
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

UMI'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

M o n t e C arlo P lanning in RTS G am es

by

M ichael C hung

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M aste r of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-08039-6

Your file Votre reference
ISBN:
Our file Notre reterence
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

A VIS :
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I’lntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act som e supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n’y aura aucun contenu manquant

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Mgnte Carlo simulations have been successfully used in classic turn-based

games such as backgammon, bridge, poker, and Scrabble. In this thesis, we

apply the ideas to the problem of planning in games with imperfect infor­

mation, stochasticity, and simultaneous moves. The domain we consider is

real-time strategy games. We present a framework — MCPlan — for Monte

Carlo planning, identify its performance parameters, and analyze the results

of an implementation in a capture-the-flag game.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I thank my supervisors, Michael Buro and Jonathan Schaeffer for their support
and encouragement. I also thank Markus Enzenberger and Nathan Sturtevant
for their valuable feedback. Financial support was provided by the Natural
Sciences and Engineering Research Council of Canada (NSERC) and Alberta’s
Informatics Circle of Research Excellence (iCORE).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 Real-time Strategy G am es... 1

1.1.1 W axcraft... 1
1.1.2 O R T S .. 3

1.2 RTSAI .. 4
1.3 Contributions of this T h e s is .. 7
1.4 Organization of T h e s is ... 7

2 Background 8
2.1 Data S tructures.. 8

2.1.1 Influence Maps and Spatial A n a ly s is 8
2.1.2 Resource Allocation T re e s .. 10
2.1.3 Dependency G r a p h s ... 10

2.2 Algorith m s... 11
2.2.1 Planning in Dynamic Worlds (RTS Games) 11
2.2.2 Adversarial P lan n in g ... 13
2.2.3 Monte-Carlo G o ... 14
2.2.4 Simulation Based Planning.. 16
2.2.5 Random Map Generation for Strategy G a m e s 17

2.3 A nalysis.. 18
2.3.1 Terrain Analysis ... 18
2.3.2 Multi-Tiered RTS Game A I ... 19

2.4 Conclusions.. 20

3 RTS Planning M ethods 21
3.1 Expert K now ledge.. 21
3.2 Monte-Carlo P la n n in g .. 22

3.2.1 Top-Level S ea rch ... 23
3.2.2 A bstrac tion ... 24
3.2.3 Evaluation F u n c tio n ... 24
3.2.4 Plan Evaluation.. 26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.5 Comments.. 27
3.3 Capture the F l a g ... 29

3.3.1 O R T S .. 30
3.3.2 CTF Game State A bstraction .. 31
3.3.3 Evaluation F u n c tio n .. 31
3.3.4 Plan Generation... 34
3.3.5 Plan Step Sim ulation.. 34
3.3.6 Other Issues... 35

3.4 S u m m a ry .. 36

4 Experiments 37
4.1 Experimental D esig n ... 37

4.1.1 M aps... 38
4.1.2 Search P a ra m e te rs .. 38
4.1.3 Players.. 39
4.1.4 Issues .. 39

4.2 R esults.. 40
4.2.1 Increasing Number of P l a n s ... 40
4.2.2 Number of U n i t s ... 41
4.2.3 Different M a p s ... 41
4.2.4 Unbalanced Number of U n i t s .. 42
4.2.5 Optimizing M ax-Dist... 43
4.2.6 Scripted Opponents... 44
4.2.7 Run-Time for E xperim en ts.. 46

4.3 Conclusions... 46

5 Conclusions and Future Work 48

Bibliography 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 WarCraft 3 B a s e .. 2
1.2 WarCraft 3 AI Failing ... 3
1.3 O R T S ... 4

3.1 MCPlan: Top-level se a rc h .. 25
3.2 MCPlan: Plan evaluation .. 27
3.3 MCPlan: Plan simulation ... 28

4.1 Maps and unit starting positions ... 38
4.2 Increasing Number of P l a n s .. 40
4.3 Different Number of Units. MCPlan vs. R a n d o m 41
4.4 Different Maps. MCPlan vs. Random 42
4.5 Unbalanced Number of Units and Same A I 42
4.6 Less Men and Stronger AI vs. R andom 43
4.7 Optimizing Max-Dist Parameter ... 44
4.8 MCPlan vs. Rush-the-Flag O p p o n e n t.................................... 45
4.9 MCPlan vs. Stand-Still Opponent .. 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 R eal-tim e Strategy Games

Real-time strategy (RTS) games are popular commercial computer games in­

volving a fight for domination between opposing armies. In these games, there

is no notion of whose turn it is to move. Both players move at their own

pace, even simultaneously; delays in moving will be quickly punished. Each

side tries to acquire resources, use them to gain information and armaments,

engage the enemy, and battle for victory. The games are typically fast-paced

and involve both short-term and long-term strategies. The games are well-

suited to Internet play. Many players prefer to play against human opponents

over the Internet, rather than play against the usually limited abilities of the

computer artificial intelligence (AI). Popular examples of RTS games include

WarCraft [1] and Age of Empires [2].

1.1.1 W arcraft

The RTS game by Blizzard, WarCraft 3, offers 3D graphics and some nice

artificial intelligence features. For example, some of the units are able to

automatically cast spells during combat. This reduces the micromanagement

typically handled by the player. For example, the “priest” units are able to

automatically cast the “heal” spell on nearby injured friendly units. This is

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1: WaxCraft 3 Base

something that the player would have had to click really fast to accomplish in

older RTS games, such as WarCraft 2.

Figure 1.1 is a screen-shot taken from WarCraft 3. The base in the figure

is owned by the human player. The enemy base (not seen here) is owned by

the computer AI player. The fog-of-war prevents each player from being able

to see the enemy’s forces or units until they come within visual range of a

friendly building or unit. In the initial phase of an RTS game, each side builds

up his army. The peons (workers) mine resources (gold and wood), which are

then used by the peons to produce buildings such as the ore burrow (building

in construction at the top) and the barracks (building in construction at the

left). The barracks then produces military units such as the grunt (an ore

foot soldier), which also requires resources (in this case, gold). When the ore

burrow is manned by peons, it can attack, which provides some extra firepower

for the defending player. In order to win the battle and the game, the attacking

player must have enough forces to compensate for this defensive advantage.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2: WarCraft 3 AI Failing

In figure 1.2, the AI player is marching a lone worker into the player’s army.

Previously in this game, the AI’s expansion town was destroyed by the player.

While the AI’s army has been defeated, it now repeatedly sends workers to

rebuild the destroyed town, even though the player’s army is still obviously

waiting there. This poor play by the AI makes winning the game easy and

boring.

1.1.2 ORTS

As commercial game companies do not provide their source code to the public,

it is difficult to test new research ideas. The Open Real Time Strategy (ORTS)

platform developed by Michael Buro is an open source real-time-strategy game

[13]. The ORTS system is used to implement a simplified RTS game for testing

our ideas.

While still a work in progress, ORTS already supports most of the features

of RTS games, including 3-D graphics, fog-of-war, and a minimap (miniature

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.3: ORTS

view of the map). Figure 1.3 shows a sample screen-shot.

1.2 RTS AI

The AI in RTS games is usually achieved using scripting. Over the past

few years, scripting has become the most popular representation used for ex­

pressing character behaviours. Scripting, however, has serious limitations. It

requires human experts to define, write, and test the scripts comprised of 10s,

even 100s, of thousands of lines of code. Further, the AI can only do what it

is scripted to do, resulting in predictable and inflexible play. The general level

of play of RTS AI players is weak. To enable the AI to be competitive, game

designers often give the AI access to information that it should not have or

increase its resource flow (i.e., they cheat).

Success in RTS games revolves around planning in various areas such as

resource allocation, force deployment, and battle tactics. The planning tasks

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in an RTS game can be divided into three areas, representing different levels

of abstraction:

1. U n it control (u n it m icrom anagem ent). At the lowest level is the

individual unit. It has a default behaviour, but the player can over­

ride it. For example, a player may micromanage units to improve their

performance in battle by focusing fire to kill off individual enemy units.

2. Tactical p lanning (mid—level com bat p lanning). At this level, the

player decides how to conduct an attack on an enemy position. For

example, it may be possible to gain an advantage by splitting up into

two groups and simultaneously attacking from two sides.

3. S tra teg ic p lanning (high-level planning). This includes common

high-level decisions such as when to build up the army, what units to

build, when to attack, what to upgrade, and how to expand into areas

with more resources.

In addition, there are other non-strategic planning issues that need to be

addressed, such as pathfinding.

Unit control problems can often be handled by simple reactive systems

implemented as list of rules, finite state machines, neural networks, etc. Tacti­

cal and strategic planning problems are more complicated. They are real-time

planning problems with many states to consider in the absence of perfect infor­

mation. It is apparent that current commercial RTS games deal with this in a

simple manner. All of the AI’s strategies in the major RTS games are scripted.

While the scripts can be quite complex, with many random events and con­

ditional statements, all the strategies are still predefined beforehand. This

limitation results in AI players that are predictable and thus easily beaten.

For casual players, this might be fun at first, but there is no re-playability. It

is just no fun to beat an AI player the same way over and over again.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In RTS games, there axe often hundreds of units that can all move at the

same time. RTS games are fast-paced, and the computer player must be

able to make decisions at the same speed as a human player. At any point

in time, there are many possible actions that can be taken. Human players

axe able to quickly decide which actions are reasonable, but current state-

of-the-art AI players cannot. In addition, players axe faced with imperfect

information, i.e. partial observability of the game state. For instance, the

location of enemy forces is initially unknown. It is up to the players to scout to

gather intelligence, and act accordingly based on their available information.

This is unlike the classical games such as chess, where the state is always

completely known to both players. For these reasons, heuristic search by itself

is not enough to reason effectively in an RTS game. For planning purposes, it

is simply infeasible for the AI to think in terms of individual actions. Is there

a better way?

Monte Carlo simulations have the advantage of simplicity, reducing the

amount of expert knowledge required to achieve high performance. They have

been successfully used in games with imperfect information and/or stochastic

elements such as backgammon [31], bridge [17], poker [10], and Scrabble [27].

Recently, this approach has been tried in two-player perfect-information games

with some success (Go [12]). A framework for using simulations in a game-

playing program is discussed in [26], and the subtleties of getting the best

results with the smallest sample sizes is discussed in [28].

Can Monte Carlo simulations be used for planning in RTS games? If

so, then the advantages are obvious. Using simulations would reduce the

reliance on scripting, resulting in substantial savings in program development

time. As well, the simulations will have no or limited expert bias, allowing the

simulations to explore possibilities not covered by expert scripting. The AI

would no longer be as predictable. The result could be a stronger AI for RTS

games and a richer gaming experience. The applications of RTS AI are by

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no means limited to creating opponents to entertain game players. There are

many similar planning problems outside of games, such as military planning

and robotics control.

1.3 Contributions of th is Thesis

The contributions in this work are as follows:

1. Design of a Monte Carlo search engine for planning (MCPlan) in domains

with imperfect information, stochasticity, and simultaneous moves.

2. Implementation of the MCPlan algorithm for decision making in a real­

time capture-the-flag game.

3. Characterization of MCPlan performance parameters.

1.4 Organization o f Thesis

Chapter 2 provides an overview of related research, including the current state-

of-the-art in RTS game AI. Some ideas such as the Monte-Carlo Go algorithm

are presented, which could be applied to RTS games. Chapter 3 describes the

MCPlan algorithm and the parameters that influence its performance. Chap­

ter 3 also discusses the implementation of MCPlan in a real-time capture-

the-flag game built on top of the free ORTS RTS game engine [13]. Chapter 4

presents experimental results. Chapter 5 presents our conclusions and remarks

on future work in this area.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

This chapter provides an overview of planning in RTS games. The current

state-of-the-art algorithms and data structures are described. The Monte

Carlo Go algorithm is presented, an idea which could be applied to RTS games.

2.1 D ata Structures

2.1.1 Influence M aps and Spatial Analysis

While some types of game behavior can be scripted as action sequences, this

approach breaks down during player interaction. AIs for highly interactive

games need to be able to reason about their environment. To do this, a high

level of abstraction is required [33].

Designers can place hints in the game world such as the locations of the

important choke-points [22]. However, this only works for static environments

[33]. RTS games, in contrast, are dynamic. For example, in WarCraft, trees

can be cut down as part of the game, possibly creating new choke-points and

opening up old choke-points.

Influence mapping is a technique used to perform dynamic spatial reason­

ing. These 2D arrays are abstractions of the original RTS map, which aid

in both tactical and strategic planning. Influence maps axe commonly used

by game AIs for tactical assessment. They can indicate where friendly and

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enemy forces are located, where battles have occurred, areas of control, unex­

plored areas, and areas likely to be attacked. Using influence maps, the AI can

also infer which areas are secured, areas of enemy weakness (such as rear and

flanks), good locations for resting and healing, good locations for ambushes,

areas that should be defended, choke-points, etc [32],

Influence maps can be generated as follows. Each cell in the influence

map is initialized to its influence value, which could be combat strength, area

visibility, or any other feature. The value is blurred to nearby cells using

an arbitrary falloff rule, such that the influence of the cell decreases with

distance. This blurring reflects that units could quickly move to or attack

nearby locations. In practice, influence map cells should be large (about 10x10

or 20x20 tiles) [32]. This provides different levels of abstraction for higher level

planning.

Spatial databases allow AI to reason about their environment in other ways

[33]. Essentially an extension of the influence mapping idea, spatial databases

consist of multiple layers of 2D grids, overlaid on the game world. Each layer

describes a different aspect of the environment. For example [33]:

• Openness layer: proximity to obstacles

• Cover layer: locations where agents can take cover

• A rea search layer: for searching area for intruders

In [33], a few of the typical layers are described in more detail. These layers

can be combined to perform different types of reasoning. In other words, a

’’desirability layer” can be formed by combining any of the existing layers.

Also, sharing spatial databases between agents can help in coordination [33].

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.2 Resource Allocation Trees

The resource allocation tree helps the AI player decide how to allocate re­

sources. This is another data structure which provides abstracted information

about the current RTS game state. This information aids in strategic planning.

In a resource allocation tree, a player’s units and other assets are divided

into a tree structure. Under the root node are all the player’s current strate­

gic assets. At each node, the player’s assets are divided based on functional

purpose, such as military, intelligence, and economy. As we go down the tree

the nodes become more and more specific, until the leaf nodes, which are spe­

cific unit types. The leaf nodes contain values that should be dependent on

the branch. Nodes under the military branch should assign values based on

unit strength. Nodes under the intelligence branch should assign values based

on unit speed and sight radius. Of course, this is made more complicated in

games with many different types of resources [32].

This tree is mainly used to decide what new units to build, and what to do

with existing units. A combat balancing table [32] is used to look up a unit’s

effectiveness versus any other unit. This allows the AI player to build units

that counter the units it thinks that the enemy has.

2.1.3 D ependency Graphs

Dependency graphs show a dependency of assets. This covers the concepts of

technology-trees and building-trees, which indicate the requirements of each

building or unit. For example, in WarCraft 3, a barracks is required to build

grunts. There are also abstract dependencies in the graph, such as the fact

that peons axe required for gathering gold and lumber. Resource dependencies

are also considered, such as how much gold and lumber are required to build a

barracks. Another type of dependency is a support dependency. An example

of this is how an ore burrow requires peons inside it to fire at nearby enemies.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Without the peon the burrow cannot attack [32].

Each node in the graph contains useful data such as the estimated number

and value of units or buildings of that type, owned by the player. Units and

buildings under construction are considered as well. This data is similar to the

information in the resource allocation tree nodes. However, while the resource

allocation tree only tracks current assets, the dependency graph tracks all

possible assets.

Dependency graphs can be used to perform strategic inference. For exam­

ple, if we see an enemy grunt, then we know that the enemy has a barracks.

Similarly, if we see a barracks, then we can expect to see enemy grunts later.

This can provide us with statistical information about the current RTS game

state. The AI player might use this information to decide, for example, to

build more base defenses to protect itself from possible grunt attacks.

The graph is useful for identifying weak nodes. For example, if the enemy

only has one barracks, then the AI player would prefer to attack the barracks

and destroy it. A smart AI player might build two barracks, in case the enemy

attempts the same tactic.

2.2 Algorithm s

2.2.1 P lanning in Dynam ic W orlds (RTS Games)

Goal-directed behavior is widely used in computer games. It establishes a

sense of purpose for the agents, and increases the believability of their actions

[14]. The agents accomplish their goals by executing plans, which could be

generated in a variety of ways.

Traditional game agents are reactive. They respond to situations using

hard-coded responses, rather than planning at run-time. The responses are

often simple, such as returning fire when an enemy is sighted. There are

many problems with reactive approaches. They rely heavily on developers to

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

think of all possible situations that the agent may encounter, and to program

the proper responses. These pre-canned solutions are becoming more difficult

to manage as game worlds are becoming more complex. Also, cooperative

behavior is extremely difficult [34].

Classical planning (such as STRIPS [15]) formulates the entire plan before

execution, assuming implicitly that the world does not change while planning

and executing the plan. However in a game the world is constantly changing.

Also, classical planning can be a very expensive calculation which may not be

suitable in a game environment due to time and CPU resource constraints.

Orkin describes a decision-making architecture, Goal-Oriented Action Plan­

ning (GOAP), which allows characters to decide not only what to do, but how

to do it [23]. It results in characters that are less predictable, and able to adapt

to new situations. GOAP makes use of the A* algorithm to formulate plans,

as is done by many classical planners. It is interesting to note that although

Orkin uses the game “No One Lives Forever 2” (NOLF2) to provide examples

where GOAP may help, GOAP is not actually implemented in NOLF2 [23].

Unfortunately, GOAP is essentially the same as classical planning. While it

is a step in the right direction, and certainly better than reactive behavior, it

may not scale up well to RTS games where there are many units.

Some plans use a high level of abstraction, which is insufficient for control­

ling an agent. Low-level plans have too many steps so that a solution cannot

be found in a reasonable amount of time (with basic planning techniques).

Some current practical planners use hierarchical decomposition or hierarchical

task network (HTN) planning. A plan is formulated at an abstract level, with

abstract operators. The abstract operators are decomposed into lower level

steps. The decompositions of the abstract operators can be stored in a library

and retrieved as needed [25].

HTN planners are more effective than classical planners in a dynamic game

environment. I t’s noted that the performance is better in HTN planning (linear

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in ideal case, instead of exponential) [34]. Partial re-planning can be accom­

plished when using HTN planning. Invalidated plans can be adapted (at a

lower level) instead of completely re-planning [34]. Also, agent cooperation

is more easily possible with HTN planning, using synchronization actions for

example. There is a question of what abstraction level to use for the coordi­

nation. There is a trade-off between ease and crispness of coordination.

Am example of HTN planning is seen in the game Full Spectrum Command

[14]. The implementation uses composite tasks, which are composed of other

composite tasks, or simple tasks. The simple tasks are composed of actions.

This planning technology is also demonstrated by Soar technology and Quake

bots [3].

2.2.2 Adversarial Planning

Willmott has recently made some progress in adversarial planning in Go [35]

which is a game that, while turn-based, is more difficult than RTS in some

ways. For example, evaluating positions in Go is difficult. In RTS it is pretty

easy, as material (total value of units, buildings and resources) is a pretty good

measure of the value of a position. The slightest different in a Go position can

mean the difference between ”life and death”. In RTS games, small changes

in the state usually do not affect the outcome of the game.

Willmott’s adversarial planning is based on HTN planning. Like other

planning techniques, it is goal-directed. Adversarial planning assumes that

there are two opposing agents, which attempt to satisfy their own goals while

stopping the goals of the opponent. The plan tree is searched, considering

the interacting plans of both agents. When one agent achieves all of its goals,

backtracking occurs, and the next branch is explored. The application of this

framework to Go resulted in the implementation of GOBI, which has proven

successful in solving many beginner-level Go life-and-death problems [35].

A problem with this approach is that searching for life-and-death is not

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the same as trying to play an RTS game well. Most of the time we will not be

able to plan ahead far enough to see the end of the game, so we need to set

realistically achievable sub-goals. Intelligent generation of goals for input to

the adversarial planner is a separate problem, although, it is also interesting.

Also, this approach does not handle the timed actions, parallel actions, and

uncertainty in the RTS domain. Like Alpha-Beta, it assumes that the two

players take turns. While adversarial planning techniques such as that used in

GOBI succeeds in some cases where Alpha-Beta fails, it still does not address

the main issues of RTS adversarial planning problems.

2.2.3 M onte-C arlo Go

Bouzy and Helmstetter describe the computer Go programs OLGA (by Bouzy)

and OLEG (by Helmstetter) [12]. The basic idea behind both programs is a

Monte-Carlo approach, where moves are evaluated based on the outcome of a

large number of random games played from the current position in the game.

The random games are completely played out and then scored. Each random

game begins with the move that is being evaluated. Each move after that is

randomly selected from all possible moves, excluding moves that are suicidal.

The mean of scores of the random games is used as the evaluation for each

first move. This is simpler than Bruegmann’s approach (GOBBLE) [4], and

based on Abramson’s method [9].

This approach works well in Go where a full global game tree search is

not practical in most cases. Domain dependent move generators can produce

good moves, but always contains errors. This Monte-Carlo approach provides

a sort of verification of the strength of a move, [12].

Speed is a factor in making this approach viable: on a 2 GHz computer,

OLGA plays 7,000 random 9x9 games per second, and OLEG plays 10,000. It

is noted that a 20% speed increase results in a 10% improvement in precision,

which is not very significant. However, a 10X speed increase would result

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in a 3X increase in statistical confidence, which makes a first pass of code

optimizations worthwhile [12].

In addition, the following ideas for possible enhancements have been tested

within the Monte-Carlo framework:

• all m oves as first heuristic: making statistics for all moves of the

random game, rather than just for the first move. The idea is that in a

random go game, any of the friendly moves could have been played as

the first move, so as a speed-up, we can evaluate all the moves at the

same time. There are, of course, cases where this is not reliable.

• progressive pruning: moves with evaluation too low compared to the

best move are pruned.

• sim ulated annealing: in a random game, instead of selecting each

move with equal probability, simulated annealing is used to determine

the probability of each move, based on its current evaluation.

• tem pera tu re : variation of simulated annealing, where temperature is

kept constant. The result is that the probability of selecting each move

is a simple function of its current evaluation.

• depth-tw o tre e search: perform mini-max search to depth two and

evaluate the resulting positions using random games.

The resulting programs were somewhat successful against respectable Go

programs such as INDIGO (Bouzy, 2002) and GNUGO (Bump, 2003) in 9x9

Go [12] and 19x19 Go [11].

This approach scales nicely with CPU speed and is trivially parallel —

unlike alpha-beta. It is concluded that as computers become more powerful,

this type of Monte-Carlo approach will become more worthy of consideration

[12].

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.4 Simulation Based Planning

The term “Simulation-Based Planning (SBP)” seems to have been introduced

by Lee and Fishwick [21]. SBP has been successfully applied to route planning,

military mission planning and controlling a truck depot [20].

The idea is that given a set of possible plans, each plan is executed on a

simulator, with varying levels of abstraction. Given the result of the simu­

lation, an objective function determines the value of each plan based on the

simulation results, so the planning agent can act accordingly. The level of

abstraction is adapted to the available planning time. Also, depending on

planning time available, planning simulations could be repeated many times

to generate statistically relevant results. This naturally handles malicious en­

vironments, adversarial agents, uncertainty and randomness. For situations

where immediate response is required, and there is no time for any simulation

at all, the planner reverts to a “reactive behaviour mode” [20].

SBP sort of lends itself to RTS planning. All RTS games are simulations.

Stochastic elements are handled in a reasonable way. Intuitively, it should

simulate the correct result most of the time. Plans such as “attack” could be

evaluated by the planning simulator, while plans such as “defend” would be

handled reactively.

The main drawback of SBP is that it does not effectively anticipate the

adversary’s actions. In the planning simulations, the adversaries are usually

assumed to be quite simple, in order to be able to run the simulation efficiently

[21]. In RTS games, the skill of the opponent will greatly affect the outcome

of any battle. It is naive to assume that the opponent will behave simply.

While it is claimed that “multimodelling” can be used to handle multiagent

adversarial planning in real-time [20], this claim seems a little optimistic and

requires further investigation.

Intuitively, SBP would seem to be very computationally expensive. In a

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

commercial RTS game, computation time is at a premium. However, with the

proper abstract model, the planning simulator could potentially be extremely

fast. For example, it would quickly compute the outcome of battles, using

the abstracted data found in influence maps and resource allocation trees.

Definitely for dedicated machines running RTS AI for research or competition

purposes, simulation may be a good way of evaluating plans generated by

other, more time-efficient planning approaches. With the proper abstractions

and optimizations, it may yet be practical.

Also, it might be better if, rather than simply evaluating plans, the plan­

ning simulator returns an analysis of the entire simulation. In other words,

show what went wrong with the plan. This would help identify the flaws in the

plan, so that the high level planner could make the appropriate modifications

to the plan.

2.2.5 Random M ap Generation for Strategy Games

Shoemaker [29] describes the challenges and techniques involved in random

map generation for strategy games (as implemented in the RTS Game Empire

Earth by Sierra [5]). In order to perform unbiased experiments, the random

maps generated must be roughly fair to both players.

The problem is to generate a random map for a tile-based RTS game. The

land and resources for each player must be about equal. There must be no

strategic advantage to either player. The map must be suitable for both hard­

core RTS gamers as well as casual players. The process should be relatively

quick, and should take advantage of available memory (other processes will not

be running during map generation). The generator should be able to create

different map types, such as small islands, etc. [29].

Shoemaker gives an overview of the process. The players start on a blank

map, with teams adjacent and enemies somewhat symmetrically opposed. The

area starts as all water, and the land is grown in clumps, to appear natural.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Flat land areas are created for the players, as well as some areas for later

expansions. A height map is generated, with realistic elevation. The results

are combined, with some restrictions (filters) applied. The map is processed for

cliffs and other distinctive geographic features (terrain analysis). The resources

are placed in rings around the players and finally the units are placed [29].

A test application was developed to show the map before the random map

generator was integrated into the game engine. Scripts are used to help design

the maps. These lengthy, complex scripts were created by the programmers

and tweaked by the designers [29].

Grimani describes the wall-building aspect of a random map generator

[18].

2.3 Analysis

2.3.1 Terrain Analysis

Terrain analysis tools are used in RTS games to provide abstract information

about the terrain. In Age of Empires, for instance, terrain analysis tools used

include pathfinding, influence maps, and area decomposition. A common use

of terrain analysis is to provide the AI player with information about which

areas are reachable. It was implemented using pathfinding, which was always

accurate, but slow [6].

Area decomposition is the division of the map into areas. Terrain anal­

ysis can be useful for determining area connectivity. Areas can be modified

by a scenario editor. This helps the performance of high-level pathfinding.

It’s possible to track data on the different areas: unit counts, resources and

connections to other areas [6].

For abstraction and planning purposes, having the map divided into areas is

helpful. Terrain analysis can be used to identify areas with the best resources.

More abstract information about each area can be inferred, such as whether

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an area is a good place to build an expansion.

2.3.2 M ulti-Tiered RTS Game AI

RTS AI has to handle many units. Doing this on an individual unit level

is impractical. Thus there must be some sort of hierarchical reasoning or

planning.

Kent [19] suggests that this problem has already been solved for thousands

of years by the military. The hierarchical chain of command has allowed army

generals to control thousands of troops.

Soldiers are grouped into squads in many games. This makes it easier to

perform tactics such as an attack on a target from two directions. Instead of

planning for scores of units, the AI only has to plan for a couple squads (or

companies).

The AI is divided into tiers. The highest level is the computer player AI,

and the lowest level is the soldier AI. While all RTS games have these two

layers, the introduction of intermediate layers reduces the workload for the

highest and lowest level layers. AIs communicate with superior and subor­

dinate AIs. They also communicate with other AIs of the same layer. The

messages include orders and feedback messages.

Kent lists the following possible AI tiers or layers: Soldier AI, Squad AI,

Platoon AI, Company AI, Brigade AI, Division AI, Army AI, Computer Player

AI [19]. The exact number of tiers is not important.

All RTS games already have the rudimentary soldier AI. Its job is to follow

orders and stay alive. The soldier AI reports to the squad AI about things

such as new enemies spotted. It selects and engages targets, and path-finds

using way-points given by the squad AI.

The squad AI is also implemented in many games. It takes orders from

the next higher AI (the platoon AI) and distributes the orders to the squad

members. Feedback from the soldiers is evaluated and reported to the platoon

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AI.

The platoon, and each higher level, is similar to the squad AI. Each higher

level has fewer details, and is more concerned with abstract concepts such as

offensive ratings. For example, the platoon AI reasons about the formation of

its squads, rather than the locations of each soldier.

Each AI tier has a different view of the game map, with the level of de­

tail suitable for its planning tasks. While the soldier AI needs details about

the environment, the highest level AI only needs to know about the abstract

features such as locations of strategic importance [19].

Similarly, Ramsey [24] divides the RTS game AI into the following tiers:

strategic intelligence, operational intelligence, tactical intelligence, and indi­

vidual unit. The strategic intelligence handles the grand strategy, such as

which city to capture, and when to capture the city. The operational intel­

ligence handles the details of how best to accomplish these objectives. The

tactical intelligence handles small-scale interactions, such as scouting a battle­

field or capturing an enemy city [24].

2.4 Conclusions

The state of the art in AI for RTS leaves much to be desired. Besides being

repetitive and too easy to beat for many players, it is also a huge burden on

the game developers. As many of the plans are scripted and game specific,

the AI programmers have little opportunity for code reuse. Each scripted plan

needs to be written by hand specifically for that game and then tested to make

sure it handles each game situation correctly. Both the writing and testing of

scripts is labour intensive and time consuming.

While some developers are certainly looking at adding planning AI to their

games, many classical planning techniques simply do not scale up to the prob­

lems that occur in real-time strategy games.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

RTS Planning M ethods

This chapter describes solution methods to the RTS planning problem. First,

we review what current commercial RTS games use: expert-knowledge-based

systems. We will then introduce and describe an approach based on Monte-

Carlo sampling, simulation and replanning, which is much less reliant on hu­

man expert knowledge.

3.1 Expert Knowledge

Scripted solutions are used in most if not all commercial RTS games, includ­

ing StarCraft, WarCraft 3 and Ages of Empires 2. While they can be quite

effective, they are lacking in several ways. First, they do not fully address

the issue of player interaction. In many cases, they may seem to, because of

the effort the developers and script writers put into predicting and handling

many possible scenarios, and hard-coding the responses. While this leads to

the desired behavior in the commonly occurring cases, the AI is unable to

adapt to new.situations. Every time the game changes,, as it does often in the

development of any new RTS title, the scripts must be updated and re-tested.

This huge burden on the AI programmers and testers is a downside to expert-

knowledge-based systems. Another downside is that in order to script the AI,

an expert is required. For new games, there is often no expert available on

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the development team, besides the designers of the game (who probably have

better things to do than help script the AI).

In games such as WarCraft 3[1], the AI player has a fixed set of rules that

dictate how it plays the game. For example, it starts out the game by sending

peons to the mine, building an ore burrow and a barracks, and producing three

grunts. It does this every game, with no variation. So another downside of

rule-based systems is the lack of excitement caused by this repetition. Other

games have a slightly better solution. They have a list of many scripts, and

randomly choose among them. This seems to give the illusion that the AI

player is adapting and trying new things, when in reality it is simply choosing

from the large list of scripted plans. Randomness hides repetitiveness, and can

create the illusion of intelligence.

Other examples of expert .knowledge systems include rule-based systems

such as Soar [3]. While more sophisticated than what is (probably) in com­

mercial RTS games, it is still limited by the fact that the rules need to be

■written and maintained by human experts.

3.2 M onte-Carlo Planning

Adversarial planning in imperfect information games with a large number of

move alternatives, stochasticity, and many hidden state attributes is very chal­

lenging. Further complicating the issue is that many games are played with

more than two players. As a result, applying traditional game-tree search

algorithms designed for perfect information games that act on the raw state

representation is infeasible. One way to make look-ahead search more effective

is to abstract the state space. An approach to deal with imperfect information

scenarios is sampling. The technique we present here combines both ideas.

Monte-Carlo sampling has been effective in stochastic and imperfect in­

formation games with alternating moves, such as bridge [17], poker [10], and

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scrabble [27]. Here, we want to apply this technique to the problem of high-

level strategic planning in RTS games. Applying it to lower level planning is

possible as well. The impact of an individual move — such as a unit moving

one square — requires a very deep search to see the consequences of the move.

Doing the search at a higher level of abstraction, where the execution of a plan

becomes a single “move”, allows the program to envision the consequences of

actions much further into the future (see Section 3.2.2).

Monte-Carlo planning (MCPlan) does a stochastic sample of the possible

plans for a player and selects the plan to execute that has the highest statis­

tical outcome. The advantage of this approach is that it reduces the amount

of expert-defined knowledge required. For example, Full Spectrum Command

[7] requires extensive militaiy-strategist-defined plans that the program uses

— essentially forming an expert system. Each plan has to be fully specified,

including identifying the scenarios when the plan is applicable, anticipating

all possible opponent reactions, and the consequences of those reactions. It

is difficult to get an expert’s time to define the plans in precise detail, and

more difficult to invest the time to analyze them to identify weaknesses, omis­

sions, exceptions, etc. MCPlan assumes the existence of a few basic plans

(e.g. explore, attack, move towards a goal) which are application dependent,

and then uses sampling to evaluate them. The search can sample the plans

with different parameters (e.g. where to attack, where to explore) and se­

quences of plans—for both sides. In this section, -we describe MCPlan in an

application-independent manner, leaving the application-dependent nuances

of the algorithm to Section 3.3.

3.2.1 T op-Level Search

The basic high-level view of MCPlan is as follows, with a more formal descrip­

tion given in Figure 3.1:

1. Randomly generate a plan for the AI player.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Simulate randomly-generated plans for both players and execute them,

evaluate the game state at the end of the sequence, and compute how well

the selected plan for the AI player seems to be doing (evaluate.plan,

Section 3.2.3).

3. Record the result of executing the plan for the AI player.

4. Repeat the above as often as possible given the resource constraints.

5. Choose the plan for the AI player that has the best statistical result.

The variables and routines used in Figure 3.1 are described in subsequent

subsections.

The top-level of the algorithm is a search through the generated plans,

looking for the one with the highest evaluation. The problem then becomes

how best to generate and evaluate the plans.

3.2.2 Abstraction

Abstraction is necessary to produce a useful result and maintain an acceptable

run-time. Although this work is discussed in the context of high-level plans,

the implementor is free to choose an appropriate level of abstraction, even

at the level of unit control, if desired. However, since MCPlan relies on the

power of statistical sampling, many data points axe usually needed to get a

statistically meaningful result. For best performance, it is important that the

abstraction level be chosen to make the searches fast and informative.

In Figure 3.1, S ta te represents an abstraction of the current game state.

The level of abstraction is arbitrary, and in simple domains it may even be the

full state.

3.2.3 Evaluation Function

As in traditional game-playing algorithms, at the end of a move sequence an

evaluation function is called to assess how good or bad the state is for the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Plan: contains details about the plan
// For example, a list of actions to take
class Plan {
// returns true if no actions remaining in the plan
bool is_completed();
// [---] (domain specific)

>;

// State: AI’s knowledge of the state of the world
class State -(
// return evaluation of the current state
// (domain specific implementation)
float eval () ;
// C-•-] (domain specific)

>;

// MCPlan Top-Level
Plan MCPlan(

State state, // current state of the world
int num_plans, // number of plans to evaluate
int num_sims, // simulations per evaluation
int max_t) // max time steps per simulation

-C
float best_val = -infinity;
Plan best_plan;

for (int i = 0; i < num_plans; i++) -C
// generate plan using (domain-specific) plan generator
Plan plan = generate.plan(state);
// evaluate using the number of simulations specified
float val = evaluate_plan(plan, state, num_sims, max_t);
// keep plan with the best evaluation
if (val > best_val) {
best_plan = plan;
best_val = val;

>
>
return best_plan; .

>

Figure 3.1: MCPlan: Top-level search

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

side to move. This typically requires expert knowledge although the weight or

importance of each piece of expert knowledge can be evaluated automatically,

for example by using temporal difference learning [30]. For most application

domains, including RTS games, there is no easy way around this dependence on

an expert. Note that, unlike scripted AI which requires a precise specification

and extensive testing to identify omissions, evaluation functions need only give

a heuristic value.

3.2.4 P lan Evaluation

Before we describe the search algorithm in more detail, let us define the key

search parameters. These are variables that may be adjusted to modify the

quality of the search, as well as the run-time required. The meaning of these

parameters will become more clear as the search algorithm is described.

1. max_t: the maximum time, in steps or moves, to look ahead when per­

forming the simulation-based evaluation.

2. num_plans: the total number of plans to randomly generate and evaluate

at the top-level.

3. num_sims: the number of move sequences to be considered for each plan.

The evatluate.planO function is shown in Figure 3.2. Each plan is evaluated

num_sims times. A plan is evaluated using sim ulate_plan() by executing a

series of plans for both sides and then using an evaluation function to assess the

resulting state. In the pseudo-code given, the value of a plan is the minimum

of the sample values (a pessimistic assessment). Other metrics are possible,

such as taking the maximum over all samples, the average of the samples, or a

function of the distribution of values. The best metric is domain-specific, and

could depends on the AI play-style desired. A pessimistic assessment results

in defensive play, with fewer mistakes. Also, in the presented formulation of

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Evaluate Plan Function. Takes minimum of num_sims
11 plan simulations (pessimistic)
float evaluate_plan(Plan plan, State state,

int num_sims, int max_t)
-C
float min = infinity;
for (int i = 0; i < num_sims; i++) {
float val = simulate_plan(plan, state, max_t);
if (val < min) min = val;

>
return min;

>

Figure 3.2: MCPlan: Plan evaluation

MCPlan information about the plan chosen by the player is implicitly leaked

to the opponent. This turns a possible imperfect information scenario into one

of perfect information leading to known problems [16]. We will address this

problem in future work. Here, we restrict ourselves to a simple form which nev­

ertheless may be adequate for many applications. Each data point for a plan

evaluation is done using sim ulate_plan(). A “game” consists of both sides

selecting a plan and then executing it. This is repeated until time runs out.

The resulting state of the game is assessed using the evaluation function. Note

that opponent plans can cause interaction; how this is handled is application

dependent and it is discussed in Section 3.3. The evaluate.p lan () function

calls sim ulate_plan() num_sims times, and takes the minimum value. The

sim ulate_plan() function is shown in Figure 3.3.

3.2.5 Com m ents

MCPlan is similar to the stochastic sampling techniques used for other games.

The fundamental difference — besides obvious semantic ones such as not re­

quiring players to alternate moves — is that the “moves” can be executed at

an abstract level. Abstraction is key to getting the depths of search needed

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Simulate Plan. Perform a single simulation with the given
11 plan and return the resulting state’s evaluation,
float simulate_plan(Plan plan, State state, int max_t) {
State bd_think = state;
Plan plan_think = plan;

// generate a plan for the opponent (domain specific)
Plan opponent_plan = generate_opponent_plan(state);

while (true) -[
// simulate a single time step in the world
// (domain specific)
simulate_plan_step(plan_think, opponent_plan, bd_think);

// check if maximum time steps has been simulated
if (— max_t <= 0) break;

// check if plan has been completed
if (plan_think.is_completed()) break;

// check if the opponent’s plan has been completed
if (opponent_plan.is_completed()) {
// if so, generate a new opponent plan
opponent_plan = generate_opponent_plan(bd_think);

y .
y
return bd_think.eval();

>

Figure 3.3: MCPlan: Plan simulation

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to have long-range vision in RTS games. MCPlan lessens the dependence

on expert-defined knowledge and scripts. Expert knowledge is needed in two

places:

1. P lan definitions. A plan can be as simple or as detailed as one wants. In

our experience, using plan building, blocks is an effective technique. Detailed

plans are usually composed of a series of repeated high-level actions. By

giving MCPlan these building block actions and allowing it to combine them

in random ways, the program can exhibit subtle and creative behaviour.

2. E valuation function . Constructing accurate evaluation functions for

non-trivial domains requires expert knowledge. In the presence of look-ahead

search, however, the quality requirements can often be lessened by considering

the well-known trade-off between search and knowledge. A good example is

chess evaluation functions, which — combined with deep search — lead to

World-class performance, in spite of the fact that the used features have been

created by programmers rather than chess grandmasters. Because RTS games

have much in common with classical games, we expect a similar relationship

between evaluation quality and search effort in this domain, thus mitigating

the dependency on domain experts.

3.3 Capture the Flag

Commercial RTS games are complex. There are many different variations,

some involving many RTS game elements such as resource gathering, technol­

ogy trees, and more. To more thoroughly evaluate our RTS planners, we limit

our tests to a single RTS scenario, capture-the-flag (CTF). Our CTF game

takes place on a symmetric map, with vertical and horizontal walls. The two

forces start at opposing ends of the map. Initially the enemy locations are

unknown.

The enemy flag’s location is known — otherwise much initial exploration

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

would be required. This is consistent with most commercial RTS games, where

the same maps are used repeatedly, and the possible enemy locations are known

in advance.

The rules of our CTF game are relatively simple. Each side starts with

a small fixed number of units, located near a home base (post), and a flag.

Units have a range in which they can attack an opponent. A successful attack

reduces the nearby enemy unit’s hit-points. When a unit’s hit-points drops

to zero, the unit is “dead” and removed from the game.

The objective of CTF is to capture the opponent’s flag. Each unit has the

ability to pick-up or drop the enemy flag. To win the game, the flag must be

picked up, carried, and dropped at the friendly home base. If a unit is killed

while carrying the flag, the flag is dropped at the unit’s location, and can later

be picked up by another unit. A unit cannot pick up its own side’s flag a t any

time, as this would make it too easy to protect the flag.

Terrain is very important to CTF. For most of our tests we keep it simple

and symmetric to avoid bias towards either side. However, even with more

complex terrains, while there may be a bias towards one side, it is expected

that planners that perform better on symmetric maps will also perform better

on complex maps. While CTF does not capture all the elements involved in a

full RTS game — such as economy and army-building — it is a good scenario

for testing planning algorithms. Many of the features of full RTS games are

present in CTF — including scouting and base defense.

Before we discuss how we applied MCPlan to a CTF game we first describe

the simulation software we used.

3.3.1 ORTS

ORTS (Open RTS) is a free software RTS game engine which is being devel­

oped at the University of Alberta and licensed under the GNU General Public

License. The goal of the project is to provide AI researchers and hobbyists

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with an RTS game engine that simplifies the development of AI systems in

the popular commercial RTS game domain. ORTS implements a server-client

architecture that makes it immune to map-revealing client hacks which are

a widespread plague in commercial RTS games. ORTS allows users to con­

nect whatever client software they wish — ranging from distributed RTS game

AI to feature-rich graphics clients. The CTF game which we use for studying

MCPlan performance has been implemented within the ORTS framework. For

more information on the status and development of ORTS we refer readers to

[8] [13]-

3.3.2 CTF Game State Abstraction

In the state representation, the map is broken up into tiles (representing a set

of possible unit locations). Units are located on these tiles, and their positions

are reasoned about in terms of tiles, rather than exact game coordinates. The

state also contains information about the units’ hit-points, as well as locations

of walls and flags.

3.3.3 Evaluation Function

We tried to keep our evaluation function simple and obvious, without relying

on a lot of expert knowledge. The evaluation function for our CTF AI has three

primary components: material, exploration/visibility, and capture/safety. The

first two components are standard to any RTS game. The third component is

specific to our CTF scenario. Without it, the AI would have no way to know

that it was actually playing a CTF game, and it would behave as if it was a

regular battle. In each component the difference of the values for both players

is computed. In the following we briefly give details of the evaluation function.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Material

The most important part of any RTS game is material. In most cases, the

side with the most resources — including military units, buildings, etc. — is

the victor. Thus, maximizing material advantage is a good sub-goal for any

planning AI. This material can later be converted into a decisive advantage

such as having a big enough army to eliminate the enemy base. There is a

question of how to compare healthy units to those with low hit-points. For

example, while it may be clear that two units each with 50% health are better

than one unit with 100% health, which would be better, one unit with 100%

health, or two units with 25% health? While the two units could provide more

firepower, they could also be more quickly killed by the enemy. There are

different situations where the values of these units may be different. For our

tests, we provide a simple solution: each unit provides a bonus of \/0.01 x hp.

The maximum hp (hit-point) value is 100. Thus, each live unit has a value

of between 0.1 and 1. The value for friendly units is added to our evaluation,

and enemy units values are subtracted. Taking the square root prefers states

which — for a constant hit-point total — have a more balanced hit-point

distribution.

Exploration and Visibility

When not doing something of immediate importance, such as fighting, explor­

ing the map is very important. The side with more information has a definite

advantage. Keeping tabs on the enemy, finding out the lay of the land, and

discovering the location of obstacles are all important. The planner cannot

accurately evaluate its plans unless it has a good knowledge of the terrain and

of enemy forces and their locations. The value of information is reflected by

these evaluation function sub-components:

• Exploration bonus: 0.001 x # of explored tiles, and

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Vision bonus: 0.0001 x # visible tiles.

Note that the bonus values can be changed or even learned.

Flag Capture and Safety

To win a CTF game, the opponent’s flag has to be captured.

It is important to encourage the program to go after the enemy’s flag, while

at the same time ensuring that the program’s flag remains safe:

• Bonus for being close to enemy flag: +0.1 per tile,

• Bonus for possession of enemy flag: +1.0,

• Bonus for bringing enemy flag closer to our base: +0.2 per tile, and

• Similar penalties apply if the enemy meets these conditions.

Note that all these heuristic values have been manually timed. Machine learn­

ing would be a way to more reliably set these values.

Combining the Components

The simplest thing to do, and what we do right now, is have constant factors for

adding the three components together. There are exceptions where this is not

the best approach. For example, if we are really close to capturing the enemy

flag, we may choose to ignore the other components, such as exploration. Such

enhancements are left as future work.

Evaluation Function Quality

. We can perform experiments to test the effectiveness of our evaluation function.

For example, we could measure the time it takes to capture, the flag if there

are no enemy units. This removes all tactical situations and focuses on testing

that the evaluation function is correctly geared towards capturing the enemy

flag. Playing the MCPlan AI against a completely random AI also provides

a good initial test of the evaluation function. A random evaluation function

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

would perform on the same level as the random AI, whereas a better evaluation

function would win more often.

3.3.4 P lan Generation

There are two types of plan generation used in this project: random and

scripted. The random plans are simple and are described below. The scripted

plans are slightly more sophisticated, but still quite simple.

Random Plans

A random plan consists of assigning a random nearby destination for each

unit to move to. That is, for each unit, a nearby unoccupied destination

tile is selected. The maximum distance to the destination is determined by

the max_dist variable. The A* pathfinding algorithm is then used to find a

path for each unit. Note that collisions are possible between the units, but

are ignored for planning purposes. We did not implement any group-based

pathfinding, although it is a possible enhancement.

Scripted Plans

We have implemented a small number of action scripts which provide test

opponents for the MCPlan algorithm. As previously mentioned, scripted plans

have many disadvantages — most notably, the need to have an expert define,

refine and test them. However, there is the possibility that given a set of

scripted plans, applying the search and simulation algorithms described in

this paper can result in a stronger player.

3.3.5 P lan Step Simulation

Simulations must be used because when the planner evaluates an action, the

result of that action cannot be perfectly determined because of hidden enemy

units, unknown enemy actions, randomized action effects, etc. Also, as our

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulation acts on an abstracted state description, the computation should be

fast. The plan step simulation function takes the given plans for the friend and

enemy sides and executes one-tile moves for each side. Unit attacks are then

simulated by selecting the nearest opposing unit for each unit, and reducing

its hit-points. The attacks may not match what would happen in the actual

game, due to many reasons. For example, units may seem to be in range but

actually they are not, due to the abstracted distances. Also, in some games,

the attack damage is random, so the damage results may not be exactly the

same as what will happen in the game. However, it is expected that with a

large enough value of num_evals, the final result should be more statistically

accurate.

3.3.6 Other Issues

In this subsection we discuss some implementation issues related to develop­

ing and testing a search/simulation based RTS planning algorithm such as

MCPlan.

Map Generation

It is clear that in performing the tests, map generation is a hard problem.

To produce an unbiased map, the map should be completely symmetric. A

more complex asymmetric map could favor one side. In addition, it is possible

that different types of maps could favour different AIs. For our tests we use a

simple symmetric map, to avoid most of these issues. It is expected — and to

be confirmed — that on more complex and on randomly generated maps, the

conclusions we draw from our experiments should still hold.

Server Synchronization

The tests should be run with server synchronization turned on. This option

tells the ORTS server to wait for replies from both clients before continuing on

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the next turn. In the default mode with synchronization off, the first player

to connect may possibly have an advantage, due to being able to move while

the second player’s process is still initializing its GUI, etc. The server syn­

chronization option eliminates this possible source of bias, as well as reducing

the randomness caused by random network lag.

Interactions and Replanning

As players interact, previous planning may quickly become irrelevant. In many

cases, replanning must occur. Not every interaction should result in replan­

ning. This would result in too frequent replanning, which would slow down

the computation while perhaps not improving the decision quality much. In­

stead, only important interactions should result in replanning. Possible such

interactions are: “a unit is destroyed,” “a unit is discovered,” or “a flag is

picked up.” Note that attacks, while important, happen too frequently and

thus should not trigger replanning.

3.4 Summary

The typical expert-knowledge-based system in current commercial RTS games

places a huge burden on the developers and testers, and is unable to adapt

to new situations. We have described a plan selection algorithm - MCPlan -

which is based on Monte-Carlo sampling, simulations, and replanning. This

reduces the amount of expert-knowledge needed in an RTS planner, and in­

stead relies on computation. A simple CTF scenario is used to demonstrate

MCPlan.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Experiments

In this chapter, we investigate the performance issues of MCPlan on our CTF

game.

4.1 Experimental Design

Each experimental data point consisted of a series of games between two CTF

programs. The experiments were performed on 1.2 GHz PC’s with 1 GB of

RAM. Note that because the experiments were synchronized by the ORTS

server the speed of the computer does not affect the results. Each data point

is based on the results of matching two programs against each other for 200

games. For a given map, two games are played with the programs playing

each side once. A game ends when a flag is captured, or one side has all their

men eliminated. A point is awarded to the winning side. Draws are handled

depending on the type of draw. If the game times out and there is no winner,

then neither side gets a point. If both sides achieve victory at exactly the same

time, then both' sides get a point. The reported win percentage is one side’s

points divided by the total points awarded in that match. In a match with no

draws the total points is equal to the number of games (200).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1: Maps and unit starting positions used in the experiments: m ap 1
(upper left): empty terrain (this is the default), m ap 2: simple terrain with
a couple of walls, m ap 3: complex terrain, m ap 4: complex terrain with
dead-ends, m ap 5: simple terrain with a bottleneck, m ap 6: intermediate
complexity.

4.1.1 M aps

Figure 4.1 shows the maps that have been used in the experiments. Their

dimensions are 20 by 20 tiles. By default each side starts with five men.

4.1.2 Search Param eters

The max_dist parameter is the maximum distance that a unit can move from

its current position in a randomly generated plan. In all these experiments,

the max_dist parameter is set to 6 tiles, unless otherwise stated. The unit’s

sight radius is set to 10 tiles, and unit’s attack range is set to 5 tiles. To reduce

the number of experiments needed, the number of simulations (num_sims) is

set to be equal to the number of plans (num_plans). This makes sense as the

number of simulations is also the number of opponent plans considered.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.3 Players

There axe two opponents tested in these experiments other than the MCPlan

player: Random and Rush-the-Flag. Random is equivalent to MCPlan run­

ning with num-plans = 1. It simply generates and executes a random plan,

using the same plan generator as the MCPlan player. Random is still a rea­

sonable strong player, as it automatically attacks nearby enemy units. Its

strategy is like giving 5 men guns, and telling them to run around randomly,

killing any enemies sighted, and picking up the enemy flag if they happen to

encounter it. In other words, it is still a dangerous opponent.

Rush-the-Flag is a scripted opponent which behaves as follows:

1. If the enemy flag is not yet captured, send all units towards the enemy

flag and attempt to capture it.

2. If the enemy flag is captured, have the flag carrier return home. All

other units follow the flag carrier.

While simple in design, and easily implemented in about 50 lines of code, the

Rush-the-Flag opponent proves to be a strong adversary.

Stand-Still is a scripted opponent which only stands still and attacks

nearby enemy units. As the units initially start in a line formation near the

friendly flag, it is a very defensive player. While it never captures the enemy

flag, it can still win games if the enemy units are all destroyed.

4.1.4 Issues

In order to make sure that there was no first player advantage (or disadvantage)

server synchronization was turned on. In the resulting experiments, the first

player wins very close to 50% the time, as expected.

The evaluation function parameters were hand-tuned to maximize win

percentage and minimize the time it takes to capture the flag and return it,

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

90

JS 30

| 20
1 0 ---

0 4---------- ---
2 vs. 1 4 vs. 2 8 vs. 4 16 vs. 8 32 vs. 16 64 vs. 32

Match-Up (No. Plans)

Figure 4.2: Increasing Number of Plans

with weak or no opposition. The same evaluation function, as described in

chapter 3, is used for all these experiments.

4.2 Results

We now investigate the performance of MCPlan against a variety of opponents

and using different combinations of search parameters.

4.2.1 Increasing Num ber o f Plans

In Figure 4.2, the performance of the MCPlan algorithm on the default map

is evaluated as a function of the number of plans considered. Each data point

represents the result of a player considering p plans playing against one that

considers 2p plans. This results show that the program’s play improves as the

number of plans increases, but with diminishing returns. Eventually, the sam­

ple size is large enough that adding more plans results in marginal performance

improvements, as expected.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

c

2 8 16 321 4
No. Plans

Figure 4.3: Different Number of Units. MCPlan vs. Random

4.2.2 Num ber o f U nits

Figure 4.3 shows the results when the number of units is varied. The results in

the figure are for MCPlan against Random on the default map. As expected,

regardless of the number of units aside, increasing the number of plans im­

proves the performance of the MCPlan player. With a larger number of units

per side, MCPlan wins more often. This is reasonable, as the number of de­

cisions increases with the number of units, and there is more opportunity to

make “smarter” moves.

4.2.3 Different M aps

The previous results were obtained using the same map (empty map, the

default). Do the results change significantly with different terrain? In this

experiment, we repeat the previous matches using a variety of maps. Figure 4.4

shows the results. Note that one map has 7 men aside. The results indicate

that MCPlan is a consistent winner, but the winning percentage depends on

the map. The more complex the map, the better the random player performs.

This is reasonable, since with more walls, there is more uncertainty as to

where enemy units are located. This reduces the accuracy of the MCPlan

player’s simulations. In the tests using the map with a bottleneck (map 5), the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-*-Map1 (5 men)!
-*-Map2 (5 men) i

Map3 (S men) |
-«-Map4 (5 men)
-*-Map3 (7 men)
-*-Map5 (5 men)

Map6 (5 men)

1 2 4 8 16 32
Number of Plans

Figure 4.4: Different Maps. MCPlan vs. Random

90
80
70
60
50
40
30
20
10

£
c
s

100
90

80
70

60
50

40
30

20

10

0
Number of Units

Figure 4.5: Unbalanced Number of Units and Same AI

performance was similar to the tests with simple maps without the bottleneck.

This shows that the simulation is capable of dealing with bottlenecks, at least

in simple cases.

4.2.4 Unbalanced N um ber o f U nits

Figure 4.5 shows that in games with an unbalanced number of units, the side

with more men wins more often. This experiment is with MCPlan versus

MCPlan. The number of plans is set to 8 for both sides. This is a control case

for the next experiment.

Figure 4.6 illustrates the relative performance between MCPlan and Ran-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

c
5

2 16 32 64 1281 4 8
Number of Plans

Figure 4.6: Less Men and Stronger AI vs. Random

dom when Random is given more men. The results show that given a sufficient

number of plans to evaluate, MCPlan with less men and better AI can over­

come Random with more men but a poorer AI. The results suggest that using

MCPlan is strong enough to overcome a significant material advantage pos­

sessed by the weaker AI (Random). The figure shows the impressive result

that 5 units with smart AI defeat 7 units with dumb AI 60% of the time when

choosing between 128 plans.

4.2.5 O ptim izing M ax-D ist

A higher max_dist value results in longer plans, which allows more look-ahead,

as well as a higher number of possible plans. The higher number of possible

plans may increase the number of plans required to find a good plan.

More look-ahead should help performance. However, with too much look­

ahead, noise may become a problem. The noise is due to errors in the simu­

lation — which uses an abstracted game state — and incorrect predictions of

the opponent plan. The longer we need to guess what the opponent will do,

the more likely we are to make an error. So, more simulations are required

to have a good chance of predicting the opponent’s plan or something close

enough to it.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

£e
§

-♦-vs. random, map I
HHvs. rush, map 2

3 5 71

max-dist

Figure 4.7: Optimizing Max-Dist Parameter

In this experiment we vary the max_dist parameter to optimize the win

percentage against the Random opponent on map 1 and the Rush-the-Flag

opponent on map 2 (see Figure 4.7). The planner playing against random

achieves its best performance of 94% at dist=6. Note that although one may

expect MCPlan to score 100% against Random, in practice this will not hap­

pen. A lone unit may unexpectedly encounter a group of enemy units. Once

engaged in a losing battle, it is difficult to retreat, since all units move at

the same speed. The performance of MCPlan vs. Rush-the-Flag becomes

worse as max_dist is increased. This is due to the incorrect predictions of

the opponent plan, as we are generating opponent plans randomly and not

correctly anticipating Rush-the-Flag’s strategy. However, this should be at

least partially handled by increasing the number of plans, as shown in the next

experiment.

4.2.6 Scripted Opponents

R ush-the-F lag Opponent

Figure 4.8 shows MCPlan playing against Rush-the-Flag. The playing

strength of Rush-the-Flag is very map dependent, as it has a fixed strategy.

On the first map, Rush-the-Flag wins nearly every game. Rushing is a near-

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

1 2 8 15 324
Number of Plans

Figure 4.8: MCPlan vs. Rush-the-Flag Opponent

100

2 84 16
Number of Plans

Figure 4.9: MCPlan vs. Stand-Still Opponent

optimal strategy on an empty map. On map 2, where the direct path to the

other side is blocked, Rush-the-Flag is much weaker. MCPlan wins more

than 60% of the time even with num_plans=l. With num_plans=32, MCPlan

wins more them 80% of the time. However, on map 3, where the map is

more complex and all paths to the other side are long, Rush-the-Flag again

becomes a challenging opponent. However, with num_plans=32, MCPlan wins

more than 55% of the games.

Stand—Still Opponent

The Stand-Still opponent is stronger than the completely random opponent

on some maps. In the starting positions, the units are grouped up in a line

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formation and all protecting the flag. On the complex map, since the random

opponent can only approach from the sides, Stand-Still is easily defeated, even

with num_plans=l. However on the simpler maps (1 and 2) where the area

in front of the starting units is open, a random opponent is easily defeated

by Stand-Still (100% of the time). In all cases, as the number of plans is

increased, MCPlan begins to win consistently against Stand-Still, eventually

defeating Stand-Still nearly 100% of the time.

4.2.7 R un-T im e for Experim ents

In order to get more statistically valid results, the experiments were not run

in real-time. Rather, they were run much faster than real-time, about 100

times faster. This allowed us to run more games, resulting in more statistically

meaningful results.

While the run-time depends on the parameters, using typical parameters

(map 2,16 plans, 5 men per side) a 200-game match runs in about 80 minutes

on our test machines. The average time per game is less than 30 seconds.

As the planner re-plans hundreds of times per game, this results in planning

times of a fraction of a second. Note that increasing the number of plans

increases the run-time quadratically, since both the number of friendly plans

and opponent plans is increased.

4.3 Conclusions

The performance of MCPlan has been tested against a few different opponents

and using different combinations of. search parameters. Increasing the number

of plans is shown to improve the program’s play, but with diminishing returns.

Performance is better with a larger number of units and simpler maps. MC­

Plan is able to win consistently against a random player that is given more

units. While these are simple scenarios, MCPlan only takes a fraction of a

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

second to replan, which should allow it to handle more sophisticated RTS

scenarios.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

This thesis has presented preliminary work in the area of sampling-based plan­

ning in RTS games. We have described a plan selection algorithm - MCPlan

- which is based on Monte-Carlo sampling, simulations, and replanning. Ap­

plied to simple CTF scenarios MCPlan has shown promising initial results.

The strength of plans is automatically evaluated, allowing the AI to select the

strongest of a set of plans. This process is automatic and relies on computation

rather than expert knowledge. While the plans used in these experiments were

completely randomly generated, this does not have to be the case. Using MC­

Plan with a set of well-scripted plans should result in an AI that is stronger

than using any individual fixed plan, or randomly selecting a fixed plan. MC­

Plan requires running many simulations to achieve good performance. This

may in some cases be too time consuming, although our experiments do sug­

gest that it is feasible. In some cases a simulator may be difficult to write.

Since RTS games are already simulations, this should not be a problem. To

gauge the true potential of MCPlan we need to compare it against a highly

tuned scripted AI, which was not available at the time of writing. In addi­

tion we need to test MCPlan against human, opponents. We intend to extend

MCPlan in various dimensions and apply it to more complex RTS games.

For instance, it is natural to add knowledge about opponents in the form of

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plans that can be incorporated in the simulation process to exploit possible

weaknesses. Also, the top-level move decision routine of MCPlan should be

enhanced to generate move distributions rather than single moves which is es­

pecially important in imperfect information games. Lastly, applying MCPlan

to bigger RTS game scenarios requires us to consider more efficient sampling

and abstraction methods.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] http://www.blizzcLrd.com.

[2] h t tp : / / www. ensem blestudios. com.

[3] f t p . eecs.um ich. e d u /" so a r/tu to r ia l.h tm l.

[4] f t p : //www. jo y .n e . jp/welcome/igs/Go/computer/mcgo.te x .Z.

[5] http://www.empireearth.com.

[6] h t tp : / / www. ensem blestudios. com /new s/devnews/terrainl. shtml.

[7] h t tp : / / www. i c t .u se . edu/disp.php?bd=proj_games_fscl.

[8] h t tp : / / www. c s .u a lb e r ta . ca/"m buro/orts.

[9] B. Abramson. Expected-outcome: a general model of static evalua­

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,

12:182-193, 1990.

[10] D. Billings, L. Pena, J. Schaeffer, and D. Szafron. Using probabilistic

knowledge and simulation to play poker. In A A A I National Conference,

pages 697-703,1999.

[11] B. Bouzy. Associating domain-dependent knowledge .and Monte Carlo

approaches within a Go program. In Joint Conference on Information

Sciences, pages 505-508, 2003.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.blizzcLrd.com
ftp://ftp.eecs.umich.edu/%22soar/tutorial.html
ftp://www.joy.ne.jp/welcome/igs/Go/computer/mcgo.tex.Z
http://www.empireearth.com

[12] B. Bouzy and B. Helmstetter. Monte Carlo Go developments. In Advances

in Computer Games X , pages 159-174. Kluwer Academic Press, 2003-

[13] M. Buro and T. Furtak. RTS games and real-time AI research. In Pro­

ceedings of the Behavior Representation in Modeling and Simulation Con­

ference (BRIMS), Arlington VA 2004, pages 51-58, 2004.

[14] E. Dybsand. Goal-directed behavior using composite tasks. In Steve

Rabin, editor, A I Game Programming Wisdom 2, pages 237-245. Charles

River Media, 2004.

[15] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application

of theorem proving to problem solving. Artificial Intelligence, 2:189-208,

1971.

[16] I. Frank and D.A. Basin. Search in games with incomplete information: A

case study using bridge card play. Artificial Intelligence, 100(l-2):87-123,

1998.

[17] M. Ginsberg. GIB: Steps toward an expert-level bridge-playing program.

In International Joint Conference on Artificial Intelligence, pages 584-

589, 1999.

[18] M. Grimani. Wall building for RTS games. In Steve Rabin, editor,

A I Game Programming Wisdom 2, pages 425-437. Charles River Media,

2004.

[19] .T . Kent. Multi-tiered AI layers and terrain analysis for RTS games. In

Steve Rabin, editor, A I Game Programming Wisdom 2, pages 447-455.

Charles River Media, 2004.

[20] J. J. Lee. A Simulation-Based Approach fo r Decision Making and Route

Planning. PhD thesis, University of Florida, August 1996.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[21] J. J. Lee and P. A. Fishwick. Real-time simulation-based planning for

computer generated force simulation. Simulation, 63(5):299-315, Novem­

ber 1994.

[22] L. Liden. Strategic and tactical reasoning with waypoints. In Steve Rabin,

editor, A I Game Programming Wisdom, pages 211-220. Charles River

Media, 2002.

[23] J. Orkin. Applying goal-oriented action planning to games. In Steve

Rabin, editor, A I Game Programming Wisdom 2, pages 217-227. Charles

River Media, 2004.

[24] M. Ramsey. Designing a multi-tiered AI framework. In Steve Rabin,

editor, A I Game Programming Wisdom 2, pages 457-466. Charles River

Media, 2004.

[25] S. Russell and P. Norvig. Artificial Intelligence: A Modem Approach.

Prentice-Hall, 2nd edition, 2003.

[26] J. Schaeffer, D. Billings, L. Pena, and D. Szafron. Learning to Play Strong

Poker. In J. Furnkranz and M. Kubat, editors, Machines That Learn To

Play Games, pages 225-242. Nova Science Publishers, 2001.

[27] B. Sheppard. Towards Perfect Play in Scrabble. PhD thesis, University

of Maastricht, 2002.

[28] B. Sheppard. Efficient control of selective simulations. Journal of the

International Computer Games Association, 27(2):67-80, 2004.

[29] S. Shoemaker. Random map generation for strategy games. In Steve

Rabin, editor, A I Game Programming Wisdom 2, pages 405-412. Charles

River Media,* 2004.

[30] R. Sutton and A. Barto. Reinforcement Learning. MIT Press, 1998.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[31] G. Tesauro. Temporal difference learning and TD-Gammon. Communi­

cations of the ACM , 38(3):58-68, 1995.

[32] P. Tozour. Influence mapping. In M. Deloura, editor, Game Programming

Gems 2, pages 287-297. Charles River Media, 2001.

[33] P. Tozour. Using a spatial database for runtime spatial analysis. In Steve

Rabin, editor, A I Game Programming Wisdom 2, pages 381-390. Charles

River Media, 2004.

[34] N. Wallace. Hierarchical planning in dynamic worlds. In Steve Rabin,

editor, A I Game Programming Wisdom 2, pages 229-236. Charles River

Media, 2004.

[35] S. Willmott, J. Richardson, A. Bundy, and J. Levine. Applying adversarial

planning techniques to Go. Theoretical Computer Science, 252(l-2):45-

82, 2001.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

