N , one for each player, a set of edges E and a set of games G “
tGij | @pi, jq P Eu where Gij P G is a two player EFG between i and j and

all Gij P G are a subgame between i and j and all subgames are defined with

respect to some EFG G.

Let Gij P G denote the subgame between i and j. We use subscript ij (e.g.

Zij) to refer to parts of Gij.
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Since each subgame of the poly-EFG is the subgame of the same G, the

space of pure, mixed and behaviour strategies is the same for each subgame for

any player. A player chooses a strategy (whether pure, mixed or behaviour)

and plays this strategy in each subgame. A player’s global utility is the sum

of their utility in each of their subgames. We have

uip⇡q “
ÿ

pi,jqPEi

uijp⇡i, ⇡jq,

where Ei Ñ E is the set of edges connected to i in the graph and uij is the

utility function of i in subgame Gij.

4.1.1 Constant-Sum and Subgame Stable Poly-EFGs

Here, we give definitions of constant-sum and subgame stability for poly-EFGs.

These definitions are largely identical to their normal-form counterparts, we

merely provide them here for completeness.

Poly-EFGs are constant-sum if, for each subgame, the utilities at the ter-

minals add up to a constant.

Definition 4.1.5 (Constant-sum). We say a poly-EFG G is constant-sum if

@Gij P G, z P Zij, uijpzq `ujipzq “ cij where Zij is the set of terminal histories

of @Gij and cij is a constant.

We may also define approximate poly-EFGs in the same way as in normal-

form games.

Definition 4.1.6 (�-constant sum poly-EFG ). An EFG G is �-constant sum

poly-EFG (�-CSP) if there exists a constant-sum poly-EFG Ǧ with global

utility function ǔ such that @i P N, ⇡ P ⇧, |uip⇡q ´ ǔip⇡q| § �. We denote the

set of such CSP games as CSP�pGq.

Finally, we define subgame stability for poly-EFGs. Our definitions are

near-identical from the normal-form definitions.

Definition 4.1.7 (Subgame stable profile). Let G be a poly-EFG. We say

a strategy profile ⇡ is �-subgame stable if @pi, jq P E, we have p⇡i, ⇡jq is a

�-Nash of Gij.
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Definition 4.1.8 (Subgame stable game). Let G be a poly-EFG. We say G

is p✏, �q-subgame stable if for any ✏-Nash equilibrium ⇡ of G, ⇡ is �-subgame

stable.

4.2 Theoretical Results For Poly-EFGs

Our theoretical results from Chapter 3 continue to hold in poly-EFGs. The

idea is to use the induced normal-form of a poly-EFG and then apply the

theory of the previous chapter. Only the main results are given here, full

details are given in Appendix B. We assume perfect recall for the remainder

of this thesis.

First, we will characterize what self-play will produce in EFGs. These are

called marginal behaviour strategies.

Definition 4.2.1 (Marginal behaviour strategy). Given some mediated equi-

librium pµ, p�iqNi“1q, let ⇡µ
i be the marginal behaviour strategy for i where

⇡µ
i pa, Iq is defined arbitrarily if

∞
⇢1
iPPipIq s

µ
i p⇢1

iq “ 0 and otherwise

⇡µ
i pa, Iq .“

∞
⇢iPPipa,Iq s

µ
i p⇢iq∞

⇢1
iPPipIq s

µ
i p⇢1

iq
@I P Ii, a P ApIq,

where sµi p⇢iq .“ ∞
⇢´iPP´i

µp⇢i, ⇢´iq.

Definition 4.2.2 (Marginal behaviour strategy profile). Given some mediated

equilibrium pµ, p�iqNi“1q, let ⇡µ be a marginal behaviour strategy profile, where

⇡µ
i is a marginal behaviour strategy @i P N .

An extension of Theorem 3.4.3 holds for poly-EFGs. Let ⇧µ be the set of

marginal behaviour strategy profiles for any CCE of G and ⇧µ
i be the set of

marginal behaviour strategies for i.

Proposition 4.2.3. If an EFG G is �-CSP and DǦ P CSP�pGq that is p2n�, �q-
subgame stable and µ is a CCE

1
of G, then

Vuli p⇡µ,⇧´iq § |Ei|� ` 2� § pn ´ 1q� ` 2�,

1Note that “CCE” refers to a normal-form CCE (NFCCE) in the language of [17].
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and

Exp⇧µq § |Ei|� ` 2� § pn ´ 1q� ` 2�.

4.2.1 Vulnerability Against Self-Taught Agents in EFGs

Next we show an analogue of Theorem 3.5.3 for extensive-form games. In

Section 3.5 we defined SpAiq as the set of marginal strategy profiles for a

no-regret learning algorithm Ai. Many algorithms for EFGs will compute

behaviour strategies, so we use ⇧pAiq “ t⇡µ | pµ, p�iqiPNq P MpAiqu as the

set of marginal behaviour strategy profiles of MpAiq (recall that MpAiq is

the set of mediated equilibria reachable by learning algorithm Ai. Then let

⇧ipAiq .“ t⇡i | ⇡ P ⇧pAiqu be the set of i’s marginal strategies from ⇧pAiq.
For example, if A is CFR, MpAq is the set of observably sequentially rational

CFCCE [45] and ⇧pAq is the set of behaviour strategy profiles computable by

CFR. Next, suppose each player i learns with their own self-play algorithm

Ai. Let AN
.“ pA1, ...Anq be the profile of learning algorithms and ⇧ˆpANq .“

ë
iPN ⇧ipAiq be the set of all possible match-ups between strategies learned

in self-play by those learning algorithms.

Definition 4.2.4. We say a game G is �-CSP in the neighbourhood of ⇧1 Ñ
⇧ if there exists a constant sum poly-EFG Ǧ such that @⇡ P ⇧1 we have

|uip⇡q ´ ǔip⇡q| § �. We denote the set of such CSP games as CSP�pG,⇧1q.

Definition 4.2.5. We say a CSP game G is �-subgame stable in the neigh-

bourhood of ⇧1 if @⇡ P ⇧1, @pi, jq P E we have that p⇡i, ⇡jq is a �-Nash of

Gij.

The following proposition bounds the vulnerability if each agent i learns

via a no-regret learning algorithm Ai.

Proposition 4.2.6. If G is �-CSP in the neighbourhood of ⇧ˆpANq and DǦ P
CSP�pG,⇧ˆpANqq that is �-subgame stable in the the neighbourhood of ⇧pAiq
, then for any ⇧ P ⇧pAiq

Vuli
`
⇡,⇧ˆ

´ipANq
˘

§ |Ei|� ` 2� § pn ´ 1q� ` 2�.
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4.3 Leveraging the Poly-EFG Representation
for Computing CSP Decompositions

The poly-EFG representation gives rise to more e�cient algorithms for com-

puting a poly-EFG decomposition. As a proof of concept, we show that in

perfect information EFGs, we can write a linear program to compute the opti-

mal polymatrix decomposition for an EFG that is exponentially smaller than

LP 2 from Section 3.4. Recall that � is the minimum value of � such that a

game is �-CSP. In an perfect information EFG, we can compute � with the

following LP. The decision variables are �, the values of ǔijpzq @z P Z, pi, jq P E

and cij @pi, jq P E.

LP 4

min �

s.t. uipzq ´
ÿ

jP´i

ǔijpzq § � @i P N, z P Z

uipzq ´
ÿ

jP´i

ǔijpzq • ´� @i P N, z P Z

ǔijpzq ` ǔjipzq “ cij @i ‰ j P N, z P Z

The trick is that in perfect information EFGs, each pure strategy profile leads

to a single terminal. Hence, rather than having a constraint for each pure

strategy profile, a constraint for each terminal will su�ce. This leads to an

exponential reduction in the number of constraints over LP 2.

4.4 Computing a SS-CSP Decomposition in a
Neighbourhood

Next, we give an algorithm for computing a polymatrix decomposition that is

approximately subgame stable in the neighbourhood of some set of strategy

profiles ⇧1 and approximately CSP in the neighbourhood of ⇧ˆ “ ë
iPN ⇧1

i.

Given a game G as input, it uses stochastic gradient descent (SGD) to compute

a CSP game Ǧ that minimizes a loss function with two components: how close

Ǧ is to G in the neighbourhood of ⇧ˆ and how subgame stable Ǧ is for the
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neighbourhood of ⇧1. In principle, this procedure can be used with either

normal-form polymatrix games or poly-EFGs, but we show it here with poly-

EFGs since it is primarily intended for use with games that are too large to

use linear programming.

For each subgame Ǧij we store a single vector ǔij where the entry ǔijpzq
gives the value of the utility for corresponding terminal z. We additionally

store a constant čij for each subgame. Player i will use ǔij when computing

ǔijp⇡i, ⇡jq:

ǔijp⇡i, ⇡jq “
ÿ

zPZ
pipz, ⇡iqpjpz, ⇡jqpcpz, ⇡cqǔijpzq.

Whereas we compute ǔjip⇡i, ⇡jq as follows.

ǔjip⇡i, ⇡jq “
ÿ

zPZ
pipz, ⇡iqpjpz, ⇡jqpcpz, ⇡cq pčij ´ ǔijpzqq .

For simplicity, let ǔ denote the stacked vector of all ǔij and čij. We addi-

tionally initialize Ǧ as a fully connected graph.

The overall loss function which we minimize has two components: first, L
�

is the error between the utility functions of G and Ǧ; it is a proxy for � in

�-CSP.

L
� p⇡; ǔ, uq .“

ÿ

iPN
|ǔip⇡q ´ uip⇡q|

“
ÿ

iPN

ˇ̌
ˇ̌
ˇ̌

¨

˝
ÿ

pi,jqPEi

ǔijp⇡i, ⇡jq

˛

‚´ uip⇡q

ˇ̌
ˇ̌
ˇ̌ .

The other component of the overall loss function, L�, measures the subgame-

stability. First, we define L
�
ij, which only applies to a single subgame.

L
�
ijp⇡ij, ⇡˚

ij; ǔq .“max pǔijp⇡˚
i , ⇡jq ´ ǔijp⇡ijq, 0q

`max
`
ǔjip⇡i, ⇡˚

j q ´ ǔjip⇡ijq, 0
˘
.

Where ⇡ij “ p⇡i, ⇡jq is a profile and ⇡˚
ij “ p⇡˚

i , ⇡
˚
j q is a profile of deviations.

Then

L
� p⇡, ⇡˚; ǔq .“

ÿ

pi,jqPE
L

�
ijp⇡ij, ⇡˚

ij; ǔq.
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Algorithm 2 shows how to compute a subgame-stable constant-sum poly-

matrix decomposition via SGD. As input, the algorithm receives a game G, a

finite set of strategy profiles ⇧1, learning rate ⌘, number of training epochs T ,

hyperparameter � P r0, 1s and batch size B. First, we initialize ⇧ˆ as the set

of all match-ups amongst strategies in ⇧1.

We then repeat the following steps for each epoch. First, we compute a

best-response (for example, via sequence-form linear programming) to each

strategy ⇡1
i in ⇧1 in each subgame; the full process is shown in Algorithm 3.

After computing these best-responses for the current utility function of Ǧ,

we try to fit ǔ to be nearly CSP in the neighbourhood of ⇧ˆ and subgame

stable in the neighbourhood of ⇧1. Since ⇧ˆ is exponentially larger than ⇧1,

we partition it into batches, then use batch gradient descent2. We use the

following batch loss function, which computes the average values of L
� and

L
� over the batches, then weights the losses with �. Let ⇧b denote a batch of

strategy profiles from ⇧ˆ with size B, the overall loss function is

Lp⇧b,⇧1,⇧˚; ǔ, uq .“ �

B

ÿ

⇡P⇧b

L
�p⇡; ǔ, uq ` p1 ´ �q

|⇧1|
ÿ

⇡P⇧1

ÿ

⇡˚P⇧˚
L

�p⇡, ⇡˚; ǔq.

We take this loss and find its gradient with respect to ǔ, then update ǔ:

ǔ – ǔ ´ ⌘ ¨ rǔLp⇧b,⇧1,⇧˚; ǔ, uq.

We found that in practise the gradient can be quite large relative to ǔ, which

has the potential to destabilize optimization. This is alleviated by normalizing

the gradient by its l2 norm.

g – rǔLp⇧b,⇧1,⇧˚; ǔ, uq
ǔ – ǔ ´ ⌘ ¨ g

kgk2

2One could also partition ⇧1 into batches if it were too large. However, in this thesis, ⇧1

will always be relatively small.
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Algorithm 2 Compute Ǧ

Input: G, ⇧1, ⌘, T , �, B
Initialize ǔ to all 0
⇧ˆ – ë

iPN ⇧̂i

for t P 1...T do
⇧˚ – getBRs(Ǧ, ⇧1)
B – partition of ⇧ˆ into batches of size B
for ⇧b P B do
g – rǔLp⇧b,⇧1,⇧˚; ǔ, uq
ǔ – ǔ ´ ⌘ ¨ g

kgk2
end for

end for
{Lastly, output � and �}
� – max⇡P⇧ˆ |uip⇡q ´ ǔip⇡q|
� – max⇡P⇧1 maxi‰jPNˆN pǔijpBRijp⇡jq, ⇡jq ´ ǔijp⇡i, ⇡jqq
return ǔ, �, �

Algorithm 3 getBRs

Input: Ǧ, ⇧1

⇧˚
i – ? @i P N

for i ‰ j P N ˆ N do
for ⇡j P ⇧1

j do
compute ⇡˚

ij P argmax⇡1
iP⇧i

ǔijp⇡1
i, ⇡jq

⇧˚
i – ⇧˚

i Y t⇡˚
iju

end for
end for
return

ë
iPN ⇧˚

i
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Chapter 5

Experiments: Is Poker
Approximately Subgame Stable
Constant-Sum Polymatrix?

Self-play with regret minimization has been very successful in producing strong

strategies in multi-player Texas hold ’em. Could this be because these strate-

gies come from a subgame stable CSP part of Texas hold ’em?

Conjecture 5.0.1. Self-play with regret minimization performs well in multi-

player Texas hold ’em because “good” players (whether professional players

or strategies learned by self-play) play in a part of the game’s strategy space

that is close to a subgame stable CSP game for some low values of �, �.

Unfortunately, multi-player Texas hold’em is too large to analyse using the

algorithms outlined in this thesis. However, we instead analyse two smaller

poker games, called Kuhn Poker and Leduc Poker.

5.1 Kuhn Poker

Kuhn poker [32] was originally developed for two players but was extended to

a 3-player variant by Abou Risk and Szafron [1]. The game has 4 cards, with

each player receiving one privately (the remaining card is hidden, i.e. there

are no public cards), followed by one round of betting with a fixed bet size.

Players may pass and stay in the game if there is no outstanding bet, otherwise

they can only call or fold. Figure 5.1 shows one subtree of Kuhn poker. CFR
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was previously shown to generate approximate Nash equilibria in Kuhn poker

[1].

c

0, 1, 2

... ...
1

p b
2

p b

2

p b
3

p b

3

p b

3

p b

3

p b
1

p b

1

p b

1

p b
2

p b

2

p b

Figure 5.1: A partial subtree of Kuhn Poker. Chance (c) has dealt cards 0, 1, 2
to players 1, 2 and 3, respectively. Player 1 may either pass ppq or bet pbq
before play goes to player 2. We omit payo↵s at terminals for clarity.

5.1.1 Is Kuhn Poker Approximately CSP?

While Kuhn Poker is relatively small for an extensive-form game (each player

has 16 information sets in 3 player Kuhn Poker), this is still far too large for

a naive decomposition using the induced normal-form of Kuhn Poker, since

each player has 216 pure strategies and using methods such as LP would require

solving a linear program with « 3 ˚ p216q3 constraints. Instead, we analytically
find a lower bound for �.

Proposition 5.1.1. 3 player Kuhn Poker is at least 0.125-CSP.

Proof. Consider the following pure strategies:

1. ⇢b1: player 1 always bets.

2. ⇢b2: player 2 always bets.

3. ⇢p2: player 2 always passes.
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4. ⇢2Ñb
3 : player 3 bets if player 2 does, otherwise they pass.

5. ⇢p3: player 3 always passes.

Consider the following pure strategy profiles:

⇢1 “ p⇢b1, ⇢p2, ⇢p3q
⇢2 “ p⇢b1, ⇢b2, ⇢p3q
⇢3 “ p⇢b1, ⇢p2, ⇢2Ñb

3 q
⇢4 “ p⇢b1, ⇢b2, ⇢2Ñb

3 q

Then we have u1p⇢1q “ 1 since 1 wins the ante of every hand, giving them

a net winning of 1. Likewise u1p⇢3q “ 1 since both 2 and 3 will continue to

always pass.

u1p⇢2q “ 0.5. Since 3 always passes, and 1 and 2 always bet, the pot will

be 5, 3 from the ante and 2 from the bets of 1 and 2; thus the net winnings

for any player will be 3. 1 can win with one of cards 1, 2, 3. If they are

dealt a 3, they always win. If they are dealt a 2, they win if 2 does not

have a 3 which has probability 1 ´ P p2 has a 3 | 1 has a 2q “ 1 ´ 1
3 “ 2

3 . If

they are dealt a 1, they win if 2 does not have 2 or 3 which has probability

1 ´ P p2 has a 2 or 3 | 1 has a 1q “ 1 ´ 2
3 “ 1

3 . Altogether, 1 has a probability

of winning equal to 1
4 ` 1

4 ¨ 2
3 ` 1

4 ¨ 1
3 “ 1

2 . Thus u1p⇢2q “ 1
2 ¨ 3 ` 1

2 ¨ ´2 “ 0.5

Lastly, u1p⇢4q “ 0. Since all players always bet (recall that 3 bets if 2

does), the pot will be 6 and net winnings are 4. 1 can win by either holding a

3 or 2. They hold a 3 with probability 1
4 . 1 wins if they hold a 2 if neither 2

nor 3 hold a 3, which happens with probability 2
3 ¨ 1

2 . Thus 1’s total probability

of winning is 1
4 ` 1

4 ¨ 2
3 ¨ 1

2 “ 1
3 so u1p⇢4q “ 1

3 ¨ 4 ` 2
3 ¨ ´2 “ 0.

We then solve the following LP to obtain the lower bound on �.

min
ǔijp¨q,�,cij

�

uip⇢q ´
ÿ

jP´i

ǔijp⇢i, ⇢jq § � @i P N, ⇢ P t⇢1, ⇢2, ⇢3, ⇢4u

uip⇢q ´
ÿ

jP´i

ǔijp⇢i, ⇢jq • ´� @i P N, ⇢ P t⇢1, ⇢2, ⇢3, ⇢4u

ǔijp⇢i, ⇢jq ` ǔjip⇢i, ⇢jq “ cij @i ‰ j P N, ⇢ P t⇢1, ⇢2, ⇢3, ⇢4u
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We obtain a solution of � “ 0.125.

5.1.2 CFR Converges to a Nearly SS-CSP Neighbour-
hood in Kuhn Poker

Perhaps the part of the game that “good” agents (i.e. skilled human players

or no-regret learning algorithms) play in is closer to an SS-CSP part of the

game than Kuhn poker is overall. While we cannot exhaustively check whether

skilled human players or all no-regret learning algorithms play in a SS-CSP

neighbourhood of the strategy space, we can generate a set of strategies using

self-play as a proxy and test this claim empirically.

We use CFR to compute a set of approximate marginal strategies.1 CFR is

a deterministic algorithm, so we use di↵erent random initializations of CFR’s

initial strategy in order to generate a set of marginal strategies. We train

random initializations of CFR for 100,000 iterations.

Do the CFR strategies lie in a near subgame-stable CSP neighbourhood?

We ran Algorithm 2 30 times to answer this question. Each run used its own

set of 30 CFR-generated strategies (i.e. we trained CFR 900 times in total).

Let ⇧pCFRqj denote the CFR-generated strategy profiles for the jth run of

Algorithm 2 and

⇧ˆpCFRqj “
°

iPN
⇧ipCFRqj

to denote the set of all match-ups between these 30 strategy profiles. Given

that the size of each ⇧pCFRqj is 30, there are 303 “ 27000 strategy profiles in

each ⇧ˆpCFRqj.
First, we measure the diversity of strategy profiles used in each run of

Algorithm 2. We do this for each ⇧pCFRqj by taking each pair of strategy

profiles ⇡, ⇡1 P ⇧pCFRqj and computing the total variation between these two

probability distributions induced over the terminal histories of Kuhn poker.

We denote the maximum total variation for run j as TVj, where

TVj
.“ max

⇡,⇡1P⇧pCFRqj

1

2

ÿ

zPZ
|ppz, ⇡q ´ ppz, ⇡1q|.

1We use the OpenSpiel implementation [34].
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TVj is constrained to be between 0 and 1, where 0 means the two distributions

are the same and 1 means they are maximally di↵erent. Figure 5.2 shows the

maximum total variation between any two of the strategy profiles used in each

run.

Figure 5.2: The maximum total variation for each ⇧pCFRqj used in each
run of Algorithm 2 in Kuhn Poker. Di↵erent runs are shown on the x-
axis, and the corresponding TVj for run j is shown with the bars A value of
0 indicates minimal diversity and 1 means maximal diversity. The minimum,
mean, maximum and standard error across runs are 0.29, 0.32, 0.39 and 0.0043,
respectively.

We used Algorithm 2 with � “ 0.5, B “ 30, T “ 1000 and a learning rate

schedule: ⌘ is initialized to 2´6, then divided by half every 5 epochs until it

reaches 2´17. The values of ⌘ were chosen manually to encourage convergence

and � was chosen with a coarse hyperparameter sweep.

We ran Algorithm 2 a total of 30 times. The jth run will compute �j and

�j such that Kuhn Poker is �j-CSP in the neighbourhood of ⇧ˆpCFRqj and

�j-subgame stable in the neighbourhood of ⇧pCFRqj. Figure 5.3 shows our

results: we found that across the 30 runs, Algorithm 2 shows that Kuhn Poker

was at most 0.0044-CSP and 0.00025-subgame stable across the runs.

How well do these values bound vulnerability with respect to other CFR-

learned strategies? For each of the runs, we computed the vulnerability with

respect to the strategies of that run, ⇧pCFRqj, by evaluating each strategy
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(a) (b)

Figure 5.3: Boxplots showing the values of �j and �j for each of the 30 runs
of Algorithm 2 in Kuhn Poker. Figure 5.3a shows the values of �j, with the
minimum, mean, maximum and standard error being 0.0026, 0.0037, 0.0044 ,
and 7.03e ´ 5, respectively. Figure 5.3b shows the values of �j, with the min-
imum, mean, maximum and standard error being 6.12e ´ 5, 0.00015, 0.00025
and 1.06e ´ 05, respectively.

against each other and taking the maximum vulnerability:

Vulj
.“ max

iPN
max

⇡P⇧pCFRqj
Vuli

`
⇡,⇧ˆ

´ipCFRqj
˘
. (5.1)

Figure 5.4 shows, for each run, the bounds implied by Proposition 4.2.6

and the values of �j and �j and the true vulnerability. We see that the bounds

do a good job of upper bounding the vulnerability. Across the runs, the

bounds are at minimum 1.06 times the vulnerability, at maximum 1.92 times

the vulnerability and on average 1.40 times as large, with a standard error of

0.041.

5.1.3 Leduc Poker

Leduc poker was also extended to a 3-player variant by Abou Risk and Szafron

[1]. The game has 8 cards with 4 ranks and 2 suits. At the start, each

player antes 1 and receives one card privately before an initial round of betting

commences. A public card is then revealed before the second round of betting.

The bet values in the first and second round are 2 and 4, respectively. Leduc

poker is substantially larger than Kuhn poker; Kuhn poker has a total of 48

information sets while Leduc poker has 25800.
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Figure 5.4: Bounds on vulnerability compared to true vulnerability in Kuhn
Poker for each run. Each of the 30 runs are shown on the x-axis. For each
run j, we compute the bounds determined by Proposition 4.2.6, which are
pn ´ 1q�j ` 2�j “ 2p�j ` �jq. These value are shown in orange. The blue
bars are the maximum vulnerability in each run, computed using (5.1). The
ordering of bars in this plot matches the ordering of bars in Figure 5.2.

5.1.4 CFR+ Converges to a Nearly SS-CSP Neighbour-
hood in Leduc Poker

We repeated the above experiments with Leduc poker using CFR+ as the self-

play algorithm rather than CFR, since Leduc poker is substantially larger than

Kuhn poker and CFR+ converges faster than CFR. Leduc poker is again too

large to fully project into the space of SS-CSP games for a reasonable value of

�, but we can still see if CFR+ plays in an SS-CSP neighbourhood of Leduc

Poker.

We again ran Algorithm 2 30 times, each time with its own set of 30

strategy profiles. These 900 strategy profiles are generated with CFR+ in self-

play for 1000 iterations with random initializations. Interestingly, we found

that CFR+ converges to approximate Nash equilibria in Leduc poker, with a

maximum value of ✏ equal to 0.013 after 1000 iterations. As we will show in

Section 5.1.5, CFR also empirically produces approximate Nash equilibria in

Leduc poker.

Let ⇧pCFR`qj denote the set of CFR`-learned strategy profiles for run
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j; and ⇧ˆpCFR`qj denote the set of all match-ups between these 30 strategy

profiles. Figure 5.5 shows diversity of ⇧pCFR`qj for each of the 30 runs,

measured with maximum total variation.

Figure 5.5: The maximum total variation for each ⇧pCFRqj used in di↵erent
runs of Algorithm 2 in Leduc Poker. Di↵erent runs are shown on the x-
axis, and the corresponding TVj for run j is shown with the bars. A value of
0 indicates minimal diversity and 1 means maximal diversity. The minimum,
mean, maximum and standard error across runs are 0.21, 0.22, 0.26 and 0.0016,
respectively.

We used the same parameters for each run of Algorithm 2: � “ 0.5, B “
30, T “ 200. We used a learning rate schedule where the learning rate ⌘

begins at 2´6, then halves every 5 epochs until reaching 2´17. Our results are

shown in Figure 5.6. We see that across the 30 runs of Algorithm 2, Leduc

poker is at most 0.021-CSP in the neighbourhood of ⇧ˆpCFR`qj and 0.009-

subgame stable in the neighbourhood of ⇧pCFR`qj. Figure 5.7 shows the

Vulj for each of the runs compared to the bounds on vulnerability given by

Proposition 4.2.6. We see that the bounds are between 1.89 and 3.05 times

the actual vulnerability, and are on average 2.51 times larger with a standard

error of 0.049.
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Figure 5.6: Boxplots showing the values of �j and �j for each of the 30 runs
of Algorithm 2 in Leduc Poker. Figure 5.3a shows the values of �j, with the
minimum, mean, maximum and standard error being 0.006, 0.009, 0.021 and
0.00046, respectively. Figure 5.3b shows the values of �j, with the minimum,
mean, maximum and standard error being 0.003, 0.004, 0.009 and 0.00016,
respectively.

5.1.5 CFR Finds Approximate Nash in Leduc Poker

It was previously believed that CFR does not compute an ✏-Nash equilibrium

on 3-player Leduc for any reasonable value of ✏. Previous work found that

CFR computed a 0.130-Nash equilibrium after 108 iterations [1]. We saw

in the previous section that CFR` computes approximate Nash equilibria in

Leduc poker—does this hold for CFR as well?

We ran 30 runs of CFR in self-play for 10,000 iterations and found that

all of our strategies converged to an approximate Nash equilibrium with the

maximum ✏ “ 0.017 after only 104 iterations. Figure 5.8b shows the shows the

maximum deviation incentive

✏ “ max
⇡1
i

uip⇡1
i, ⇡´iq ´ uip⇡q

for each of the CFR strategies ⇡ computed by CFR in Leduc Poker. Each

column is for one of the players and each point is one of the random seeds.

We see the maximum value of ✏ after 10,000 iterations is 0.017. Figure 5.8a

shows the maximum deviation incentive ✏ over 10,000 iterations. We average

learning curves over 30 random seeds.
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Figure 5.7: Bounds on vulnerability compared to true vulnerability in Leduc
Poker for each run. Each of the 30 runs are shown on the x-axis. For each
run j, we compute the bounds determined by Proposition 4.2.6, which are
pn ´ 1q�j ` 2�j “ 2p�j ` �jq. These value are shown in orange. The blue
bars are the maximum vulnerability in each run, computed using (5.1). The
ordering of bars in this plot matches the ordering of bars in Figure 5.5. The
rightmost run had both the highest vulnerability and highest diversity.

5.2 Vulnerability in a Cooperative Game

In games with low values of � and �, self-play will perform well against new op-

ponents; however is the converse also true? Do games where self-play performs

poorly against new opponents have high values of � and �?

Self-play has been known to perform poorly against new agents in games

with highly specialized conventions [27]. In training, a self-play algorithm may

learn conventions that are incompatible with the conventions an independent

instance of self-play may have learned. Much of this has to do with symmetries

in the game [27].

Hanabi is one such game [5]. Hanabi is a cooperative game where players

cannot see their own hands, but can see all other players hands; therefore

players must give each other hints on how to act.

We show that a small version of the game of Hanabi—called Tiny Hanabi

in the Openspiel framework [34]—is not close to the space of CSP games and

self-play is quite vulnerable. Figure 5.9 shows this game. Chance deals one
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(a)

(b)

Figure 5.8: CFR empirically computes Nash Equilibria in Leduc Poker. (a)
shows learning curves over iterations for each of the players. We measure ✏
by finding a best-response with sequence-form linear programming every 1000
iterations. We show each of the individual instances of CFR with di↵erent
random initializations in light-coloured lines and the average across seeds in
bold. (b) shows the distribution of ✏ at iteration 10,000.

of two hands, A or B with equal probability. Only player 1 may observe this

hand and must signal to other players through their actions, �1 and �2, which

hand chance has dealt. If both players 2 and 3 then correctly choose their

actions to match chance’s deal (pa, aq for A or pb, bq for B) then all players get

payo↵ equal to 1, otherwise all players get 0.

�1 and �2 can come to mean di↵erent things, �1 could signal to 2 and 3

to play a, or b. Self-play may learn either of these conventions. However, if a

player trained in self-play encounters a set of players trained in an independent

instance of self-play, they may not have compatible conventions.

This is indeed what happens when we train CFR on Tiny Hanabi in Fig-
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Figure 5.9: Tiny Hanabi. We omit payo↵s of 0 at terminals.

ure 5.9. We trained 30 runs in self-play with di↵erent random initializations

for 10,000 iterations. Some of these runs converged to each convention and

when played against each other miscoordinated. We found

max
iPN

max
⇡P⇧pCFRq

Vuli
`
⇡,⇧ˆ

´ipCFRq
˘

« 1,

as expected.

Tiny Hanabi is small enough that we can use LP3 (from Section 3.5) to

decompose it into an approximate SS-CSP game. We found � “ 0.5 and

� « 0, meaning the true vulnerability matched what our bounds predicted

since pn ´ 1q� ` 2� « 1. Why is � « 0? We found that this was because our

algorithm was setting the payo↵s to equal to 0.50 for all terminal histories,

which is trivially polymatrix.

69



Chapter 6

Strategic Equivalence to
Polymatrix Games

In their seminal paper, Moulin and Vial [46] show that games which are strate-

gically equivalent to a two-player zero-sum game share their equilibria, thus im-

plying exchangeability. However, strategic equivalence to an n-player (n ° 3)

zero-sum game fails to guarantee exchangeability. Moulin and Vial leave unan-

swered what the appropriate generalization to n-player games should be.

In this chapter, we show that games which are strategically equivalent to

CSP and SS-CSP games are a generalization to n-player games that preserve

the nice properties of strategically two-player zero-sum games. First, we gen-

eralize the algebraic characterization of strategic equivalence from Moulin and

Vial [46] to n-player games. Leveraging this result, we show three additional

results. First, that the set of CCE are preserved between strategically equiv-

alent games; second, that CCE of strategically approximate CSP games are

approximately Nash equilibria; third, that we can bound the exchangeability

of the set of marginal CCE strategies if a game is strategically equivalent to a

SS-CSP game.

6.1 Strategic Equivalence

We begin with the definition of strategic equivalence from Moulin and Vial

[46]. Their original definition was intended for 2 player games, but it easily

generalizes to n-players.
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Definition 6.1.1 (Strategic Equivalence). G is strategically equivalent (SE)

to G1 for player i if

uips1
i, s´iq • uipsi, s´iq ñ u1

ips1
i, s´iq • u1

ipsi, s´iq @si, s1
i P Si, s´i P S´i.

Two strategically equivalent games share the same set of Nash equilibria—

this is an immediate corollary of the definition. Moreover, if a game is strate-

gically equivalent to a two-player zero-sum game, then its equilibria are ex-

changeable since the equilibria of the two-player zero-sum game are.

We will give an algebraic characterization of strategic equivalence later on.

This is accomplished by showing that a stronger notion of strategic equivalence,

called correlated strategic equivalence (CSE), holds if and only if strategic

equivalence holds. In CSE, ´i may correlate their strategies; this correlation

will become useful in showing the algebraic characterization.

Definition 6.1.2 (Correlated strategic equivalence). G is correlated strate-

gically equivalent (CSE) to G1 for player i if @µ´i P �pP´iq, si, s1
i P Si we

have

E⇢´i„µ´iruips1
i, ⇢´iqs • E⇢´i„µ´iruipsi, ⇢´iqs

ñ
E⇢´i„µ´iru1

ips1
i, ⇢´iqs • E⇢´i„µ´iru1

ipsi, ⇢´iqs.

If a game is SE (or CSE) for all players to another game, we say these two

games are simply SE (or CSE).

Before moving forward, it is useful to express a game in matrix form. Let

Ui be a |Pi| ˆ |P´i| payo↵ matrix of player i. A strategy for i is any vector

x P R|Pi|
•0 such that

∞
jpxqj “ 1. A (potentially) correlated strategy profile for

´i is any vector y P R|P´i|
•0 such that

∞
jpyqj “ 1. Given x and y, the payo↵ to

x is then xUiy.

The following lemma proves the equivalence between SE and CSE.

Lemma 6.1.3. G and G1
are SE for player i if and only they are CSE for

player i.
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Proof. If G and G1 are CSE for i, then they are clearly SE for i, since any

s´i P �pP´iq. Next suppose that G and G1 are SE for i, we show this implies

G and G1 are CSE for i. Assume for the sake of contradiction that G and G1

are SE for i and G and G1 are not CSE for i. Then, D, µ´i P �pP´iq, si, s1
i P Si

such that

E⇢´i„µ´iruips1
i, ⇢´iqs • E⇢´i„µ´iruipsi, ⇢´iqs

and

E⇢´i„µ´iru1
ips1

i, ⇢´iqs † E⇢´i„µ´iru1
ipsi, ⇢´iqs.

We may express these two equations in matrix-form as follows:

x2Uiy • x1Uiy (6.1)

x2U 1
iy † x1U 1

iy, (6.2)

where x1 and x2 are the vectors corresponding to s and s1, respectively and y

is vector corresponding to µ´i. Rearranging, we have:

x2Uiy ´ x1Uiy • 0 (6.3)

x2U 1
iy ´ x1U 1

iy † 0. (6.4)

Then,

px2 ´ x1qUiy • 0 (6.5)

px2 ´ x1qU 1
iy † 0. (6.6)

Let

a
.“ px2 ´ x1qUi P R|P´i|

b
.“ px2 ´ x1qU 1

i P R|P´i|,

Then (6.5) and (6.6) may be written as:

aJy • 0 (6.7)

bJy † 0. (6.8)
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Next, consider the following two statements:

aJy • 0 s.t. rbJy † 0s ^ ry • 0s (6.9)

Dc • 0 s.t. ac § b. (6.10)

(6.7) and (6.8) imply (6.9) holds true. By Farkas’ lemma (6.10) cannot hold,

which means @c • 0, we have ac ° b. Consider each element paqj, there are 3

cases.

1. paqj ° 0

2. paqj † 0

3. paqj “ 0

1. if paqj ° 0, then pbqj † 0, otherwise we could find a c • 0 such that

cpaqj § pbqj.
2. Suppose first that paqj † 0 and pbqj • 0, then taking c “ 0 would give

cpaqj § pbqj, a contradiction. Likewise if paqj † 0 and pbqj † 0, then we could

find a c to make cpaqj § pbqj hold true.

3. if paqj “ 0, then we must have pbqj † 0.

Thus, we have a • 0 and b † 0. Recalling the definition of a and b, we

have:

px2 ´ x1qUi • 0

px2 ´ x1qU 1
i † 0

Take any standard basis vector ej of R|P´i|. ej corresponds to ´i playing a

pure strategy profile ⇢j´i. Then,

px2 ´ x1qUiej • 0

px2 ´ x1qU 1
iej † 0.

Rearranging,

x2Uiej • x1Uiej

x2U 1
iej † x1U 1

iej
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Which contradicts the assumption that G and G1 are SE, since we have found

a strategy of ´i, ⇢j´i where s
1
i weakly preferred in G, yet si is strictly preferred

in G1.

Thus, CSE implies SE and SE implies CSE. This means that if two n-player

games are SE for i, they are also CSE for i. This lets us generalize Theorem

4 of Moulin and Vial [46] to derive an algebraic characterization of strategic

equivalence for n-player games. The algebraic characterization falls into two

categories: equivalently trivial and algebraic equivalence. We give these two

definitions next.

Let Ûi be the set of matrices of size |Pi| ˆ |P´i| such that each element

Ûi P Ûi is a matrix with identical entries in each column.

Definition 6.1.4 (Equivalently trivial). G and G1 are equivalently trivial for

player i if there exists ↵ P R|Pi| and �1, �2 P R|P´i|
•0 such that Ui “ ↵�J

1 ` Û1

and U 1
i “ ↵�J

2 ` Û2 where Û1, Û2 P Ûi and p�1qj “ 0 ñ p�2qj “ 0

Definition 6.1.5 (Algebraically equivalent.). We say G and G1 are alge-

braically equivalent for player i if D�i ° 0 and Ûi P Ûi such that

Ui “ �iU
1
i ` Ûi, (6.11)

In strategic form, (6.11) is given as

uip⇢q “ �iu
1
ip⇢q ` ûip⇢´iq @⇢ P P, (6.12)

The following theorem, based on Theorem 4 of Moulin and Vial [46], uses

equivalent triviality and algebraic equivalence to characterize strategic equiva-

lence. The idea is that SE implies CSE, which means we can take two n-player

games which are SE and produce two 2 player games which are CSE, and then

apply the original two-player theorem of Moulin and Vial [46]. The full proof

is given in Appendix C.

Theorem 6.1.6. G and G1
are SE for player i if and only if G and G1

are

equivalently trivial for player i, or G and G1
are algebraically equivalent for

player i.
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6.2 CCE Are Preserved by Strategic Equiva-
lence

We know from the definition of SE that if two games are SE, they share a set

of Nash equilibria. Does the same hold for CCE? The answer is yes—our next

result shows that any CCE of a game G is also a CCE of G1 if G and G1 are

SE.

Theorem 6.2.1. Let G and G1
be SE, then any CCE of G is a CCE of G1

.

Proof. Consider player i P N .

Case 1. Consider first if G and G1 are algebraically trivial. Writing out

the definition of CCE, we have:

E⇢„µ ruip⇢1
i, ⇢´iqs ´ E⇢„µ ruip⇢qs § 0 @⇢1

i P Pi. (6.13)

By Theorem C.0.6 we have a scalar �i ° 0 s.t.

E⇢„µ r�iu1
ip⇢1

i, ⇢´iq ` ûip⇢´iqs ´ E⇢„µ r�iu1
ip⇢q ` ûip⇢´iqs § 0 @⇢1

i P Pi.

By linearity of expectation, we have

�iE⇢„µ ru1
ip⇢1

i, ⇢´iqs ` E⇢„µ rûip⇢´iqs
´ �iE⇢„µ ru1

ip⇢qs ´ E⇢„µ rûip⇢´iqs § 0 @⇢1
i P Pi.

Then, cancelling out like terms:

�iE⇢„µ ru1
ips1

i, ⇢´iqs ´ �iE⇢„µ ru1
ip⇢qs § 0 @si P Si.

Which implies

E⇢„µ ru1
ips1

i, ⇢´iqs ´ E⇢„µ ru1
ip⇢qs § 0

�i
“ 0 @si P Si.

Case 2. Next, consider the case whereG and G1 are equivalently trivial. Let

P˚
i be the set of dominant pure strategies in both G and G1. The fact that P˚

i is

non-empty and the set of dominant pure strategies is the same in both G and

G1 follows from the fact that all columns in Ui and U 1
i are equal to ↵ scaled by
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some non-negative number. Additionally, note that uip⇢˚
i , ⇢´iq “ uip⇢˚˚

i , ⇢´iq
and u1

ip⇢˚
i , ⇢´iq “ u1

ip⇢˚˚
i , ⇢´iq for any two ⇢˚˚

i , ⇢˚
i P P˚

i .

For any distribution over pure strategies µ1, we have

E⇢„µ1 ruip⇢˚
i , ⇢´iqs • E⇢„µ1 ruip⇢qs @⇢˚

i P P˚
i (6.14)

Since

E⇢„µ1 ruip⇢qs “
ÿ

⇢PP
µp⇢quip⇢q

§
ÿ

⇢PP
µp⇢quip⇢˚

i , ⇢´iq

“ E⇢„µ1 ruip⇢˚
i , ⇢´iqs

Combining (6.14) and (6.13), we have

E⇢„µ ruip⇢˚
i , ⇢´iqs “ E⇢„µ ruip⇢qs @⇢˚

i P P˚
i (6.15)

Note that (6.15) holds only if µ only puts non-zero probability on strategies

profiles where ⇢i P P˚
i . Let P

˚ be the set of pure strategy profiles where ⇢i P P˚
i .

Assume for the sake of contradiction that D⇢ R P˚ such that µp⇢q ° 0. Then

E⇢„µ ruip⇢qs “
ÿ

⇢˚PP˚
µp⇢quip⇢˚

i , ⇢´iq `
ÿ

⇢PPzP˚
µp⇢quip⇢i, ⇢´iq (6.16)

†
ÿ

⇢˚PP˚
µp⇢quip⇢˚

i , ⇢´iq `
ÿ

⇢PPzP˚
µp⇢quip⇢˚

i , ⇢´iq (6.17)

since D⇢ P PzP˚ : µp⇢q ° 0. Continuing from (6.17),

“
ÿ

⇢PP
µp⇢quip⇢˚

i , ⇢´iq

“ E⇢„µ ruip⇢˚
i , ⇢´iqs

This gives us the following inequality:

E⇢„µ ruip⇢qs † E⇢„µ ruip⇢˚
i , ⇢´iqs

which contradicts (6.15). We conclude µ only puts positive probability on

elements of P˚. Then in G1 we have that for any deviation ⇢1
i

E⇢„µ ruip⇢1
i, ⇢´iqs ´ E⇢„µ ruip⇢qs § E⇢„µ ruip⇢˚

i , ⇢´iqs ´ E⇢„µ ruip⇢qs @⇢˚
i P P˚

i
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Since ⇢˚
i P P˚

i are dominant pure strategies in G1. Then, for any ⇢˚
i P P˚

i ,

E⇢„µ ruip⇢˚
i , ⇢´iqs ´ E⇢„µ ruip⇢qs

“E⇢„µ r↵p⇢˚
i q�1p⇢´iq ` ûp⇢´iqs ´ E⇢„µ r↵p⇢iq�1p⇢´iq ` ûp⇢´iqs

“E⇢„µ r↵p⇢˚
i q�1p⇢´iqs ´ E⇢„µ r↵p⇢iq�1p⇢´iqs

But µ only puts positive probability on elements of P˚, which all have the

same corresponding value of ↵. This means for any deviation ⇢1
i,

E⇢„µ ruip⇢1
i, ⇢´iqs ´ E⇢„µ ruip⇢qs §E⇢„µ r↵p⇢˚

i q�1p⇢´iqs ´ E⇢„µ r↵p⇢˚
i q�1p⇢´iqs

“0

Thus µ is also a CCE of G1.

Thus, if two games are strategically equivalent, then they also share the

same set of CCE.

6.3 Strategic Equivalence to CSP Games

Not all games have an exact CSP decomposition (i.e. are 0-CSP), yet some of

these games may nonetheless behave much like CSP games. We next consider

this class of games—games that are SE to CSP and SS-CSP games. Unlike

Cai and Daskalakis [12], who study polymatrix games where each subgame is

strictly competitive1, we consider games which are strategically equivalent to

CSP games. This distinction is important: computing a Nash equilibrium of

Cai and Daskalakis’ category of games is PPAD complete, whereas in games

that are SE to CSP games, they may be computed in polynomial time. This

is because games that are SE to CSP games share the CSP games’ equilibria,

which may be computed in polynomial time [11].

We first show that the set of games which are SE to a CSP game yet are

not CSP themselves is non-empty, then give guarantees for these games.

1Strictly competitive games [3] are games whose payo↵ matrices are a�ne transforma-
tions of two-player zero-sum games [2]. Strictly competitive games are a subset of games
that are strategically equivalent to two-player zero-sum games [46]
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Proposition 6.3.1. There are games which are SE to CSP games, that are

not CSP themselves.

Proof. Consider the modified version of Matching Pennies, shown in Fig-

ure 6.1. A matrix player M chooses a matrix for row and column to play.

The matrix player receives payo↵ 0 in all outcomes, we omit them from Fig-

ure 6.1. This game is not a polymatrix game, since row’s utility depend on

a non-additive function of M and column’s strategies. However, this game is

strategically equivalent to Matching Pennies with a dummy player, which is a

CSP game.

H T
H 1, �1 �1, 1
T �1, 1 1, �1

M

L R
T 1 � c, �1 �1, 1
B �1 � c, 1 1, �1

Figure 6.1: Modified Matching Pennies, a game that is strategically equivalent
to a constant-sum polymatrix game, yet is itself not a constant-sum polymatrix
game.

In games that are SE to approximate CSP games, we can establish guaran-

tees on self-play by showing properties of the marginal strategies of CCE. First,

we show that in games that are SE to a �-CSP game, the marginals of CCE

are approximate Nash equilibria, with the level of approximation depending

on �. This result generalizes Proposition 3.4.2 to games that are merely SE

to a �-CSP game, rather than being �-CSP themselves. We introduce � once

more to allow these results to apply to any game. Note that a game G is SE

to a CSP game if � “ 0.

Theorem 6.3.2. If G and G1
are SE for player i and G1

is �-CSP, then for

any marginal strategy profile sµ of a CCE of G, i can gain at most 2pn` 1q� 
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utility in G by deviating, where  is a constant defined by

 “

$
’&

’%

�i if G and G1
are algebraically equivalent

maxj:p�qj‰0
p�qj
p�1qj if G and G1

are equivalently trivial and � ‰ 0

0 otherwise

Proof. By Theorem 6.2.1, any CCE of G is a CCE of G1.

Case 1. Consider first the case where G and G1 are algebraically equivalent.

Proposition 3.4.2 implies the marginal strategy profile sµ is a 2pn ` 1q�-Nash
of G1 since G1 is a �-CSP game:

u1
ips1

i, s
µ
´iq ´ u1

ipsµq § 2pn ` 1q� @s1
i P Si. (6.18)

Since G1 is NT-SE to G, we have
ˆ

1

�i
uips1

i, s
µ
´iq ´ ûipsµ´iq

˙
´

ˆ
1

�i
uipsµq ´ ûipsµ´iq

˙
§ 2pn ` 1q� @s1

i P Si.

Since uipsq “ �iu1
ipsq ` ûipsq ùñ u1

ipsq “ 1
�i
uipsq ´ ûipsq. By cancelling out

like terms, this gives us

1

�i
uips1

i, s
µ
´iq ´ 1

�i
uipsµq § 2pn ` 1q� @s1

i P Si,

and finally,

uips1
i, s

µ
´iq ´ uipsµq § 2pn ` 1q��i @s1

i P Si.

Case 2. Now consider if G and G1 are equivalently trivial. We proceed with

the matrix representation Let xµ be the vector form of i’s marginal strategy

and yµ be ´i’s marginal strategy profile. Then we may express (6.18) as

xJU 1
iy

µ ´ xµJU 1
iy

µ § 2pn ` 1q� @x P Xi (6.19)

ùñ pxJ↵qp� 1Jyµq ´ pxµJ↵qp� 1Jyµq § 2pn ` 1q� @x P Xi (6.20)

Recall that p�qj “ 0 ñ p�1qj “ 0, which means if � “ 0 then �1 “ 0.

We consider 3 cases: (1) � “ �1 “ 0, (2) �, �1 ‰ 0 and �Jyµ “ 0 and (3)

�, �1 ‰ 0 and �Jyµ ° 0.
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In case (1), clearly i has no incentive to deviate since

pxJ↵qp�Jyµq ´ pxµJ↵qp�Jyµq “ pxJ↵q0 ´ pxµJ↵q0 “ 0 @x P Xi

In case (2), yµ only has support on 0 entries in �, �1 since �Jyµ • 0. Let

 
.“ maxj:p�qj‰0

p�qj
p�1qj be the maximum ratio between the non-zero elements of

� and �1. We know this ratio is well-defined since we are not in case (1). Then,

pxJ↵qp�Jyµq ´ pxµJ↵qp�Jyµq “ pxJ↵q0 ´ pxµJ↵q0 “ 0 § 2pn ` 1q� @x P Xi

For case (3) we may multiply the left side of (6.20) by p�Jyµq
p�Jyµq , giving us

p�Jyµq
p�Jyµq

`
pxJ↵qp�1Jyµq ´ pxµJ↵qp�1Jyµq

˘
§ 2pn ` 1q� @x P Xi

Rearranging, we get

pxJ↵qp�Jyµq ´ pxµJ↵qp�Jyµq § 2pn ` 1q�p�Jyµq
�1Jyµ

@x P Xi

§ 2pn ` 1q� @x P Xi

where again  
.“ maxj:p�qj‰0

p�qj
p�1qj is the maximum ratio between the non-zero

elements of � and �1.

Summarizing, if � “ �1 “ 0, set  
.“ 0 otherwise let  

.“ maxj:p�qj‰0
p�qj
p�1qj .

Then i has at most 2pn ` 1q� incentive to deviate from sµ. Clearly in case

(2) our bounds are not tight.

Thus, in games are the SE to �-CSP games, the marginals of CCE are

approximate Nash equilibria, with the level of approximation depending on �.

This means self-play will produce approximate Nash equilibria in these games.

6.3.1 Strategic Equivalence to SS-CSP Games

In Chapter 3 we saw that SS-CSP games have both exchangeability and vul-

nerability guarantees. What can be said for games that are SE to a SS-CSP

game? It turns out we can give exchangeability guarantees, but not vulner-

ability guarantees. In fact, we do not even have vulnerability guarantees for

games that are SE to two-player zero-sum games (a subset of strategically

SS-CSP games). Consider the two-player zero-sum game in Figure 6.2a and a
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game that is strategically equivalent to it in Figure 6.2b. Since they are SE,

they have the same set of Nash equilibria; thus pT,Rq is a Nash equilibrium

of both games. However, in Figure 6.2b row can lose c utility if the column

player deviates to L.

L R
T 0, 0 0, 0
B 1, �1 �1, 1

(a)

L R
T �c, 0 0, 0
B 1 � c, �1 �1, 1

(b)

Figure 6.2: Two games that are strategically equivalent: (a) is a two-player
zero-sum game and (b) is a strategically equilvant game. pT,Rq is a Nash
equilibrium of both games, yet in (b) it has vulnerability c for the row player.

Additionally, not all equilibria of strategically two-player zero-sum games

have the same value. Consider the game “Matching Pennies with Opt-Out”,

shown in Figure 6.3a. This game is identical to Matching Pennies except each

player can now choose an opt-out action O, where both players get payo↵ of

0. Note that if both players uniformly randomize between H and T , this is a

Nash equilibrium, as is pO,Oq. Matching Pennies with Opt-Out is strategically

equivalent to the game show in 6.3b, yet the two aforementioned equilibria

have di↵erent values for row in the second game.

H T O
H 1, �1 �1, 1 0, 0
T �1, 1 1, �1 0, 0
O 0, 0 0, 0 0, 0

(a)

H T O
H 1, �1 �1, 1 c, 0
T �1, 1 1, �1 c, 0
O 0, 0 0, 0 c, 0

(b)

Figure 6.3: Not all Nash equilibria of strategically two-player zero-sum games
have the same value. The game in (b) is strategically equivalent to the game
in (a), a two-player zero-sum game, but has two Nash equilibria with di↵erent
values for row.

Fortunately, we can still establish guarantees on exchangeability in games

that are SE to a SS-CSP game.

Proposition 6.3.3. If G is SE for player i to a p0, �q-SS-CSP game Ǧ, then

for any combination of marginal strategies from CCE of G, i can gain at most

81



|Ei|� utility in G by deviating, where  is a constant defined by

 “

$
’&

’%

�i if G and G1
are algebraically equivalent

maxj:p�qj‰0
p�qj
p�1qj if G and G1

are equivalently trivial and � ‰ 0

0 otherwise

Proof. The proof is similar to Theorem 6.3.2. First we consider the case where

G and G1 are algebraically equivalent.

Case 1. Let s be a strategy profile such that @i P N , si is the marginal

strategy from some CCE µi of G. Note that each marginal strategy profile sµ
i

is a Nash equilibrium of both G and G1 since G is SE to a G1, a 0-CSP game,

so we may apply Theorem 6.3.2.

By p0, �q-subgame stability, each psi, sjq is a �-Nash of Ǧij, a subgame of

Ǧ, since they come from (potentially di↵erent) marginal strategy profiles that

are both Nash equilibria. This gives us

ǔips1
i, s´iq ´ ǔipsi, s´iq § |Ei|� @s1

i P Si

ùñ
ˆ

1

�i
uips1

i, s´iq ´ ûips´iq
˙

´
ˆ

1

�i
uipsi, s´iq ´ ûips´iq

˙
§ |Ei|� @s1

i P Si

ùñ
ˆ

1

�i
uips1

i, s´iq
˙

´
ˆ

1

�i
uipsi, s´iq

˙
§ |Ei|� @s1

i P Si

ùñ uips1
i, s´iq ´ uipsi, s´iq § |Ei|��i @s1

i P Si.

Case 2. Next, we consider the case where G and G1 are equivalently trivial.

We again use the matrix form, let x, y be the vector-form strategy and strategy

profile for si and s´i, respectively. Since G1 is subgame stable, we have

x1JU 1
iy ´ xU 1

iy § |Ei|� @x1 P Xi (6.21)

px1J↵qp� 1Jyq ´ pxJ↵qp� 1Jyq § |Ei|� @x1 P Xi (6.22)

We again consider 3 cases: (1) � “ �1 “ 0, (2) �, �1 ‰ 0 and �Jyµ “ 0 and (3)

�, �1 ‰ 0 and �Jyµ ° 0. In (1), i cannot gain by deviating since

px1J↵qp�Jyq ´ pxJ↵qp�Jyq “ px1J↵q0 ´ pxJ↵q0 “ 0 @x1 P Xi
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In case (2), we also have that i has no incentive to deviate. Let  
.“ maxj:p�qj‰0

p�qj
p�1qj

be the maximum ratio between the non-zero elements of � and �1. Then,

px1J↵qp�Jyq ´ pxJ↵qp�Jyq § |Ei|� @x1 P Xi

For case (3) we multiply the left side of (6.22) by p�Jyq
p�Jyq .

p�Jyq
p�Jyqpx1J↵qp�1Jyq ´ pxJ↵qp�1Jyq § |Ei|� @x P Xi (6.23)

Rearranging, we get

px1J↵qp�Jy ´ pxJ↵qp�Jyq § |Ei|�
p�Jyq
p�1Jyq § |Ei|� @x P Xi

where again  
.“ maxj:p�qj‰0

p�qj
p�1qj is the maximum ratio between the non-zero

elements of � and �.

Proposition 6.3.3 tells us if an agent trained in self-play plays against agents

from other training instances, they will boundedly regret their strategies.
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Chapter 7

Additional Results

7.1 Aligned Games

Where does subgame stability come from? Are there other properties of poly-

matrix games that imply subgame stability? We identify one such example,

which we call aligned games. Intuitively, these are games where global be-

haviour is “aligned” with local behaviour for all strategies. While subgame-

stability is a property that guarantees global equilibria continue to be equilibria

in each subgame, alignment means that the regret of an agent is aligned glob-

ally and at all subgames for any opponent’s strategy; it is a stronger property

than subgame stability.

Let Rijp⇢1
i, psi, sjqq be the regret for player i in their subgame against player

j: Rijp⇢1
i, psi, sjqq .“ uijp⇢1

i, sjq ´ uipsi, sjq For ease of notation, let Rijp⇢1
i, sq .“

Rijp⇢1
i, psi, sjqq. We define �-aligned with a definition that uses pure strategies,

then show that this implies alignment holds for mixed strategies as well.

Definition 7.1.1 (Aligned game). We say a polymatrix game is �-aligned for

player i if @⇢ P P, ⇢1
i P Pi, j ‰ k P ´i we have |Rijp⇢1

i, ⇢q ´ ↵ikRikp⇢1
i, ⇢q| § �

for some ↵ik ° 0, � • 0.

Note that the regret of an agent i w.r.t. a mixed strategy s is a convex
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combination of the regret w.r.t. each pure strategy:

Rip⇢1
i, sq “ uip⇢1

i, s´iq ´ uipsq
“

ÿ

⇢PP
sp⇢quip⇢1

i, ⇢´iq ´
ÿ

⇢PP
sp⇢quip⇢q

“
ÿ

⇢PP
sp⇢qRip⇢1

i, ⇢q,

where sp⇢q “ ±
iPN sip⇢iq. Additionally note that for subgame Gij we have

Rijp⇢1
i, sq “

ÿ

⇢PP
sp⇢qRijp⇢1

i, ⇢q,

since

Rijp⇢1
i, sq “

ÿ

⇢iPPi

ÿ

⇢jPPj

sip⇢iqsjp⇢jqRijp⇢1
i, p⇢i, ⇢jqq

“
ÿ

⇢´ijPP´ij

s´ijp⇢´ijq
ÿ

⇢iPPi

ÿ

⇢jPPj

sip⇢iqsjp⇢jqRijp⇢1
i, p⇢i, ⇢jqq

“
ÿ

⇢´ijPP´ij

ÿ

⇢iPPi

ÿ

⇢jPPj

s´ijp⇢´ijqsip⇢iqsjp⇢jqRijp⇢1
i, p⇢i, ⇢jqq

“
ÿ

⇢PP
sp⇢qRijp⇢1

i, ⇢q.

Corollary 7.1.2. If a game is �-aligned, then @s P S, ⇢1
i P Pi, j ‰ k P ´i we

have |Rijp⇢1
i, sq ´ ↵ikRikp⇢1

i, sq| § �.

Proof.

|Rijp⇢1
i, sq ´ ↵ik Rikp⇢1

i, sq| (7.1)

“
ˇ̌
ˇ̌
ˇ
ÿ

⇢PP
sp⇢qRijp⇢1

i, ⇢q ´ ↵ik

ÿ

⇢PP
sp⇢qRikp⇢1

i, ⇢q
ˇ̌
ˇ̌
ˇ (7.2)

“
ˇ̌
ˇ̌
ˇ
ÿ

⇢PP
sp⇢q pRijp⇢1

i, ⇢q ´ ↵ikRikp⇢1
i, ⇢qq

ˇ̌
ˇ̌
ˇ (7.3)

§max
⇢PP

|Rijp⇢1
i, ⇢q ´ ↵ikRikp⇢1

i, ⇢q| (7.4)

§� (7.5)

Where (7.4) is because sp⇢q P r0, 1s and ∞
⇢PP sp⇢q “ 1.

If a game is �-aligned, then this implies approximate subgame stability.
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Proposition 7.1.3. If G is �-aligned, any ✏-Nash equilibrium s is a
✏`|Ei|�

↵i
-

Nash of each subgame Gik where ↵i “ ∞
pi,jqPEi

↵ij.

Proof. Since s is an ✏-Nash, we have Rip⇢1
i, sq § ✏ @⇢1

i P Pi. G is polymatrix, so

Rip⇢1
i, sq “ ∞

pi,jqPEi
Rijp⇢1

i, sq. Consider subgame Gik—we have for each other

subgame for i Gij, where j ‰ k that |Rikp⇢1
i, sq ´ ↵ijRijp⇢1

i, sq| § � @⇢1
i P Pi,

which means we can write Rip⇢1
i, sq as a weighted sum of Rikp⇢1

i, sq plus some

error �̂ij:

Rip⇢1
i, sq “

ÿ

pi,jqPEi

↵ij

´
Rikp⇢1

i, sq ` �̂ij
¯

@⇢1
i P Pi.

Since s is a Nash equilibrium,

ÿ

pi,jqPEi

↵ijRikp⇢1
i, sq ` �̂ij § ✏ @⇢1

i P Pi

ùñ

¨

˝Rikp⇢1
i, sq

ÿ

pi,jqPEi

↵ij `
ÿ

pi,jqPEi

�̂ij

˛

‚§ ✏ @⇢1
i P Pi

ùñ Rikp⇢1
i, sq↵i ´ |Ei|� § ✏ @⇢1

i P Pi

ùñ Rikp⇢1
i, sq↵i § ✏ ` |Ei|� @⇢1

i P Pi

ùñ Rikp⇢1
i, sq § ✏ ` |Ei|�

↵i
@⇢1

i P Pi.

Where we use the fact that all ↵ij ° 0, so ↵i ° 0. The final equation implies

uip⇢1
i, s´iq ´ uipsq § ✏`|Ei|�

↵i
for any ⇢1

i P Pi.

In summary, one possible cause of subgame stability is if a CSP game

is aligned. This property might be easier to show for any given game than

subgame stability since it holds everywhere, not just at equilibria.

7.2 Multi-player Minimax Games

We have seen that SS-CSP games generalize many of the properties of two-

player zero-sum games to multi-player settings. We conclude this by showing

that SS-CSP games are a particular instance of a broader class of games, which

we call multi-player minimax games. We define this class by generalizing the
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spirit of Aumann’s notion of “strict competition” to the n-player setting. Two

player strictly competitive games are games where “for each player, helping

himself and hurting his opponent are equivalent” [3].

In the multi-player setting, we additionally require that players helping

themselves jointly minimizes the utility of opponents. If this property holds

at a strategy profile s, we say the game is locally multi-player minimax at s.

Definition 7.2.1 (Locally multi-player minimax). Let s P S be a strategy

profile. For each j P N , let s˚
j P argmaxs1

jPSj
ujps1

j, s´jq. We say the game is

locally multi-player minimax (LMM) at s if @i P N

uipsi, s˚
´iq “ min

s1
´iPS´i

uipsi, s1
´iq. (7.6)

If a game is LMM at the set of Nash equilibria, a generalized version of the

minimax theorem holds.

Proposition 7.2.2. If a game is LMM at the set of Nash equilibria S˚
, then

in any Nash equilibrium each player receives a payo↵ that is equal to both their

maxmin and minmax value.

Proof. Let v̄i, vi be i’s maxmin and minmax values, respectively. Let s P S˚

be a Nash equilibrium and vi “ uipsq. Note that we cannot have v̄i ° vi,

otherwise i would want to deviate to their maxmin strategy. Since s is a

Nash equilibrium, each player plays s˚
j P argmaxs1

jPSj
ujps1

j, s´jq and by LMM

at s, we have

vi “ min
s1

´iPS´i

uipsi, s1
´iq § max

s1
iPSi

min
s1

´iPS´i

uips1
i, s

1
´iq “ v̄i.

Thus vi “ v̄i since we cannot have v̄i ° vi. Next we show that vi “ vi. Note

that we cannot have vi † vi, otherwise ´i would not be jointly minimizing i’s

utility, which contradicts LMM. Then,

vi “ max
s1
iPSi

uips1
i, s´iq • min

s1
´iPS´i

max
s1
iPSi

uips1
i, s

1
´iq “ vi,

which implies vi “ vi since we cannot have vi † vi.
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Subgame stable CSP games are LMM @sµ P Sµ, since each agent in ´i is

playing a best response in their subgame against i, which minimizes i’s utility

in that subgame. Moreover, ´i do not need to coordinate to minimize i’s

utility since i’s utility decomposes amongst their subgames.
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Chapter 8

Conclusion

Self-play has been incredibly successful in producing strategies that perform

well against new opponents in two-player constant-sum games. Despite a lack

of theoretical guarantees, self-play seems to also produce good strategies in

some multi-player games. In this thesis, we have identified structural proper-

ties of multi-player, general-sum games that allow us to establish guarantees

on the performance of strategies learned via self-play against new opponents.

We show that any game can be projected into the space of constant-sum poly-

matrix (CSP) games, and if there exists a game within this set with high

subgame stability (low �), strategies learned through self-play have bounded

exchangeability, bounded values and bounded loss of performance against new

opponents. In normal-form games, CSP decompositions and checks for sub-

game stability can be done e�ciently in polynomial time using linear program-

ming. Subgame stable CSP games are a subset of locally multi-player minimax

games. Our novel poly-EFG representation gives rise to an e�cient algorithm

for producing approximate subgame-stable CSP decompositions.

We conjecture that Texas hold ’em is one such game. We investigate this

claim on Kuhn and Leduc poker, and find that CFR plays strategies from

a nearly subgame stable CSP part of the strategy space within these games.

Conversely, in a toy Hanabi game where the strategies learned in self-play does

not perform well, the game is not approximately CSP and subgame stable.

We extend out results to cases where a game may not decompose into a

CSP game, but is instead strategically equivalent to one. We give an algebraic
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characterization for n-player games. Using this characterization, we find that

the set of CCE are the same between strategically equivalent games. We

also show that the marginal strategies of CCE in games that are strategically

equivalent to approximate CSP games are approximate Nash equilibria. Lastly,

in games that are strategically equivalent to approximate subgame stable CSP

games, the marginal strategies of CCE are all approximately exchangeable.

Machine learning in general-sum, multi-player games is a challenging prob-

lem domain with great potential. Nearly all real-world multi-agent systems

(such as driving coordination or stock trading) have elements of both coop-

eration and competition. Few involve only two agents. This thesis lays the

groundwork for guarantees for self-play in general-sum multi-player games by

studying multi-player games that behave in similar ways to two player zero-

sum games. Our main results may be applied to any game, however there are

surely ways to refine our work in particular instances. We hope that future

work will deepen our understanding of self-play and when it is a desirable

training procedure. Approximate SS-CSP games may not be the only class of

games where self-play is guaranteed to perform well.

Self-play has been a workhorse for training machine learning systems in

multi-agent settings. While we have shown that there are many cases where

self-play is a desirable learning procedure outside of two-player constant-sum

games, many settings will require fast and continual adaptation to new agents

in the environment, rather than a fixed strategy being generated through

self-play. Continual learning is not incompatible with self-play—indeed pre-

training through self-play to produce a “blueprint strategy” has been used

in combination with real-time search to produce super-human multi-player

poker AI [10]. An exciting future direction is what blueprint strategies are

good starting places for continual learning.
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Appendix A

Proofs of Well-Known Results

This appendix gives proofs and examples for a few well-known results. We

show them here since we could not find work in the literature showing them.

A.1 Hindsight Rationality With Respect to
Action Deviations Does Not Imply Nash

Here we show that hindsight rationality with respect to action deviations does

not imply Nash equilibrium in 2 player constant-sum games. We show this

with a 1 player game. Consider the agents strategy, shown in blue, which

receives utility of 1. Deviating to rI1 : b, I2 : as will increase the player’s utility
to 2, so the blue strategy is not a Nash equilibrium. However, this would

require two simultaneous action deviations, one at I1 to b and one at I2 to a.

Neither of these deviations increases the player’s utility on their own, so the

player is hindsight rational w.r.t. action deviations.

I1

1

a b
I2

2

a

0

b

Figure A.1: Action deviations in a simple game.
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A.2 CCE Imply Nash in Two Player Zero-
Sum Games

Here we show a proof that CCE imply Nash in two-player zero-sum games. We

begin showing that if a player i deviates from their CCE recommendations,

if ´i continues to play their CCE recommendations, this is equivalent to ´i

playing their marginal strategy for the CCE.

Lemma A.2.1. If µ P �pPq, then in a two-player game, for any deviation si,

we have E⇢„µ ruipsi, ⇢´iqs “ uipsi, sµ´iq .

Proof. We have

E⇢„µ ruipsi, ⇢´iqs “
ÿ

⇢iPPi

ÿ

⇢´iPP´i

sip⇢iqµ´ip⇢´iquip⇢i, ⇢´iq,

where µ´ip⇢´iq .“ ∞
⇢´iPP´i

µp⇢i, ⇢´iq. Note, however, that µ´ip⇢´iq “ sµ´ip⇢´iq
so

E⇢„µ ruipsi, ⇢´iqs “
ÿ

⇢iPPi

ÿ

⇢´iPP´i

sip⇢iqsµ´ip⇢´iquip⇢i, ⇢´iq

“ uipsi, sµ´iq.

Proposition A.2.2. If µ is an ✏-CCE of a two-player constant-sum game,

then |E⇢„µ ruip⇢qs ´ uipsµq| § ✏

Proof. Suppose not, then |E⇢„µ ruip⇢qs ´ uipsµq| ° ✏ which means either

uipsµq ´ E⇢„µ ruip⇢qs ° ✏ (A.1)

or

E⇢„µ ruip⇢qs ´ uipsµq ° ✏. (A.2)

Consider (A.1). By Lemma A.2.1 we have uipsµq “ E⇢„µ ruipsµi , ⇢´iqs, which
means

E⇢„µ ruipsµi , ⇢´iqs ´ E⇢„µ ruip⇢qs ° ✏,
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which contradicts the fact that µ is an ✏-CCE, since sµi is a deviation that

is more than ✏-profitable for player i. Next, consider (A.2); since the game is

two-player zero-sum, we have:

E⇢„µ ruip⇢qs ´ uipsµq ° ✏

ùñ ´ E⇢„µ ru´ip⇢qs ´ p´u´ipsµqq ° ✏

ùñ u´ipsµq ´ E⇢„µ ru´ip⇢qs ° ✏.

At this point we may repeat the steps above to show that µ is not an ✏-CCE,

since sµ´i is a deviation that is more than ✏-profitable for player ´i.

Proposition A.2.3. If µ is an ✏-CCE of a two-player constant-sum game G,

then sµ is a 2✏-Nash equilibrium.

Proof. Choose player i arbitrarily. Either uipsµq • E⇢„µ ruip⇢qs or uipsµq †
E⇢„µ ruip⇢qs. Consider the first case. Starting from the definition of ✏-CCE:

E⇢„µ ruip⇢1
i, ⇢´iqs ´ E⇢„µ ruip⇢qs § ✏ @⇢1

i P Pi.

But since uipsµq • E⇢„µ ruip⇢qs we have

E⇢„µ ruip⇢1
i, ⇢´iqs ´ uipsµq § ✏ @⇢1

i P Pi.

Which by Lemma A.2.1 means

uip⇢1
i, s

µ
´iq ´ uipsµq § ✏ @⇢1

i P Pi.

Thus sµ is an ✏-Nash. Next, suppose uipsµq † E⇢„µ ruip⇢qs. By Proposition

A.2.2 we have,

E⇢„µ ruip⇢qs ´ uipsµq § ✏ (A.3)

ùñ E⇢„µ ruip⇢qs § uipsµq ` ✏. (A.4)

Then, starting from the definition of ✏-CCE and applying (A.4),

E⇢„µ ruip⇢1
i, ⇢´iqs ´ E⇢„µ ruip⇢qs § ✏ @⇢1

i P Pi

ùñ E⇢„µ ruip⇢1
i, ⇢´iqs ´ puipsµq ` ✏q § ✏ @⇢1

i P Pi

ùñ E⇢„µ ruip⇢1
i, ⇢´iqs ´ uipsµq § 2✏ @⇢1

i P Pi.
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By Lemma A.2.1 we have

uip⇢1
i, s

µ
´iq ´ uipsµq § 2✏ @⇢1

i P Pi.

A.3 Marginals of a CCE May Not Be a CCE

a b
a 1, 0 �1, �1
a �1, �1 0, 1

Figure A.2: The marginal strategies of a CCE do not generally form a CCE
themselves.

Here we give an example showing the marginal strategies of a CCE may

not form a CCE. Consider µ s.t. µpa, aq “ 0.5 and µpb, bq “ 0.5. µ is a CCE.

E⇢„µ ruip⇢qs “ 0.5 for each player. If row (r) were to player a and column

continues to play according to µ, row’s utility is 0; if r plays b instead, their

utility is now ´0.5. Thus r has no profitable deviations from the CCE rec-

ommendations. Column does not either, this can be shown with a symmetric

argument.

Row’s marginal strategy sµr plays a with probability 0.5 and b with prob-

ability 0.5, sµc does likewise. urpsµr , sµc q “ ucpsµr , sµc q “ ´0.25. However, a is a

profitable deviation for r now since 0 ° ´0.25, thus the decorrelated strategies

from the same CCE are also not a CCE.

99



Appendix B

Poly-EFG Details

Here we include the full details of Section 4.2.

Definition B.0.1 (Induced normal-form polymatrix game). Given a poly-

EFGG “ pN,E,Gq , the induced normal-form polymatrix game is a polymatrix

game G1 “ pN,E,P, u1q such that Pi is equal to i’s set of pure strategies in each

Gij and u1
ijp⇢i, ⇢jq “ uijp⇢i, ⇢jq “ ∞

zPZ pipz, ⇢iqpjpz, ⇢jqpcpz, ⇡1
cquijpzq where uij

is the utility function of i in Gij.

In games of perfect recall, every behaviour strategy ⇡i has an equivalent

mixed strategy s⇡i
i (by Theorem 2.3.2), which means for any perfect recall

EFG G, we can use the poly-EFG representation instead of turning G into a

normal-form game then using a normal-form polymatrix game to get the same

vulnerability bounds on G. Given ⇡, let s⇡ be a profile of equivalent mixed

strategies.

From Theorem 2.3.2 and an assumption that each Gij P G has perfect

recall, we derive two immediate corollaries.

Corollary B.0.2. If ⇡ is � subgame stable for a poly-EFG Ǧ where each

subgame has perfect recall , then s⇡ is � subgame stable in the induced normal-

form polymatrix game of Ǧ.

Corollary B.0.3. For EFG of perfect recall G, if G is �-CSP-EFG then the

induced normal form of G is �-CSP.

Recall the definition of marginal behaviour strategies.
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Definition B.0.4 (Marginal behaviour strategy). Given some mediated equi-

librium pµ, p�iqNi“1q, let ⇡µ
i be the marginal behaviour strategy for i where

⇡µ
i pa, Iq is defined arbitrarily if

∞
⇢1
iPPipIq s

µ
i p⇢1

iq “ 0 and otherwise

⇡µ
i pa, Iq .“

∞
⇢iPPipa,Iq s

µ
i p⇢iq∞

⇢1
iPPipIq s

µ
i p⇢1

iq
@I P Ii, a P ApIq,

where sµi p⇢iq .“ ∞
⇢´iPP´i

µp⇢i, ⇢´iq.

Definition B.0.5 (Marginal behaviour strategy profile). Given some medi-

ated equilibrium pµ, p�iqNi“1q, let ⇡µ be a marginal behaviour strategy profile,

where ⇡µ
i is a marginal behaviour strategy @i P N .

Recall that ⇧µ be the set of marginal behaviour strategy profiles for any

CCE ofG and ⇧µ
i is the set of marginal behaviour strategies for i. An extension

of Theorem 3.4.3 for poly-EFGs is given next.

Proposition 4.2.3. If an EFG G is �-CSP and DǦ P CSP�pGq that is p2n�, �q-
subgame stable and µ is a CCE of G, then

Vuli p⇡µ,⇧´iq § |Ei|� ` 2� § pn ´ 1q� ` 2�,

and

Exp⇧µq § |Ei|� ` 2� § pn ´ 1q� ` 2�.

Proof. Transform Ǧ into its induced normal-form polymatrix game Ǧ1. By

Corollaries B.0.2 and B.0.3 the induced normal form of G is �-CSP and

p2n�, �q-subgame stable. By perfect recall, we can convert ⇡µ to an equiv-

alent mixed strategy profile sµ and do likewise with any ⇡´i P ⇧´i. Then

apply Theorem 3.4.3 using sµ, S´i and the induced normal-form polymatrix

game of Ǧ to bound vulnerability on G’s induced normal form, and hence G.

For the exchangeability bound, we can also convert any ⇡ P ë
iPN ⇧µ

i into an

equivalent mixed strategy profile, then apply Theorem 3.4.3.

B.0.1 Vulnerability Against Self-Taught Agents in EFGs

Next we show an analogue of Theorem 3.5.3 for extensive-form games. Recall

from Section 4.2.1 that ⇧pAiq is the set of marginal behaviour strategy profiles
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of the mediated equilibria of algorithm Ai; ⇧ipAiq is the set of i’s marginal

strategies from this set of strategy profiles; and if AN
.“ pA1, ...Anq is the

profile of learning algorithms, then ⇧ˆpANq is the set of all possible match-

ups between strategies learned in self-play by those learning algorithms.

Definition B.0.7. We say a game G is �-CSP in the neighbourhood of ⇧1 Ñ
⇧ if there exists a constant sum poly-EFG Ǧ such that @⇡ P ⇧1 we have

|uip⇡q ´ ǔip⇡q| § �. We denote the set of such CSP games as CSP�pG,⇧1q.

Definition B.0.8. We say a CSP game G is �-subgame stable in the neigh-

bourhood of ⇧1 if @⇡ P ⇧1, @pi, jq P E we have that p⇡i, ⇡jq is a �-Nash of

Gij.

Proposition 4.2.6. If G is �-CSP in the neighbourhood of ⇧ˆpANq and DǦ P
CSP�pG,⇧ˆpANqq that is �-subgame stable in the the neighbourhood of ⇧pAiq
, then for any ⇧ P ⇧pAiq

Vuli
`
⇡,⇧ˆ

´ipANq
˘

§ |Ei|� ` 2� § pn ´ 1q� ` 2�.

The proof goes the same way as in Corollary 4.2.3. Use the induced normal-

form polymatrix game of Ǧ and Theorem 3.5.3 to derive bounds for the induced

normal form of G, which then apply to G.
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Appendix C

Proof of Algebraic
Characterization of Strategic
Equivalence for n-Player Games

Next we show the proof of Theorem C.0.6. The proof is largely the same as

the original proof in Moulin and Vial [46], we rewrite it here for clarity. We

break the larger proof into a number of smaller lemmas for readability.

Lemma C.0.1. If G and G1
are algebraically equivalent for player i, then they

are strategically equivalent for player i.

Proof. In strategic-form, (6.11) is given as

uip⇢q “ �iu
1
ip⇢q ` ûip⇢´iq @⇢ P P. (C.1)

Suppose that (C.1) holds. Then if

uips1
i, s´iq • uipsi, s´iq

holds, we have

�iu
1
ips1

i, s´iq ` ûips´iq • �iu
1
ipsi, s´iq ` ûips´iq

ùñ �iu
1
ips1

i, s´iq • �iu
1
ipsi, s´iq

ùñ u1
ips1

i, s´iq • u1
ipsi, s´iq,

since �i ° 0. Thus G and G1 are SE.

Lemma C.0.2. If G and G1
are equivalently trivial for i, then they are strate-

gically equivalent for i.
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Proof. Let x1, x2 be two strategies of i and y be any non-correlated strategy

profile of ´i. Then

xJ
1 Uiy • xJ

2 Uiy (C.2)

ñ xJ
1 p↵�Jqy • xJ

2 p↵�Jqy (C.3)

ñ pxJ
1 ↵qp�Jyq • pxJ

2 ↵qp�Jyq (C.4)

and

xJ
1 U

1
iy • xJ

2 U
1
iy (C.5)

ñ xJ
1 p↵�1Jqy • xJ

2 p↵�1Jqy (C.6)

ñ pxJ
1 ↵qp�1Jyq • pxJ

2 ↵qp�1Jyq (C.7)

But p�Jyq “ p�1Jyq “ 0 or p�Jyq ° 0 and p�1Jyq ° 0. This means that

pxJ
1 ↵qp�Jyq • pxJ

2 ↵qp�Jyq

holds if and only if

pxJ
1 ↵qp�1Jyq • pxJ

2 ↵qp�1Jyq,

thus G and G1 are SE.

Let e P R|Pi| be a vector of all ones. Let pepxq “ xJe
|Pi|e, be the vector

projection of x onto e. If we apply pe, to each of the columns of Ui, we get a

payo↵ matrix Ûi “ pe ˝ Ui where each column is equal to ce for some scalar c.

For any strategy profile of ´i, i will be indi↵erent between all of their strategies

with Ûi. What is left over when we subtract Ûi from Ui is the strategic essence

of the game, what we call the strategic kernel.

Definition C.0.3 (Strategic kernel). Given a utility matrix Ui, the strategic

kernel of Ui is a utility matrix Ũi “ Ui ´ pe ˝ Ui where pe is applied to each

column of Ui.

Lemma C.0.4. If G and G1
are SE for i, then G and G1

are equivalently

trivial for i or G and G1
are algebraically equivalent for i.
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Proof. Suppose thatG andG1 are strategically equivalent for i. By Lemma 6.1.3,

we have that G and G1 are correlated strategically equivalent for i. In matrix-

form, this expressed as

x1JUiy • xJ
2 Uiy ñ xJ

1 U
1
iy • xJ

2 U
1
iy @x1, x2 P Xi, y P Y. (C.8)

Where Xi “ tx P r0, 1s|Pi| | ∞|Pi|
j“1pxqj “ 1u is the set of strategies for player

i and Y “ ty P r0, 1s|P´i| | ∞|P´i|
j“1 pyqj “ 1u is the set of correlated strategy

profiles for ´i. Rearranging (C.8), we have

pxJ
2 ´ xJ

1 qUiy § 0 ñ pxJ
2 ´ xJ

1 qU 1
iy § 0 @x1, x2 P Xi, y P Y. (C.9)

Let e P R|Pi| we a vector such that all entries are 1. Let Z “ tx2 ´x1 | x1, x2 P
Xiu. Then (C.9) is equivalent to

zJUiy § 0 ñ zJU 1
iy § 0 @z P Z, y P Y. (C.10)

Let H “ tz P R|Pi| | zJe “ 0u. H is a vector space spanned by the set of

vectors with a single entry of 1 and ´1, with the remainder of the entries

being 0 [50]. Z is a subset of H characterized by elements having a sum of

positive entries being at most 1: Z “ tz P H | ∞
pzqj°0pzqj § 1u. Any element

of H can be written as a scaled element of Z by normalizing by its sum of

positive entries. Then (C.10) holds if and only if

zJUiy § 0 ñ zJU 1
iy § 0 @z P H, y P Y.

Let Ũi “ Ui ´ pe ˝ Ui , Ũ 1
i “ U 1

i ´ pe ˝ U 1
i be the strategic kernels of Ui and U 1

i ,

respectively. Recall that p : R|Pi| Ñ H where ppuq “ uJe
|Pi| e. Note that

zJUiy “ zJpÛi ` Ũiqy “ zJÛiy ` zJŨiy “ zJŨiy,

since zJÛi “ 0 as z is orthogonal to all columns of Ûi. Likewise zJU 1
iy “ zJŨ 1

iy

Thus,

zJŨiy § 0 ñ zJŨ 1
iy § 0 @z P H, y P Y. (C.11)

Next, note that Ũ 1
iy, Ũiy P H by the definition of pe. Take Ũ 1

iy and Ũiy to be

two normal vectors dividing H into two half-spaces according to (C.11). (C.11)
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states that all elements of H on one side of Ũiy’s corresponding hyperplane

are also on the same side of Ũ 1
iy’s hyperplane. The only way this is possible is

that if Ũiy and Ũ 1
iy are parallel. Then we have (C.11) is equivalent to

@y P Y, D�y ° 0 : Ũiy “ �yŨ
1
iy. (C.12)

At this point, consider two cases: 1. when the rank of Ũi is at least 2 and

2. when the rank is less than 2.

Case 1. Let E be the standard basis of R|P´i|. Note that all elements of E

are elements of Y . Since the rank of Ũ is at least 2, we can find ej, ek P E

such that Ũiej and Ũiek are linearly independent (if we could not, this would

imply that Ũi has rank less than 2). Applying (C.12), we have

�ej`ekŨ
1
ipej ` ekq “ Ũipej ` ekq

“ Ũiej ` Ũiek

“ �ej Ũ
1
iej ` �ekŨ

1
iek.

Which implies that �ek “ �ej . Call this quantity �i.

Take any y that is not an element of kerpŨq. Then at least one of the sets

tŨiy, Ũieju, tŨiy, Ũieku is linearly independent (if they were this would imply

Ũiej and Ũiek are linearly dependent.)

We can then show that �y “ �i by the same argument as above. If y is

instead an element of kerpŨq then Ũ 1
iy “ �yŨiy “ 0, so we may as well take

�y “ �i. This means that if the rank of Ũi is at least 2, then

D�i : @y P Y, Ũiy “ �iŨ
1
iy.

In particular,

D�i : @ej P E, Ũiej “ �iŨ
1
iej, (C.13)

which implies that

Ũi “ �iŨi, (C.14)

since (C.13) means that each column of Ũ is equal to the corresponding column

of Ũ 1
i scaled by �i.
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Case 2. The rank of Ũ is at most 1. By (C.12) Ũ 1 is also rank at most 1.

This means that D↵R|Pi|, �, �1 P R|P´i| such that

Ũy “ p↵�Jqy “ ↵Jp�Jyq @y P Y

Ũ 1y “ p↵�1Jqy “ ↵Jp�1Jyq @y P Y

If ↵ “ 0, then (C.13) holds. Suppose that ↵ ‰ 0. Then by (C.12) we have

↵Jp�Jyq “ �y↵
Jp�1Jyq @y P Y (C.15)

Then, either p�Jyq “ p�1Jyq “ 0, or p�Jyq, p�1Jyq ‰ 0 and have the same sign

(since �y ° 0).

Consider the following two statements:

Dx • 0 s.t. �x § �1, (C.16)

Dy • 0 s.t. p�Jyq • 0 and p�1Jyq † 0. (C.17)

By Farkas’ lemma, only one of the two may hold. However, by (C.15) p�Jyq
and p�1Jyq have the same sign or are both 0, since �y ° 0. This means (C.17)

cannot hold. This uses the fact that (C.17) holds if and only if

Dy P Y • 0 s.t. p�Jyq • 0 and p�1Jyq † 0.

Thus,

�1 • x�. (C.18)

ùñ �1 ´ �x • 0 (C.19)

Applying the same steps we also find that

� • x1�1 (C.20)

ùñ � ´ �1x1 • 0 (C.21)

Substituting (C.18) into (C.21), we get

� ´ �xx1 • 0 (C.22)

ùñ p1 ´ xx1q� • 0 (C.23)

ùñ c� • 0, (C.24)
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where c
.“ p1 ´ xx1q. Substituting (C.20) into (C.19), and following similar

steps, we get

p1 ´ xx1q�1 • 0 (C.25)

ùñ c�1 • 0. (C.26)

First, consider if c “ 0, then xx1 “ 1. Without loss of generality, suppose that

x • 1. Then, we have x1 “ 1
x § 1. Thus,

� • x1�1 ùñ � • 1

x
�1 ùñ x� • �1.

And since �1 • x�, we have �1 “ x�. Which is the same as (C.14).

Next, If c ° 0, then (C.24) and (C.26) imply all elements of � and �1 are

positive or 0. If c † 0, then (C.24) and (C.26) imply all elements of � and

�1 are negative or 0. Thus, all elements of � and �1 have the same sign. If

�1, � § 0, simply flip the sign of �, �1 and ↵. Then � • 0 and �1 • 0 and we

have that G and G1 are equivalently trivial.

Summarizing, we have shown that if G and G1 are SE, then either they are

equivalently trivial or D�i • 0 s.t. Ũi “ �iŨi.

Theorem 6.1.3. G and G1
are SE for player i if and only if G and G1

are

equivalently trivial for player i, or G and G1
are algebraically equivalent for

player i.

Theorem C.0.6. G and G1
are SE for player i if and only if G and G1

are

equivalently trivial for player i or G and G1
are algebraically equivalent for

player i.

Proof. One direction is shown by be Lemma C.0.1 and Lemma C.0.2, the other

is shown by Lemma C.0.4
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