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Abstract

The main theme of this thesis is the superfluid transition in reduced dimensions

and in anisotropic and inhomogeneous systems. Using state-of-the-art computational

methodology, we carry out large-scale, numerically exact computer simulations to

study this topic, making use of classical and quantum lattice models. In particular,

we investigate the behavior of the specific heat in two-dimensional (2D) superfluids,

using the classical x-y Hamiltonian on the square lattice as a minimal, paradigmatic

model. The specific heat is found to exhibit a well-defined peak in the thermodynamic

limit, at a temperature above the superfluid transition temperature. We then attempt

to explore a possible dimensional crossover in a 2D superfluid in the presence of an

externally imposed density modulation, in the context of the |ψ|4 classical field the-

ory. As the strength of the modulation increases, the physics of the system becomes

more similar to that of the anisotropic x − y model, characterized by a decreased

superfluid transition temperature and an anisotropic response, but with no dimen-

sional crossover. Finally, we examine the phase diagram of lattice hard core bosons

with anisotropic nearest-neighbor interactions that can vary between repulsion and

attraction in different directions. This phase diagram includes a superfluid phase, as

well as two crystalline phases at half-filling, either checkerboard or striped, but no

“supersolid” phase; which is similar to the case of isotropic interactions. Our pre-

dictions appear to be in principle testable experimentally, for example by performing

measurements on thin films of superfluid helium or cold atom assemblies.
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Chapter 1

Introduction

In 1937, one of the most spectacular manifestations of quantum mechanics was dis-

covered, which still drives much fundamental research in condensed matter physics.

This is the phenomenon of superfluidity, namely the ability of a substance to sustain

persistent, dissipation-less flow. It was first observed independently by Kapitza [1],

and by Allen and Misener [2]. Specifically, there is a phase transition in liquid 4He,

occurring at a temperature Tλ ≈ 2.17K at saturated vapor pressure. Above this tem-

perature, 4He (which liquefies at 4.2 K under the pressure of its own vapor) behaves

as an ordinary, viscous fluid, while below Tλ it can flow with essentially no viscosity.

Shortly after the discovery of superfluidity in liquid 4He, Tisza proposed the helpful,

two-fluid phenomenological model [3], which is still widely adopted to interpret the

phenomenology and guide the theoretical study of superfluidity, not just in helium

but in any other superfluid system. According to it, at temperature T < Tλ, liquid

4He comprises two components, namely the normal one, which is viscous, and the

superfluid, which carries no entropy and flows without dissipation. In a translationally

invariant system, the superfluid component dominates and constitutes 100% of the

system in the T → 0 limit. On the other hand, if the system breaks translational

invariance, a finite normal component remains present even T = 0 [4].

The subject of superfluidity (SF) continues to intrigue theorists and experimenters,

first of all for its fundamental importance and its broad relevance to, e.g., supercon-
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ductivity, a topic of great (also potentially applied) interest, but also because there

are still a number of aspects that remain to be elucidated. These include, and are not

limited to, the possible simultaneous presence of SF with structural long-range order

and the evolution of the superfluid properties of a system as its effective dimension-

ality is varied. Indeed, over the past few decades, much progress has been made in

the understanding of how SF manifests itself in reduced dimensions.

In three dimensions (3D), SF occurs alongside Bose-Einstein Condensation (BEC),

a collective phenomenon that is related to a specific type of quantum statistics (Bose)

obeyed by the elementary constituent particles of the system, which have integer spin,

and the relationship between the two phenomena is now well understood [5]; indeed,

experimental evidence shows that the onset of SF is concomitant with that of BEC

in liquid 4He, as the single-particle momentum distribution n(k) displays a δ-like

peak at k = 0, signaling macroscopic occupation of the same (k=0) single-particle

state. Concurrently (and equivalently), the one-body density matrix, which decays

exponentially at temperature above Tλ, at lower temperatures plateaus at a finite

value n◦(T ), known as the condensate fraction (see, for instance, Ref. [6]).

Additional evidence of the connection between BEC and SF comes from supercon-

ductivity in Fermi systems, which is underlain by the formation of (Cooper) pairs

of particles of half-integer spin, which form composite objects of integer spin, obey-

ing Bose statistics and thus undergoing BEC. Indeed, superconductors are essentially

charged superfluid [6]. In 3D, superfluidity is in essence a macroscopic manifestation

of quantum particles behaving collectively as classical complex fields [7]. This be-

havior, which is made possible by Bose statistics, was until recently thought to be

observable only in systems comprising a macroscopically large number of particles

[8–10], but spectroscopy of solvated linear molecules in 4He nano-droplets has shown

that in fact evidence of SF can be obtained even in systems with as few as ∼ 7 4He

atoms [11].

In two dimensions (2D), on the other hand, the theoretical picture is modified, as no
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BEC can occur at any finite temperature [12]. In this case, a superfluid transition can

still occur at a finite temperature TBKT , below which the one-body density matrix

decays algebraically; at T = TBKT , the fraction of the system that is superfluid,

henceforth referred to as ρS(T ), “jumps” to a finite value, in contrast to the 3D

case where it grows smoothly below Tλ. The framework describing theoretically the

superfluid transition in 2D is known as the Berezinskii-Kosterlitz-Thouless (BKT)

formalism [7, 13–16].

Yet another change occurs as the dimensionality is lowered to 1D, in which the low-

energy, long-wavelength dynamics is described by the “universal” harmonic Tomonaga-

Luttinger liquid (TLL) theory [17], making stringent predictions on the behavior of

several observable quantities. For instance, while no true SF can occur at any finite

temperature in the thermodynamic limit, SF manifests itself as a finite-size effect.

According to the TLL theory, the superfluid fraction ρS(L, T ), where L is the linear

size of the system, is a universal function of LT/v, where v is the superfluid velocity.

In this case, the one-body density matrix displays a power-law decay modulated by

oscillations reflecting the atomic nature of the fluid at the microscopic scale [18].

In spite of these differences, the unifying concept of classical complex field allows

one to study some aspects of the superfluid transition in any dimensions by consid-

ering classical field theories, including some that are defined not in continuous space

but on a discrete lattice. For example, a classical planar spin model such as the x-y

can describe many of the thermodynamic properties of the superfluid transition in

3D and 2D, as it is in the same universality class [19] as the corresponding superfluid

systems, even though these obey the laws of quantum mechanics. Without embarking

into a formal discussion of this subject, this is due to the fact a phase transition such

as the superfluid one ultimately involves the onset of long range order (in this case

off-diagonal), which extends over macroscopic distances. In these conditions, quan-

tum, classical, continuous and lattice theories yield the same predictions for aspects

such as the behavior of the order parameter as a function of temperature, the order
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of the phase transition, critical exponents, etc.

Taking advantage of this fundamental theoretical result, we address in this thesis some

aspects of the superfluid transition in reduced dimensions and/or in the presence of

external modulating fields, making use of classical and quantum lattice models. A

major justification for taking this particular route is that relatively new computa-

tional methods are now available, such as the Worm Algorithm in the lattice flow

representation [20], which allow one to investigate with essentially arbitrary accu-

racy general models of classical and quantum statistical mechanics, yielding robust

quantitative predictions valid in the thermodynamic limit. It should be noted that

the study of how a quantum fluid behaves in reduced dimensions is still a topic of

much research, mainly due to recent advancements in technology that allow for the

investigation of new and uncharted areas such as thin films of superfluid helium or

cold atom assemblies.

One of our goals is gaining an understanding of the behavior of the specific heat in a

2D superfluid, which is still poorly understood (this has led to a number of conflicting

and contradictory interpretations of experimental results for 4He films). While in

3D the specific heat displays a sharp peak in correspondence with the superfluid

transition, it is unclear whether such an anomaly occurs in 2D.

Existing theoretical predictions, almost exclusively based on computer simulations

[21, 22] are inconclusive, largely due to the small size of the systems simulated. The

results suggest an anomaly in the specific heat, possibly evolving either into a cusp

[23] or disappearing altogether in the thermodynamic limit and/or at a temperature

different from TBKT . In this work, we have addressed this issue by carrying out

extensive numerical simulations of the 2D classical x-y model based on state-of-the-

art methodology, never utilized before and capable of handling much larger system

sizes than those previously studied. Our main finding is that the position and the

shape of the peak survive in the thermodynamic limit, but the peak does not turn

into a cusp. Rather, it remains a fairly broad anomaly, not signaling the occurrence

4



of any phase transition [24].

We also address the issue of possible dimensional crossover in the presence of

strong external modulating potentials. An interesting theoretical question raised

by these studies is whether it is possible to alter the effective dimensionality of a

superfluid by varying some external parameters and observing how it affects the

system’s behavior [25]. For example, one might think of inducing a dimensional

crossover by superimposing, e.g. to a 2D system, an external modulating potential

of variable amplitude along a specific direction. An experiment along these lines,

feasible with, e.g., current cold atom technology [26–28], should show the system

breaking down into almost independent, quasi-1D stripes (or “tubes”), when the

external potential is strong enough. This could be accompanied by a change in the

system’s dimensionality from 2D to 1D.

We study the possible dimensional crossover in a 2D superfluid in the presence of

an external potential, imparting to the system in just one direction, in the context

of the classical |ψ|4 field theory, which falls in the same universality class of a 2D

superfluid and is a generalization of the x-y model that allows for fluctuations of

the local density of the system. Our main finding is that the system remains 2D in

character, i.e., no dimensional crossover takes place. Overall, we find that the |ψ|4

model in the presence of an external modulation along one direction behaves similarly

to the anisotropic x-y model.

Finally, an intriguing subject attracting a lot of current theoretical and experi-

mental research is centered on the search for an exotic phase of matter, in which

superfluidity and crystalline long-range order coexist in a single homogeneous phase,

called supersolid. More than 50 years ago, Andreev and Lifshitz first suggested the

possibility of a supersolid phase, which would exhibit crystalline order (rigid, or di-

agonal long-range order with broken translation symmetry) and superfluidity [29].

The effort to find this intriguing phase of matter has mainly been directed toward

solid helium, however, new possibilities for its discovery are emerging, particularly in
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the field of cold atom physics. Recently, a valuable understanding of the potential

existence of a supersolid phase has been provided from the investigation of lattice

hard-core bosons [30–38]. This is a minimal model of a strongly interacting system

displaying a superfluid phase at low temperature, as well as a quantum phase tran-

sition between superfluid and crystalline ground states. It is also believed that the

primarily dipolar interaction, i.e., anisotropic interaction, in principle can stabilize

different crystalline and/or superfluid phases, breaking rotational symmetry. More-

over, an interesting theoretical question is raised regarding the significance of the long

range of the interaction in stabilizing specific, exotic thermodynamic phases, e.g., the

supersolid.

In this work, we study the phase diagram of a system of hard-core bosons on

the square lattice, interacting via an anisotropic nearest-neighbor potential, with the

repulsive interaction in one direction and the attractive interaction in the other [39].

We map out the complete finite temperature phase diagram, which is qualitatively

very similar to that of a system of hard-core dipolar bosons with aligned dipole

moments, tilted with respect to the perpendicular to the plane. Our main result is

that no supersolid phase exists in this model, and that long-range interactions do not

bring about any substantially new physics with respect to what can be observed in a

system with short-range interactions only. The computational methodology utilized

in this project is the Worm Algorithm in the lattice path-integral representation

[40, 41], which is a Quantum Monte Carlo (QMC) technique widely regarded as the

method of choice to study equilibrium thermodynamic properties of Bose systems at

a finite temperature.

This thesis is organized as follows: in Chapter 2 we briefly review the methods

utilized to study the systems of interest. Because these methods are extensively de-

scribed in the literature, we only sketch their basic features. In Chapter 3, we discuss

our work on the superfluid transition and the specific heat of the 2D classical x-y

model on the square lattice. In Chapter 4, we present our study of the superfluid
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transition of the classical |ψ|4 field theory in 2D, in the presence of an external poten-

tial, imparting to the system in just one direction. Then, in Chapter 5, we describe

the phase diagram of lattice hard-core bosons with anisotropic interactions. Finally,

our conclusions are outlined in Chapter 6.
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Chapter 2

Methodology

2.1 Classical Worm Algorithms for lattice models

In this section, we briefly review the methodology, which will be used to perform large-

scale computer simulations in Chapters 3 and 4. This is the Worm algorithm (WA)

in high-temperature expansion and the lattice flow representation. This methodology

was first introduced by Nikolay Prokof’ev and Boris Svistunov in 2001 and showed

a fantastic performance; in particular, it has been demonstrated not to suffer from

the well-known “critical slowing down” that affects existing local update schemes,

while at the same time retaining their simplicity, i.e., not requiring the complexity of

cluster updates [20].

We provide here a brief illustration of the classical worm algorithm, using the |ψ|4

model on the square lattice as a simple example, which is however general enough

to encompass all of the cases studied in this work. Considering a square lattice of

N = L× L sites, the Hamiltonian of this model is expressed as follows:

H = −t
∑︂
⟨ij⟩

[ψ∗
iψj + ψiψ

∗
j ]− c

∑︂
i

|ψi|2 +
U

2

∑︂
i

|ψi|4 (2.1)

where ψi is a complex variable at lattice site i, t is the particle hopping energy between

the nearest neighbor sites, c is the chemical potential, and U is an on-site interaction

between particles.
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The partition function of this model reads1

Z =

∫︂
dψ1 dψ1 ... dψN e−H/T (2.2)

On expanding the exponentials associated with the first two terms of Equation (2.1)

into series one can write

Z =
∑︂

{nb,mb}

(︄∏︂
b

(t/T )nb+mb

nb!mb!

)︄∏︂
i

(︃∫︂
dψi ψ

pi
i (ψ∗

i )
ri e−(U/2T )|ψi|4+(c/T )|ψi|2

)︃
(2.3)

where nb (mb) are powers pertaining to a specific (i, j) bond (indicated by b), the first

product is over all bonds, and pi, ri are the sum of all powers associated to bonds

that include the site i. We can now express the integrals in Equation (2.3) over the

complex fields in polar coordinates, i.e.,∫︂
dψ ψp (ψ∗)r e−(U/2T )|ψ|4+(c/T )|ψ|2 =∫︂
d|ψ||ψ|p+r+1e−(U/2T )|ψ|4+(c/T )|ψ|2

∫︂
dϕ eiϕ(p−r)

(2.4)

It is obvious that the phase integral in Eq. (2.4) is only non-zero when p = r; this

means that the sum in Equation (2.3) only includes terms for which the powers nb, mb

add up to the same value for each lattice site. This suggests a graphical representation

of Equation (2.3), in which the term (ψ∗
iψj) (corresponding to the hopping of a particle

from site i to site j) can be associated with a directed arrow → from site i to site j,

and the term (ψiψ
∗
j ) can be associated with the opposite arrow ←. These directed

arrows are called currents. Thus, pi (ri) is the net incoming (outgoing) current at site

i, and the partition function extends over all current loops such that the net current

at each site is zero.

If the configuration space of the model can be seen as the set of all possible closed

loops, then the process of generating these oriented loops corresponds to drawing

with a pencil along the bonds of a square lattice, without ever detaching the tip of

the pencil from the sheet, until one closes the loop.

1We set the Boltzmann constant kB = 1 throughout this whole document
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Because p = r, Equation (2.4) can be written as a function of p:

Q(p) =

∫︂ ∞

−∞
dx x2p+1e−(U/2T )x4+(c/T )x2 (2.5)

The weight of a configuration can be written as follows:

W ({nb,mb}) =
∏︂
b

(︃
(t/T )nb+mb

nb!mb!

)︃∏︂
i

Q(pi) (2.6)

The partition function now becomes:

Z =
∑︂

W ({nb,mb}) (2.7)

with the sum runs over closed directed loops. Therefore, the partition function Z

(2.7) can be sampled according to the weight function W ({nb,mb}) in a closed-loop

configuration in which it is distributed. The procedure to sample random configura-

tions defined in this way, suitable to evaluate thermodynamic averages statistically, is

very simple, and is described in Ref. [20]. The computer codes utilized in this thesis

work were written by me, based on those prescriptions.

Consider now some estimators of interest. First, the thermal average of the energy

is given by

⟨E⟩ = − 1

Z

∂Z

∂( 1
T
)
= −T ⟨nb +mb⟩ (2.8)

We also have:

⟨E2⟩ = 1

Z

∂2Z

∂( 1
T
)2

= T 2⟨(nb +mb)
2 − (nb +mb)⟩ (2.9)

Using Equations (2.8) and (2.9), we can derive the specific heat:

C =
1

T 2
(⟨E2⟩ − ⟨E⟩2) = ⟨(nb +mb)

2 − (nb +mb)⟩ − ⟨nb +mb⟩2 (2.10)

Another important estimator that we consider is the superfluid density ρS. In a

classical field theory, this quantity is equivalent to the helicity modulus [19], which is

related to the change in the free energy of the system per unit length due to a shift

applied to the phases along either direction. This allows one to obtain an estimator
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for the superfluid density known as the winding number Mx [42], which counts the

number of times single-particle paths “wrap” around periodic boundary conditions:

Mx = L−1
x

∑︂
b=(i,x̂)

(nb −mb) (2.11)

Within the scheme described above for the classical field theory of interest here,

the estimator of the superfluid density is expressed as follows:

ρS =
T

t

L2−d

d
⟨M2⟩ (2.12)

where d is the dimensionality, and L is the linear size of the system.

Finally, we can also compute the correlation function

g(l,m) = ⟨ψ∗
l ψm⟩ (2.13)

This quantity can be shown [20] to be obtained as a “by-product” of the scheme that

generates configurations of closed loops, which, as mentioned above, are those that

contribute to the partition function. On the other hand, one can also consider inter-

mediate configurations, with one open loop, in which there exist two “dangling” ends.

These configurations contribute to the correlation function given by Equation (2.13),

which is obtained simply by histogramming the frequency with which the two dan-

gling ends are at a distance l−m, in the course of the simulation (obviously, for any

system that is isotropic and translationally invariant, g(l,m) ≡ g(|l −m|)).

The above methodology is quite general, and the formulation based on the |ψ|4 field

theory can be straightforwardly shown to encompass a broad array of similar lattice

models. One of these is the x-y model, which is the subject of one of the projects

described in this thesis, and which is a limiting case of the |ψ|4 theory, approached

when U = c→∞.

2.2 Worm Algorithm for lattice bosons

In this section, the methodology utilized to investigate the phase diagram of a system

of hard core bosons in Chapter 5 is briefly reviewed. This is the Worm Algorithm in

11



the lattice path-integral representation [40], specifically its implementation described

in Ref. [41]. Just like for the above case, we begin by introducing a paradigmatic

Hamiltonian, specifically that of the Bose-Hubbard Model:

Ĥ = T̂ + V̂ , with T̂ = −t
∑︂
⟨ij⟩

(b̂
†
i b̂j + h.c.), V̂ = U

∑︂
i

n̂2
i (2.14)

Just like for Equation (2.1), the sum
∑︁

⟨ij⟩ runs over all pairs of nearest-neighboring

sites of a lattice (for simplicity assumed square), t is a nearest-neighboring particle

hopping integral and U is the on-site interaction between particles; the operator b̂
†
i (b̂i)

is the standard Bose creation (annihilation) operator at lattice site i, and n̂i ≡ b̂
†
i b̂i is

the number operator.

The similarity between Equation (2.14) and Equation (2.1) is evident, and certainly

not accidental. Indeed, it can be shown that Equation (2.1) is the classical limit of

Equation (2.19), approached when ⟨n̂i⟩ >> 1, ⟨..⟩ standing for thermal average.

For a physical system in thermal equilibrium at temperature T , the thermal average

of an observable, represented by a quantum-mechanical operator Ô, can be determined

as

⟨Ô⟩ = Tr{Ôρ̂}
Tr{ρ̂}

(2.15)

Here, we assume to be in the grand canonical ensemble, in which the total number

N of particles can fluctuate around a mean. Thus, ρ̂ = e−βK̂ , with β ≡ (1/T ),

K̂ = Ĥ −µN̂ is the “Grand Canonical” Hamiltonian and µ is the chemical potential.

The Grand Canonical partition function Ξ reads

Ξ = Tr{ρ̂} =
∞∑︂
N=0

eβµNZN (2.16)

in which ZN is the Canonical partition function for the sector of configurations with

N particles, i.e.,

ZN = Tr{ρ̂N} =
∑︂
c

⟨c|ρ̂N |c⟩ (2.17)

with ρ̂N = e−βĤ , and |c⟩ ≡ |{ni}⟩ is a generic basis state in the site occupation

representation (with
∑︁

i ni = N).
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Following the same approach that leads to Dyson’s series solution of the time-

dependent2 Schrödinger’s equation [43], we consider the off-diagonal operator T̂ as a

“perturbation”, and V̂ as the “unperturbed” Hamiltonian. As a result, ρ̂N can be

expressed as follows:

ρ̂N = e−βĤ = e−βV̂ T̂ exp

[︄
−
∫︂ β

0

T̂ (τ)dτ

]︄
(2.18)

where T̂ (τ) = eτV̂ T̂ e−τV̂ , and T̂ is the time-ordering operator, i.e.,

T̂ exp

[︄
−
∫︂ β

0

T̂ (τ)dτ

]︄
= 1−

∫︂ β

0

T̂ (τ)dτ +

∫︂ β

0

dτ1

∫︂ τ1

0

dτ2T̂ (τ1)T̂ (τ2)− ...

=
∞∑︂
n=0

(−1)n
∫︂ β

0

dτ1

∫︂ τ1

0

dτ2...

∫︂ τn−1

0

dτn T̂ (τ1)...T̂ (τn)

(2.19)

Now the canonical partition function (2.17) can be written as:

ZN = Tr e−βV̂
∞∑︂
n=0

∫︂ β

0

dτ1

∫︂ τ1

0

dτ2...

∫︂ τn−1

0

dτnT̂ (τ1)...T̂ (τn)

=
∑︂
c

⟨c|e−βV̂
∞∑︂
n=0

∫︂ β

0

dτ1

∫︂ τ1

0

dτ2...

∫︂ τn−1

0

dτnT̂ (τ1)...T̂ (τn)|c⟩

=
∑︂

{c0,...,cn−1}

⟨c0|T̂ |cn−1⟩⟨cn−1|T̂ |cn−2⟩...⟨c1|T̂ |c0 ≡ cn⟩ ×
∫︂ β

0

dτ1

∫︂ τ1

0

dτ2

...

∫︂ τn−1

0

dτne
−(β−τ1)V̂ (c1)e−(τ1−τ2)V̂ (c2)...e−(τn−2−τn−1)V̂ (cn−1)e−τn−1V̂ (c0)

(2.20)

where we have inserted sums over complete sets,
∑︁

c |c⟩⟨c| = 1, between all of the

operators T̂ . Because we are determining the trace, the constraint c0 ≡ cn must be

satisfied. Since hopping terms in T̂ vary the state by moving only one particle to

a nearest-neighbor site, the sequence of matrix elements in T̂ can be identified by

specifying the “imaginary time trajectory” of occupation numbers {ni(τ)}. Hence,

the canonical partition function ZN can be considered as a sum over all possible paths

{ni(τ)} satisfying ni(β) = ni(0), i.e.,

ZN =
∞∑︂
n=0

∫︂ β

0

dτ1

∫︂ τ1

0

dτ2...

∫︂ τn−1

0

dτn
∑︂

{ni(τ)}

Wn({ni(τ)}) (2.21)

2It should be noted that βℏ has units of time, and therefore is often referred to as “imaginary

time”, in analogy with the time evolution operator e−iĤt/ℏ.
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where Wn({ni(τ)}) is the weight of a generic configuration, which reads:

Wn({ni(τ)}) = (βt)n exp

[︄
−
∫︂ β

τ=0

dτV̂ {c(τ)}

]︄
(2.22)

Figure 2.1: An example of world line representation for a one-dimensional system.

Because of the particle number conservation, the many-body trajectory can be

decomposed into a set of closed (in the time direction) single-particle trajectories, or

world lines. Indeed, the contribution of order n is represented by n “kinks” (hopping

events) occurring at different times, and integral over all many-particle paths features

an arbitrary number of “kinks”.

Therefore, the canonical partition function ZN (2.21) can be sampled by sampling

closed paths with arbitrary numbers of “kinks” at varying consecutive ordered times

according to the weight function Wn({ni(τ)}). This sampling procedure is graph-

ically very similar to that of the classical field theory described above. Moreover,

one can vary the number of particles inserting or deleting particles with probability

proportional to e±βµ.

The procedure to sample random configurations defined in this way, suitable to

evaluate thermodynamic averages statistically, is described in Ref. [40, 41]. The
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computer code utilized in this thesis work was provided by Lode Pollet [41].

The physical quantities of interest are the superfluid density ρS (which is computed

by Equation (2.12)), and the static structure factor S(Q), which for a square lattice

of L× L sites is defined as

S(Q) =
1

L4

⟨︃⃓⃓⃓⃓ L2∑︂
i=1

n̂i e
iQ·ri

⃓⃓⃓⃓2⟩︃
(2.23)

If the physical system features crystal order, the quantity S(Q) displays (Bragg) peaks

at reciprocal lattice vectors Q. It therefore allows us to distinguish a crystalline phase

versus one that does not possess density long-range order.
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Chapter 3

Superfluid transition and specific
heat of the 2D x -y model

In this chapter, we present our study on the behavior of the superfluid transition and

the specific heat of the 2D classical x-y model on the square lattice [24].

3.1 Introduction

The two-dimensional classical x-y model is the simplest model to display a Kosterlitz-

Thouless (KT) transition [7, 14–16]. Also falling in the KT universality class, the

superfluid phase transition in two dimensions (2D) is the focus of continuing ex-

perimental and theoretical research, particularly in the setting of thin films of 4He

adsorbed on a wide variety of substrates [44–49]. The x-y model is studied theoret-

ically, often using computer simulations, in order to determine whether a particular

physical system being studied belongs to the same universality class as described by

the KT paradigm, and to predict the behavior of other systems that have not yet

been explored [50–53]. Decades of computer simulation studies of the 2D x-y model,

conducted on square lattices as large as L = 216 [54], have been used to accurately

estimate the temperature at which superfluidity occurs (Tc) and the critical exponents

related to the transition [22, 23, 54–60].

The behavior of the specific heat has received less attention, which exhibits an

anomaly at a temperature ∼ 17% above Tc in numerical simulations of the x-y model
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on square lattices of size L = 28 [22]. Although the size of the simulated lattice

appears to have little influence on the peak’s position, to our knowledge, no systematic

research has been done to determine whether or not such an anomaly exists in the

thermodynamic limit and where exactly it is. There have been also speculations that

the peak’s width may shrink in the thermodynamic limit and the peak itself might

turn into a cusp [23]. Such an anomaly does not seem to indicate the occurrence of any

phase transition, and there is currently no agreement on the physical interpretation of

it. Interestingly, experiments on 4He monolayers [61], as well as computer simulations

[62] (including of 2D 4He [21]) have also yielded evidence of a peak in the specific

heat at temperature above the superfluid transition temperature.

As far as we know, no additional studies of the specific heat have been conducted to

examine how the temperature of the peak shifts and how the overall shape of the curve

changes as the lattice size increases, beyond that of Ref. [22]. One reason for the lack

of further study in this area is that calculating the specific heat using direct numerical

(Monte Carlo) simulations can be prone to significant statistical uncertainty due to

the inherent “noisiness” of current specific heat estimators. However, in the almost

three decades since the publication of Ref. [22], there have been significant advances

in both computing power and simulation techniques that may make it more feasible

to conduct more accurate and efficient simulations. It would be useful to reconsider

this topic, which has the potential to be relevant to experiments, as the x-y model

is sometimes used to explain measurements of the specific heat of thin films of 4He,

and also to make predictions in the same context [52, 53].

In this chapter, the simulations on square lattices of size up to L = 212 are carried

out. The main goal of our research is to thoroughly examine the specific heat and

provide reliable information about how it behaves in the thermodynamic limit. To

confirm the validity of our study, we also calculated the superfluid transition tem-

perature and spin correlations, and compared them to the most recent theoretical

estimates. Our calculation of Tc agrees with the most accurate published result to

17



date, which is found in Ref. [54]. Our numerical results provide strong evidence that

the specific heat anomaly exists in the thermodynamic limit and its shape remains

essentially unchanged with respect to that on a lattice of size L = 28. We estimate

the position of the peak of the specific heat in the thermodynamic limit to be at

temperature 1.043(4) (in units of the coupling constant).

The remainder of this chapter is organized as follows: in Section 3.2 we describe

the model of the system. In Section 3.3 we present and discuss our results, and we

finally outline our conclusions in Section 3.4.

3.2 Model

The Hamiltonian of the classical x-y model is given by

H = −J
∑︂
⟨ij⟩

si · sj (3.1)

The sum in this equation is over all pairs of nearest-neighboring sites, and si ≡

s(cos θi, sin θi) represents a classical spin variable associated with site i. The equation

is considering a square lattice of N = L×L sites with periodic boundary conditions.

For the purposes of this work, the energy and temperature are expressed in units of

Js2. To study the behavior of the model at low temperatures, we use classical Monte

Carlo simulations, a method that is described in detail in Ref. [20]. The details of

our calculations are standard.

As previously mentioned, a significant aspect of this research involves examining

the superfluid transition in order to compare our results with those of other studies

and assess the accuracy of our methodology. We determine the superfluid transition

temperature Tc using two different ways. The first consists of computing the superfluid

fraction ρs(L, T ) on a lattice of size L, as a function of temperature, using the well-

known winding number estimator [42]. We then determine a size-dependent transition
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temperature Tc(L) based on the universal jump condition [63]

ρs(L, Tc) = fr
2Tc
π

(3.2)

where fr = 1− 16πe−4π [64]. Equation (3.2) can be used to obtain an estimate of the

transition temperature (Tc(L)) on a lattice of finite size. In order to extrapolate the

value of Tc(L) to the thermodynamic (L → ∞) limit (referred to as Tc), we fit the

results for Tc(L), obtained for different system sizes to the expression [65]:

Tc(L) = Tc +
a

(lnbL)2
(3.3)

where a, b are constant. It should be noted that other expressions have been proposed,

aimed at extracting Tc [60]; we will address this issue further when discussing the

results of our study.

It is also possible to determine the superfluid transition temperature by analyzing

the behavior of the spin correlation function [66], particularly the way in which the

correlation length ξ diverges as T → Tc, namely [7, 14, 15]:

ξ(T ) ∼ A e
c√
t (3.4)

where A, c are constant (c ≈ 1.5 [66]), and t = (T−Tc)
Tc

is the reduced temperature.

The correlation length ξ(T ) at a temperature above the critical temperature Tc, can

be found using a simple fitting procedure on the computed correlation function, illus-

trated in Ref. [55]. Using the best fit to Equation (3.4), an estimate of Tc is obtained;

as the size of the system increases, the estimated Tc becomes more accurate. The

estimates of Tc obtained using the two methods described above are consistent within

their statistical uncertainties, but the first method, which relies on the universal jump

of the superfluid fraction, gives a more precise determination of Tc.

Moreover, we calculate the specific heat (i.e., the heat capacity per site) through

the direct estimator of the heat capacity [67], based on the mean-squared fluctuations

of the total energy E:

C =
1

L2
β2(⟨E2⟩ − ⟨E⟩2), (3.5)
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where β = 1/T is the inverse temperature. This estimator is numerically “noisy”,

and because of this, it is common to use numerical differentiation of the energy values

with respect to temperature as an alternative [55]. However, in our case, accurate

estimates of the specific heat can be obtained reasonably using Equation (3.5), thanks

to the available computing facilities and the methodology adopted.

3.3 Results
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 L = 5 1 2
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 L = 2 0 4 8
 L = 4 0 9 6

ρ s

T

Figure 3.1: The superfluid fraction ρs versus temperature, for the different lattice
sizes considered. Statistical errors are smaller than symbol sizes. The straight line
corresponds to the universal jump condition (right hand side of Equation (3.2))

We start by showing how the superfluid fraction varies with temperature for differ-

ent lattice sizes, and then we discuss how we determined the transition temperature

and compare it to those found in other studies. Figure 3.1 shows the computed value
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Figure 3.2: The critical temperature Tc(L) versus the system size L. Solid line is a
fit to the data using Equation (3.3).

of ρs(L, T ); the critical temperature Tc(L) for a given system size is determined by

the universal jump condition, namely the intersection of the ρs(L, T ) curve with the

straight line given by the right-hand side of Equation (3.2). To estimate the inter-

section point, we draw a straight line between the two adjacent values of ρs(L, T )

that we can be confident the intersection occurs within, based on the accuracy of our

calculation.

As expected, both Tc(L) and ρs(L, Tc(L)) gradually decrease as L increases. In

order to extrapolate the value of Tc in the thermodynamic (L → ∞) limit, we use

Equation (3.3) to fit the calculated Tc(L), as proposed in Ref. [54]. This procedure is

illustrated in Figure 3.2. According to our calculations, the value of Tc is 0.8935(5).

This result is in agreement with the value from another study, Ref. [54], which

is 0.89289(5). Despite the fact that the uncertainty in their value is much smaller

than ours, their system sizes were significantly larger (16 times larger), which could

21



account for the difference in uncertainty. Our estimate of Tc also agrees exactly with

a more recent study, Ref. [60], which used the same computational method as ours

and examined the same system sizes. The precision of their results is similar to ours.

While they used a different, more complex fitting form for Tc(L), their final estimate

for Tc is consistent with ours and has the same level of uncertainty.

Figure 3.3: The correlation length ξ as a function of the temperature, for a system
of size L = 4096. The solid line is a fit to the data using expression (Equation (3.4)).
Inset shows the computed spin correlation function G(r) for a temperature T = 0.96.

As mentioned in Section 3.2, as a way to verify our results, we also estimated the

critical temperature Tc by independently analyzing the spin correlation length. To

determine Tc using the spin correlation function, we first extract the temperature-

dependent correlation length ξ(T ) and then fit the results to Equation (3.4). This

process gives us an estimate of Tc for a particular system size. An example of this

procedure is shown in Figure 3.3, for the largest system size considered here, which

is the one that gives us the most precise estimate of Tc. Such an estimate, namely
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0.893(3), is in agreement with the estimate obtained from the superfluid fraction, but

it is considerably less precise.
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Figure 3.4: The specific heat C versus the temperature T for different lattice sizes.
The inset shows the position of the peak as a function of lattice size.

Since our result for Tc gives us confidence in the reliability of our data and sim-

ulation, we now discuss the main focus of this chapter, which is the behavior of the

specific heat C(T ). It is worth mentioning that earlier numerical studies of the 2D

x-y model [22, 55] have only produced results for the specific heat C(T ) for square

lattices with sizes up to L = 256. Such studies yielded evidence of a peak in the spe-

cific heat at a temperature above Tc; the position of this peak depends fairly strongly

on system size for L ≤ 128. However, the shape of C(T ) seems to change little when

going from L = 128 to L = 256, which suggests that the anomaly may be a real

characteristic of the model rather than an artifact of numerical simulations on finite
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systems of small size.

Our results for the specific heat for the various system sizes are presented in Fig-

ure 3.4, in which the curve indeed appears to stabilize for L > 256. The position of the

peak is shown in the inset of Figure 3.4, which, within the statistical uncertainties of

our calculation, is independent of system size. Our best estimate of the peak position

is TP = 1.043(4) = 1.167(1) Tc. The height of the peak is approximately 1.45. Over-

all, our simulations, which quantify the specific heat anomaly on lattices significantly

larger than those in previous studies, have found that the peak occurs at a slightly

higher temperature and is slightly shorter in height. However, the existence of the

anomaly, its general shape, the fact that it stays broad (i.e., it doesn’t become a cusp

in the thermodynamic limit), and the fact that it occurs at a different temperature

than the superfluid transition, can all be considered well-established at this point. It

is worth noting that the presence of such an anomaly has been theoretically predicted

by different methods, and the results of these predictions agree quantitatively with

those of Monte Carlo simulations [68].

3.4 Conclusions

To summarize, we have performed extensive Monte Carlo simulations of the 2D x-y

model using the Worm Algorithm. The main goals of our study were to evaluate the

effectiveness of the methodology and to confirm existing theoretical results for the

specific heat. We simulated the model on lattices with a linear size up to L = 4096,

and obtained results for the superfluid transition temperature that are as accurate

as those from the most recent numerical simulations, using standard computational

resources. For the specific heat, the largest system size for which we report results

is 16 times greater than that for which Monte Carlo estimates have been published.

Our results confirm the existence of an anomaly in the specific heat, specifically a

peak, that occurs at a temperature around ∼ 17% higher than the superfluid tran-

sition temperature. It is interesting to compare this to 2D 4He, for which computer
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simulations [21] have shown that the peak in the specific heat is located at T ∼ 1.6 Tc.

It has been suggested [55, 69, 70] that the temperature dependence of the specific

heat is related to that of the vortex density above the critical temperature. If this is

the case, one might expect to see a similar specific heat anomaly in physical systems

such as atomically thin 4He films, which are close to the 2D limit and exhibit superfluid

transitions that conform to the KT paradigm. This anomaly would not be a sign of a

phase transition. This may also assist in interpreting specific heat data for 4He films

adsorbed on graphite, where similar features (peaks) are often taken as evidence of

phase transitions (e.g., melting of commensurate solid phases, as seen in Ref. [62]).
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Chapter 4

Uniaxial modulation and the
Berezinskii-Kosterlitz-Thouless
transition

In this chapter, we discuss our work on the superfluid transition of the classical |ψ|4

field theory in 2D, while an external potential is applied in just one direction [71].

4.1 Introduction

The behavior of a quantum fluid in low dimensions is still an attractive topic of

ongoing research, particularly due to recent experimental advances that enable the

investigation of substances such as superfluid helium films and cold atom assemblies

in novel, yet unexplored settings. In three dimensions (3D), a Bose fluid exhibits

the superfluid transition at the critical temperature Tc, as well as the onset of Bose-

Einstein condensation, characterized by the emergence of off-diagonal long range order

(ODLRO) [5, 72].

By contrast, the two-dimensional (2D) superfluid phase does not show true ODLRO

at any finite temperature, instead it presents a slow (power law) decay of spatial cor-

relations. In this case, the superfluid transition is featured by the so-called “universal

jump” of the superfluid fraction ρs(T ) as a function of temperature, from zero to a

finite value as Tc is approached from above [63, 73, 74]. The theory behind the su-

perfluid transition in 2D is explained by the Berezinskii-Kosterlitz-Thouless (BKT)
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general framework [7, 13, 14].

A different approach is needed when the system is limited to just one dimension

(1D), for in that case, the Tomonaga-Luttinger liquid (TLL) theory can fully explain

the behavior of its low-lying excitations and its ensuing thermodynamic properties

[17]. Strictly speaking, a 1D system does not have a true superfluid phase in the

thermodynamic limit (i.e., L → ∞, L being the system size), however, the concept

of “superfluidity” can still be applied to a 1D system as a well understood and char-

acterized finite-size effect, i.e., ρs(L, T ) is a universal function of LT [17, 75, 76]. It

is important to keep in mind that while in principle, it is impossible to sustain a

superfluid current (i.e., indefinitely long-lived) in 1D, the physical mechanism that

leads to current decay in 1D, namely phase slips [9, 77–80], can be strongly sup-

pressed at low temperature, to the point where a current-carrying state in 1D and

a 3D superfluid have no practical experimental difference [81]. Moreover, there exist

theoretical scenarios where a network of interconnected quasi-1D channels could form

a 3D superflow [82, 83].

The existence of the BKT transition has been verified experimentally in various

physical settings, including superfluid (4He) [44–47, 49, 84] and superconducting [85]

thin films, Josephson junction arrays [86] and, relatively more recently, cold atom

assemblies [87–90]. In an attempt to observe Luttinger liquid behavior, several ex-

perimental approaches have been carried out to confine quantum fluids such as 4He

in (quasi) 1D. Particularly, the most promising approach, which has been vigorously

pursued, is absorbing helium gas inside elongated cavities of nanometer size diameter,

such as those that exist in a variety of porous glasses [91–96], or nanoholes in Si3N4

membranes [97], as well as carbon nanostructures [98, 99].

The surprising degree of control achieved on a variety of relevant systems enables

one to raise fundamental theoretical questions on the behavior of superfluids in low

dimensions and make predictions that can be verified in actual experiments. One such

question is the possibility of changing the effective dimensionality of a superfluid by
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adjusting an external parameter and detecting the resulting change in the system’s

behavior as described by the above-mentioned, different theoretical frameworks [25].

In order to explore some of these issues, some studies have been accomplished in the

context of dipolar assemblies of cold atoms or molecules, which can create 3D parallel

stripes (elongated droplets in finite systems) [100, 101] whose collective behavior can

imitate that of a 2D cluster crystal [102, 103].

But even if interactions among the constituent particles are isotropic, a scenario,

in which a dimensional crossover may occur, can be studied by superimposing, e.g.

to a quasi-2D Bose gas, an external modulating potential of variable amplitude along

a specific direction. In this setup, which can be done using current experimental

technology for cold atoms [26–28], there should be an observation of the breakdown

of the system into nearly independent, quasi-1D stripes (or “tubes”), in the presence

of the sufficiently large external potential. This breakdown is conceivably concomitant

with a change in the physical behavior of the system, indicating an effective change of

dimensionality, from 2D to 1D. This behavior would enable the imitation of quasi 1D

systems with nontrivial topology such as, for instance, junctions and/or networks of

1D channels [18, 104–107], by using pertinent modulating potentials. Additionally, it

would also create a tunable and controlled environment to study the physics related

to the topological Kondo effect [108–114].

In order to identify such a possible dimensional crossover, we address this scenario

theoretically within the framework of the classical |ψ|4 lattice field theory using means

of large-scale numerical (Monte Carlo) simulations. This is an ideal choice because

even though this model oversimplifies the system of interest, it still includes all the

physical aspects that we wish to explore, i.e., it can exhibit a BKT superfluid transi-

tion while allowing for an externally-induced density modulation, expressed through

a locally varying chemical potential.

Our main finding is that no dimensional crossover can be established by the uniaxial

external modulation for any finite value of the amplitude of the modulation. Rather,
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since the system develops quasi-1D parallel stripes in the direction perpendicular to

that of the modulation, it behaves very similarly to the classical anisotropic x-y model,

i.e., with different coupling along the two directions. In particular, the superfluid

transition temperature Tc is suppressed due to the effect of increasing the modulation

amplitude, while the anisotropy of the superfluid response can be understood as a

change of length scale in one of the two directions.

The remainder of this chapter is organized as follows: in Section 4.2 we describe the

model of interest; in Section 4.3 we present our results, and outline our conclusions

in Section 4.4.

4.2 Model

The Hamiltonian of the classical |ψ|4 field theory is given by

H = −t
∑︂
⟨rr′⟩

(ψrψ
⋆
r′ + ψ⋆rψr′) +

∑︂
r

(︃
U

2
n2
r − µrnr

)︃
(4.1)

This Hamiltonian is considering a square lattice of L × L sites (L even), with

periodic boundary conditions in both directions; r ≡ (lx, ly) is the position of a generic

lattice site, with lx, ly integers, 1 ≤ lx(y) ≤ L. While the first sum just runs over all

pairs of nearest-neighboring sites, the second sum runs over all sites of the lattice. ψr

is a complex-valued field defined at site r and nr = |ψr|2 is the corresponding density

of particles. The parameter t stands for particle-hopping energy, which is taken as the

energy unit and set equal to one. The parameter U (assumed positive in this work)

represents the specific energy of interaction of particles occupying the same site (also

called the on-site interaction). On the other hand, µr is a (site-dependent) chemical

potential, which we assume of the following form

µr = V0 + V1 cos

(︃
2πmly
L

)︃
(4.2)

µr indicates an external potential, which is applied along the y-direction and has

amplitude V1. m is an integer number ranging from 1 to L, and it is a factor of L,
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which means that the modulation occurs over a period of N = L/m.

Equation (4.1) is the classical limit of the well-known Bose Hubbard model, ap-

proached when the average occupation number ⟨nr⟩ ≫ 1. In the absence of an

external potential (i.e., with V1 = 0), and with V0 = U , Equation (4.1) reduces to the

x-y model, in the strong-coupling (i.e., U → ∞) limit. In 2D, this model exhibits

a BKT superfluid transition, in which the classical helicity modulus plays the role

of the superfluid response [19]. It serves as an appropriate minimal model to gain

insight into the physics of interest here, as our goal is to find out if there is a change

in the effective dimensionality of the system when the modulation amplitude reaches

a certain value. Such a change should be reflected in the critical properties of the

system, which in turn reveal how it behaves over long distances, without being af-

fected by whether the underlying field theory is formulated in the continuum or on a

lattice, or whether it is quantum or classical in character.

4.3 Results

In this work, we study the possibility of a dimensional crossover in the strongly

modulated |ψ|4 model for different values of the modulation amplitude V1 (4.2), in

which the strongly-interacting limit is consistently recovered by setting the parameters

in Equations (4.1) and (4.2) U = V0 = 40, and t = 1 is used as the reference energy

scale. Apparently, in the absence of modulation (V1 = 0), this choice of parameters

allows the |ψ|4 model to map onto the isotropic, planar x − y model with uniform

coupling parameter J [115]; since the x−y model is a limiting case of the |ψ|4 theory,

approached when U = c→∞. In this setting, multiple occupation of the same site is

physically penalized by the repulsive interaction among particles. Without reducing

generality, we select the modulation period N = 8 for every studied value of V1.

In order to validate whether our model can describe the system of interest or not,

we map out the density map of the simulated system for a large amplitude of the

modulation V1 = 80 at low temperature. As expected, the reliability of our model
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is confirmed, the system breaks down into stripes for sufficiently large values of the

amplitude of the modulating potential, wherein the energy barrier needed for multiple

occupation is overcome (as shown in Figure 4.1).

Figure 4.1: Density map at low temperature of the system represented by the 2D |ψ|4
classical Hamiltonian in the presence of an external modulation. The formation of
stripes is evident.

To exploit the effect of a large modulating potential, we illustrate our estimates

for the superfluid fraction along each direction as a function of temperature for the

various lattice sizes considered L = 64, 128, 256, 512, 1024, and for two different values

of the modulation amplitude V1 = 40 and V1 = 60.

In the upper (lower) panel of Figure 4.2, we plot the superfluid fraction along the

x-direction (the y-direction) ρS,x(y)(T, L) for V1 = 40 as a function of T for increasing

values of L. Similar to the case of the isotropic, planar x − y model (discussed in

Chapter 3), as L increases, both ρs,x(T, L) and ρs,y(T, L) become sharper, and move

closer to the vertical red line, which indicates the trend of the superfluid fraction in

the thermodynamic limit, following the BKT formalism. Apparently, on increasing L,

both ρs,x(T, L) and ρs,y(T, L) get shaped so to exhibit the universal jump at T = Tc,

although ρs,y(Tc) is rescaled with respect to ρs,x(Tc).
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Figure 4.2: Upper panel: The superfluid fraction along the x-direction (longitudinal)
ρSx versus temperature, for the different lattice sizes considered, with the modulation
strength V1/t = 40. Statistical errors are smaller than symbol sizes. The vertical red
line indicates the critical temperature. Lower panel: Same as Upper panel for the
y-direction (transverse).

In Figure 4.3, we present plots similar to the ones in Fig. 4.2, but now for V1 = 60.

In this case, the superfluid response along the y-direction is suppressed, and for large

modulation becomes negligible except at a very low temperature. Thus, one can argue

that the superfluid response along the y-direction totally vanishes, its small finite
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Figure 4.3: Same as Figure 4.2 for the modulation strength V1/t = 60.

value at the sufficiently low temperature is just a finite-size effect, and the dimensional

crossover actually occurs in this case. Aware of this argument, as shown in Figure 4.3,

we have carried out a finite-size scaling analysis of our results, showing that this small

finite value of the superfluid fraction along the y-direction stays unchanged when

increasing the lattice size. In other words, this is not a finite-size effect, and this small

finite value survives in the thermodynamic limit. Overall, the behavior of ρs,x(T ) and
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ρs,y(T ) is exactly the same as for V1 = 40, however, increasing V1 has decreased the

value of Tc and significantly reduced ρs,y(T, L) in comparison to ρs,x(T, L), which

is consistent with Figure 4.2. Despite this, ρs,y(T, L) still bends towards the finite

universal jump at T = Tc, as it is appropriate for the two-dimensional system.

Figure 4.4: The superfluid fraction along the x-direction ρSx as a function of tempera-
ture, for the two different lattice sizes, with the modulation strength V1/t = 40. Boxes
and circles are numerical estimates obtained by Monte Carlo simulations. Solid lines
are fits to the data based on the BKT recursive equations (see text), while dashed
line represents the extrapolation to the thermodynamic limit.

In order to verify that our studied system always falls in the BKT universality class,

we carry out a fit to our numerical estimates for the superfluid fraction along the x-

direction ρSx for V1/t = 40 using the modified BKT recursive equations applying for

the classical anisotropic x− y model [71] (as shown in Figure 4.4). One can see that

the fit displays an impressive quality for both the two different lattice sizes considered,

especially in the vicinity of the critical temperature Tc. Based on the fit to the data

for our finite system, the behavior of the superfluid fraction in the thermodynamic

limit can be extrapolated, and indicated by the dashed curve in Figure 4.4; and with

the help of the well-known universal jump condition [63], we estimate the superfluid
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transition temperature Tc = 0.95(5).

Our results clearly show that no dimensional crossover can be caused by the uni-

axial external potential modulation for any finite value of the amplitude of the mod-

ulation: the only effects of increasing V1 are a combined suppression of the critical

temperature Tc and of the ratio between ρs,y(T ) and ρs,x(T ), without qualitatively

affecting the behavior of the system. A finite, though small, superfluid fraction always

appears at T → 0 in both directions, as well as a finite, though small, Tc at which

the system undergoes the BKT phase transition.

4.4 Conclusions

In this work, we explored how a uniaxial external modulation affects a two-dimensional

superfluid. The behavior of the superfluid at a finite temperature was studied using

the classical |ψ|4 model on a square lattice. By incorporating the modulation into

the well-established mapping between the |ψ|4 and the x− y model, a version of the

latter model Hamiltonian with modulated parameters was developed. This enables

the examination of the effects of progressively increasing the potential modulation

strength V1.

We demonstrated that even though the system tends to form quasi 1D stripes

perpendicular to the direction of the modulation, the classical anisotropic x−y model

still accurately depicts the superfluid phase transition at any value of V1. This is

because the modulated model simplifies to the classical anisotropic x − y model in

the large-scale, low-energy limit. In particular, we have shown that the primary effects

of increasing V1 are causing Tc to decrease to a finite value and also lowers the ratio

between the superfluid fractions at T → 0, ρs,y(0)/ρs,x(0). As a result, as long as

the systems being studied are large enough, a relevant measurement of the superfluid

fractions always evidences the two-dimensionality of the superfluid [116–118].

Because our minimal model can be widely used to illustrate the superfluid phase

transition in planar, interacting bosonic systems, we conclude that, as a general re-
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sult, simply applying a uniaxial modulation is not sufficient to induce a 2D to 1D

dimensional crossover in such systems.

Additional ways to approach our research could include, but are not limited to,

looking at how disorder affects the sample. It would be intriguing to determine if

the scenario we observed is influenced by impurities. Given the high level of control

achieved in cold atom technology, it may be possible to create impurities with tunable

parameters, mimicking junctions of quantum wires [119–124], or even network of

junctions [125], with high level of quantum coherence [126, 127] and a wide range of

potential practical applications.
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Chapter 5

Phase diagram of hard core bosons
with anisotropic interactions

In this chapter, we discuss our results of an examination of the phase diagram of a

system of hard core bosons on the square lattice, where the bosons interact with each

other through an anisotropic potential that only affects their nearest neighbors [39].

5.1 Introduction

Lattice hard core bosons have been a subject of theoretical study for a long time,

due to their use as a minimal model for a system with strong interactions that shows

a superfluid phase at low temperatures and a quantum phase transition between

superfluid and crystalline ground states. Moreover, the investigation of this model

has provided a lot of understanding about the possibility of a supersolid phase, and

how defects such as vacancies and interstitials may be involved in its stability [30–38].

For a long time, lattice models were considered to be of little practical use and

only of interest to academics, as they were unable to provide a realistic microscopic

description of any actual physical system. However, in recent years, advancements

in optical lattice technology have made it possible to create artificial many-body sys-

tems using ultracold atoms and molecules, which can accurately simulate the physics

outlined in lattice models [128–132]. Therefore, with the use of artificial many-body

systems, one can now compare theoretical predictions and experimental results with
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a high degree of precision, which is not possible with naturally occurring physical

systems such as solid helium. Additionally, the possibility of engineering interactions

among cold atoms [133–137] not occurring in ordinary condensed matter (at least not

as the dominant interactions) could open the door to the discovery of novel, exotic

phases of matter [102, 138, 139].

For instance, recent developments in experimental techniques in the spatial confine-

ment and cooling of large assemblies of atoms with finite electric and magnetic dipoles,

enable the study of many-body systems whose interaction is primarily dipolar, i.e.,

anisotropic (attractive or repulsive depending on the relative direction of approach

of two particles). These interactions may not be strictly long-ranged, but they can

still extend to distances significantly beyond nearest neighbors, at experimentally at-

tainable densities. It is believed that different crystalline and/or superfluid phases,

breaking rotational symmetry in principle can be stabilized by these two features of

the pairwise interaction.

There have been a lot of studies, both through experimentation [140] and theory

[141, 142], of the physics of a system made up of spin zero particles possessing a

dipole moment, with all dipole moments aligned along the same direction. In three

dimensions, computer simulations of continuous systems have observed a supersolid

phase [103, 143]. Two-dimensional systems are more intricate; possible supersolid

phases that were thought to happen in speculated “microemulsion” scenarios, where

the dipole moments are perpendicular to the plane of particle movement [144], have

been proven to not exist [145]. On the other hand, computer simulations have shown

the existence of supersolid phases in dipolar bosons on a triangular lattice [146],

whereas it has been confirmed that such phases cannot be stabilized on a square lattice

[147], even if dipole moments are tilted with respect to the direction perpendicular

to the plane of particle motion, a prediction confirmed for continuous systems [148]1.

1When the tilting angle exceeds a critical value in three dimensions or lower dimensions, the
interaction between dipoles becomes purely attractive in specific directions, causing the system to
become unstable and collapse. To prevent this, a short-range hard core repulsion must be supple-
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An interesting question that can be explored theoretically is how the long-range

nature of the interaction affects the stability of specific, exotic thermodynamic phases,

e.g., the supersolid. As an example, the phase diagram of lattice dipolar bosons of

spin zero, with dipole moments aligned perpendicularly to the plane of motion, is

qualitatively similar to that with only nearest-neighbor interactions, both on the

square [33, 147] and on the triangular lattice [38, 146]. In particular, there are

interstitial supersolid phases on the triangular lattice, at particle density 1/3 (2/3),

while no supersolid phase is found at half filling on the square one. Remarkably, by

including only nearest and next-nearest neighbor interactions, it is possible to stabilize

vacancy and interstitial supersolid phases on the square lattice at density 1/4 (3/4)

[149, 150].

In this chapter, we present the findings of a theoretical examination of the phase

diagram of a system of hard core bosons on the square lattice, interacting via an

anisotropic nearest-neighbor potential, with the repulsive interaction in one direction

and the attractive interaction in the other. We map out the complete finite tempera-

ture phase diagram, which is found to be qualitatively very similar to that of a system

of hard-core dipolar bosons with aligned dipole moments, tilted with respect to the

perpendicular to the plane. The interplay of attraction and repulsion along different

directions results in the existence of three distinct phases: a superfluid (SF) one, as

well as two crystalline phases at half filling, specifically a checkerboard (CB) and a

striped (ST) phase. There is no detection of a supersolid phase, even at exactly half

filling, which is in line with fundamental theoretical explanations [151], or by doping

either the CB or ST phase with vacancies or interstitials. Each crystalline phase is

separated from the superfluid by a conventional first order quantum phase transi-

tion at zero temperature. The fundamental characteristics of the finite temperature

phase diagram are also in agreement with what is observed in other models of lattice

mented to the dipolar interaction, whose presence is customarily assumed in standard theoretical
studies, to ensure thermodynamic stability.
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hard-core bosons.

The remainder of this chapter is organized as follows: in Section 5.2 we describe the

model of interest; in Section 5.3 we present our results, and outline our conclusions

in Section 5.4.

5.2 Model

We are interested in the well-known lattice hard core Bose Hamiltonian, expressed as

follows:

Ĥ = − t
∑︂
r

(︃
â†r+x̂ âr + â†r+ŷ âr + h.c.

)︃
+

+
∑︂
r

(︃
Vr,x̂ n̂r n̂r+x̂ + Vr,ŷ n̂r n̂r+ŷ

)︃
+

− µ
∑︂
r

n̂r, (5.1)

where the sum runs over all the sites of a square lattice of N = L × L sites, with

periodic boundary conditions. Here, x̂ and ŷ are the unit vectors in the two crystallo-

graphic directions, â†r, âr are the standard Bose creation and annihilation operators,

nr ≡ â†r âr is the occupation number for site r, t is the particle-hopping matrix el-

ement and µ is the chemical potential. Particularly, there is the definition of the

(nearest-neighbor) interaction potential:

Vr,x̂ = V, Vr,ŷ = λ V, (5.2)

λ being a real number. The Hamiltonian (5.1) is defined in the subspace of many-

particle configurations, where no more than one particle can occupy a single lattice

site, known as the hard core condition. Therefore, the total number of particles

NP ≡
∑︁

r â
†
râr can take on any integer value from 0 to N . The particle density (or,

filling) is defined as ρ ≡ (NP/N), i.e., 0 ≤ ρ ≤ 1.

In this model, the phase diagram of the isotropic λ = 1 case has been extensively

studied; it is known that, for −2t < V < 2t, the system exhibits a single homogeneous
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fluid phase, undergoing a SF transition at low temperature. Besides, if V > 2t there

is a first order quantum phase transition appearing at temperature T = 0 between a

SF and a CB crystal at half filling (i.e., ρ = 1/2) [33]. For V < −2t, only two phases

exist, characterized by either ρ = 0 or 1, phases of intermediate filling (some of them

SF) can only be stabilized by external factors, such as disorder [152].

On the other hand, the λ ̸= 1 case has not been extensively studied, primarily due

to the difficulty in finding a practical way to conduct experiments for this case. How-

ever, an interaction with that kind of anisotropy can be achieved in dipolar systems

by simply adjusting the alignment of dipole moments with respect to the direction

perpendicular to the plane of the lattice (see, for instance, Ref. [147] for details).

While the dipolar interaction extends significantly beyond nearest neighboring lattice

sites, in this work we aim to determine which characteristics of the phase diagram

are solely due to the anisotropy in the short-range portion of the interaction. Of

particular interest is the case λ < 0, i.e., the interaction is repulsive (attractive) in

the x (y) direction.

In this work, we systematically investigated the finite temperature phase diagram

of Eq. 5.1, as a function of the three parameters T , µ and λ. In order to characterize

the various phases of the system we computed the superfluid density ρS(T ) using the

well-known winding number estimator [153], as well as the static structure factor

S(Q) =
1

N2

⟨︃⃓⃓⃓⃓∑︂
r

n̂r e
iQ·r
⃓⃓⃓⃓2⟩︃

(5.3)

where ⟨...⟩ stands for thermal average. A finite value of S(Q) for some specific wave

vector(s) signals the presence of crystalline long-range order. In particular, the wave

vector Q = (π, π) is related to checkerboard order, while Q = (π, 0) (and not (0, π)

because of the way we have defined the interaction, Equation (5.2)) indicates stripe

order, in both cases at half filling. Numerical simulations have been carried out on

square lattices of different sizes (up to L = 32) in order to evaluate the impact of

finite size effects.
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5.3 Results

Figure 5.1: Ground state particle density ρ (top panel), superfluid density ρS (middle
panel) and static structure factor S(π, 0) (bottom panel) versus chemical potential
µ (in units of t) for V/t = 3, λ = −1 and two system sizes L = 8 (boxes), L = 16
(circles). Statistical errors are smaller than symbol sizes.

We begin by discussing the physical behavior of the system in its ground state, i.e.,

at temperature T = 0. Since we use a simulation method that takes into account a

finite temperature, we can achieve our goal by extrapolating to the T = 0 limit results

obtained at sufficiently low temperatures. In practice, our numerical estimates are

computed at temperature T ∼ TL ≡ (t/L), which are indistinguishable from the

extrapolated ones, within the statistical uncertainties of the calculation. This means

that the physical estimates obtained at TL can be considered to be equivalent to those

obtained in the ground state.
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Figure 5.2: Same as Figure 5.1 for λ = 0.

An example of how the phases of the system are identified is shown in Figure 5.1,

which shows ground state results for the case λ = −1 and V = 3t. In this case, the

system presents two distinct phases, a superfluid one (possessing no crystalline order)

away from half filling, and a non-superfluid crystalline (striped) one at half filling.

These two phases are separated by a first order phase transition.

Specifically, the top panel displays the dependence of the computed particle density

ρ on the chemical potential µ (in units of t). The density jump as ρ approaches

half filling indicates a first-order phase transition, with coexistence of a superfluid

phase (expressed through the superfluid density ρS in the middle panel), and one

that features striped crystalline order (expressed through the static structure factor

S(π, 0) in the bottom panel). As one can see, no supersolid phase exists, i.e., in which
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both ρS and S(π, 0) are finite. The superfluid density is finite throughout the system,

except at half filling, while the static structure factor is finite only at half filling.

This can be contrasted with the results shown in Figure 5.2 for V/t = 3 and λ = 0.

In this case, all the curves are smooth throughout, indicating that there is no phase

transition.

Figure 5.3: Ground state phase diagram at half filling as a function of the interaction
strength V and anisotropy parameter λ. The system features a checkerboard solid
(triangles), a stripe solid (circles), and a superfluid phase (boxes). In the V/t → ∞
limit, the CB solid and the stripe solid lines meet at λ = 0 (diamond at the top). Solid
lines separating the various phases indicate first order quantum phase transitions.

Based on the analysis of the results such as those shown in Figure 5.1 and Fig-

ure 5.2, the ground state phase diagram at half filling in the V − λ plane is shown in

Figure 5.3. This illustrates the boundaries between the three different phases that are

observed, namely the SF as well as CB and striped solid phases. Lines that separate

the different phases depict first-order quantum phase transitions. This phase diagram

is qualitatively very similar to that of a system of tilted dipolar lattice bosons [147].

As expected, at low interaction strength V (the weak coupling limit) the system dis-

plays the SF phase for any value of the anisotropic parameter λ. On the other hand,

44



as V is increased to a critical value Vc(λ) the system undergoes a first-order phase

transition and changes into a checkerboard (striped) solid phase when λ > 0 (λ < 0).

As λ → 0, the system remains in a superfluid state even at higher values of the in-

teraction strength V . However, for V ≳ 5t, the system can only exist in one of the

two crystalline phases.

Along the λ = 0 line, quantum fluctuations make the CB phase more favorable than

the striped one, which can be confirmed by using standard second order perturbation

theory. Therefore, the boundary line between the stripe phase and the CB phase at

large values of V is not exactly vertical, as CB order is favored for λ → 0−. This

is seemingly the most significant contrast between the anisotropic nearest-neighbor

interaction studied in this work and the tilted, full dipolar interaction [147].

Figure 5.4: Finite temperature phase diagram for λ = −1 for two representative cuts.
Left panel show results for fixed µ = t; the right panel is for fixed V = 3 t. Solid
lines indicate first-order phase transitions between stripe solid (boxes) and superfluid
(circles) or normal fluid (triangles) phases. Dotted lines show Berezinskii-Kosterlitz-
Thouless transitions between normal fluid ( triangles) and superfluid phases. Dashed
lines correspond to second-order transitions in the Ising universality class between
stripe solid and normal fluid.

The finite-temperature phase diagram of the system in the (T, µ, V ) space is pre-

sented in Figure 5.4 with two representative cuts. We consider for definiteness the
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case λ = −1, for which the ground state at half filling is a stripe solid for V ≳ 2.5 t.

The panel on the left displays a constant chemical potential (µ = t), while the panel

on the right displays a constant interaction strength (V = 3 t).

At constant temperature, a first-order (quantum) phase transition separates the

striped crystal from the (super)fluid phase in Figure 5.4. On the other hand, at con-

stant V or µ superfluid order is destroyed by thermal fluctuations and turns into a

normal fluid through a Berezinskii-Kosterlitz-Thouless transition, indicated by the

dotted lines. Additionally, the striped crystal melts into a normal fluid via a second-

order transition in the Ising universality class, shown by the dashed curve in Fig-

ure 5.4. Overall, this phase diagram is fairly conventional, and qualitatively identical

to that in the λ > 0 sector, with no supersolid phase.

All of the phase boundaries drawn in Figure 5.3 and Figure 5.4 are only qualita-

tively sketched.

5.4 Conclusions

In this work, we examine the phase diagram of a system of hard core bosons on

the square lattice, where the interaction between bosons is a short-ranged (nearest-

neighbor) interaction and can differ in the two crystallographic directions. This in-

cludes the situation where the bosons are attracted in one direction but repelled in

another. One can realize this kind of anisotropic interaction experimentally with

a system of dipolar atoms or molecules, confined to a 2D optical lattice, if dipole

moments are adjusted at a varying (tilting) angle with respect to the direction per-

pendicular to the plane of particle motion.

The purpose of this study are a) to comprehend the different phases that can

emerge due to the anisotropy of the interaction, b) to evaluate the significance of

its extended range, by comparing our results to those obtained in similar studies

[147] that take into account the full dipolar interaction. With respect to the case

in which the interaction is isotropic, the only variation observed is the emergence
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of a distinct crystalline phase with stripe order. Otherwise, the phase diagram is

qualitatively identical to that for isotropic interaction, featuring a single crystalline

phase at half filling, and no supersolid phase. The phase diagram is also qualitatively

identical to that observed by considering the full dipolar interaction, i.e., extending

beyond nearest neighbors, with different degrees of anisotropy matching different

tilting angles [147]. This is in agreement with what has been seen in the case of

purely repulsive, isotropic interactions, where the existence of a 1/r3 dipolar tail

does not significantly change the phase diagram, e.g., on the triangular lattice [146].

Overall, this study supports the idea that lattice geometry (i.e., triangular versus

square) has a greater impact on the emergence of supersolid phases than the detailed

form of the interaction.

According to a recent study [154], it has been proposed that supersolid phases can

be stabilized in the presence of anisotropic dipolar interactions extending to next-

nearest neighboring distances. This aspect is not explored here, but the contention

seems plausible and not particularly surprising, since this was expressed to be the

case for isotropic repulsive interactions [150] (i.e., the λ > 0 sector of Eq. 5.2), and

the fact that the system in the positive λ sector behaves qualitatively similar to that

in the negative λ sector, as shown in this work.
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Chapter 6

Conclusions

We have investigated some aspects of the superfluid transition in low dimensions

and/or in the presence of external modulating fields, making use of classical and

quantum lattice models. Driving this investigation is recent advancements in tech-

nology, which allow for the exploration of, e.g., superfluid helium films or cold atom

assemblies in novel, yet unexplored settings. These studies have been carried out by

means of new computational methods, such as the Worm Algorithm in the lattice

flow representation, which has the ability to provide quantitative predictions valid in

the thermodynamic limit.

First, we have studied the behavior of the specific heat in a 2D superfluid by

performing large-scale numerical simulations of the 2D classical x-y model, which falls

in the same universality class (BKT) as quasi-2D superfluid 4He films. This behavior

of the specific heat is still poorly understood due to an unclear anomaly appearing

above the superfluid transition temperature in 2D, while there is a sharp peak related

to the superfluid transition in 3D. Our results justify the presence of a specific heat

anomaly, which remains a rounded anomaly, and locates at a temperature ∼ 17%

higher than the superfluid transition temperature. Specifically, this is not indicative

of a phase transition.

Second, we have explored whether a dimensional crossover in a 2D superfluid can

be induced by the effects of a strong external modulating potential, applying to the
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system in just one direction, in the context of the classical |ψ|4 field theory. This

model can exhibit a BKT phase transition, and is a generalization of the x-y model

in which the local density of the system can vary. We have found that, if the studied

systems are large enough, the two-dimensionality of the superfluid is always evidenced

by a pertinent measurement of the superfluid fractions. Overall, despite the tendency

of the system to form quasi 1D stripes perpendicular to the direction of the modu-

lation, for any finite value of the modulation amplitude, the physics of the system

approaches that of the anisotropic x−y model, with a suppressed superfluid transition

temperature and an anisotropic response, but with no dimensional crossover.

Finally, we have investigated the phase diagram of a system of hard-core bosons on

the square lattice, that interacts through an anisotropic nearest-neighbor potential,

in which the interaction is repulsive in one direction and attractive in another. This

ground state phase diagram consists of three distinguished phases: a superfluid phase,

as well as two crystalline phases (checkerboard or striped) at half-filling, but no “su-

persolid” phase; which is similar to the scenario of isotropic interactions. Moreover,

a complete finite temperature phase diagram is also mapped out, and the behavior of

this is qualitatively very similar to that of a system of hard-core dipolar bosons with

aligned dipole moments, tilted with respect to the perpendicular to the plane. The

main results that should be highlighted are this model contains no supersolid phase,

and long-range interactions do not result in significant new physics compared to what

can be observed in a system with short-range interactions only.
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[87] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J. Dalibard, “Berezinskii-
kosterlitz-thouless crossover in a trapped atomic gas,” Nature, vol. 441, pp. 1118–
1121, 2006. doi: 110.1038/nature04851. [Online]. Available: https://doi.org/
10.1038/nature04851.

[88] R. Desbuquois et al., “Superfluid behaviour of a two-dimensional bose gas,”
Nat. Phys., vol. 8, pp. 645–648, 2012. doi: 10.1038/nphys2378.

[89] R. J. Fletcher et al., “Connecting berezinskii-kosterlitz-thouless and bec phase
transitions by tuning interactions in a trapped gas,” Phys. Rev. Lett., vol. 114,
p. 255 302, 25 Jun. 2015. doi: 10.1103/PhysRevLett.114.255302.

[90] S. Sunami et al., “Observation of the berezinskii-kosterlitz-thouless transition
in a two-dimensional bose gas via matter-wave interferometry,” Phys. Rev.
Lett., vol. 128, p. 250 402, 25 Jun. 2022. doi: 10.1103/PhysRevLett.128.250402.
[Online]. Available: https : // link .aps . org/doi/10 .1103/PhysRevLett . 128 .
250402.

[91] P. E. Sokol, M. R. Gibbs, W. G. Stirling, R. T. Azuah, and M. A. Adams,
“Microscopic origins of superfluidity in confined geometries,” Nature (London),
vol. 379, pp. 616–618, 1996. doi: 10.1038/379616a0.

[92] R. M. Dimeo, P. E. Sokol, C. R. Anderson, W. G. Stirling, K. H. Andersen,
and M. A. Adams, “Localized collective excitations in superfluid helium in
vycor,” Phys. Rev. Lett., vol. 81, pp. 5860–5863, 26 Dec. 1998. doi: 10.1103/
PhysRevLett.81.5860.

[93] O. Plantevin et al., “Excitations of superfluid 4He in porous media: Aerogel
and vycor,” Phys. Rev. B, vol. 63, p. 224 508, 22 May 2001. doi: 10.1103/
PhysRevB.63.224508.

[94] C. R. Anderson, K. H. Andersen, W. G. Stirling, P. E. Sokol, and R. M. Dimeo,
“Dynamics of superfluid 4He confined in xerogel glass,” Phys. Rev. B, vol. 65,
p. 174 509, 17 Apr. 2002. doi: 10.1103/PhysRevB.65.174509.

[95] R. Toda et al., “Superfluidity of 4He in one and three dimensions realized in
nanopores,” Phys. Rev. Lett., vol. 99, p. 255 301, 25 Dec. 2007. doi: 10.1103/
PhysRevLett.99.255301.

57

https://doi.org/10.1103/PhysRevLett.47.534
https://link.aps.org/doi/10.1103/PhysRevLett.47.534
https://doi.org/10.1103/PhysRevLett.47.1542
https://doi.org/10.1103/PhysRevLett.47.1542
https://link.aps.org/doi/10.1103/PhysRevLett.47.1542
https://link.aps.org/doi/10.1103/PhysRevLett.47.1542
https://doi.org/110.1038/nature04851
https://doi.org/10.1038/nature04851
https://doi.org/10.1038/nature04851
https://doi.org/10.1038/nphys2378
https://doi.org/10.1103/PhysRevLett.114.255302
https://doi.org/10.1103/PhysRevLett.128.250402
https://link.aps.org/doi/10.1103/PhysRevLett.128.250402
https://link.aps.org/doi/10.1103/PhysRevLett.128.250402
https://doi.org/10.1038/379616a0
https://doi.org/10.1103/PhysRevLett.81.5860
https://doi.org/10.1103/PhysRevLett.81.5860
https://doi.org/10.1103/PhysRevB.63.224508
https://doi.org/10.1103/PhysRevB.63.224508
https://doi.org/10.1103/PhysRevB.65.174509
https://doi.org/10.1103/PhysRevLett.99.255301
https://doi.org/10.1103/PhysRevLett.99.255301


[96] T. R. Prisk et al., “Phases of superfluid helium in smooth cylindrical pores,”
Phys. Rev. B, vol. 88, p. 014 521, 1 Jul. 2013. doi: 10.1103/PhysRevB.88.
014521.

[97] M. Savard, G. Dauphinais, and G. Gervais, “Hydrodynamics of superfluid
helium in a single nanohole,” Phys. Rev. Lett., vol. 107, p. 254 501, 25 Dec.
2011. doi: 10.1103/PhysRevLett.107.254501.

[98] W. Teizer, R. B. Hallock, E. Dujardin, and T. W. Ebbesen, “4He Desorp-
tion from single wall carbon nanotube bundles: A one-dimensional adsor-
bate,” Phys. Rev. Lett., vol. 82, pp. 5305–5308, 26 Jun. 1999. doi: 10.1103/
PhysRevLett.82.5305.

[99] T. Ohba, “Limited quantum helium transportation through nano-channels by
quantum fluctuation,” Sci. Rep., vol. 6, p. 28 992, 16 2016. doi: 10 . 1038/
srep28992.
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